1 /*
2 * Copyright (c) 2016 Hisilicon Limited.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/vmalloc.h>
35 #include <rdma/ib_umem.h>
36 #include <linux/math.h>
37 #include "hns_roce_device.h"
38 #include "hns_roce_cmd.h"
39 #include "hns_roce_hem.h"
40
hw_index_to_key(int ind)41 static u32 hw_index_to_key(int ind)
42 {
43 return ((u32)ind >> 24) | ((u32)ind << 8);
44 }
45
key_to_hw_index(u32 key)46 unsigned long key_to_hw_index(u32 key)
47 {
48 return (key << 24) | (key >> 8);
49 }
50
alloc_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)51 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
52 {
53 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
54 struct ib_device *ibdev = &hr_dev->ib_dev;
55 int err;
56 int id;
57
58 /* Allocate a key for mr from mr_table */
59 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
60 GFP_KERNEL);
61 if (id < 0) {
62 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
63 return -ENOMEM;
64 }
65
66 mr->key = hw_index_to_key(id); /* MR key */
67
68 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
69 (unsigned long)id);
70 if (err) {
71 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
72 goto err_free_bitmap;
73 }
74
75 return 0;
76 err_free_bitmap:
77 ida_free(&mtpt_ida->ida, id);
78 return err;
79 }
80
free_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)81 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
82 {
83 unsigned long obj = key_to_hw_index(mr->key);
84
85 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
86 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
87 }
88
alloc_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr,struct ib_udata * udata,u64 start)89 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
90 struct ib_udata *udata, u64 start)
91 {
92 struct ib_device *ibdev = &hr_dev->ib_dev;
93 bool is_fast = mr->type == MR_TYPE_FRMR;
94 struct hns_roce_buf_attr buf_attr = {};
95 int err;
96
97 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
98 buf_attr.page_shift = is_fast ? PAGE_SHIFT :
99 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
100 buf_attr.region[0].size = mr->size;
101 buf_attr.region[0].hopnum = mr->pbl_hop_num;
102 buf_attr.region_count = 1;
103 buf_attr.user_access = mr->access;
104 /* fast MR's buffer is alloced before mapping, not at creation */
105 buf_attr.mtt_only = is_fast;
106
107 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
108 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
109 udata, start);
110 if (err)
111 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
112 else
113 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
114
115 return err;
116 }
117
free_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)118 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
119 {
120 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
121 }
122
hns_roce_mr_free(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)123 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
124 {
125 struct ib_device *ibdev = &hr_dev->ib_dev;
126 int ret;
127
128 if (mr->enabled) {
129 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
130 key_to_hw_index(mr->key) &
131 (hr_dev->caps.num_mtpts - 1));
132 if (ret)
133 ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n",
134 ret);
135 }
136
137 free_mr_pbl(hr_dev, mr);
138 free_mr_key(hr_dev, mr);
139 }
140
hns_roce_mr_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)141 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
142 struct hns_roce_mr *mr)
143 {
144 unsigned long mtpt_idx = key_to_hw_index(mr->key);
145 struct hns_roce_cmd_mailbox *mailbox;
146 struct device *dev = hr_dev->dev;
147 int ret;
148
149 /* Allocate mailbox memory */
150 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
151 if (IS_ERR(mailbox))
152 return PTR_ERR(mailbox);
153
154 if (mr->type != MR_TYPE_FRMR)
155 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
156 else
157 ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr);
158 if (ret) {
159 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
160 goto err_page;
161 }
162
163 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
164 mtpt_idx & (hr_dev->caps.num_mtpts - 1));
165 if (ret) {
166 dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
167 goto err_page;
