1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Overview:
4 * This is the generic MTD driver for NAND flash devices. It should be
5 * capable of working with almost all NAND chips currently available.
6 *
7 * Additional technical information is available on
8 * http://www.linux-mtd.infradead.org/doc/nand.html
9 *
10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
12 *
13 * Credits:
14 * David Woodhouse for adding multichip support
15 *
16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17 * rework for 2K page size chips
18 *
19 * TODO:
20 * Enable cached programming for 2k page size chips
21 * Check, if mtd->ecctype should be set to MTD_ECC_HW
22 * if we have HW ECC support.
23 * BBT table is not serialized, has to be fixed
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/gpio/consumer.h>
46
47 #include "internals.h"
48
nand_pairing_dist3_get_info(struct mtd_info * mtd,int page,struct mtd_pairing_info * info)49 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
50 struct mtd_pairing_info *info)
51 {
52 int lastpage = (mtd->erasesize / mtd->writesize) - 1;
53 int dist = 3;
54
55 if (page == lastpage)
56 dist = 2;
57
58 if (!page || (page & 1)) {
59 info->group = 0;
60 info->pair = (page + 1) / 2;
61 } else {
62 info->group = 1;
63 info->pair = (page + 1 - dist) / 2;
64 }
65
66 return 0;
67 }
68
nand_pairing_dist3_get_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)69 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
70 const struct mtd_pairing_info *info)
71 {
72 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
73 int page = info->pair * 2;
74 int dist = 3;
75
76 if (!info->group && !info->pair)
77 return 0;
78
79 if (info->pair == lastpair && info->group)
80 dist = 2;
81
82 if (!info->group)
83 page--;
84 else if (info->pair)
85 page += dist - 1;
86
87 if (page >= mtd->erasesize / mtd->writesize)
88 return -EINVAL;
89
90 return page;
91 }
92
93 const struct mtd_pairing_scheme dist3_pairing_scheme = {
94 .ngroups = 2,
95 .get_info = nand_pairing_dist3_get_info,
96 .get_wunit = nand_pairing_dist3_get_wunit,
97 };
98
check_offs_len(struct nand_chip * chip,loff_t ofs,uint64_t len)99 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
100 {
101 int ret = 0;
102
103 /* Start address must align on block boundary */
104 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
105 pr_debug("%s: unaligned address\n", __func__);
106 ret = -EINVAL;
107 }
108
109 /* Length must align on block boundary */
110 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
111 pr_debug("%s: length not block aligned\n", __func__);
112 ret = -EINVAL;
113 }
114
115 return ret;
116 }
117
118 /**
119 * nand_extract_bits - Copy unaligned bits from one buffer to another one
120 * @dst: destination buffer
121 * @dst_off: bit offset at which the writing starts
122 * @src: source buffer
123 * @src_off: bit offset at which the reading starts
124 * @nbits: number of bits to copy from @src to @dst
125 *
126 * Copy bits from one memory region to another (overlap authorized).
127 */
nand_extract_bits(u8 * dst,unsigned int dst_off,const u8 * src,unsigned int src_off,unsigned int nbits)128 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
129 unsigned int src_off, unsigned int nbits)
130 {
131 unsigned int tmp, n;
132
133 dst += dst_off / 8;
134 dst_off %= 8;
135 src += src_off / 8;
136 src_off %= 8;
137
138 while (nbits) {
139 n = min3(8 - dst_off, 8 - src_off, nbits);
140
141 tmp = (*src >> src_off) & GENMASK(n - 1, 0);
142 *dst &= ~GENMASK(n - 1 + dst_off, dst_off);
143 *dst |= tmp << dst_off;
144
145 dst_off += n;
146 if (dst_off >= 8) {
147 dst++;
148 dst_off -= 8;
149 }
150
151 src_off += n;
152 if (src_off >= 8) {
153 src++;
154 src_off -= 8;
155 }
156
157 nbits -= n;
158 }
159 }
160 EXPORT_SYMBOL_GPL(nand_extract_bits);
161
162 /**
163 * nand_select_target() - Select a NAND target (A.K.A. die)
164 * @chip: NAND chip object
165 * @cs: the CS line to select. Note that this CS id is always from the chip
166 * PoV, not the controller one
167 *
168 * Select a NAND target so that further operations executed on @chip go to the
169 * selected NAND target.
170 */
nand_select_target(struct nand_chip * chip,unsigned int cs)171 void nand_select_target(struct nand_chip *chip, unsigned int cs)
172 {
173 /*
174 * cs should always lie between 0 and nanddev_ntargets(), when that's
175 * not the case it's a bug and the caller should be fixed.
176 */
177 if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
178 return;
179
180 chip->cur_cs = cs;
181
182 if (chip->legacy.select_chip)
183 chip->legacy.select_chip(chip, cs);
184 }
185 EXPORT_SYMBOL_GPL(nand_select_target);
186
187 /**
188 * nand_deselect_target() - Deselect the currently selected target
189 * @chip: NAND chip object
190 *
191 * Deselect the currently selected NAND target. The result of operations
192 * executed on @chip after the target has been deselected is undefined.
193 */
nand_deselect_target(struct nand_chip * chip)194 void nand_deselect_target(struct nand_chip *chip)
195 {
196 if (chip->legacy.select_chip)
197 chip->legacy.select_chip(chip, -1);
198
199 chip->cur_cs = -1;
200 }
201 EXPORT_SYMBOL_GPL(nand_deselect_target);
202
203 /**
204 * nand_release_device - [GENERIC] release chip
205 * @chip: NAND chip object
206 *
207 * Release chip lock and wake up anyone waiting on the device.
208 */
nand_release_device(struct nand_chip * chip)209 static void nand_release_device(struct nand_chip *chip)
210 {
211 /* Release the controller and the chip */
212 mutex_unlock(&chip->controller->lock);
213 mutex_unlock(&chip->lock);
214 }
215
216 /**
217 * nand_bbm_get_next_page - Get the next page for bad block markers
218 * @chip: NAND chip object
219 * @page: First page to start checking for bad block marker usage
220 *
221 * Returns an integer that corresponds to the page offset within a block, for
222 * a page that is used to store bad block markers. If no more pages are
223 * available, -EINVAL is returned.
224 */
nand_bbm_get_next_page(struct nand_chip * chip,int page)225 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
226 {
227 struct mtd_info *mtd = nand_to_mtd(chip);
228 int last_page = ((mtd->erasesize - mtd->writesize) >>
229 chip->page_shift) & chip->pagemask;
230 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
231 | NAND_BBM_LASTPAGE;
232
233 if (page == 0 && !(chip->options & bbm_flags))
234 return 0;
235 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
236 return 0;
237 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
238 return 1;
239 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
240 return last_page;
241
242 return -EINVAL;
243 }
244
245 /**
246 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
247 * @chip: NAND chip object
248 * @ofs: offset from device start
249 *
250 * Check, if the block is bad.
251 */
nand_block_bad(struct nand_chip * chip,loff_t ofs)252 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
253 {
254 int first_page, page_offset;
255 int res;
256 u8 bad;
257
258 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
259 page_offset = nand_bbm_get_next_page(chip, 0);
260
261 while (page_offset >= 0) {
262 res = chip->ecc.read_oob(chip, first_page + page_offset);
263 if (res < 0)
264 return res;
265
266 bad = chip->oob_poi[chip->badblockpos];
267
268 if (likely(chip->badblockbits == 8))
269 res = bad != 0xFF;
270 else
271 res = hweight8(bad) < chip->badblockbits;
272 if (res)
273 return res;
274
275 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
276 }
277
278 return 0;
279 }
280
281 /**
282 * nand_region_is_secured() - Check if the region is secured
283 * @chip: NAND chip object
284 * @offset: Offset of the region to check
285 * @size: Size of the region to check
286 *
287 * Checks if the region is secured by comparing the offset and size with the
288 * list of secure regions obtained from DT. Returns true if the region is
289 * secured else false.
290 */
nand_region_is_secured(struct nand_chip * chip,loff_t offset,u64 size)291 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
292 {
293 int i;
294
295 /* Skip touching the secure regions if present */
296 for (i = 0; i < chip->nr_secure_regions; i++) {
297 const struct nand_secure_region *region = &chip->secure_regions[i];
298
299 if (offset + size <= region->offset ||
300 offset >= region->offset + region->size)
301 continue;
302
303 pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
304 __func__, offset, offset + size);
305
306 return true;
307 }
308
309 return false;
310 }
311
nand_isbad_bbm(struct nand_chip * chip,loff_t ofs)312 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
313 {
314 struct mtd_info *mtd = nand_to_mtd(chip);
315
316 if (chip->options & NAND_NO_BBM_QUIRK)
317 return 0;
318
319 /* Check if the region is secured */
320 if (nand_region_is_secured(chip, ofs, mtd->erasesize))
321 return -EIO;
322
323 if (mtd_check_expert_analysis_mode())
324 return 0;
325
326 if (chip->legacy.block_bad)
327 return chip->legacy.block_bad(chip, ofs);
328
329 return nand_block_bad(chip, ofs);
330 }
331
332 /**
333 * nand_get_device - [GENERIC] Get chip for selected access
334 * @chip: NAND chip structure
335 *
336 * Lock the device and its controller for exclusive access
337 */
nand_get_device(struct nand_chip * chip)338 static void nand_get_device(struct nand_chip *chip)
339 {
340 /* Wait until the device is resumed. */
341 while (1) {
342 mutex_lock(&chip->lock);
343 if (!chip->suspended) {
344 mutex_lock(&chip->controller->lock);
345 return;
346 }
347 mutex_unlock(&chip->lock);
348
349 wait_event(chip->resume_wq, !chip->suspended);
350 }
351 }
352
353 /**
354 * nand_check_wp - [GENERIC] check if the chip is write protected
355 * @chip: NAND chip object
356 *
357 * Check, if the device is write protected. The function expects, that the
358 * device is already selected.
359 */
nand_check_wp(struct nand_chip * chip)360 static int nand_check_wp(struct nand_chip *chip)
361 {
362 u8 status;
363 int ret;
364
365 /* Broken xD cards report WP despite being writable */
366 if (chip->options & NAND_BROKEN_XD)
367 return 0;
368
369 /* controller responsible for NAND write protect */
370 if (chip->controller->controller_wp)
371 return 0;
372
373 /* Check the WP bit */
374 ret = nand_status_op(chip, &status);
375 if (ret)
376 return ret;
377
378 return status & NAND_STATUS_WP ? 0 : 1;
379 }
380
381 /**
382 * nand_fill_oob - [INTERN] Transfer client buffer to oob
383 * @chip: NAND chip object
384 * @oob: oob data buffer
385 * @len: oob data write length
386 * @ops: oob ops structure
387 */
nand_fill_oob(struct nand_chip * chip,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)388 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
389 struct mtd_oob_ops *ops)
390 {
391 struct mtd_info *mtd = nand_to_mtd(chip);
392 int ret;
393
394 /*
395 * Initialise to all 0xFF, to avoid the possibility of left over OOB
396 * data from a previous OOB read.
397 */
398 memset(chip->oob_poi, 0xff, mtd->oobsize);
399
400 switch (ops->mode) {
401
402 case MTD_OPS_PLACE_OOB:
403 case MTD_OPS_RAW:
404 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
405 return oob + len;
406
407 case MTD_OPS_AUTO_OOB:
408 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
409 ops->ooboffs, len);
410 BUG_ON(ret);
411 return oob + len;
412
413 default:
414 BUG();
415 }
416 return NULL;
417 }
418
419 /**
420 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
421 * @chip: NAND chip object
422 * @to: offset to write to
423 * @ops: oob operation description structure
424 *
425 * NAND write out-of-band.
426 */
nand_do_write_oob(struct nand_chip * chip,loff_t to,struct mtd_oob_ops * ops)427 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
428 struct mtd_oob_ops *ops)
429 {
430 struct mtd_info *mtd = nand_to_mtd(chip);
431 int chipnr, page, status, len, ret;
432
433 pr_debug("%s: to = 0x%08x, len = %i\n",
434 __func__, (unsigned int)to, (int)ops->ooblen);
435
436 len = mtd_oobavail(mtd, ops);
437
438 /* Do not allow write past end of page */
439 if ((ops->ooboffs + ops->ooblen) > len) {
440 pr_debug("%s: attempt to write past end of page\n",
441 __func__);
442 return -EINVAL;
443 }
444
445 /* Check if the region is secured */
446 if (nand_region_is_secured(chip, to, ops->ooblen))
447 return -EIO;
448
449 chipnr = (int)(to >> chip->chip_shift);
450
451 /*
452 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
453 * of my DiskOnChip 2000 test units) will clear the whole data page too
454 * if we don't do this. I have no clue why, but I seem to have 'fixed'
455 * it in the doc2000 driver in August 1999. dwmw2.
456 */
457 ret = nand_reset(chip, chipnr);
458 if (ret)
459 return ret;
460
461 nand_select_target(chip, chipnr);
462
463 /* Shift to get page */
464 page = (int)(to >> chip->page_shift);
465
466 /* Check, if it is write protected */
467 if (nand_check_wp(chip)) {
468 nand_deselect_target(chip);
469 return -EROFS;
470 }
471
472 /* Invalidate the page cache, if we write to the cached page */
473 if (page == chip->pagecache.page)
474 chip->pagecache.page = -1;
475
476 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
477
478 if (ops->mode == MTD_OPS_RAW)
479 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
480 else
481 status = chip->ecc.write_oob(chip, page & chip->pagemask);
482
483 nand_deselect_target(chip);
484
485 if (status)
486 return status;
487
488 ops->oobretlen = ops->ooblen;
489
490 return 0;
491 }
492
493 /**
494 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
495 * @chip: NAND chip object
496 * @ofs: offset from device start
497 *
498 * This is the default implementation, which can be overridden by a hardware
499 * specific driver. It provides the details for writing a bad block marker to a
500 * block.
501 */
nand_default_block_markbad(struct nand_chip * chip,loff_t ofs)502 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
503 {
504 struct mtd_info *mtd = nand_to_mtd(chip);
505 struct mtd_oob_ops ops;
506 uint8_t buf[2] = { 0, 0 };
507 int ret = 0, res, page_offset;
508
509 memset(&ops, 0, sizeof(ops));
510 ops.oobbuf = buf;
511 ops.ooboffs = chip->badblockpos;
512 if (chip->options & NAND_BUSWIDTH_16) {
513 ops.ooboffs &= ~0x01;
514 ops.len = ops.ooblen = 2;
515 } else {
516 ops.len = ops.ooblen = 1;
517 }
518 ops.mode = MTD_OPS_PLACE_OOB;
519
520 page_offset = nand_bbm_get_next_page(chip, 0);
521
522 while (page_offset >= 0) {
523 res = nand_do_write_oob(chip,
524 ofs + (page_offset * mtd->writesize),
525 &ops);
526
527 if (!ret)
528 ret = res;
529
530 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
531 }
532
533 return ret;
534 }
535
536 /**
537 * nand_markbad_bbm - mark a block by updating the BBM
538 * @chip: NAND chip object
539 * @ofs: offset of the block to mark bad
540 */
nand_markbad_bbm(struct nand_chip * chip,loff_t ofs)541 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
542 {
543 if (chip->legacy.block_markbad)
544 return chip->legacy.block_markbad(chip, ofs);
545
546 return nand_default_block_markbad(chip, ofs);
547 }
548
549 /**
550 * nand_block_markbad_lowlevel - mark a block bad
551 * @chip: NAND chip object
552 * @ofs: offset from device start
553 *
554 * This function performs the generic NAND bad block marking steps (i.e., bad
555 * block table(s) and/or marker(s)). We only allow the hardware driver to
556 * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
557 *
558 * We try operations in the following order:
559 *
560 * (1) erase the affected block, to allow OOB marker to be written cleanly
561 * (2) write bad block marker to OOB area of affected block (unless flag
562 * NAND_BBT_NO_OOB_BBM is present)
563 * (3) update the BBT
564 *
565 * Note that we retain the first error encountered in (2) or (3), finish the
566 * procedures, and dump the error in the end.
567 */
nand_block_markbad_lowlevel(struct nand_chip * chip,loff_t ofs)568 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
569 {
570 struct mtd_info *mtd = nand_to_mtd(chip);
571 int res, ret = 0;
572
573 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
574 struct erase_info einfo;
575
576 /* Attempt erase before marking OOB */
577 memset(&einfo, 0, sizeof(einfo));
578 einfo.addr = ofs;
579 einfo.len = 1ULL << chip->phys_erase_shift;
580 nand_erase_nand(chip, &einfo, 0);
581
582 /* Write bad block marker to OOB */
583 nand_get_device(chip);
584
585 ret = nand_markbad_bbm(chip, ofs);
586 nand_release_device(chip);
587 }
588
589 /* Mark block bad in BBT */
590 if (chip->bbt) {
591 res = nand_markbad_bbt(chip, ofs);
592 if (!ret)
593 ret = res;
594 }
595
596 if (!ret)
597 mtd->ecc_stats.badblocks++;
598
599 return ret;
600 }
601
602 /**
603 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
604 * @mtd: MTD device structure
605 * @ofs: offset from device start
606 *
607 * Check if the block is marked as reserved.
608 */
nand_block_isreserved(struct mtd_info * mtd,loff_t ofs)609 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
610 {
611 struct nand_chip *chip = mtd_to_nand(mtd);
612
613 if (!chip->bbt)
614 return 0;
615 /* Return info from the table */
616 return nand_isreserved_bbt(chip, ofs);
617 }
618
619 /**
620 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
621 * @chip: NAND chip object
622 * @ofs: offset from device start
623 * @allowbbt: 1, if its allowed to access the bbt area
624 *
625 * Check, if the block is bad. Either by reading the bad block table or
626 * calling of the scan function.
627 */
nand_block_checkbad(struct nand_chip * chip,loff_t ofs,int allowbbt)628 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
629 {
630 /* Return info from the table */
631 if (chip->bbt)
632 return nand_isbad_bbt(chip, ofs, allowbbt);
633
634 return nand_isbad_bbm(chip, ofs);
635 }
636
637 /**
638 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
639 * @chip: NAND chip structure
640 * @timeout_ms: Timeout in ms
641 *
642 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
643 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
644 * returned.
645 *
646 * This helper is intended to be used when the controller does not have access
647 * to the NAND R/B pin.
648 *
649 * Be aware that calling this helper from an ->exec_op() implementation means
650 * ->exec_op() must be re-entrant.
651 *
652 * Return 0 if the NAND chip is ready, a negative error otherwise.
653 */
nand_soft_waitrdy(struct nand_chip * chip,unsigned long timeout_ms)654 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
655 {
656 const struct nand_interface_config *conf;
657 u8 status = 0;
658 int ret;
659
660 if (!nand_has_exec_op(chip))
661 return -ENOTSUPP;
662
663 /* Wait tWB before polling the STATUS reg. */
664 conf = nand_get_interface_config(chip);
665 ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
666
667 ret = nand_status_op(chip, NULL);
668 if (ret)
669 return ret;
670
671 /*
672 * +1 below is necessary because if we are now in the last fraction
673 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
674 * small jiffy fraction - possibly leading to false timeout
675 */
676 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
677 do {
678 ret = nand_read_data_op(chip, &status, sizeof(status), true,
679 false);
680 if (ret)
681 break;
682
683 if (status & NAND_STATUS_READY)
684 break;
685
686 /*
687 * Typical lowest execution time for a tR on most NANDs is 10us,
688 * use this as polling delay before doing something smarter (ie.
689 * deriving a delay from the timeout value, timeout_ms/ratio).
690 */
691 udelay(10);
692 } while (time_before(jiffies, timeout_ms));
693
694 /*
695 * We have to exit READ_STATUS mode in order to read real data on the
696 * bus in case the WAITRDY instruction is preceding a DATA_IN
697 * instruction.
698 */
699 nand_exit_status_op(chip);
700
701 if (ret)
702 return ret;
703
704 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
705 };
706 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
707
708 /**
709 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
710 * @chip: NAND chip structure
711 * @gpiod: GPIO descriptor of R/B pin
712 * @timeout_ms: Timeout in ms
713 *
714 * Poll the R/B GPIO pin until it becomes ready. If that does not happen
715 * whitin the specified timeout, -ETIMEDOUT is returned.
716 *
717 * This helper is intended to be used when the controller has access to the
718 * NAND R/B pin over GPIO.
719 *
720 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
721 */
nand_gpio_waitrdy(struct nand_chip * chip,struct gpio_desc * gpiod,unsigned long timeout_ms)722 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
723 unsigned long timeout_ms)
724 {
725
726 /*
727 * Wait until R/B pin indicates chip is ready or timeout occurs.
728 * +1 below is necessary because if we are now in the last fraction
729 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
730 * small jiffy fraction - possibly leading to false timeout.
731 */
732 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
733 do {
734 if (gpiod_get_value_cansleep(gpiod))
735 return 0;
736
737 cond_resched();
738 } while (time_before(jiffies, timeout_ms));
739
740 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
741 };
742 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
743
744 /**
745 * panic_nand_wait - [GENERIC] wait until the command is done
746 * @chip: NAND chip structure
747 * @timeo: timeout
748 *
749 * Wait for command done. This is a helper function for nand_wait used when
750 * we are in interrupt context. May happen when in panic and trying to write
751 * an oops through mtdoops.
752 */
panic_nand_wait(struct nand_chip * chip,unsigned long timeo)753 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
754 {
755 int i;
756 for (i = 0; i < timeo; i++) {
757 if (chip->legacy.dev_ready) {
758 if (chip->legacy.dev_ready(chip))
759 break;
760 } else {
761 int ret;
762 u8 status;
763
764 ret = nand_read_data_op(chip, &status, sizeof(status),
765 true, false);
766 if (ret)
767 return;
768
769 if (status & NAND_STATUS_READY)
770 break;
771 }
772 mdelay(1);
773 }
774 }
775
nand_supports_get_features(struct nand_chip * chip,int addr)776 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
777 {
778 return (chip->parameters.supports_set_get_features &&
779 test_bit(addr, chip->parameters.get_feature_list));
780 }
781
nand_supports_set_features(struct nand_chip * chip,int addr)782 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
783 {
784 return (chip->parameters.supports_set_get_features &&
785 test_bit(addr, chip->parameters.set_feature_list));
786 }
787
788 /**
789 * nand_reset_interface - Reset data interface and timings
790 * @chip: The NAND chip
791 * @chipnr: Internal die id
792 *
793 * Reset the Data interface and timings to ONFI mode 0.
794 *
795 * Returns 0 for success or negative error code otherwise.
796 */
nand_reset_interface(struct nand_chip * chip,int chipnr)797 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
798 {
799 const struct nand_controller_ops *ops = chip->controller->ops;
800 int ret;
801
802 if (!nand_controller_can_setup_interface(chip))
803 return 0;
804
805 /*
806 * The ONFI specification says:
807 * "
808 * To transition from NV-DDR or NV-DDR2 to the SDR data
809 * interface, the host shall use the Reset (FFh) command
810 * using SDR timing mode 0. A device in any timing mode is
811 * required to recognize Reset (FFh) command issued in SDR
812 * timing mode 0.
813 * "
814 *
815 * Configure the data interface in SDR mode and set the
816 * timings to timing mode 0.
817 */
818
819 chip->current_interface_config = nand_get_reset_interface_config();
820 ret = ops->setup_interface(chip, chipnr,
821 chip->current_interface_config);
822 if (ret)
823 pr_err("Failed to configure data interface to SDR timing mode 0\n");
824
825 return ret;
826 }
827
828 /**
829 * nand_setup_interface - Setup the best data interface and timings
830 * @chip: The NAND chip
831 * @chipnr: Internal die id
832 *
833 * Configure what has been reported to be the best data interface and NAND
834 * timings supported by the chip and the driver.
835 *
836 * Returns 0 for success or negative error code otherwise.
837 */
nand_setup_interface(struct nand_chip * chip,int chipnr)838 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
839 {
840 const struct nand_controller_ops *ops = chip->controller->ops;
841 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
842 int ret;
843
844 if (!nand_controller_can_setup_interface(chip))
845 return 0;
846
847 /*
848 * A nand_reset_interface() put both the NAND chip and the NAND
849 * controller in timings mode 0. If the default mode for this chip is
850 * also 0, no need to proceed to the change again. Plus, at probe time,
851 * nand_setup_interface() uses ->set/get_features() which would
852 * fail anyway as the parameter page is not available yet.
853 */
854 if (!chip->best_interface_config)
855 return 0;
856
857 request = chip->best_interface_config->timings.mode;
858 if (nand_interface_is_sdr(chip->best_interface_config))
859 request |= ONFI_DATA_INTERFACE_SDR;
860 else
861 request |= ONFI_DATA_INTERFACE_NVDDR;
862 tmode_param[0] = request;
863
864 /* Change the mode on the chip side (if supported by the NAND chip) */
865 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
866 nand_select_target(chip, chipnr);
867 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
868 tmode_param);
869 nand_deselect_target(chip);
870 if (ret)
871 return ret;
872 }
873
874 /* Change the mode on the controller side */
875 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
876 if (ret)
877 return ret;
878
879 /* Check the mode has been accepted by the chip, if supported */
880 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
881 goto update_interface_config;
882
883 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
884 nand_select_target(chip, chipnr);
885 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
886 tmode_param);
887 nand_deselect_target(chip);
888 if (ret)
889 goto err_reset_chip;
890
891 if (request != tmode_param[0]) {
892 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
893 nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
894 chip->best_interface_config->timings.mode);
895 pr_debug("NAND chip would work in %s timing mode %d\n",
896 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
897 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
898 goto err_reset_chip;
899 }
900
901 update_interface_config:
902 chip->current_interface_config = chip->best_interface_config;
903
904 return 0;
905
906 err_reset_chip:
907 /*
908 * Fallback to mode 0 if the chip explicitly did not ack the chosen
909 * timing mode.
