xref: /linux/mm/memory-failure.c (revision 0074281bb6316108e0cff094bd4db78ab3eee236)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 static DEFINE_MUTEX(mf_mutex);
78 
num_poisoned_pages_inc(unsigned long pfn)79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 	atomic_long_inc(&num_poisoned_pages);
82 	memblk_nr_poison_inc(pfn);
83 }
84 
num_poisoned_pages_sub(unsigned long pfn,long i)85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 	atomic_long_sub(i, &num_poisoned_pages);
88 	if (pfn != -1UL)
89 		memblk_nr_poison_sub(pfn, i);
90 }
91 
92 /**
93  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94  * @_name: name of the file in the per NUMA sysfs directory.
95  */
96 #define MF_ATTR_RO(_name)					\
97 static ssize_t _name##_show(struct device *dev,			\
98 			    struct device_attribute *attr,	\
99 			    char *buf)				\
100 {								\
101 	struct memory_failure_stats *mf_stats =			\
102 		&NODE_DATA(dev->id)->mf_stats;			\
103 	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
104 }								\
105 static DEVICE_ATTR_RO(_name)
106 
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112 
113 static struct attribute *memory_failure_attr[] = {
114 	&dev_attr_total.attr,
115 	&dev_attr_ignored.attr,
116 	&dev_attr_failed.attr,
117 	&dev_attr_delayed.attr,
118 	&dev_attr_recovered.attr,
119 	NULL,
120 };
121 
122 const struct attribute_group memory_failure_attr_group = {
123 	.name = "memory_failure",
124 	.attrs = memory_failure_attr,
125 };
126 
127 static const struct ctl_table memory_failure_table[] = {
128 	{
129 		.procname	= "memory_failure_early_kill",
130 		.data		= &sysctl_memory_failure_early_kill,
131 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132 		.mode		= 0644,
133 		.proc_handler	= proc_dointvec_minmax,
134 		.extra1		= SYSCTL_ZERO,
135 		.extra2		= SYSCTL_ONE,
136 	},
137 	{
138 		.procname	= "memory_failure_recovery",
139 		.data		= &sysctl_memory_failure_recovery,
140 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141 		.mode		= 0644,
142 		.proc_handler	= proc_dointvec_minmax,
143 		.extra1		= SYSCTL_ZERO,
144 		.extra2		= SYSCTL_ONE,
145 	},
146 	{
147 		.procname	= "enable_soft_offline",
148 		.data		= &sysctl_enable_soft_offline,
149 		.maxlen		= sizeof(sysctl_enable_soft_offline),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 		.extra2		= SYSCTL_ONE,
154 	}
155 };
156 
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
__page_handle_poison(struct page * page)163 static int __page_handle_poison(struct page *page)
164 {
165 	int ret;
166 
167 	/*
168 	 * zone_pcp_disable() can't be used here. It will
169 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 	 * optimization is enabled. This will break current lock dependency
172 	 * chain and leads to deadlock.
173 	 * Disabling pcp before dissolving the page was a deterministic
174 	 * approach because we made sure that those pages cannot end up in any
175 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 	 * but nothing guarantees that those pages do not get back to a PCP
177 	 * queue if we need to refill those.
178 	 */
179 	ret = dissolve_free_hugetlb_folio(page_folio(page));
180 	if (!ret) {
181 		drain_all_pages(page_zone(page));
182 		ret = take_page_off_buddy(page);
183 	}
184 
185 	return ret;
186 }
187 
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 	if (hugepage_or_freepage) {
191 		/*
192 		 * Doing this check for free pages is also fine since
193 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 		 */
195 		if (__page_handle_poison(page) <= 0)
196 			/*
197 			 * We could fail to take off the target page from buddy
198 			 * for example due to racy page allocation, but that's
199 			 * acceptable because soft-offlined page is not broken
200 			 * and if someone really want to use it, they should
201 			 * take it.
202 			 */
203 			return false;
204 	}
205 
206 	SetPageHWPoison(page);
207 	if (release)
208 		put_page(page);
209 	page_ref_inc(page);
210 	num_poisoned_pages_inc(page_to_pfn(page));
211 
212 	return true;
213 }
214 
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216 
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227 
hwpoison_filter_dev(struct page * p)228 static int hwpoison_filter_dev(struct page *p)
229 {
230 	struct folio *folio = page_folio(p);
231 	struct address_space *mapping;
232 	dev_t dev;
233 
234 	if (hwpoison_filter_dev_major == ~0U &&
235 	    hwpoison_filter_dev_minor == ~0U)
236 		return 0;
237 
238 	mapping = folio_mapping(folio);
239 	if (mapping == NULL || mapping->host == NULL)
240 		return -EINVAL;
241 
242 	dev = mapping->host->i_sb->s_dev;
243 	if (hwpoison_filter_dev_major != ~0U &&
244 	    hwpoison_filter_dev_major != MAJOR(dev))
245 		return -EINVAL;
246 	if (hwpoison_filter_dev_minor != ~0U &&
247 	    hwpoison_filter_dev_minor != MINOR(dev))
248 		return -EINVAL;
249 
250 	return 0;
251 }
252 
hwpoison_filter_flags(struct page * p)253 static int hwpoison_filter_flags(struct page *p)
254 {
255 	if (!hwpoison_filter_flags_mask)
256 		return 0;
257 
258 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 				    hwpoison_filter_flags_value)
260 		return 0;
261 	else
262 		return -EINVAL;
263 }
264 
265 /*
266  * This allows stress tests to limit test scope to a collection of tasks
267  * by putting them under some memcg. This prevents killing unrelated/important
268  * processes such as /sbin/init. Note that the target task may share clean
269  * pages with init (eg. libc text), which is harmless. If the target task
270  * share _dirty_ pages with another task B, the test scheme must make sure B
271  * is also included in the memcg. At last, due to race conditions this filter
272  * can only guarantee that the page either belongs to the memcg tasks, or is
273  * a freed page.
