xref: /qemu/system/physmem.c (revision 24c00b754121f3569ea9e68f5f188747cf5b8439)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29 
30 #ifdef CONFIG_TCG
31 #include "accel/tcg/cpu-ops.h"
32 #include "accel/tcg/iommu.h"
33 #endif /* CONFIG_TCG */
34 
35 #include "exec/cputlb.h"
36 #include "exec/page-protection.h"
37 #include "exec/target_page.h"
38 #include "exec/translation-block.h"
39 #include "hw/qdev-core.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/boards.h"
42 #include "system/xen.h"
43 #include "system/kvm.h"
44 #include "system/tcg.h"
45 #include "system/qtest.h"
46 #include "qemu/timer.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qemu/qemu-print.h"
50 #include "qemu/log.h"
51 #include "qemu/memalign.h"
52 #include "qemu/memfd.h"
53 #include "system/memory.h"
54 #include "system/ioport.h"
55 #include "system/dma.h"
56 #include "system/hostmem.h"
57 #include "system/hw_accel.h"
58 #include "system/xen-mapcache.h"
59 #include "trace.h"
60 
61 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
62 #include <linux/falloc.h>
63 #endif
64 
65 #include "qemu/rcu_queue.h"
66 #include "qemu/main-loop.h"
67 #include "system/replay.h"
68 
69 #include "system/ram_addr.h"
70 
71 #include "qemu/pmem.h"
72 
73 #include "qapi/qapi-types-migration.h"
74 #include "migration/blocker.h"
75 #include "migration/cpr.h"
76 #include "migration/options.h"
77 #include "migration/vmstate.h"
78 
79 #include "qemu/range.h"
80 #ifndef _WIN32
81 #include "qemu/mmap-alloc.h"
82 #endif
83 
84 #include "monitor/monitor.h"
85 
86 #ifdef CONFIG_LIBDAXCTL
87 #include <daxctl/libdaxctl.h>
88 #endif
89 
90 #include "memory-internal.h"
91 
92 //#define DEBUG_SUBPAGE
93 
94 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
95  * are protected by the ramlist lock.
96  */
97 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
98 
99 static MemoryRegion *system_memory;
100 static MemoryRegion *system_io;
101 
102 AddressSpace address_space_io;
103 AddressSpace address_space_memory;
104 
105 static MemoryRegion io_mem_unassigned;
106 
107 typedef struct PhysPageEntry PhysPageEntry;
108 
109 struct PhysPageEntry {
110     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
111     uint32_t skip : 6;
112      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
113     uint32_t ptr : 26;
114 };
115 
116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
117 
118 /* Size of the L2 (and L3, etc) page tables.  */
119 #define ADDR_SPACE_BITS 64
120 
121 #define P_L2_BITS 9
122 #define P_L2_SIZE (1 << P_L2_BITS)
123 
124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
125 
126 typedef PhysPageEntry Node[P_L2_SIZE];
127 
128 typedef struct PhysPageMap {
129     struct rcu_head rcu;
130 
131     unsigned sections_nb;
132     unsigned sections_nb_alloc;
133     unsigned nodes_nb;
134     unsigned nodes_nb_alloc;
135     Node *nodes;
136     MemoryRegionSection *sections;
137 } PhysPageMap;
138 
139 struct AddressSpaceDispatch {
140     MemoryRegionSection *mru_section;
141     /* This is a multi-level map on the physical address space.
142      * The bottom level has pointers to MemoryRegionSections.
143      */
144     PhysPageEntry phys_map;
145     PhysPageMap map;
146 };
147 
148 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
149 typedef struct subpage_t {
150     MemoryRegion iomem;
151     FlatView *fv;
152     hwaddr base;
153     uint16_t sub_section[];
154 } subpage_t;
155 
156 #define PHYS_SECTION_UNASSIGNED 0
157 
158 static void io_mem_init(void);
159 static void memory_map_init(void);
160 static void tcg_log_global_after_sync(MemoryListener *listener);
161 static void tcg_commit(MemoryListener *listener);
162 static bool ram_is_cpr_compatible(RAMBlock *rb);
163 
164 /**
165  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
166  * @cpu: the CPU whose AddressSpace this is
167  * @as: the AddressSpace itself
168  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
169  * @tcg_as_listener: listener for tracking changes to the AddressSpace
170  */
171 typedef struct CPUAddressSpace {
172     CPUState *cpu;
173     AddressSpace *as;
174     struct AddressSpaceDispatch *memory_dispatch;
175     MemoryListener tcg_as_listener;
176 } CPUAddressSpace;
177 
178 struct DirtyBitmapSnapshot {
179     ram_addr_t start;
180     ram_addr_t end;
181     unsigned long dirty[];
182 };
183 
phys_map_node_reserve(PhysPageMap * map,unsigned nodes)184 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
185 {
186     static unsigned alloc_hint = 16;
187     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
188         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
189         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
190         alloc_hint = map->nodes_nb_alloc;
191     }
192 }
193 
phys_map_node_alloc(PhysPageMap * map,bool leaf)194 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
195 {
196     unsigned i;
197     uint32_t ret;
198     PhysPageEntry e;
199     PhysPageEntry *p;
200 
201     ret = map->nodes_nb++;
202     p = map->nodes[ret];
203     assert(ret != PHYS_MAP_NODE_NIL);
204     assert(ret != map->nodes_nb_alloc);
205 
206     e.skip = leaf ? 0 : 1;
207     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
208     for (i = 0; i < P_L2_SIZE; ++i) {
209         memcpy(&p[i], &e, sizeof(e));
210     }
211     return ret;
212 }
213 
phys_page_set_level(PhysPageMap * map,PhysPageEntry * lp,hwaddr * index,uint64_t * nb,uint16_t leaf,int level)214 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
215                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
216                                 int level)
217 {
218     PhysPageEntry *p;
219     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
220 
221     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
222         lp->ptr = phys_map_node_alloc(map, level == 0);
223     }
224     p = map->nodes[lp->ptr];
225     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
226 
227     while (*nb && lp < &p[P_L2_SIZE]) {
228         if ((*index & (step - 1)) == 0 && *nb >= step) {
229             lp->skip = 0;
230             lp->ptr = leaf;
231             *index += step;
232             *nb -= step;
233         } else {
234             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
235         }
236         ++lp;
237     }
238 }
239 
phys_page_set(AddressSpaceDispatch * d,hwaddr index,uint64_t nb,uint16_t leaf)240 static void phys_page_set(AddressSpaceDispatch *d,
241                           hwaddr index, uint64_t nb,
242                           uint16_t leaf)
243 {
244     /* Wildly overreserve - it doesn't matter much. */
245     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
246 
247     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
248 }
249 
250 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
251  * and update our entry so we can skip it and go directly to the destination.
252  */
phys_page_compact(PhysPageEntry * lp,Node * nodes)253 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
254 {
255     unsigned valid_ptr = P_L2_SIZE;
256     int valid = 0;
257     PhysPageEntry *p;
258     int i;
259 
260     if (lp->ptr == PHYS_MAP_NODE_NIL) {
261         return;
262     }
263 
264     p = nodes[lp->ptr];
265     for (i = 0; i < P_L2_SIZE; i++) {
266         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
267             continue;
268         }
269 
270         valid_ptr = i;
271         valid++;
272         if (p[i].skip) {
273             phys_page_compact(&p[i], nodes);
274         }
275     }
276 
277     /* We can only compress if there's only one child. */
278     if (valid != 1) {
279         return;
280     }
281 
282     assert(valid_ptr < P_L2_SIZE);
283 
284     /* Don't compress if it won't fit in the # of bits we have. */
285     if (P_L2_LEVELS >= (1 << 6) &&
286         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
287         return;
288     }
289 
290     lp->ptr = p[valid_ptr].ptr;
291     if (!p[valid_ptr].skip) {
292         /* If our only child is a leaf, make this a leaf. */
293         /* By design, we should have made this node a leaf to begin with so we
294          * should never reach here.
295          * But since it's so simple to handle this, let's do it just in case we
296          * change this rule.
297          */
298         lp->skip = 0;
299     } else {
300         lp->skip += p[valid_ptr].skip;
301     }
302 }
303 
address_space_dispatch_compact(AddressSpaceDispatch * d)304 void address_space_dispatch_compact(AddressSpaceDispatch *d)
305 {
306     if (d->phys_map.skip) {
307         phys_page_compact(&d->phys_map, d->map.nodes);
308     }
309 }
310 
section_covers_addr(const MemoryRegionSection * section,hwaddr addr)311 static inline bool section_covers_addr(const MemoryRegionSection *section,
312                                        hwaddr addr)
313 {
314     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
315      * the section must cover the entire address space.
316      */
317     return int128_gethi(section->size) ||
318            range_covers_byte(section->offset_within_address_space,
319                              int128_getlo(section->size), addr);
320 }
321 
phys_page_find(AddressSpaceDispatch * d,hwaddr addr)322 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
323 {
324     PhysPageEntry lp = d->phys_map, *p;
325     Node *nodes = d->map.nodes;
326     MemoryRegionSection *sections = d->map.sections;
327     hwaddr index = addr >> TARGET_PAGE_BITS;
328     int i;
329 
330     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
331         if (lp.ptr == PHYS_MAP_NODE_NIL) {
332             return &sections[PHYS_SECTION_UNASSIGNED];
333         }
334         p = nodes[lp.ptr];
335         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
336     }
337 
338     if (section_covers_addr(&sections[lp.ptr], addr)) {
339         return &sections[lp.ptr];
340     } else {
341         return &sections[PHYS_SECTION_UNASSIGNED];
342     }
343 }
344 
345 /* Called from RCU critical section */
address_space_lookup_region(AddressSpaceDispatch * d,hwaddr addr,bool resolve_subpage)346 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
347                                                         hwaddr addr,
348                                                         bool resolve_subpage)
349 {
350     MemoryRegionSection *section = qatomic_read(&d->mru_section);
351     subpage_t *subpage;
352 
353     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
354         !section_covers_addr(section, addr)) {
355         section = phys_page_find(d, addr);
356         qatomic_set(&d->mru_section, section);
357     }
358     if (resolve_subpage && section->mr->subpage) {
359         subpage = container_of(section->mr, subpage_t, iomem);
360         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
361     }
362     return section;
363 }
364 
365 /* Called from RCU critical section */
366 static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch * d,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool resolve_subpage)367 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
368                                  hwaddr *plen, bool resolve_subpage)
369 {
370     MemoryRegionSection *section;
371     MemoryRegion *mr;
372     Int128 diff;
373 
374     section = address_space_lookup_region(d, addr, resolve_subpage);
375     /* Compute offset within MemoryRegionSection */
376     addr -= section->offset_within_address_space;
377 
378     /* Compute offset within MemoryRegion */
379     *xlat = addr + section->offset_within_region;
380 
381     mr = section->mr;
382 
383     /* MMIO registers can be expected to perform full-width accesses based only
384      * on their address, without considering adjacent registers that could
385      * decode to completely different MemoryRegions.  When such registers
386      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
387      * regions overlap wildly.  For this reason we cannot clamp the accesses
388      * here.
389      *
390      * If the length is small (as is the case for address_space_ldl/stl),
391      * everything works fine.  If the incoming length is large, however,
392      * the caller really has to do the clamping through memory_access_size.
393      */
394     if (memory_region_is_ram(mr)) {
395         diff = int128_sub(section->size, int128_make64(addr));
396         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
397     }
398     return section;
399 }
400 
401 /**
402  * address_space_translate_iommu - translate an address through an IOMMU
403  * memory region and then through the target address space.
404  *
405  * @iommu_mr: the IOMMU memory region that we start the translation from
406  * @addr: the address to be translated through the MMU
407  * @xlat: the translated address offset within the destination memory region.
408  *        It cannot be %NULL.
409  * @plen_out: valid read/write length of the translated address. It
410  *            cannot be %NULL.
411  * @page_mask_out: page mask for the translated address. This
412  *            should only be meaningful for IOMMU translated
413  *            addresses, since there may be huge pages that this bit
414  *            would tell. It can be %NULL if we don't care about it.
415  * @is_write: whether the translation operation is for write
416  * @is_mmio: whether this can be MMIO, set true if it can
417  * @target_as: the address space targeted by the IOMMU
418  * @attrs: transaction attributes
419  *
420  * This function is called from RCU critical section.  It is the common
421  * part of flatview_do_translate and address_space_translate_cached.
422  */
address_space_translate_iommu(IOMMUMemoryRegion * iommu_mr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)423 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
424                                                          hwaddr *xlat,
425                                                          hwaddr *plen_out,
426                                                          hwaddr *page_mask_out,
427                                                          bool is_write,
428                                                          bool is_mmio,
429                                                          AddressSpace **target_as,
430                                                          MemTxAttrs attrs)
431 {
432     MemoryRegionSection *section;
433     hwaddr page_mask = (hwaddr)-1;
434 
435     do {
436         hwaddr addr = *xlat;
437         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
438         int iommu_idx = 0;
439         IOMMUTLBEntry iotlb;
440 
441         if (imrc->attrs_to_index) {
442             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
443         }
444 
445         iotlb = imrc->translate(iommu_mr, addr, is_write ?
446                                 IOMMU_WO : IOMMU_RO, iommu_idx);
447 
448         if (!(iotlb.perm & (1 << is_write))) {
449             goto unassigned;
450         }
451 
452         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
453                 | (addr & iotlb.addr_mask));
454         page_mask &= iotlb.addr_mask;
455         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
456         *target_as = iotlb.target_as;
457 
458         section = address_space_translate_internal(
459                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
460                 plen_out, is_mmio);
461 
462         iommu_mr = memory_region_get_iommu(section->mr);
463     } while (unlikely(iommu_mr));
464 
465     if (page_mask_out) {
466         *page_mask_out = page_mask;
467     }
468     return *section;
469 
470 unassigned:
471     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
472 }
473 
474 /**
475  * flatview_do_translate - translate an address in FlatView
476  *
477  * @fv: the flat view that we want to translate on
478  * @addr: the address to be translated in above address space
479  * @xlat: the translated address offset within memory region. It
480  *        cannot be @NULL.
481  * @plen_out: valid read/write length of the translated address. It
482  *            can be @NULL when we don't care about it.
483  * @page_mask_out: page mask for the translated address. This
484  *            should only be meaningful for IOMMU translated
485  *            addresses, since there may be huge pages that this bit
486  *            would tell. It can be @NULL if we don't care about it.
487  * @is_write: whether the translation operation is for write
488  * @is_mmio: whether this can be MMIO, set true if it can
489  * @target_as: the address space targeted by the IOMMU
490  * @attrs: memory transaction attributes
491  *
492  * This function is called from RCU critical section
493  */
flatview_do_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)494 static MemoryRegionSection flatview_do_translate(FlatView *fv,
495                                                  hwaddr addr,
496                                                  hwaddr *xlat,
497                                                  hwaddr *plen_out,
498                                                  hwaddr *page_mask_out,
499                                                  bool is_write,
500                                                  bool is_mmio,
501                                                  AddressSpace **target_as,
502                                                  MemTxAttrs attrs)
503 {
504     MemoryRegionSection *section;
505     IOMMUMemoryRegion *iommu_mr;
506     hwaddr plen = (hwaddr)(-1);
507 
508     if (!plen_out) {
509         plen_out = &plen;
510     }
511 
512     section = address_space_translate_internal(
513             flatview_to_dispatch(fv), addr, xlat,
514             plen_out, is_mmio);
515 
516     iommu_mr = memory_region_get_iommu(section->mr);
517     if (unlikely(iommu_mr)) {
518         return address_space_translate_iommu(iommu_mr, xlat,
519                                              plen_out, page_mask_out,
520                                              is_write, is_mmio,
521                                              target_as, attrs);
522     }
523     if (page_mask_out) {
524         /* Not behind an IOMMU, use default page size. */
525         *page_mask_out = ~TARGET_PAGE_MASK;
526     }
527 
528     return *section;
529 }
530 
531 /* Called from RCU critical section */
address_space_get_iotlb_entry(AddressSpace * as,hwaddr addr,bool is_write,MemTxAttrs attrs)532 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
533                                             bool is_write, MemTxAttrs attrs)
534 {
535     MemoryRegionSection section;
536     hwaddr xlat, page_mask;
537 
538     /*
539      * This can never be MMIO, and we don't really care about plen,
540      * but page mask.