910 */
911 nand_reset_interface(chip, chipnr);
912 nand_select_target(chip, chipnr);
913 nand_reset_op(chip);
914 nand_deselect_target(chip);
915
916 return ret;
917 }
918
919 /**
920 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
921 * NAND controller and the NAND chip support
922 * @chip: the NAND chip
923 * @iface: the interface configuration (can eventually be updated)
924 * @spec_timings: specific timings, when not fitting the ONFI specification
925 *
926 * If specific timings are provided, use them. Otherwise, retrieve supported
927 * timing modes from ONFI information.
928 */
nand_choose_best_sdr_timings(struct nand_chip * chip,struct nand_interface_config * iface,struct nand_sdr_timings * spec_timings)929 int nand_choose_best_sdr_timings(struct nand_chip *chip,
930 struct nand_interface_config *iface,
931 struct nand_sdr_timings *spec_timings)
932 {
933 const struct nand_controller_ops *ops = chip->controller->ops;
934 int best_mode = 0, mode, ret = -EOPNOTSUPP;
935
936 iface->type = NAND_SDR_IFACE;
937
938 if (spec_timings) {
939 iface->timings.sdr = *spec_timings;
940 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
941
942 /* Verify the controller supports the requested interface */
943 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
944 iface);
945 if (!ret) {
946 chip->best_interface_config = iface;
947 return ret;
948 }
949
950 /* Fallback to slower modes */
951 best_mode = iface->timings.mode;
952 } else if (chip->parameters.onfi) {
953 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
954 }
955
956 for (mode = best_mode; mode >= 0; mode--) {
957 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
958
959 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
960 iface);
961 if (!ret) {
962 chip->best_interface_config = iface;
963 break;
964 }
965 }
966
967 return ret;
968 }
969
970 /**
971 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
972 * NAND controller and the NAND chip support
973 * @chip: the NAND chip
974 * @iface: the interface configuration (can eventually be updated)
975 * @spec_timings: specific timings, when not fitting the ONFI specification
976 *
977 * If specific timings are provided, use them. Otherwise, retrieve supported
978 * timing modes from ONFI information.
979 */
nand_choose_best_nvddr_timings(struct nand_chip * chip,struct nand_interface_config * iface,struct nand_nvddr_timings * spec_timings)980 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
981 struct nand_interface_config *iface,
982 struct nand_nvddr_timings *spec_timings)
983 {
984 const struct nand_controller_ops *ops = chip->controller->ops;
985 int best_mode = 0, mode, ret = -EOPNOTSUPP;
986
987 iface->type = NAND_NVDDR_IFACE;
988
989 if (spec_timings) {
990 iface->timings.nvddr = *spec_timings;
991 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
992
993 /* Verify the controller supports the requested interface */
994 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
995 iface);
996 if (!ret) {
997 chip->best_interface_config = iface;
998 return ret;
999 }
1000
1001 /* Fallback to slower modes */
1002 best_mode = iface->timings.mode;
1003 } else if (chip->parameters.onfi) {
1004 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1005 }
1006
1007 for (mode = best_mode; mode >= 0; mode--) {
1008 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1009
1010 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1011 iface);
1012 if (!ret) {
1013 chip->best_interface_config = iface;
1014 break;
1015 }
1016 }
1017
1018 return ret;
1019 }
1020
1021 /**
1022 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1023 * NAND controller and the NAND chip support
1024 * @chip: the NAND chip
1025 * @iface: the interface configuration (can eventually be updated)
1026 *
1027 * If specific timings are provided, use them. Otherwise, retrieve supported
1028 * timing modes from ONFI information.
1029 */
nand_choose_best_timings(struct nand_chip * chip,struct nand_interface_config * iface)1030 static int nand_choose_best_timings(struct nand_chip *chip,
1031 struct nand_interface_config *iface)
1032 {
1033 int ret;
1034
1035 /* Try the fastest timings: NV-DDR */
1036 ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1037 if (!ret)
1038 return 0;
1039
1040 /* Fallback to SDR timings otherwise */
1041 return nand_choose_best_sdr_timings(chip, iface, NULL);
1042 }
1043
1044 /**
1045 * nand_choose_interface_config - find the best data interface and timings
1046 * @chip: The NAND chip
1047 *
1048 * Find the best data interface and NAND timings supported by the chip
1049 * and the driver. Eventually let the NAND manufacturer driver propose his own
1050 * set of timings.
1051 *
1052 * After this function nand_chip->interface_config is initialized with the best
1053 * timing mode available.
1054 *
1055 * Returns 0 for success or negative error code otherwise.
1056 */
nand_choose_interface_config(struct nand_chip * chip)1057 static int nand_choose_interface_config(struct nand_chip *chip)
1058 {
1059 struct nand_interface_config *iface;
1060 int ret;
1061
1062 if (!nand_controller_can_setup_interface(chip))
1063 return 0;
1064
1065 iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1066 if (!iface)
1067 return -ENOMEM;
1068
1069 if (chip->ops.choose_interface_config)
1070 ret = chip->ops.choose_interface_config(chip, iface);
1071 else
1072 ret = nand_choose_best_timings(chip, iface);
1073
1074 if (ret)
1075 kfree(iface);
1076
1077 return ret;
1078 }
1079
1080 /**
1081 * nand_fill_column_cycles - fill the column cycles of an address
1082 * @chip: The NAND chip
1083 * @addrs: Array of address cycles to fill
1084 * @offset_in_page: The offset in the page
1085 *
1086 * Fills the first or the first two bytes of the @addrs field depending
1087 * on the NAND bus width and the page size.
1088 *
1089 * Returns the number of cycles needed to encode the column, or a negative
1090 * error code in case one of the arguments is invalid.
1091 */
nand_fill_column_cycles(struct nand_chip * chip,u8 * addrs,unsigned int offset_in_page)1092 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1093 unsigned int offset_in_page)
1094 {
1095 struct mtd_info *mtd = nand_to_mtd(chip);
1096 bool ident_stage = !mtd->writesize;
1097
1098 /* Bypass all checks during NAND identification */
1099 if (likely(!ident_stage)) {
1100 /* Make sure the offset is less than the actual page size. */
1101 if (offset_in_page > mtd->writesize + mtd->oobsize)
1102 return -EINVAL;
1103
1104 /*
1105 * On small page NANDs, there's a dedicated command to access the OOB
1106 * area, and the column address is relative to the start of the OOB
1107 * area, not the start of the page. Asjust the address accordingly.
1108 */
1109 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1110 offset_in_page -= mtd->writesize;
1111
1112 /*
1113 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1114 * wide, then it must be divided by 2.
1115 */
1116 if (chip->options & NAND_BUSWIDTH_16) {
1117 if (WARN_ON(offset_in_page % 2))
1118 return -EINVAL;
1119
1120 offset_in_page /= 2;
1121 }
1122 }
1123
1124 addrs[0] = offset_in_page;
1125
1126 /*
1127 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1128 * need 2
1129 */
1130 if (!ident_stage && mtd->writesize <= 512)
1131 return 1;
1132
1133 addrs[1] = offset_in_page >> 8;
1134
1135 return 2;
1136 }
1137
nand_sp_exec_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1138 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1139 unsigned int offset_in_page, void *buf,
1140 unsigned int len)
1141 {
1142 const struct nand_interface_config *conf =
1143 nand_get_interface_config(chip);
1144 struct mtd_info *mtd = nand_to_mtd(chip);
1145 u8 addrs[4];
1146 struct nand_op_instr instrs[] = {
1147 NAND_OP_CMD(NAND_CMD_READ0, 0),
1148 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1149 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1150 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1151 NAND_OP_DATA_IN(len, buf, 0),
1152 };
1153 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1154 int ret;
1155
1156 /* Drop the DATA_IN instruction if len is set to 0. */
1157 if (!len)
1158 op.ninstrs--;
1159
1160 if (offset_in_page >= mtd->writesize)
1161 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1162 else if (offset_in_page >= 256 &&
1163 !(chip->options & NAND_BUSWIDTH_16))
1164 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1165
1166 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1167 if (ret < 0)
1168 return ret;
1169
1170 addrs[1] = page;
1171 addrs[2] = page >> 8;
1172
1173 if (chip->options & NAND_ROW_ADDR_3) {
1174 addrs[3] = page >> 16;
1175 instrs[1].ctx.addr.naddrs++;
1176 }
1177
1178 return nand_exec_op(chip, &op);
1179 }
1180
nand_lp_exec_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1181 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1182 unsigned int offset_in_page, void *buf,
1183 unsigned int len)
1184 {
1185 const struct nand_interface_config *conf =
1186 nand_get_interface_config(chip);
1187 u8 addrs[5];
1188 struct nand_op_instr instrs[] = {
1189 NAND_OP_CMD(NAND_CMD_READ0, 0),
1190 NAND_OP_ADDR(4, addrs, 0),
1191 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1192 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1193 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1194 NAND_OP_DATA_IN(len, buf, 0),
1195 };
1196 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1197 int ret;
1198
1199 /* Drop the DATA_IN instruction if len is set to 0. */
1200 if (!len)
1201 op.ninstrs--;
1202
1203 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1204 if (ret < 0)
1205 return ret;
1206
1207 addrs[2] = page;
1208 addrs[3] = page >> 8;
1209
1210 if (chip->options & NAND_ROW_ADDR_3) {
1211 addrs[4] = page >> 16;
1212 instrs[1].ctx.addr.naddrs++;
1213 }
1214
1215 return nand_exec_op(chip, &op);
1216 }
1217
rawnand_last_page_of_lun(unsigned int pages_per_lun,unsigned int lun)1218 static unsigned int rawnand_last_page_of_lun(unsigned int pages_per_lun, unsigned int lun)
1219 {
1220 /* lun is expected to be very small */
1221 return (lun * pages_per_lun) + pages_per_lun - 1;
1222 }
1223
rawnand_cap_cont_reads(struct nand_chip * chip)1224 static void rawnand_cap_cont_reads(struct nand_chip *chip)
1225 {
1226 struct nand_memory_organization *memorg;
1227 unsigned int ppl, first_lun, last_lun;
1228
1229 memorg = nanddev_get_memorg(&chip->base);
1230 ppl = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1231 first_lun = chip->cont_read.first_page / ppl;
1232 last_lun = chip->cont_read.last_page / ppl;
1233
1234 /* Prevent sequential cache reads across LUN boundaries */
1235 if (first_lun != last_lun)
1236 chip->cont_read.pause_page = rawnand_last_page_of_lun(ppl, first_lun);
1237 else
1238 chip->cont_read.pause_page = chip->cont_read.last_page;
1239
1240 if (chip->cont_read.first_page == chip->cont_read.pause_page) {
1241 chip->cont_read.first_page++;
1242 chip->cont_read.pause_page = min(chip->cont_read.last_page,
1243 rawnand_last_page_of_lun(ppl, first_lun + 1));
1244 }
1245
1246 if (chip->cont_read.first_page >= chip->cont_read.last_page)
1247 chip->cont_read.ongoing = false;
1248 }
1249
nand_lp_exec_cont_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len,bool check_only)1250 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1251 unsigned int offset_in_page, void *buf,
1252 unsigned int len, bool check_only)
1253 {
1254 const struct nand_interface_config *conf =
1255 nand_get_interface_config(chip);
1256 u8 addrs[5];
1257 struct nand_op_instr start_instrs[] = {
1258 NAND_OP_CMD(NAND_CMD_READ0, 0),
1259 NAND_OP_ADDR(4, addrs, 0),
1260 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1261 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1262 NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1263 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1264 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1265 NAND_OP_DATA_IN(len, buf, 0),
1266 };
1267 struct nand_op_instr cont_instrs[] = {
1268 NAND_OP_CMD(page == chip->cont_read.pause_page ?
1269 NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1270 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1271 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1272 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1273 NAND_OP_DATA_IN(len, buf, 0),
1274 };
1275 struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1276 struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1277 int ret;
1278
1279 if (!len) {
1280 start_op.ninstrs--;
1281 cont_op.ninstrs--;
1282 }
1283
1284 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1285 if (ret < 0)
1286 return ret;
1287
1288 addrs[2] = page;
1289 addrs[3] = page >> 8;
1290
1291 if (chip->options & NAND_ROW_ADDR_3) {
1292 addrs[4] = page >> 16;
1293 start_instrs[1].ctx.addr.naddrs++;
1294 }
1295
1296 /* Check if cache reads are supported */
1297 if (check_only) {
1298 if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1299 return -EOPNOTSUPP;
1300
1301 return 0;
1302 }
1303
1304 if (page == chip->cont_read.first_page)
1305 ret = nand_exec_op(chip, &start_op);
1306 else
1307 ret = nand_exec_op(chip, &cont_op);
1308 if (ret)
1309 return ret;
1310
1311 if (!chip->cont_read.ongoing)
1312 return 0;
1313
1314 if (page == chip->cont_read.last_page) {
1315 chip->cont_read.ongoing = false;
1316 } else if (page == chip->cont_read.pause_page) {
1317 chip->cont_read.first_page++;
1318 rawnand_cap_cont_reads(chip);
1319 }
1320
1321 return 0;
1322 }
1323
rawnand_cont_read_ongoing(struct nand_chip * chip,unsigned int page)1324 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1325 {
1326 return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1327 }
1328
1329 /**
1330 * nand_read_page_op - Do a READ PAGE operation
1331 * @chip: The NAND chip
1332 * @page: page to read
1333 * @offset_in_page: offset within the page
1334 * @buf: buffer used to store the data
1335 * @len: length of the buffer
1336 *
1337 * This function issues a READ PAGE operation.
1338 * This function does not select/unselect the CS line.
1339 *
1340 * Returns 0 on success, a negative error code otherwise.
1341 */
nand_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1342 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1343 unsigned int offset_in_page, void *buf, unsigned int len)
1344 {
1345 struct mtd_info *mtd = nand_to_mtd(chip);
1346
1347 if (len && !buf)
1348 return -EINVAL;
1349
1350 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1351 return -EINVAL;
1352
1353 if (nand_has_exec_op(chip)) {
1354 if (mtd->writesize > 512) {
1355 if (rawnand_cont_read_ongoing(chip, page))
1356 return nand_lp_exec_cont_read_page_op(chip, page,
1357 offset_in_page,
1358 buf, len, false);
1359 else
1360 return nand_lp_exec_read_page_op(chip, page,
1361 offset_in_page, buf,
1362 len);
1363 }
1364
1365 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1366 buf, len);
1367 }
1368
1369 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1370 if (len)
1371 chip->legacy.read_buf(chip, buf, len);
1372
1373 return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(nand_read_page_op);
1376
1377 /**
1378 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1379 * @chip: The NAND chip
1380 * @page: parameter page to read
1381 * @buf: buffer used to store the data
1382 * @len: length of the buffer
1383 *
1384 * This function issues a READ PARAMETER PAGE operation.
1385 * This function does not select/unselect the CS line.
1386 *
1387 * Returns 0 on success, a negative error code otherwise.
1388 */
nand_read_param_page_op(struct nand_chip * chip,u8 page,void * buf,unsigned int len)1389 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1390 unsigned int len)
1391 {
1392 unsigned int i;
1393 u8 *p = buf;
1394
1395 if (len && !buf)
1396 return -EINVAL;
1397
1398 if (nand_has_exec_op(chip)) {
1399 const struct nand_interface_config *conf =
1400 nand_get_interface_config(chip);
1401 struct nand_op_instr instrs[] = {
1402 NAND_OP_CMD(NAND_CMD_PARAM, 0),
1403 NAND_OP_ADDR(1, &page,
1404 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1405 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1406 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1407 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1408 };
1409 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1410
1411 /* Drop the DATA_IN instruction if len is set to 0. */
1412 if (!len)
1413 op.ninstrs--;
1414
1415 return nand_exec_op(chip, &op);
1416 }
1417
1418 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1419 for (i = 0; i < len; i++)
1420 p[i] = chip->legacy.read_byte(chip);
1421
1422 return 0;
1423 }
1424
1425 /**
1426 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1427 * @chip: The NAND chip
1428 * @offset_in_page: offset within the page
1429 * @buf: buffer used to store the data
1430 * @len: length of the buffer
1431 * @force_8bit: force 8-bit bus access
1432 *
1433 * This function issues a CHANGE READ COLUMN operation.
1434 * This function does not select/unselect the CS line.
1435 *
1436 * Returns 0 on success, a negative error code otherwise.
1437 */
nand_change_read_column_op(struct nand_chip * chip,unsigned int offset_in_page,void * buf,unsigned int len,bool force_8bit)1438 int nand_change_read_column_op(struct nand_chip *chip,
1439 unsigned int offset_in_page, void *buf,
1440 unsigned int len, bool force_8bit)
1441 {
1442 struct mtd_info *mtd = nand_to_mtd(chip);
1443 bool ident_stage = !mtd->writesize;
1444
1445 if (len && !buf)
1446 return -EINVAL;
1447
1448 if (!ident_stage) {
1449 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1450 return -EINVAL;
1451
1452 /* Small page NANDs do not support column change. */
1453 if (mtd->writesize <= 512)
1454 return -ENOTSUPP;
1455 }
1456
1457 if (nand_has_exec_op(chip)) {
1458 const struct nand_interface_config *conf =
1459 nand_get_interface_config(chip);
1460 u8 addrs[2] = {};
1461 struct nand_op_instr instrs[] = {
1462 NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1463 NAND_OP_ADDR(2, addrs, 0),
1464 NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1465 NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1466 NAND_OP_DATA_IN(len, buf, 0),
1467 };
1468 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1469 int ret;
1470
1471 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1472 if (ret < 0)
1473 return ret;
1474
1475 /* Drop the DATA_IN instruction if len is set to 0. */
1476 if (!len)
1477 op.ninstrs--;
1478
1479 instrs[3].ctx.data.force_8bit = force_8bit;
1480
1481 return nand_exec_op(chip, &op);
1482 }
1483
1484 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1485 if (len)
1486 chip->legacy.read_buf(chip, buf, len);
1487
1488 return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1491
1492 /**
1493 * nand_read_oob_op - Do a READ OOB operation
1494 * @chip: The NAND chip
1495 * @page: page to read
1496 * @offset_in_oob: offset within the OOB area
1497 * @buf: buffer used to store the data
1498 * @len: length of the buffer
1499 *
1500 * This function issues a READ OOB operation.
1501 * This function does not select/unselect the CS line.
1502 *
1503 * Returns 0 on success, a negative error code otherwise.
1504 */
nand_read_oob_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_oob,void * buf,unsigned int len)1505 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1506 unsigned int offset_in_oob, void *buf, unsigned int len)
1507 {
1508 struct mtd_info *mtd = nand_to_mtd(chip);
1509
1510 if (len && !buf)
1511 return -EINVAL;
1512
1513 if (offset_in_oob + len > mtd->oobsize)
1514 return -EINVAL;
1515
1516 if (nand_has_exec_op(chip))
1517 return nand_read_page_op(chip, page,
1518 mtd->writesize + offset_in_oob,
1519 buf, len);
1520
1521 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1522 if (len)
1523 chip->legacy.read_buf(chip, buf, len);
1524
1525 return 0;
1526 }
1527 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1528
nand_exec_prog_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len,bool prog)1529 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1530 unsigned int offset_in_page, const void *buf,
1531 unsigned int len, bool prog)
1532 {
1533 const struct nand_interface_config *conf =
1534 nand_get_interface_config(chip);
1535 struct mtd_info *mtd = nand_to_mtd(chip);
1536 u8 addrs[5] = {};
1537 struct nand_op_instr instrs[] = {
1538 /*
1539 * The first instruction will be dropped if we're dealing
1540 * with a large page NAND and adjusted if we're dealing
1541 * with a small page NAND and the page offset is > 255.
1542 */
1543 NAND_OP_CMD(NAND_CMD_READ0, 0),
1544 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1545 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1546 NAND_OP_DATA_OUT(len, buf, 0),
1547 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1548 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1549 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1550 };
1551 struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1552 instrs);
1553 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1554
1555 if (naddrs < 0)
1556 return naddrs;
1557
1558 addrs[naddrs++] = page;
1559 addrs[naddrs++] = page >> 8;
1560 if (chip->options & NAND_ROW_ADDR_3)
1561 addrs[naddrs++] = page >> 16;
1562
1563 instrs[2].ctx.addr.naddrs = naddrs;
1564
1565 /* Drop the last two instructions if we're not programming the page. */
1566 if (!prog) {
1567 op.ninstrs -= 2;
1568 /* Also drop the DATA_OUT instruction if empty. */
1569 if (!len)
1570 op.ninstrs--;
1571 }
1572
1573 if (mtd->writesize <= 512) {
1574 /*
1575 * Small pages need some more tweaking: we have to adjust the
1576 * first instruction depending on the page offset we're trying
1577 * to access.
1578 */
1579 if (offset_in_page >= mtd->writesize)
1580 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1581 else if (offset_in_page >= 256 &&
1582 !(chip->options & NAND_BUSWIDTH_16))
1583 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1584 } else {
1585 /*
1586 * Drop the first command if we're dealing with a large page
1587 * NAND.
1588 */
1589 op.instrs++;
1590 op.ninstrs--;
1591 }
1592
1593 return nand_exec_op(chip, &op);
1594 }
1595
1596 /**
1597 * nand_prog_page_begin_op - starts a PROG PAGE operation
1598 * @chip: The NAND chip
1599 * @page: page to write
1600 * @offset_in_page: offset within the page
1601 * @buf: buffer containing the data to write to the page
1602 * @len: length of the buffer
1603 *
1604 * This function issues the first half of a PROG PAGE operation.
1605 * This function does not select/unselect the CS line.
1606 *
1607 * Returns 0 on success, a negative error code otherwise.
1608 */
nand_prog_page_begin_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1609 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1610 unsigned int offset_in_page, const void *buf,
1611 unsigned int len)
1612 {
1613 struct mtd_info *mtd = nand_to_mtd(chip);
1614
1615 if (len && !buf)
1616 return -EINVAL;
1617
1618 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1619 return -EINVAL;
1620
1621 if (nand_has_exec_op(chip))
1622 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1623 len, false);
1624
1625 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1626
1627 if (buf)
1628 chip->legacy.write_buf(chip, buf, len);
1629
1630 return 0;
1631 }
1632 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1633
1634 /**
1635 * nand_prog_page_end_op - ends a PROG PAGE operation
1636 * @chip: The NAND chip
1637 *
1638 * This function issues the second half of a PROG PAGE operation.
1639 * This function does not select/unselect the CS line.
1640 *
1641 * Returns 0 on success, a negative error code otherwise.
1642 */
nand_prog_page_end_op(struct nand_chip * chip)1643 int nand_prog_page_end_op(struct nand_chip *chip)
1644 {
1645 int ret;
1646 u8 status;
1647
1648 if (nand_has_exec_op(chip)) {
1649 const struct nand_interface_config *conf =
1650 nand_get_interface_config(chip);
1651 struct nand_op_instr instrs[] = {
1652 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1653 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1654 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1655 0),
1656 };
1657 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1658
1659 ret = nand_exec_op(chip, &op);
1660 if (ret)
1661 return ret;
1662
1663 ret = nand_status_op(chip, &status);
1664 if (ret)
1665 return ret;
1666 } else {
1667 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1668 ret = chip->legacy.waitfunc(chip);
1669 if (ret < 0)
1670 return ret;
1671
1672 status = ret;
1673 }
1674
1675 if (status & NAND_STATUS_FAIL)
1676 return -EIO;
1677
1678 return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1681
1682 /**
1683 * nand_prog_page_op - Do a full PROG PAGE operation
1684 * @chip: The NAND chip
1685 * @page: page to write
1686 * @offset_in_page: offset within the page
1687 * @buf: buffer containing the data to write to the page
1688 * @len: length of the buffer
1689 *
1690 * This function issues a full PROG PAGE operation.
1691 * This function does not select/unselect the CS line.
1692 *
1693 * Returns 0 on success, a negative error code otherwise.
1694 */
nand_prog_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1695 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1696 unsigned int offset_in_page, const void *buf,
1697 unsigned int len)
1698 {
1699 struct mtd_info *mtd = nand_to_mtd(chip);
1700 u8 status;
1701 int ret;
1702
1703 if (!len || !buf)
1704 return -EINVAL;
1705
1706 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1707 return -EINVAL;
1708
1709 if (nand_has_exec_op(chip)) {
1710 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1711 len, true);
1712 if (ret)
1713 return ret;
1714
1715 ret = nand_status_op(chip, &status);
1716 if (ret)
1717 return ret;
1718 } else {
1719 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1720 page);
1721 chip->legacy.write_buf(chip, buf, len);
1722 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1723 ret = chip->legacy.waitfunc(chip);
1724 if (ret < 0)
1725 return ret;
1726
1727 status = ret;
1728 }
1729
1730 if (status & NAND_STATUS_FAIL)
1731 return -EIO;
1732
1733 return 0;
1734 }
1735 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1736
1737 /**
1738 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1739 * @chip: The NAND chip
1740 * @offset_in_page: offset within the page
1741 * @buf: buffer containing the data to send to the NAND
1742 * @len: length of the buffer
1743 * @force_8bit: force 8-bit bus access
1744 *
1745 * This function issues a CHANGE WRITE COLUMN operation.
1746 * This function does not select/unselect the CS line.
1747 *
1748 * Returns 0 on success, a negative error code otherwise.