274  */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)278 static int hwpoison_filter_task(struct page *p)
279 {
280 	if (!hwpoison_filter_memcg)
281 		return 0;
282 
283 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 		return -EINVAL;
285 
286 	return 0;
287 }
288 #else
hwpoison_filter_task(struct page * p)289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291 
hwpoison_filter(struct page * p)292 int hwpoison_filter(struct page *p)
293 {
294 	if (!hwpoison_filter_enable)
295 		return 0;
296 
297 	if (hwpoison_filter_dev(p))
298 		return -EINVAL;
299 
300 	if (hwpoison_filter_flags(p))
301 		return -EINVAL;
302 
303 	if (hwpoison_filter_task(p))
304 		return -EINVAL;
305 
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
hwpoison_filter(struct page * p)310 int hwpoison_filter(struct page *p)
311 {
312 	return 0;
313 }
314 #endif
315 
316 /*
317  * Kill all processes that have a poisoned page mapped and then isolate
318  * the page.
319  *
320  * General strategy:
321  * Find all processes having the page mapped and kill them.
322  * But we keep a page reference around so that the page is not
323  * actually freed yet.
324  * Then stash the page away
325  *
326  * There's no convenient way to get back to mapped processes
327  * from the VMAs. So do a brute-force search over all
328  * running processes.
329  *
330  * Remember that machine checks are not common (or rather
331  * if they are common you have other problems), so this shouldn't
332  * be a performance issue.
333  *
334  * Also there are some races possible while we get from the
335  * error detection to actually handle it.
336  */
337 
338 struct to_kill {
339 	struct list_head nd;
340 	struct task_struct *tsk;
341 	unsigned long addr;
342 	short size_shift;
343 };
344 
345 /*
346  * Send all the processes who have the page mapped a signal.
347  * ``action optional'' if they are not immediately affected by the error
348  * ``action required'' if error happened in current execution context
349  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 	struct task_struct *t = tk->tsk;
353 	short addr_lsb = tk->size_shift;
354 	int ret = 0;
355 
356 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 			pfn, t->comm, task_pid_nr(t));
358 
359 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 		ret = force_sig_mceerr(BUS_MCEERR_AR,
361 				 (void __user *)tk->addr, addr_lsb);
362 	else
363 		/*
364 		 * Signal other processes sharing the page if they have
365 		 * PF_MCE_EARLY set.
366 		 * Don't use force here, it's convenient if the signal
367 		 * can be temporarily blocked.
368 		 */
369 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 				      addr_lsb, t);
371 	if (ret < 0)
372 		pr_info("Error sending signal to %s:%d: %d\n",
373 			t->comm, task_pid_nr(t), ret);
374 	return ret;
375 }
376 
377 /*
378  * Unknown page type encountered. Try to check whether it can turn PageLRU by
379  * lru_add_drain_all.
380  */
shake_folio(struct folio * folio)381 void shake_folio(struct folio *folio)
382 {
383 	if (folio_test_hugetlb(folio))
384 		return;
385 	/*
386 	 * TODO: Could shrink slab caches here if a lightweight range-based
387 	 * shrinker will be available.
