1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 
25 #include <linux/dma-mapping.h>
26 
27 #include "drmP.h"
28 #include "drm_crtc_helper.h"
29 
30 #include "nouveau_drv.h"
31 #include "nouveau_connector.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_crtc.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fb.h"
36 #include "nv50_display.h"
37 
38 #define EVO_DMA_NR 9
39 
40 #define EVO_MASTER  (0x00)
41 #define EVO_FLIP(c) (0x01 + (c))
42 #define EVO_OVLY(c) (0x05 + (c))
43 #define EVO_OIMM(c) (0x09 + (c))
44 #define EVO_CURS(c) (0x0d + (c))
45 
46 /* offsets in shared sync bo of various structures */
47 #define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
48 #define EVO_MAST_NTFY     EVO_SYNC(  0, 0x00)
49 #define EVO_FLIP_SEM0(c)  EVO_SYNC((c), 0x00)
50 #define EVO_FLIP_SEM1(c)  EVO_SYNC((c), 0x10)
51 
52 struct evo {
53 	int idx;
54 	dma_addr_t handle;
55 	u32 *ptr;
56 	struct {
57 		u32 offset;
58 		u16 value;
59 	} sem;
60 };
61 
62 struct nvd0_display {
63 	struct nouveau_gpuobj *mem;
64 	struct nouveau_bo *sync;
65 	struct evo evo[9];
66 
67 	struct tasklet_struct tasklet;
68 	u32 modeset;
69 };
70 
71 static struct nvd0_display *
nvd0_display(struct drm_device * dev)72 nvd0_display(struct drm_device *dev)
73 {
74 	struct drm_nouveau_private *dev_priv = dev->dev_private;
75 	return dev_priv->engine.display.priv;
76 }
77 
78 static struct drm_crtc *
nvd0_display_crtc_get(struct drm_encoder * encoder)79 nvd0_display_crtc_get(struct drm_encoder *encoder)
80 {
81 	return nouveau_encoder(encoder)->crtc;
82 }
83 
84 /******************************************************************************
85  * EVO channel helpers
86  *****************************************************************************/
87 static inline int
evo_icmd(struct drm_device * dev,int id,u32 mthd,u32 data)88 evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data)
89 {
90 	int ret = 0;
91 	nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000001);
92 	nv_wr32(dev, 0x610704 + (id * 0x10), data);
93 	nv_mask(dev, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd);
94 	if (!nv_wait(dev, 0x610704 + (id * 0x10), 0x80000000, 0x00000000))
95 		ret = -EBUSY;
96 	nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000000);
97 	return ret;
98 }
99 
100 static u32 *
evo_wait(struct drm_device * dev,int id,int nr)101 evo_wait(struct drm_device *dev, int id, int nr)
102 {
103 	struct nvd0_display *disp = nvd0_display(dev);
104 	u32 put = nv_rd32(dev, 0x640000 + (id * 0x1000)) / 4;
105 
106 	if (put + nr >= (PAGE_SIZE / 4)) {
107 		disp->evo[id].ptr[put] = 0x20000000;
108 
109 		nv_wr32(dev, 0x640000 + (id * 0x1000), 0x00000000);
110 		if (!nv_wait(dev, 0x640004 + (id * 0x1000), ~0, 0x00000000)) {
111 			NV_ERROR(dev, "evo %d dma stalled\n", id);
112 			return NULL;
113 		}
114 
115 		put = 0;
116 	}
117 
118 	if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
119 		NV_INFO(dev, "Evo%d: %p START\n", id, disp->evo[id].ptr + put);
120 
121 	return disp->evo[id].ptr + put;
122 }
123 
124 static void
evo_kick(u32 * push,struct drm_device * dev,int id)125 evo_kick(u32 *push, struct drm_device *dev, int id)
126 {
127 	struct nvd0_display *disp = nvd0_display(dev);
128 
129 	if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO) {
130 		u32 curp = nv_rd32(dev, 0x640000 + (id * 0x1000)) >> 2;
131 		u32 *cur = disp->evo[id].ptr + curp;
132 
133 		while (cur < push)
134 			NV_INFO(dev, "Evo%d: 0x%08x\n", id, *cur++);
135 		NV_INFO(dev, "Evo%d: %p KICK!\n", id, push);
136 	}
137 
138 	nv_wr32(dev, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2);
139 }
140 
141 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
142 #define evo_data(p,d)   *((p)++) = (d)
143 
144 static int
evo_init_dma(struct drm_device * dev,int ch)145 evo_init_dma(struct drm_device *dev, int ch)
146 {
147 	struct nvd0_display *disp = nvd0_display(dev);
148 	u32 flags;
149 
150 	flags = 0x00000000;
151 	if (ch == EVO_MASTER)
152 		flags |= 0x01000000;
153 
154 	nv_wr32(dev, 0x610494 + (ch * 0x0010), (disp->evo[ch].handle >> 8) | 3);
155 	nv_wr32(dev, 0x610498 + (ch * 0x0010), 0x00010000);
156 	nv_wr32(dev, 0x61049c + (ch * 0x0010), 0x00000001);
157 	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
158 	nv_wr32(dev, 0x640000 + (ch * 0x1000), 0x00000000);
159 	nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000013 | flags);
160 	if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000)) {
161 		NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
162 			      nv_rd32(dev, 0x610490 + (ch * 0x0010)));
163 		return -EBUSY;
164 	}
165 
166 	nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
167 	nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
168 	return 0;
169 }
170 
171 static void
evo_fini_dma(struct drm_device * dev,int ch)172 evo_fini_dma(struct drm_device *dev, int ch)
173 {
174 	if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000010))
175 		return;
176 
177 	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000000);
178 	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000003, 0x00000000);
179 	nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000);
180 	nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
181 	nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
182 }
183 
184 static inline void
evo_piow(struct drm_device * dev,int ch,u16 mthd,u32 data)185 evo_piow(struct drm_device *dev, int ch, u16 mthd, u32 data)
186 {
187 	nv_wr32(dev, 0x640000 + (ch * 0x1000) + mthd, data);
188 }
189 
190 static int
evo_init_pio(struct drm_device * dev,int ch)191 evo_init_pio(struct drm_device *dev, int ch)
192 {
193 	nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000001);
194 	if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00010000)) {
195 		NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
196 			      nv_rd32(dev, 0x610490 + (ch * 0x0010)));
197 		return -EBUSY;
198 	}
199 
200 	nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
201 	nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
202 	return 0;
203 }
204 
205 static void
evo_fini_pio(struct drm_device * dev,int ch)206 evo_fini_pio(struct drm_device *dev, int ch)
207 {
208 	if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000001))
209 		return;
210 
211 	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
212 	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000001, 0x00000000);
213 	nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00000000);
214 	nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
215 	nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
216 }
217 
218 static bool
evo_sync_wait(void * data)219 evo_sync_wait(void *data)
220 {
221 	return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000;
222 }
223 
224 static int
evo_sync(struct drm_device * dev,int ch)225 evo_sync(struct drm_device *dev, int ch)
226 {
227 	struct nvd0_display *disp = nvd0_display(dev);
228 	u32 *push = evo_wait(dev, ch, 8);
229 	if (push) {
230 		nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
231 		evo_mthd(push, 0x0084, 1);
232 		evo_data(push, 0x80000000 | EVO_MAST_NTFY);
233 		evo_mthd(push, 0x0080, 2);
234 		evo_data(push, 0x00000000);
235 		evo_data(push, 0x00000000);
236 		evo_kick(push, dev, ch);
237 		if (nv_wait_cb(dev, evo_sync_wait, disp->sync))
238 			return 0;
239 	}
240 
241 	return -EBUSY;
242 }
243 
244 /******************************************************************************
245  * Page flipping channel
246  *****************************************************************************/
247 struct nouveau_bo *
nvd0_display_crtc_sema(struct drm_device * dev,int crtc)248 nvd0_display_crtc_sema(struct drm_device *dev, int crtc)
249 {
250 	return nvd0_display(dev)->sync;
251 }
252 
253 void
nvd0_display_flip_stop(struct drm_crtc * crtc)254 nvd0_display_flip_stop(struct drm_crtc *crtc)
255 {
256 	struct nvd0_display *disp = nvd0_display(crtc->dev);