168 }
169
170 mr->enabled = 1;
171
172 err_page:
173 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
174
175 return ret;
176 }
177
hns_roce_init_mr_table(struct hns_roce_dev * hr_dev)178 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
179 {
180 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
181
182 ida_init(&mtpt_ida->ida);
183 mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
184 mtpt_ida->min = hr_dev->caps.reserved_mrws;
185 }
186
hns_roce_get_dma_mr(struct ib_pd * pd,int acc)187 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
188 {
189 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
190 struct hns_roce_mr *mr;
191 int ret;
192
193 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
194 if (!mr)
195 return ERR_PTR(-ENOMEM);
196
197 mr->type = MR_TYPE_DMA;
198 mr->pd = to_hr_pd(pd)->pdn;
199 mr->access = acc;
200
201 /* Allocate memory region key */
202 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
203 ret = alloc_mr_key(hr_dev, mr);
204 if (ret)
205 goto err_free;
206
207 ret = hns_roce_mr_enable(hr_dev, mr);
208 if (ret)
209 goto err_mr;
210
211 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
212
213 return &mr->ibmr;
214 err_mr:
215 free_mr_key(hr_dev, mr);
216
217 err_free:
218 kfree(mr);
219 return ERR_PTR(ret);
220 }
221
hns_roce_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_udata * udata)222 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
223 u64 virt_addr, int access_flags,
224 struct ib_udata *udata)
225 {
226 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
227 struct hns_roce_mr *mr;
228 int ret;
229
230 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
231 if (!mr) {
232 ret = -ENOMEM;
233 goto err_out;
234 }
235
236 mr->iova = virt_addr;
237 mr->size = length;
238 mr->pd = to_hr_pd(pd)->pdn;
239 mr->access = access_flags;
240 mr->type = MR_TYPE_MR;
241
242 ret = alloc_mr_key(hr_dev, mr);
243 if (ret)
244 goto err_alloc_mr;
245
246 ret = alloc_mr_pbl(hr_dev, mr, udata, start);
247 if (ret)
248 goto err_alloc_key;
249
250 ret = hns_roce_mr_enable(hr_dev, mr);
251 if (ret)
252 goto err_alloc_pbl;
253
254 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
255
256 return &mr->ibmr;
257
258 err_alloc_pbl:
259 free_mr_pbl(hr_dev, mr);
260 err_alloc_key:
261 free_mr_key(hr_dev, mr);
262 err_alloc_mr:
263 kfree(mr);
264 err_out:
265 atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REG_ERR_CNT]);
266
267 return ERR_PTR(ret);
268 }
269
hns_roce_rereg_user_mr(struct ib_mr * ibmr,int flags,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_pd * pd,struct ib_udata * udata)270 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
271 u64 length, u64 virt_addr,
272 int mr_access_flags, struct ib_pd *pd,
273 struct ib_udata *udata)
274 {
275 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
276 struct ib_device *ib_dev = &hr_dev->ib_dev;
277 struct hns_roce_mr *mr = to_hr_mr(ibmr);
278 struct hns_roce_cmd_mailbox *mailbox;
279 unsigned long mtpt_idx;
280 int ret;
281
282 if (!mr->enabled) {
283 ret = -EINVAL;
284 goto err_out;
285 }
286
287 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
288 ret = PTR_ERR_OR_ZERO(mailbox);
289 if (ret)
290 goto err_out;
291
292 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
293
294 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
295 mtpt_idx);
296 if (ret)
297 goto free_cmd_mbox;
298
299 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
300 mtpt_idx);
301 if (ret)
302 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
303
304 mr->enabled = 0;
305 mr->iova = virt_addr;
306 mr->size = length;
307
308 if (flags & IB_MR_REREG_PD)
309 mr->pd = to_hr_pd(pd)->pdn;
310
311 if (flags & IB_MR_REREG_ACCESS)
312 mr->access = mr_access_flags;
313
314 if (flags & IB_MR_REREG_TRANS) {
315 free_mr_pbl(hr_dev, mr);
316 ret = alloc_mr_pbl(hr_dev, mr, udata, start);
317 if (ret) {
318 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
319 ret);
320 goto free_cmd_mbox;
321 }
322 }
323
324 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
325 if (ret) {
326 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
327 goto free_cmd_mbox;
328 }
329
330 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
331 mtpt_idx);
332 if (ret) {