541      */
542     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
543                                     NULL, &page_mask, is_write, false, &as,
544                                     attrs);
545 
546     /* Illegal translation */
547     if (section.mr == &io_mem_unassigned) {
548         goto iotlb_fail;
549     }
550 
551     /* Convert memory region offset into address space offset */
552     xlat += section.offset_within_address_space -
553         section.offset_within_region;
554 
555     return (IOMMUTLBEntry) {
556         .target_as = as,
557         .iova = addr & ~page_mask,
558         .translated_addr = xlat & ~page_mask,
559         .addr_mask = page_mask,
560         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
561         .perm = IOMMU_RW,
562     };
563 
564 iotlb_fail:
565     return (IOMMUTLBEntry) {0};
566 }
567 
568 /* Called from RCU critical section */
flatview_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)569 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
570                                  hwaddr *plen, bool is_write,
571                                  MemTxAttrs attrs)
572 {
573     MemoryRegion *mr;
574     MemoryRegionSection section;
575     AddressSpace *as = NULL;
576 
577     /* This can be MMIO, so setup MMIO bit. */
578     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
579                                     is_write, true, &as, attrs);
580     mr = section.mr;
581 
582     if (xen_enabled() && memory_access_is_direct(mr, is_write, attrs)) {
583         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
584         *plen = MIN(page, *plen);
585     }
586 
587     return mr;
588 }
589 
590 #ifdef CONFIG_TCG
591 
592 typedef struct TCGIOMMUNotifier {
593     IOMMUNotifier n;
594     MemoryRegion *mr;
595     CPUState *cpu;
596     int iommu_idx;
597     bool active;
598 } TCGIOMMUNotifier;
599 
tcg_iommu_unmap_notify(IOMMUNotifier * n,IOMMUTLBEntry * iotlb)600 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
601 {
602     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
603 
604     if (!notifier->active) {
605         return;
606     }
607     tlb_flush(notifier->cpu);
608     notifier->active = false;
609     /* We leave the notifier struct on the list to avoid reallocating it later.
610      * Generally the number of IOMMUs a CPU deals with will be small.
611      * In any case we can't unregister the iommu notifier from a notify
612      * callback.
613      */
614 }
615 
tcg_register_iommu_notifier(CPUState * cpu,IOMMUMemoryRegion * iommu_mr,int iommu_idx)616 static void tcg_register_iommu_notifier(CPUState *cpu,
617                                         IOMMUMemoryRegion *iommu_mr,
618                                         int iommu_idx)
619 {
620     /* Make sure this CPU has an IOMMU notifier registered for this
621      * IOMMU/IOMMU index combination, so that we can flush its TLB
622      * when the IOMMU tells us the mappings we've cached have changed.
623      */
624     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
625     TCGIOMMUNotifier *notifier = NULL;
626     int i;
627 
628     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
629         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
630         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
631             break;
632         }
633     }
634     if (i == cpu->iommu_notifiers->len) {
635         /* Not found, add a new entry at the end of the array */
636         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
637         notifier = g_new0(TCGIOMMUNotifier, 1);
638         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
639 
640         notifier->mr = mr;
641         notifier->iommu_idx = iommu_idx;
642         notifier->cpu = cpu;
643         /* Rather than trying to register interest in the specific part
644          * of the iommu's address space that we've accessed and then
645          * expand it later as subsequent accesses touch more of it, we
646          * just register interest in the whole thing, on the assumption
647          * that iommu reconfiguration will be rare.
648          */
649         iommu_notifier_init(&notifier->n,
650                             tcg_iommu_unmap_notify,
651                             IOMMU_NOTIFIER_UNMAP,
652                             0,
653                             HWADDR_MAX,
654                             iommu_idx);
655         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
656                                               &error_fatal);
657     }
658 
659     if (!notifier->active) {
660         notifier->active = true;
661     }
662 }
663 
tcg_iommu_free_notifier_list(CPUState * cpu)664 void tcg_iommu_free_notifier_list(CPUState *cpu)
665 {
666     /* Destroy the CPU's notifier list */
667     int i;
668     TCGIOMMUNotifier *notifier;
669 
670     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
671         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
672         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
673         g_free(notifier);
674     }
675     g_array_free(cpu->iommu_notifiers, true);
676 }
677 
tcg_iommu_init_notifier_list(CPUState * cpu)678 void tcg_iommu_init_notifier_list(CPUState *cpu)
679 {
680     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
681 }
682 
683 /* Called from RCU critical section */
684 MemoryRegionSection *
address_space_translate_for_iotlb(CPUState * cpu,int asidx,hwaddr orig_addr,hwaddr * xlat,hwaddr * plen,MemTxAttrs attrs,int * prot)685 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
686                                   hwaddr *xlat, hwaddr *plen,
687                                   MemTxAttrs attrs, int *prot)
688 {
689     MemoryRegionSection *section;
690     IOMMUMemoryRegion *iommu_mr;
691     IOMMUMemoryRegionClass *imrc;
692     IOMMUTLBEntry iotlb;
693     int iommu_idx;
694     hwaddr addr = orig_addr;
695     AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
696 
697     for (;;) {
698         section = address_space_translate_internal(d, addr, &addr, plen, false);
699 
700         iommu_mr = memory_region_get_iommu(section->mr);
701         if (!iommu_mr) {
702             break;
703         }
704 
705         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
706 
707         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
708         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
709         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
710          * doesn't short-cut its translation table walk.
711          */
712         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
713         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
714                 | (addr & iotlb.addr_mask));
715         /* Update the caller's prot bits to remove permissions the IOMMU
716          * is giving us a failure response for. If we get down to no
717          * permissions left at all we can give up now.
718          */
719         if (!(iotlb.perm & IOMMU_RO)) {
720             *prot &= ~(PAGE_READ | PAGE_EXEC);
721         }
722         if (!(iotlb.perm & IOMMU_WO)) {
723             *prot &= ~PAGE_WRITE;
724         }
725 
726         if (!*prot) {
727             goto translate_fail;
728         }
729 
730         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
731     }
732 
733     assert(!memory_region_is_iommu(section->mr));
734     *xlat = addr;
735     return section;
736 
737 translate_fail:
738     /*
739      * We should be given a page-aligned address -- certainly
740      * tlb_set_page_with_attrs() does so.  The page offset of xlat
741      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
742      * The page portion of xlat will be logged by memory_region_access_valid()
743      * when this memory access is rejected, so use the original untranslated
744      * physical address.
745      */
746     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
747     *xlat = orig_addr;
748     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
749 }
750 
iotlb_to_section(CPUState * cpu,hwaddr index,MemTxAttrs attrs)751 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
752                                       hwaddr index, MemTxAttrs attrs)
753 {
754     int asidx = cpu_asidx_from_attrs(cpu, attrs);
755     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
756     AddressSpaceDispatch *d = cpuas->memory_dispatch;
757     int section_index = index & ~TARGET_PAGE_MASK;
758     MemoryRegionSection *ret;
759 
760     assert(section_index < d->map.sections_nb);
761     ret = d->map.sections + section_index;
762     assert(ret->mr);
763     assert(ret->mr->ops);
764 
765     return ret;
766 }
767 
768 /* Called from RCU critical section */
memory_region_section_get_iotlb(CPUState * cpu,MemoryRegionSection * section)769 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
770                                        MemoryRegionSection *section)
771 {
772     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
773     return section - d->map.sections;
774 }
775 
776 #endif /* CONFIG_TCG */
777 
cpu_address_space_init(CPUState * cpu,int asidx,const char * prefix,MemoryRegion * mr)778 void cpu_address_space_init(CPUState *cpu, int asidx,
779                             const char *prefix, MemoryRegion *mr)
780 {
781     CPUAddressSpace *newas;
782     AddressSpace *as = g_new0(AddressSpace, 1);
783     char *as_name;
784 
785     assert(mr);
786     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
787     address_space_init(as, mr, as_name);
788     g_free(as_name);
789 
790     /* Target code should have set num_ases before calling us */
791     assert(asidx < cpu->num_ases);
792 
793     if (asidx == 0) {
794         /* address space 0 gets the convenience alias */
795         cpu->as = as;
796     }
797 
798     /* KVM cannot currently support multiple address spaces. */
799     assert(asidx == 0 || !kvm_enabled());
800 
801     if (!cpu->cpu_ases) {
802         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
803         cpu->cpu_ases_count = cpu->num_ases;
804     }
805 
806     newas = &cpu->cpu_ases[asidx];
807     newas->cpu = cpu;
808     newas->as = as;
809     if (tcg_enabled()) {
810         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
811         newas->tcg_as_listener.commit = tcg_commit;
812         newas->tcg_as_listener.name = "tcg";
813         memory_listener_register(&newas->tcg_as_listener, as);
814     }
815 }
816 
cpu_address_space_destroy(CPUState * cpu,int asidx)817 void cpu_address_space_destroy(CPUState *cpu, int asidx)
818 {
819     CPUAddressSpace *cpuas;
820 
821     assert(cpu->cpu_ases);
822     assert(asidx >= 0 && asidx < cpu->num_ases);
823     /* KVM cannot currently support multiple address spaces. */
824     assert(asidx == 0 || !kvm_enabled());
825 
826     cpuas = &cpu->cpu_ases[asidx];
827     if (tcg_enabled()) {
828         memory_listener_unregister(&cpuas->tcg_as_listener);
829     }
830 
831     address_space_destroy(cpuas->as);
832     g_free_rcu(cpuas->as, rcu);
833 
834     if (asidx == 0) {
835         /* reset the convenience alias for address space 0 */
836         cpu->as = NULL;
837     }
838 
839     if (--cpu->cpu_ases_count == 0) {
840         g_free(cpu->cpu_ases);
841         cpu->cpu_ases = NULL;
842     }
843 }
844 
cpu_get_address_space(CPUState * cpu,int asidx)845 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
846 {
847     /* Return the AddressSpace corresponding to the specified index */
848     return cpu->cpu_ases[asidx].as;
849 }
850 
851 /* Called from RCU critical section */
qemu_get_ram_block(ram_addr_t addr)852 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
853 {
854     RAMBlock *block;
855 
856     block = qatomic_rcu_read(&ram_list.mru_block);
857     if (block && addr - block->offset < block->max_length) {
858         return block;
859     }
860     RAMBLOCK_FOREACH(block) {
861         if (addr - block->offset < block->max_length) {
862             goto found;
863         }
864     }
865 
866     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
867     abort();
868 
869 found:
870     /* It is safe to write mru_block outside the BQL.  This
871      * is what happens:
872      *
873      *     mru_block = xxx
874      *     rcu_read_unlock()
875      *                                        xxx removed from list
876      *                  rcu_read_lock()
877      *                  read mru_block
878      *                                        mru_block = NULL;
879      *                                        call_rcu(reclaim_ramblock, xxx);
880      *                  rcu_read_unlock()
881      *
882      * qatomic_rcu_set is not needed here.  The block was already published
883      * when it was placed into the list.  Here we're just making an extra
884      * copy of the pointer.
885      */
886     ram_list.mru_block = block;
887     return block;
888 }
889 
tlb_reset_dirty_range_all(ram_addr_t start,ram_addr_t length)890 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
891 {
892     CPUState *cpu;
893     ram_addr_t start1;
894     RAMBlock *block;
895     ram_addr_t end;
896 
897     assert(tcg_enabled());
898     end = TARGET_PAGE_ALIGN(start + length);
899     start &= TARGET_PAGE_MASK;
900 
901     RCU_READ_LOCK_GUARD();
902     block = qemu_get_ram_block(start);
903     assert(block == qemu_get_ram_block(end - 1));
904     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
905     CPU_FOREACH(cpu) {
906         tlb_reset_dirty(cpu, start1, length);
907     }
908 }
909 
910 /* Note: start and end must be within the same ram block.  */
cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,ram_addr_t length,unsigned client)911 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
912                                               ram_addr_t length,
913                                               unsigned client)
914 {
915     DirtyMemoryBlocks *blocks;
916     unsigned long end, page, start_page;
917     bool dirty = false;
918     RAMBlock *ramblock;
919     uint64_t mr_offset, mr_size;
920 
921     if (length == 0) {
922         return false;
923     }
924 
925     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
926     start_page = start >> TARGET_PAGE_BITS;
927     page = start_page;
928 
929     WITH_RCU_READ_LOCK_GUARD() {
930         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
931         ramblock = qemu_get_ram_block(start);
932         /* Range sanity check on the ramblock */
933         assert(start >= ramblock->offset &&
934                start + length <= ramblock->offset + ramblock->used_length);
935 
936         while (page < end) {
937             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
938             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
939             unsigned long num = MIN(end - page,
940                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
941 
942             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
943                                                   offset, num);
944             page += num;
945         }
946 
947         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
948         mr_size = (end - start_page) << TARGET_PAGE_BITS;
949         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
950     }
951 
952     if (dirty) {
953         cpu_physical_memory_dirty_bits_cleared(start, length);
954     }
955 
956     return dirty;
957 }
958 
cpu_physical_memory_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr offset,hwaddr length,unsigned client)959 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
960     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
961 {
962     DirtyMemoryBlocks *blocks;
963     ram_addr_t start, first, last;
964     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
965     DirtyBitmapSnapshot *snap;
966     unsigned long page, end, dest;
967 
968     start = memory_region_get_ram_addr(mr);
969     /* We know we're only called for RAM MemoryRegions */
970     assert(start != RAM_ADDR_INVALID);
971     start += offset;
972 
973     first = QEMU_ALIGN_DOWN(start, align);
974     last  = QEMU_ALIGN_UP(start + length, align);
975 
976     snap = g_malloc0(sizeof(*snap) +
977                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
978     snap->start = first;
979     snap->end   = last;
980 
981     page = first >> TARGET_PAGE_BITS;
982     end  = last  >> TARGET_PAGE_BITS;
983     dest = 0;
984 
985     WITH_RCU_READ_LOCK_GUARD() {
986         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
987 
988         while (page < end) {
989             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
990             unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
991             unsigned long num = MIN(end - page,
992                                     DIRTY_MEMORY_BLOCK_SIZE - ofs);
993 
994             assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
995             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
996             ofs >>= BITS_PER_LEVEL;
997 
998             bitmap_copy_and_clear_atomic(snap->dirty + dest,
999                                          blocks->blocks[idx] + ofs,
1000                                          num);
1001             page += num;
1002             dest += num >> BITS_PER_LEVEL;
1003         }
1004     }
1005 
1006     cpu_physical_memory_dirty_bits_cleared(start, length);
1007 
1008     memory_region_clear_dirty_bitmap(mr, offset, length);
1009 
1010     return snap;
1011 }
1012 
cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot * snap,ram_addr_t start,ram_addr_t length)1013 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1014                                             ram_addr_t start,
1015                                             ram_addr_t length)
1016 {
1017     unsigned long page, end;
1018 
1019     assert(start >= snap->start);
1020     assert(start + length <= snap->end);
1021 
1022     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1023     page = (start - snap->start) >> TARGET_PAGE_BITS;
1024 
1025     while (page < end) {
1026         if (test_bit(page, snap->dirty)) {
1027             return true;
1028         }
1029         page++;
1030     }
1031     return false;
1032 }
1033 
1034 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1035                             uint16_t section);
1036 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1037 
phys_section_add(PhysPageMap * map,MemoryRegionSection * section)1038 static uint16_t phys_section_add(PhysPageMap *map,
1039                                  MemoryRegionSection *section)
1040 {
1041     /* The physical section number is ORed with a page-aligned
1042      * pointer to produce the iotlb entries.  Thus it should
1043      * never overflow into the page-aligned value.
1044      */
1045     assert(map->sections_nb < TARGET_PAGE_SIZE);
1046 
1047     if (map->sections_nb == map->sections_nb_alloc) {
1048         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1049         map->sections = g_renew(MemoryRegionSection, map->sections,
1050                                 map->sections_nb_alloc);
1051     }
1052     map->sections[map->sections_nb] = *section;
1053     memory_region_ref(section->mr);
1054     return map->sections_nb++;
1055 }
1056 
phys_section_destroy(MemoryRegion * mr)1057 static void phys_section_destroy(MemoryRegion *mr)
1058 {
1059     bool have_sub_page = mr->subpage;
1060 
1061     memory_region_unref(mr);
1062 
1063     if (have_sub_page) {
1064         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1065         object_unref(OBJECT(&subpage->iomem));
1066         g_free(subpage);
1067     }
1068 }
1069 
phys_sections_free(PhysPageMap * map)1070 static void phys_sections_free(PhysPageMap *map)
1071 {
1072     while (map->sections_nb > 0) {
1073         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1074         phys_section_destroy(section->mr);
1075     }
1076     g_free(map->sections);
1077     g_free(map->nodes);
1078 }
1079 
register_subpage(FlatView * fv,MemoryRegionSection * section)1080 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1081 {
1082     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1083     subpage_t *subpage;
1084     hwaddr base = section->offset_within_address_space
1085         & TARGET_PAGE_MASK;
1086     MemoryRegionSection *existing = phys_page_find(d, base);
1087     MemoryRegionSection subsection = {
1088         .offset_within_address_space = base,
1089         .size = int128_make64(TARGET_PAGE_SIZE),
1090     };
1091     hwaddr start, end;
1092 
1093     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1094 
1095     if (!(existing->mr->subpage)) {
1096         subpage = subpage_init(fv, base);
1097         subsection.fv = fv;
1098         subsection.mr = &subpage->iomem;
1099         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1100                       phys_section_add(&d->map, &subsection));
1101     } else {
1102         subpage = container_of(existing->mr, subpage_t, iomem);
1103     }
1104     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1105     end = start + int128_get64(section->size) - 1;
1106     subpage_register(subpage, start, end,
1107                      phys_section_add(&d->map, section));
1108 }
1109 
1110 
register_multipage(FlatView * fv,MemoryRegionSection * section)1111 static void register_multipage(FlatView *fv,
1112                                MemoryRegionSection *section)
1113 {
1114     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1115     hwaddr start_addr = section->offset_within_address_space;
1116     uint16_t section_index = phys_section_add(&d->map, section);
1117     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1118                                                     TARGET_PAGE_BITS));
1119 
1120     assert(num_pages);
1121     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1122 }
1123 
1124 /*
1125  * The range in *section* may look like this:
1126  *
1127  *      |s|PPPPPPP|s|
1128  *
1129  * where s stands for subpage and P for page.