257 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
258 	struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
259 	u32 *push;
260 
261 	push = evo_wait(crtc->dev, evo->idx, 8);
262 	if (push) {
263 		evo_mthd(push, 0x0084, 1);
264 		evo_data(push, 0x00000000);
265 		evo_mthd(push, 0x0094, 1);
266 		evo_data(push, 0x00000000);
267 		evo_mthd(push, 0x00c0, 1);
268 		evo_data(push, 0x00000000);
269 		evo_mthd(push, 0x0080, 1);
270 		evo_data(push, 0x00000000);
271 		evo_kick(push, crtc->dev, evo->idx);
272 	}
273 }
274 
275 int
nvd0_display_flip_next(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct nouveau_channel * chan,u32 swap_interval)276 nvd0_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
277 		       struct nouveau_channel *chan, u32 swap_interval)
278 {
279 	struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
280 	struct nvd0_display *disp = nvd0_display(crtc->dev);
281 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
282 	struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
283 	u64 offset;
284 	u32 *push;
285 	int ret;
286 
287 	swap_interval <<= 4;
288 	if (swap_interval == 0)
289 		swap_interval |= 0x100;
290 
291 	push = evo_wait(crtc->dev, evo->idx, 128);
292 	if (unlikely(push == NULL))
293 		return -EBUSY;
294 
295 	/* synchronise with the rendering channel, if necessary */
296 	if (likely(chan)) {
297 		ret = RING_SPACE(chan, 10);
298 		if (ret)
299 			return ret;
300 
301 		offset  = chan->dispc_vma[nv_crtc->index].offset;
302 		offset += evo->sem.offset;
303 
304 		BEGIN_NVC0(chan, 2, NvSubM2MF, 0x0010, 4);
305 		OUT_RING  (chan, upper_32_bits(offset));
306 		OUT_RING  (chan, lower_32_bits(offset));
307 		OUT_RING  (chan, 0xf00d0000 | evo->sem.value);
308 		OUT_RING  (chan, 0x1002);
309 		BEGIN_NVC0(chan, 2, NvSubM2MF, 0x0010, 4);
310 		OUT_RING  (chan, upper_32_bits(offset));
311 		OUT_RING  (chan, lower_32_bits(offset ^ 0x10));
312 		OUT_RING  (chan, 0x74b1e000);
313 		OUT_RING  (chan, 0x1001);
314 		FIRE_RING (chan);
315 	} else {
316 		nouveau_bo_wr32(disp->sync, evo->sem.offset / 4,
317 				0xf00d0000 | evo->sem.value);
318 		evo_sync(crtc->dev, EVO_MASTER);
319 	}
320 
321 	/* queue the flip */
322 	evo_mthd(push, 0x0100, 1);
323 	evo_data(push, 0xfffe0000);
324 	evo_mthd(push, 0x0084, 1);
325 	evo_data(push, swap_interval);
326 	if (!(swap_interval & 0x00000100)) {
327 		evo_mthd(push, 0x00e0, 1);
328 		evo_data(push, 0x40000000);
329 	}
330 	evo_mthd(push, 0x0088, 4);
331 	evo_data(push, evo->sem.offset);
332 	evo_data(push, 0xf00d0000 | evo->sem.value);
333 	evo_data(push, 0x74b1e000);
334 	evo_data(push, NvEvoSync);
335 	evo_mthd(push, 0x00a0, 2);
336 	evo_data(push, 0x00000000);
337 	evo_data(push, 0x00000000);
338 	evo_mthd(push, 0x00c0, 1);
339 	evo_data(push, nv_fb->r_dma);
340 	evo_mthd(push, 0x0110, 2);
341 	evo_data(push, 0x00000000);
342 	evo_data(push, 0x00000000);
343 	evo_mthd(push, 0x0400, 5);
344 	evo_data(push, nv_fb->nvbo->bo.offset >> 8);
345 	evo_data(push, 0);
346 	evo_data(push, (fb->height << 16) | fb->width);
347 	evo_data(push, nv_fb->r_pitch);
348 	evo_data(push, nv_fb->r_format);
349 	evo_mthd(push, 0x0080, 1);
350 	evo_data(push, 0x00000000);
351 	evo_kick(push, crtc->dev, evo->idx);
352 
353 	evo->sem.offset ^= 0x10;
354 	evo->sem.value++;
355 	return 0;
356 }
357 
358 /******************************************************************************
359  * CRTC
360  *****************************************************************************/
361 static int
nvd0_crtc_set_dither(struct nouveau_crtc * nv_crtc,bool update)362 nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
363 {
364 	struct drm_device *dev = nv_crtc->base.dev;
365 	struct nouveau_connector *nv_connector;
366 	struct drm_connector *connector;
367 	u32 *push, mode = 0x00;
368 
369 	nv_connector = nouveau_crtc_connector_get(nv_crtc);
370 	connector = &nv_connector->base;
371 	if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
372 		if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
373 			mode = DITHERING_MODE_DYNAMIC2X2;
374 	} else {
375 		mode = nv_connector->dithering_mode;
376 	}
377 
378 	if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
379 		if (connector->display_info.bpc >= 8)
380 			mode |= DITHERING_DEPTH_8BPC;
381 	} else {
382 		mode |= nv_connector->dithering_depth;
383 	}
384 
385 	push = evo_wait(dev, EVO_MASTER, 4);
386 	if (push) {
387 		evo_mthd(push, 0x0490 + (nv_crtc->index * 0x300), 1);
388 		evo_data(push, mode);
389 		if (update) {
390 			evo_mthd(push, 0x0080, 1);
391 			evo_data(push, 0x00000000);
392 		}
393 		evo_kick(push, dev, EVO_MASTER);
394 	}
395 
396 	return 0;
397 }
398 
399 static int
nvd0_crtc_set_scale(struct nouveau_crtc * nv_crtc,bool update)400 nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
401 {
402 	struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
403 	struct drm_device *dev = nv_crtc->base.dev;
404 	struct drm_crtc *crtc = &nv_crtc->base;
405 	struct nouveau_connector *nv_connector;
406 	int mode = DRM_MODE_SCALE_NONE;
407 	u32 oX, oY, *push;
408 
409 	/* start off at the resolution we programmed the crtc for, this
410 	 * effectively handles NONE/FULL scaling
411 	 */
412 	nv_connector = nouveau_crtc_connector_get(nv_crtc);
413 	if (nv_connector && nv_connector->native_mode)
414 		mode = nv_connector->scaling_mode;
415 
416 	if (mode != DRM_MODE_SCALE_NONE)
417 		omode = nv_connector->native_mode;
418 	else
419 		omode = umode;
420 
421 	oX = omode->hdisplay;
422 	oY = omode->vdisplay;
423 	if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
424 		oY *= 2;
425 
426 	/* add overscan compensation if necessary, will keep the aspect
427 	 * ratio the same as the backend mode unless overridden by the
428 	 * user setting both hborder and vborder properties.
429 	 */
430 	if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
431 			     (nv_connector->underscan == UNDERSCAN_AUTO &&
432 			      nv_connector->edid &&
433 			      drm_detect_hdmi_monitor(nv_connector->edid)))) {
434 		u32 bX = nv_connector->underscan_hborder;
435 		u32 bY = nv_connector->underscan_vborder;
436 		u32 aspect = (oY << 19) / oX;
437 
438 		if (bX) {
439 			oX -= (bX * 2);
440 			if (bY) oY -= (bY * 2);
441 			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
442 		} else {
443 			oX -= (oX >> 4) + 32;
444 			if (bY) oY -= (bY * 2);
445 			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
446 		}
447 	}
448 
449 	/* handle CENTER/ASPECT scaling, taking into account the areas
450 	 * removed already for overscan compensation
451 	 */
452 	switch (mode) {
453 	case DRM_MODE_SCALE_CENTER:
454 		oX = min((u32)umode->hdisplay, oX);
455 		oY = min((u32)umode->vdisplay, oY);
456 		/* fall-through */
457 	case DRM_MODE_SCALE_ASPECT:
458 		if (oY < oX) {
459 			u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
460 			oX = ((oY * aspect) + (aspect / 2)) >> 19;
461 		} else {
462 			u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
463 			oY = ((oX * aspect) + (aspect / 2)) >> 19;
464 		}
465 		break;
466 	default:
467 		break;
468 	}
469 
470 	push = evo_wait(dev, EVO_MASTER, 8);
471 	if (push) {
472 		evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
473 		evo_data(push, (oY << 16) | oX);
474 		evo_data(push, (oY << 16) | oX);
475 		evo_data(push, (oY << 16) | oX);
476 		evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
477 		evo_data(push, 0x00000000);
478 		evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
479 		evo_data(push, (umode->vdisplay << 16) | umode->hdisplay);
480 		evo_kick(push, dev, EVO_MASTER);
481 		if (update) {
482 			nvd0_display_flip_stop(crtc);
483 			nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
484 		}
485 	}
486 
487 	return 0;
488 }
489 
490 static int
nvd0_crtc_set_image(struct nouveau_crtc * nv_crtc,struct drm_framebuffer * fb,int x,int y,bool update)491 nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