333 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
334 goto free_cmd_mbox;
335 }
336
337 mr->enabled = 1;
338
339 free_cmd_mbox:
340 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
341
342 err_out:
343 if (ret) {
344 atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REREG_ERR_CNT]);
345 return ERR_PTR(ret);
346 }
347
348 return NULL;
349 }
350
hns_roce_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)351 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
352 {
353 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
354 struct hns_roce_mr *mr = to_hr_mr(ibmr);
355
356 if (hr_dev->hw->dereg_mr)
357 hr_dev->hw->dereg_mr(hr_dev);
358
359 hns_roce_mr_free(hr_dev, mr);
360 kfree(mr);
361
362 return 0;
363 }
364
hns_roce_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)365 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
366 u32 max_num_sg)
367 {
368 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
369 struct device *dev = hr_dev->dev;
370 struct hns_roce_mr *mr;
371 int ret;
372
373 if (mr_type != IB_MR_TYPE_MEM_REG)
374 return ERR_PTR(-EINVAL);
375
376 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
377 dev_err(dev, "max_num_sg larger than %d\n",
378 HNS_ROCE_FRMR_MAX_PA);
379 return ERR_PTR(-EINVAL);
380 }
381
382 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
383 if (!mr)
384 return ERR_PTR(-ENOMEM);
385
386 mr->type = MR_TYPE_FRMR;
387 mr->pd = to_hr_pd(pd)->pdn;
388 mr->size = max_num_sg * (1 << PAGE_SHIFT);
389
390 /* Allocate memory region key */
391 ret = alloc_mr_key(hr_dev, mr);
392 if (ret)
393 goto err_free;
394
395 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
396 if (ret)
397 goto err_key;
398
399 ret = hns_roce_mr_enable(hr_dev, mr);
400 if (ret)
401 goto err_pbl;
402
403 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
404 mr->ibmr.length = mr->size;
405
406 return &mr->ibmr;
407
408 err_pbl:
409 free_mr_pbl(hr_dev, mr);
410 err_key:
411 free_mr_key(hr_dev, mr);
412 err_free:
413 kfree(mr);
414 return ERR_PTR(ret);
415 }
416
hns_roce_set_page(struct ib_mr * ibmr,u64 addr)417 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
418 {
419 struct hns_roce_mr *mr = to_hr_mr(ibmr);
420
421 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
422 mr->page_list[mr->npages++] = addr;
423 return 0;
424 }
425
426 return -ENOBUFS;
427 }
428
hns_roce_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)429 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
430 unsigned int *sg_offset)
431 {
432 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
433 struct ib_device *ibdev = &hr_dev->ib_dev;
434 struct hns_roce_mr *mr = to_hr_mr(ibmr);
435 struct hns_roce_mtr *mtr = &mr->pbl_mtr;
436 int ret = 0;
437
438 mr->npages = 0;
439 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
440 sizeof(dma_addr_t), GFP_KERNEL);
441 if (!mr->page_list)
442 return ret;
443
444 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page);
445 if (ret < 1) {
446 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
447 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret);
448 goto err_page_list;
449 }
450
451 mtr->hem_cfg.region[0].offset = 0;
452 mtr->hem_cfg.region[0].count = mr->npages;
453 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
454 mtr->hem_cfg.region_count = 1;
455 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
456 if (ret) {
457 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
458 ret = 0;
459 } else {
460 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
461 ret = mr->npages;
462 }
463
464 err_page_list:
465 kvfree(mr->page_list);
466 mr->page_list = NULL;
467
468 return ret;
469 }
470
hns_roce_mw_free(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)471 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
472 struct hns_roce_mw *mw)
473 {
474 struct device *dev = hr_dev->dev;
475 int ret;
476
477 if (mw->enabled) {
478 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
479 key_to_hw_index(mw->rkey) &
480 (hr_dev->caps.num_mtpts - 1));
481 if (ret)
482 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
483
484 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
485 key_to_hw_index(mw->rkey));
486 }
487
488 ida_free(&hr_dev->mr_table.mtpt_ida.ida,
489 (int)key_to_hw_index(mw->rkey));
490 }
491