1749 */
nand_change_write_column_op(struct nand_chip * chip,unsigned int offset_in_page,const void * buf,unsigned int len,bool force_8bit)1750 int nand_change_write_column_op(struct nand_chip *chip,
1751 unsigned int offset_in_page,
1752 const void *buf, unsigned int len,
1753 bool force_8bit)
1754 {
1755 struct mtd_info *mtd = nand_to_mtd(chip);
1756
1757 if (len && !buf)
1758 return -EINVAL;
1759
1760 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1761 return -EINVAL;
1762
1763 /* Small page NANDs do not support column change. */
1764 if (mtd->writesize <= 512)
1765 return -ENOTSUPP;
1766
1767 if (nand_has_exec_op(chip)) {
1768 const struct nand_interface_config *conf =
1769 nand_get_interface_config(chip);
1770 u8 addrs[2];
1771 struct nand_op_instr instrs[] = {
1772 NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1773 NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1774 NAND_OP_DATA_OUT(len, buf, 0),
1775 };
1776 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1777 int ret;
1778
1779 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1780 if (ret < 0)
1781 return ret;
1782
1783 instrs[2].ctx.data.force_8bit = force_8bit;
1784
1785 /* Drop the DATA_OUT instruction if len is set to 0. */
1786 if (!len)
1787 op.ninstrs--;
1788
1789 return nand_exec_op(chip, &op);
1790 }
1791
1792 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1793 if (len)
1794 chip->legacy.write_buf(chip, buf, len);
1795
1796 return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1799
1800 /**
1801 * nand_readid_op - Do a READID operation
1802 * @chip: The NAND chip
1803 * @addr: address cycle to pass after the READID command
1804 * @buf: buffer used to store the ID
1805 * @len: length of the buffer
1806 *
1807 * This function sends a READID command and reads back the ID returned by the
1808 * NAND.
1809 * This function does not select/unselect the CS line.
1810 *
1811 * Returns 0 on success, a negative error code otherwise.
1812 */
nand_readid_op(struct nand_chip * chip,u8 addr,void * buf,unsigned int len)1813 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1814 unsigned int len)
1815 {
1816 unsigned int i;
1817 u8 *id = buf, *ddrbuf = NULL;
1818
1819 if (len && !buf)
1820 return -EINVAL;
1821
1822 if (nand_has_exec_op(chip)) {
1823 const struct nand_interface_config *conf =
1824 nand_get_interface_config(chip);
1825 struct nand_op_instr instrs[] = {
1826 NAND_OP_CMD(NAND_CMD_READID, 0),
1827 NAND_OP_ADDR(1, &addr,
1828 NAND_COMMON_TIMING_NS(conf, tADL_min)),
1829 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1830 };
1831 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1832 int ret;
1833
1834 /* READ_ID data bytes are received twice in NV-DDR mode */
1835 if (len && nand_interface_is_nvddr(conf)) {
1836 ddrbuf = kcalloc(2, len, GFP_KERNEL);
1837 if (!ddrbuf)
1838 return -ENOMEM;
1839
1840 instrs[2].ctx.data.len *= 2;
1841 instrs[2].ctx.data.buf.in = ddrbuf;
1842 }
1843
1844 /* Drop the DATA_IN instruction if len is set to 0. */
1845 if (!len)
1846 op.ninstrs--;
1847
1848 ret = nand_exec_op(chip, &op);
1849 if (!ret && len && nand_interface_is_nvddr(conf)) {
1850 for (i = 0; i < len; i++)
1851 id[i] = ddrbuf[i * 2];
1852 }
1853
1854 kfree(ddrbuf);
1855
1856 return ret;
1857 }
1858
1859 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1860
1861 for (i = 0; i < len; i++)
1862 id[i] = chip->legacy.read_byte(chip);
1863
1864 return 0;
1865 }
1866 EXPORT_SYMBOL_GPL(nand_readid_op);
1867
1868 /**
1869 * nand_status_op - Do a STATUS operation
1870 * @chip: The NAND chip
1871 * @status: out variable to store the NAND status
1872 *
1873 * This function sends a STATUS command and reads back the status returned by
1874 * the NAND.
1875 * This function does not select/unselect the CS line.
1876 *
1877 * Returns 0 on success, a negative error code otherwise.
1878 */
nand_status_op(struct nand_chip * chip,u8 * status)1879 int nand_status_op(struct nand_chip *chip, u8 *status)
1880 {
1881 if (nand_has_exec_op(chip)) {
1882 const struct nand_interface_config *conf =
1883 nand_get_interface_config(chip);
1884 u8 ddrstatus[2];
1885 struct nand_op_instr instrs[] = {
1886 NAND_OP_CMD(NAND_CMD_STATUS,
1887 NAND_COMMON_TIMING_NS(conf, tADL_min)),
1888 NAND_OP_8BIT_DATA_IN(1, status, 0),
1889 };
1890 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1891 int ret;
1892
1893 /* The status data byte will be received twice in NV-DDR mode */
1894 if (status && nand_interface_is_nvddr(conf)) {
1895 instrs[1].ctx.data.len *= 2;
1896 instrs[1].ctx.data.buf.in = ddrstatus;
1897 }
1898
1899 if (!status)
1900 op.ninstrs--;
1901
1902 ret = nand_exec_op(chip, &op);
1903 if (!ret && status && nand_interface_is_nvddr(conf))
1904 *status = ddrstatus[0];
1905
1906 return ret;
1907 }
1908
1909 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1910 if (status)
1911 *status = chip->legacy.read_byte(chip);
1912
1913 return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(nand_status_op);
1916
1917 /**
1918 * nand_exit_status_op - Exit a STATUS operation
1919 * @chip: The NAND chip
1920 *
1921 * This function sends a READ0 command to cancel the effect of the STATUS
1922 * command to avoid reading only the status until a new read command is sent.
1923 *
1924 * This function does not select/unselect the CS line.
1925 *
1926 * Returns 0 on success, a negative error code otherwise.
1927 */
nand_exit_status_op(struct nand_chip * chip)1928 int nand_exit_status_op(struct nand_chip *chip)
1929 {
1930 if (nand_has_exec_op(chip)) {
1931 struct nand_op_instr instrs[] = {
1932 NAND_OP_CMD(NAND_CMD_READ0, 0),
1933 };
1934 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1935
1936 return nand_exec_op(chip, &op);
1937 }
1938
1939 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1940
1941 return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1944
1945 /**
1946 * nand_erase_op - Do an erase operation
1947 * @chip: The NAND chip
1948 * @eraseblock: block to erase
1949 *
1950 * This function sends an ERASE command and waits for the NAND to be ready
1951 * before returning.
1952 * This function does not select/unselect the CS line.
1953 *
1954 * Returns 0 on success, a negative error code otherwise.
1955 */
nand_erase_op(struct nand_chip * chip,unsigned int eraseblock)1956 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1957 {
1958 unsigned int page = eraseblock <<
1959 (chip->phys_erase_shift - chip->page_shift);
1960 int ret;
1961 u8 status;
1962
1963 if (nand_has_exec_op(chip)) {
1964 const struct nand_interface_config *conf =
1965 nand_get_interface_config(chip);
1966 u8 addrs[3] = { page, page >> 8, page >> 16 };
1967 struct nand_op_instr instrs[] = {
1968 NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1969 NAND_OP_ADDR(2, addrs, 0),
1970 NAND_OP_CMD(NAND_CMD_ERASE2,
1971 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1972 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1973 0),
1974 };
1975 struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1976 instrs);
1977
1978 if (chip->options & NAND_ROW_ADDR_3)
1979 instrs[1].ctx.addr.naddrs++;
1980
1981 ret = nand_exec_op(chip, &op);
1982 if (ret)
1983 return ret;
1984
1985 ret = nand_status_op(chip, &status);
1986 if (ret)
1987 return ret;
1988 } else {
1989 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1990 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1991
1992 ret = chip->legacy.waitfunc(chip);
1993 if (ret < 0)
1994 return ret;
1995
1996 status = ret;
1997 }
1998
1999 if (status & NAND_STATUS_FAIL)
2000 return -EIO;
2001
2002 return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(nand_erase_op);
2005
2006 /**
2007 * nand_set_features_op - Do a SET FEATURES operation
2008 * @chip: The NAND chip
2009 * @feature: feature id
2010 * @data: 4 bytes of data
2011 *
2012 * This function sends a SET FEATURES command and waits for the NAND to be
2013 * ready before returning.
2014 * This function does not select/unselect the CS line.
2015 *
2016 * Returns 0 on success, a negative error code otherwise.
2017 */
nand_set_features_op(struct nand_chip * chip,u8 feature,const void * data)2018 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2019 const void *data)
2020 {
2021 const u8 *params = data;
2022 int i, ret;
2023
2024 if (nand_has_exec_op(chip)) {
2025 const struct nand_interface_config *conf =
2026 nand_get_interface_config(chip);
2027 struct nand_op_instr instrs[] = {
2028 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2029 NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2030 tADL_min)),
2031 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2032 NAND_COMMON_TIMING_NS(conf,
2033 tWB_max)),
2034 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2035 0),
2036 };
2037 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2038
2039 return nand_exec_op(chip, &op);
2040 }
2041
2042 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2043 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2044 chip->legacy.write_byte(chip, params[i]);
2045
2046 ret = chip->legacy.waitfunc(chip);
2047 if (ret < 0)
2048 return ret;
2049
2050 if (ret & NAND_STATUS_FAIL)
2051 return -EIO;
2052
2053 return 0;
2054 }
2055
2056 /**
2057 * nand_get_features_op - Do a GET FEATURES operation
2058 * @chip: The NAND chip
2059 * @feature: feature id
2060 * @data: 4 bytes of data
2061 *
2062 * This function sends a GET FEATURES command and waits for the NAND to be
2063 * ready before returning.
2064 * This function does not select/unselect the CS line.
2065 *
2066 * Returns 0 on success, a negative error code otherwise.
2067 */
nand_get_features_op(struct nand_chip * chip,u8 feature,void * data)2068 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2069 void *data)
2070 {
2071 u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2072 int i;
2073
2074 if (nand_has_exec_op(chip)) {
2075 const struct nand_interface_config *conf =
2076 nand_get_interface_config(chip);
2077 struct nand_op_instr instrs[] = {
2078 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2079 NAND_OP_ADDR(1, &feature,
2080 NAND_COMMON_TIMING_NS(conf, tWB_max)),
2081 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2082 NAND_COMMON_TIMING_NS(conf, tRR_min)),
2083 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2084 data, 0),
2085 };
2086 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2087 int ret;
2088
2089 /* GET_FEATURE data bytes are received twice in NV-DDR mode */
2090 if (nand_interface_is_nvddr(conf)) {
2091 instrs[3].ctx.data.len *= 2;
2092 instrs[3].ctx.data.buf.in = ddrbuf;
2093 }
2094
2095 ret = nand_exec_op(chip, &op);
2096 if (nand_interface_is_nvddr(conf)) {
2097 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2098 params[i] = ddrbuf[i * 2];
2099 }
2100
2101 return ret;
2102 }
2103
2104 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2105 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2106 params[i] = chip->legacy.read_byte(chip);
2107
2108 return 0;
2109 }
2110
nand_wait_rdy_op(struct nand_chip * chip,unsigned int timeout_ms,unsigned int delay_ns)2111 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2112 unsigned int delay_ns)
2113 {
2114 if (nand_has_exec_op(chip)) {
2115 struct nand_op_instr instrs[] = {
2116 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2117 PSEC_TO_NSEC(delay_ns)),
2118 };
2119 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2120
2121 return nand_exec_op(chip, &op);
2122 }
2123
2124 /* Apply delay or wait for ready/busy pin */
2125 if (!chip->legacy.dev_ready)
2126 udelay(chip->legacy.chip_delay);
2127 else
2128 nand_wait_ready(chip);
2129
2130 return 0;
2131 }
2132
2133 /**
2134 * nand_reset_op - Do a reset operation
2135 * @chip: The NAND chip
2136 *
2137 * This function sends a RESET command and waits for the NAND to be ready
2138 * before returning.
2139 * This function does not select/unselect the CS line.
2140 *
2141 * Returns 0 on success, a negative error code otherwise.
2142 */
nand_reset_op(struct nand_chip * chip)2143 int nand_reset_op(struct nand_chip *chip)
2144 {
2145 if (nand_has_exec_op(chip)) {
2146 const struct nand_interface_config *conf =
2147 nand_get_interface_config(chip);
2148 struct nand_op_instr instrs[] = {
2149 NAND_OP_CMD(NAND_CMD_RESET,
2150 NAND_COMMON_TIMING_NS(conf, tWB_max)),
2151 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2152 0),
2153 };
2154 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2155
2156 return nand_exec_op(chip, &op);
2157 }
2158
2159 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2160
2161 return 0;
2162 }
2163 EXPORT_SYMBOL_GPL(nand_reset_op);
2164
2165 /**
2166 * nand_read_data_op - Read data from the NAND
2167 * @chip: The NAND chip
2168 * @buf: buffer used to store the data
2169 * @len: length of the buffer
2170 * @force_8bit: force 8-bit bus access
2171 * @check_only: do not actually run the command, only checks if the
2172 * controller driver supports it
2173 *
2174 * This function does a raw data read on the bus. Usually used after launching
2175 * another NAND operation like nand_read_page_op().
2176 * This function does not select/unselect the CS line.
2177 *
2178 * Returns 0 on success, a negative error code otherwise.
2179 */
nand_read_data_op(struct nand_chip * chip,void * buf,unsigned int len,bool force_8bit,bool check_only)2180 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2181 bool force_8bit, bool check_only)
2182 {
2183 if (!len || (!check_only && !buf))
2184 return -EINVAL;
2185
2186 if (nand_has_exec_op(chip)) {
2187 const struct nand_interface_config *conf =
2188 nand_get_interface_config(chip);
2189 struct nand_op_instr instrs[] = {
2190 NAND_OP_DATA_IN(len, buf, 0),
2191 };
2192 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2193 u8 *ddrbuf = NULL;
2194 int ret, i;
2195
2196 instrs[0].ctx.data.force_8bit = force_8bit;
2197
2198 /*
2199 * Parameter payloads (ID, status, features, etc) do not go
2200 * through the same pipeline as regular data, hence the
2201 * force_8bit flag must be set and this also indicates that in
2202 * case NV-DDR timings are being used the data will be received
2203 * twice.
2204 */
2205 if (force_8bit && nand_interface_is_nvddr(conf)) {
2206 ddrbuf = kcalloc(2, len, GFP_KERNEL);
2207 if (!ddrbuf)
2208 return -ENOMEM;
2209
2210 instrs[0].ctx.data.len *= 2;
2211 instrs[0].ctx.data.buf.in = ddrbuf;
2212 }
2213
2214 if (check_only) {
2215 ret = nand_check_op(chip, &op);
2216 kfree(ddrbuf);
2217 return ret;
2218 }
2219
2220 ret = nand_exec_op(chip, &op);
2221 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2222 u8 *dst = buf;
2223
2224 for (i = 0; i < len; i++)
2225 dst[i] = ddrbuf[i * 2];
2226 }
2227
2228 kfree(ddrbuf);
2229
2230 return ret;
2231 }
2232
2233 if (check_only)
2234 return 0;
2235
2236 if (force_8bit) {
2237 u8 *p = buf;
2238 unsigned int i;
2239
2240 for (i = 0; i < len; i++)
2241 p[i] = chip->legacy.read_byte(chip);
2242 } else {
2243 chip->legacy.read_buf(chip, buf, len);
2244 }
2245
2246 return 0;
2247 }
2248 EXPORT_SYMBOL_GPL(nand_read_data_op);
2249
2250 /**
2251 * nand_write_data_op - Write data from the NAND
2252 * @chip: The NAND chip
2253 * @buf: buffer containing the data to send on the bus
2254 * @len: length of the buffer
2255 * @force_8bit: force 8-bit bus access
2256 *
2257 * This function does a raw data write on the bus. Usually used after launching
2258 * another NAND operation like nand_write_page_begin_op().
2259 * This function does not select/unselect the CS line.
2260 *
2261 * Returns 0 on success, a negative error code otherwise.
2262 */
nand_write_data_op(struct nand_chip * chip,const void * buf,unsigned int len,bool force_8bit)2263 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2264 unsigned int len, bool force_8bit)
2265 {
2266 if (!len || !buf)
2267 return -EINVAL;
2268
2269 if (nand_has_exec_op(chip)) {
2270 struct nand_op_instr instrs[] = {
2271 NAND_OP_DATA_OUT(len, buf, 0),
2272 };
2273 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2274
2275 instrs[0].ctx.data.force_8bit = force_8bit;
2276
2277 return nand_exec_op(chip, &op);
2278 }
2279
2280 if (force_8bit) {
2281 const u8 *p = buf;
2282 unsigned int i;
2283
2284 for (i = 0; i < len; i++)
2285 chip->legacy.write_byte(chip, p[i]);
2286 } else {
2287 chip->legacy.write_buf(chip, buf, len);
2288 }
2289
2290 return 0;
2291 }
2292 EXPORT_SYMBOL_GPL(nand_write_data_op);
2293
2294 /**
2295 * struct nand_op_parser_ctx - Context used by the parser
2296 * @instrs: array of all the instructions that must be addressed
2297 * @ninstrs: length of the @instrs array
2298 * @subop: Sub-operation to be passed to the NAND controller
2299 *
2300 * This structure is used by the core to split NAND operations into
2301 * sub-operations that can be handled by the NAND controller.
2302 */
2303 struct nand_op_parser_ctx {
2304 const struct nand_op_instr *instrs;
2305 unsigned int ninstrs;
2306 struct nand_subop subop;
2307 };
2308
2309 /**
2310 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2311 * @pat: the parser pattern element that matches @instr
2312 * @instr: pointer to the instruction to check
2313 * @start_offset: this is an in/out parameter. If @instr has already been
2314 * split, then @start_offset is the offset from which to start
2315 * (either an address cycle or an offset in the data buffer).
2316 * Conversely, if the function returns true (ie. instr must be
2317 * split), this parameter is updated to point to the first
2318 * data/address cycle that has not been taken care of.
2319 *
2320 * Some NAND controllers are limited and cannot send X address cycles with a
2321 * unique operation, or cannot read/write more than Y bytes at the same time.
2322 * In this case, split the instruction that does not fit in a single
2323 * controller-operation into two or more chunks.
2324 *
2325 * Returns true if the instruction must be split, false otherwise.
2326 * The @start_offset parameter is also updated to the offset at which the next
2327 * bundle of instruction must start (if an address or a data instruction).
2328 */
2329 static bool
nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem * pat,const struct nand_op_instr * instr,unsigned int * start_offset)2330 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2331 const struct nand_op_instr *instr,
2332 unsigned int *start_offset)
2333 {
2334 switch (pat->type) {
2335 case NAND_OP_ADDR_INSTR:
2336 if (!pat->ctx.addr.maxcycles)
2337 break;
2338
2339 if (instr->ctx.addr.naddrs - *start_offset >
2340 pat->ctx.addr.maxcycles) {
2341 *start_offset += pat->ctx.addr.maxcycles;
2342 return true;
2343 }
2344 break;
2345
2346 case NAND_OP_DATA_IN_INSTR:
2347 case NAND_OP_DATA_OUT_INSTR:
2348 if (!pat->ctx.data.maxlen)
2349 break;
2350
2351 if (instr->ctx.data.len - *start_offset >
2352 pat->ctx.data.maxlen) {
2353 *start_offset += pat->ctx.data.maxlen;
2354 return true;
2355 }
2356 break;
2357
2358 default:
2359 break;
2360 }
2361
2362 return false;
2363 }
2364
2365 /**
2366 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2367 * remaining in the parser context
2368 * @pat: the pattern to test
2369 * @ctx: the parser context structure to match with the pattern @pat
2370 *
2371 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2372 * Returns true if this is the case, false ortherwise. When true is returned,
2373 * @ctx->subop is updated with the set of instructions to be passed to the
2374 * controller driver.
2375 */
2376 static bool
nand_op_parser_match_pat(const struct nand_op_parser_pattern * pat,struct nand_op_parser_ctx * ctx)2377 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2378 struct nand_op_parser_ctx *ctx)
2379 {
2380 unsigned int instr_offset = ctx->subop.first_instr_start_off;
2381 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2382 const struct nand_op_instr *instr = ctx->subop.instrs;
2383 unsigned int i, ninstrs;
2384
2385 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2386 /*
2387 * The pattern instruction does not match the operation
2388 * instruction. If the instruction is marked optional in the
2389 * pattern definition, we skip the pattern element and continue
2390 * to the next one. If the element is mandatory, there's no
2391 * match and we can return false directly.
2392 */
2393 if (instr->type != pat->elems[i].type) {
2394 if (!pat->elems[i].optional)
2395 return false;
2396
2397 continue;
2398 }
2399
2400 /*
2401 * Now check the pattern element constraints. If the pattern is
2402 * not able to handle the whole instruction in a single step,
2403 * we have to split it.
2404 * The last_instr_end_off value comes back updated to point to
2405 * the position where we have to split the instruction (the
2406 * start of the next subop chunk).
2407 */
2408 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2409 &instr_offset)) {
2410 ninstrs++;
2411 i++;
2412 break;
2413 }
2414
2415 instr++;
2416 ninstrs++;
2417 instr_offset = 0;
2418 }
2419
2420 /*
2421 * This can happen if all instructions of a pattern are optional.
2422 * Still, if there's not at least one instruction handled by this
2423 * pattern, this is not a match, and we should try the next one (if
2424 * any).
2425 */
2426 if (!ninstrs)
2427 return false;
2428
2429 /*
2430 * We had a match on the pattern head, but the pattern may be longer
2431 * than the instructions we're asked to execute. We need to make sure
2432 * there's no mandatory elements in the pattern tail.
2433 */
2434 for (; i < pat->nelems; i++) {
2435 if (!pat->elems[i].optional)
2436 return false;
2437 }
2438
2439 /*
2440 * We have a match: update the subop structure accordingly and return
2441 * true.
2442 */
2443 ctx->subop.ninstrs = ninstrs;
2444 ctx->subop.last_instr_end_off = instr_offset;
2445
2446 return true;
2447 }
2448
2449 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
nand_op_parser_trace(const struct nand_op_parser_ctx * ctx)2450 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2451 {
2452 const struct nand_op_instr *instr;
2453 char *prefix = " ";
2454 unsigned int i;
2455
2456 pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2457
2458 for (i = 0; i < ctx->ninstrs; i++) {
2459 instr = &ctx->instrs[i];
2460
2461 if (instr == &ctx->subop.instrs[0])
2462 prefix = " ->";
2463
2464 nand_op_trace(prefix, instr);
2465
2466 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2467 prefix = " ";
2468 }
2469 }
2470 #else
nand_op_parser_trace(const struct nand_op_parser_ctx * ctx)2471 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2472 {
2473 /* NOP */
2474 }
2475 #endif
2476
nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx * a,const struct nand_op_parser_ctx * b)2477 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2478 const struct nand_op_parser_ctx *b)
2479 {
2480 if (a->subop.ninstrs < b->subop.ninstrs)
2481 return -1;
2482 else if (a->subop.ninstrs > b->subop.ninstrs)
2483 return 1;
2484
2485 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2486 return -1;
2487 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2488 return 1;
2489
2490 return 0;
2491 }
2492
2493 /**
2494 * nand_op_parser_exec_op - exec_op parser
2495 * @chip: the NAND chip
2496 * @parser: patterns description provided by the controller driver
2497 * @op: the NAND operation to address
2498 * @check_only: when true, the function only checks if @op can be handled but
2499 * does not execute the operation
2500 *
2501 * Helper function designed to ease integration of NAND controller drivers that
2502 * only support a limited set of instruction sequences. The supported sequences
2503 * are described in @parser, and the framework takes care of splitting @op into
2504 * multiple sub-operations (if required) and pass them back to the ->exec()
2505 * callback of the matching pattern if @check_only is set to false.
2506 *
2507 * NAND controller drivers should call this function from their own ->exec_op()
2508 * implementation.
2509 *
2510 * Returns 0 on success, a negative error code otherwise. A failure can be
2511 * caused by an unsupported operation (none of the supported patterns is able
2512 * to handle the requested operation), or an error returned by one of the
2513 * matching pattern->exec() hook.
2514 */
nand_op_parser_exec_op(struct nand_chip * chip,const struct nand_op_parser * parser,const struct nand_operation * op,bool check_only)2515 int nand_op_parser_exec_op(struct nand_chip *chip,
2516 const struct nand_op_parser *parser,
2517 const struct nand_operation *op, bool check_only)
2518 {
2519 struct nand_op_parser_ctx ctx = {
2520 .subop.cs = op->cs,
2521 .subop.instrs = op->instrs,
2522 .instrs = op->instrs,
2523 .ninstrs = op->ninstrs,
2524 };
2525 unsigned int i;
2526
2527 while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2528 const struct nand_op_parser_pattern *pattern;
2529 struct nand_op_parser_ctx best_ctx;
2530 int ret, best_pattern = -1;
2531
2532 for (i = 0; i < parser->npatterns; i++) {
2533 struct nand_op_parser_ctx test_ctx = ctx;
2534
2535 pattern = &parser->patterns[i];
2536 if (!nand_op_parser_match_pat(pattern, &test_ctx))
2537 continue;
2538
2539 if (best_pattern >= 0 &&
2540 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2541 continue;
2542
2543 best_pattern = i;
2544 best_ctx = test_ctx;
2545 }
2546
2547 if (best_pattern < 0) {
2548 pr_debug("->exec_op() parser: pattern not found!\n");
2549 return -ENOTSUPP;
2550 }
2551
2552 ctx = best_ctx;
2553 nand_op_parser_trace(&ctx);
2554
2555 if (!check_only) {
2556 pattern = &parser->patterns[best_pattern];
2557 ret = pattern->exec(chip, &ctx.subop);
2558 if (ret)
2559 return ret;
2560 }
2561
2562 /*
2563 * Update the context structure by pointing to the start of the
2564 * next subop.