492 		    int x, int y, bool update)
493 {
494 	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
495 	u32 *push;
496 
497 	push = evo_wait(fb->dev, EVO_MASTER, 16);
498 	if (push) {
499 		evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
500 		evo_data(push, nvfb->nvbo->bo.offset >> 8);
501 		evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
502 		evo_data(push, (fb->height << 16) | fb->width);
503 		evo_data(push, nvfb->r_pitch);
504 		evo_data(push, nvfb->r_format);
505 		evo_data(push, nvfb->r_dma);
506 		evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
507 		evo_data(push, (y << 16) | x);
508 		if (update) {
509 			evo_mthd(push, 0x0080, 1);
510 			evo_data(push, 0x00000000);
511 		}
512 		evo_kick(push, fb->dev, EVO_MASTER);
513 	}
514 
515 	nv_crtc->fb.tile_flags = nvfb->r_dma;
516 	return 0;
517 }
518 
519 static void
nvd0_crtc_cursor_show(struct nouveau_crtc * nv_crtc,bool show,bool update)520 nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update)
521 {
522 	struct drm_device *dev = nv_crtc->base.dev;
523 	u32 *push = evo_wait(dev, EVO_MASTER, 16);
524 	if (push) {
525 		if (show) {
526 			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
527 			evo_data(push, 0x85000000);
528 			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
529 			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
530 			evo_data(push, NvEvoVRAM);
531 		} else {
532 			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
533 			evo_data(push, 0x05000000);
534 			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
535 			evo_data(push, 0x00000000);
536 		}
537 
538 		if (update) {
539 			evo_mthd(push, 0x0080, 1);
540 			evo_data(push, 0x00000000);
541 		}
542 
543 		evo_kick(push, dev, EVO_MASTER);
544 	}
545 }
546 
547 static void
nvd0_crtc_dpms(struct drm_crtc * crtc,int mode)548 nvd0_crtc_dpms(struct drm_crtc *crtc, int mode)
549 {
550 }
551 
552 static void
nvd0_crtc_prepare(struct drm_crtc * crtc)553 nvd0_crtc_prepare(struct drm_crtc *crtc)
554 {
555 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
556 	u32 *push;
557 
558 	nvd0_display_flip_stop(crtc);
559 
560 	push = evo_wait(crtc->dev, EVO_MASTER, 2);
561 	if (push) {
562 		evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
563 		evo_data(push, 0x00000000);
564 		evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
565 		evo_data(push, 0x03000000);
566 		evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
567 		evo_data(push, 0x00000000);
568 		evo_kick(push, crtc->dev, EVO_MASTER);
569 	}
570 
571 	nvd0_crtc_cursor_show(nv_crtc, false, false);
572 }
573 
574 static void
nvd0_crtc_commit(struct drm_crtc * crtc)575 nvd0_crtc_commit(struct drm_crtc *crtc)
576 {
577 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
578 	u32 *push;
579 
580 	push = evo_wait(crtc->dev, EVO_MASTER, 32);
581 	if (push) {
582 		evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
583 		evo_data(push, nv_crtc->fb.tile_flags);
584 		evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
585 		evo_data(push, 0x83000000);
586 		evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
587 		evo_data(push, 0x00000000);
588 		evo_data(push, 0x00000000);
589 		evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
590 		evo_data(push, NvEvoVRAM);
591 		evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
592 		evo_data(push, 0xffffff00);
593 		evo_kick(push, crtc->dev, EVO_MASTER);
594 	}
595 
596 	nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, false);
597 	nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
598 }
599 
600 static bool
nvd0_crtc_mode_fixup(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)601 nvd0_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
602 		     struct drm_display_mode *adjusted_mode)
603 {
604 	return true;
605 }
606 
607 static int
nvd0_crtc_swap_fbs(struct drm_crtc * crtc,struct drm_framebuffer * old_fb)608 nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
609 {
610 	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
611 	int ret;
612 
613 	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
614 	if (ret)
615 		return ret;
616 
617 	if (old_fb) {
618 		nvfb = nouveau_framebuffer(old_fb);
619 		nouveau_bo_unpin(nvfb->nvbo);
620 	}
621 
622 	return 0;
623 }
624 
625 static int
nvd0_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * umode,struct drm_display_mode * mode,int x,int y,struct drm_framebuffer * old_fb)626 nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
627 		   struct drm_display_mode *mode, int x, int y,
628 		   struct drm_framebuffer *old_fb)
629 {
630 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
631 	struct nouveau_connector *nv_connector;
632 	u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
633 	u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
634 	u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
635 	u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
636 	u32 vblan2e = 0, vblan2s = 1;
637 	u32 magic = 0x31ec6000;
638 	u32 syncs, *push;
639 	int ret;
640 
641 	hactive = mode->htotal;
642 	hsynce  = mode->hsync_end - mode->hsync_start - 1;
643 	hbackp  = mode->htotal - mode->hsync_end;
644 	hblanke = hsynce + hbackp;
645 	hfrontp = mode->hsync_start - mode->hdisplay;
646 	hblanks = mode->htotal - hfrontp - 1;
647 
648 	vactive = mode->vtotal * vscan / ilace;
649 	vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
650 	vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
651 	vblanke = vsynce + vbackp;
652 	vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
653 	vblanks = vactive - vfrontp - 1;
654 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
655 		vblan2e = vactive + vsynce + vbackp;
656 		vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
657 		vactive = (vactive * 2) + 1;
658 		magic  |= 0x00000001;
659 	}
660 
661 	syncs = 0x00000001;
662 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
663 		syncs |= 0x00000008;
664 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
665 		syncs |= 0x00000010;
666 
667 	ret = nvd0_crtc_swap_fbs(crtc, old_fb);
668 	if (ret)
669 		return ret;
670 
671 	push = evo_wait(crtc->dev, EVO_MASTER, 64);
672 	if (push) {
673 		evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
674 		evo_data(push, 0x00000000);
675 		evo_data(push, (vactive << 16) | hactive);
676 		evo_data(push, ( vsynce << 16) | hsynce);
677 		evo_data(push, (vblanke << 16) | hblanke);
678 		evo_data(push, (vblanks << 16) | hblanks);
679 		evo_data(push, (vblan2e << 16) | vblan2s);
680 		evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
681 		evo_data(push, 0x00000000); /* ??? */
682 		evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
683 		evo_data(push, mode->clock * 1000);
684 		evo_data(push, 0x00200000); /* ??? */
685 		evo_data(push, mode->clock * 1000);
686 		evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
687 		evo_data(push, syncs);
688 		evo_data(push, magic);
689 		evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
690 		evo_data(push, 0x00000311);
691 		evo_data(push, 0x00000100);
692 		evo_kick(push, crtc->dev, EVO_MASTER);
693 	}
694 
695 	nv_connector = nouveau_crtc_connector_get(nv_crtc);
696 	nvd0_crtc_set_dither(nv_crtc, false);
697 	nvd0_crtc_set_scale(nv_crtc, false);
698 	nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
699 	return 0;
700 }
701 
702 static int
nvd0_crtc_mode_set_base(struct drm_crtc * crtc,int x,int y,struct drm_framebuffer * old_fb)703 nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
704 			struct drm_framebuffer *old_fb)
705 {
706 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
707 	int ret;
708 
709 	if (!crtc->fb) {
710 		NV_DEBUG_KMS(crtc->dev, "No FB bound\n");
711 		return 0;
712 	}
713 
714 	ret = nvd0_crtc_swap_fbs(crtc, old_fb);
715 	if (ret)
716 		return ret;
717 
718 	nvd0_display_flip_stop(crtc);
719 	nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