hns_roce_mw_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)492 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
493 struct hns_roce_mw *mw)
494 {
495 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
496 struct hns_roce_cmd_mailbox *mailbox;
497 struct device *dev = hr_dev->dev;
498 unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
499 int ret;
500
501 /* prepare HEM entry memory */
502 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
503 if (ret)
504 return ret;
505
506 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
507 if (IS_ERR(mailbox)) {
508 ret = PTR_ERR(mailbox);
509 goto err_table;
510 }
511
512 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
513 if (ret) {
514 dev_err(dev, "MW write mtpt fail!\n");
515 goto err_page;
516 }
517
518 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
519 mtpt_idx & (hr_dev->caps.num_mtpts - 1));
520 if (ret) {
521 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
522 goto err_page;
523 }
524
525 mw->enabled = 1;
526
527 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
528
529 return 0;
530
531 err_page:
532 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
533
534 err_table:
535 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
536
537 return ret;
538 }
539
hns_roce_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)540 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
541 {
542 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
543 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
544 struct ib_device *ibdev = &hr_dev->ib_dev;
545 struct hns_roce_mw *mw = to_hr_mw(ibmw);
546 int ret;
547 int id;
548
549 /* Allocate a key for mw from mr_table */
550 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
551 GFP_KERNEL);
552 if (id < 0) {
553 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id);
554 return -ENOMEM;
555 }
556
557 mw->rkey = hw_index_to_key(id);
558
559 ibmw->rkey = mw->rkey;
560 mw->pdn = to_hr_pd(ibmw->pd)->pdn;
561 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
562 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
563 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
564
565 ret = hns_roce_mw_enable(hr_dev, mw);
566 if (ret)
567 goto err_mw;
568
569 return 0;
570
571 err_mw:
572 hns_roce_mw_free(hr_dev, mw);
573 return ret;
574 }
575
hns_roce_dealloc_mw(struct ib_mw * ibmw)576 int hns_roce_dealloc_mw(struct ib_mw *ibmw)
577 {
578 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
579 struct hns_roce_mw *mw = to_hr_mw(ibmw);
580
581 hns_roce_mw_free(hr_dev, mw);
582 return 0;
583 }
584
mtr_map_region(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_region * region,dma_addr_t * pages,int max_count)585 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
586 struct hns_roce_buf_region *region, dma_addr_t *pages,
587 int max_count)
588 {
589 int count, npage;
590 int offset, end;
591 __le64 *mtts;
592 u64 addr;
593 int i;
594
595 offset = region->offset;
596 end = offset + region->count;
597 npage = 0;
598 while (offset < end && npage < max_count) {
599 count = 0;
600 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
601 offset, &count);
602 if (!mtts)
603 return -ENOBUFS;
604
605 for (i = 0; i < count && npage < max_count; i++) {
606 addr = pages[npage];
607
608 mtts[i] = cpu_to_le64(addr);
609 npage++;
610 }
611 offset += count;
612 }
613
614 return npage;
615 }
616
mtr_has_mtt(struct hns_roce_buf_attr * attr)617 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
618 {
619 int i;
620
621 for (i = 0; i < attr->region_count; i++)
622 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
623 attr->region[i].hopnum > 0)
624 return true;
625
626 /* because the mtr only one root base address, when hopnum is 0 means
627 * root base address equals the first buffer address, thus all alloced
628 * memory must in a continuous space accessed by direct mode.
629 */
630 return false;
631 }
632
mtr_bufs_size(struct hns_roce_buf_attr * attr)633 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
634 {
635 size_t size = 0;
636 int i;
637
638 for (i = 0; i < attr->region_count; i++)
639 size += attr->region[i].size;
640
641 return size;
642 }
643
644 /*
645 * check the given pages in continuous address space
646 * Returns 0 on success, or the error page num.