1130  */
flatview_add_to_dispatch(FlatView * fv,MemoryRegionSection * section)1131 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1132 {
1133     MemoryRegionSection remain = *section;
1134     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1135 
1136     /* register first subpage */
1137     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1138         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1139                         - remain.offset_within_address_space;
1140 
1141         MemoryRegionSection now = remain;
1142         now.size = int128_min(int128_make64(left), now.size);
1143         register_subpage(fv, &now);
1144         if (int128_eq(remain.size, now.size)) {
1145             return;
1146         }
1147         remain.size = int128_sub(remain.size, now.size);
1148         remain.offset_within_address_space += int128_get64(now.size);
1149         remain.offset_within_region += int128_get64(now.size);
1150     }
1151 
1152     /* register whole pages */
1153     if (int128_ge(remain.size, page_size)) {
1154         MemoryRegionSection now = remain;
1155         now.size = int128_and(now.size, int128_neg(page_size));
1156         register_multipage(fv, &now);
1157         if (int128_eq(remain.size, now.size)) {
1158             return;
1159         }
1160         remain.size = int128_sub(remain.size, now.size);
1161         remain.offset_within_address_space += int128_get64(now.size);
1162         remain.offset_within_region += int128_get64(now.size);
1163     }
1164 
1165     /* register last subpage */
1166     register_subpage(fv, &remain);
1167 }
1168 
qemu_flush_coalesced_mmio_buffer(void)1169 void qemu_flush_coalesced_mmio_buffer(void)
1170 {
1171     if (kvm_enabled())
1172         kvm_flush_coalesced_mmio_buffer();
1173 }
1174 
qemu_mutex_lock_ramlist(void)1175 void qemu_mutex_lock_ramlist(void)
1176 {
1177     qemu_mutex_lock(&ram_list.mutex);
1178 }
1179 
qemu_mutex_unlock_ramlist(void)1180 void qemu_mutex_unlock_ramlist(void)
1181 {
1182     qemu_mutex_unlock(&ram_list.mutex);
1183 }
1184 
ram_block_format(void)1185 GString *ram_block_format(void)
1186 {
1187     RAMBlock *block;
1188     char *psize;
1189     GString *buf = g_string_new("");
1190 
1191     RCU_READ_LOCK_GUARD();
1192     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1193                            "Block Name", "PSize", "Offset", "Used", "Total",
1194                            "HVA", "RO");
1195 
1196     RAMBLOCK_FOREACH(block) {
1197         psize = size_to_str(block->page_size);
1198         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1199                                " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1200                                block->idstr, psize,
1201                                (uint64_t)block->offset,
1202                                (uint64_t)block->used_length,
1203                                (uint64_t)block->max_length,
1204                                (uint64_t)(uintptr_t)block->host,
1205                                block->mr->readonly ? "ro" : "rw");
1206 
1207         g_free(psize);
1208     }
1209 
1210     return buf;
1211 }
1212 
find_min_backend_pagesize(Object * obj,void * opaque)1213 static int find_min_backend_pagesize(Object *obj, void *opaque)
1214 {
1215     long *hpsize_min = opaque;
1216 
1217     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1218         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1219         long hpsize = host_memory_backend_pagesize(backend);
1220 
1221         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1222             *hpsize_min = hpsize;
1223         }
1224     }
1225 
1226     return 0;
1227 }
1228 
find_max_backend_pagesize(Object * obj,void * opaque)1229 static int find_max_backend_pagesize(Object *obj, void *opaque)
1230 {
1231     long *hpsize_max = opaque;
1232 
1233     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1234         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1235         long hpsize = host_memory_backend_pagesize(backend);
1236 
1237         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1238             *hpsize_max = hpsize;
1239         }
1240     }
1241 
1242     return 0;
1243 }
1244 
1245 /*
1246  * TODO: We assume right now that all mapped host memory backends are
1247  * used as RAM, however some might be used for different purposes.
1248  */
qemu_minrampagesize(void)1249 long qemu_minrampagesize(void)
1250 {
1251     long hpsize = LONG_MAX;
1252     Object *memdev_root = object_resolve_path("/objects", NULL);
1253 
1254     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1255     return hpsize;
1256 }
1257 
qemu_maxrampagesize(void)1258 long qemu_maxrampagesize(void)
1259 {
1260     long pagesize = 0;
1261     Object *memdev_root = object_resolve_path("/objects", NULL);
1262 
1263     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1264     return pagesize;
1265 }
1266 
1267 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
get_file_size(int fd)1268 static int64_t get_file_size(int fd)
1269 {
1270     int64_t size;
1271 #if defined(__linux__)
1272     struct stat st;
1273 
1274     if (fstat(fd, &st) < 0) {
1275         return -errno;
1276     }
1277 
1278     /* Special handling for devdax character devices */
1279     if (S_ISCHR(st.st_mode)) {
1280         g_autofree char *subsystem_path = NULL;
1281         g_autofree char *subsystem = NULL;
1282 
1283         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1284                                          major(st.st_rdev), minor(st.st_rdev));
1285         subsystem = g_file_read_link(subsystem_path, NULL);
1286 
1287         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1288             g_autofree char *size_path = NULL;
1289             g_autofree char *size_str = NULL;
1290 
1291             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1292                                     major(st.st_rdev), minor(st.st_rdev));
1293 
1294             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1295                 return g_ascii_strtoll(size_str, NULL, 0);
1296             }
1297         }
1298     }
1299 #endif /* defined(__linux__) */
1300 
1301     /* st.st_size may be zero for special files yet lseek(2) works */
1302     size = lseek(fd, 0, SEEK_END);
1303     if (size < 0) {
1304         return -errno;
1305     }
1306     return size;
1307 }
1308 
get_file_align(int fd)1309 static int64_t get_file_align(int fd)
1310 {
1311     int64_t align = -1;
1312 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1313     struct stat st;
1314 
1315     if (fstat(fd, &st) < 0) {
1316         return -errno;
1317     }
1318 
1319     /* Special handling for devdax character devices */
1320     if (S_ISCHR(st.st_mode)) {
1321         g_autofree char *path = NULL;
1322         g_autofree char *rpath = NULL;
1323         struct daxctl_ctx *ctx;
1324         struct daxctl_region *region;
1325         int rc = 0;
1326 
1327         path = g_strdup_printf("/sys/dev/char/%d:%d",
1328                     major(st.st_rdev), minor(st.st_rdev));
1329         rpath = realpath(path, NULL);
1330         if (!rpath) {
1331             return -errno;
1332         }
1333 
1334         rc = daxctl_new(&ctx);
1335         if (rc) {
1336             return -1;
1337         }
1338 
1339         daxctl_region_foreach(ctx, region) {
1340             if (strstr(rpath, daxctl_region_get_path(region))) {
1341                 align = daxctl_region_get_align(region);
1342                 break;
1343             }
1344         }
1345         daxctl_unref(ctx);
1346     }
1347 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1348 
1349     return align;
1350 }
1351 
file_ram_open(const char * path,const char * region_name,bool readonly,bool * created)1352 static int file_ram_open(const char *path,
1353                          const char *region_name,
1354                          bool readonly,
1355                          bool *created)
1356 {
1357     char *filename;
1358     char *sanitized_name;
1359     char *c;
1360     int fd = -1;
1361 
1362     *created = false;
1363     for (;;) {
1364         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1365         if (fd >= 0) {
1366             /*
1367              * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1368              * opened a directory and fail similarly to how we fail ENOENT
1369              * in readonly mode. Note that mkstemp() would imply O_RDWR.
1370              */
1371             if (readonly) {
1372                 struct stat file_stat;
1373 
1374                 if (fstat(fd, &file_stat)) {
1375                     close(fd);
1376                     if (errno == EINTR) {
1377                         continue;
1378                     }
1379                     return -errno;
1380                 } else if (S_ISDIR(file_stat.st_mode)) {
1381                     close(fd);
1382                     return -EISDIR;
1383                 }
1384             }
1385             /* @path names an existing file, use it */
1386             break;
1387         }
1388         if (errno == ENOENT) {
1389             if (readonly) {
1390                 /* Refuse to create new, readonly files. */
1391                 return -ENOENT;
1392             }
1393             /* @path names a file that doesn't exist, create it */
1394             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1395             if (fd >= 0) {
1396                 *created = true;
1397                 break;
1398             }
1399         } else if (errno == EISDIR) {
1400             /* @path names a directory, create a file there */
1401             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1402             sanitized_name = g_strdup(region_name);
1403             for (c = sanitized_name; *c != '\0'; c++) {
1404                 if (*c == '/') {
1405                     *c = '_';
1406                 }
1407             }
1408 
1409             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1410                                        sanitized_name);
1411             g_free(sanitized_name);
1412 
1413             fd = mkstemp(filename);
1414             if (fd >= 0) {
1415                 unlink(filename);
1416                 g_free(filename);
1417                 break;
1418             }
1419             g_free(filename);
1420         }
1421         if (errno != EEXIST && errno != EINTR) {
1422             return -errno;
1423         }
1424         /*
1425          * Try again on EINTR and EEXIST.  The latter happens when
1426          * something else creates the file between our two open().
1427          */
1428     }
1429 
1430     return fd;
1431 }
1432 
file_ram_alloc(RAMBlock * block,ram_addr_t memory,int fd,bool truncate,off_t offset,Error ** errp)1433 static void *file_ram_alloc(RAMBlock *block,
1434                             ram_addr_t memory,
1435                             int fd,
1436                             bool truncate,
1437                             off_t offset,
1438                             Error **errp)
1439 {
1440     uint32_t qemu_map_flags;
1441     void *area;
1442 
1443     block->page_size = qemu_fd_getpagesize(fd);
1444     if (block->mr->align % block->page_size) {
1445         error_setg(errp, "alignment 0x%" PRIx64
1446                    " must be multiples of page size 0x%zx",
1447                    block->mr->align, block->page_size);
1448         return NULL;
1449     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1450         error_setg(errp, "alignment 0x%" PRIx64
1451                    " must be a power of two", block->mr->align);
1452         return NULL;
1453     } else if (offset % block->page_size) {
1454         error_setg(errp, "offset 0x%" PRIx64
1455                    " must be multiples of page size 0x%zx",
1456                    offset, block->page_size);
1457         return NULL;
1458     }
1459     block->mr->align = MAX(block->page_size, block->mr->align);
1460 #if defined(__s390x__)
1461     if (kvm_enabled()) {
1462         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1463     }
1464 #endif
1465 
1466     if (memory < block->page_size) {
1467         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1468                    "or larger than page size 0x%zx",
1469                    memory, block->page_size);
1470         return NULL;
1471     }
1472 
1473     memory = ROUND_UP(memory, block->page_size);
1474 
1475     /*
1476      * ftruncate is not supported by hugetlbfs in older
1477      * hosts, so don't bother bailing out on errors.
1478      * If anything goes wrong with it under other filesystems,
1479      * mmap will fail.
1480      *
1481      * Do not truncate the non-empty backend file to avoid corrupting
1482      * the existing data in the file. Disabling shrinking is not
1483      * enough. For example, the current vNVDIMM implementation stores
1484      * the guest NVDIMM labels at the end of the backend file. If the
1485      * backend file is later extended, QEMU will not be able to find
1486      * those labels. Therefore, extending the non-empty backend file
1487      * is disabled as well.
1488      */
1489     if (truncate && ftruncate(fd, offset + memory)) {
1490         perror("ftruncate");
1491     }
1492 
1493     qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1494     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1495     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1496     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1497     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1498     if (area == MAP_FAILED) {
1499         error_setg_errno(errp, errno,
1500                          "unable to map backing store for guest RAM");
1501         return NULL;
1502     }
1503 
1504     block->fd = fd;
1505     block->fd_offset = offset;
1506     return area;
1507 }
1508 #endif
1509 
1510 /* Allocate space within the ram_addr_t space that governs the
1511  * dirty bitmaps.
1512  * Called with the ramlist lock held.
1513  */
find_ram_offset(ram_addr_t size)1514 static ram_addr_t find_ram_offset(ram_addr_t size)
1515 {
1516     RAMBlock *block, *next_block;
1517     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1518 
1519     assert(size != 0); /* it would hand out same offset multiple times */
1520 
1521     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1522         return 0;
1523     }
1524 
1525     RAMBLOCK_FOREACH(block) {
1526         ram_addr_t candidate, next = RAM_ADDR_MAX;
1527 
1528         /* Align blocks to start on a 'long' in the bitmap
1529          * which makes the bitmap sync'ing take the fast path.
1530          */
1531         candidate = block->offset + block->max_length;
1532         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1533 
1534         /* Search for the closest following block
1535          * and find the gap.
1536          */
1537         RAMBLOCK_FOREACH(next_block) {
1538             if (next_block->offset >= candidate) {
1539                 next = MIN(next, next_block->offset);
1540             }
1541         }
1542 
1543         /* If it fits remember our place and remember the size
1544          * of gap, but keep going so that we might find a smaller
1545          * gap to fill so avoiding fragmentation.
1546          */
1547         if (next - candidate >= size && next - candidate < mingap) {
1548             offset = candidate;
1549             mingap = next - candidate;
1550         }
1551 
1552         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1553     }
1554 
1555     if (offset == RAM_ADDR_MAX) {
1556         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1557                 (uint64_t)size);
1558         abort();
1559     }
1560 
1561     trace_find_ram_offset(size, offset);
1562 
1563     return offset;
1564 }
1565 
qemu_ram_setup_dump(void * addr,ram_addr_t size)1566 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1567 {
1568     int ret;
1569 
1570     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1571     if (!machine_dump_guest_core(current_machine)) {
1572         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1573         if (ret) {
1574             perror("qemu_madvise");
1575             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1576                             "but dump-guest-core=off specified\n");
1577         }
1578     }
1579 }
1580 
qemu_ram_get_idstr(RAMBlock * rb)1581 const char *qemu_ram_get_idstr(RAMBlock *rb)
1582 {
1583     return rb->idstr;
1584 }
1585 
qemu_ram_get_host_addr(RAMBlock * rb)1586 void *qemu_ram_get_host_addr(RAMBlock *rb)
1587 {
1588     return rb->host;
1589 }
1590 
qemu_ram_get_offset(RAMBlock * rb)1591 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1592 {
1593     return rb->offset;
1594 }
1595 
qemu_ram_get_used_length(RAMBlock * rb)1596 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1597 {
1598     return rb->used_length;
1599 }
1600 
qemu_ram_get_max_length(RAMBlock * rb)1601 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1602 {
1603     return rb->max_length;
1604 }
1605 
qemu_ram_is_shared(RAMBlock * rb)1606 bool qemu_ram_is_shared(RAMBlock *rb)
1607 {
1608     return rb->flags & RAM_SHARED;
1609 }
1610 
qemu_ram_is_noreserve(RAMBlock * rb)1611 bool qemu_ram_is_noreserve(RAMBlock *rb)
1612 {
1613     return rb->flags & RAM_NORESERVE;
1614 }
1615 
1616 /* Note: Only set at the start of postcopy */
qemu_ram_is_uf_zeroable(RAMBlock * rb)1617 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1618 {
1619     return rb->flags & RAM_UF_ZEROPAGE;
1620 }
1621 
qemu_ram_set_uf_zeroable(RAMBlock * rb)1622 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1623 {
1624     rb->flags |= RAM_UF_ZEROPAGE;
1625 }
1626 
qemu_ram_is_migratable(RAMBlock * rb)1627 bool qemu_ram_is_migratable(RAMBlock *rb)
1628 {
1629     return rb->flags & RAM_MIGRATABLE;
1630 }
1631 
qemu_ram_set_migratable(RAMBlock * rb)1632 void qemu_ram_set_migratable(RAMBlock *rb)
1633 {
1634     rb->flags |= RAM_MIGRATABLE;
1635 }
1636 
qemu_ram_unset_migratable(RAMBlock * rb)1637 void qemu_ram_unset_migratable(RAMBlock *rb)
1638 {
1639     rb->flags &= ~RAM_MIGRATABLE;
1640 }
1641 
qemu_ram_is_named_file(RAMBlock * rb)1642 bool qemu_ram_is_named_file(RAMBlock *rb)
1643 {
1644     return rb->flags & RAM_NAMED_FILE;
1645 }
1646 
qemu_ram_get_fd(RAMBlock * rb)1647 int qemu_ram_get_fd(RAMBlock *rb)
1648 {
1649     return rb->fd;
1650 }
1651 
1652 /* Called with the BQL held.  */
qemu_ram_set_idstr(RAMBlock * new_block,const char * name,DeviceState * dev)1653 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1654 {
1655     RAMBlock *block;
1656 
1657     assert(new_block);
1658     assert(!new_block->idstr[0]);
1659 
1660     if (dev) {
1661         char *id = qdev_get_dev_path(dev);
1662         if (id) {
1663             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1664             g_free(id);
1665         }
1666     }
1667     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1668 
1669     RCU_READ_LOCK_GUARD();
1670     RAMBLOCK_FOREACH(block) {
1671         if (block != new_block &&
1672             !strcmp(block->idstr, new_block->idstr)) {
1673             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1674                     new_block->idstr);
1675             abort();
1676         }
1677     }
1678 }
1679 
1680 /* Called with the BQL held.  */
qemu_ram_unset_idstr(RAMBlock * block)1681 void qemu_ram_unset_idstr(RAMBlock *block)
1682 {
1683     /* FIXME: arch_init.c assumes that this is not called throughout
1684      * migration.  Ignore the problem since hot-unplug during migration
1685      * does not work anyway.