388 	 */
389 	if (folio_test_slab(folio))
390 		return;
391 
392 	lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395 
shake_page(struct page * page)396 static void shake_page(struct page *page)
397 {
398 	shake_folio(page_folio(page));
399 }
400 
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 		unsigned long address)
403 {
404 	unsigned long ret = 0;
405 	pgd_t *pgd;
406 	p4d_t *p4d;
407 	pud_t *pud;
408 	pmd_t *pmd;
409 	pte_t *pte;
410 	pte_t ptent;
411 
412 	VM_BUG_ON_VMA(address == -EFAULT, vma);
413 	pgd = pgd_offset(vma->vm_mm, address);
414 	if (!pgd_present(*pgd))
415 		return 0;
416 	p4d = p4d_offset(pgd, address);
417 	if (!p4d_present(*p4d))
418 		return 0;
419 	pud = pud_offset(p4d, address);
420 	if (!pud_present(*pud))
421 		return 0;
422 	if (pud_trans_huge(*pud))
423 		return PUD_SHIFT;
424 	pmd = pmd_offset(pud, address);
425 	if (!pmd_present(*pmd))
426 		return 0;
427 	if (pmd_trans_huge(*pmd))
428 		return PMD_SHIFT;
429 	pte = pte_offset_map(pmd, address);
430 	if (!pte)
431 		return 0;
432 	ptent = ptep_get(pte);
433 	if (pte_present(ptent))
434 		ret = PAGE_SHIFT;
435 	pte_unmap(pte);
436 	return ret;
437 }
438 
439 /*
440  * Failure handling: if we can't find or can't kill a process there's
441  * not much we can do.	We just print a message and ignore otherwise.
442  */
443 
444 /*
445  * Schedule a process for later kill.
446  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447  */
__add_to_kill(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)448 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
449 			  struct vm_area_struct *vma, struct list_head *to_kill,
450 			  unsigned long addr)
451 {
452 	struct to_kill *tk;
453 
454 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 	if (!tk) {
456 		pr_err("Out of memory while machine check handling\n");
457 		return;
458 	}
459 
460 	tk->addr = addr;
461 	if (is_zone_device_page(p))
462 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 	else
464 		tk->size_shift = folio_shift(page_folio(p));
465 
466 	/*
467 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 	 * so "tk->size_shift == 0" effectively checks no mapping on
470 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 	 * to a process' address space, it's possible not all N VMAs
472 	 * contain mappings for the page, but at least one VMA does.
473 	 * Only deliver SIGBUS with payload derived from the VMA that
474 	 * has a mapping for the page.
475 	 */
476 	if (tk->addr == -EFAULT) {
477 		pr_info("Unable to find user space address %lx in %s\n",
478 			page_to_pfn(p), tsk->comm);
479 	} else if (tk->size_shift == 0) {
480 		kfree(tk);
481 		return;
482 	}
483 
484 	get_task_struct(tsk);
485 	tk->tsk = tsk;
486 	list_add_tail(&tk->nd, to_kill);
487 }
488 
add_to_kill_anon_file(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
490 		struct vm_area_struct *vma, struct list_head *to_kill,
491 		unsigned long addr)
492 {
493 	if (addr == -EFAULT)
494 		return;
495 	__add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497 
498 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 				 struct task_struct *tsk)
501 {
502 	struct to_kill *tk, *next;
503 
504 	list_for_each_entry_safe(tk, next, to_kill, nd) {
505 		if (tk->tsk == tsk)
506 			return true;
507 	}
508 
509 	return false;
510 }
511 
add_to_kill_ksm(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
513 		     struct vm_area_struct *vma, struct list_head *to_kill,
514 		     unsigned long addr)
515 {
516 	if (!task_in_to_kill_list(to_kill, tsk))
517 		__add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521  * Kill the processes that have been collected earlier.
522  *
523  * Only do anything when FORCEKILL is set, otherwise just free the
524  * list (this is used for clean pages which do not need killing)
525  */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 		unsigned long pfn, int flags)
528 {
529 	struct to_kill *tk, *next;
530 
531 	list_for_each_entry_safe(tk, next, to_kill, nd) {
532 		if (forcekill) {
533 			if (tk->addr == -EFAULT) {
534 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 						 tk->tsk, PIDTYPE_PID);
538 			}
539 
540 			/*
541 			 * In theory the process could have mapped
542 			 * something else on the address in-between. We could
543 			 * check for that, but we need to tell the
544 			 * process anyways.
545 			 */
546 			else if (kill_proc(tk, pfn, flags) < 0)
547 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 		}
550 		list_del(&tk->nd);
551 		put_task_struct(tk->tsk);
552 		kfree(tk);
553 	}
554 }
555 
556 /*
557  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558  * on behalf of the thread group. Return task_struct of the (first found)
559  * dedicated thread if found, and return NULL otherwise.
560  *
561  * We already hold rcu lock in the caller, so we don't have to call
562  * rcu_read_lock/unlock() in this function.
563  */
find_early_kill_thread(struct task_struct * tsk)564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 	struct task_struct *t;
567 
568 	for_each_thread(tsk, t) {
569 		if (t->flags & PF_MCE_PROCESS) {
570 			if (t->flags & PF_MCE_EARLY)
571 				return t;
572 		} else {
573 			if (sysctl_memory_failure_early_kill)
574 				return t;
575 		}
576 	}
577 	return NULL;
578 }
579 
580 /*
581  * Determine whether a given process is "early kill" process which expects
582  * to be signaled when some page under the process is hwpoisoned.
583  * Return task_struct of the dedicated thread (main thread unless explicitly
584  * specified) if the process is "early kill" and otherwise returns NULL.