2565 */
2566 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2567 if (ctx.subop.last_instr_end_off)
2568 ctx.subop.instrs -= 1;
2569
2570 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2571 }
2572
2573 return 0;
2574 }
2575 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2576
nand_instr_is_data(const struct nand_op_instr * instr)2577 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2578 {
2579 return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2580 instr->type == NAND_OP_DATA_OUT_INSTR);
2581 }
2582
nand_subop_instr_is_valid(const struct nand_subop * subop,unsigned int instr_idx)2583 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2584 unsigned int instr_idx)
2585 {
2586 return subop && instr_idx < subop->ninstrs;
2587 }
2588
nand_subop_get_start_off(const struct nand_subop * subop,unsigned int instr_idx)2589 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2590 unsigned int instr_idx)
2591 {
2592 if (instr_idx)
2593 return 0;
2594
2595 return subop->first_instr_start_off;
2596 }
2597
2598 /**
2599 * nand_subop_get_addr_start_off - Get the start offset in an address array
2600 * @subop: The entire sub-operation
2601 * @instr_idx: Index of the instruction inside the sub-operation
2602 *
2603 * During driver development, one could be tempted to directly use the
2604 * ->addr.addrs field of address instructions. This is wrong as address
2605 * instructions might be split.
2606 *
2607 * Given an address instruction, returns the offset of the first cycle to issue.
2608 */
nand_subop_get_addr_start_off(const struct nand_subop * subop,unsigned int instr_idx)2609 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2610 unsigned int instr_idx)
2611 {
2612 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2613 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2614 return 0;
2615
2616 return nand_subop_get_start_off(subop, instr_idx);
2617 }
2618 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2619
2620 /**
2621 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2622 * @subop: The entire sub-operation
2623 * @instr_idx: Index of the instruction inside the sub-operation
2624 *
2625 * During driver development, one could be tempted to directly use the
2626 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2627 * might be split.
2628 *
2629 * Given an address instruction, returns the number of address cycle to issue.
2630 */
nand_subop_get_num_addr_cyc(const struct nand_subop * subop,unsigned int instr_idx)2631 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2632 unsigned int instr_idx)
2633 {
2634 int start_off, end_off;
2635
2636 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2637 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2638 return 0;
2639
2640 start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2641
2642 if (instr_idx == subop->ninstrs - 1 &&
2643 subop->last_instr_end_off)
2644 end_off = subop->last_instr_end_off;
2645 else
2646 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2647
2648 return end_off - start_off;
2649 }
2650 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2651
2652 /**
2653 * nand_subop_get_data_start_off - Get the start offset in a data array
2654 * @subop: The entire sub-operation
2655 * @instr_idx: Index of the instruction inside the sub-operation
2656 *
2657 * During driver development, one could be tempted to directly use the
2658 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2659 * instructions might be split.
2660 *
2661 * Given a data instruction, returns the offset to start from.
2662 */
nand_subop_get_data_start_off(const struct nand_subop * subop,unsigned int instr_idx)2663 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2664 unsigned int instr_idx)
2665 {
2666 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2667 !nand_instr_is_data(&subop->instrs[instr_idx])))
2668 return 0;
2669
2670 return nand_subop_get_start_off(subop, instr_idx);
2671 }
2672 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2673
2674 /**
2675 * nand_subop_get_data_len - Get the number of bytes to retrieve
2676 * @subop: The entire sub-operation
2677 * @instr_idx: Index of the instruction inside the sub-operation
2678 *
2679 * During driver development, one could be tempted to directly use the
2680 * ->data->len field of a data instruction. This is wrong as data instructions
2681 * might be split.
2682 *
2683 * Returns the length of the chunk of data to send/receive.
2684 */
nand_subop_get_data_len(const struct nand_subop * subop,unsigned int instr_idx)2685 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2686 unsigned int instr_idx)
2687 {
2688 int start_off = 0, end_off;
2689
2690 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2691 !nand_instr_is_data(&subop->instrs[instr_idx])))
2692 return 0;
2693
2694 start_off = nand_subop_get_data_start_off(subop, instr_idx);
2695
2696 if (instr_idx == subop->ninstrs - 1 &&
2697 subop->last_instr_end_off)
2698 end_off = subop->last_instr_end_off;
2699 else
2700 end_off = subop->instrs[instr_idx].ctx.data.len;
2701
2702 return end_off - start_off;
2703 }
2704 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2705
2706 /**
2707 * nand_reset - Reset and initialize a NAND device
2708 * @chip: The NAND chip
2709 * @chipnr: Internal die id
2710 *
2711 * Save the timings data structure, then apply SDR timings mode 0 (see
2712 * nand_reset_interface for details), do the reset operation, and apply
2713 * back the previous timings.
2714 *
2715 * Returns 0 on success, a negative error code otherwise.
2716 */
nand_reset(struct nand_chip * chip,int chipnr)2717 int nand_reset(struct nand_chip *chip, int chipnr)
2718 {
2719 int ret;
2720
2721 ret = nand_reset_interface(chip, chipnr);
2722 if (ret)
2723 return ret;
2724
2725 /*
2726 * The CS line has to be released before we can apply the new NAND
2727 * interface settings, hence this weird nand_select_target()
2728 * nand_deselect_target() dance.
2729 */
2730 nand_select_target(chip, chipnr);
2731 ret = nand_reset_op(chip);
2732 nand_deselect_target(chip);
2733 if (ret)
2734 return ret;
2735
2736 ret = nand_setup_interface(chip, chipnr);
2737 if (ret)
2738 return ret;
2739
2740 return 0;
2741 }
2742 EXPORT_SYMBOL_GPL(nand_reset);
2743
2744 /**
2745 * nand_get_features - wrapper to perform a GET_FEATURE
2746 * @chip: NAND chip info structure
2747 * @addr: feature address
2748 * @subfeature_param: the subfeature parameters, a four bytes array
2749 *
2750 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2751 * operation cannot be handled.
2752 */
nand_get_features(struct nand_chip * chip,int addr,u8 * subfeature_param)2753 int nand_get_features(struct nand_chip *chip, int addr,
2754 u8 *subfeature_param)
2755 {
2756 if (!nand_supports_get_features(chip, addr))
2757 return -ENOTSUPP;
2758
2759 if (chip->legacy.get_features)
2760 return chip->legacy.get_features(chip, addr, subfeature_param);
2761
2762 return nand_get_features_op(chip, addr, subfeature_param);
2763 }
2764
2765 /**
2766 * nand_set_features - wrapper to perform a SET_FEATURE
2767 * @chip: NAND chip info structure
2768 * @addr: feature address
2769 * @subfeature_param: the subfeature parameters, a four bytes array
2770 *
2771 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2772 * operation cannot be handled.
2773 */
nand_set_features(struct nand_chip * chip,int addr,u8 * subfeature_param)2774 int nand_set_features(struct nand_chip *chip, int addr,
2775 u8 *subfeature_param)
2776 {
2777 if (!nand_supports_set_features(chip, addr))
2778 return -ENOTSUPP;
2779
2780 if (chip->legacy.set_features)
2781 return chip->legacy.set_features(chip, addr, subfeature_param);
2782
2783 return nand_set_features_op(chip, addr, subfeature_param);
2784 }
2785
2786 /**
2787 * nand_read_page_raw_notsupp - dummy read raw page function
2788 * @chip: nand chip info structure
2789 * @buf: buffer to store read data
2790 * @oob_required: caller requires OOB data read to chip->oob_poi
2791 * @page: page number to read
2792 *
2793 * Returns -ENOTSUPP unconditionally.
2794 */
nand_read_page_raw_notsupp(struct nand_chip * chip,u8 * buf,int oob_required,int page)2795 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2796 int oob_required, int page)
2797 {
2798 return -ENOTSUPP;
2799 }
2800
2801 /**
2802 * nand_read_page_raw - [INTERN] read raw page data without ecc
2803 * @chip: nand chip info structure
2804 * @buf: buffer to store read data
2805 * @oob_required: caller requires OOB data read to chip->oob_poi
2806 * @page: page number to read
2807 *
2808 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2809 */
nand_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2810 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2811 int page)
2812 {
2813 struct mtd_info *mtd = nand_to_mtd(chip);
2814 int ret;
2815
2816 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2817 if (ret)
2818 return ret;
2819
2820 if (oob_required) {
2821 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2822 false, false);
2823 if (ret)
2824 return ret;
2825 }
2826
2827 return 0;
2828 }
2829 EXPORT_SYMBOL(nand_read_page_raw);
2830
2831 /**
2832 * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2833 * @chip: NAND chip info structure
2834 * @buf: buffer to store read data
2835 * @oob_required: caller requires OOB data read to chip->oob_poi
2836 * @page: page number to read
2837 *
2838 * This is a raw page read, ie. without any error detection/correction.
2839 * Monolithic means we are requesting all the relevant data (main plus
2840 * eventually OOB) to be loaded in the NAND cache and sent over the
2841 * bus (from the NAND chip to the NAND controller) in a single
2842 * operation. This is an alternative to nand_read_page_raw(), which
2843 * first reads the main data, and if the OOB data is requested too,
2844 * then reads more data on the bus.
2845 */
nand_monolithic_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)2846 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2847 int oob_required, int page)
2848 {
2849 struct mtd_info *mtd = nand_to_mtd(chip);
2850 unsigned int size = mtd->writesize;
2851 u8 *read_buf = buf;
2852 int ret;
2853
2854 if (oob_required) {
2855 size += mtd->oobsize;
2856
2857 if (buf != chip->data_buf)
2858 read_buf = nand_get_data_buf(chip);
2859 }
2860
2861 ret = nand_read_page_op(chip, page, 0, read_buf, size);
2862 if (ret)
2863 return ret;
2864
2865 if (buf != chip->data_buf)
2866 memcpy(buf, read_buf, mtd->writesize);
2867
2868 return 0;
2869 }
2870 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2871
2872 /**
2873 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2874 * @chip: nand chip info structure
2875 * @buf: buffer to store read data
2876 * @oob_required: caller requires OOB data read to chip->oob_poi
2877 * @page: page number to read
2878 *
2879 * We need a special oob layout and handling even when OOB isn't used.
2880 */
nand_read_page_raw_syndrome(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2881 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2882 int oob_required, int page)
2883 {
2884 struct mtd_info *mtd = nand_to_mtd(chip);
2885 int eccsize = chip->ecc.size;
2886 int eccbytes = chip->ecc.bytes;
2887 uint8_t *oob = chip->oob_poi;
2888 int steps, size, ret;
2889
2890 ret = nand_read_page_op(chip, page, 0, NULL, 0);
2891 if (ret)
2892 return ret;
2893
2894 for (steps = chip->ecc.steps; steps > 0; steps--) {
2895 ret = nand_read_data_op(chip, buf, eccsize, false, false);
2896 if (ret)
2897 return ret;
2898
2899 buf += eccsize;
2900
2901 if (chip->ecc.prepad) {
2902 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2903 false, false);
2904 if (ret)
2905 return ret;
2906
2907 oob += chip->ecc.prepad;
2908 }
2909
2910 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2911 if (ret)
2912 return ret;
2913
2914 oob += eccbytes;
2915
2916 if (chip->ecc.postpad) {
2917 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2918 false, false);
2919 if (ret)
2920 return ret;
2921
2922 oob += chip->ecc.postpad;
2923 }
2924 }
2925
2926 size = mtd->oobsize - (oob - chip->oob_poi);
2927 if (size) {
2928 ret = nand_read_data_op(chip, oob, size, false, false);
2929 if (ret)
2930 return ret;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /**
2937 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2938 * @chip: nand chip info structure
2939 * @buf: buffer to store read data
2940 * @oob_required: caller requires OOB data read to chip->oob_poi
2941 * @page: page number to read
2942 */
nand_read_page_swecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2943 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2944 int oob_required, int page)
2945 {
2946 struct mtd_info *mtd = nand_to_mtd(chip);
2947 int i, eccsize = chip->ecc.size, ret;
2948 int eccbytes = chip->ecc.bytes;
2949 int eccsteps = chip->ecc.steps;
2950 uint8_t *p = buf;
2951 uint8_t *ecc_calc = chip->ecc.calc_buf;
2952 uint8_t *ecc_code = chip->ecc.code_buf;
2953 unsigned int max_bitflips = 0;
2954
2955 chip->ecc.read_page_raw(chip, buf, 1, page);
2956
2957 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2958 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2959
2960 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2961 chip->ecc.total);
2962 if (ret)
2963 return ret;
2964
2965 eccsteps = chip->ecc.steps;
2966 p = buf;
2967
2968 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2969 int stat;
2970
2971 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2972 if (stat < 0) {
2973 mtd->ecc_stats.failed++;
2974 } else {
2975 mtd->ecc_stats.corrected += stat;
2976 max_bitflips = max_t(unsigned int, max_bitflips, stat);
2977 }
2978 }
2979 return max_bitflips;
2980 }
2981
2982 /**
2983 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2984 * @chip: nand chip info structure
2985 * @data_offs: offset of requested data within the page
2986 * @readlen: data length
2987 * @bufpoi: buffer to store read data
2988 * @page: page number to read
2989 */
nand_read_subpage(struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)2990 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2991 uint32_t readlen, uint8_t *bufpoi, int page)
2992 {
2993 struct mtd_info *mtd = nand_to_mtd(chip);
2994 int start_step, end_step, num_steps, ret;
2995 uint8_t *p;
2996 int data_col_addr, i, gaps = 0;
2997 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2998 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2999 int index, section = 0;
3000 unsigned int max_bitflips = 0;
3001 struct mtd_oob_region oobregion = { };
3002
3003 /* Column address within the page aligned to ECC size (256bytes) */
3004 start_step = data_offs / chip->ecc.size;
3005 end_step = (data_offs + readlen - 1) / chip->ecc.size;
3006 num_steps = end_step - start_step + 1;
3007 index = start_step * chip->ecc.bytes;
3008
3009 /* Data size aligned to ECC ecc.size */
3010 datafrag_len = num_steps * chip->ecc.size;
3011 eccfrag_len = num_steps * chip->ecc.bytes;
3012
3013 data_col_addr = start_step * chip->ecc.size;
3014 /* If we read not a page aligned data */
3015 p = bufpoi + data_col_addr;
3016 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3017 if (ret)
3018 return ret;
3019
3020 /* Calculate ECC */
3021 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3022 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3023
3024 /*
3025 * The performance is faster if we position offsets according to
3026 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3027 */
3028 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion);
3029 if (ret)
3030 return ret;
3031
3032 if (oobregion.length < eccfrag_len)
3033 gaps = 1;
3034
3035 if (gaps) {
3036 ret = nand_change_read_column_op(chip, mtd->writesize,
3037 chip->oob_poi, mtd->oobsize,
3038 false);
3039 if (ret)
3040 return ret;
3041 } else {
3042 /*
3043 * Send the command to read the particular ECC bytes take care
3044 * about buswidth alignment in read_buf.
3045 */
3046 aligned_pos = oobregion.offset & ~(busw - 1);
3047 aligned_len = eccfrag_len;
3048 if (oobregion.offset & (busw - 1))
3049 aligned_len++;
3050 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3051 (busw - 1))
3052 aligned_len++;
3053
3054 ret = nand_change_read_column_op(chip,
3055 mtd->writesize + aligned_pos,
3056 &chip->oob_poi[aligned_pos],
3057 aligned_len, false);
3058 if (ret)
3059 return ret;
3060 }
3061
3062 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3063 chip->oob_poi, index, eccfrag_len);
3064 if (ret)
3065 return ret;
3066
3067 p = bufpoi + data_col_addr;
3068 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3069 int stat;
3070
3071 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3072 &chip->ecc.calc_buf[i]);
3073 if (stat == -EBADMSG &&
3074 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3075 /* check for empty pages with bitflips */
3076 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3077 &chip->ecc.code_buf[i],
3078 chip->ecc.bytes,
3079 NULL, 0,
3080 chip->ecc.strength);
3081 }
3082
3083 if (stat < 0) {
3084 mtd->ecc_stats.failed++;
3085 } else {
3086 mtd->ecc_stats.corrected += stat;
3087 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3088 }
3089 }
3090 return max_bitflips;
3091 }
3092
3093 /**
3094 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3095 * @chip: nand chip info structure
3096 * @buf: buffer to store read data
3097 * @oob_required: caller requires OOB data read to chip->oob_poi
3098 * @page: page number to read
3099 *
3100 * Not for syndrome calculating ECC controllers which need a special oob layout.
3101 */
nand_read_page_hwecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3102 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3103 int oob_required, int page)
3104 {
3105 struct mtd_info *mtd = nand_to_mtd(chip);
3106 int i, eccsize = chip->ecc.size, ret;
3107 int eccbytes = chip->ecc.bytes;
3108 int eccsteps = chip->ecc.steps;
3109 uint8_t *p = buf;
3110 uint8_t *ecc_calc = chip->ecc.calc_buf;
3111 uint8_t *ecc_code = chip->ecc.code_buf;
3112 unsigned int max_bitflips = 0;
3113
3114 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3115 if (ret)
3116 return ret;
3117
3118 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3119 chip->ecc.hwctl(chip, NAND_ECC_READ);
3120
3121 ret = nand_read_data_op(chip, p, eccsize, false, false);
3122 if (ret)
3123 return ret;
3124
3125 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3126 }
3127
3128 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3129 false);
3130 if (ret)
3131 return ret;
3132
3133 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3134 chip->ecc.total);
3135 if (ret)
3136 return ret;
3137
3138 eccsteps = chip->ecc.steps;
3139 p = buf;
3140
3141 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3142 int stat;
3143
3144 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3145 if (stat == -EBADMSG &&
3146 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3147 /* check for empty pages with bitflips */
3148 stat = nand_check_erased_ecc_chunk(p, eccsize,
3149 &ecc_code[i], eccbytes,
3150 NULL, 0,
3151 chip->ecc.strength);
3152 }
3153
3154 if (stat < 0) {
3155 mtd->ecc_stats.failed++;
3156 } else {
3157 mtd->ecc_stats.corrected += stat;
3158 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3159 }
3160 }
3161 return max_bitflips;
3162 }
3163
3164 /**
3165 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3166 * data read from OOB area
3167 * @chip: nand chip info structure
3168 * @buf: buffer to store read data
3169 * @oob_required: caller requires OOB data read to chip->oob_poi
3170 * @page: page number to read
3171 *
3172 * Hardware ECC for large page chips, which requires the ECC data to be
3173 * extracted from the OOB before the actual data is read.
3174 */
nand_read_page_hwecc_oob_first(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3175 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3176 int oob_required, int page)
3177 {
3178 struct mtd_info *mtd = nand_to_mtd(chip);
3179 int i, eccsize = chip->ecc.size, ret;
3180 int eccbytes = chip->ecc.bytes;
3181 int eccsteps = chip->ecc.steps;
3182 uint8_t *p = buf;
3183 uint8_t *ecc_code = chip->ecc.code_buf;
3184 unsigned int max_bitflips = 0;
3185
3186 /* Read the OOB area first */
3187 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3188 if (ret)
3189 return ret;
3190
3191 /* Move read cursor to start of page */
3192 ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3193 if (ret)
3194 return ret;
3195
3196 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3197 chip->ecc.total);
3198 if (ret)
3199 return ret;
3200
3201 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3202 int stat;
3203
3204 chip->ecc.hwctl(chip, NAND_ECC_READ);
3205
3206 ret = nand_read_data_op(chip, p, eccsize, false, false);
3207 if (ret)
3208 return ret;
3209
3210 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3211 if (stat == -EBADMSG &&
3212 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3213 /* check for empty pages with bitflips */
3214 stat = nand_check_erased_ecc_chunk(p, eccsize,
3215 &ecc_code[i],
3216 eccbytes, NULL, 0,
3217 chip->ecc.strength);
3218 }
3219
3220 if (stat < 0) {
3221 mtd->ecc_stats.failed++;
3222 } else {
3223 mtd->ecc_stats.corrected += stat;
3224 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3225 }
3226 }
3227 return max_bitflips;
3228 }
3229 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3230
3231 /**
3232 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3233 * @chip: nand chip info structure
3234 * @buf: buffer to store read data
3235 * @oob_required: caller requires OOB data read to chip->oob_poi
3236 * @page: page number to read
3237 *
3238 * The hw generator calculates the error syndrome automatically. Therefore we
3239 * need a special oob layout and handling.
3240 */
nand_read_page_syndrome(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3241 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3242 int oob_required, int page)
3243 {
3244 struct mtd_info *mtd = nand_to_mtd(chip);
3245 int ret, i, eccsize = chip->ecc.size;
3246 int eccbytes = chip->ecc.bytes;
3247 int eccsteps = chip->ecc.steps;
3248 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3249 uint8_t *p = buf;
3250 uint8_t *oob = chip->oob_poi;
3251 unsigned int max_bitflips = 0;
3252
3253 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3254 if (ret)
3255 return ret;
3256
3257 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3258 int stat;
3259
3260 chip->ecc.hwctl(chip, NAND_ECC_READ);
3261
3262 ret = nand_read_data_op(chip, p, eccsize, false, false);
3263 if (ret)
3264 return ret;
3265
3266 if (chip->ecc.prepad) {
3267 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3268 false, false);
3269 if (ret)
3270 return ret;
3271
3272 oob += chip->ecc.prepad;
3273 }
3274
3275 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3276
3277 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3278 if (ret)
3279 return ret;
3280
3281 stat = chip->ecc.correct(chip, p, oob, NULL);
3282
3283 oob += eccbytes;
3284
3285 if (chip->ecc.postpad) {
3286 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3287 false, false);
3288 if (ret)
3289 return ret;
3290
3291 oob += chip->ecc.postpad;
3292 }
3293
3294 if (stat == -EBADMSG &&
3295 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3296 /* check for empty pages with bitflips */
3297 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3298 oob - eccpadbytes,
3299 eccpadbytes,
3300 NULL, 0,
3301 chip->ecc.strength);
3302 }
3303
3304 if (stat < 0) {
3305 mtd->ecc_stats.failed++;
3306 } else {
3307 mtd->ecc_stats.corrected += stat;
3308 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3309 }
3310 }
3311
3312 /* Calculate remaining oob bytes */
3313 i = mtd->oobsize - (oob - chip->oob_poi);
3314 if (i) {
3315 ret = nand_read_data_op(chip, oob, i, false, false);
3316 if (ret)
3317 return ret;
3318 }
3319
3320 return max_bitflips;
3321 }
3322
3323 /**
3324 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3325 * @chip: NAND chip object
3326 * @oob: oob destination address
3327 * @ops: oob ops structure
3328 * @len: size of oob to transfer
3329 */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)3330 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3331 struct mtd_oob_ops *ops, size_t len)
3332 {
3333 struct mtd_info *mtd = nand_to_mtd(chip);
3334 int ret;
3335
3336 switch (ops->mode) {
3337
3338 case MTD_OPS_PLACE_OOB:
3339 case MTD_OPS_RAW:
3340 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3341 return oob + len;
3342
3343 case MTD_OPS_AUTO_OOB:
3344 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3345 ops->ooboffs, len);
3346 BUG_ON(ret);
3347 return oob + len;
3348
3349 default:
3350 BUG();
3351 }
3352 return NULL;
3353 }
3354
rawnand_enable_cont_reads(struct nand_chip * chip,unsigned int page,u32 readlen,int col)3355 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3356 u32 readlen, int col)
3357 {
3358 struct mtd_info *mtd = nand_to_mtd(chip);
3359 unsigned int first_page, last_page;
3360
3361 chip->cont_read.ongoing = false;
3362
3363 if (!chip->controller->supported_op.cont_read)
3364 return;
3365
3366 /*
3367 * Don't bother making any calculations if the length is too small.
3368 * Side effect: avoids possible integer underflows below.
3369 */
3370 if (readlen < (2 * mtd->writesize))
3371 return;
3372
3373 /* Derive the page where continuous read should start (the first full page read) */
3374 first_page = page;
3375 if (col)
3376 first_page++;
3377
3378 /* Derive the page where continuous read should stop (the last full page read) */
3379 last_page = page + ((col + readlen) / mtd->writesize) - 1;
3380
3381 /* Configure and enable continuous read when suitable */
3382 if (first_page < last_page) {
3383 chip->cont_read.first_page = first_page;
3384 chip->cont_read.last_page = last_page;
3385 chip->cont_read.ongoing = true;
3386 /* May reset the ongoing flag */
3387 rawnand_cap_cont_reads(chip);
3388 }
3389 }
3390
rawnand_cont_read_skip_first_page(struct nand_chip * chip,unsigned int page)3391 static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3392 {
3393 if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3394 return;
3395
3396 chip->cont_read.first_page++;
3397 rawnand_cap_cont_reads(chip);
3398 }
3399
3400 /**
3401 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3402 * @chip: NAND chip object
3403 * @retry_mode: the retry mode to use
3404 *
3405 * Some vendors supply a special command to shift the Vt threshold, to be used
3406 * when there are too many bitflips in a page (i.e., ECC error). After setting
3407 * a new threshold, the host should retry reading the page.