1686      */
1687     if (block) {
1688         memset(block->idstr, 0, sizeof(block->idstr));
1689     }
1690 }
1691 
cpr_name(MemoryRegion * mr)1692 static char *cpr_name(MemoryRegion *mr)
1693 {
1694     const char *mr_name = memory_region_name(mr);
1695     g_autofree char *id = mr->dev ? qdev_get_dev_path(mr->dev) : NULL;
1696 
1697     if (id) {
1698         return g_strdup_printf("%s/%s", id, mr_name);
1699     } else {
1700         return g_strdup(mr_name);
1701     }
1702 }
1703 
qemu_ram_pagesize(RAMBlock * rb)1704 size_t qemu_ram_pagesize(RAMBlock *rb)
1705 {
1706     return rb->page_size;
1707 }
1708 
1709 /* Returns the largest size of page in use */
qemu_ram_pagesize_largest(void)1710 size_t qemu_ram_pagesize_largest(void)
1711 {
1712     RAMBlock *block;
1713     size_t largest = 0;
1714 
1715     RAMBLOCK_FOREACH(block) {
1716         largest = MAX(largest, qemu_ram_pagesize(block));
1717     }
1718 
1719     return largest;
1720 }
1721 
memory_try_enable_merging(void * addr,size_t len)1722 static int memory_try_enable_merging(void *addr, size_t len)
1723 {
1724     if (!machine_mem_merge(current_machine)) {
1725         /* disabled by the user */
1726         return 0;
1727     }
1728 
1729     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1730 }
1731 
1732 /*
1733  * Resizing RAM while migrating can result in the migration being canceled.
1734  * Care has to be taken if the guest might have already detected the memory.
1735  *
1736  * As memory core doesn't know how is memory accessed, it is up to
1737  * resize callback to update device state and/or add assertions to detect
1738  * misuse, if necessary.
1739  */
qemu_ram_resize(RAMBlock * block,ram_addr_t newsize,Error ** errp)1740 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1741 {
1742     const ram_addr_t oldsize = block->used_length;
1743     const ram_addr_t unaligned_size = newsize;
1744 
1745     assert(block);
1746 
1747     newsize = TARGET_PAGE_ALIGN(newsize);
1748     newsize = REAL_HOST_PAGE_ALIGN(newsize);
1749 
1750     if (block->used_length == newsize) {
1751         /*
1752          * We don't have to resize the ram block (which only knows aligned
1753          * sizes), however, we have to notify if the unaligned size changed.
1754          */
1755         if (unaligned_size != memory_region_size(block->mr)) {
1756             memory_region_set_size(block->mr, unaligned_size);
1757             if (block->resized) {
1758                 block->resized(block->idstr, unaligned_size, block->host);
1759             }
1760         }
1761         return 0;
1762     }
1763 
1764     if (!(block->flags & RAM_RESIZEABLE)) {
1765         error_setg_errno(errp, EINVAL,
1766                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1767                          " != 0x" RAM_ADDR_FMT, block->idstr,
1768                          newsize, block->used_length);
1769         return -EINVAL;
1770     }
1771 
1772     if (block->max_length < newsize) {
1773         error_setg_errno(errp, EINVAL,
1774                          "Size too large: %s: 0x" RAM_ADDR_FMT
1775                          " > 0x" RAM_ADDR_FMT, block->idstr,
1776                          newsize, block->max_length);
1777         return -EINVAL;
1778     }
1779 
1780     /* Notify before modifying the ram block and touching the bitmaps. */
1781     if (block->host) {
1782         ram_block_notify_resize(block->host, oldsize, newsize);
1783     }
1784 
1785     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1786     block->used_length = newsize;
1787     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1788                                         DIRTY_CLIENTS_ALL);
1789     memory_region_set_size(block->mr, unaligned_size);
1790     if (block->resized) {
1791         block->resized(block->idstr, unaligned_size, block->host);
1792     }
1793     return 0;
1794 }
1795 
1796 /*
1797  * Trigger sync on the given ram block for range [start, start + length]
1798  * with the backing store if one is available.
1799  * Otherwise no-op.
1800  * @Note: this is supposed to be a synchronous op.
1801  */
qemu_ram_msync(RAMBlock * block,ram_addr_t start,ram_addr_t length)1802 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1803 {
1804     /* The requested range should fit in within the block range */
1805     g_assert((start + length) <= block->used_length);
1806 
1807 #ifdef CONFIG_LIBPMEM
1808     /* The lack of support for pmem should not block the sync */
1809     if (ramblock_is_pmem(block)) {
1810         void *addr = ramblock_ptr(block, start);
1811         pmem_persist(addr, length);
1812         return;
1813     }
1814 #endif
1815     if (block->fd >= 0) {
1816         /**
1817          * Case there is no support for PMEM or the memory has not been
1818          * specified as persistent (or is not one) - use the msync.
1819          * Less optimal but still achieves the same goal
1820          */
1821         void *addr = ramblock_ptr(block, start);
1822         if (qemu_msync(addr, length, block->fd)) {
1823             warn_report("%s: failed to sync memory range: start: "
1824                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1825                     __func__, start, length);
1826         }
1827     }
1828 }
1829 
1830 /* Called with ram_list.mutex held */
dirty_memory_extend(ram_addr_t new_ram_size)1831 static void dirty_memory_extend(ram_addr_t new_ram_size)
1832 {
1833     unsigned int old_num_blocks = ram_list.num_dirty_blocks;
1834     unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size,
1835                                                DIRTY_MEMORY_BLOCK_SIZE);
1836     int i;
1837 
1838     /* Only need to extend if block count increased */
1839     if (new_num_blocks <= old_num_blocks) {
1840         return;
1841     }
1842 
1843     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1844         DirtyMemoryBlocks *old_blocks;
1845         DirtyMemoryBlocks *new_blocks;
1846         int j;
1847 
1848         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1849         new_blocks = g_malloc(sizeof(*new_blocks) +
1850                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1851 
1852         if (old_num_blocks) {
1853             memcpy(new_blocks->blocks, old_blocks->blocks,
1854                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1855         }
1856 
1857         for (j = old_num_blocks; j < new_num_blocks; j++) {
1858             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1859         }
1860 
1861         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1862 
1863         if (old_blocks) {
1864             g_free_rcu(old_blocks, rcu);
1865         }
1866     }
1867 
1868     ram_list.num_dirty_blocks = new_num_blocks;
1869 }
1870 
ram_block_add(RAMBlock * new_block,Error ** errp)1871 static void ram_block_add(RAMBlock *new_block, Error **errp)
1872 {
1873     const bool noreserve = qemu_ram_is_noreserve(new_block);
1874     const bool shared = qemu_ram_is_shared(new_block);
1875     RAMBlock *block;
1876     RAMBlock *last_block = NULL;
1877     bool free_on_error = false;
1878     ram_addr_t ram_size;
1879     Error *err = NULL;
1880 
1881     qemu_mutex_lock_ramlist();
1882     new_block->offset = find_ram_offset(new_block->max_length);
1883 
1884     if (!new_block->host) {
1885         if (xen_enabled()) {
1886             xen_ram_alloc(new_block->offset, new_block->max_length,
1887                           new_block->mr, &err);
1888             if (err) {
1889                 error_propagate(errp, err);
1890                 qemu_mutex_unlock_ramlist();
1891                 return;
1892             }
1893         } else {
1894             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1895                                                   &new_block->mr->align,
1896                                                   shared, noreserve);
1897             if (!new_block->host) {
1898                 error_setg_errno(errp, errno,
1899                                  "cannot set up guest memory '%s'",
1900                                  memory_region_name(new_block->mr));
1901                 qemu_mutex_unlock_ramlist();
1902                 return;
1903             }
1904             memory_try_enable_merging(new_block->host, new_block->max_length);
1905             free_on_error = true;
1906         }
1907     }
1908 
1909     if (new_block->flags & RAM_GUEST_MEMFD) {
1910         int ret;
1911 
1912         if (!kvm_enabled()) {
1913             error_setg(errp, "cannot set up private guest memory for %s: KVM required",
1914                        object_get_typename(OBJECT(current_machine->cgs)));
1915             goto out_free;
1916         }
1917         assert(new_block->guest_memfd < 0);
1918 
1919         ret = ram_block_coordinated_discard_require(true);
1920         if (ret < 0) {
1921             error_setg_errno(errp, -ret,
1922                              "cannot set up private guest memory: discard currently blocked");
1923             error_append_hint(errp, "Are you using assigned devices?\n");
1924             goto out_free;
1925         }
1926 
1927         new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1928                                                         0, errp);
1929         if (new_block->guest_memfd < 0) {
1930             qemu_mutex_unlock_ramlist();
1931             goto out_free;
1932         }
1933 
1934         /*
1935          * The attribute bitmap of the RamBlockAttributes is default to
1936          * discarded, which mimics the behavior of kvm_set_phys_mem() when it
1937          * calls kvm_set_memory_attributes_private(). This leads to a brief
1938          * period of inconsistency between the creation of the RAMBlock and its
1939          * mapping into the physical address space. However, this is not
1940          * problematic, as no users rely on the attribute status to perform
1941          * any actions during this interval.
1942          */
1943         new_block->attributes = ram_block_attributes_create(new_block);
1944         if (!new_block->attributes) {
1945             error_setg(errp, "Failed to create ram block attribute");
1946             close(new_block->guest_memfd);
1947             ram_block_coordinated_discard_require(false);
1948             qemu_mutex_unlock_ramlist();
1949             goto out_free;
1950         }
1951 
1952         /*
1953          * Add a specific guest_memfd blocker if a generic one would not be
1954          * added by ram_block_add_cpr_blocker.
1955          */
1956         if (ram_is_cpr_compatible(new_block)) {
1957             error_setg(&new_block->cpr_blocker,
1958                        "Memory region %s uses guest_memfd, "
1959                        "which is not supported with CPR.",
1960                        memory_region_name(new_block->mr));
1961             migrate_add_blocker_modes(&new_block->cpr_blocker, errp,
1962                                       MIG_MODE_CPR_TRANSFER, -1);
1963         }
1964     }
1965 
1966     ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS;
1967     dirty_memory_extend(ram_size);
1968     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1969      * QLIST (which has an RCU-friendly variant) does not have insertion at
1970      * tail, so save the last element in last_block.
1971      */
1972     RAMBLOCK_FOREACH(block) {
1973         last_block = block;
1974         if (block->max_length < new_block->max_length) {
1975             break;
1976         }
1977     }
1978     if (block) {
1979         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1980     } else if (last_block) {
1981         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1982     } else { /* list is empty */
1983         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1984     }
1985     ram_list.mru_block = NULL;
1986 
1987     /* Write list before version */
1988     smp_wmb();
1989     ram_list.version++;
1990     qemu_mutex_unlock_ramlist();
1991 
1992     cpu_physical_memory_set_dirty_range(new_block->offset,
1993                                         new_block->used_length,
1994                                         DIRTY_CLIENTS_ALL);
1995 
1996     if (new_block->host) {
1997         qemu_ram_setup_dump(new_block->host, new_block->max_length);
1998         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1999         /*
2000          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2001          * Configure it unless the machine is a qtest server, in which case
2002          * KVM is not used and it may be forked (eg for fuzzing purposes).
2003          */
2004         if (!qtest_enabled()) {
2005             qemu_madvise(new_block->host, new_block->max_length,
2006                          QEMU_MADV_DONTFORK);
2007         }
2008         ram_block_notify_add(new_block->host, new_block->used_length,
2009                              new_block->max_length);
2010     }
2011     return;
2012 
2013 out_free:
2014     if (free_on_error) {
2015         qemu_anon_ram_free(new_block->host, new_block->max_length);
2016         new_block->host = NULL;
2017     }
2018 }
2019 
2020 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
qemu_ram_alloc_from_fd(ram_addr_t size,ram_addr_t max_size,qemu_ram_resize_cb resized,MemoryRegion * mr,uint32_t ram_flags,int fd,off_t offset,bool grow,Error ** errp)2021 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, ram_addr_t max_size,
2022                                  qemu_ram_resize_cb resized, MemoryRegion *mr,
2023                                  uint32_t ram_flags, int fd, off_t offset,
2024                                  bool grow,
2025                                  Error **errp)
2026 {
2027     ERRP_GUARD();
2028     RAMBlock *new_block;
2029     Error *local_err = NULL;
2030     int64_t file_size, file_align, share_flags;
2031 
2032     share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED);
2033     assert(share_flags != (RAM_SHARED | RAM_PRIVATE));
2034     ram_flags &= ~RAM_PRIVATE;
2035 
2036     /* Just support these ram flags by now. */
2037     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2038                           RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
2039                           RAM_READONLY_FD | RAM_GUEST_MEMFD |
2040                           RAM_RESIZEABLE)) == 0);
2041     assert(max_size >= size);
2042 
2043     if (xen_enabled()) {
2044         error_setg(errp, "-mem-path not supported with Xen");
2045         return NULL;
2046     }
2047 
2048     if (kvm_enabled() && !kvm_has_sync_mmu()) {
2049         error_setg(errp,
2050                    "host lacks kvm mmu notifiers, -mem-path unsupported");
2051         return NULL;
2052     }
2053 
2054     size = TARGET_PAGE_ALIGN(size);
2055     size = REAL_HOST_PAGE_ALIGN(size);
2056     max_size = TARGET_PAGE_ALIGN(max_size);
2057     max_size = REAL_HOST_PAGE_ALIGN(max_size);
2058 
2059     file_size = get_file_size(fd);
2060     if (file_size && file_size < offset + max_size && !grow) {
2061         error_setg(errp, "%s backing store size 0x%" PRIx64
2062                    " is too small for 'size' option 0x" RAM_ADDR_FMT
2063                    " plus 'offset' option 0x%" PRIx64,
2064                    memory_region_name(mr), file_size, max_size,
2065                    (uint64_t)offset);
2066         return NULL;
2067     }
2068 
2069     file_align = get_file_align(fd);
2070     if (file_align > 0 && file_align > mr->align) {
2071         error_setg(errp, "backing store align 0x%" PRIx64
2072                    " is larger than 'align' option 0x%" PRIx64,
2073                    file_align, mr->align);
2074         return NULL;
2075     }
2076 
2077     new_block = g_malloc0(sizeof(*new_block));
2078     new_block->mr = mr;
2079     new_block->used_length = size;
2080     new_block->max_length = max_size;
2081     new_block->resized = resized;
2082     new_block->flags = ram_flags;
2083     new_block->guest_memfd = -1;
2084     new_block->host = file_ram_alloc(new_block, max_size, fd,
2085                                      file_size < offset + max_size,
2086                                      offset, errp);
2087     if (!new_block->host) {
2088         g_free(new_block);
2089         return NULL;
2090     }
2091 
2092     ram_block_add(new_block, &local_err);
2093     if (local_err) {
2094         g_free(new_block);
2095         error_propagate(errp, local_err);
2096         return NULL;
2097     }
2098     return new_block;
2099 
2100 }
2101 
2102 
qemu_ram_alloc_from_file(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,const char * mem_path,off_t offset,Error ** errp)2103 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2104                                    uint32_t ram_flags, const char *mem_path,
2105                                    off_t offset, Error **errp)
2106 {
2107     int fd;
2108     bool created;
2109     RAMBlock *block;
2110 
2111     fd = file_ram_open(mem_path, memory_region_name(mr),
2112                        !!(ram_flags & RAM_READONLY_FD), &created);
2113     if (fd < 0) {
2114         error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2115                          mem_path);
2116         if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2117             fd == -EACCES) {
2118             /*
2119              * If we can open the file R/O (note: will never create a new file)
2120              * and we are dealing with a private mapping, there are still ways
2121              * to consume such files and get RAM instead of ROM.
2122              */
2123             fd = file_ram_open(mem_path, memory_region_name(mr), true,
2124                                &created);
2125             if (fd < 0) {
2126                 return NULL;
2127             }
2128             assert(!created);
2129             close(fd);
2130             error_append_hint(errp, "Consider opening the backing store"
2131                 " read-only but still creating writable RAM using"
2132                 " '-object memory-backend-file,readonly=on,rom=off...'"