585  *
586  * Note that the above is true for Action Optional case. For Action Required
587  * case, it's only meaningful to the current thread which need to be signaled
588  * with SIGBUS, this error is Action Optional for other non current
589  * processes sharing the same error page,if the process is "early kill", the
590  * task_struct of the dedicated thread will also be returned.
591  */
task_early_kill(struct task_struct * tsk,int force_early)592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 	if (!tsk->mm)
595 		return NULL;
596 	/*
597 	 * Comparing ->mm here because current task might represent
598 	 * a subthread, while tsk always points to the main thread.
599 	 */
600 	if (force_early && tsk->mm == current->mm)
601 		return current;
602 
603 	return find_early_kill_thread(tsk);
604 }
605 
606 /*
607  * Collect processes when the error hit an anonymous page.
608  */
collect_procs_anon(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)609 static void collect_procs_anon(const struct folio *folio,
610 		const struct page *page, struct list_head *to_kill,
611 		int force_early)
612 {
613 	struct task_struct *tsk;
614 	struct anon_vma *av;
615 	pgoff_t pgoff;
616 
617 	av = folio_lock_anon_vma_read(folio, NULL);
618 	if (av == NULL)	/* Not actually mapped anymore */
619 		return;
620 
621 	pgoff = page_pgoff(folio, page);
622 	rcu_read_lock();
623 	for_each_process(tsk) {
624 		struct vm_area_struct *vma;
625 		struct anon_vma_chain *vmac;
626 		struct task_struct *t = task_early_kill(tsk, force_early);
627 		unsigned long addr;
628 
629 		if (!t)
630 			continue;
631 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 					       pgoff, pgoff) {
633 			vma = vmac->vma;
634 			if (vma->vm_mm != t->mm)
635 				continue;
636 			addr = page_mapped_in_vma(page, vma);
637 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
638 		}
639 	}
640 	rcu_read_unlock();
641 	anon_vma_unlock_read(av);
642 }
643 
644 /*
645  * Collect processes when the error hit a file mapped page.
646  */
collect_procs_file(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)647 static void collect_procs_file(const struct folio *folio,
648 		const struct page *page, struct list_head *to_kill,
649 		int force_early)
650 {
651 	struct vm_area_struct *vma;
652 	struct task_struct *tsk;
653 	struct address_space *mapping = folio->mapping;
654 	pgoff_t pgoff;
655 
656 	i_mmap_lock_read(mapping);
657 	rcu_read_lock();
658 	pgoff = page_pgoff(folio, page);
659 	for_each_process(tsk) {
660 		struct task_struct *t = task_early_kill(tsk, force_early);
661 		unsigned long addr;
662 
663 		if (!t)
664 			continue;
665 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 				      pgoff) {
667 			/*
668 			 * Send early kill signal to tasks where a vma covers
669 			 * the page but the corrupted page is not necessarily
670 			 * mapped in its pte.
671 			 * Assume applications who requested early kill want
672 			 * to be informed of all such data corruptions.
673 			 */
674 			if (vma->vm_mm != t->mm)
675 				continue;
676 			addr = page_address_in_vma(folio, page, vma);
677 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
678 		}
679 	}
680 	rcu_read_unlock();
681 	i_mmap_unlock_read(mapping);
682 }
683 
684 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
686 			      struct vm_area_struct *vma,
687 			      struct list_head *to_kill, pgoff_t pgoff)
688 {
689 	unsigned long addr = vma_address(vma, pgoff, 1);
690 	__add_to_kill(tsk, p, vma, to_kill, addr);
691 }
692 
693 /*
694  * Collect processes when the error hit a fsdax page.
695  */
collect_procs_fsdax(const struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)696 static void collect_procs_fsdax(const struct page *page,
697 		struct address_space *mapping, pgoff_t pgoff,
698 		struct list_head *to_kill, bool pre_remove)
699 {
700 	struct vm_area_struct *vma;
701 	struct task_struct *tsk;
702 
703 	i_mmap_lock_read(mapping);
704 	rcu_read_lock();
705 	for_each_process(tsk) {
706 		struct task_struct *t = tsk;
707 
708 		/*
709 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 		 * the current may not be the one accessing the fsdax page.
711 		 * Otherwise, search for the current task.
712 		 */
713 		if (!pre_remove)
714 			t = task_early_kill(tsk, true);
715 		if (!t)
716 			continue;
717 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 			if (vma->vm_mm == t->mm)
719 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
720 		}
721 	}
722 	rcu_read_unlock();
723 	i_mmap_unlock_read(mapping);
724 }
725 #endif /* CONFIG_FS_DAX */
726 
727 /*
728  * Collect the processes who have the corrupted page mapped to kill.