720 	nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
721 	return 0;
722 }
723 
724 static int
nvd0_crtc_mode_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)725 nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
726 			       struct drm_framebuffer *fb, int x, int y,
727 			       enum mode_set_atomic state)
728 {
729 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
730 	nvd0_display_flip_stop(crtc);
731 	nvd0_crtc_set_image(nv_crtc, fb, x, y, true);
732 	return 0;
733 }
734 
735 static void
nvd0_crtc_lut_load(struct drm_crtc * crtc)736 nvd0_crtc_lut_load(struct drm_crtc *crtc)
737 {
738 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
739 	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
740 	int i;
741 
742 	for (i = 0; i < 256; i++) {
743 		writew(0x6000 + (nv_crtc->lut.r[i] >> 2), lut + (i * 0x20) + 0);
744 		writew(0x6000 + (nv_crtc->lut.g[i] >> 2), lut + (i * 0x20) + 2);
745 		writew(0x6000 + (nv_crtc->lut.b[i] >> 2), lut + (i * 0x20) + 4);
746 	}
747 }
748 
749 static int
nvd0_crtc_cursor_set(struct drm_crtc * crtc,struct drm_file * file_priv,uint32_t handle,uint32_t width,uint32_t height)750 nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
751 		     uint32_t handle, uint32_t width, uint32_t height)
752 {
753 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
754 	struct drm_device *dev = crtc->dev;
755 	struct drm_gem_object *gem;
756 	struct nouveau_bo *nvbo;
757 	bool visible = (handle != 0);
758 	int i, ret = 0;
759 
760 	if (visible) {
761 		if (width != 64 || height != 64)
762 			return -EINVAL;
763 
764 		gem = drm_gem_object_lookup(dev, file_priv, handle);
765 		if (unlikely(!gem))
766 			return -ENOENT;
767 		nvbo = nouveau_gem_object(gem);
768 
769 		ret = nouveau_bo_map(nvbo);
770 		if (ret == 0) {
771 			for (i = 0; i < 64 * 64; i++) {
772 				u32 v = nouveau_bo_rd32(nvbo, i);
773 				nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
774 			}
775 			nouveau_bo_unmap(nvbo);
776 		}
777 
778 		drm_gem_object_unreference_unlocked(gem);
779 	}
780 
781 	if (visible != nv_crtc->cursor.visible) {
782 		nvd0_crtc_cursor_show(nv_crtc, visible, true);
783 		nv_crtc->cursor.visible = visible;
784 	}
785 
786 	return ret;
787 }
788 
789 static int
nvd0_crtc_cursor_move(struct drm_crtc * crtc,int x,int y)790 nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
791 {
792 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
793 	int ch = EVO_CURS(nv_crtc->index);
794 
795 	evo_piow(crtc->dev, ch, 0x0084, (y << 16) | x);
796 	evo_piow(crtc->dev, ch, 0x0080, 0x00000000);
797 	return 0;
798 }
799 
800 static void
nvd0_crtc_gamma_set(struct drm_crtc * crtc,u16 * r,u16 * g,u16 * b,uint32_t start,uint32_t size)801 nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
802 		    uint32_t start, uint32_t size)
803 {
804 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
805 	u32 end = max(start + size, (u32)256);
806 	u32 i;
807 
808 	for (i = start; i < end; i++) {
809 		nv_crtc->lut.r[i] = r[i];
810 		nv_crtc->lut.g[i] = g[i];
811 		nv_crtc->lut.b[i] = b[i];
812 	}
813 
814 	nvd0_crtc_lut_load(crtc);
815 }
816 
817 static void
nvd0_crtc_destroy(struct drm_crtc * crtc)818 nvd0_crtc_destroy(struct drm_crtc *crtc)
819 {
820 	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
821 	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
822 	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
823 	nouveau_bo_unmap(nv_crtc->lut.nvbo);
824 	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
825 	drm_crtc_cleanup(crtc);
826 	kfree(crtc);
827 }
828 
829 static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = {
830 	.dpms = nvd0_crtc_dpms,
831 	.prepare = nvd0_crtc_prepare,
832 	.commit = nvd0_crtc_commit,
833 	.mode_fixup = nvd0_crtc_mode_fixup,
834 	.mode_set = nvd0_crtc_mode_set,
835 	.mode_set_base = nvd0_crtc_mode_set_base,
836 	.mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic,
837 	.load_lut = nvd0_crtc_lut_load,
838 };
839 
840 static const struct drm_crtc_funcs nvd0_crtc_func = {
841 	.cursor_set = nvd0_crtc_cursor_set,
842 	.cursor_move = nvd0_crtc_cursor_move,
843 	.gamma_set = nvd0_crtc_gamma_set,
844 	.set_config = drm_crtc_helper_set_config,
845 	.destroy = nvd0_crtc_destroy,
846 	.page_flip = nouveau_crtc_page_flip,
847 };
848 
849 static void
nvd0_cursor_set_pos(struct nouveau_crtc * nv_crtc,int x,int y)850 nvd0_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
851 {
852 }
853 
854 static void
nvd0_cursor_set_offset(struct nouveau_crtc * nv_crtc,uint32_t offset)855 nvd0_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
856 {
857 }
858 
859 static int
nvd0_crtc_create(struct drm_device * dev,int index)860 nvd0_crtc_create(struct drm_device *dev, int index)
861 {
862 	struct nouveau_crtc *nv_crtc;
863 	struct drm_crtc *crtc;
864 	int ret, i;
865 
866 	nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
867 	if (!nv_crtc)
868 		return -ENOMEM;
869 
870 	nv_crtc->index = index;
871 	nv_crtc->set_dither = nvd0_crtc_set_dither;
872 	nv_crtc->set_scale = nvd0_crtc_set_scale;
873 	nv_crtc->cursor.set_offset = nvd0_cursor_set_offset;
874 	nv_crtc->cursor.set_pos = nvd0_cursor_set_pos;
875 	for (i = 0; i < 256; i++) {
876 		nv_crtc->lut.r[i] = i << 8;
877 		nv_crtc->lut.g[i] = i << 8;
878 		nv_crtc->lut.b[i] = i << 8;
879 	}
880 
881 	crtc = &nv_crtc->base;
882 	drm_crtc_init(dev, crtc, &nvd0_crtc_func);
883 	drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc);
884 	drm_mode_crtc_set_gamma_size(crtc, 256);
885 
886 	ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
887 			     0, 0x0000, &nv_crtc->cursor.nvbo);
888 	if (!ret) {
889 		ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
890 		if (!ret)
891 			ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
892 		if (ret)
893 			nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
894 	}
895 
896 	if (ret)
897 		goto out;
898 
899 	ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
900 			     0, 0x0000, &nv_crtc->lut.nvbo);
901 	if (!ret) {
902 		ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
903 		if (!ret)
904 			ret = nouveau_bo_map(nv_crtc->lut.nvbo);
905 		if (ret)
906 			nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
907 	}
908 
909 	if (ret)
910 		goto out;
911 
912 	nvd0_crtc_lut_load(crtc);
913 
914 out:
915 	if (ret)
916 		nvd0_crtc_destroy(crtc);
917 	return ret;
918 }
919 
920 /******************************************************************************
921  * DAC
922  *****************************************************************************/
923 static void
nvd0_dac_dpms(struct drm_encoder * encoder,int mode)924 nvd0_dac_dpms(struct drm_encoder *encoder, int mode)
925 {
926 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
927 	struct drm_device *dev = encoder->dev;
928 	int or = nv_encoder->or;
929 	u32 dpms_ctrl;
930 
931 	dpms_ctrl = 0x80000000;
932 	if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
933 		dpms_ctrl |= 0x00000001;
934 	if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
935 		dpms_ctrl |= 0x00000004;
936 
937 	nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
938 	nv_mask(dev, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl);
939 	nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
940 }
941 
942 static bool
nvd0_dac_mode_fixup(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)943 nvd0_dac_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
944 		    struct drm_display_mode *adjusted_mode)
945 {
946 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
947 	struct nouveau_connector *nv_connector;
948 
949 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
950 	if (nv_connector && nv_connector->native_mode) {
951 		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
952 			int id = adjusted_mode->base.id;
953 			*adjusted_mode = *nv_connector->native_mode;
954 			adjusted_mode->base.id = id;
955 		}
956 	}
957 
958 	return true;