2133                 " (see \"VM templating\" documentation)\n");
2134         }
2135         return NULL;
2136     }
2137 
2138     block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd, offset,
2139                                    false, errp);
2140     if (!block) {
2141         if (created) {
2142             unlink(mem_path);
2143         }
2144         close(fd);
2145         return NULL;
2146     }
2147 
2148     return block;
2149 }
2150 #endif
2151 
2152 #ifdef CONFIG_POSIX
2153 /*
2154  * Create MAP_SHARED RAMBlocks by mmap'ing a file descriptor, so it can be
2155  * shared with another process if CPR is being used.  Use memfd if available
2156  * because it has no size limits, else use POSIX shm.
2157  */
qemu_ram_get_shared_fd(const char * name,bool * reused,Error ** errp)2158 static int qemu_ram_get_shared_fd(const char *name, bool *reused, Error **errp)
2159 {
2160     int fd = cpr_find_fd(name, 0);
2161 
2162     if (fd >= 0) {
2163         *reused = true;
2164         return fd;
2165     }
2166 
2167     if (qemu_memfd_check(0)) {
2168         fd = qemu_memfd_create(name, 0, 0, 0, 0, errp);
2169     } else {
2170         fd = qemu_shm_alloc(0, errp);
2171     }
2172 
2173     if (fd >= 0) {
2174         cpr_save_fd(name, 0, fd);
2175     }
2176     *reused = false;
2177     return fd;
2178 }
2179 #endif
2180 
2181 static
qemu_ram_alloc_internal(ram_addr_t size,ram_addr_t max_size,qemu_ram_resize_cb resized,void * host,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2182 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2183                                   qemu_ram_resize_cb resized,
2184                                   void *host, uint32_t ram_flags,
2185                                   MemoryRegion *mr, Error **errp)
2186 {
2187     RAMBlock *new_block;
2188     Error *local_err = NULL;
2189     int align, share_flags;
2190 
2191     share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED);
2192     assert(share_flags != (RAM_SHARED | RAM_PRIVATE));
2193     ram_flags &= ~RAM_PRIVATE;
2194 
2195     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2196                           RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2197     assert(!host ^ (ram_flags & RAM_PREALLOC));
2198     assert(max_size >= size);
2199 
2200     /* ignore RAM_SHARED for Windows and emscripten*/
2201 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
2202     if (!host) {
2203         if (!share_flags && current_machine->aux_ram_share) {
2204             ram_flags |= RAM_SHARED;
2205         }
2206         if (ram_flags & RAM_SHARED) {
2207             bool reused;
2208             g_autofree char *name = cpr_name(mr);
2209             int fd = qemu_ram_get_shared_fd(name, &reused, errp);
2210 
2211             if (fd < 0) {
2212                 return NULL;
2213             }
2214 
2215             /* Use same alignment as qemu_anon_ram_alloc */
2216             mr->align = QEMU_VMALLOC_ALIGN;
2217 
2218             /*
2219              * This can fail if the shm mount size is too small, or alloc from
2220              * fd is not supported, but previous QEMU versions that called
2221              * qemu_anon_ram_alloc for anonymous shared memory could have
2222              * succeeded.  Quietly fail and fall back.
2223              *
2224              * After cpr-transfer, new QEMU could create a memory region
2225              * with a larger max size than old, so pass reused to grow the
2226              * region if necessary.  The extra space will be usable after a
2227              * guest reset.
2228              */
2229             new_block = qemu_ram_alloc_from_fd(size, max_size, resized, mr,
2230                                                ram_flags, fd, 0, reused, NULL);
2231             if (new_block) {
2232                 trace_qemu_ram_alloc_shared(name, new_block->used_length,
2233                                             new_block->max_length, fd,
2234                                             new_block->host);
2235                 return new_block;
2236             }
2237 
2238             cpr_delete_fd(name, 0);
2239             close(fd);
2240             /* fall back to anon allocation */
2241         }
2242     }
2243 #endif
2244 
2245     align = qemu_real_host_page_size();
2246     align = MAX(align, TARGET_PAGE_SIZE);
2247     size = ROUND_UP(size, align);
2248     max_size = ROUND_UP(max_size, align);
2249 
2250     new_block = g_malloc0(sizeof(*new_block));
2251     new_block->mr = mr;
2252     new_block->resized = resized;
2253     new_block->used_length = size;
2254     new_block->max_length = max_size;
2255     new_block->fd = -1;
2256     new_block->guest_memfd = -1;
2257     new_block->page_size = qemu_real_host_page_size();
2258     new_block->host = host;
2259     new_block->flags = ram_flags;
2260     ram_block_add(new_block, &local_err);
2261     if (local_err) {
2262         g_free(new_block);
2263         error_propagate(errp, local_err);
2264         return NULL;
2265     }
2266     return new_block;
2267 }
2268 
qemu_ram_alloc_from_ptr(ram_addr_t size,void * host,MemoryRegion * mr,Error ** errp)2269 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2270                                    MemoryRegion *mr, Error **errp)
2271 {
2272     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2273                                    errp);
2274 }
2275 
qemu_ram_alloc(ram_addr_t size,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2276 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2277                          MemoryRegion *mr, Error **errp)
2278 {
2279     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD |
2280                           RAM_PRIVATE)) == 0);
2281     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2282 }
2283 
qemu_ram_alloc_resizeable(ram_addr_t size,ram_addr_t maxsz,qemu_ram_resize_cb resized,MemoryRegion * mr,Error ** errp)2284 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2285                                     qemu_ram_resize_cb resized,
2286                                     MemoryRegion *mr, Error **errp)
2287 {
2288     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2289                                    RAM_RESIZEABLE, mr, errp);
2290 }
2291 
reclaim_ramblock(RAMBlock * block)2292 static void reclaim_ramblock(RAMBlock *block)
2293 {
2294     if (block->flags & RAM_PREALLOC) {
2295         ;
2296     } else if (xen_enabled()) {
2297         xen_invalidate_map_cache_entry(block->host);
2298 #if !defined(_WIN32) && !defined(EMSCRIPTEN)
2299     } else if (block->fd >= 0) {
2300         qemu_ram_munmap(block->fd, block->host, block->max_length);
2301         close(block->fd);
2302 #endif
2303     } else {
2304         qemu_anon_ram_free(block->host, block->max_length);
2305     }
2306 
2307     if (block->guest_memfd >= 0) {
2308         ram_block_attributes_destroy(block->attributes);
2309         close(block->guest_memfd);
2310         ram_block_coordinated_discard_require(false);
2311     }
2312 
2313     g_free(block);
2314 }
2315 
qemu_ram_free(RAMBlock * block)2316 void qemu_ram_free(RAMBlock *block)
2317 {
2318     g_autofree char *name = NULL;
2319 
2320     if (!block) {
2321         return;
2322     }
2323 
2324     if (block->host) {
2325         ram_block_notify_remove(block->host, block->used_length,
2326                                 block->max_length);
2327     }
2328 
2329     qemu_mutex_lock_ramlist();
2330     name = cpr_name(block->mr);
2331     cpr_delete_fd(name, 0);
2332     QLIST_REMOVE_RCU(block, next);
2333     ram_list.mru_block = NULL;
2334     /* Write list before version */
2335     smp_wmb();
2336     ram_list.version++;
2337     call_rcu(block, reclaim_ramblock, rcu);
2338     qemu_mutex_unlock_ramlist();
2339 }
2340 
2341 #ifndef _WIN32
2342 /* Simply remap the given VM memory location from start to start+length */
qemu_ram_remap_mmap(RAMBlock * block,uint64_t start,size_t length)2343 static int qemu_ram_remap_mmap(RAMBlock *block, uint64_t start, size_t length)
2344 {
2345     int flags, prot;
2346     void *area;
2347     void *host_startaddr = block->host + start;
2348 
2349     assert(block->fd < 0);
2350     flags = MAP_FIXED | MAP_ANONYMOUS;
2351     flags |= block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE;
2352     flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2353     prot = PROT_READ;
2354     prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2355     area = mmap(host_startaddr, length, prot, flags, -1, 0);
2356     return area != host_startaddr ? -errno : 0;
2357 }
2358 
2359 /*
2360  * qemu_ram_remap - remap a single RAM page
2361  *
2362  * @addr: address in ram_addr_t address space.
2363  *
2364  * This function will try remapping a single page of guest RAM identified by
2365  * @addr, essentially discarding memory to recover from previously poisoned
2366  * memory (MCE). The page size depends on the RAMBlock (i.e., hugetlb). @addr
2367  * does not have to point at the start of the page.
2368  *
2369  * This function is only to be used during system resets; it will kill the
2370  * VM if remapping failed.
2371  */
qemu_ram_remap(ram_addr_t addr)2372 void qemu_ram_remap(ram_addr_t addr)
2373 {
2374     RAMBlock *block;
2375     uint64_t offset;
2376     void *vaddr;
2377     size_t page_size;
2378 
2379     RAMBLOCK_FOREACH(block) {
2380         offset = addr - block->offset;
2381         if (offset < block->max_length) {
2382             /* Respect the pagesize of our RAMBlock */
2383             page_size = qemu_ram_pagesize(block);
2384             offset = QEMU_ALIGN_DOWN(offset, page_size);
2385 
2386             vaddr = ramblock_ptr(block, offset);
2387             if (block->flags & RAM_PREALLOC) {
2388                 ;
2389             } else if (xen_enabled()) {
2390                 abort();
2391             } else {
2392                 if (ram_block_discard_range(block, offset, page_size) != 0) {
2393                     /*
2394                      * Fall back to using mmap() only for anonymous mapping,
2395                      * as if a backing file is associated we may not be able
2396                      * to recover the memory in all cases.
2397                      * So don't take the risk of using only mmap and fail now.
2398                      */
2399                     if (block->fd >= 0) {
2400                         error_report("Could not remap RAM %s:%" PRIx64 "+%"
2401                                      PRIx64 " +%zx", block->idstr, offset,
2402                                      block->fd_offset, page_size);
2403                         exit(1);
2404                     }
2405                     if (qemu_ram_remap_mmap(block, offset, page_size) != 0) {
2406                         error_report("Could not remap RAM %s:%" PRIx64 " +%zx",
2407                                      block->idstr, offset, page_size);
2408                         exit(1);
2409                     }
2410                 }
2411                 memory_try_enable_merging(vaddr, page_size);
2412                 qemu_ram_setup_dump(vaddr, page_size);
2413             }
2414 
2415             break;
2416         }
2417     }
2418 }
2419 #endif /* !_WIN32 */
2420 
2421 /*
2422  * Return a host pointer to guest's ram.
2423  * For Xen, foreign mappings get created if they don't already exist.
2424  *
2425  * @block: block for the RAM to lookup (optional and may be NULL).
2426  * @addr: address within the memory region.
2427  * @size: pointer to requested size (optional and may be NULL).
2428  *        size may get modified and return a value smaller than
2429  *        what was requested.
2430  * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2431  * @is_write: hint wether to map RW or RO in the xen-mapcache.
2432  *            (optional and may always be set to true).
2433  *
2434  * Called within RCU critical section.
2435  */
qemu_ram_ptr_length(RAMBlock * block,ram_addr_t addr,hwaddr * size,bool lock,bool is_write)2436 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2437                                  hwaddr *size, bool lock,
2438                                  bool is_write)
2439 {
2440     hwaddr len = 0;
2441 
2442     if (size && *size == 0) {
2443         return NULL;
2444     }
2445 
2446     if (block == NULL) {
2447         block = qemu_get_ram_block(addr);
2448         addr -= block->offset;
2449     }
2450     if (size) {
2451         *size = MIN(*size, block->max_length - addr);
2452         len = *size;
2453     }
2454 
2455     if (xen_enabled() && block->host == NULL) {
2456         /* We need to check if the requested address is in the RAM
2457          * because we don't want to map the entire memory in QEMU.
2458          * In that case just map the requested area.
2459          */
2460         if (xen_mr_is_memory(block->mr)) {
2461             return xen_map_cache(block->mr, block->offset + addr,
2462                                  len, block->offset,
2463                                  lock, lock, is_write);
2464         }
2465 
2466         block->host = xen_map_cache(block->mr, block->offset,
2467                                     block->max_length,
2468                                     block->offset,
2469                                     1, lock, is_write);
2470     }
2471 
2472     return ramblock_ptr(block, addr);
2473 }
2474 
2475 /*
2476  * Return a host pointer to ram allocated with qemu_ram_alloc.
2477  * This should not be used for general purpose DMA.  Use address_space_map
2478  * or address_space_rw instead. For local memory (e.g. video ram) that the
2479  * device owns, use memory_region_get_ram_ptr.
2480  *
2481  * Called within RCU critical section.
2482  */
qemu_map_ram_ptr(RAMBlock * ram_block,ram_addr_t addr)2483 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2484 {
2485     return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2486 }
2487 
2488 /* Return the offset of a hostpointer within a ramblock */
qemu_ram_block_host_offset(RAMBlock * rb,void * host)2489 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2490 {
2491     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2492     assert((uintptr_t)host >= (uintptr_t)rb->host);
2493     assert(res < rb->max_length);
2494 
2495     return res;
2496 }
2497 
qemu_ram_block_from_host(void * ptr,bool round_offset,ram_addr_t * offset)2498 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2499                                    ram_addr_t *offset)
2500 {
2501     RAMBlock *block;
2502     uint8_t *host = ptr;
2503 
2504     if (xen_enabled()) {
2505         ram_addr_t ram_addr;
2506         RCU_READ_LOCK_GUARD();
2507         ram_addr = xen_ram_addr_from_mapcache(ptr);
2508         if (ram_addr == RAM_ADDR_INVALID) {
2509             return NULL;
2510         }
2511 
2512         block = qemu_get_ram_block(ram_addr);
2513         if (block) {
2514             *offset = ram_addr - block->offset;
2515         }
2516         return block;
2517     }
2518 
2519     RCU_READ_LOCK_GUARD();
2520     block = qatomic_rcu_read(&ram_list.mru_block);
2521     if (block && block->host && host - block->host < block->max_length) {
2522         goto found;
2523     }
2524 
2525     RAMBLOCK_FOREACH(block) {
2526         /* This case append when the block is not mapped. */
2527         if (block->host == NULL) {
2528             continue;
2529         }
2530         if (host - block->host < block->max_length) {
2531             goto found;
2532         }
2533     }
2534 
2535     return NULL;
2536 
2537 found:
2538     *offset = (host - block->host);
2539     if (round_offset) {
2540         *offset &= TARGET_PAGE_MASK;
2541     }
2542     return block;
2543 }
2544 
2545 /*
2546  * Finds the named RAMBlock
2547  *
2548  * name: The name of RAMBlock to find
2549  *
2550  * Returns: RAMBlock (or NULL if not found)
2551  */
qemu_ram_block_by_name(const char * name)2552 RAMBlock *qemu_ram_block_by_name(const char *name)
2553 {
2554     RAMBlock *block;
2555 
2556     RAMBLOCK_FOREACH(block) {
2557         if (!strcmp(name, block->idstr)) {
2558             return block;
2559         }
2560     }
2561 
2562     return NULL;
2563 }
2564 
2565 /*
2566  * Some of the system routines need to translate from a host pointer
2567  * (typically a TLB entry) back to a ram offset.