729  */
collect_procs(const struct folio * folio,const struct page * page,struct list_head * tokill,int force_early)730 static void collect_procs(const struct folio *folio, const struct page *page,
731 		struct list_head *tokill, int force_early)
732 {
733 	if (!folio->mapping)
734 		return;
735 	if (unlikely(folio_test_ksm(folio)))
736 		collect_procs_ksm(folio, page, tokill, force_early);
737 	else if (folio_test_anon(folio))
738 		collect_procs_anon(folio, page, tokill, force_early);
739 	else
740 		collect_procs_file(folio, page, tokill, force_early);
741 }
742 
743 struct hwpoison_walk {
744 	struct to_kill tk;
745 	unsigned long pfn;
746 	int flags;
747 };
748 
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750 {
751 	tk->addr = addr;
752 	tk->size_shift = shift;
753 }
754 
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 				unsigned long poisoned_pfn, struct to_kill *tk)
757 {
758 	unsigned long pfn = 0;
759 
760 	if (pte_present(pte)) {
761 		pfn = pte_pfn(pte);
762 	} else {
763 		swp_entry_t swp = pte_to_swp_entry(pte);
764 
765 		if (is_hwpoison_entry(swp))
766 			pfn = swp_offset_pfn(swp);
767 	}
768 
769 	if (!pfn || pfn != poisoned_pfn)
770 		return 0;
771 
772 	set_to_kill(tk, addr, shift);
773 	return 1;
774 }
775 
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
778 				      struct hwpoison_walk *hwp)
779 {
780 	pmd_t pmd = *pmdp;
781 	unsigned long pfn;
782 	unsigned long hwpoison_vaddr;
783 
784 	if (!pmd_present(pmd))
785 		return 0;
786 	pfn = pmd_pfn(pmd);
787 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 		return 1;
791 	}
792 	return 0;
793 }
794 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
796 				      struct hwpoison_walk *hwp)
797 {
798 	return 0;
799 }
800 #endif
801 
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 			      unsigned long end, struct mm_walk *walk)
804 {
805 	struct hwpoison_walk *hwp = walk->private;
806 	int ret = 0;
807 	pte_t *ptep, *mapped_pte;
808 	spinlock_t *ptl;
809 
810 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 	if (ptl) {
812 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 		spin_unlock(ptl);
814 		goto out;
815 	}
816 
817 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 						addr, &ptl);
819 	if (!ptep)
820 		goto out;
821 
822 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
823 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
824 					     hwp->pfn, &hwp->tk);
825 		if (ret == 1)
826 			break;
827 	}
828 	pte_unmap_unlock(mapped_pte, ptl);
829 out:
830 	cond_resched();
831 	return ret;
832 }
833 
834 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 			    unsigned long addr, unsigned long end,
837 			    struct mm_walk *walk)
838 {
839 	struct hwpoison_walk *hwp = walk->private;
840 	struct hstate *h = hstate_vma(walk->vma);
841 	spinlock_t *ptl;
842 	pte_t pte;
843 	int ret;
844 
845 	ptl = huge_pte_lock(h, walk->mm, ptep);
846 	pte = huge_ptep_get(walk->mm, addr, ptep);
847 	ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
848 					hwp->pfn, &hwp->tk);
849 	spin_unlock(ptl);
850 	return ret;
851 }
852 #else
853 #define hwpoison_hugetlb_range	NULL
854 #endif
855 
856 static const struct mm_walk_ops hwpoison_walk_ops = {
857 	.pmd_entry = hwpoison_pte_range,
858 	.hugetlb_entry = hwpoison_hugetlb_range,
859 	.walk_lock = PGWALK_RDLOCK,
860 };
861 
862 /*
863  * Sends SIGBUS to the current process with error info.
864  *
865  * This function is intended to handle "Action Required" MCEs on already
866  * hardware poisoned pages. They could happen, for example, when
867  * memory_failure() failed to unmap the error page at the first call, or
868  * when multiple local machine checks happened on different CPUs.
869  *
870  * MCE handler currently has no easy access to the error virtual address,
871  * so this function walks page table to find it. The returned virtual address
872  * is proper in most cases, but it could be wrong when the application
873  * process has multiple entries mapping the error page.
874  */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)875 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
876 				  int flags)
877 {
878 	int ret;
879 	struct hwpoison_walk priv = {
880 		.pfn = pfn,
881 	};
882 	priv.tk.tsk = p;
883 
884 	if (!p->mm)
885 		return -EFAULT;
886 
887 	mmap_read_lock(p->mm);
888 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
889 			      (void *)&priv);
890 	/*
891 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
892 	 * succeeds or fails, then kill the process with SIGBUS.
893 	 * ret = 0 when poison page is a clean page and it's dropped, no
894 	 * SIGBUS is needed.
895 	 */
896 	if (ret == 1 && priv.tk.addr)
897 		kill_proc(&priv.tk, pfn, flags);
898 	mmap_read_unlock(p->mm);
899 
900 	return ret > 0 ? -EHWPOISON : 0;
901 }
902 
903 /*
904  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
905  * But it could not do more to isolate the page from being accessed again,
906  * nor does it kill the process. This is extremely rare and one of the
907  * potential causes is that the page state has been changed due to
908  * underlying race condition. This is the most severe outcomes.