959 }
960 
961 static void
nvd0_dac_prepare(struct drm_encoder * encoder)962 nvd0_dac_prepare(struct drm_encoder *encoder)
963 {
964 }
965 
966 static void
nvd0_dac_commit(struct drm_encoder * encoder)967 nvd0_dac_commit(struct drm_encoder *encoder)
968 {
969 }
970 
971 static void
nvd0_dac_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)972 nvd0_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
973 		  struct drm_display_mode *adjusted_mode)
974 {
975 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
976 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
977 	u32 *push;
978 
979 	nvd0_dac_dpms(encoder, DRM_MODE_DPMS_ON);
980 
981 	push = evo_wait(encoder->dev, EVO_MASTER, 4);
982 	if (push) {
983 		evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 2);
984 		evo_data(push, 1 << nv_crtc->index);
985 		evo_data(push, 0x00ff);
986 		evo_kick(push, encoder->dev, EVO_MASTER);
987 	}
988 
989 	nv_encoder->crtc = encoder->crtc;
990 }
991 
992 static void
nvd0_dac_disconnect(struct drm_encoder * encoder)993 nvd0_dac_disconnect(struct drm_encoder *encoder)
994 {
995 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
996 	struct drm_device *dev = encoder->dev;
997 	u32 *push;
998 
999 	if (nv_encoder->crtc) {
1000 		nvd0_crtc_prepare(nv_encoder->crtc);
1001 
1002 		push = evo_wait(dev, EVO_MASTER, 4);
1003 		if (push) {
1004 			evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 1);
1005 			evo_data(push, 0x00000000);
1006 			evo_mthd(push, 0x0080, 1);
1007 			evo_data(push, 0x00000000);
1008 			evo_kick(push, dev, EVO_MASTER);
1009 		}
1010 
1011 		nv_encoder->crtc = NULL;
1012 	}
1013 }
1014 
1015 static enum drm_connector_status
nvd0_dac_detect(struct drm_encoder * encoder,struct drm_connector * connector)1016 nvd0_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1017 {
1018 	enum drm_connector_status status = connector_status_disconnected;
1019 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1020 	struct drm_device *dev = encoder->dev;
1021 	int or = nv_encoder->or;
1022 	u32 load;
1023 
1024 	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00100000);
1025 	udelay(9500);
1026 	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x80000000);
1027 
1028 	load = nv_rd32(dev, 0x61a00c + (or * 0x800));
1029 	if ((load & 0x38000000) == 0x38000000)
1030 		status = connector_status_connected;
1031 
1032 	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00000000);
1033 	return status;
1034 }
1035 
1036 static void
nvd0_dac_destroy(struct drm_encoder * encoder)1037 nvd0_dac_destroy(struct drm_encoder *encoder)
1038 {
1039 	drm_encoder_cleanup(encoder);
1040 	kfree(encoder);
1041 }
1042 
1043 static const struct drm_encoder_helper_funcs nvd0_dac_hfunc = {
1044 	.dpms = nvd0_dac_dpms,
1045 	.mode_fixup = nvd0_dac_mode_fixup,
1046 	.prepare = nvd0_dac_prepare,
1047 	.commit = nvd0_dac_commit,
1048 	.mode_set = nvd0_dac_mode_set,
1049 	.disable = nvd0_dac_disconnect,
1050 	.get_crtc = nvd0_display_crtc_get,
1051 	.detect = nvd0_dac_detect
1052 };
1053 
1054 static const struct drm_encoder_funcs nvd0_dac_func = {
1055 	.destroy = nvd0_dac_destroy,
1056 };
1057 
1058 static int
nvd0_dac_create(struct drm_connector * connector,struct dcb_entry * dcbe)1059 nvd0_dac_create(struct drm_connector *connector, struct dcb_entry *dcbe)
1060 {
1061 	struct drm_device *dev = connector->dev;
1062 	struct nouveau_encoder *nv_encoder;
1063 	struct drm_encoder *encoder;
1064 
1065 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1066 	if (!nv_encoder)
1067 		return -ENOMEM;
1068 	nv_encoder->dcb = dcbe;
1069 	nv_encoder->or = ffs(dcbe->or) - 1;
1070 
1071 	encoder = to_drm_encoder(nv_encoder);
1072 	encoder->possible_crtcs = dcbe->heads;
1073 	encoder->possible_clones = 0;
1074 	drm_encoder_init(dev, encoder, &nvd0_dac_func, DRM_MODE_ENCODER_DAC);
1075 	drm_encoder_helper_add(encoder, &nvd0_dac_hfunc);
1076 
1077 	drm_mode_connector_attach_encoder(connector, encoder);
1078 	return 0;
1079 }
1080 
1081 /******************************************************************************
1082  * Audio
1083  *****************************************************************************/
1084 static void
nvd0_audio_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode)1085 nvd0_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1086 {
1087 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1088 	struct nouveau_connector *nv_connector;
1089 	struct drm_device *dev = encoder->dev;
1090 	int i, or = nv_encoder->or * 0x30;
1091 
1092 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1093 	if (!drm_detect_monitor_audio(nv_connector->edid))
1094 		return;
1095 
1096 	nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000001);
1097 
1098 	drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
1099 	if (nv_connector->base.eld[0]) {
1100 		u8 *eld = nv_connector->base.eld;
1101 
1102 		for (i = 0; i < eld[2] * 4; i++)
1103 			nv_wr32(dev, 0x10ec00 + or, (i << 8) | eld[i]);
1104 		for (i = eld[2] * 4; i < 0x60; i++)
1105 			nv_wr32(dev, 0x10ec00 + or, (i << 8) | 0x00);
1106 
1107 		nv_mask(dev, 0x10ec10 + or, 0x80000002, 0x80000002);
1108 	}
1109 }
1110 
1111 static void
nvd0_audio_disconnect(struct drm_encoder * encoder)1112 nvd0_audio_disconnect(struct drm_encoder *encoder)
1113 {
1114 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1115 	struct drm_device *dev = encoder->dev;
1116 	int or = nv_encoder->or * 0x30;
1117 
1118 	nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000000);
1119 }
1120 
1121 /******************************************************************************
1122  * HDMI
1123  *****************************************************************************/
1124 static void
nvd0_hdmi_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode)1125 nvd0_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1126 {
1127 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1128 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1129 	struct nouveau_connector *nv_connector;
1130 	struct drm_device *dev = encoder->dev;
1131 	int head = nv_crtc->index * 0x800;
1132 	u32 rekey = 56; /* binary driver, and tegra constant */
1133 	u32 max_ac_packet;
1134 
1135 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1136 	if (!drm_detect_hdmi_monitor(nv_connector->edid))
1137 		return;
1138 
1139 	max_ac_packet  = mode->htotal - mode->hdisplay;
1140 	max_ac_packet -= rekey;
1141 	max_ac_packet -= 18; /* constant from tegra */
1142 	max_ac_packet /= 32;
1143 
1144 	/* AVI InfoFrame */
1145 	nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1146 	nv_wr32(dev, 0x61671c + head, 0x000d0282);
1147 	nv_wr32(dev, 0x616720 + head, 0x0000006f);
1148 	nv_wr32(dev, 0x616724 + head, 0x00000000);
1149 	nv_wr32(dev, 0x616728 + head, 0x00000000);
1150 	nv_wr32(dev, 0x61672c + head, 0x00000000);
1151 	nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000001);
1152 
1153 	/* ??? InfoFrame? */
1154 	nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
1155 	nv_wr32(dev, 0x6167ac + head, 0x00000010);
1156 	nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000001);
1157 
1158 	/* HDMI_CTRL */
1159 	nv_mask(dev, 0x616798 + head, 0x401f007f, 0x40000000 | rekey |
1160 						  max_ac_packet << 16);
1161 
1162 	/* NFI, audio doesn't work without it though.. */
1163 	nv_mask(dev, 0x616548 + head, 0x00000070, 0x00000000);
1164 
1165 	nvd0_audio_mode_set(encoder, mode);
1166 }
1167 
1168 static void
nvd0_hdmi_disconnect(struct drm_encoder * encoder)1169 nvd0_hdmi_disconnect(struct drm_encoder *encoder)
1170 {
1171 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1172 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1173 	struct drm_device *dev = encoder->dev;
1174 	int head = nv_crtc->index * 0x800;
1175 
1176 	nvd0_audio_disconnect(encoder);
1177 
1178 	nv_mask(dev, 0x616798 + head, 0x40000000, 0x00000000);
1179 	nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