647 */
mtr_check_direct_pages(dma_addr_t * pages,int page_count,unsigned int page_shift)648 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
649 unsigned int page_shift)
650 {
651 size_t page_size = 1 << page_shift;
652 int i;
653
654 for (i = 1; i < page_count; i++)
655 if (pages[i] - pages[i - 1] != page_size)
656 return i;
657
658 return 0;
659 }
660
mtr_free_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)661 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
662 {
663 /* release user buffers */
664 if (mtr->umem) {
665 ib_umem_release(mtr->umem);
666 mtr->umem = NULL;
667 }
668
669 /* release kernel buffers */
670 if (mtr->kmem) {
671 hns_roce_buf_free(hr_dev, mtr->kmem);
672 mtr->kmem = NULL;
673 }
674 }
675
mtr_alloc_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,struct ib_udata * udata,unsigned long user_addr)676 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
677 struct hns_roce_buf_attr *buf_attr,
678 struct ib_udata *udata, unsigned long user_addr)
679 {
680 struct ib_device *ibdev = &hr_dev->ib_dev;
681 size_t total_size;
682
683 total_size = mtr_bufs_size(buf_attr);
684
685 if (udata) {
686 mtr->kmem = NULL;
687 mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
688 buf_attr->user_access);
689 if (IS_ERR(mtr->umem)) {
690 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
691 PTR_ERR(mtr->umem));
692 return -ENOMEM;
693 }
694 } else {
695 mtr->umem = NULL;
696 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
697 buf_attr->page_shift,
698 mtr->hem_cfg.is_direct ?
699 HNS_ROCE_BUF_DIRECT : 0);
700 if (IS_ERR(mtr->kmem)) {
701 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
702 PTR_ERR(mtr->kmem));
703 return PTR_ERR(mtr->kmem);
704 }
705 }
706
707 return 0;
708 }
709
mtr_map_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,int page_count,unsigned int page_shift)710 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
711 int page_count, unsigned int page_shift)
712 {
713 struct ib_device *ibdev = &hr_dev->ib_dev;
714 dma_addr_t *pages;
715 int npage;
716 int ret;
717
718 /* alloc a tmp array to store buffer's dma address */
719 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
720 if (!pages)
721 return -ENOMEM;
722
723 if (mtr->umem)
724 npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count,
725 mtr->umem, page_shift);
726 else
727 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
728 mtr->kmem, page_shift);
729
730 if (npage != page_count) {
731 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
732 page_count);
733 ret = -ENOBUFS;
734 goto err_alloc_list;
735 }
736
737 if (mtr->hem_cfg.is_direct && npage > 1) {
738 ret = mtr_check_direct_pages(pages, npage, page_shift);
739 if (ret) {
740 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
741 mtr->umem ? "umtr" : "kmtr", ret, npage);
742 ret = -ENOBUFS;
743 goto err_alloc_list;
744 }
745 }
746
747 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
748 if (ret)
749 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
750
751 err_alloc_list:
752 kvfree(pages);
753
754 return ret;
755 }
756
hns_roce_mtr_map(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,dma_addr_t * pages,unsigned int page_cnt)757 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
758 dma_addr_t *pages, unsigned int page_cnt)
759 {
760 struct ib_device *ibdev = &hr_dev->ib_dev;
761 struct hns_roce_buf_region *r;
762 unsigned int i, mapped_cnt;
763 int ret = 0;
764
765 /*
766 * Only use the first page address as root ba when hopnum is 0, this
767 * is because the addresses of all pages are consecutive in this case.