3408 */
nand_setup_read_retry(struct nand_chip * chip,int retry_mode)3409 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3410 {
3411 pr_debug("setting READ RETRY mode %d\n", retry_mode);
3412
3413 if (retry_mode >= chip->read_retries)
3414 return -EINVAL;
3415
3416 if (!chip->ops.setup_read_retry)
3417 return -EOPNOTSUPP;
3418
3419 return chip->ops.setup_read_retry(chip, retry_mode);
3420 }
3421
nand_wait_readrdy(struct nand_chip * chip)3422 static void nand_wait_readrdy(struct nand_chip *chip)
3423 {
3424 const struct nand_interface_config *conf;
3425
3426 if (!(chip->options & NAND_NEED_READRDY))
3427 return;
3428
3429 conf = nand_get_interface_config(chip);
3430 WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3431 }
3432
3433 /**
3434 * nand_do_read_ops - [INTERN] Read data with ECC
3435 * @chip: NAND chip object
3436 * @from: offset to read from
3437 * @ops: oob ops structure
3438 *
3439 * Internal function. Called with chip held.
3440 */
nand_do_read_ops(struct nand_chip * chip,loff_t from,struct mtd_oob_ops * ops)3441 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3442 struct mtd_oob_ops *ops)
3443 {
3444 int chipnr, page, realpage, col, bytes, aligned, oob_required;
3445 struct mtd_info *mtd = nand_to_mtd(chip);
3446 int ret = 0;
3447 uint32_t readlen = ops->len;
3448 uint32_t oobreadlen = ops->ooblen;
3449 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3450
3451 uint8_t *bufpoi, *oob, *buf;
3452 int use_bounce_buf;
3453 unsigned int max_bitflips = 0;
3454 int retry_mode = 0;
3455 bool ecc_fail = false;
3456
3457 /* Check if the region is secured */
3458 if (nand_region_is_secured(chip, from, readlen))
3459 return -EIO;
3460
3461 chipnr = (int)(from >> chip->chip_shift);
3462 nand_select_target(chip, chipnr);
3463
3464 realpage = (int)(from >> chip->page_shift);
3465 page = realpage & chip->pagemask;
3466
3467 col = (int)(from & (mtd->writesize - 1));
3468
3469 buf = ops->datbuf;
3470 oob = ops->oobbuf;
3471 oob_required = oob ? 1 : 0;
3472
3473 if (likely(ops->mode != MTD_OPS_RAW))
3474 rawnand_enable_cont_reads(chip, page, readlen, col);
3475
3476 while (1) {
3477 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3478
3479 bytes = min(mtd->writesize - col, readlen);
3480 aligned = (bytes == mtd->writesize);
3481
3482 if (!aligned)
3483 use_bounce_buf = 1;
3484 else if (chip->options & NAND_USES_DMA)
3485 use_bounce_buf = !virt_addr_valid(buf) ||
3486 !IS_ALIGNED((unsigned long)buf,
3487 chip->buf_align);
3488 else
3489 use_bounce_buf = 0;
3490
3491 /* Is the current page in the buffer? */
3492 if (realpage != chip->pagecache.page || oob) {
3493 bufpoi = use_bounce_buf ? chip->data_buf : buf;
3494
3495 if (use_bounce_buf && aligned)
3496 pr_debug("%s: using read bounce buffer for buf@%p\n",
3497 __func__, buf);
3498
3499 read_retry:
3500 /*
3501 * Now read the page into the buffer. Absent an error,
3502 * the read methods return max bitflips per ecc step.
3503 */
3504 if (unlikely(ops->mode == MTD_OPS_RAW))
3505 ret = chip->ecc.read_page_raw(chip, bufpoi,
3506 oob_required,
3507 page);
3508 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3509 !oob)
3510 ret = chip->ecc.read_subpage(chip, col, bytes,
3511 bufpoi, page);
3512 else
3513 ret = chip->ecc.read_page(chip, bufpoi,
3514 oob_required, page);
3515 if (ret < 0) {
3516 if (use_bounce_buf)
3517 /* Invalidate page cache */
3518 chip->pagecache.page = -1;
3519 break;
3520 }
3521
3522 /*
3523 * Copy back the data in the initial buffer when reading
3524 * partial pages or when a bounce buffer is required.
3525 */
3526 if (use_bounce_buf) {
3527 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3528 !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3529 (ops->mode != MTD_OPS_RAW)) {
3530 chip->pagecache.page = realpage;
3531 chip->pagecache.bitflips = ret;
3532 } else {
3533 /* Invalidate page cache */
3534 chip->pagecache.page = -1;
3535 }
3536 memcpy(buf, bufpoi + col, bytes);
3537 }
3538
3539 if (unlikely(oob)) {
3540 int toread = min(oobreadlen, max_oobsize);
3541
3542 if (toread) {
3543 oob = nand_transfer_oob(chip, oob, ops,
3544 toread);
3545 oobreadlen -= toread;
3546 }
3547 }
3548
3549 nand_wait_readrdy(chip);
3550
3551 if (mtd->ecc_stats.failed - ecc_stats.failed) {
3552 if (retry_mode + 1 < chip->read_retries) {
3553 retry_mode++;
3554 ret = nand_setup_read_retry(chip,
3555 retry_mode);
3556 if (ret < 0)
3557 break;
3558
3559 /* Reset ecc_stats; retry */
3560 mtd->ecc_stats = ecc_stats;
3561 goto read_retry;
3562 } else {
3563 /* No more retry modes; real failure */
3564 ecc_fail = true;
3565 }
3566 }
3567
3568 buf += bytes;
3569 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3570 } else {
3571 memcpy(buf, chip->data_buf + col, bytes);
3572 buf += bytes;
3573 max_bitflips = max_t(unsigned int, max_bitflips,
3574 chip->pagecache.bitflips);
3575
3576 rawnand_cont_read_skip_first_page(chip, page);
3577 }
3578
3579 readlen -= bytes;
3580
3581 /* Reset to retry mode 0 */
3582 if (retry_mode) {
3583 ret = nand_setup_read_retry(chip, 0);
3584 if (ret < 0)
3585 break;
3586 retry_mode = 0;
3587 }
3588
3589 if (!readlen)
3590 break;
3591
3592 /* For subsequent reads align to page boundary */
3593 col = 0;
3594 /* Increment page address */
3595 realpage++;
3596
3597 page = realpage & chip->pagemask;
3598 /* Check, if we cross a chip boundary */
3599 if (!page) {
3600 chipnr++;
3601 nand_deselect_target(chip);
3602 nand_select_target(chip, chipnr);
3603 }
3604 }
3605 nand_deselect_target(chip);
3606
3607 if (WARN_ON_ONCE(chip->cont_read.ongoing))
3608 chip->cont_read.ongoing = false;
3609
3610 ops->retlen = ops->len - (size_t) readlen;
3611 if (oob)
3612 ops->oobretlen = ops->ooblen - oobreadlen;
3613
3614 if (ret < 0)
3615 return ret;
3616
3617 if (ecc_fail)
3618 return -EBADMSG;
3619
3620 return max_bitflips;
3621 }
3622
3623 /**
3624 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3625 * @chip: nand chip info structure
3626 * @page: page number to read
3627 */
nand_read_oob_std(struct nand_chip * chip,int page)3628 int nand_read_oob_std(struct nand_chip *chip, int page)
3629 {
3630 struct mtd_info *mtd = nand_to_mtd(chip);
3631
3632 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3633 }
3634 EXPORT_SYMBOL(nand_read_oob_std);
3635
3636 /**
3637 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3638 * with syndromes
3639 * @chip: nand chip info structure
3640 * @page: page number to read
3641 */
nand_read_oob_syndrome(struct nand_chip * chip,int page)3642 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3643 {
3644 struct mtd_info *mtd = nand_to_mtd(chip);
3645 int length = mtd->oobsize;
3646 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3647 int eccsize = chip->ecc.size;
3648 uint8_t *bufpoi = chip->oob_poi;
3649 int i, toread, sndrnd = 0, pos, ret;
3650
3651 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3652 if (ret)
3653 return ret;
3654
3655 for (i = 0; i < chip->ecc.steps; i++) {
3656 if (sndrnd) {
3657 int ret;
3658
3659 pos = eccsize + i * (eccsize + chunk);
3660 if (mtd->writesize > 512)
3661 ret = nand_change_read_column_op(chip, pos,
3662 NULL, 0,
3663 false);
3664 else
3665 ret = nand_read_page_op(chip, page, pos, NULL,
3666 0);
3667
3668 if (ret)
3669 return ret;
3670 } else
3671 sndrnd = 1;
3672 toread = min_t(int, length, chunk);
3673
3674 ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3675 if (ret)
3676 return ret;
3677
3678 bufpoi += toread;
3679 length -= toread;
3680 }
3681 if (length > 0) {
3682 ret = nand_read_data_op(chip, bufpoi, length, false, false);
3683 if (ret)
3684 return ret;
3685 }
3686
3687 return 0;
3688 }
3689
3690 /**
3691 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3692 * @chip: nand chip info structure
3693 * @page: page number to write
3694 */
nand_write_oob_std(struct nand_chip * chip,int page)3695 int nand_write_oob_std(struct nand_chip *chip, int page)
3696 {
3697 struct mtd_info *mtd = nand_to_mtd(chip);
3698
3699 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3700 mtd->oobsize);
3701 }
3702 EXPORT_SYMBOL(nand_write_oob_std);
3703
3704 /**
3705 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3706 * with syndrome - only for large page flash
3707 * @chip: nand chip info structure
3708 * @page: page number to write
3709 */
nand_write_oob_syndrome(struct nand_chip * chip,int page)3710 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3711 {
3712 struct mtd_info *mtd = nand_to_mtd(chip);
3713 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3714 int eccsize = chip->ecc.size, length = mtd->oobsize;
3715 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3716 const uint8_t *bufpoi = chip->oob_poi;
3717
3718 /*
3719 * data-ecc-data-ecc ... ecc-oob
3720 * or
3721 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3722 */
3723 if (!chip->ecc.prepad && !chip->ecc.postpad) {
3724 pos = steps * (eccsize + chunk);
3725 steps = 0;
3726 } else
3727 pos = eccsize;
3728
3729 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3730 if (ret)
3731 return ret;
3732
3733 for (i = 0; i < steps; i++) {
3734 if (sndcmd) {
3735 if (mtd->writesize <= 512) {
3736 uint32_t fill = 0xFFFFFFFF;
3737
3738 len = eccsize;
3739 while (len > 0) {
3740 int num = min_t(int, len, 4);
3741
3742 ret = nand_write_data_op(chip, &fill,
3743 num, false);
3744 if (ret)
3745 return ret;
3746
3747 len -= num;
3748 }
3749 } else {
3750 pos = eccsize + i * (eccsize + chunk);
3751 ret = nand_change_write_column_op(chip, pos,
3752 NULL, 0,
3753 false);
3754 if (ret)
3755 return ret;
3756 }
3757 } else
3758 sndcmd = 1;
3759 len = min_t(int, length, chunk);
3760
3761 ret = nand_write_data_op(chip, bufpoi, len, false);
3762 if (ret)
3763 return ret;
3764
3765 bufpoi += len;
3766 length -= len;
3767 }
3768 if (length > 0) {
3769 ret = nand_write_data_op(chip, bufpoi, length, false);
3770 if (ret)
3771 return ret;
3772 }
3773
3774 return nand_prog_page_end_op(chip);
3775 }
3776
3777 /**
3778 * nand_do_read_oob - [INTERN] NAND read out-of-band
3779 * @chip: NAND chip object
3780 * @from: offset to read from
3781 * @ops: oob operations description structure
3782 *
3783 * NAND read out-of-band data from the spare area.
3784 */
nand_do_read_oob(struct nand_chip * chip,loff_t from,struct mtd_oob_ops * ops)3785 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3786 struct mtd_oob_ops *ops)
3787 {
3788 struct mtd_info *mtd = nand_to_mtd(chip);
3789 unsigned int max_bitflips = 0;
3790 int page, realpage, chipnr;
3791 struct mtd_ecc_stats stats;
3792 int readlen = ops->ooblen;
3793 int len;
3794 uint8_t *buf = ops->oobbuf;
3795 int ret = 0;
3796
3797 pr_debug("%s: from = 0x%08Lx, len = %i\n",
3798 __func__, (unsigned long long)from, readlen);
3799
3800 /* Check if the region is secured */
3801 if (nand_region_is_secured(chip, from, readlen))
3802 return -EIO;
3803
3804 stats = mtd->ecc_stats;
3805
3806 len = mtd_oobavail(mtd, ops);
3807
3808 chipnr = (int)(from >> chip->chip_shift);
3809 nand_select_target(chip, chipnr);
3810
3811 /* Shift to get page */
3812 realpage = (int)(from >> chip->page_shift);
3813 page = realpage & chip->pagemask;
3814
3815 while (1) {
3816 if (ops->mode == MTD_OPS_RAW)
3817 ret = chip->ecc.read_oob_raw(chip, page);
3818 else
3819 ret = chip->ecc.read_oob(chip, page);
3820
3821 if (ret < 0)
3822 break;
3823
3824 len = min(len, readlen);
3825 buf = nand_transfer_oob(chip, buf, ops, len);
3826
3827 nand_wait_readrdy(chip);
3828
3829 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3830
3831 readlen -= len;
3832 if (!readlen)
3833 break;
3834
3835 /* Increment page address */
3836 realpage++;
3837
3838 page = realpage & chip->pagemask;
3839 /* Check, if we cross a chip boundary */
3840 if (!page) {
3841 chipnr++;
3842 nand_deselect_target(chip);
3843 nand_select_target(chip, chipnr);
3844 }
3845 }
3846 nand_deselect_target(chip);
3847
3848 ops->oobretlen = ops->ooblen - readlen;
3849
3850 if (ret < 0)
3851 return ret;
3852
3853 if (mtd->ecc_stats.failed - stats.failed)
3854 return -EBADMSG;
3855
3856 return max_bitflips;
3857 }
3858
3859 /**
3860 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3861 * @mtd: MTD device structure
3862 * @from: offset to read from
3863 * @ops: oob operation description structure
3864 *
3865 * NAND read data and/or out-of-band data.
3866 */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)3867 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3868 struct mtd_oob_ops *ops)
3869 {
3870 struct nand_chip *chip = mtd_to_nand(mtd);
3871 struct mtd_ecc_stats old_stats;
3872 int ret;
3873
3874 ops->retlen = 0;
3875
3876 if (ops->mode != MTD_OPS_PLACE_OOB &&
3877 ops->mode != MTD_OPS_AUTO_OOB &&
3878 ops->mode != MTD_OPS_RAW)
3879 return -ENOTSUPP;
3880
3881 nand_get_device(chip);
3882
3883 old_stats = mtd->ecc_stats;
3884
3885 if (!ops->datbuf)
3886 ret = nand_do_read_oob(chip, from, ops);
3887 else
3888 ret = nand_do_read_ops(chip, from, ops);
3889
3890 if (ops->stats) {
3891 ops->stats->uncorrectable_errors +=
3892 mtd->ecc_stats.failed - old_stats.failed;
3893 ops->stats->corrected_bitflips +=
3894 mtd->ecc_stats.corrected - old_stats.corrected;
3895 }
3896
3897 nand_release_device(chip);
3898 return ret;
3899 }
3900
3901 /**
3902 * nand_write_page_raw_notsupp - dummy raw page write function
3903 * @chip: nand chip info structure
3904 * @buf: data buffer
3905 * @oob_required: must write chip->oob_poi to OOB
3906 * @page: page number to write
3907 *
3908 * Returns -ENOTSUPP unconditionally.
3909 */
nand_write_page_raw_notsupp(struct nand_chip * chip,const u8 * buf,int oob_required,int page)3910 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3911 int oob_required, int page)
3912 {
3913 return -ENOTSUPP;
3914 }
3915
3916 /**
3917 * nand_write_page_raw - [INTERN] raw page write function
3918 * @chip: nand chip info structure
3919 * @buf: data buffer
3920 * @oob_required: must write chip->oob_poi to OOB
3921 * @page: page number to write
3922 *
3923 * Not for syndrome calculating ECC controllers, which use a special oob layout.
3924 */
nand_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)3925 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3926 int oob_required, int page)
3927 {
3928 struct mtd_info *mtd = nand_to_mtd(chip);
3929 int ret;
3930
3931 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3932 if (ret)
3933 return ret;
3934
3935 if (oob_required) {
3936 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3937 false);
3938 if (ret)
3939 return ret;
3940 }
3941
3942 return nand_prog_page_end_op(chip);
3943 }
3944 EXPORT_SYMBOL(nand_write_page_raw);
3945
3946 /**
3947 * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3948 * @chip: NAND chip info structure
3949 * @buf: data buffer to write
3950 * @oob_required: must write chip->oob_poi to OOB
3951 * @page: page number to write
3952 *
3953 * This is a raw page write, ie. without any error detection/correction.
3954 * Monolithic means we are requesting all the relevant data (main plus
3955 * eventually OOB) to be sent over the bus and effectively programmed
3956 * into the NAND chip arrays in a single operation. This is an
3957 * alternative to nand_write_page_raw(), which first sends the main
3958 * data, then eventually send the OOB data by latching more data
3959 * cycles on the NAND bus, and finally sends the program command to
3960 * synchronyze the NAND chip cache.
3961 */
nand_monolithic_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)3962 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
3963 int oob_required, int page)
3964 {
3965 struct mtd_info *mtd = nand_to_mtd(chip);
3966 unsigned int size = mtd->writesize;
3967 u8 *write_buf = (u8 *)buf;
3968
3969 if (oob_required) {
3970 size += mtd->oobsize;
3971
3972 if (buf != chip->data_buf) {
3973 write_buf = nand_get_data_buf(chip);
3974 memcpy(write_buf, buf, mtd->writesize);
3975 }
3976 }
3977
3978 return nand_prog_page_op(chip, page, 0, write_buf, size);
3979 }
3980 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
3981
3982 /**
3983 * nand_write_page_raw_syndrome - [INTERN] raw page write function
3984 * @chip: nand chip info structure
3985 * @buf: data buffer
3986 * @oob_required: must write chip->oob_poi to OOB
3987 * @page: page number to write
3988 *
3989 * We need a special oob layout and handling even when ECC isn't checked.
3990 */
nand_write_page_raw_syndrome(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)3991 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3992 const uint8_t *buf, int oob_required,
3993 int page)
3994 {
3995 struct mtd_info *mtd = nand_to_mtd(chip);
3996 int eccsize = chip->ecc.size;
3997 int eccbytes = chip->ecc.bytes;
3998 uint8_t *oob = chip->oob_poi;
3999 int steps, size, ret;
4000
4001 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4002 if (ret)
4003 return ret;
4004
4005 for (steps = chip->ecc.steps; steps > 0; steps--) {
4006 ret = nand_write_data_op(chip, buf, eccsize, false);
4007 if (ret)
4008 return ret;
4009
4010 buf += eccsize;
4011
4012 if (chip->ecc.prepad) {
4013 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4014 false);
4015 if (ret)
4016 return ret;
4017
4018 oob += chip->ecc.prepad;
4019 }
4020
4021 ret = nand_write_data_op(chip, oob, eccbytes, false);
4022 if (ret)
4023 return ret;
4024
4025 oob += eccbytes;
4026
4027 if (chip->ecc.postpad) {
4028 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4029 false);
4030 if (ret)
4031 return ret;
4032
4033 oob += chip->ecc.postpad;
4034 }
4035 }
4036
4037 size = mtd->oobsize - (oob - chip->oob_poi);
4038 if (size) {
4039 ret = nand_write_data_op(chip, oob, size, false);
4040 if (ret)
4041 return ret;
4042 }
4043
4044 return nand_prog_page_end_op(chip);
4045 }
4046 /**
4047 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4048 * @chip: nand chip info structure
4049 * @buf: data buffer
4050 * @oob_required: must write chip->oob_poi to OOB
4051 * @page: page number to write
4052 */
nand_write_page_swecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4053 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4054 int oob_required, int page)
4055 {
4056 struct mtd_info *mtd = nand_to_mtd(chip);
4057 int i, eccsize = chip->ecc.size, ret;
4058 int eccbytes = chip->ecc.bytes;
4059 int eccsteps = chip->ecc.steps;
4060 uint8_t *ecc_calc = chip->ecc.calc_buf;
4061 const uint8_t *p = buf;
4062
4063 /* Software ECC calculation */
4064 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4065 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4066
4067 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4068 chip->ecc.total);
4069 if (ret)
4070 return ret;
4071
4072 return chip->ecc.write_page_raw(chip, buf, 1, page);
4073 }
4074
4075 /**
4076 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4077 * @chip: nand chip info structure
4078 * @buf: data buffer
4079 * @oob_required: must write chip->oob_poi to OOB
4080 * @page: page number to write
4081 */
nand_write_page_hwecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4082 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4083 int oob_required, int page)
4084 {
4085 struct mtd_info *mtd = nand_to_mtd(chip);
4086 int i, eccsize = chip->ecc.size, ret;
4087 int eccbytes = chip->ecc.bytes;
4088 int eccsteps = chip->ecc.steps;
4089 uint8_t *ecc_calc = chip->ecc.calc_buf;
4090 const uint8_t *p = buf;
4091
4092 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4093 if (ret)
4094 return ret;
4095
4096 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4097 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4098
4099 ret = nand_write_data_op(chip, p, eccsize, false);
4100 if (ret)
4101 return ret;
4102
4103 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4104 }
4105
4106 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4107 chip->ecc.total);
4108 if (ret)
4109 return ret;
4110
4111 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4112 if (ret)
4113 return ret;
4114
4115 return nand_prog_page_end_op(chip);
4116 }
4117
4118
4119 /**
4120 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4121 * @chip: nand chip info structure
4122 * @offset: column address of subpage within the page
4123 * @data_len: data length
4124 * @buf: data buffer
4125 * @oob_required: must write chip->oob_poi to OOB
4126 * @page: page number to write
4127 */
nand_write_subpage_hwecc(struct nand_chip * chip,uint32_t offset,uint32_t data_len,const uint8_t * buf,int oob_required,int page)4128 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4129 uint32_t data_len, const uint8_t *buf,
4130 int oob_required, int page)
4131 {
4132 struct mtd_info *mtd = nand_to_mtd(chip);
4133 uint8_t *oob_buf = chip->oob_poi;
4134 uint8_t *ecc_calc = chip->ecc.calc_buf;
4135 int ecc_size = chip->ecc.size;
4136 int ecc_bytes = chip->ecc.bytes;
4137 int ecc_steps = chip->ecc.steps;
4138 uint32_t start_step = offset / ecc_size;
4139 uint32_t end_step = (offset + data_len - 1) / ecc_size;
4140 int oob_bytes = mtd->oobsize / ecc_steps;
4141 int step, ret;
4142
4143 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4144 if (ret)
4145 return ret;
4146
4147 for (step = 0; step < ecc_steps; step++) {
4148 /* configure controller for WRITE access */
4149 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4150
4151 /* write data (untouched subpages already masked by 0xFF) */
4152 ret = nand_write_data_op(chip, buf, ecc_size, false);
4153 if (ret)
4154 return ret;
4155
4156 /* mask ECC of un-touched subpages by padding 0xFF */
4157 if ((step < start_step) || (step > end_step))
4158 memset(ecc_calc, 0xff, ecc_bytes);
4159 else
4160 chip->ecc.calculate(chip, buf, ecc_calc);
4161
4162 /* mask OOB of un-touched subpages by padding 0xFF */
4163 /* if oob_required, preserve OOB metadata of written subpage */
4164 if (!oob_required || (step < start_step) || (step > end_step))
4165 memset(oob_buf, 0xff, oob_bytes);
4166
4167 buf += ecc_size;
4168 ecc_calc += ecc_bytes;
4169 oob_buf += oob_bytes;
4170 }
4171
4172 /* copy calculated ECC for whole page to chip->buffer->oob */
4173 /* this include masked-value(0xFF) for unwritten subpages */
4174 ecc_calc = chip->ecc.calc_buf;
4175 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4176 chip->ecc.total);
4177 if (ret)
4178 return ret;
4179
4180 /* write OOB buffer to NAND device */
4181 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4182 if (ret)
4183 return ret;
4184
4185 return nand_prog_page_end_op(chip);
4186 }
4187
4188
4189 /**
4190 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4191 * @chip: nand chip info structure
4192 * @buf: data buffer
4193 * @oob_required: must write chip->oob_poi to OOB
4194 * @page: page number to write
4195 *
4196 * The hw generator calculates the error syndrome automatically. Therefore we
4197 * need a special oob layout and handling.