1180 	nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1181 }
1182 
1183 /******************************************************************************
1184  * SOR
1185  *****************************************************************************/
1186 static void
nvd0_sor_dpms(struct drm_encoder * encoder,int mode)1187 nvd0_sor_dpms(struct drm_encoder *encoder, int mode)
1188 {
1189 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1190 	struct drm_device *dev = encoder->dev;
1191 	struct drm_encoder *partner;
1192 	int or = nv_encoder->or;
1193 	u32 dpms_ctrl;
1194 
1195 	nv_encoder->last_dpms = mode;
1196 
1197 	list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
1198 		struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
1199 
1200 		if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
1201 			continue;
1202 
1203 		if (nv_partner != nv_encoder &&
1204 		    nv_partner->dcb->or == nv_encoder->dcb->or) {
1205 			if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
1206 				return;
1207 			break;
1208 		}
1209 	}
1210 
1211 	dpms_ctrl  = (mode == DRM_MODE_DPMS_ON);
1212 	dpms_ctrl |= 0x80000000;
1213 
1214 	nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1215 	nv_mask(dev, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl);
1216 	nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1217 	nv_wait(dev, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
1218 }
1219 
1220 static bool
nvd0_sor_mode_fixup(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)1221 nvd0_sor_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
1222 		    struct drm_display_mode *adjusted_mode)
1223 {
1224 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1225 	struct nouveau_connector *nv_connector;
1226 
1227 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1228 	if (nv_connector && nv_connector->native_mode) {
1229 		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
1230 			int id = adjusted_mode->base.id;
1231 			*adjusted_mode = *nv_connector->native_mode;
1232 			adjusted_mode->base.id = id;
1233 		}
1234 	}
1235 
1236 	return true;
1237 }
1238 
1239 static void
nvd0_sor_prepare(struct drm_encoder * encoder)1240 nvd0_sor_prepare(struct drm_encoder *encoder)
1241 {
1242 }
1243 
1244 static void
nvd0_sor_commit(struct drm_encoder * encoder)1245 nvd0_sor_commit(struct drm_encoder *encoder)
1246 {
1247 }
1248 
1249 static void
nvd0_sor_mode_set(struct drm_encoder * encoder,struct drm_display_mode * umode,struct drm_display_mode * mode)1250 nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1251 		  struct drm_display_mode *mode)
1252 {
1253 	struct drm_device *dev = encoder->dev;
1254 	struct drm_nouveau_private *dev_priv = dev->dev_private;
1255 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1256 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1257 	struct nouveau_connector *nv_connector;
1258 	struct nvbios *bios = &dev_priv->vbios;
1259 	u32 mode_ctrl = (1 << nv_crtc->index);
1260 	u32 *push, or_config;
1261 
1262 	nv_connector = nouveau_encoder_connector_get(nv_encoder);
1263 	switch (nv_encoder->dcb->type) {
1264 	case OUTPUT_TMDS:
1265 		if (nv_encoder->dcb->sorconf.link & 1) {
1266 			if (mode->clock < 165000)
1267 				mode_ctrl |= 0x00000100;
1268 			else
1269 				mode_ctrl |= 0x00000500;
1270 		} else {
1271 			mode_ctrl |= 0x00000200;
1272 		}
1273 
1274 		or_config = (mode_ctrl & 0x00000f00) >> 8;
1275 		if (mode->clock >= 165000)
1276 			or_config |= 0x0100;
1277 
1278 		nvd0_hdmi_mode_set(encoder, mode);
1279 		break;
1280 	case OUTPUT_LVDS:
1281 		or_config = (mode_ctrl & 0x00000f00) >> 8;
1282 		if (bios->fp_no_ddc) {
1283 			if (bios->fp.dual_link)
1284 				or_config |= 0x0100;
1285 			if (bios->fp.if_is_24bit)
1286 				or_config |= 0x0200;
1287 		} else {
1288 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1289 				if (((u8 *)nv_connector->edid)[121] == 2)
1290 					or_config |= 0x0100;
1291 			} else
1292 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1293 				or_config |= 0x0100;
1294 			}
1295 
1296 			if (or_config & 0x0100) {
1297 				if (bios->fp.strapless_is_24bit & 2)
1298 					or_config |= 0x0200;
1299 			} else {
1300 				if (bios->fp.strapless_is_24bit & 1)
1301 					or_config |= 0x0200;
1302 			}
1303 
1304 			if (nv_connector->base.display_info.bpc == 8)
1305 				or_config |= 0x0200;
1306 
1307 		}
1308 		break;
1309 	default:
1310 		BUG_ON(1);
1311 		break;
1312 	}
1313 
1314 	nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1315 
1316 	push = evo_wait(dev, EVO_MASTER, 4);
1317 	if (push) {
1318 		evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 2);
1319 		evo_data(push, mode_ctrl);
1320 		evo_data(push, or_config);
1321 		evo_kick(push, dev, EVO_MASTER);
1322 	}
1323 
1324 	nv_encoder->crtc = encoder->crtc;
1325 }
1326 
1327 static void
nvd0_sor_disconnect(struct drm_encoder * encoder)1328 nvd0_sor_disconnect(struct drm_encoder *encoder)
1329 {
1330 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1331 	struct drm_device *dev = encoder->dev;
1332 	u32 *push;
1333 
1334 	if (nv_encoder->crtc) {
1335 		nvd0_crtc_prepare(nv_encoder->crtc);
1336 
1337 		push = evo_wait(dev, EVO_MASTER, 4);
1338 		if (push) {
1339 			evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
1340 			evo_data(push, 0x00000000);
1341 			evo_mthd(push, 0x0080, 1);
1342 			evo_data(push, 0x00000000);
1343 			evo_kick(push, dev, EVO_MASTER);
1344 		}
1345 
1346 		nvd0_hdmi_disconnect(encoder);
1347 
1348 		nv_encoder->crtc = NULL;
1349 		nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1350 	}
1351 }
1352 
1353 static void
nvd0_sor_destroy(struct drm_encoder * encoder)1354 nvd0_sor_destroy(struct drm_encoder *encoder)
1355 {
1356 	drm_encoder_cleanup(encoder);
1357 	kfree(encoder);
1358 }
1359 
1360 static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = {
1361 	.dpms = nvd0_sor_dpms,
1362 	.mode_fixup = nvd0_sor_mode_fixup,
1363 	.prepare = nvd0_sor_prepare,
1364 	.commit = nvd0_sor_commit,
1365 	.mode_set = nvd0_sor_mode_set,
1366 	.disable = nvd0_sor_disconnect,
1367 	.get_crtc = nvd0_display_crtc_get,
1368 };
1369 
1370 static const struct drm_encoder_funcs nvd0_sor_func = {
1371 	.destroy = nvd0_sor_destroy,
1372 };
1373 
1374 static int
nvd0_sor_create(struct drm_connector * connector,struct dcb_entry * dcbe)1375 nvd0_sor_create(struct drm_connector *connector, struct dcb_entry *dcbe)
1376 {
1377 	struct drm_device *dev = connector->dev;
1378 	struct nouveau_encoder *nv_encoder;
1379 	struct drm_encoder *encoder;
1380 
1381 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1382 	if (!nv_encoder)
1383 		return -ENOMEM;
1384 	nv_encoder->dcb = dcbe;
1385 	nv_encoder->or = ffs(dcbe->or) - 1;
1386 	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1387 
1388 	encoder = to_drm_encoder(nv_encoder);
1389 	encoder->possible_crtcs = dcbe->heads;
1390 	encoder->possible_clones = 0;
1391 	drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS);
1392 	drm_encoder_helper_add(encoder, &nvd0_sor_hfunc);
1393 
1394 	drm_mode_connector_attach_encoder(connector, encoder);
1395 	return 0;
1396 }
1397 
1398 /******************************************************************************
1399  * IRQ
1400  *****************************************************************************/
1401 static struct dcb_entry *
lookup_dcb(struct drm_device * dev,int id,u32 mc)1402 lookup_dcb(struct drm_device *dev, int id, u32 mc)
1403 {
1404 	struct drm_nouveau_private *dev_priv = dev->dev_private;
1405 	int type, or, i;
1406 
1407 	if (id < 4) {
1408 		type = OUTPUT_ANALOG;
1409 		or   = id;
1410 	} else {
1411 		switch (mc & 0x00000f00) {
1412 		case 0x00000000: type = OUTPUT_LVDS; break;
1413 		case 0x00000100: type = OUTPUT_TMDS; break;
1414 		case 0x00000200: type = OUTPUT_TMDS; break;
1415 		case 0x00000500: type = OUTPUT_TMDS; break;
1416 		default:
1417 			NV_ERROR(dev, "PDISP: unknown SOR mc 0x%08x\n", mc);