768 */
769 if (mtr->hem_cfg.is_direct) {
770 mtr->hem_cfg.root_ba = pages[0];
771 return 0;
772 }
773
774 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
775 mapped_cnt < page_cnt; i++) {
776 r = &mtr->hem_cfg.region[i];
777 /* if hopnum is 0, no need to map pages in this region */
778 if (!r->hopnum) {
779 mapped_cnt += r->count;
780 continue;
781 }
782
783 if (r->offset + r->count > page_cnt) {
784 ret = -EINVAL;
785 ibdev_err(ibdev,
786 "failed to check mtr%u count %u + %u > %u.\n",
787 i, r->offset, r->count, page_cnt);
788 return ret;
789 }
790
791 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
792 page_cnt - mapped_cnt);
793 if (ret < 0) {
794 ibdev_err(ibdev,
795 "failed to map mtr%u offset %u, ret = %d.\n",
796 i, r->offset, ret);
797 return ret;
798 }
799 mapped_cnt += ret;
800 ret = 0;
801 }
802
803 if (mapped_cnt < page_cnt) {
804 ret = -ENOBUFS;
805 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
806 mapped_cnt, page_cnt);
807 }
808
809 return ret;
810 }
811
hns_roce_mtr_find(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 offset,u64 * mtt_buf,int mtt_max,u64 * base_addr)812 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
813 u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr)
814 {
815 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
816 int mtt_count, left;
817 u32 start_index;
818 int total = 0;
819 __le64 *mtts;
820 u32 npage;
821 u64 addr;
822
823 if (!mtt_buf || mtt_max < 1)
824 goto done;
825
826 /* no mtt memory in direct mode, so just return the buffer address */
827 if (cfg->is_direct) {
828 start_index = offset >> HNS_HW_PAGE_SHIFT;
829 for (mtt_count = 0; mtt_count < cfg->region_count &&
830 total < mtt_max; mtt_count++) {
831 npage = cfg->region[mtt_count].offset;
832 if (npage < start_index)
833 continue;
834
835 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
836 mtt_buf[total] = addr;
837
838 total++;
839 }
840
841 goto done;
842 }
843
844 start_index = offset >> cfg->buf_pg_shift;
845 left = mtt_max;
846 while (left > 0) {
847 mtt_count = 0;
848 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
849 start_index + total,
850 &mtt_count);
851 if (!mtts || !mtt_count)
852 goto done;
853
854 npage = min(mtt_count, left);
855 left -= npage;
856 for (mtt_count = 0; mtt_count < npage; mtt_count++)
857 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
858 }
859
860 done:
861 if (base_addr)
862 *base_addr = cfg->root_ba;
863
864 return total;
865 }
866
mtr_init_buf_cfg(struct hns_roce_dev * hr_dev,struct hns_roce_buf_attr * attr,struct hns_roce_hem_cfg * cfg,unsigned int * buf_page_shift,u64 unalinged_size)867 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
868 struct hns_roce_buf_attr *attr,
869 struct hns_roce_hem_cfg *cfg,
870 unsigned int *buf_page_shift, u64 unalinged_size)
871 {
872 struct hns_roce_buf_region *r;
873 u64 first_region_padding;
874 int page_cnt, region_cnt;
875 unsigned int page_shift;
876 size_t buf_size;
877
878 /* If mtt is disabled, all pages must be within a continuous range */
879 cfg->is_direct = !mtr_has_mtt(attr);
880 buf_size = mtr_bufs_size(attr);
881 if (cfg->is_direct) {
882 /* When HEM buffer uses 0-level addressing, the page size is
883 * equal to the whole buffer size, and we split the buffer into
884 * small pages which is used to check whether the adjacent
885 * units are in the continuous space and its size is fixed to
886 * 4K based on hns ROCEE's requirement.
887 */
888 page_shift = HNS_HW_PAGE_SHIFT;
889
890 /* The ROCEE requires the page size to be 4K * 2 ^ N. */
891 cfg->buf_pg_count = 1;
892 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
893 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
894 first_region_padding = 0;
895 } else {
896 page_shift = attr->page_shift;
897 cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size,
898 1 << page_shift);
899 cfg->buf_pg_shift = page_shift;
900 first_region_padding = unalinged_size;
901 }
902
903 /* Convert buffer size to page index and page count for each region and
904 * the buffer's offset needs to be appended to the first region.