4198 */
nand_write_page_syndrome(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4199 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4200 int oob_required, int page)
4201 {
4202 struct mtd_info *mtd = nand_to_mtd(chip);
4203 int i, eccsize = chip->ecc.size;
4204 int eccbytes = chip->ecc.bytes;
4205 int eccsteps = chip->ecc.steps;
4206 const uint8_t *p = buf;
4207 uint8_t *oob = chip->oob_poi;
4208 int ret;
4209
4210 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4211 if (ret)
4212 return ret;
4213
4214 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4215 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4216
4217 ret = nand_write_data_op(chip, p, eccsize, false);
4218 if (ret)
4219 return ret;
4220
4221 if (chip->ecc.prepad) {
4222 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4223 false);
4224 if (ret)
4225 return ret;
4226
4227 oob += chip->ecc.prepad;
4228 }
4229
4230 chip->ecc.calculate(chip, p, oob);
4231
4232 ret = nand_write_data_op(chip, oob, eccbytes, false);
4233 if (ret)
4234 return ret;
4235
4236 oob += eccbytes;
4237
4238 if (chip->ecc.postpad) {
4239 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4240 false);
4241 if (ret)
4242 return ret;
4243
4244 oob += chip->ecc.postpad;
4245 }
4246 }
4247
4248 /* Calculate remaining oob bytes */
4249 i = mtd->oobsize - (oob - chip->oob_poi);
4250 if (i) {
4251 ret = nand_write_data_op(chip, oob, i, false);
4252 if (ret)
4253 return ret;
4254 }
4255
4256 return nand_prog_page_end_op(chip);
4257 }
4258
4259 /**
4260 * nand_write_page - write one page
4261 * @chip: NAND chip descriptor
4262 * @offset: address offset within the page
4263 * @data_len: length of actual data to be written
4264 * @buf: the data to write
4265 * @oob_required: must write chip->oob_poi to OOB
4266 * @page: page number to write
4267 * @raw: use _raw version of write_page
4268 */
nand_write_page(struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int raw)4269 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4270 int data_len, const uint8_t *buf, int oob_required,
4271 int page, int raw)
4272 {
4273 struct mtd_info *mtd = nand_to_mtd(chip);
4274 int status, subpage;
4275
4276 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4277 chip->ecc.write_subpage)
4278 subpage = offset || (data_len < mtd->writesize);
4279 else
4280 subpage = 0;
4281
4282 if (unlikely(raw))
4283 status = chip->ecc.write_page_raw(chip, buf, oob_required,
4284 page);
4285 else if (subpage)
4286 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4287 oob_required, page);
4288 else
4289 status = chip->ecc.write_page(chip, buf, oob_required, page);
4290
4291 if (status < 0)
4292 return status;
4293
4294 return 0;
4295 }
4296
4297 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
4298
4299 /**
4300 * nand_do_write_ops - [INTERN] NAND write with ECC
4301 * @chip: NAND chip object
4302 * @to: offset to write to
4303 * @ops: oob operations description structure
4304 *
4305 * NAND write with ECC.
4306 */
nand_do_write_ops(struct nand_chip * chip,loff_t to,struct mtd_oob_ops * ops)4307 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4308 struct mtd_oob_ops *ops)
4309 {
4310 struct mtd_info *mtd = nand_to_mtd(chip);
4311 int chipnr, realpage, page, column;
4312 uint32_t writelen = ops->len;
4313
4314 uint32_t oobwritelen = ops->ooblen;
4315 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4316
4317 uint8_t *oob = ops->oobbuf;
4318 uint8_t *buf = ops->datbuf;
4319 int ret;
4320 int oob_required = oob ? 1 : 0;
4321
4322 ops->retlen = 0;
4323 if (!writelen)
4324 return 0;
4325
4326 /* Reject writes, which are not page aligned */
4327 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4328 pr_notice("%s: attempt to write non page aligned data\n",
4329 __func__);
4330 return -EINVAL;
4331 }
4332
4333 /* Check if the region is secured */
4334 if (nand_region_is_secured(chip, to, writelen))
4335 return -EIO;
4336
4337 column = to & (mtd->writesize - 1);
4338
4339 chipnr = (int)(to >> chip->chip_shift);
4340 nand_select_target(chip, chipnr);
4341
4342 /* Check, if it is write protected */
4343 if (nand_check_wp(chip)) {
4344 ret = -EIO;
4345 goto err_out;
4346 }
4347
4348 realpage = (int)(to >> chip->page_shift);
4349 page = realpage & chip->pagemask;
4350
4351 /* Invalidate the page cache, when we write to the cached page */
4352 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4353 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4354 chip->pagecache.page = -1;
4355
4356 /* Don't allow multipage oob writes with offset */
4357 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4358 ret = -EINVAL;
4359 goto err_out;
4360 }
4361
4362 while (1) {
4363 int bytes = mtd->writesize;
4364 uint8_t *wbuf = buf;
4365 int use_bounce_buf;
4366 int part_pagewr = (column || writelen < mtd->writesize);
4367
4368 if (part_pagewr)
4369 use_bounce_buf = 1;
4370 else if (chip->options & NAND_USES_DMA)
4371 use_bounce_buf = !virt_addr_valid(buf) ||
4372 !IS_ALIGNED((unsigned long)buf,
4373 chip->buf_align);
4374 else
4375 use_bounce_buf = 0;
4376
4377 /*
4378 * Copy the data from the initial buffer when doing partial page
4379 * writes or when a bounce buffer is required.
4380 */
4381 if (use_bounce_buf) {
4382 pr_debug("%s: using write bounce buffer for buf@%p\n",
4383 __func__, buf);
4384 if (part_pagewr)
4385 bytes = min_t(int, bytes - column, writelen);
4386 wbuf = nand_get_data_buf(chip);
4387 memset(wbuf, 0xff, mtd->writesize);
4388 memcpy(&wbuf[column], buf, bytes);
4389 }
4390
4391 if (unlikely(oob)) {
4392 size_t len = min(oobwritelen, oobmaxlen);
4393 oob = nand_fill_oob(chip, oob, len, ops);
4394 oobwritelen -= len;
4395 } else {
4396 /* We still need to erase leftover OOB data */
4397 memset(chip->oob_poi, 0xff, mtd->oobsize);
4398 }
4399
4400 ret = nand_write_page(chip, column, bytes, wbuf,
4401 oob_required, page,
4402 (ops->mode == MTD_OPS_RAW));
4403 if (ret)
4404 break;
4405
4406 writelen -= bytes;
4407 if (!writelen)
4408 break;
4409
4410 column = 0;
4411 buf += bytes;
4412 realpage++;
4413
4414 page = realpage & chip->pagemask;
4415 /* Check, if we cross a chip boundary */
4416 if (!page) {
4417 chipnr++;
4418 nand_deselect_target(chip);
4419 nand_select_target(chip, chipnr);
4420 }
4421 }
4422
4423 ops->retlen = ops->len - writelen;
4424 if (unlikely(oob))
4425 ops->oobretlen = ops->ooblen;
4426
4427 err_out:
4428 nand_deselect_target(chip);
4429 return ret;
4430 }
4431
4432 /**
4433 * panic_nand_write - [MTD Interface] NAND write with ECC
4434 * @mtd: MTD device structure
4435 * @to: offset to write to
4436 * @len: number of bytes to write
4437 * @retlen: pointer to variable to store the number of written bytes
4438 * @buf: the data to write
4439 *
4440 * NAND write with ECC. Used when performing writes in interrupt context, this
4441 * may for example be called by mtdoops when writing an oops while in panic.
4442 */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)4443 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4444 size_t *retlen, const uint8_t *buf)
4445 {
4446 struct nand_chip *chip = mtd_to_nand(mtd);
4447 int chipnr = (int)(to >> chip->chip_shift);
4448 struct mtd_oob_ops ops;
4449 int ret;
4450
4451 nand_select_target(chip, chipnr);
4452
4453 /* Wait for the device to get ready */
4454 panic_nand_wait(chip, 400);
4455
4456 memset(&ops, 0, sizeof(ops));
4457 ops.len = len;
4458 ops.datbuf = (uint8_t *)buf;
4459 ops.mode = MTD_OPS_PLACE_OOB;
4460
4461 ret = nand_do_write_ops(chip, to, &ops);
4462
4463 *retlen = ops.retlen;
4464 return ret;
4465 }
4466
4467 /**
4468 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4469 * @mtd: MTD device structure
4470 * @to: offset to write to
4471 * @ops: oob operation description structure
4472 */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)4473 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4474 struct mtd_oob_ops *ops)
4475 {
4476 struct nand_chip *chip = mtd_to_nand(mtd);
4477 int ret = 0;
4478
4479 ops->retlen = 0;
4480
4481 nand_get_device(chip);
4482
4483 switch (ops->mode) {
4484 case MTD_OPS_PLACE_OOB:
4485 case MTD_OPS_AUTO_OOB:
4486 case MTD_OPS_RAW:
4487 break;
4488
4489 default:
4490 goto out;
4491 }
4492
4493 if (!ops->datbuf)
4494 ret = nand_do_write_oob(chip, to, ops);
4495 else
4496 ret = nand_do_write_ops(chip, to, ops);
4497
4498 out:
4499 nand_release_device(chip);
4500 return ret;
4501 }
4502
4503 /**
4504 * nand_erase - [MTD Interface] erase block(s)
4505 * @mtd: MTD device structure
4506 * @instr: erase instruction
4507 *
4508 * Erase one ore more blocks.
4509 */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)4510 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4511 {
4512 return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4513 }
4514
4515 /**
4516 * nand_erase_nand - [INTERN] erase block(s)
4517 * @chip: NAND chip object
4518 * @instr: erase instruction
4519 * @allowbbt: allow erasing the bbt area
4520 *
4521 * Erase one ore more blocks.
4522 */
nand_erase_nand(struct nand_chip * chip,struct erase_info * instr,int allowbbt)4523 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4524 int allowbbt)
4525 {
4526 int page, pages_per_block, ret, chipnr;
4527 loff_t len;
4528
4529 pr_debug("%s: start = 0x%012llx, len = %llu\n",
4530 __func__, (unsigned long long)instr->addr,
4531 (unsigned long long)instr->len);
4532
4533 if (check_offs_len(chip, instr->addr, instr->len))
4534 return -EINVAL;
4535
4536 /* Check if the region is secured */
4537 if (nand_region_is_secured(chip, instr->addr, instr->len))
4538 return -EIO;
4539
4540 /* Grab the lock and see if the device is available */
4541 nand_get_device(chip);
4542
4543 /* Shift to get first page */
4544 page = (int)(instr->addr >> chip->page_shift);
4545 chipnr = (int)(instr->addr >> chip->chip_shift);
4546
4547 /* Calculate pages in each block */
4548 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4549
4550 /* Select the NAND device */
4551 nand_select_target(chip, chipnr);
4552
4553 /* Check, if it is write protected */
4554 if (nand_check_wp(chip)) {
4555 pr_debug("%s: device is write protected!\n",
4556 __func__);
4557 ret = -EIO;
4558 goto erase_exit;
4559 }
4560
4561 /* Loop through the pages */
4562 len = instr->len;
4563
4564 while (len) {
4565 loff_t ofs = (loff_t)page << chip->page_shift;
4566
4567 /* Check if we have a bad block, we do not erase bad blocks! */
4568 if (nand_block_checkbad(chip, ((loff_t) page) <<
4569 chip->page_shift, allowbbt)) {
4570 pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4571 __func__, (unsigned long long)ofs);
4572 ret = -EIO;
4573 goto erase_exit;
4574 }
4575
4576 /*
4577 * Invalidate the page cache, if we erase the block which
4578 * contains the current cached page.
4579 */
4580 if (page <= chip->pagecache.page && chip->pagecache.page <
4581 (page + pages_per_block))
4582 chip->pagecache.page = -1;
4583
4584 ret = nand_erase_op(chip, (page & chip->pagemask) >>
4585 (chip->phys_erase_shift - chip->page_shift));
4586 if (ret) {
4587 pr_debug("%s: failed erase, page 0x%08x\n",
4588 __func__, page);
4589 instr->fail_addr = ofs;
4590 goto erase_exit;
4591 }
4592
4593 /* Increment page address and decrement length */
4594 len -= (1ULL << chip->phys_erase_shift);
4595 page += pages_per_block;
4596
4597 /* Check, if we cross a chip boundary */
4598 if (len && !(page & chip->pagemask)) {
4599 chipnr++;
4600 nand_deselect_target(chip);
4601 nand_select_target(chip, chipnr);
4602 }
4603 }
4604
4605 ret = 0;
4606 erase_exit:
4607
4608 /* Deselect and wake up anyone waiting on the device */
4609 nand_deselect_target(chip);
4610 nand_release_device(chip);
4611
4612 /* Return more or less happy */
4613 return ret;
4614 }
4615
4616 /**
4617 * nand_sync - [MTD Interface] sync
4618 * @mtd: MTD device structure
4619 *
4620 * Sync is actually a wait for chip ready function.
4621 */
nand_sync(struct mtd_info * mtd)4622 static void nand_sync(struct mtd_info *mtd)
4623 {
4624 struct nand_chip *chip = mtd_to_nand(mtd);
4625
4626 pr_debug("%s: called\n", __func__);
4627
4628 /* Grab the lock and see if the device is available */
4629 nand_get_device(chip);
4630 /* Release it and go back */
4631 nand_release_device(chip);
4632 }
4633
4634 /**
4635 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4636 * @mtd: MTD device structure
4637 * @offs: offset relative to mtd start
4638 */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)4639 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4640 {
4641 struct nand_chip *chip = mtd_to_nand(mtd);
4642 int chipnr = (int)(offs >> chip->chip_shift);
4643 int ret;
4644
4645 /* Select the NAND device */
4646 nand_get_device(chip);
4647
4648 nand_select_target(chip, chipnr);
4649
4650 ret = nand_block_checkbad(chip, offs, 0);
4651
4652 nand_deselect_target(chip);
4653 nand_release_device(chip);
4654
4655 return ret;
4656 }
4657
4658 /**
4659 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4660 * @mtd: MTD device structure
4661 * @ofs: offset relative to mtd start
4662 */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)4663 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4664 {
4665 int ret;
4666
4667 ret = nand_block_isbad(mtd, ofs);
4668 if (ret) {
4669 /* If it was bad already, return success and do nothing */
4670 if (ret > 0)
4671 return 0;
4672 return ret;
4673 }
4674
4675 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4676 }
4677
4678 /**
4679 * nand_suspend - [MTD Interface] Suspend the NAND flash
4680 * @mtd: MTD device structure
4681 *
4682 * Returns 0 for success or negative error code otherwise.
4683 */
nand_suspend(struct mtd_info * mtd)4684 static int nand_suspend(struct mtd_info *mtd)
4685 {
4686 struct nand_chip *chip = mtd_to_nand(mtd);
4687 int ret = 0;
4688
4689 mutex_lock(&chip->lock);
4690 if (chip->ops.suspend)
4691 ret = chip->ops.suspend(chip);
4692 if (!ret)
4693 chip->suspended = 1;
4694 mutex_unlock(&chip->lock);
4695
4696 return ret;
4697 }
4698
4699 /**
4700 * nand_resume - [MTD Interface] Resume the NAND flash
4701 * @mtd: MTD device structure
4702 */
nand_resume(struct mtd_info * mtd)4703 static void nand_resume(struct mtd_info *mtd)
4704 {
4705 struct nand_chip *chip = mtd_to_nand(mtd);
4706
4707 mutex_lock(&chip->lock);
4708 if (chip->suspended) {
4709 if (chip->ops.resume)
4710 chip->ops.resume(chip);
4711 chip->suspended = 0;
4712 } else {
4713 pr_err("%s called for a chip which is not in suspended state\n",
4714 __func__);
4715 }
4716 mutex_unlock(&chip->lock);
4717
4718 wake_up_all(&chip->resume_wq);
4719 }
4720
4721 /**
4722 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4723 * prevent further operations
4724 * @mtd: MTD device structure
4725 */
nand_shutdown(struct mtd_info * mtd)4726 static void nand_shutdown(struct mtd_info *mtd)
4727 {
4728 nand_suspend(mtd);
4729 }
4730
4731 /**
4732 * nand_lock - [MTD Interface] Lock the NAND flash
4733 * @mtd: MTD device structure
4734 * @ofs: offset byte address
4735 * @len: number of bytes to lock (must be a multiple of block/page size)
4736 */
nand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)4737 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4738 {
4739 struct nand_chip *chip = mtd_to_nand(mtd);
4740
4741 if (!chip->ops.lock_area)
4742 return -ENOTSUPP;
4743
4744 return chip->ops.lock_area(chip, ofs, len);
4745 }
4746
4747 /**
4748 * nand_unlock - [MTD Interface] Unlock the NAND flash
4749 * @mtd: MTD device structure
4750 * @ofs: offset byte address
4751 * @len: number of bytes to unlock (must be a multiple of block/page size)
4752 */
nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)4753 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4754 {
4755 struct nand_chip *chip = mtd_to_nand(mtd);
4756
4757 if (!chip->ops.unlock_area)
4758 return -ENOTSUPP;
4759
4760 return chip->ops.unlock_area(chip, ofs, len);
4761 }
4762
4763 /* Set default functions */
nand_set_defaults(struct nand_chip * chip)4764 static void nand_set_defaults(struct nand_chip *chip)
4765 {
4766 /* If no controller is provided, use the dummy, legacy one. */
4767 if (!chip->controller) {
4768 chip->controller = &chip->legacy.dummy_controller;
4769 nand_controller_init(chip->controller);
4770 }
4771
4772 nand_legacy_set_defaults(chip);
4773
4774 if (!chip->buf_align)
4775 chip->buf_align = 1;
4776 }
4777
4778 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(uint8_t * s,size_t len)4779 void sanitize_string(uint8_t *s, size_t len)
4780 {
4781 ssize_t i;
4782
4783 /* Null terminate */
4784 s[len - 1] = 0;
4785
4786 /* Remove non printable chars */
4787 for (i = 0; i < len - 1; i++) {
4788 if (s[i] < ' ' || s[i] > 127)
4789 s[i] = '?';
4790 }
4791
4792 /* Remove trailing spaces */
4793 strim(s);
4794 }
4795
4796 /*
4797 * nand_id_has_period - Check if an ID string has a given wraparound period
4798 * @id_data: the ID string
4799 * @arrlen: the length of the @id_data array
4800 * @period: the period of repitition
4801 *
4802 * Check if an ID string is repeated within a given sequence of bytes at
4803 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4804 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4805 * if the repetition has a period of @period; otherwise, returns zero.
4806 */
nand_id_has_period(u8 * id_data,int arrlen,int period)4807 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4808 {
4809 int i, j;
4810 for (i = 0; i < period; i++)
4811 for (j = i + period; j < arrlen; j += period)
4812 if (id_data[i] != id_data[j])
4813 return 0;
4814 return 1;
4815 }
4816
4817 /*
4818 * nand_id_len - Get the length of an ID string returned by CMD_READID
4819 * @id_data: the ID string
4820 * @arrlen: the length of the @id_data array
4821
4822 * Returns the length of the ID string, according to known wraparound/trailing
4823 * zero patterns. If no pattern exists, returns the length of the array.
4824 */
nand_id_len(u8 * id_data,int arrlen)4825 static int nand_id_len(u8 *id_data, int arrlen)
4826 {
4827 int last_nonzero, period;
4828
4829 /* Find last non-zero byte */
4830 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4831 if (id_data[last_nonzero])
4832 break;
4833
4834 /* All zeros */
4835 if (last_nonzero < 0)
4836 return 0;
4837
4838 /* Calculate wraparound period */
4839 for (period = 1; period < arrlen; period++)
4840 if (nand_id_has_period(id_data, arrlen, period))
4841 break;
4842
4843 /* There's a repeated pattern */
4844 if (period < arrlen)
4845 return period;
4846
4847 /* There are trailing zeros */
4848 if (last_nonzero < arrlen - 1)
4849 return last_nonzero + 1;
4850
4851 /* No pattern detected */
4852 return arrlen;
4853 }
4854
4855 /* Extract the bits of per cell from the 3rd byte of the extended ID */
nand_get_bits_per_cell(u8 cellinfo)4856 static int nand_get_bits_per_cell(u8 cellinfo)
4857 {
4858 int bits;
4859
4860 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4861 bits >>= NAND_CI_CELLTYPE_SHIFT;
4862 return bits + 1;
4863 }
4864
4865 /*
4866 * Many new NAND share similar device ID codes, which represent the size of the
4867 * chip. The rest of the parameters must be decoded according to generic or
4868 * manufacturer-specific "extended ID" decoding patterns.
4869 */
nand_decode_ext_id(struct nand_chip * chip)4870 void nand_decode_ext_id(struct nand_chip *chip)
4871 {
4872 struct nand_memory_organization *memorg;
4873 struct mtd_info *mtd = nand_to_mtd(chip);
4874 int extid;
4875 u8 *id_data = chip->id.data;
4876
4877 memorg = nanddev_get_memorg(&chip->base);
4878
4879 /* The 3rd id byte holds MLC / multichip data */
4880 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4881 /* The 4th id byte is the important one */
4882 extid = id_data[3];
4883
4884 /* Calc pagesize */
4885 memorg->pagesize = 1024 << (extid & 0x03);
4886 mtd->writesize = memorg->pagesize;
4887 extid >>= 2;
4888 /* Calc oobsize */
4889 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4890 mtd->oobsize = memorg->oobsize;
4891 extid >>= 2;
4892 /* Calc blocksize. Blocksize is multiples of 64KiB */
4893 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4894 memorg->pagesize;
4895 mtd->erasesize = (64 * 1024) << (extid & 0x03);
4896 extid >>= 2;
4897 /* Get buswidth information */
4898 if (extid & 0x1)
4899 chip->options |= NAND_BUSWIDTH_16;
4900 }
4901 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4902
4903 /*
4904 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4905 * decodes a matching ID table entry and assigns the MTD size parameters for
4906 * the chip.
4907 */
nand_decode_id(struct nand_chip * chip,struct nand_flash_dev * type)4908 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4909 {
4910 struct mtd_info *mtd = nand_to_mtd(chip);
4911 struct nand_memory_organization *memorg;
4912
4913 memorg = nanddev_get_memorg(&chip->base);
4914
4915 memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4916 mtd->erasesize = type->erasesize;
4917 memorg->pagesize = type->pagesize;
4918 mtd->writesize = memorg->pagesize;
4919 memorg->oobsize = memorg->pagesize / 32;
4920 mtd->oobsize = memorg->oobsize;
4921
4922 /* All legacy ID NAND are small-page, SLC */
4923 memorg->bits_per_cell = 1;
4924 }
4925
4926 /*
4927 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4928 * heuristic patterns using various detected parameters (e.g., manufacturer,
4929 * page size, cell-type information).
4930 */
nand_decode_bbm_options(struct nand_chip * chip)4931 static void nand_decode_bbm_options(struct nand_chip *chip)
4932 {
4933 struct mtd_info *mtd = nand_to_mtd(chip);
4934
4935 /* Set the bad block position */
4936 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4937 chip->badblockpos = NAND_BBM_POS_LARGE;
4938 else
4939 chip->badblockpos = NAND_BBM_POS_SMALL;
4940 }
4941
is_full_id_nand(struct nand_flash_dev * type)4942 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4943 {
4944 return type->id_len;
4945 }
4946
find_full_id_nand(struct nand_chip * chip,struct nand_flash_dev * type)4947 static bool find_full_id_nand(struct nand_chip *chip,
4948 struct nand_flash_dev *type)
4949 {
4950 struct nand_device *base = &chip->base;
4951 struct nand_ecc_props requirements;
4952 struct mtd_info *mtd = nand_to_mtd(chip);
4953 struct nand_memory_organization *memorg;
4954 u8 *id_data = chip->id.data;
4955
4956 memorg = nanddev_get_memorg(&chip->base);
4957
4958 if (!strncmp(type->id, id_data, type->id_len)) {
4959 memorg->pagesize = type->pagesize;
4960 mtd->writesize = memorg->pagesize;
4961 memorg->pages_per_eraseblock = type->erasesize /
4962 type->pagesize;
4963 mtd->erasesize = type->erasesize;
4964 memorg->oobsize = type->oobsize;
4965 mtd->oobsize = memorg->oobsize;
4966
4967 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4968 memorg->eraseblocks_per_lun =
4969 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4970 memorg->pagesize *
4971 memorg->pages_per_eraseblock);
4972 chip->options |= type->options;
4973 requirements.strength = NAND_ECC_STRENGTH(type);
4974 requirements.step_size = NAND_ECC_STEP(type);
4975 nanddev_set_ecc_requirements(base, &requirements);
4976
4977 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4978 if (!chip->parameters.model)
4979 return false;
4980
4981 return true;
4982 }
4983 return false;
4984 }
4985
4986 /*
4987 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4988 * compliant and does not have a full-id or legacy-id entry in the nand_ids
4989 * table.
4990 */
nand_manufacturer_detect(struct nand_chip * chip)4991 static void nand_manufacturer_detect(struct nand_chip *chip)
4992 {
4993 /*
4994 * Try manufacturer detection if available and use
4995 * nand_decode_ext_id() otherwise.
4996 */
4997 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4998 chip->manufacturer.desc->ops->detect) {
4999 struct nand_memory_organization *memorg;
5000
5001 memorg = nanddev_get_memorg(&chip->base);
5002
5003 /* The 3rd id byte holds MLC / multichip data */
5004 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5005 chip->manufacturer.desc->ops->detect(chip);
5006 } else {
5007 nand_decode_ext_id(chip);
5008 }
5009 }
5010
5011 /*
5012 * Manufacturer initialization. This function is called for all NANDs including
5013 * ONFI and JEDEC compliant ones.
5014 * Manufacturer drivers should put all their specific initialization code in
5015 * their ->init() hook.
5016 */
nand_manufacturer_init(struct nand_chip * chip)5017 static int nand_manufacturer_init(struct nand_chip *chip)
5018 {
5019 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5020 !chip->manufacturer.desc->ops->init)
5021 return 0;
5022
5023 return chip->manufacturer.desc->ops->init(chip);
5024 }
5025
5026 /*
5027 * Manufacturer cleanup. This function is called for all NANDs including
5028 * ONFI and JEDEC compliant ones.
5029 * Manufacturer drivers should put all their specific cleanup code in their
5030 * ->cleanup() hook.