1418 			return NULL;
1419 		}
1420 
1421 		or = id - 4;
1422 	}
1423 
1424 	for (i = 0; i < dev_priv->vbios.dcb.entries; i++) {
1425 		struct dcb_entry *dcb = &dev_priv->vbios.dcb.entry[i];
1426 		if (dcb->type == type && (dcb->or & (1 << or)))
1427 			return dcb;
1428 	}
1429 
1430 	NV_ERROR(dev, "PDISP: DCB for %d/0x%08x not found\n", id, mc);
1431 	return NULL;
1432 }
1433 
1434 static void
nvd0_display_unk1_handler(struct drm_device * dev,u32 crtc,u32 mask)1435 nvd0_display_unk1_handler(struct drm_device *dev, u32 crtc, u32 mask)
1436 {
1437 	struct dcb_entry *dcb;
1438 	int i;
1439 
1440 	for (i = 0; mask && i < 8; i++) {
1441 		u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1442 		if (!(mcc & (1 << crtc)))
1443 			continue;
1444 
1445 		dcb = lookup_dcb(dev, i, mcc);
1446 		if (!dcb)
1447 			continue;
1448 
1449 		nouveau_bios_run_display_table(dev, 0x0000, -1, dcb, crtc);
1450 	}
1451 
1452 	nv_wr32(dev, 0x6101d4, 0x00000000);
1453 	nv_wr32(dev, 0x6109d4, 0x00000000);
1454 	nv_wr32(dev, 0x6101d0, 0x80000000);
1455 }
1456 
1457 static void
nvd0_display_unk2_handler(struct drm_device * dev,u32 crtc,u32 mask)1458 nvd0_display_unk2_handler(struct drm_device *dev, u32 crtc, u32 mask)
1459 {
1460 	struct dcb_entry *dcb;
1461 	u32 or, tmp, pclk;
1462 	int i;
1463 
1464 	for (i = 0; mask && i < 8; i++) {
1465 		u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1466 		if (!(mcc & (1 << crtc)))
1467 			continue;
1468 
1469 		dcb = lookup_dcb(dev, i, mcc);
1470 		if (!dcb)
1471 			continue;
1472 
1473 		nouveau_bios_run_display_table(dev, 0x0000, -2, dcb, crtc);
1474 	}
1475 
1476 	pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1477 	if (mask & 0x00010000) {
1478 		nv50_crtc_set_clock(dev, crtc, pclk);
1479 	}
1480 
1481 	for (i = 0; mask && i < 8; i++) {
1482 		u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
1483 		u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
1484 		if (!(mcp & (1 << crtc)))
1485 			continue;
1486 
1487 		dcb = lookup_dcb(dev, i, mcp);
1488 		if (!dcb)
1489 			continue;
1490 		or = ffs(dcb->or) - 1;
1491 
1492 		nouveau_bios_run_display_table(dev, cfg, pclk, dcb, crtc);
1493 
1494 		nv_wr32(dev, 0x612200 + (crtc * 0x800), 0x00000000);
1495 		switch (dcb->type) {
1496 		case OUTPUT_ANALOG:
1497 			nv_wr32(dev, 0x612280 + (or * 0x800), 0x00000000);
1498 			break;
1499 		case OUTPUT_TMDS:
1500 		case OUTPUT_LVDS:
1501 			if (cfg & 0x00000100)
1502 				tmp = 0x00000101;
1503 			else
1504 				tmp = 0x00000000;
1505 
1506 			nv_mask(dev, 0x612300 + (or * 0x800), 0x00000707, tmp);
1507 			break;
1508 		default:
1509 			break;
1510 		}
1511 
1512 		break;
1513 	}
1514 
1515 	nv_wr32(dev, 0x6101d4, 0x00000000);
1516 	nv_wr32(dev, 0x6109d4, 0x00000000);
1517 	nv_wr32(dev, 0x6101d0, 0x80000000);
1518 }
1519 
1520 static void
nvd0_display_unk4_handler(struct drm_device * dev,u32 crtc,u32 mask)1521 nvd0_display_unk4_handler(struct drm_device *dev, u32 crtc, u32 mask)
1522 {
1523 	struct dcb_entry *dcb;
1524 	int pclk, i;
1525 
1526 	pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1527 
1528 	for (i = 0; mask && i < 8; i++) {
1529 		u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
1530 		u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
1531 		if (!(mcp & (1 << crtc)))
1532 			continue;
1533 
1534 		dcb = lookup_dcb(dev, i, mcp);
1535 		if (!dcb)
1536 			continue;
1537 
1538 		nouveau_bios_run_display_table(dev, cfg, -pclk, dcb, crtc);
1539 	}
1540 
1541 	nv_wr32(dev, 0x6101d4, 0x00000000);
1542 	nv_wr32(dev, 0x6109d4, 0x00000000);
1543 	nv_wr32(dev, 0x6101d0, 0x80000000);
1544 }
1545 
1546 static void
nvd0_display_bh(unsigned long data)1547 nvd0_display_bh(unsigned long data)
1548 {
1549 	struct drm_device *dev = (struct drm_device *)data;
1550 	struct nvd0_display *disp = nvd0_display(dev);
1551 	u32 mask, crtc;
1552 	int i;
1553 
1554 	if (drm_debug & (DRM_UT_DRIVER | DRM_UT_KMS)) {
1555 		NV_INFO(dev, "PDISP: modeset req %d\n", disp->modeset);
1556 		NV_INFO(dev, " STAT: 0x%08x 0x%08x 0x%08x\n",
1557 			 nv_rd32(dev, 0x6101d0),
1558 			 nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
1559 		for (i = 0; i < 8; i++) {
1560 			NV_INFO(dev, " %s%d: 0x%08x 0x%08x\n",
1561 				i < 4 ? "DAC" : "SOR", i,
1562 				nv_rd32(dev, 0x640180 + (i * 0x20)),
1563 				nv_rd32(dev, 0x660180 + (i * 0x20)));
1564 		}
1565 	}
1566 
1567 	mask = nv_rd32(dev, 0x6101d4);
1568 	crtc = 0;
1569 	if (!mask) {
1570 		mask = nv_rd32(dev, 0x6109d4);
1571 		crtc = 1;
1572 	}
1573 
1574 	if (disp->modeset & 0x00000001)
1575 		nvd0_display_unk1_handler(dev, crtc, mask);
1576 	if (disp->modeset & 0x00000002)
1577 		nvd0_display_unk2_handler(dev, crtc, mask);
1578 	if (disp->modeset & 0x00000004)
1579 		nvd0_display_unk4_handler(dev, crtc, mask);
1580 }
1581 
1582 static void
nvd0_display_intr(struct drm_device * dev)1583 nvd0_display_intr(struct drm_device *dev)
1584 {
1585 	struct nvd0_display *disp = nvd0_display(dev);
1586 	u32 intr = nv_rd32(dev, 0x610088);
1587 
1588 	if (intr & 0x00000001) {
1589 		u32 stat = nv_rd32(dev, 0x61008c);
1590 		nv_wr32(dev, 0x61008c, stat);
1591 		intr &= ~0x00000001;
1592 	}
1593 
1594 	if (intr & 0x00000002) {
1595 		u32 stat = nv_rd32(dev, 0x61009c);
1596 		int chid = ffs(stat) - 1;
1597 		if (chid >= 0) {
1598 			u32 mthd = nv_rd32(dev, 0x6101f0 + (chid * 12));
1599 			u32 data = nv_rd32(dev, 0x6101f4 + (chid * 12));
1600 			u32 unkn = nv_rd32(dev, 0x6101f8 + (chid * 12));
1601 
1602 			NV_INFO(dev, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
1603 				     "0x%08x 0x%08x\n",
1604 				chid, (mthd & 0x0000ffc), data, mthd, unkn);
1605 			nv_wr32(dev, 0x61009c, (1 << chid));
1606 			nv_wr32(dev, 0x6101f0 + (chid * 12), 0x90000000);
1607 		}
1608 
1609 		intr &= ~0x00000002;
1610 	}
1611 
1612 	if (intr & 0x00100000) {
1613 		u32 stat = nv_rd32(dev, 0x6100ac);
1614 
1615 		if (stat & 0x00000007) {
1616 			disp->modeset = stat;
1617 			tasklet_schedule(&disp->tasklet);
1618 
1619 			nv_wr32(dev, 0x6100ac, (stat & 0x00000007));
1620 			stat &= ~0x00000007;
1621 		}
1622 
1623 		if (stat) {
1624 			NV_INFO(dev, "PDISP: unknown intr24 0x%08x\n", stat);
1625 			nv_wr32(dev, 0x6100ac, stat);
1626 		}
1627 
1628 		intr &= ~0x00100000;
1629 	}
1630 
1631 	if (intr & 0x01000000) {
1632 		u32 stat = nv_rd32(dev, 0x6100bc);
1633 		nv_wr32(dev, 0x6100bc, stat);
1634 		intr &= ~0x01000000;
1635 	}
1636 
1637 	if (intr & 0x02000000) {
1638 		u32 stat = nv_rd32(dev, 0x6108bc);
1639 		nv_wr32(dev, 0x6108bc, stat);
1640 		intr &= ~0x02000000;
1641 	}
1642 
1643 	if (intr)
1644 		NV_INFO(dev, "PDISP: unknown intr 0x%08x\n", intr);
1645 }
1646 
1647 /******************************************************************************
1648  * Init
1649  *****************************************************************************/
1650 void
nvd0_display_fini(struct drm_device * dev)1651 nvd0_display_fini(struct drm_device *dev)
1652 {
1653 	int i;
1654 
1655 	/* fini cursors + overlays + flips */
1656 	for (i = 1; i >= 0; i--) {
1657 		evo_fini_pio(dev, EVO_CURS(i));
1658 		evo_fini_pio(dev, EVO_OIMM(i));
1659 		evo_fini_dma(dev, EVO_OVLY(i));
1660 		evo_fini_dma(dev, EVO_FLIP(i));
1661 	}
1662 
1663 	/* fini master */
1664 	evo_fini_dma(dev, EVO_MASTER);
1665 }
1666 
1667 int
nvd0_display_init(struct drm_device * dev)1668 nvd0_display_init(struct drm_device *dev)
1669 {
1670 	struct nvd0_display *disp = nvd0_display(dev);
1671 	int ret, i;
1672 	u32 *push;
1673 
1674 	if (nv_rd32(dev, 0x6100ac) & 0x00000100) {
1675 		nv_wr32(dev, 0x6100ac, 0x00000100);
1676 		nv_mask(dev, 0x6194e8, 0x00000001, 0x00000000);
1677 		if (!nv_wait(dev, 0x6194e8, 0x00000002, 0x00000000)) {
1678 			NV_ERROR(dev, "PDISP: 0x6194e8 0x%08x\n",
1679 				 nv_rd32(dev, 0x6194e8));
1680 			return -EBUSY;
1681 		}
1682 	}
1683 
1684 	/* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
1685 	 * work at all unless you do the SOR part below.