2568  */
qemu_ram_addr_from_host(void * ptr)2569 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2570 {
2571     RAMBlock *block;
2572     ram_addr_t offset;
2573 
2574     block = qemu_ram_block_from_host(ptr, false, &offset);
2575     if (!block) {
2576         return RAM_ADDR_INVALID;
2577     }
2578 
2579     return block->offset + offset;
2580 }
2581 
qemu_ram_addr_from_host_nofail(void * ptr)2582 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2583 {
2584     ram_addr_t ram_addr;
2585 
2586     ram_addr = qemu_ram_addr_from_host(ptr);
2587     if (ram_addr == RAM_ADDR_INVALID) {
2588         error_report("Bad ram pointer %p", ptr);
2589         abort();
2590     }
2591     return ram_addr;
2592 }
2593 
2594 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2595                                  MemTxAttrs attrs, void *buf, hwaddr len);
2596 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2597                                   const void *buf, hwaddr len);
2598 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2599                                   bool is_write, MemTxAttrs attrs);
2600 
subpage_read(void * opaque,hwaddr addr,uint64_t * data,unsigned len,MemTxAttrs attrs)2601 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2602                                 unsigned len, MemTxAttrs attrs)
2603 {
2604     subpage_t *subpage = opaque;
2605     uint8_t buf[8];
2606     MemTxResult res;
2607 
2608 #if defined(DEBUG_SUBPAGE)
2609     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2610            subpage, len, addr);
2611 #endif
2612     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2613     if (res) {
2614         return res;
2615     }
2616     *data = ldn_p(buf, len);
2617     return MEMTX_OK;
2618 }
2619 
subpage_write(void * opaque,hwaddr addr,uint64_t value,unsigned len,MemTxAttrs attrs)2620 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2621                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2622 {
2623     subpage_t *subpage = opaque;
2624     uint8_t buf[8];
2625 
2626 #if defined(DEBUG_SUBPAGE)
2627     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2628            " value %"PRIx64"\n",
2629            __func__, subpage, len, addr, value);
2630 #endif
2631     stn_p(buf, len, value);
2632     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2633 }
2634 
subpage_accepts(void * opaque,hwaddr addr,unsigned len,bool is_write,MemTxAttrs attrs)2635 static bool subpage_accepts(void *opaque, hwaddr addr,
2636                             unsigned len, bool is_write,
2637                             MemTxAttrs attrs)
2638 {
2639     subpage_t *subpage = opaque;
2640 #if defined(DEBUG_SUBPAGE)
2641     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2642            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2643 #endif
2644 
2645     return flatview_access_valid(subpage->fv, addr + subpage->base,
2646                                  len, is_write, attrs);
2647 }
2648 
2649 static const MemoryRegionOps subpage_ops = {
2650     .read_with_attrs = subpage_read,
2651     .write_with_attrs = subpage_write,
2652     .impl.min_access_size = 1,
2653     .impl.max_access_size = 8,
2654     .valid.min_access_size = 1,
2655     .valid.max_access_size = 8,
2656     .valid.accepts = subpage_accepts,
2657     .endianness = DEVICE_NATIVE_ENDIAN,
2658 };
2659 
subpage_register(subpage_t * mmio,uint32_t start,uint32_t end,uint16_t section)2660 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2661                             uint16_t section)
2662 {
2663     int idx, eidx;
2664 
2665     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2666         return -1;
2667     idx = SUBPAGE_IDX(start);
2668     eidx = SUBPAGE_IDX(end);
2669 #if defined(DEBUG_SUBPAGE)
2670     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2671            __func__, mmio, start, end, idx, eidx, section);
2672 #endif
2673     for (; idx <= eidx; idx++) {
2674         mmio->sub_section[idx] = section;
2675     }
2676 
2677     return 0;
2678 }
2679 
subpage_init(FlatView * fv,hwaddr base)2680 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2681 {
2682     subpage_t *mmio;
2683 
2684     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2685     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2686     mmio->fv = fv;
2687     mmio->base = base;
2688     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2689                           NULL, TARGET_PAGE_SIZE);
2690     mmio->iomem.subpage = true;
2691 #if defined(DEBUG_SUBPAGE)
2692     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2693            mmio, base, TARGET_PAGE_SIZE);
2694 #endif
2695 
2696     return mmio;
2697 }
2698 
dummy_section(PhysPageMap * map,FlatView * fv,MemoryRegion * mr)2699 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2700 {
2701     assert(fv);
2702     MemoryRegionSection section = {
2703         .fv = fv,
2704         .mr = mr,
2705         .offset_within_address_space = 0,
2706         .offset_within_region = 0,
2707         .size = int128_2_64(),
2708     };
2709 
2710     return phys_section_add(map, &section);
2711 }
2712 
io_mem_init(void)2713 static void io_mem_init(void)
2714 {
2715     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2716                           NULL, UINT64_MAX);
2717 }
2718 
address_space_dispatch_new(FlatView * fv)2719 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2720 {
2721     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2722     uint16_t n;
2723 
2724     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2725     assert(n == PHYS_SECTION_UNASSIGNED);
2726 
2727     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2728 
2729     return d;
2730 }
2731 
address_space_dispatch_free(AddressSpaceDispatch * d)2732 void address_space_dispatch_free(AddressSpaceDispatch *d)
2733 {
2734     phys_sections_free(&d->map);
2735     g_free(d);
2736 }
2737 
do_nothing(CPUState * cpu,run_on_cpu_data d)2738 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2739 {
2740 }
2741 
tcg_log_global_after_sync(MemoryListener * listener)2742 static void tcg_log_global_after_sync(MemoryListener *listener)
2743 {
2744     CPUAddressSpace *cpuas;
2745 
2746     /* Wait for the CPU to end the current TB.  This avoids the following
2747      * incorrect race:
2748      *
2749      *      vCPU                         migration
2750      *      ----------------------       -------------------------
2751      *      TLB check -> slow path
2752      *        notdirty_mem_write
2753      *          write to RAM
2754      *          mark dirty
2755      *                                   clear dirty flag
2756      *      TLB check -> fast path
2757      *                                   read memory
2758      *        write to RAM
2759      *
2760      * by pushing the migration thread's memory read after the vCPU thread has
2761      * written the memory.
2762      */
2763     if (replay_mode == REPLAY_MODE_NONE) {
2764         /*
2765          * VGA can make calls to this function while updating the screen.
2766          * In record/replay mode this causes a deadlock, because
2767          * run_on_cpu waits for rr mutex. Therefore no races are possible
2768          * in this case and no need for making run_on_cpu when
2769          * record/replay is enabled.
2770          */
2771         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2772         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2773     }
2774 }
2775 
tcg_commit_cpu(CPUState * cpu,run_on_cpu_data data)2776 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2777 {
2778     CPUAddressSpace *cpuas = data.host_ptr;
2779 
2780     cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2781     tlb_flush(cpu);
2782 }
2783 
tcg_commit(MemoryListener * listener)2784 static void tcg_commit(MemoryListener *listener)
2785 {
2786     CPUAddressSpace *cpuas;
2787     CPUState *cpu;
2788 
2789     assert(tcg_enabled());
2790     /* since each CPU stores ram addresses in its TLB cache, we must
2791        reset the modified entries */
2792     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2793     cpu = cpuas->cpu;
2794 
2795     /*
2796      * Defer changes to as->memory_dispatch until the cpu is quiescent.
2797      * Otherwise we race between (1) other cpu threads and (2) ongoing
2798      * i/o for the current cpu thread, with data cached by mmu_lookup().
2799      *
2800      * In addition, queueing the work function will kick the cpu back to
2801      * the main loop, which will end the RCU critical section and reclaim
2802      * the memory data structures.
2803      *
2804      * That said, the listener is also called during realize, before
2805      * all of the tcg machinery for run-on is initialized: thus halt_cond.
2806      */
2807     if (cpu->halt_cond) {
2808         async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2809     } else {
2810         tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2811     }
2812 }
2813 
memory_map_init(void)2814 static void memory_map_init(void)
2815 {
2816     system_memory = g_malloc(sizeof(*system_memory));
2817 
2818     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2819     address_space_init(&address_space_memory, system_memory, "memory");
2820 
2821     system_io = g_malloc(sizeof(*system_io));
2822     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2823                           65536);
2824     address_space_init(&address_space_io, system_io, "I/O");
2825 }
2826 
get_system_memory(void)2827 MemoryRegion *get_system_memory(void)
2828 {
2829     return system_memory;
2830 }
2831 
get_system_io(void)2832 MemoryRegion *get_system_io(void)
2833 {
2834     return system_io;
2835 }
2836 
invalidate_and_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr length)2837 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2838                                      hwaddr length)
2839 {
2840     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2841     ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2842 
2843     /* We know we're only called for RAM MemoryRegions */
2844     assert(ramaddr != RAM_ADDR_INVALID);
2845     addr += ramaddr;
2846 
2847     /* No early return if dirty_log_mask is or becomes 0, because
2848      * cpu_physical_memory_set_dirty_range will still call
2849      * xen_modified_memory.
2850      */
2851     if (dirty_log_mask) {
2852         dirty_log_mask =
2853             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2854     }
2855     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2856         assert(tcg_enabled());
2857         tb_invalidate_phys_range(NULL, addr, addr + length - 1);
2858         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2859     }
2860     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2861 }
2862 
memory_region_flush_rom_device(MemoryRegion * mr,hwaddr addr,hwaddr size)2863 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2864 {
2865     /*
2866      * In principle this function would work on other memory region types too,
2867      * but the ROM device use case is the only one where this operation is
2868      * necessary.  Other memory regions should use the
2869      * address_space_read/write() APIs.
2870      */
2871     assert(memory_region_is_romd(mr));
2872 
2873     invalidate_and_set_dirty(mr, addr, size);
2874 }
2875 
memory_access_size(MemoryRegion * mr,unsigned l,hwaddr addr)2876 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2877 {
2878     unsigned access_size_max = mr->ops->valid.max_access_size;
2879 
2880     /* Regions are assumed to support 1-4 byte accesses unless
2881        otherwise specified.  */
2882     if (access_size_max == 0) {
2883         access_size_max = 4;
2884     }
2885 
2886     /* Bound the maximum access by the alignment of the address.  */
2887     if (!mr->ops->impl.unaligned) {
2888         unsigned align_size_max = addr & -addr;
2889         if (align_size_max != 0 && align_size_max < access_size_max) {
2890             access_size_max = align_size_max;
2891         }
2892     }
2893 
2894     /* Don't attempt accesses larger than the maximum.  */
2895     if (l > access_size_max) {
2896         l = access_size_max;
2897     }
2898     l = pow2floor(l);
2899 
2900     return l;
2901 }
2902 
prepare_mmio_access(MemoryRegion * mr)2903 bool prepare_mmio_access(MemoryRegion *mr)
2904 {
2905     bool release_lock = false;
2906 
2907     if (!bql_locked()) {
2908         bql_lock();
2909         release_lock = true;
2910     }
2911     if (mr->flush_coalesced_mmio) {
2912         qemu_flush_coalesced_mmio_buffer();
2913     }
2914 
2915     return release_lock;
2916 }
2917 
2918 /**
2919  * flatview_access_allowed
2920  * @mr: #MemoryRegion to be accessed
2921  * @attrs: memory transaction attributes
2922  * @addr: address within that memory region
2923  * @len: the number of bytes to access
2924  *
2925  * Check if a memory transaction is allowed.
2926  *
2927  * Returns: true if transaction is allowed, false if denied.
2928  */
flatview_access_allowed(MemoryRegion * mr,MemTxAttrs attrs,hwaddr addr,hwaddr len)2929 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2930                                     hwaddr addr, hwaddr len)
2931 {
2932     if (likely(!attrs.memory)) {
2933         return true;
2934     }
2935     if (memory_region_is_ram(mr)) {
2936         return true;
2937     }
2938     qemu_log_mask(LOG_INVALID_MEM,
2939                   "Invalid access to non-RAM device at "
2940                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2941                   "region '%s'\n", addr, len, memory_region_name(mr));
2942     return false;
2943 }
2944 
flatview_write_continue_step(MemTxAttrs attrs,const uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2945 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2946                                                 const uint8_t *buf,
2947                                                 hwaddr len, hwaddr mr_addr,
2948                                                 hwaddr *l, MemoryRegion *mr)
2949 {
2950     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2951         return MEMTX_ACCESS_ERROR;
2952     }
2953 
2954     if (!memory_access_is_direct(mr, true, attrs)) {
2955         uint64_t val;
2956         MemTxResult result;
2957         bool release_lock = prepare_mmio_access(mr);
2958 
2959         *l = memory_access_size(mr, *l, mr_addr);
2960         /*
2961          * XXX: could force current_cpu to NULL to avoid
2962          * potential bugs
2963          */
2964 
2965         /*
2966          * Assure Coverity (and ourselves) that we are not going to OVERRUN
2967          * the buffer by following ldn_he_p().
2968          */
2969 #ifdef QEMU_STATIC_ANALYSIS
2970         assert((*l == 1 && len >= 1) ||
2971                (*l == 2 && len >= 2) ||
2972                (*l == 4 && len >= 4) ||
2973                (*l == 8 && len >= 8));
2974 #endif
2975         val = ldn_he_p(buf, *l);
2976         result = memory_region_dispatch_write(mr, mr_addr, val,
2977                                               size_memop(*l), attrs);
2978         if (release_lock) {
2979             bql_unlock();
2980         }
2981 
2982         return result;
2983     } else {
2984         /* RAM case */
2985         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2986                                                false, true);
2987 
2988         memmove(ram_ptr, buf, *l);
2989         invalidate_and_set_dirty(mr, mr_addr, *l);
2990 
2991         return MEMTX_OK;
2992     }
2993 }
2994 
2995 /* Called within RCU critical section.  */
flatview_write_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2996 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2997                                            MemTxAttrs attrs,
2998                                            const void *ptr,
2999                                            hwaddr len, hwaddr mr_addr,
3000                                            hwaddr l, MemoryRegion *mr)
3001 {
3002     MemTxResult result = MEMTX_OK;
3003     const uint8_t *buf = ptr;
3004 
3005     for (;;) {
3006         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3007                                                mr);
3008 
3009         len -= l;
3010         buf += l;
3011         addr += l;
3012 
3013         if (!len) {
3014             break;
3015         }
3016 
3017         l = len;
3018         mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
3019     }
3020 
3021     return result;
3022 }
3023 
3024 /* Called from RCU critical section.  */
flatview_write(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3025 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3026                                   const void *buf, hwaddr len)
3027 {
3028     hwaddr l;
3029     hwaddr mr_addr;
3030     MemoryRegion *mr;
3031 
3032     l = len;
3033     mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
3034     if (!flatview_access_allowed(mr, attrs, addr, len)) {
3035         return MEMTX_ACCESS_ERROR;
3036     }
3037     return flatview_write_continue(fv, addr, attrs, buf, len,
3038                                    mr_addr, l, mr);
3039 }
3040 
flatview_read_continue_step(MemTxAttrs attrs,uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)3041 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
3042                                                hwaddr len, hwaddr mr_addr,
3043                                                hwaddr *l,
3044                                                MemoryRegion *mr)
3045 {
3046     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
3047         return MEMTX_ACCESS_ERROR;
3048     }
3049 
3050     if (!memory_access_is_direct(mr, false, attrs)) {
3051         /* I/O case */
3052         uint64_t val;
3053         MemTxResult result;
3054         bool release_lock = prepare_mmio_access(mr);
3055 
3056         *l = memory_access_size(mr, *l, mr_addr);
3057         result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
3058                                              attrs);
3059 
3060         /*
3061          * Assure Coverity (and ourselves) that we are not going to OVERRUN
3062          * the buffer by following stn_he_p().
3063          */
3064 #ifdef QEMU_STATIC_ANALYSIS
3065         assert((*l == 1 && len >= 1) ||
3066                (*l == 2 && len >= 2) ||
3067                (*l == 4 && len >= 4) ||
3068                (*l == 8 && len >= 8));
3069 #endif
3070         stn_he_p(buf, *l, val);
3071 
3072         if (release_lock) {
3073             bql_unlock();
3074         }
3075         return result;
3076     } else {
3077         /* RAM case */
3078         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
3079                                                false, false);
3080 
3081         memcpy(buf, ram_ptr, *l);
3082 
3083         return MEMTX_OK;
3084     }
3085 }
3086 
3087 /* Called within RCU critical section.  */
flatview_read_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3088 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3089                                    MemTxAttrs attrs, void *ptr,
3090                                    hwaddr len, hwaddr mr_addr, hwaddr l,
3091                                    MemoryRegion *mr)
3092 {
3093     MemTxResult result = MEMTX_OK;
3094     uint8_t *buf = ptr;
3095 
3096     fuzz_dma_read_cb(addr, len, mr);
3097     for (;;) {
3098         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3099 
3100         len -= l;
3101         buf += l;
3102         addr += l;
3103 
3104         if (!len) {
3105             break;
3106         }
3107 
3108         l = len;
3109         mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
3110     }
3111 
3112     return result;
3113 }
3114 
3115 /* Called from RCU critical section.  */
flatview_read(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3116 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3117                                  MemTxAttrs attrs, void *buf, hwaddr len)
3118 {
3119     hwaddr l;
3120     hwaddr mr_addr;
3121     MemoryRegion *mr;
3122 
3123     l = len;
3124     mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
3125     if (!flatview_access_allowed(mr, attrs, addr, len)) {
3126         return MEMTX_ACCESS_ERROR;
3127     }
3128     return flatview_read_continue(fv, addr, attrs, buf, len,
3129                                   mr_addr, l, mr);
3130 }
3131 
address_space_read_full(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3132 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3133                                     MemTxAttrs attrs, void *buf, hwaddr len)
3134 {
3135     MemTxResult result = MEMTX_OK;
3136     FlatView *fv;
3137 
3138     if (len > 0) {
3139         RCU_READ_LOCK_GUARD();
3140         fv = address_space_to_flatview(as);
3141         result = flatview_read(fv, addr, attrs, buf, len);
3142     }
3143 
3144     return result;
3145 }
3146 
address_space_write(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3147 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3148                                 MemTxAttrs attrs,
3149                                 const void *buf, hwaddr len)
3150 {
3151     MemTxResult result = MEMTX_OK;
3152     FlatView *fv;
3153 
3154     if (len > 0) {
3155         RCU_READ_LOCK_GUARD();
3156         fv = address_space_to_flatview(as);
3157         result = flatview_write(fv, addr, attrs, buf, len);
3158     }
3159 
3160     return result;
3161 }
3162 
address_space_rw(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len,bool is_write)3163 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3164                              void *buf, hwaddr len, bool is_write)
3165 {
3166     if (is_write) {
3167         return address_space_write(as, addr, attrs, buf, len);
3168     } else {
3169         return address_space_read_full(as, addr, attrs, buf, len);
3170     }
3171 }
3172 
address_space_set(AddressSpace * as,hwaddr addr,uint8_t c,hwaddr len,MemTxAttrs attrs)3173 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3174                               uint8_t c, hwaddr len, MemTxAttrs attrs)
3175 {
3176 #define FILLBUF_SIZE 512
3177     uint8_t fillbuf[FILLBUF_SIZE];
3178     int l;
3179     MemTxResult error = MEMTX_OK;
3180 
3181     memset(fillbuf, c, FILLBUF_SIZE);
3182     while (len > 0) {
3183         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
3184         error |= address_space_write(as, addr, attrs, fillbuf, l);
3185         len -= l;
3186         addr += l;
3187     }
3188 
3189     return error;
3190 }
3191 
cpu_physical_memory_rw(hwaddr addr,void * buf,hwaddr len,bool is_write)3192 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3193                             hwaddr len, bool is_write)
3194 {
3195     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3196                      buf, len, is_write);
3197 }
3198 
3199 enum write_rom_type {
3200     WRITE_DATA,
3201     FLUSH_CACHE,
3202 };
3203 
address_space_write_rom_internal(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,enum write_rom_type type)3204 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3205                                                            hwaddr addr,
3206                                                            MemTxAttrs attrs,
3207                                                            const void *ptr,
3208                                                            hwaddr len,
3209                                                            enum write_rom_type type)
3210 {
3211     hwaddr l;
3212     uint8_t *ram_ptr;
3213     hwaddr addr1;
3214     MemoryRegion *mr;
3215     const uint8_t *buf = ptr;
3216 
3217     RCU_READ_LOCK_GUARD();
3218     while (len > 0) {
3219         l = len;
3220         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3221 
3222         if (!memory_region_supports_direct_access(mr)) {
3223             l = memory_access_size(mr, l, addr1);
3224         } else {
3225             /* ROM/RAM case */
3226             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3227             switch (type) {
3228             case WRITE_DATA:
3229                 memcpy(ram_ptr, buf, l);
3230                 invalidate_and_set_dirty(mr, addr1, l);
3231                 break;
3232             case FLUSH_CACHE:
3233                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3234                 break;
3235             }
3236         }
3237         len -= l;
3238         buf += l;
3239         addr += l;
3240     }
3241     return MEMTX_OK;
3242 }
3243 
3244 /* used for ROM loading : can write in RAM and ROM */
address_space_write_rom(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3245 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3246                                     MemTxAttrs attrs,
3247                                     const void *buf, hwaddr len)
3248 {
3249     return address_space_write_rom_internal(as, addr, attrs,
3250                                             buf, len, WRITE_DATA);
3251 }
3252 
cpu_flush_icache_range(hwaddr start,hwaddr len)3253 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3254 {
3255     /*
3256      * This function should do the same thing as an icache flush that was
3257      * triggered from within the guest. For TCG we are always cache coherent,
3258      * so there is no need to flush anything. For KVM / Xen we need to flush
3259      * the host's instruction cache at least.