909  *
910  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911  * It should have killed the process, but it can't isolate the page,
912  * due to conditions such as extra pin, unmap failure, etc. Accessing
913  * the page again may trigger another MCE and the process will be killed
914  * by the m-f() handler immediately.
915  *
916  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
917  * The page is unmapped, and is removed from the LRU or file mapping.
918  * An attempt to access the page again will trigger page fault and the
919  * PF handler will kill the process.
920  *
921  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
922  * The page has been completely isolated, that is, unmapped, taken out of
923  * the buddy system, or hole-punnched out of the file mapping.
924  */
925 static const char *action_name[] = {
926 	[MF_IGNORED] = "Ignored",
927 	[MF_FAILED] = "Failed",
928 	[MF_DELAYED] = "Delayed",
929 	[MF_RECOVERED] = "Recovered",
930 };
931 
932 static const char * const action_page_types[] = {
933 	[MF_MSG_KERNEL]			= "reserved kernel page",
934 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
935 	[MF_MSG_HUGE]			= "huge page",
936 	[MF_MSG_FREE_HUGE]		= "free huge page",
937 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
938 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
939 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
940 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
941 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
942 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
943 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
944 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
945 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
946 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
947 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
948 	[MF_MSG_BUDDY]			= "free buddy page",
949 	[MF_MSG_DAX]			= "dax page",
950 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
951 	[MF_MSG_ALREADY_POISONED]	= "already poisoned",
952 	[MF_MSG_UNKNOWN]		= "unknown page",
953 };
954 
955 /*
956  * XXX: It is possible that a page is isolated from LRU cache,
957  * and then kept in swap cache or failed to remove from page cache.
958  * The page count will stop it from being freed by unpoison.
959  * Stress tests should be aware of this memory leak problem.
960  */
delete_from_lru_cache(struct folio * folio)961 static int delete_from_lru_cache(struct folio *folio)
962 {
963 	if (folio_isolate_lru(folio)) {
964 		/*
965 		 * Clear sensible page flags, so that the buddy system won't
966 		 * complain when the folio is unpoison-and-freed.
967 		 */
968 		folio_clear_active(folio);
969 		folio_clear_unevictable(folio);
970 
971 		/*
972 		 * Poisoned page might never drop its ref count to 0 so we have
973 		 * to uncharge it manually from its memcg.
974 		 */
975 		mem_cgroup_uncharge(folio);
976 
977 		/*
978 		 * drop the refcount elevated by folio_isolate_lru()
979 		 */
980 		folio_put(folio);
981 		return 0;
982 	}
983 	return -EIO;
984 }
985 
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)986 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
987 				struct address_space *mapping)
988 {
989 	int ret = MF_FAILED;
990 
991 	if (mapping->a_ops->error_remove_folio) {
992 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
993 
994 		if (err != 0)
995 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
996 		else if (!filemap_release_folio(folio, GFP_NOIO))
997 			pr_info("%#lx: failed to release buffers\n", pfn);
998 		else
999 			ret = MF_RECOVERED;
1000 	} else {
1001 		/*
1002 		 * If the file system doesn't support it just invalidate
1003 		 * This fails on dirty or anything with private pages
1004 		 */
1005 		if (mapping_evict_folio(mapping, folio))
1006 			ret = MF_RECOVERED;
1007 		else
1008 			pr_info("%#lx: Failed to invalidate\n",	pfn);
1009 	}
1010 
1011 	return ret;
1012 }
1013 
1014 struct page_state {
1015 	unsigned long mask;
1016 	unsigned long res;
1017 	enum mf_action_page_type type;
1018 
1019 	/* Callback ->action() has to unlock the relevant page inside it. */
1020 	int (*action)(struct page_state *ps, struct page *p);
1021 };
1022 
1023 /*
1024  * Return true if page is still referenced by others, otherwise return
1025  * false.
1026  *
1027  * The extra_pins is true when one extra refcount is expected.
1028  */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)1029 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1030 			       bool extra_pins)
1031 {
1032 	int count = page_count(p) - 1;
1033 
1034 	if (extra_pins)
1035 		count -= folio_nr_pages(page_folio(p));
1036 
1037 	if (count > 0) {
1038 		pr_err("%#lx: %s still referenced by %d users\n",
1039 		       page_to_pfn(p), action_page_types[ps->type], count);
1040 		return true;
1041 	}
1042 
1043 	return false;
1044 }
1045 
1046 /*
1047  * Error hit kernel page.
1048  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1049  * could be more sophisticated.
1050  */
me_kernel(struct page_state * ps,struct page * p)1051 static int me_kernel(struct page_state *ps, struct page *p)
1052 {
1053 	unlock_page(p);
1054 	return MF_IGNORED;
1055 }
1056 
1057 /*
1058  * Page in unknown state. Do nothing.
1059  * This is a catch-all in case we fail to make sense of the page state.