1686 	 */
1687 	for (i = 0; i < 3; i++) {
1688 		u32 dac = nv_rd32(dev, 0x61a000 + (i * 0x800));
1689 		nv_wr32(dev, 0x6101c0 + (i * 0x800), dac);
1690 	}
1691 
1692 	for (i = 0; i < 4; i++) {
1693 		u32 sor = nv_rd32(dev, 0x61c000 + (i * 0x800));
1694 		nv_wr32(dev, 0x6301c4 + (i * 0x800), sor);
1695 	}
1696 
1697 	for (i = 0; i < dev->mode_config.num_crtc; i++) {
1698 		u32 crtc0 = nv_rd32(dev, 0x616104 + (i * 0x800));
1699 		u32 crtc1 = nv_rd32(dev, 0x616108 + (i * 0x800));
1700 		u32 crtc2 = nv_rd32(dev, 0x61610c + (i * 0x800));
1701 		nv_wr32(dev, 0x6101b4 + (i * 0x800), crtc0);
1702 		nv_wr32(dev, 0x6101b8 + (i * 0x800), crtc1);
1703 		nv_wr32(dev, 0x6101bc + (i * 0x800), crtc2);
1704 	}
1705 
1706 	/* point at our hash table / objects, enable interrupts */
1707 	nv_wr32(dev, 0x610010, (disp->mem->vinst >> 8) | 9);
1708 	nv_mask(dev, 0x6100b0, 0x00000307, 0x00000307);
1709 
1710 	/* init master */
1711 	ret = evo_init_dma(dev, EVO_MASTER);
1712 	if (ret)
1713 		goto error;
1714 
1715 	/* init flips + overlays + cursors */
1716 	for (i = 0; i < dev->mode_config.num_crtc; i++) {
1717 		if ((ret = evo_init_dma(dev, EVO_FLIP(i))) ||
1718 		    (ret = evo_init_dma(dev, EVO_OVLY(i))) ||
1719 		    (ret = evo_init_pio(dev, EVO_OIMM(i))) ||
1720 		    (ret = evo_init_pio(dev, EVO_CURS(i))))
1721 			goto error;
1722 	}
1723 
1724 	push = evo_wait(dev, EVO_MASTER, 32);
1725 	if (!push) {
1726 		ret = -EBUSY;
1727 		goto error;
1728 	}
1729 	evo_mthd(push, 0x0088, 1);
1730 	evo_data(push, NvEvoSync);
1731 	evo_mthd(push, 0x0084, 1);
1732 	evo_data(push, 0x00000000);
1733 	evo_mthd(push, 0x0084, 1);
1734 	evo_data(push, 0x80000000);
1735 	evo_mthd(push, 0x008c, 1);
1736 	evo_data(push, 0x00000000);
1737 	evo_kick(push, dev, EVO_MASTER);
1738 
1739 error:
1740 	if (ret)
1741 		nvd0_display_fini(dev);
1742 	return ret;
1743 }
1744 
1745 void
nvd0_display_destroy(struct drm_device * dev)1746 nvd0_display_destroy(struct drm_device *dev)
1747 {
1748 	struct drm_nouveau_private *dev_priv = dev->dev_private;
1749 	struct nvd0_display *disp = nvd0_display(dev);
1750 	struct pci_dev *pdev = dev->pdev;
1751 	int i;
1752 
1753 	for (i = 0; i < EVO_DMA_NR; i++) {
1754 		struct evo *evo = &disp->evo[i];
1755 		pci_free_consistent(pdev, PAGE_SIZE, evo->ptr, evo->handle);
1756 	}
1757 
1758 	nouveau_gpuobj_ref(NULL, &disp->mem);
1759 	nouveau_bo_unmap(disp->sync);
1760 	nouveau_bo_ref(NULL, &disp->sync);
1761 	nouveau_irq_unregister(dev, 26);
1762 
1763 	dev_priv->engine.display.priv = NULL;
1764 	kfree(disp);
1765 }
1766 
1767 int
nvd0_display_create(struct drm_device * dev)1768 nvd0_display_create(struct drm_device *dev)
1769 {
1770 	struct drm_nouveau_private *dev_priv = dev->dev_private;
1771 	struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem;
1772 	struct dcb_table *dcb = &dev_priv->vbios.dcb;
1773 	struct drm_connector *connector, *tmp;
1774 	struct pci_dev *pdev = dev->pdev;
1775 	struct nvd0_display *disp;
1776 	struct dcb_entry *dcbe;
1777 	int ret, i;
1778 
1779 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
1780 	if (!disp)
1781 		return -ENOMEM;
1782 	dev_priv->engine.display.priv = disp;
1783 
1784 	/* create crtc objects to represent the hw heads */
1785 	for (i = 0; i < 2; i++) {
1786 		ret = nvd0_crtc_create(dev, i);
1787 		if (ret)
1788 			goto out;
1789 	}
1790 
1791 	/* create encoder/connector objects based on VBIOS DCB table */
1792 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
1793 		connector = nouveau_connector_create(dev, dcbe->connector);
1794 		if (IS_ERR(connector))
1795 			continue;
1796 
1797 		if (dcbe->location != DCB_LOC_ON_CHIP) {
1798 			NV_WARN(dev, "skipping off-chip encoder %d/%d\n",
1799 				dcbe->type, ffs(dcbe->or) - 1);
1800 			continue;
1801 		}
1802 
1803 		switch (dcbe->type) {
1804 		case OUTPUT_TMDS:
1805 		case OUTPUT_LVDS:
1806 			nvd0_sor_create(connector, dcbe);
1807 			break;
1808 		case OUTPUT_ANALOG:
1809 			nvd0_dac_create(connector, dcbe);
1810 			break;
1811 		default:
1812 			NV_WARN(dev, "skipping unsupported encoder %d/%d\n",
1813 				dcbe->type, ffs(dcbe->or) - 1);
1814 			continue;
1815 		}
1816 	}
1817 
1818 	/* cull any connectors we created that don't have an encoder */
1819 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
1820 		if (connector->encoder_ids[0])
1821 			continue;
1822 
1823 		NV_WARN(dev, "%s has no encoders, removing\n",
1824 			drm_get_connector_name(connector));
1825 		connector->funcs->destroy(connector);
1826 	}
1827 
1828 	/* setup interrupt handling */
1829 	tasklet_init(&disp->tasklet, nvd0_display_bh, (unsigned long)dev);
1830 	nouveau_irq_register(dev, 26, nvd0_display_intr);
1831 
1832 	/* small shared memory area we use for notifiers and semaphores */
1833 	ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
1834 			     0, 0x0000, &disp->sync);
1835 	if (!ret) {
1836 		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
1837 		if (!ret)
1838 			ret = nouveau_bo_map(disp->sync);
1839 		if (ret)
1840 			nouveau_bo_ref(NULL, &disp->sync);
1841 	}
1842 
1843 	if (ret)
1844 		goto out;
1845 
1846 	/* hash table and dma objects for the memory areas we care about */
1847 	ret = nouveau_gpuobj_new(dev, NULL, 0x4000, 0x10000,
1848 				 NVOBJ_FLAG_ZERO_ALLOC, &disp->mem);
1849 	if (ret)
1850 		goto out;
1851 
1852 	/* create evo dma channels */
1853 	for (i = 0; i < EVO_DMA_NR; i++) {
1854 		struct evo *evo = &disp->evo[i];
1855 		u64 offset = disp->sync->bo.offset;
1856 		u32 dmao = 0x1000 + (i * 0x100);
1857 		u32 hash = 0x0000 + (i * 0x040);
1858 
1859 		evo->idx = i;
1860 		evo->sem.offset = EVO_SYNC(evo->idx, 0x00);
1861 		evo->ptr = pci_alloc_consistent(pdev, PAGE_SIZE, &evo->handle);
1862 		if (!evo->ptr) {
1863 			ret = -ENOMEM;
1864 			goto out;
1865 		}
1866 
1867 		nv_wo32(disp->mem, dmao + 0x00, 0x00000049);
1868 		nv_wo32(disp->mem, dmao + 0x04, (offset + 0x0000) >> 8);
1869 		nv_wo32(disp->mem, dmao + 0x08, (offset + 0x0fff) >> 8);
1870 		nv_wo32(disp->mem, dmao + 0x0c, 0x00000000);
1871 		nv_wo32(disp->mem, dmao + 0x10, 0x00000000);
1872 		nv_wo32(disp->mem, dmao + 0x14, 0x00000000);
1873 		nv_wo32(disp->mem, hash + 0x00, NvEvoSync);
1874 		nv_wo32(disp->mem, hash + 0x04, 0x00000001 | (i << 27) |
1875 						((dmao + 0x00) << 9));
1876 
1877 		nv_wo32(disp->mem, dmao + 0x20, 0x00000049);
1878 		nv_wo32(disp->mem, dmao + 0x24, 0x00000000);
1879 		nv_wo32(disp->mem, dmao + 0x28, (dev_priv->vram_size - 1) >> 8);
1880 		nv_wo32(disp->mem, dmao + 0x2c, 0x00000000);
1881 		nv_wo32(disp->mem, dmao + 0x30, 0x00000000);
1882 		nv_wo32(disp->mem, dmao + 0x34, 0x00000000);
1883 		nv_wo32(disp->mem, hash + 0x08, NvEvoVRAM);
1884 		nv_wo32(disp->mem, hash + 0x0c, 0x00000001 | (i << 27) |
1885 						((dmao + 0x20) << 9));
1886 
1887 		nv_wo32(disp->mem, dmao + 0x40, 0x00000009);
1888 		nv_wo32(disp->mem, dmao + 0x44, 0x00000000);
1889 		nv_wo32(disp->mem, dmao + 0x48, (dev_priv->vram_size - 1) >> 8);
1890 		nv_wo32(disp->mem, dmao + 0x4c, 0x00000000);
1891 		nv_wo32(disp->mem, dmao + 0x50, 0x00000000);
1892 		nv_wo32(disp->mem, dmao + 0x54, 0x00000000);
1893 		nv_wo32(disp->mem, hash + 0x10, NvEvoVRAM_LP);
1894 		nv_wo32(disp->mem, hash + 0x14, 0x00000001 | (i << 27) |
1895 						((dmao + 0x40) << 9));
1896 
1897 		nv_wo32(disp->mem, dmao + 0x60, 0x0fe00009);
1898 		nv_wo32(disp->mem, dmao + 0x64, 0x00000000);
1899 		nv_wo32(disp->mem, dmao + 0x68, (dev_priv->vram_size - 1) >> 8);
1900 		nv_wo32(disp->mem, dmao + 0x6c, 0x00000000);
1901 		nv_wo32(disp->mem, dmao + 0x70, 0x00000000);
1902 		nv_wo32(disp->mem, dmao + 0x74, 0x00000000);
1903 		nv_wo32(disp->mem, hash + 0x18, NvEvoFB32);
1904 		nv_wo32(disp->mem, hash + 0x1c, 0x00000001 | (i << 27) |
1905 						((dmao + 0x60) << 9));
1906 	}
1907 
1908 	pinstmem->flush(dev);
1909 
1910 out:
1911 	if (ret)
1912 		nvd0_display_destroy(dev);
1913 	return ret;
1914 }
1915