3260      */
3261     if (tcg_enabled()) {
3262         return;
3263     }
3264 
3265     address_space_write_rom_internal(&address_space_memory,
3266                                      start, MEMTXATTRS_UNSPECIFIED,
3267                                      NULL, len, FLUSH_CACHE);
3268 }
3269 
3270 /*
3271  * A magic value stored in the first 8 bytes of the bounce buffer struct. Used
3272  * to detect illegal pointers passed to address_space_unmap.
3273  */
3274 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed
3275 
3276 typedef struct {
3277     uint64_t magic;
3278     MemoryRegion *mr;
3279     hwaddr addr;
3280     size_t len;
3281     uint8_t buffer[];
3282 } BounceBuffer;
3283 
3284 static void
address_space_unregister_map_client_do(AddressSpaceMapClient * client)3285 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3286 {
3287     QLIST_REMOVE(client, link);
3288     g_free(client);
3289 }
3290 
address_space_notify_map_clients_locked(AddressSpace * as)3291 static void address_space_notify_map_clients_locked(AddressSpace *as)
3292 {
3293     AddressSpaceMapClient *client;
3294 
3295     while (!QLIST_EMPTY(&as->map_client_list)) {
3296         client = QLIST_FIRST(&as->map_client_list);
3297         qemu_bh_schedule(client->bh);
3298         address_space_unregister_map_client_do(client);
3299     }
3300 }
3301 
address_space_register_map_client(AddressSpace * as,QEMUBH * bh)3302 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3303 {
3304     AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3305 
3306     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3307     client->bh = bh;
3308     QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3309     /* Write map_client_list before reading bounce_buffer_size. */
3310     smp_mb();
3311     if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) {
3312         address_space_notify_map_clients_locked(as);
3313     }
3314 }
3315 
cpu_exec_init_all(void)3316 void cpu_exec_init_all(void)
3317 {
3318     qemu_mutex_init(&ram_list.mutex);
3319     /* The data structures we set up here depend on knowing the page size,
3320      * so no more changes can be made after this point.
3321      * In an ideal world, nothing we did before we had finished the
3322      * machine setup would care about the target page size, and we could
3323      * do this much later, rather than requiring board models to state
3324      * up front what their requirements are.
3325      */
3326     finalize_target_page_bits();
3327     io_mem_init();
3328     memory_map_init();
3329 }
3330 
address_space_unregister_map_client(AddressSpace * as,QEMUBH * bh)3331 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3332 {
3333     AddressSpaceMapClient *client;
3334 
3335     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3336     QLIST_FOREACH(client, &as->map_client_list, link) {
3337         if (client->bh == bh) {
3338             address_space_unregister_map_client_do(client);
3339             break;
3340         }
3341     }
3342 }
3343 
address_space_notify_map_clients(AddressSpace * as)3344 static void address_space_notify_map_clients(AddressSpace *as)
3345 {
3346     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3347     address_space_notify_map_clients_locked(as);
3348 }
3349 
flatview_access_valid(FlatView * fv,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3350 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3351                                   bool is_write, MemTxAttrs attrs)
3352 {
3353     MemoryRegion *mr;
3354     hwaddr l, xlat;
3355 
3356     while (len > 0) {
3357         l = len;
3358         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3359         if (!memory_access_is_direct(mr, is_write, attrs)) {
3360             l = memory_access_size(mr, l, addr);
3361             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3362                 return false;
3363             }
3364         }
3365 
3366         len -= l;
3367         addr += l;
3368     }
3369     return true;
3370 }
3371 
address_space_access_valid(AddressSpace * as,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3372 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3373                                 hwaddr len, bool is_write,
3374                                 MemTxAttrs attrs)
3375 {
3376     FlatView *fv;
3377 
3378     RCU_READ_LOCK_GUARD();
3379     fv = address_space_to_flatview(as);
3380     return flatview_access_valid(fv, addr, len, is_write, attrs);
3381 }
3382 
3383 static hwaddr
flatview_extend_translation(FlatView * fv,hwaddr addr,hwaddr target_len,MemoryRegion * mr,hwaddr base,hwaddr len,bool is_write,MemTxAttrs attrs)3384 flatview_extend_translation(FlatView *fv, hwaddr addr,
3385                             hwaddr target_len,
3386                             MemoryRegion *mr, hwaddr base, hwaddr len,
3387                             bool is_write, MemTxAttrs attrs)
3388 {
3389     hwaddr done = 0;
3390     hwaddr xlat;
3391     MemoryRegion *this_mr;
3392 
3393     for (;;) {
3394         target_len -= len;
3395         addr += len;
3396         done += len;
3397         if (target_len == 0) {
3398             return done;
3399         }
3400 
3401         len = target_len;
3402         this_mr = flatview_translate(fv, addr, &xlat,
3403                                      &len, is_write, attrs);
3404         if (this_mr != mr || xlat != base + done) {
3405             return done;
3406         }
3407     }
3408 }
3409 
3410 /* Map a physical memory region into a host virtual address.
3411  * May map a subset of the requested range, given by and returned in *plen.
3412  * May return NULL if resources needed to perform the mapping are exhausted.
3413  * Use only for reads OR writes - not for read-modify-write operations.
3414  * Use address_space_register_map_client() to know when retrying the map
3415  * operation is likely to succeed.
3416  */
address_space_map(AddressSpace * as,hwaddr addr,hwaddr * plen,bool is_write,MemTxAttrs attrs)3417 void *address_space_map(AddressSpace *as,
3418                         hwaddr addr,
3419                         hwaddr *plen,
3420                         bool is_write,
3421                         MemTxAttrs attrs)
3422 {
3423     hwaddr len = *plen;
3424     hwaddr l, xlat;
3425     MemoryRegion *mr;
3426     FlatView *fv;
3427 
3428     trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3429 
3430     if (len == 0) {
3431         return NULL;
3432     }
3433 
3434     l = len;
3435     RCU_READ_LOCK_GUARD();
3436     fv = address_space_to_flatview(as);
3437     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3438 
3439     if (!memory_access_is_direct(mr, is_write, attrs)) {
3440         size_t used = qatomic_read(&as->bounce_buffer_size);
3441         for (;;) {
3442             hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l);
3443             size_t new_size = used + alloc;
3444             size_t actual =
3445                 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size);
3446             if (actual == used) {
3447                 l = alloc;
3448                 break;
3449             }
3450             used = actual;
3451         }
3452 
3453         if (l == 0) {
3454             *plen = 0;
3455             return NULL;
3456         }
3457 
3458         BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer));
3459         bounce->magic = BOUNCE_BUFFER_MAGIC;
3460         memory_region_ref(mr);
3461         bounce->mr = mr;
3462         bounce->addr = addr;
3463         bounce->len = l;
3464 
3465         if (!is_write) {
3466             flatview_read(fv, addr, attrs,
3467                           bounce->buffer, l);
3468         }
3469 
3470         *plen = l;
3471         return bounce->buffer;
3472     }
3473 
3474     memory_region_ref(mr);
3475     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3476                                         l, is_write, attrs);
3477     fuzz_dma_read_cb(addr, *plen, mr);
3478     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3479 }
3480 
3481 /* Unmaps a memory region previously mapped by address_space_map().
3482  * Will also mark the memory as dirty if is_write is true.  access_len gives
3483  * the amount of memory that was actually read or written by the caller.
3484  */
address_space_unmap(AddressSpace * as,void * buffer,hwaddr len,bool is_write,hwaddr access_len)3485 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3486                          bool is_write, hwaddr access_len)
3487 {
3488     MemoryRegion *mr;
3489     ram_addr_t addr1;
3490 
3491     mr = memory_region_from_host(buffer, &addr1);
3492     if (mr != NULL) {
3493         if (is_write) {
3494             invalidate_and_set_dirty(mr, addr1, access_len);
3495         }
3496         if (xen_enabled()) {
3497             xen_invalidate_map_cache_entry(buffer);
3498         }
3499         memory_region_unref(mr);
3500         return;
3501     }
3502 
3503 
3504     BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer);
3505     assert(bounce->magic == BOUNCE_BUFFER_MAGIC);
3506 
3507     if (is_write) {
3508         address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED,
3509                             bounce->buffer, access_len);
3510     }
3511 
3512     qatomic_sub(&as->bounce_buffer_size, bounce->len);
3513     bounce->magic = ~BOUNCE_BUFFER_MAGIC;
3514     memory_region_unref(bounce->mr);
3515     g_free(bounce);
3516     /* Write bounce_buffer_size before reading map_client_list. */
3517     smp_mb();
3518     address_space_notify_map_clients(as);
3519 }
3520 
cpu_physical_memory_map(hwaddr addr,hwaddr * plen,bool is_write)3521 void *cpu_physical_memory_map(hwaddr addr,
3522                               hwaddr *plen,
3523                               bool is_write)
3524 {
3525     return address_space_map(&address_space_memory, addr, plen, is_write,
3526                              MEMTXATTRS_UNSPECIFIED);
3527 }
3528 
cpu_physical_memory_unmap(void * buffer,hwaddr len,bool is_write,hwaddr access_len)3529 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3530                                bool is_write, hwaddr access_len)
3531 {
3532     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3533 }
3534 
3535 #define ARG1_DECL                AddressSpace *as
3536 #define ARG1                     as
3537 #define SUFFIX
3538 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3539 #define RCU_READ_LOCK(...)       rcu_read_lock()
3540 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3541 #include "memory_ldst.c.inc"
3542 
address_space_cache_init(MemoryRegionCache * cache,AddressSpace * as,hwaddr addr,hwaddr len,bool is_write)3543 int64_t address_space_cache_init(MemoryRegionCache *cache,
3544                                  AddressSpace *as,
3545                                  hwaddr addr,
3546                                  hwaddr len,
3547                                  bool is_write)
3548 {
3549     AddressSpaceDispatch *d;
3550     hwaddr l;
3551     MemoryRegion *mr;
3552     Int128 diff;
3553 
3554     assert(len > 0);
3555 
3556     l = len;
3557     cache->fv = address_space_get_flatview(as);
3558     d = flatview_to_dispatch(cache->fv);
3559     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3560 
3561     /*
3562      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3563      * Take that into account to compute how many bytes are there between
3564      * cache->xlat and the end of the section.
3565      */
3566     diff = int128_sub(cache->mrs.size,
3567                       int128_make64(cache->xlat - cache->mrs.offset_within_region));
3568     l = int128_get64(int128_min(diff, int128_make64(l)));
3569 
3570     mr = cache->mrs.mr;
3571     memory_region_ref(mr);
3572     if (memory_access_is_direct(mr, is_write, MEMTXATTRS_UNSPECIFIED)) {
3573         /* We don't care about the memory attributes here as we're only
3574          * doing this if we found actual RAM, which behaves the same
3575          * regardless of attributes; so UNSPECIFIED is fine.
3576          */
3577         l = flatview_extend_translation(cache->fv, addr, len, mr,
3578                                         cache->xlat, l, is_write,
3579                                         MEMTXATTRS_UNSPECIFIED);
3580         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3581                                          is_write);
3582     } else {
3583         cache->ptr = NULL;
3584     }
3585 
3586     cache->len = l;
3587     cache->is_write = is_write;
3588     return l;
3589 }
3590 
address_space_cache_invalidate(MemoryRegionCache * cache,hwaddr addr,hwaddr access_len)3591 void address_space_cache_invalidate(MemoryRegionCache *cache,
3592                                     hwaddr addr,
3593                                     hwaddr access_len)
3594 {
3595     assert(cache->is_write);
3596     if (likely(cache->ptr)) {
3597         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3598     }
3599 }
3600 
address_space_cache_destroy(MemoryRegionCache * cache)3601 void address_space_cache_destroy(MemoryRegionCache *cache)
3602 {
3603     if (!cache->mrs.mr) {
3604         return;
3605     }
3606 
3607     if (xen_enabled()) {
3608         xen_invalidate_map_cache_entry(cache->ptr);
3609     }
3610     memory_region_unref(cache->mrs.mr);
3611     flatview_unref(cache->fv);
3612     cache->mrs.mr = NULL;
3613     cache->fv = NULL;
3614 }
3615 
3616 /* Called from RCU critical section.  This function has the same
3617  * semantics as address_space_translate, but it only works on a
3618  * predefined range of a MemoryRegion that was mapped with
3619  * address_space_cache_init.
3620  */
address_space_translate_cached(MemoryRegionCache * cache,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)3621 static inline MemoryRegion *address_space_translate_cached(
3622     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3623     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3624 {
3625     MemoryRegionSection section;
3626     MemoryRegion *mr;
3627     IOMMUMemoryRegion *iommu_mr;
3628     AddressSpace *target_as;
3629 
3630     assert(!cache->ptr);
3631     *xlat = addr + cache->xlat;
3632 
3633     mr = cache->mrs.mr;
3634     iommu_mr = memory_region_get_iommu(mr);
3635     if (!iommu_mr) {
3636         /* MMIO region.  */
3637         return mr;
3638     }
3639 
3640     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3641                                             NULL, is_write, true,
3642                                             &target_as, attrs);
3643     return section.mr;
3644 }
3645 
3646 /* Called within RCU critical section.  */
address_space_write_continue_cached(MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3647 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3648                                                        const void *ptr,
3649                                                        hwaddr len,
3650                                                        hwaddr mr_addr,
3651                                                        hwaddr l,
3652                                                        MemoryRegion *mr)
3653 {
3654     MemTxResult result = MEMTX_OK;
3655     const uint8_t *buf = ptr;
3656 
3657     for (;;) {
3658         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3659                                                mr);
3660 
3661         len -= l;
3662         buf += l;
3663         mr_addr += l;
3664 
3665         if (!len) {
3666             break;
3667         }
3668 
3669         l = len;
3670     }
3671 
3672     return result;
3673 }
3674 
3675 /* Called within RCU critical section.  */
address_space_read_continue_cached(MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3676 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3677                                                       void *ptr, hwaddr len,
3678                                                       hwaddr mr_addr, hwaddr l,
3679                                                       MemoryRegion *mr)
3680 {
3681     MemTxResult result = MEMTX_OK;
3682     uint8_t *buf = ptr;
3683 
3684     for (;;) {
3685         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3686         len -= l;
3687         buf += l;
3688         mr_addr += l;
3689 
3690         if (!len) {
3691             break;
3692         }
3693         l = len;
3694     }
3695 
3696     return result;
3697 }
3698 
3699 /* Called from RCU critical section. address_space_read_cached uses this
3700  * out of line function when the target is an MMIO or IOMMU region.