5031 */
nand_manufacturer_cleanup(struct nand_chip * chip)5032 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5033 {
5034 /* Release manufacturer private data */
5035 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5036 chip->manufacturer.desc->ops->cleanup)
5037 chip->manufacturer.desc->ops->cleanup(chip);
5038 }
5039
5040 static const char *
nand_manufacturer_name(const struct nand_manufacturer_desc * manufacturer_desc)5041 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5042 {
5043 return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5044 }
5045
rawnand_check_data_only_read_support(struct nand_chip * chip)5046 static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5047 {
5048 /* Use an arbitrary size for the check */
5049 if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5050 chip->controller->supported_op.data_only_read = 1;
5051 }
5052
rawnand_early_check_supported_ops(struct nand_chip * chip)5053 static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5054 {
5055 /* The supported_op fields should not be set by individual drivers */
5056 WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5057
5058 if (!nand_has_exec_op(chip))
5059 return;
5060
5061 rawnand_check_data_only_read_support(chip);
5062 }
5063
rawnand_check_cont_read_support(struct nand_chip * chip)5064 static void rawnand_check_cont_read_support(struct nand_chip *chip)
5065 {
5066 struct mtd_info *mtd = nand_to_mtd(chip);
5067
5068 if (!chip->parameters.supports_read_cache)
5069 return;
5070
5071 if (chip->read_retries)
5072 return;
5073
5074 if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5075 mtd->writesize, true))
5076 chip->controller->supported_op.cont_read = 1;
5077 }
5078
rawnand_late_check_supported_ops(struct nand_chip * chip)5079 static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5080 {
5081 /* The supported_op fields should not be set by individual drivers */
5082 WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5083
5084 /*
5085 * Too many devices do not support sequential cached reads with on-die
5086 * ECC correction enabled, so in this case refuse to perform the
5087 * automation.
5088 */
5089 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5090 return;
5091
5092 if (!nand_has_exec_op(chip))
5093 return;
5094
5095 /*
5096 * For now, continuous reads can only be used with the core page helpers.
5097 * This can be extended later.
5098 */
5099 if (!(chip->ecc.read_page == nand_read_page_hwecc ||
5100 chip->ecc.read_page == nand_read_page_syndrome ||
5101 chip->ecc.read_page == nand_read_page_swecc))
5102 return;
5103
5104 rawnand_check_cont_read_support(chip);
5105 }
5106
5107 /*
5108 * Get the flash and manufacturer id and lookup if the type is supported.
5109 */
nand_detect(struct nand_chip * chip,struct nand_flash_dev * type)5110 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5111 {
5112 const struct nand_manufacturer_desc *manufacturer_desc;
5113 struct mtd_info *mtd = nand_to_mtd(chip);
5114 struct nand_memory_organization *memorg;
5115 int busw, ret;
5116 u8 *id_data = chip->id.data;
5117 u8 maf_id, dev_id;
5118 u64 targetsize;
5119
5120 /*
5121 * Let's start by initializing memorg fields that might be left
5122 * unassigned by the ID-based detection logic.
5123 */
5124 memorg = nanddev_get_memorg(&chip->base);
5125 memorg->planes_per_lun = 1;
5126 memorg->luns_per_target = 1;
5127
5128 /*
5129 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5130 * after power-up.
5131 */
5132 ret = nand_reset(chip, 0);
5133 if (ret)
5134 return ret;
5135
5136 /* Select the device */
5137 nand_select_target(chip, 0);
5138
5139 rawnand_early_check_supported_ops(chip);
5140
5141 /* Send the command for reading device ID */
5142 ret = nand_readid_op(chip, 0, id_data, 2);
5143 if (ret)
5144 return ret;
5145
5146 /* Read manufacturer and device IDs */
5147 maf_id = id_data[0];
5148 dev_id = id_data[1];
5149
5150 /*
5151 * Try again to make sure, as some systems the bus-hold or other
5152 * interface concerns can cause random data which looks like a
5153 * possibly credible NAND flash to appear. If the two results do
5154 * not match, ignore the device completely.
5155 */
5156
5157 /* Read entire ID string */
5158 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5159 if (ret)
5160 return ret;
5161
5162 if (id_data[0] != maf_id || id_data[1] != dev_id) {
5163 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5164 maf_id, dev_id, id_data[0], id_data[1]);
5165 return -ENODEV;
5166 }
5167
5168 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5169
5170 /* Try to identify manufacturer */
5171 manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5172 chip->manufacturer.desc = manufacturer_desc;
5173
5174 if (!type)
5175 type = nand_flash_ids;
5176
5177 /*
5178 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5179 * override it.
5180 * This is required to make sure initial NAND bus width set by the
5181 * NAND controller driver is coherent with the real NAND bus width
5182 * (extracted by auto-detection code).
5183 */
5184 busw = chip->options & NAND_BUSWIDTH_16;
5185
5186 /*
5187 * The flag is only set (never cleared), reset it to its default value
5188 * before starting auto-detection.
5189 */
5190 chip->options &= ~NAND_BUSWIDTH_16;
5191
5192 for (; type->name != NULL; type++) {
5193 if (is_full_id_nand(type)) {
5194 if (find_full_id_nand(chip, type))
5195 goto ident_done;
5196 } else if (dev_id == type->dev_id) {
5197 break;
5198 }
5199 }
5200
5201 if (!type->name || !type->pagesize) {
5202 /* Check if the chip is ONFI compliant */
5203 ret = nand_onfi_detect(chip);
5204 if (ret < 0)
5205 return ret;
5206 else if (ret)
5207 goto ident_done;
5208
5209 /* Check if the chip is JEDEC compliant */
5210 ret = nand_jedec_detect(chip);
5211 if (ret < 0)
5212 return ret;
5213 else if (ret)
5214 goto ident_done;
5215 }
5216
5217 if (!type->name)
5218 return -ENODEV;
5219
5220 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5221 if (!chip->parameters.model)
5222 return -ENOMEM;
5223
5224 if (!type->pagesize)
5225 nand_manufacturer_detect(chip);
5226 else
5227 nand_decode_id(chip, type);
5228
5229 /* Get chip options */
5230 chip->options |= type->options;
5231
5232 memorg->eraseblocks_per_lun =
5233 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5234 memorg->pagesize *
5235 memorg->pages_per_eraseblock);
5236
5237 ident_done:
5238 if (!mtd->name)
5239 mtd->name = chip->parameters.model;
5240
5241 if (chip->options & NAND_BUSWIDTH_AUTO) {
5242 WARN_ON(busw & NAND_BUSWIDTH_16);
5243 nand_set_defaults(chip);
5244 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5245 /*
5246 * Check, if buswidth is correct. Hardware drivers should set
5247 * chip correct!
5248 */
5249 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5250 maf_id, dev_id);
5251 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5252 mtd->name);
5253 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5254 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5255 ret = -EINVAL;
5256
5257 goto free_detect_allocation;
5258 }
5259
5260 nand_decode_bbm_options(chip);
5261
5262 /* Calculate the address shift from the page size */
5263 chip->page_shift = ffs(mtd->writesize) - 1;
5264 /* Convert chipsize to number of pages per chip -1 */
5265 targetsize = nanddev_target_size(&chip->base);
5266 chip->pagemask = (targetsize >> chip->page_shift) - 1;
5267
5268 chip->bbt_erase_shift = chip->phys_erase_shift =
5269 ffs(mtd->erasesize) - 1;
5270 if (targetsize & 0xffffffff)
5271 chip->chip_shift = ffs((unsigned)targetsize) - 1;
5272 else {
5273 chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5274 chip->chip_shift += 32 - 1;
5275 }
5276
5277 if (chip->chip_shift - chip->page_shift > 16)
5278 chip->options |= NAND_ROW_ADDR_3;
5279
5280 chip->badblockbits = 8;
5281
5282 nand_legacy_adjust_cmdfunc(chip);
5283
5284 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5285 maf_id, dev_id);
5286 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5287 chip->parameters.model);
5288 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5289 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5290 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5291 return 0;
5292
5293 free_detect_allocation:
5294 kfree(chip->parameters.model);
5295
5296 return ret;
5297 }
5298
5299 static enum nand_ecc_engine_type
of_get_rawnand_ecc_engine_type_legacy(struct device_node * np)5300 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5301 {
5302 enum nand_ecc_legacy_mode {
5303 NAND_ECC_INVALID,
5304 NAND_ECC_NONE,
5305 NAND_ECC_SOFT,
5306 NAND_ECC_SOFT_BCH,
5307 NAND_ECC_HW,
5308 NAND_ECC_HW_SYNDROME,
5309 NAND_ECC_ON_DIE,
5310 };
5311 const char * const nand_ecc_legacy_modes[] = {
5312 [NAND_ECC_NONE] = "none",
5313 [NAND_ECC_SOFT] = "soft",
5314 [NAND_ECC_SOFT_BCH] = "soft_bch",
5315 [NAND_ECC_HW] = "hw",
5316 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
5317 [NAND_ECC_ON_DIE] = "on-die",
5318 };
5319 enum nand_ecc_legacy_mode eng_type;
5320 const char *pm;
5321 int err;
5322
5323 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5324 if (err)
5325 return NAND_ECC_ENGINE_TYPE_INVALID;
5326
5327 for (eng_type = NAND_ECC_NONE;
5328 eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5329 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5330 switch (eng_type) {
5331 case NAND_ECC_NONE:
5332 return NAND_ECC_ENGINE_TYPE_NONE;
5333 case NAND_ECC_SOFT:
5334 case NAND_ECC_SOFT_BCH:
5335 return NAND_ECC_ENGINE_TYPE_SOFT;
5336 case NAND_ECC_HW:
5337 case NAND_ECC_HW_SYNDROME:
5338 return NAND_ECC_ENGINE_TYPE_ON_HOST;
5339 case NAND_ECC_ON_DIE:
5340 return NAND_ECC_ENGINE_TYPE_ON_DIE;
5341 default:
5342 break;
5343 }
5344 }
5345 }
5346
5347 return NAND_ECC_ENGINE_TYPE_INVALID;
5348 }
5349
5350 static enum nand_ecc_placement
of_get_rawnand_ecc_placement_legacy(struct device_node * np)5351 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5352 {
5353 const char *pm;
5354 int err;
5355
5356 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5357 if (!err) {
5358 if (!strcasecmp(pm, "hw_syndrome"))
5359 return NAND_ECC_PLACEMENT_INTERLEAVED;
5360 }
5361
5362 return NAND_ECC_PLACEMENT_UNKNOWN;
5363 }
5364
of_get_rawnand_ecc_algo_legacy(struct device_node * np)5365 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5366 {
5367 const char *pm;
5368 int err;
5369
5370 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5371 if (!err) {
5372 if (!strcasecmp(pm, "soft"))
5373 return NAND_ECC_ALGO_HAMMING;
5374 else if (!strcasecmp(pm, "soft_bch"))
5375 return NAND_ECC_ALGO_BCH;
5376 }
5377
5378 return NAND_ECC_ALGO_UNKNOWN;
5379 }
5380
of_get_nand_ecc_legacy_user_config(struct nand_chip * chip)5381 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5382 {
5383 struct device_node *dn = nand_get_flash_node(chip);
5384 struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5385
5386 if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5387 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5388
5389 if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5390 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5391
5392 if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5393 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5394 }
5395
of_get_nand_bus_width(struct nand_chip * chip)5396 static int of_get_nand_bus_width(struct nand_chip *chip)
5397 {
5398 struct device_node *dn = nand_get_flash_node(chip);
5399 u32 val;
5400 int ret;
5401
5402 ret = of_property_read_u32(dn, "nand-bus-width", &val);
5403 if (ret == -EINVAL)
5404 /* Buswidth defaults to 8 if the property does not exist .*/
5405 return 0;
5406 else if (ret)
5407 return ret;
5408
5409 if (val == 16)
5410 chip->options |= NAND_BUSWIDTH_16;
5411 else if (val != 8)
5412 return -EINVAL;
5413 return 0;
5414 }
5415
of_get_nand_secure_regions(struct nand_chip * chip)5416 static int of_get_nand_secure_regions(struct nand_chip *chip)
5417 {
5418 struct device_node *dn = nand_get_flash_node(chip);
5419 struct property *prop;
5420 int nr_elem, i, j;
5421
5422 /* Only proceed if the "secure-regions" property is present in DT */
5423 prop = of_find_property(dn, "secure-regions", NULL);
5424 if (!prop)
5425 return 0;
5426
5427 nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5428 if (nr_elem <= 0)
5429 return nr_elem;
5430
5431 chip->nr_secure_regions = nr_elem / 2;
5432 chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5433 GFP_KERNEL);
5434 if (!chip->secure_regions)
5435 return -ENOMEM;
5436
5437 for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5438 of_property_read_u64_index(dn, "secure-regions", j,
5439 &chip->secure_regions[i].offset);
5440 of_property_read_u64_index(dn, "secure-regions", j + 1,
5441 &chip->secure_regions[i].size);
5442 }
5443
5444 return 0;
5445 }
5446
5447 /**
5448 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5449 * @dev: Device that will be parsed. Also used for managed allocations.
5450 * @cs_array: Array of GPIO desc pointers allocated on success
5451 * @ncs_array: Number of entries in @cs_array updated on success.
5452 * @return 0 on success, an error otherwise.
5453 */
rawnand_dt_parse_gpio_cs(struct device * dev,struct gpio_desc *** cs_array,unsigned int * ncs_array)5454 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5455 unsigned int *ncs_array)
5456 {
5457 struct gpio_desc **descs;
5458 int ndescs, i;
5459
5460 ndescs = gpiod_count(dev, "cs");
5461 if (ndescs < 0) {
5462 dev_dbg(dev, "No valid cs-gpios property\n");
5463 return 0;
5464 }
5465
5466 descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5467 if (!descs)
5468 return -ENOMEM;
5469
5470 for (i = 0; i < ndescs; i++) {
5471 descs[i] = gpiod_get_index_optional(dev, "cs", i,
5472 GPIOD_OUT_HIGH);
5473 if (IS_ERR(descs[i]))
5474 return PTR_ERR(descs[i]);
5475 }
5476
5477 *ncs_array = ndescs;
5478 *cs_array = descs;
5479
5480 return 0;
5481 }
5482 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5483
rawnand_dt_init(struct nand_chip * chip)5484 static int rawnand_dt_init(struct nand_chip *chip)
5485 {
5486 struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5487 struct device_node *dn = nand_get_flash_node(chip);
5488 int ret;
5489
5490 if (!dn)
5491 return 0;
5492
5493 ret = of_get_nand_bus_width(chip);
5494 if (ret)
5495 return ret;
5496
5497 if (of_property_read_bool(dn, "nand-is-boot-medium"))
5498 chip->options |= NAND_IS_BOOT_MEDIUM;
5499
5500 if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5501 chip->bbt_options |= NAND_BBT_USE_FLASH;
5502
5503 of_get_nand_ecc_user_config(nand);
5504 of_get_nand_ecc_legacy_user_config(chip);
5505
5506 /*
5507 * If neither the user nor the NAND controller have requested a specific
5508 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5509 */
5510 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5511
5512 /*
5513 * Use the user requested engine type, unless there is none, in this
5514 * case default to the NAND controller choice, otherwise fallback to
5515 * the raw NAND default one.
5516 */
5517 if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5518 chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5519 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5520 chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5521
5522 chip->ecc.placement = nand->ecc.user_conf.placement;
5523 chip->ecc.algo = nand->ecc.user_conf.algo;
5524 chip->ecc.strength = nand->ecc.user_conf.strength;
5525 chip->ecc.size = nand->ecc.user_conf.step_size;
5526
5527 return 0;
5528 }
5529
5530 /**
5531 * nand_scan_ident - Scan for the NAND device
5532 * @chip: NAND chip object
5533 * @maxchips: number of chips to scan for
5534 * @table: alternative NAND ID table
5535 *
5536 * This is the first phase of the normal nand_scan() function. It reads the
5537 * flash ID and sets up MTD fields accordingly.
5538 *
5539 * This helper used to be called directly from controller drivers that needed
5540 * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5541 * prevented dynamic allocations during this phase which was unconvenient and
5542 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5543 */
nand_scan_ident(struct nand_chip * chip,unsigned int maxchips,struct nand_flash_dev * table)5544 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5545 struct nand_flash_dev *table)
5546 {
5547 struct mtd_info *mtd = nand_to_mtd(chip);
5548 struct nand_memory_organization *memorg;
5549 int nand_maf_id, nand_dev_id;
5550 unsigned int i;
5551 int ret;
5552
5553 memorg = nanddev_get_memorg(&chip->base);
5554
5555 /* Assume all dies are deselected when we enter nand_scan_ident(). */
5556 chip->cur_cs = -1;
5557
5558 mutex_init(&chip->lock);
5559 init_waitqueue_head(&chip->resume_wq);
5560
5561 /* Enforce the right timings for reset/detection */
5562 chip->current_interface_config = nand_get_reset_interface_config();
5563
5564 ret = rawnand_dt_init(chip);
5565 if (ret)
5566 return ret;
5567
5568 if (!mtd->name && mtd->dev.parent)
5569 mtd->name = dev_name(mtd->dev.parent);
5570
5571 /* Set the default functions */
5572 nand_set_defaults(chip);
5573
5574 ret = nand_legacy_check_hooks(chip);
5575 if (ret)
5576 return ret;
5577
5578 memorg->ntargets = maxchips;
5579
5580 /* Read the flash type */
5581 ret = nand_detect(chip, table);
5582 if (ret) {
5583 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5584 pr_warn("No NAND device found\n");
5585 nand_deselect_target(chip);
5586 return ret;
5587 }
5588
5589 nand_maf_id = chip->id.data[0];
5590 nand_dev_id = chip->id.data[1];
5591
5592 nand_deselect_target(chip);
5593
5594 /* Check for a chip array */
5595 for (i = 1; i < maxchips; i++) {
5596 u8 id[2];
5597
5598 /* See comment in nand_get_flash_type for reset */
5599 ret = nand_reset(chip, i);
5600 if (ret)
5601 break;
5602
5603 nand_select_target(chip, i);
5604 /* Send the command for reading device ID */
5605 ret = nand_readid_op(chip, 0, id, sizeof(id));
5606 if (ret)
5607 break;
5608 /* Read manufacturer and device IDs */
5609 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5610 nand_deselect_target(chip);
5611 break;
5612 }
5613 nand_deselect_target(chip);
5614 }
5615 if (i > 1)
5616 pr_info("%d chips detected\n", i);
5617
5618 /* Store the number of chips and calc total size for mtd */
5619 memorg->ntargets = i;
5620 mtd->size = i * nanddev_target_size(&chip->base);
5621
5622 return 0;
5623 }
5624
nand_scan_ident_cleanup(struct nand_chip * chip)5625 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5626 {
5627 kfree(chip->parameters.model);
5628 kfree(chip->parameters.onfi);
5629 }
5630
rawnand_sw_hamming_init(struct nand_chip * chip)5631 int rawnand_sw_hamming_init(struct nand_chip *chip)
5632 {
5633 struct nand_ecc_sw_hamming_conf *engine_conf;
5634 struct nand_device *base = &chip->base;
5635 int ret;
5636
5637 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5638 base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5639 base->ecc.user_conf.strength = chip->ecc.strength;
5640 base->ecc.user_conf.step_size = chip->ecc.size;
5641
5642 ret = nand_ecc_sw_hamming_init_ctx(base);
5643 if (ret)
5644 return ret;
5645
5646 engine_conf = base->ecc.ctx.priv;
5647
5648 if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5649 engine_conf->sm_order = true;
5650
5651 chip->ecc.size = base->ecc.ctx.conf.step_size;
5652 chip->ecc.strength = base->ecc.ctx.conf.strength;
5653 chip->ecc.total = base->ecc.ctx.total;
5654 chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5655 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5656
5657 return 0;
5658 }
5659 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5660
rawnand_sw_hamming_calculate(struct nand_chip * chip,const unsigned char * buf,unsigned char * code)5661 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5662 const unsigned char *buf,
5663 unsigned char *code)
5664 {
5665 struct nand_device *base = &chip->base;
5666
5667 return nand_ecc_sw_hamming_calculate(base, buf, code);
5668 }
5669 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5670
rawnand_sw_hamming_correct(struct nand_chip * chip,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)5671 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5672 unsigned char *buf,
5673 unsigned char *read_ecc,
5674 unsigned char *calc_ecc)
5675 {
5676 struct nand_device *base = &chip->base;
5677
5678 return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5679 }
5680 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5681
rawnand_sw_hamming_cleanup(struct nand_chip * chip)5682 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5683 {
5684 struct nand_device *base = &chip->base;
5685
5686 nand_ecc_sw_hamming_cleanup_ctx(base);
5687 }
5688 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5689
rawnand_sw_bch_init(struct nand_chip * chip)5690 int rawnand_sw_bch_init(struct nand_chip *chip)
5691 {
5692 struct nand_device *base = &chip->base;
5693 const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5694 int ret;
5695
5696 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5697 base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5698 base->ecc.user_conf.step_size = chip->ecc.size;
5699 base->ecc.user_conf.strength = chip->ecc.strength;
5700
5701 ret = nand_ecc_sw_bch_init_ctx(base);
5702 if (ret)
5703 return ret;
5704
5705 chip->ecc.size = ecc_conf->step_size;
5706 chip->ecc.strength = ecc_conf->strength;
5707 chip->ecc.total = base->ecc.ctx.total;
5708 chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5709 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5710
5711 return 0;
5712 }
5713 EXPORT_SYMBOL(rawnand_sw_bch_init);
5714
rawnand_sw_bch_calculate(struct nand_chip * chip,const unsigned char * buf,unsigned char * code)5715 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5716 const unsigned char *buf,
5717 unsigned char *code)
5718 {
5719 struct nand_device *base = &chip->base;
5720
5721 return nand_ecc_sw_bch_calculate(base, buf, code);
5722 }
5723
rawnand_sw_bch_correct(struct nand_chip * chip,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)5724 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5725 unsigned char *read_ecc, unsigned char *calc_ecc)
5726 {
5727 struct nand_device *base = &chip->base;
5728
5729 return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5730 }
5731 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5732
rawnand_sw_bch_cleanup(struct nand_chip * chip)5733 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5734 {
5735 struct nand_device *base = &chip->base;
5736
5737 nand_ecc_sw_bch_cleanup_ctx(base);
5738 }
5739 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5740
nand_set_ecc_on_host_ops(struct nand_chip * chip)5741 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5742 {
5743 struct nand_ecc_ctrl *ecc = &chip->ecc;
5744
5745 switch (ecc->placement) {
5746 case NAND_ECC_PLACEMENT_UNKNOWN:
5747 case NAND_ECC_PLACEMENT_OOB:
5748 /* Use standard hwecc read page function? */
5749 if (!ecc->read_page)
5750 ecc->read_page = nand_read_page_hwecc;
5751 if (!ecc->write_page)
5752 ecc->write_page = nand_write_page_hwecc;
5753 if (!ecc->read_page_raw)
5754 ecc->read_page_raw = nand_read_page_raw;
5755 if (!ecc->write_page_raw)
5756 ecc->write_page_raw = nand_write_page_raw;
5757 if (!ecc->read_oob)
5758 ecc->read_oob = nand_read_oob_std;
5759 if (!ecc->write_oob)
5760 ecc->write_oob = nand_write_oob_std;
5761 if (!ecc->read_subpage)
5762 ecc->read_subpage = nand_read_subpage;
5763 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5764 ecc->write_subpage = nand_write_subpage_hwecc;
5765 fallthrough;
5766
5767 case NAND_ECC_PLACEMENT_INTERLEAVED:
5768 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5769 (!ecc->read_page ||
5770 ecc->read_page == nand_read_page_hwecc ||
5771 !ecc->write_page ||
5772 ecc->write_page == nand_write_page_hwecc)) {
5773 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5774 return -EINVAL;
5775 }
5776 /* Use standard syndrome read/write page function? */
5777 if (!ecc->read_page)
5778 ecc->read_page = nand_read_page_syndrome;
5779 if (!ecc->write_page)
5780 ecc->write_page = nand_write_page_syndrome;
5781 if (!ecc->read_page_raw)
5782 ecc->read_page_raw = nand_read_page_raw_syndrome;
5783 if (!ecc->write_page_raw)
5784 ecc->write_page_raw = nand_write_page_raw_syndrome;
5785 if (!ecc->read_oob)
5786 ecc->read_oob = nand_read_oob_syndrome;
5787 if (!ecc->write_oob)
5788 ecc->write_oob = nand_write_oob_syndrome;
5789 break;
5790
5791 default:
5792 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5793 ecc->placement);
5794 return -EINVAL;
5795 }
5796
5797 return 0;
5798 }
5799
nand_set_ecc_soft_ops(struct nand_chip * chip)5800 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5801 {
5802 struct mtd_info *mtd = nand_to_mtd(chip);
5803 struct nand_device *nanddev = mtd_to_nanddev(mtd);
5804 struct nand_ecc_ctrl *ecc = &chip->ecc;
5805 int ret;
5806
5807 if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5808 return -EINVAL;
5809
5810 switch (ecc->algo) {
5811 case NAND_ECC_ALGO_HAMMING:
5812 ecc->calculate = rawnand_sw_hamming_calculate;
5813 ecc->correct = rawnand_sw_hamming_correct;
5814 ecc->read_page = nand_read_page_swecc;
5815 ecc->read_subpage = nand_read_subpage;
5816 ecc->write_page = nand_write_page_swecc;
5817 if (!ecc->read_page_raw)
5818 ecc->read_page_raw = nand_read_page_raw;
5819 if (!ecc->write_page_raw)
5820 ecc->write_page_raw = nand_write_page_raw;
5821 ecc->read_oob = nand_read_oob_std;
5822 ecc->write_oob = nand_write_oob_std;
5823 if (!ecc->size)
5824 ecc->size = 256;
5825 ecc->bytes = 3;
5826 ecc->strength = 1;
5827
5828 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5829 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5830
5831 ret = rawnand_sw_hamming_init(chip);
5832 if (ret) {
5833 WARN(1, "Hamming ECC initialization failed!\n");
5834 return ret;
5835 }
5836
5837 return 0;
5838 case NAND_ECC_ALGO_BCH:
5839 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5840 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5841 return -EINVAL;
5842 }
5843 ecc->calculate = rawnand_sw_bch_calculate;
5844 ecc->correct = rawnand_sw_bch_correct;
5845 ecc->read_page = nand_read_page_swecc;
5846 ecc->read_subpage = nand_read_subpage;
5847 ecc->write_page = nand_write_page_swecc;
5848 if (!ecc->read_page_raw)
5849 ecc->read_page_raw = nand_read_page_raw;
5850 if (!ecc->write_page_raw)
5851 ecc->write_page_raw = nand_write_page_raw;
5852 ecc->read_oob = nand_read_oob_std;
5853 ecc->write_oob = nand_write_oob_std;
5854
5855 /*
5856 * We can only maximize ECC config when the default layout is
5857 * used, otherwise we don't know how many bytes can really be
5858 * used.