905 */
906 for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count &&
907 region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) {
908 r = &cfg->region[region_cnt];
909 r->offset = page_cnt;
910 buf_size = hr_hw_page_align(attr->region[region_cnt].size +
911 first_region_padding);
912 r->count = DIV_ROUND_UP(buf_size, 1 << page_shift);
913 first_region_padding = 0;
914 page_cnt += r->count;
915 r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum,
916 r->count);
917 }
918
919 cfg->region_count = region_cnt;
920 *buf_page_shift = page_shift;
921
922 return page_cnt;
923 }
924
cal_pages_per_l1ba(unsigned int ba_per_bt,unsigned int hopnum)925 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum)
926 {
927 return int_pow(ba_per_bt, hopnum - 1);
928 }
929
cal_best_bt_pg_sz(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int pg_shift)930 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev,
931 struct hns_roce_mtr *mtr,
932 unsigned int pg_shift)
933 {
934 unsigned long cap = hr_dev->caps.page_size_cap;
935 struct hns_roce_buf_region *re;
936 unsigned int pgs_per_l1ba;
937 unsigned int ba_per_bt;
938 unsigned int ba_num;
939 int i;
940
941 for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) {
942 if (!(BIT(pg_shift) & cap))
943 continue;
944
945 ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN;
946 ba_num = 0;
947 for (i = 0; i < mtr->hem_cfg.region_count; i++) {
948 re = &mtr->hem_cfg.region[i];
949 if (re->hopnum == 0)
950 continue;
951
952 pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum);
953 ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba);
954 }
955
956 if (ba_num <= ba_per_bt)
957 return pg_shift;
958 }
959
960 return 0;
961 }
962
mtr_alloc_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int ba_page_shift)963 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
964 unsigned int ba_page_shift)
965 {
966 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
967 int ret;
968
969 hns_roce_hem_list_init(&mtr->hem_list);
970 if (!cfg->is_direct) {
971 ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift);
972 if (!ba_page_shift)
973 return -ERANGE;
974
975 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
976 cfg->region, cfg->region_count,
977 ba_page_shift);
978 if (ret)
979 return ret;
980 cfg->root_ba = mtr->hem_list.root_ba;
981 cfg->ba_pg_shift = ba_page_shift;
982 } else {
983 cfg->ba_pg_shift = cfg->buf_pg_shift;
984 }
985
986 return 0;
987 }
988
mtr_free_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)989 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
990 {
991 hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
992 }
993
994 /**
995 * hns_roce_mtr_create - Create hns memory translate region.
996 *
997 * @hr_dev: RoCE device struct pointer
998 * @mtr: memory translate region
999 * @buf_attr: buffer attribute for creating mtr
1000 * @ba_page_shift: page shift for multi-hop base address table
1001 * @udata: user space context, if it's NULL, means kernel space
1002 * @user_addr: userspace virtual address to start at
1003 */
hns_roce_mtr_create(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_page_shift,struct ib_udata * udata,unsigned long user_addr)1004 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
1005 struct hns_roce_buf_attr *buf_attr,
1006 unsigned int ba_page_shift, struct ib_udata *udata,
1007 unsigned long user_addr)
1008 {
1009 struct ib_device *ibdev = &hr_dev->ib_dev;
1010 unsigned int buf_page_shift = 0;
1011 int buf_page_cnt;
1012 int ret;
1013
1014 buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg,
1015 &buf_page_shift,
1016 udata ? user_addr & ~PAGE_MASK : 0);
1017 if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) {
1018 ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n",
1019 buf_page_cnt, buf_page_shift);
1020 return -EINVAL;
1021 }
1022
1023 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
1024 if (ret) {
1025 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
1026 return ret;
1027 }
1028
1029 /* The caller has its own buffer list and invokes the hns_roce_mtr_map()
1030 * to finish the MTT configuration.
1031 */
1032 if (buf_attr->mtt_only) {
1033 mtr->umem = NULL;
1034 mtr->kmem = NULL;
1035 return 0;
1036 }
1037
1038 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
1039 if (ret) {
1040 ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret);
1041 goto err_alloc_mtt;
1042 }
1043
1044 /* Write buffer's dma address to MTT */
1045 ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift);
1046 if (ret)
1047 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
1048 else
1049 return 0;
1050
1051 mtr_free_bufs(hr_dev, mtr);
1052 err_alloc_mtt:
1053 mtr_free_mtt(hr_dev, mtr);
1054 return ret;
1055 }
1056
hns_roce_mtr_destroy(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1057 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1058 {
1059 /* release multi-hop addressing resource */
1060 hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1061
1062 /* free buffers */
1063 mtr_free_bufs(hr_dev, mtr);
1064 }
1065