1060  */
me_unknown(struct page_state * ps,struct page * p)1061 static int me_unknown(struct page_state *ps, struct page *p)
1062 {
1063 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1064 	unlock_page(p);
1065 	return MF_IGNORED;
1066 }
1067 
1068 /*
1069  * Clean (or cleaned) page cache page.
1070  */
me_pagecache_clean(struct page_state * ps,struct page * p)1071 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1072 {
1073 	struct folio *folio = page_folio(p);
1074 	int ret;
1075 	struct address_space *mapping;
1076 	bool extra_pins;
1077 
1078 	delete_from_lru_cache(folio);
1079 
1080 	/*
1081 	 * For anonymous folios the only reference left
1082 	 * should be the one m_f() holds.
1083 	 */
1084 	if (folio_test_anon(folio)) {
1085 		ret = MF_RECOVERED;
1086 		goto out;
1087 	}
1088 
1089 	/*
1090 	 * Now truncate the page in the page cache. This is really
1091 	 * more like a "temporary hole punch"
1092 	 * Don't do this for block devices when someone else
1093 	 * has a reference, because it could be file system metadata
1094 	 * and that's not safe to truncate.
1095 	 */
1096 	mapping = folio_mapping(folio);
1097 	if (!mapping) {
1098 		/* Folio has been torn down in the meantime */
1099 		ret = MF_FAILED;
1100 		goto out;
1101 	}
1102 
1103 	/*
1104 	 * The shmem page is kept in page cache instead of truncating
1105 	 * so is expected to have an extra refcount after error-handling.
1106 	 */
1107 	extra_pins = shmem_mapping(mapping);
1108 
1109 	/*
1110 	 * Truncation is a bit tricky. Enable it per file system for now.
1111 	 *
1112 	 * Open: to take i_rwsem or not for this? Right now we don't.
1113 	 */
1114 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1115 	if (has_extra_refcount(ps, p, extra_pins))
1116 		ret = MF_FAILED;
1117 
1118 out:
1119 	folio_unlock(folio);
1120 
1121 	return ret;
1122 }
1123 
1124 /*
1125  * Dirty pagecache page
1126  * Issues: when the error hit a hole page the error is not properly
1127  * propagated.
1128  */
me_pagecache_dirty(struct page_state * ps,struct page * p)1129 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1130 {
1131 	struct folio *folio = page_folio(p);
1132 	struct address_space *mapping = folio_mapping(folio);
1133 
1134 	/* TBD: print more information about the file. */
1135 	if (mapping) {
1136 		/*
1137 		 * IO error will be reported by write(), fsync(), etc.
1138 		 * who check the mapping.
1139 		 * This way the application knows that something went
1140 		 * wrong with its dirty file data.
1141 		 */
1142 		mapping_set_error(mapping, -EIO);
1143 	}
1144 
1145 	return me_pagecache_clean(ps, p);
1146 }
1147 
1148 /*
1149  * Clean and dirty swap cache.
1150  *
1151  * Dirty swap cache page is tricky to handle. The page could live both in page
1152  * table and swap cache(ie. page is freshly swapped in). So it could be
1153  * referenced concurrently by 2 types of PTEs:
1154  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1155  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1156  * and then
1157  *      - clear dirty bit to prevent IO
1158  *      - remove from LRU
1159  *      - but keep in the swap cache, so that when we return to it on
1160  *        a later page fault, we know the application is accessing
1161  *        corrupted data and shall be killed (we installed simple
1162  *        interception code in do_swap_page to catch it).
1163  *
1164  * Clean swap cache pages can be directly isolated. A later page fault will
1165  * bring in the known good data from disk.
1166  */
me_swapcache_dirty(struct page_state * ps,struct page * p)1167 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1168 {
1169 	struct folio *folio = page_folio(p);
1170 	int ret;
1171 	bool extra_pins = false;
1172 
1173 	folio_clear_dirty(folio);
1174 	/* Trigger EIO in shmem: */
1175 	folio_clear_uptodate(folio);
1176 
1177 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1178 	folio_unlock(folio);
1179 
1180 	if (ret == MF_DELAYED)
1181 		extra_pins = true;
1182 
1183 	if (has_extra_refcount(ps, p, extra_pins))
1184 		ret = MF_FAILED;
1185 
1186 	return ret;
1187 }
1188 
me_swapcache_clean(struct page_state * ps,struct page * p)1189 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1190 {
1191 	struct folio *folio = page_folio(p);
1192 	int ret;
1193 
1194 	delete_from_swap_cache(folio);
1195 
1196 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1197 	folio_unlock(folio);
1198 
1199 	if (has_extra_refcount(ps, p, false))
1200 		ret = MF_FAILED;
1201 
1202 	return ret;
1203 }
1204 
1205 /*
1206  * Huge pages. Needs work.
1207  * Issues:
1208  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1209  *   To narrow down kill region to one page, we need to break up pmd.