5859 */
5860 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5861 mtd->ooblayout != nand_get_large_page_ooblayout())
5862 nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5863
5864 ret = rawnand_sw_bch_init(chip);
5865 if (ret) {
5866 WARN(1, "BCH ECC initialization failed!\n");
5867 return ret;
5868 }
5869
5870 return 0;
5871 default:
5872 WARN(1, "Unsupported ECC algorithm!\n");
5873 return -EINVAL;
5874 }
5875 }
5876
5877 /**
5878 * nand_check_ecc_caps - check the sanity of preset ECC settings
5879 * @chip: nand chip info structure
5880 * @caps: ECC caps info structure
5881 * @oobavail: OOB size that the ECC engine can use
5882 *
5883 * When ECC step size and strength are already set, check if they are supported
5884 * by the controller and the calculated ECC bytes fit within the chip's OOB.
5885 * On success, the calculated ECC bytes is set.
5886 */
5887 static int
nand_check_ecc_caps(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)5888 nand_check_ecc_caps(struct nand_chip *chip,
5889 const struct nand_ecc_caps *caps, int oobavail)
5890 {
5891 struct mtd_info *mtd = nand_to_mtd(chip);
5892 const struct nand_ecc_step_info *stepinfo;
5893 int preset_step = chip->ecc.size;
5894 int preset_strength = chip->ecc.strength;
5895 int ecc_bytes, nsteps = mtd->writesize / preset_step;
5896 int i, j;
5897
5898 for (i = 0; i < caps->nstepinfos; i++) {
5899 stepinfo = &caps->stepinfos[i];
5900
5901 if (stepinfo->stepsize != preset_step)
5902 continue;
5903
5904 for (j = 0; j < stepinfo->nstrengths; j++) {
5905 if (stepinfo->strengths[j] != preset_strength)
5906 continue;
5907
5908 ecc_bytes = caps->calc_ecc_bytes(preset_step,
5909 preset_strength);
5910 if (WARN_ON_ONCE(ecc_bytes < 0))
5911 return ecc_bytes;
5912
5913 if (ecc_bytes * nsteps > oobavail) {
5914 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5915 preset_step, preset_strength);
5916 return -ENOSPC;
5917 }
5918
5919 chip->ecc.bytes = ecc_bytes;
5920
5921 return 0;
5922 }
5923 }
5924
5925 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5926 preset_step, preset_strength);
5927
5928 return -ENOTSUPP;
5929 }
5930
5931 /**
5932 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5933 * @chip: nand chip info structure
5934 * @caps: ECC engine caps info structure
5935 * @oobavail: OOB size that the ECC engine can use
5936 *
5937 * If a chip's ECC requirement is provided, try to meet it with the least
5938 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5939 * On success, the chosen ECC settings are set.
5940 */
5941 static int
nand_match_ecc_req(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)5942 nand_match_ecc_req(struct nand_chip *chip,
5943 const struct nand_ecc_caps *caps, int oobavail)
5944 {
5945 const struct nand_ecc_props *requirements =
5946 nanddev_get_ecc_requirements(&chip->base);
5947 struct mtd_info *mtd = nand_to_mtd(chip);
5948 const struct nand_ecc_step_info *stepinfo;
5949 int req_step = requirements->step_size;
5950 int req_strength = requirements->strength;
5951 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5952 int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
5953 int best_ecc_bytes_total = INT_MAX;
5954 int i, j;
5955
5956 /* No information provided by the NAND chip */
5957 if (!req_step || !req_strength)
5958 return -ENOTSUPP;
5959
5960 /* number of correctable bits the chip requires in a page */
5961 req_corr = mtd->writesize / req_step * req_strength;
5962
5963 for (i = 0; i < caps->nstepinfos; i++) {
5964 stepinfo = &caps->stepinfos[i];
5965 step_size = stepinfo->stepsize;
5966
5967 for (j = 0; j < stepinfo->nstrengths; j++) {
5968 strength = stepinfo->strengths[j];
5969
5970 /*
5971 * If both step size and strength are smaller than the
5972 * chip's requirement, it is not easy to compare the
5973 * resulted reliability.
5974 */
5975 if (step_size < req_step && strength < req_strength)
5976 continue;
5977
5978 if (mtd->writesize % step_size)
5979 continue;
5980
5981 nsteps = mtd->writesize / step_size;
5982
5983 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5984 if (WARN_ON_ONCE(ecc_bytes < 0))
5985 continue;
5986 ecc_bytes_total = ecc_bytes * nsteps;
5987
5988 if (ecc_bytes_total > oobavail ||
5989 strength * nsteps < req_corr)
5990 continue;
5991
5992 /*
5993 * We assume the best is to meet the chip's requrement
5994 * with the least number of ECC bytes.
5995 */
5996 if (ecc_bytes_total < best_ecc_bytes_total) {
5997 best_ecc_bytes_total = ecc_bytes_total;
5998 best_step = step_size;
5999 best_strength = strength;
6000 best_ecc_bytes = ecc_bytes;
6001 }
6002 }
6003 }
6004
6005 if (best_ecc_bytes_total == INT_MAX)
6006 return -ENOTSUPP;
6007
6008 chip->ecc.size = best_step;
6009 chip->ecc.strength = best_strength;
6010 chip->ecc.bytes = best_ecc_bytes;
6011
6012 return 0;
6013 }
6014
6015 /**
6016 * nand_maximize_ecc - choose the max ECC strength available
6017 * @chip: nand chip info structure
6018 * @caps: ECC engine caps info structure
6019 * @oobavail: OOB size that the ECC engine can use
6020 *
6021 * Choose the max ECC strength that is supported on the controller, and can fit
6022 * within the chip's OOB. On success, the chosen ECC settings are set.
6023 */
6024 static int
nand_maximize_ecc(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)6025 nand_maximize_ecc(struct nand_chip *chip,
6026 const struct nand_ecc_caps *caps, int oobavail)
6027 {
6028 struct mtd_info *mtd = nand_to_mtd(chip);
6029 const struct nand_ecc_step_info *stepinfo;
6030 int step_size, strength, nsteps, ecc_bytes, corr;
6031 int best_corr = 0;
6032 int best_step = 0;
6033 int best_strength = 0, best_ecc_bytes = 0;
6034 int i, j;
6035
6036 for (i = 0; i < caps->nstepinfos; i++) {
6037 stepinfo = &caps->stepinfos[i];
6038 step_size = stepinfo->stepsize;
6039
6040 /* If chip->ecc.size is already set, respect it */
6041 if (chip->ecc.size && step_size != chip->ecc.size)
6042 continue;
6043
6044 for (j = 0; j < stepinfo->nstrengths; j++) {
6045 strength = stepinfo->strengths[j];
6046
6047 if (mtd->writesize % step_size)
6048 continue;
6049
6050 nsteps = mtd->writesize / step_size;
6051
6052 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6053 if (WARN_ON_ONCE(ecc_bytes < 0))
6054 continue;
6055
6056 if (ecc_bytes * nsteps > oobavail)
6057 continue;
6058
6059 corr = strength * nsteps;
6060
6061 /*
6062 * If the number of correctable bits is the same,
6063 * bigger step_size has more reliability.
6064 */
6065 if (corr > best_corr ||
6066 (corr == best_corr && step_size > best_step)) {
6067 best_corr = corr;
6068 best_step = step_size;
6069 best_strength = strength;
6070 best_ecc_bytes = ecc_bytes;
6071 }
6072 }
6073 }
6074
6075 if (!best_corr)
6076 return -ENOTSUPP;
6077
6078 chip->ecc.size = best_step;
6079 chip->ecc.strength = best_strength;
6080 chip->ecc.bytes = best_ecc_bytes;
6081
6082 return 0;
6083 }
6084
6085 /**
6086 * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6087 * @chip: nand chip info structure
6088 * @caps: ECC engine caps info structure
6089 * @oobavail: OOB size that the ECC engine can use
6090 *
6091 * Choose the ECC configuration according to following logic.
6092 *
6093 * 1. If both ECC step size and ECC strength are already set (usually by DT)
6094 * then check if it is supported by this controller.
6095 * 2. If the user provided the nand-ecc-maximize property, then select maximum
6096 * ECC strength.
6097 * 3. Otherwise, try to match the ECC step size and ECC strength closest
6098 * to the chip's requirement. If available OOB size can't fit the chip
6099 * requirement then fallback to the maximum ECC step size and ECC strength.
6100 *
6101 * On success, the chosen ECC settings are set.
6102 */
nand_ecc_choose_conf(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)6103 int nand_ecc_choose_conf(struct nand_chip *chip,
6104 const struct nand_ecc_caps *caps, int oobavail)
6105 {
6106 struct mtd_info *mtd = nand_to_mtd(chip);
6107 struct nand_device *nanddev = mtd_to_nanddev(mtd);
6108
6109 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6110 return -EINVAL;
6111
6112 if (chip->ecc.size && chip->ecc.strength)
6113 return nand_check_ecc_caps(chip, caps, oobavail);
6114
6115 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6116 return nand_maximize_ecc(chip, caps, oobavail);
6117
6118 if (!nand_match_ecc_req(chip, caps, oobavail))
6119 return 0;
6120
6121 return nand_maximize_ecc(chip, caps, oobavail);
6122 }
6123 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6124
rawnand_erase(struct nand_device * nand,const struct nand_pos * pos)6125 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6126 {
6127 struct nand_chip *chip = container_of(nand, struct nand_chip,
6128 base);
6129 unsigned int eb = nanddev_pos_to_row(nand, pos);
6130 int ret;
6131
6132 eb >>= nand->rowconv.eraseblock_addr_shift;
6133
6134 nand_select_target(chip, pos->target);
6135 ret = nand_erase_op(chip, eb);
6136 nand_deselect_target(chip);
6137
6138 return ret;
6139 }
6140
rawnand_markbad(struct nand_device * nand,const struct nand_pos * pos)6141 static int rawnand_markbad(struct nand_device *nand,
6142 const struct nand_pos *pos)
6143 {
6144 struct nand_chip *chip = container_of(nand, struct nand_chip,
6145 base);
6146
6147 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6148 }
6149
rawnand_isbad(struct nand_device * nand,const struct nand_pos * pos)6150 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6151 {
6152 struct nand_chip *chip = container_of(nand, struct nand_chip,
6153 base);
6154 int ret;
6155
6156 nand_select_target(chip, pos->target);
6157 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6158 nand_deselect_target(chip);
6159
6160 return ret;
6161 }
6162
6163 static const struct nand_ops rawnand_ops = {
6164 .erase = rawnand_erase,
6165 .markbad = rawnand_markbad,
6166 .isbad = rawnand_isbad,
6167 };
6168
6169 /**
6170 * nand_scan_tail - Scan for the NAND device
6171 * @chip: NAND chip object
6172 *
6173 * This is the second phase of the normal nand_scan() function. It fills out
6174 * all the uninitialized function pointers with the defaults and scans for a
6175 * bad block table if appropriate.
6176 */
nand_scan_tail(struct nand_chip * chip)6177 static int nand_scan_tail(struct nand_chip *chip)
6178 {
6179 struct mtd_info *mtd = nand_to_mtd(chip);
6180 struct nand_device *base = &chip->base;
6181 struct nand_ecc_ctrl *ecc = &chip->ecc;
6182 int ret, i;
6183
6184 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
6185 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6186 !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6187 return -EINVAL;
6188 }
6189
6190 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6191 if (!chip->data_buf)
6192 return -ENOMEM;
6193
6194 /*
6195 * FIXME: some NAND manufacturer drivers expect the first die to be
6196 * selected when manufacturer->init() is called. They should be fixed
6197 * to explictly select the relevant die when interacting with the NAND
6198 * chip.
6199 */
6200 nand_select_target(chip, 0);
6201 ret = nand_manufacturer_init(chip);
6202 nand_deselect_target(chip);
6203 if (ret)
6204 goto err_free_buf;
6205
6206 /* Set the internal oob buffer location, just after the page data */
6207 chip->oob_poi = chip->data_buf + mtd->writesize;
6208
6209 /*
6210 * If no default placement scheme is given, select an appropriate one.
6211 */
6212 if (!mtd->ooblayout &&
6213 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6214 ecc->algo == NAND_ECC_ALGO_BCH) &&
6215 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6216 ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6217 switch (mtd->oobsize) {
6218 case 8:
6219 case 16:
6220 mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6221 break;
6222 case 64:
6223 case 128:
6224 mtd_set_ooblayout(mtd,
6225 nand_get_large_page_hamming_ooblayout());
6226 break;
6227 default:
6228 /*
6229 * Expose the whole OOB area to users if ECC_NONE
6230 * is passed. We could do that for all kind of
6231 * ->oobsize, but we must keep the old large/small
6232 * page with ECC layout when ->oobsize <= 128 for
6233 * compatibility reasons.
6234 */
6235 if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6236 mtd_set_ooblayout(mtd,
6237 nand_get_large_page_ooblayout());
6238 break;
6239 }
6240
6241 WARN(1, "No oob scheme defined for oobsize %d\n",
6242 mtd->oobsize);
6243 ret = -EINVAL;
6244 goto err_nand_manuf_cleanup;
6245 }
6246 }
6247
6248 /*
6249 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6250 * selected and we have 256 byte pagesize fallback to software ECC
6251 */
6252
6253 switch (ecc->engine_type) {
6254 case NAND_ECC_ENGINE_TYPE_ON_HOST:
6255 ret = nand_set_ecc_on_host_ops(chip);
6256 if (ret)
6257 goto err_nand_manuf_cleanup;
6258
6259 if (mtd->writesize >= ecc->size) {
6260 if (!ecc->strength) {
6261 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6262 ret = -EINVAL;
6263 goto err_nand_manuf_cleanup;
6264 }
6265 break;
6266 }
6267 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6268 ecc->size, mtd->writesize);
6269 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6270 ecc->algo = NAND_ECC_ALGO_HAMMING;
6271 fallthrough;
6272
6273 case NAND_ECC_ENGINE_TYPE_SOFT:
6274 ret = nand_set_ecc_soft_ops(chip);
6275 if (ret)
6276 goto err_nand_manuf_cleanup;
6277 break;
6278
6279 case NAND_ECC_ENGINE_TYPE_ON_DIE:
6280 if (!ecc->read_page || !ecc->write_page) {
6281 WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6282 ret = -EINVAL;
6283 goto err_nand_manuf_cleanup;
6284 }
6285 if (!ecc->read_oob)
6286 ecc->read_oob = nand_read_oob_std;
6287 if (!ecc->write_oob)
6288 ecc->write_oob = nand_write_oob_std;
6289 break;
6290
6291 case NAND_ECC_ENGINE_TYPE_NONE:
6292 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6293 ecc->read_page = nand_read_page_raw;
6294 ecc->write_page = nand_write_page_raw;
6295 ecc->read_oob = nand_read_oob_std;
6296 ecc->read_page_raw = nand_read_page_raw;
6297 ecc->write_page_raw = nand_write_page_raw;
6298 ecc->write_oob = nand_write_oob_std;
6299 ecc->size = mtd->writesize;
6300 ecc->bytes = 0;
6301 ecc->strength = 0;
6302 break;
6303
6304 default:
6305 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6306 ret = -EINVAL;
6307 goto err_nand_manuf_cleanup;
6308 }
6309
6310 if (ecc->correct || ecc->calculate) {
6311 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6312 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6313 if (!ecc->calc_buf || !ecc->code_buf) {
6314 ret = -ENOMEM;
6315 goto err_nand_manuf_cleanup;
6316 }
6317 }
6318
6319 /* For many systems, the standard OOB write also works for raw */
6320 if (!ecc->read_oob_raw)
6321 ecc->read_oob_raw = ecc->read_oob;
6322 if (!ecc->write_oob_raw)
6323 ecc->write_oob_raw = ecc->write_oob;
6324
6325 /* Propagate ECC info to the generic NAND and MTD layers */
6326 mtd->ecc_strength = ecc->strength;
6327 if (!base->ecc.ctx.conf.strength)
6328 base->ecc.ctx.conf.strength = ecc->strength;
6329 mtd->ecc_step_size = ecc->size;
6330 if (!base->ecc.ctx.conf.step_size)
6331 base->ecc.ctx.conf.step_size = ecc->size;
6332
6333 /*
6334 * Set the number of read / write steps for one page depending on ECC
6335 * mode.
6336 */
6337 if (!ecc->steps)
6338 ecc->steps = mtd->writesize / ecc->size;
6339 if (!base->ecc.ctx.nsteps)
6340 base->ecc.ctx.nsteps = ecc->steps;
6341 if (ecc->steps * ecc->size != mtd->writesize) {
6342 WARN(1, "Invalid ECC parameters\n");
6343 ret = -EINVAL;
6344 goto err_nand_manuf_cleanup;
6345 }
6346
6347 if (!ecc->total) {
6348 ecc->total = ecc->steps * ecc->bytes;
6349 chip->base.ecc.ctx.total = ecc->total;
6350 }
6351
6352 if (ecc->total > mtd->oobsize) {
6353 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6354 ret = -EINVAL;
6355 goto err_nand_manuf_cleanup;
6356 }
6357
6358 /*
6359 * The number of bytes available for a client to place data into
6360 * the out of band area.
6361 */
6362 ret = mtd_ooblayout_count_freebytes(mtd);
6363 if (ret < 0)
6364 ret = 0;
6365
6366 mtd->oobavail = ret;
6367
6368 /* ECC sanity check: warn if it's too weak */
6369 if (!nand_ecc_is_strong_enough(&chip->base))
6370 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6371 mtd->name, chip->ecc.strength, chip->ecc.size,
6372 nanddev_get_ecc_requirements(&chip->base)->strength,
6373 nanddev_get_ecc_requirements(&chip->base)->step_size);
6374
6375 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6376 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6377 switch (ecc->steps) {
6378 case 2:
6379 mtd->subpage_sft = 1;
6380 break;
6381 case 4:
6382 case 8:
6383 case 16:
6384 mtd->subpage_sft = 2;
6385 break;
6386 }
6387 }
6388 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6389
6390 /* Invalidate the pagebuffer reference */
6391 chip->pagecache.page = -1;
6392
6393 /* Large page NAND with SOFT_ECC should support subpage reads */
6394 switch (ecc->engine_type) {
6395 case NAND_ECC_ENGINE_TYPE_SOFT:
6396 if (chip->page_shift > 9)
6397 chip->options |= NAND_SUBPAGE_READ;
6398 break;
6399
6400 default:
6401 break;
6402 }
6403
6404 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6405 if (ret)
6406 goto err_nand_manuf_cleanup;
6407
6408 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6409 if (chip->options & NAND_ROM)
6410 mtd->flags = MTD_CAP_ROM;
6411
6412 /* Fill in remaining MTD driver data */
6413 mtd->_erase = nand_erase;
6414 mtd->_point = NULL;
6415 mtd->_unpoint = NULL;
6416 mtd->_panic_write = panic_nand_write;
6417 mtd->_read_oob = nand_read_oob;
6418 mtd->_write_oob = nand_write_oob;
6419 mtd->_sync = nand_sync;
6420 mtd->_lock = nand_lock;
6421 mtd->_unlock = nand_unlock;
6422 mtd->_suspend = nand_suspend;
6423 mtd->_resume = nand_resume;
6424 mtd->_reboot = nand_shutdown;
6425 mtd->_block_isreserved = nand_block_isreserved;
6426 mtd->_block_isbad = nand_block_isbad;
6427 mtd->_block_markbad = nand_block_markbad;
6428 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6429
6430 /*
6431 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6432 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6433 * properly set.
6434 */
6435 if (!mtd->bitflip_threshold)
6436 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6437
6438 /* Find the fastest data interface for this chip */
6439 ret = nand_choose_interface_config(chip);
6440 if (ret)
6441 goto err_nanddev_cleanup;
6442
6443 /* Enter fastest possible mode on all dies. */
6444 for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6445 ret = nand_setup_interface(chip, i);
6446 if (ret)
6447 goto err_free_interface_config;
6448 }
6449
6450 rawnand_late_check_supported_ops(chip);
6451
6452 /*
6453 * Look for secure regions in the NAND chip. These regions are supposed
6454 * to be protected by a secure element like Trustzone. So the read/write
6455 * accesses to these regions will be blocked in the runtime by this
6456 * driver.
6457 */
6458 ret = of_get_nand_secure_regions(chip);
6459 if (ret)
6460 goto err_free_interface_config;
6461
6462 /* Check, if we should skip the bad block table scan */
6463 if (chip->options & NAND_SKIP_BBTSCAN)
6464 return 0;
6465
6466 /* Build bad block table */
6467 ret = nand_create_bbt(chip);
6468 if (ret)
6469 goto err_free_secure_regions;
6470
6471 return 0;
6472
6473 err_free_secure_regions:
6474 kfree(chip->secure_regions);
6475
6476 err_free_interface_config:
6477 kfree(chip->best_interface_config);
6478
6479 err_nanddev_cleanup:
6480 nanddev_cleanup(&chip->base);
6481
6482 err_nand_manuf_cleanup:
6483 nand_manufacturer_cleanup(chip);
6484
6485 err_free_buf:
6486 kfree(chip->data_buf);
6487 kfree(ecc->code_buf);
6488 kfree(ecc->calc_buf);
6489
6490 return ret;
6491 }
6492
nand_attach(struct nand_chip * chip)6493 static int nand_attach(struct nand_chip *chip)
6494 {
6495 if (chip->controller->ops && chip->controller->ops->attach_chip)
6496 return chip->controller->ops->attach_chip(chip);
6497
6498 return 0;
6499 }
6500
nand_detach(struct nand_chip * chip)6501 static void nand_detach(struct nand_chip *chip)
6502 {
6503 if (chip->controller->ops && chip->controller->ops->detach_chip)
6504 chip->controller->ops->detach_chip(chip);
6505 }
6506
6507 /**
6508 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6509 * @chip: NAND chip object
6510 * @maxchips: number of chips to scan for.
6511 * @ids: optional flash IDs table
6512 *
6513 * This fills out all the uninitialized function pointers with the defaults.
6514 * The flash ID is read and the mtd/chip structures are filled with the
6515 * appropriate values.
6516 */
nand_scan_with_ids(struct nand_chip * chip,unsigned int maxchips,struct nand_flash_dev * ids)6517 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6518 struct nand_flash_dev *ids)
6519 {
6520 int ret;
6521
6522 if (!maxchips)
6523 return -EINVAL;
6524
6525 ret = nand_scan_ident(chip, maxchips, ids);
6526 if (ret)
6527 return ret;
6528
6529 ret = nand_attach(chip);
6530 if (ret)
6531 goto cleanup_ident;
6532
6533 ret = nand_scan_tail(chip);
6534 if (ret)
6535 goto detach_chip;
6536
6537 return 0;
6538
6539 detach_chip:
6540 nand_detach(chip);
6541 cleanup_ident:
6542 nand_scan_ident_cleanup(chip);
6543
6544 return ret;
6545 }
6546 EXPORT_SYMBOL(nand_scan_with_ids);
6547
6548 /**
6549 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6550 * @chip: NAND chip object
6551 */
nand_cleanup(struct nand_chip * chip)6552 void nand_cleanup(struct nand_chip *chip)
6553 {
6554 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6555 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6556 rawnand_sw_hamming_cleanup(chip);
6557 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6558 rawnand_sw_bch_cleanup(chip);
6559 }
6560
6561 nanddev_cleanup(&chip->base);
6562
6563 /* Free secure regions data */
6564 kfree(chip->secure_regions);
6565
6566 /* Free bad block table memory */
6567 kfree(chip->bbt);
6568 kfree(chip->data_buf);
6569 kfree(chip->ecc.code_buf);
6570 kfree(chip->ecc.calc_buf);
6571
6572 /* Free bad block descriptor memory */
6573 if (chip->badblock_pattern && chip->badblock_pattern->options
6574 & NAND_BBT_DYNAMICSTRUCT)
6575 kfree(chip->badblock_pattern);
6576
6577 /* Free the data interface */
6578 kfree(chip->best_interface_config);
6579
6580 /* Free manufacturer priv data. */
6581 nand_manufacturer_cleanup(chip);
6582
6583 /* Free controller specific allocations after chip identification */
6584 nand_detach(chip);
6585
6586 /* Free identification phase allocations */
6587 nand_scan_ident_cleanup(chip);
6588 }
6589
6590 EXPORT_SYMBOL_GPL(nand_cleanup);
6591
6592 MODULE_LICENSE("GPL");
6593 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6594 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6595 MODULE_DESCRIPTION("Generic NAND flash driver code");
6596