3701  */
3702 MemTxResult
address_space_read_cached_slow(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3703 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3704                                    void *buf, hwaddr len)
3705 {
3706     hwaddr mr_addr, l;
3707     MemoryRegion *mr;
3708 
3709     l = len;
3710     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3711                                         MEMTXATTRS_UNSPECIFIED);
3712     return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3713                                               buf, len, mr_addr, l, mr);
3714 }
3715 
3716 /* Called from RCU critical section. address_space_write_cached uses this
3717  * out of line function when the target is an MMIO or IOMMU region.
3718  */
3719 MemTxResult
address_space_write_cached_slow(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3720 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3721                                     const void *buf, hwaddr len)
3722 {
3723     hwaddr mr_addr, l;
3724     MemoryRegion *mr;
3725 
3726     l = len;
3727     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3728                                         MEMTXATTRS_UNSPECIFIED);
3729     return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3730                                                buf, len, mr_addr, l, mr);
3731 }
3732 
3733 #define ARG1_DECL                MemoryRegionCache *cache
3734 #define ARG1                     cache
3735 #define SUFFIX                   _cached_slow
3736 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3737 #define RCU_READ_LOCK()          ((void)0)
3738 #define RCU_READ_UNLOCK()        ((void)0)
3739 #include "memory_ldst.c.inc"
3740 
3741 /* virtual memory access for debug (includes writing to ROM) */
cpu_memory_rw_debug(CPUState * cpu,vaddr addr,void * ptr,size_t len,bool is_write)3742 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3743                         void *ptr, size_t len, bool is_write)
3744 {
3745     hwaddr phys_addr;
3746     vaddr l, page;
3747     uint8_t *buf = ptr;
3748 
3749     cpu_synchronize_state(cpu);
3750     while (len > 0) {
3751         int asidx;
3752         MemTxAttrs attrs;
3753         MemTxResult res;
3754 
3755         page = addr & TARGET_PAGE_MASK;
3756         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3757         asidx = cpu_asidx_from_attrs(cpu, attrs);
3758         /* if no physical page mapped, return an error */
3759         if (phys_addr == -1)
3760             return -1;
3761         l = (page + TARGET_PAGE_SIZE) - addr;
3762         if (l > len)
3763             l = len;
3764         phys_addr += (addr & ~TARGET_PAGE_MASK);
3765         res = address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3766                                l, is_write);
3767         if (res != MEMTX_OK) {
3768             return -1;
3769         }
3770         len -= l;
3771         buf += l;
3772         addr += l;
3773     }
3774     return 0;
3775 }
3776 
cpu_physical_memory_is_io(hwaddr phys_addr)3777 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3778 {
3779     MemoryRegion*mr;
3780     hwaddr l = 1;
3781 
3782     RCU_READ_LOCK_GUARD();
3783     mr = address_space_translate(&address_space_memory,
3784                                  phys_addr, &phys_addr, &l, false,
3785                                  MEMTXATTRS_UNSPECIFIED);
3786 
3787     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3788 }
3789 
qemu_ram_foreach_block(RAMBlockIterFunc func,void * opaque)3790 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3791 {
3792     RAMBlock *block;
3793     int ret = 0;
3794 
3795     RCU_READ_LOCK_GUARD();
3796     RAMBLOCK_FOREACH(block) {
3797         ret = func(block, opaque);
3798         if (ret) {
3799             break;
3800         }
3801     }
3802     return ret;
3803 }
3804 
3805 /*
3806  * Unmap pages of memory from start to start+length such that
3807  * they a) read as 0, b) Trigger whatever fault mechanism
3808  * the OS provides for postcopy.
3809  * The pages must be unmapped by the end of the function.
3810  * Returns: 0 on success, none-0 on failure
3811  *
3812  */
ram_block_discard_range(RAMBlock * rb,uint64_t start,size_t length)3813 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3814 {
3815     int ret = -1;
3816 
3817     uint8_t *host_startaddr = rb->host + start;
3818 
3819     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3820         error_report("%s: Unaligned start address: %p",
3821                      __func__, host_startaddr);
3822         goto err;
3823     }
3824 
3825     if ((start + length) <= rb->max_length) {
3826         bool need_madvise, need_fallocate;
3827         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3828             error_report("%s: Unaligned length: %zx", __func__, length);
3829             goto err;
3830         }
3831 
3832         errno = ENOTSUP; /* If we are missing MADVISE etc */
3833 
3834         /* The logic here is messy;
3835          *    madvise DONTNEED fails for hugepages
3836          *    fallocate works on hugepages and shmem
3837          *    shared anonymous memory requires madvise REMOVE
3838          */
3839         need_madvise = (rb->page_size == qemu_real_host_page_size());
3840         need_fallocate = rb->fd != -1;
3841         if (need_fallocate) {
3842             /* For a file, this causes the area of the file to be zero'd
3843              * if read, and for hugetlbfs also causes it to be unmapped
3844              * so a userfault will trigger.
3845              */
3846 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3847             /*
3848              * fallocate() will fail with readonly files. Let's print a
3849              * proper error message.
3850              */
3851             if (rb->flags & RAM_READONLY_FD) {
3852                 error_report("%s: Discarding RAM with readonly files is not"
3853                              " supported", __func__);
3854                 goto err;
3855 
3856             }
3857             /*
3858              * We'll discard data from the actual file, even though we only
3859              * have a MAP_PRIVATE mapping, possibly messing with other
3860              * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3861              * change that behavior whithout violating the promised
3862              * semantics of ram_block_discard_range().
3863              *
3864              * Only warn, because it works as long as nobody else uses that
3865              * file.
3866              */
3867             if (!qemu_ram_is_shared(rb)) {
3868                 warn_report_once("%s: Discarding RAM"
3869                                  " in private file mappings is possibly"
3870                                  " dangerous, because it will modify the"
3871                                  " underlying file and will affect other"
3872                                  " users of the file", __func__);
3873             }
3874 
3875             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3876                             start + rb->fd_offset, length);
3877             if (ret) {
3878                 ret = -errno;
3879                 error_report("%s: Failed to fallocate %s:%" PRIx64 "+%" PRIx64
3880                              " +%zx (%d)", __func__, rb->idstr, start,
3881                              rb->fd_offset, length, ret);
3882                 goto err;
3883             }
3884 #else
3885             ret = -ENOSYS;
3886             error_report("%s: fallocate not available/file"
3887                          "%s:%" PRIx64 "+%" PRIx64 " +%zx (%d)", __func__,
3888                          rb->idstr, start, rb->fd_offset, length, ret);
3889             goto err;
3890 #endif
3891         }
3892         if (need_madvise) {
3893             /* For normal RAM this causes it to be unmapped,
3894              * for shared memory it causes the local mapping to disappear
3895              * and to fall back on the file contents (which we just
3896              * fallocate'd away).
3897              */
3898 #if defined(CONFIG_MADVISE)
3899             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3900                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3901             } else {
3902                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3903             }
3904             if (ret) {
3905                 ret = -errno;
3906                 error_report("%s: Failed to discard range "
3907                              "%s:%" PRIx64 " +%zx (%d)",
3908                              __func__, rb->idstr, start, length, ret);
3909                 goto err;
3910             }
3911 #else
3912             ret = -ENOSYS;
3913             error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3914                          __func__, rb->idstr, start, length, ret);
3915             goto err;
3916 #endif
3917         }
3918         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3919                                       need_madvise, need_fallocate, ret);
3920     } else {
3921         error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3922                      __func__, rb->idstr, start, length, rb->max_length);
3923     }
3924 
3925 err:
3926     return ret;
3927 }
3928 
ram_block_discard_guest_memfd_range(RAMBlock * rb,uint64_t start,size_t length)3929 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3930                                         size_t length)
3931 {
3932     int ret = -1;
3933 
3934 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3935     /* ignore fd_offset with guest_memfd */
3936     ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3937                     start, length);
3938 
3939     if (ret) {
3940         ret = -errno;
3941         error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3942                      __func__, rb->idstr, start, length, ret);
3943     }
3944 #else
3945     ret = -ENOSYS;
3946     error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3947                  __func__, rb->idstr, start, length, ret);
3948 #endif
3949 
3950     return ret;
3951 }
3952 
ramblock_is_pmem(RAMBlock * rb)3953 bool ramblock_is_pmem(RAMBlock *rb)
3954 {
3955     return rb->flags & RAM_PMEM;
3956 }
3957 
mtree_print_phys_entries(int start,int end,int skip,int ptr)3958 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3959 {
3960     if (start == end - 1) {
3961         qemu_printf("\t%3d      ", start);
3962     } else {
3963         qemu_printf("\t%3d..%-3d ", start, end - 1);
3964     }
3965     qemu_printf(" skip=%d ", skip);
3966     if (ptr == PHYS_MAP_NODE_NIL) {
3967         qemu_printf(" ptr=NIL");
3968     } else if (!skip) {
3969         qemu_printf(" ptr=#%d", ptr);
3970     } else {
3971         qemu_printf(" ptr=[%d]", ptr);
3972     }
3973     qemu_printf("\n");
3974 }
3975 
3976 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3977                            int128_sub((size), int128_one())) : 0)
3978 
mtree_print_dispatch(AddressSpaceDispatch * d,MemoryRegion * root)3979 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3980 {
3981     int i;
3982 
3983     qemu_printf("  Dispatch\n");
3984     qemu_printf("    Physical sections\n");
3985 
3986     for (i = 0; i < d->map.sections_nb; ++i) {
3987         MemoryRegionSection *s = d->map.sections + i;
3988         const char *names[] = { " [unassigned]", " [not dirty]",
3989                                 " [ROM]", " [watch]" };
3990 
3991         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3992                     " %s%s%s%s%s",
3993             i,
3994             s->offset_within_address_space,
3995             s->offset_within_address_space + MR_SIZE(s->size),
3996             s->mr->name ? s->mr->name : "(noname)",
3997             i < ARRAY_SIZE(names) ? names[i] : "",
3998             s->mr == root ? " [ROOT]" : "",
3999             s == d->mru_section ? " [MRU]" : "",
4000             s->mr->is_iommu ? " [iommu]" : "");
4001 
4002         if (s->mr->alias) {
4003             qemu_printf(" alias=%s", s->mr->alias->name ?
4004                     s->mr->alias->name : "noname");
4005         }
4006         qemu_printf("\n");
4007     }
4008 
4009     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4010                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4011     for (i = 0; i < d->map.nodes_nb; ++i) {
4012         int j, jprev;
4013         PhysPageEntry prev;
4014         Node *n = d->map.nodes + i;
4015 
4016         qemu_printf("      [%d]\n", i);
4017 
4018         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4019             PhysPageEntry *pe = *n + j;
4020 
4021             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4022                 continue;
4023             }
4024 
4025             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4026 
4027             jprev = j;
4028             prev = *pe;
4029         }
4030 
4031         if (jprev != ARRAY_SIZE(*n)) {
4032             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4033         }
4034     }
4035 }
4036 
4037 /* Require any discards to work. */
4038 static unsigned int ram_block_discard_required_cnt;
4039 /* Require only coordinated discards to work. */
4040 static unsigned int ram_block_coordinated_discard_required_cnt;
4041 /* Disable any discards. */
4042 static unsigned int ram_block_discard_disabled_cnt;
4043 /* Disable only uncoordinated discards. */
4044 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
4045 static QemuMutex ram_block_discard_disable_mutex;
4046 
ram_block_discard_disable_mutex_lock(void)4047 static void ram_block_discard_disable_mutex_lock(void)
4048 {
4049     static gsize initialized;
4050 
4051     if (g_once_init_enter(&initialized)) {
4052         qemu_mutex_init(&ram_block_discard_disable_mutex);
4053         g_once_init_leave(&initialized, 1);
4054     }
4055     qemu_mutex_lock(&ram_block_discard_disable_mutex);
4056 }
4057 
ram_block_discard_disable_mutex_unlock(void)4058 static void ram_block_discard_disable_mutex_unlock(void)
4059 {
4060     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
4061 }
4062 
ram_block_discard_disable(bool state)4063 int ram_block_discard_disable(bool state)
4064 {
4065     int ret = 0;
4066 
4067     ram_block_discard_disable_mutex_lock();
4068     if (!state) {
4069         ram_block_discard_disabled_cnt--;
4070     } else if (ram_block_discard_required_cnt ||
4071                ram_block_coordinated_discard_required_cnt) {
4072         ret = -EBUSY;
4073     } else {
4074         ram_block_discard_disabled_cnt++;
4075     }
4076     ram_block_discard_disable_mutex_unlock();
4077     return ret;
4078 }
4079 
ram_block_uncoordinated_discard_disable(bool state)4080 int ram_block_uncoordinated_discard_disable(bool state)
4081 {
4082     int ret = 0;
4083 
4084     ram_block_discard_disable_mutex_lock();
4085     if (!state) {
4086         ram_block_uncoordinated_discard_disabled_cnt--;
4087     } else if (ram_block_discard_required_cnt) {
4088         ret = -EBUSY;
4089     } else {
4090         ram_block_uncoordinated_discard_disabled_cnt++;
4091     }
4092     ram_block_discard_disable_mutex_unlock();
4093     return ret;
4094 }
4095 
ram_block_discard_require(bool state)4096 int ram_block_discard_require(bool state)
4097 {
4098     int ret = 0;
4099 
4100     ram_block_discard_disable_mutex_lock();
4101     if (!state) {
4102         ram_block_discard_required_cnt--;
4103     } else if (ram_block_discard_disabled_cnt ||
4104                ram_block_uncoordinated_discard_disabled_cnt) {
4105         ret = -EBUSY;
4106     } else {
4107         ram_block_discard_required_cnt++;
4108     }
4109     ram_block_discard_disable_mutex_unlock();
4110     return ret;
4111 }
4112 
ram_block_coordinated_discard_require(bool state)4113 int ram_block_coordinated_discard_require(bool state)
4114 {
4115     int ret = 0;
4116 
4117     ram_block_discard_disable_mutex_lock();
4118     if (!state) {
4119         ram_block_coordinated_discard_required_cnt--;
4120     } else if (ram_block_discard_disabled_cnt) {
4121         ret = -EBUSY;
4122     } else {
4123         ram_block_coordinated_discard_required_cnt++;
4124     }
4125     ram_block_discard_disable_mutex_unlock();
4126     return ret;
4127 }
4128 
ram_block_discard_is_disabled(void)4129 bool ram_block_discard_is_disabled(void)
4130 {
4131     return qatomic_read(&ram_block_discard_disabled_cnt) ||
4132            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
4133 }
4134 
ram_block_discard_is_required(void)4135 bool ram_block_discard_is_required(void)
4136 {
4137     return qatomic_read(&ram_block_discard_required_cnt) ||
4138            qatomic_read(&ram_block_coordinated_discard_required_cnt);
4139 }
4140 
4141 /*
4142  * Return true if ram is compatible with CPR.  Do not exclude rom,
4143  * because the rom file could change in new QEMU.
4144  */
ram_is_cpr_compatible(RAMBlock * rb)4145 static bool ram_is_cpr_compatible(RAMBlock *rb)
4146 {
4147     MemoryRegion *mr = rb->mr;
4148 
4149     if (!mr || !memory_region_is_ram(mr)) {
4150         return true;
4151     }
4152 
4153     /* Ram device is remapped in new QEMU */
4154     if (memory_region_is_ram_device(mr)) {
4155         return true;
4156     }
4157 
4158     /*
4159      * A file descriptor is passed to new QEMU and remapped, or its backing
4160      * file is reopened and mapped.  It must be shared to avoid COW.
4161      */
4162     if (rb->fd >= 0 && qemu_ram_is_shared(rb)) {
4163         return true;
4164     }
4165 
4166     return false;
4167 }
4168 
4169 /*
4170  * Add a blocker for each volatile ram block.  This function should only be
4171  * called after we know that the block is migratable.  Non-migratable blocks
4172  * are either re-created in new QEMU, or are handled specially, or are covered
4173  * by a device-level CPR blocker.
4174  */
ram_block_add_cpr_blocker(RAMBlock * rb,Error ** errp)4175 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp)
4176 {
4177     assert(qemu_ram_is_migratable(rb));
4178 
4179     if (ram_is_cpr_compatible(rb)) {
4180         return;
4181     }
4182 
4183     error_setg(&rb->cpr_blocker,
4184                "Memory region %s is not compatible with CPR. share=on is "
4185                "required for memory-backend objects, and aux-ram-share=on is "
4186                "required.", memory_region_name(rb->mr));
4187     migrate_add_blocker_modes(&rb->cpr_blocker, errp, MIG_MODE_CPR_TRANSFER,
4188                               -1);
4189 }
4190 
ram_block_del_cpr_blocker(RAMBlock * rb)4191 void ram_block_del_cpr_blocker(RAMBlock *rb)
4192 {
4193     migrate_del_blocker(&rb->cpr_blocker);
4194 }
4195