1210  */
me_huge_page(struct page_state * ps,struct page * p)1211 static int me_huge_page(struct page_state *ps, struct page *p)
1212 {
1213 	struct folio *folio = page_folio(p);
1214 	int res;
1215 	struct address_space *mapping;
1216 	bool extra_pins = false;
1217 
1218 	mapping = folio_mapping(folio);
1219 	if (mapping) {
1220 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1221 		/* The page is kept in page cache. */
1222 		extra_pins = true;
1223 		folio_unlock(folio);
1224 	} else {
1225 		folio_unlock(folio);
1226 		/*
1227 		 * migration entry prevents later access on error hugepage,
1228 		 * so we can free and dissolve it into buddy to save healthy
1229 		 * subpages.
1230 		 */
1231 		folio_put(folio);
1232 		if (__page_handle_poison(p) > 0) {
1233 			page_ref_inc(p);
1234 			res = MF_RECOVERED;
1235 		} else {
1236 			res = MF_FAILED;
1237 		}
1238 	}
1239 
1240 	if (has_extra_refcount(ps, p, extra_pins))
1241 		res = MF_FAILED;
1242 
1243 	return res;
1244 }
1245 
1246 /*
1247  * Various page states we can handle.
1248  *
1249  * A page state is defined by its current page->flags bits.
1250  * The table matches them in order and calls the right handler.
1251  *
1252  * This is quite tricky because we can access page at any time
1253  * in its live cycle, so all accesses have to be extremely careful.
1254  *
1255  * This is not complete. More states could be added.
1256  * For any missing state don't attempt recovery.
1257  */
1258 
1259 #define dirty		(1UL << PG_dirty)
1260 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1261 #define unevict		(1UL << PG_unevictable)
1262 #define mlock		(1UL << PG_mlocked)
1263 #define lru		(1UL << PG_lru)
1264 #define head		(1UL << PG_head)
1265 #define reserved	(1UL << PG_reserved)
1266 
1267 static struct page_state error_states[] = {
1268 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1269 	/*
1270 	 * free pages are specially detected outside this table:
1271 	 * PG_buddy pages only make a small fraction of all free pages.
1272 	 */
1273 
1274 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1275 
1276 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1277 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1278 
1279 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1280 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1281 
1282 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1283 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1284 
1285 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1286 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1287 
1288 	/*
1289 	 * Catchall entry: must be at end.
1290 	 */
1291 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1292 };
1293 
1294 #undef dirty
1295 #undef sc
1296 #undef unevict
1297 #undef mlock
1298 #undef lru
1299 #undef head
1300 #undef reserved
1301 
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1302 static void update_per_node_mf_stats(unsigned long pfn,
1303 				     enum mf_result result)
1304 {
1305 	int nid = MAX_NUMNODES;
1306 	struct memory_failure_stats *mf_stats = NULL;
1307 
1308 	nid = pfn_to_nid(pfn);
1309 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1310 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1311 		return;
1312 	}
1313 
1314 	mf_stats = &NODE_DATA(nid)->mf_stats;
1315 	switch (result) {
1316 	case MF_IGNORED:
1317 		++mf_stats->ignored;
1318 		break;
1319 	case MF_FAILED:
1320 		++mf_stats->failed;
1321 		break;
1322 	case MF_DELAYED:
1323 		++mf_stats->delayed;
1324 		break;
1325 	case MF_RECOVERED:
1326 		++mf_stats->recovered;
1327 		break;
1328 	default:
1329 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1330 		break;
1331 	}
1332 	++mf_stats->total;
1333 }
1334 
1335 /*
1336  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1337  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1338  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1339 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1340 			 enum mf_result result)
1341 {
1342 	trace_memory_failure_event(pfn, type, result);
1343 
1344 	num_poisoned_pages_inc(pfn);
1345 
1346 	update_per_node_mf_stats(pfn, result);
1347 
1348 	pr_err("%#lx: recovery action for %s: %s\n",
1349 		pfn, action_page_types[type], action_name[result]);
1350 
1351 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1352 }
1353 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1354 static int page_action(struct page_state *ps, struct page *p,
1355 			unsigned long pfn)
1356 {
1357 	int result;
1358 
1359 	/* page p should be unlocked after returning from ps->action().  */
1360 	result = ps->action(ps, p);
1361 
1362 	/* Could do more checks here if page looks ok */
1363 	/*
1364 	 * Could adjust zone counters here to correct for the missing page.
1365 	 */
1366 
1367 	return action_result(pfn, ps->type, result);
1368 }
1369 
PageHWPoisonTakenOff(struct page * page)1370 static inline bool PageHWPoisonTakenOff(struct page *page)
1371 {
1372 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1373 }
1374 
SetPageHWPoisonTakenOff(struct page * page)1375 void SetPageHWPoisonTakenOff(struct page *page)
1376 {
1377 	set_page_private(page, MAGIC_HWPOISON);
1378 }
1379 
ClearPageHWPoisonTakenOff(struct page * page)1380 void ClearPageHWPoisonTakenOff(struct page *page)
1381 {
1382 	if (PageHWPoison(page))
1383 		set_page_private(page, 0);
1384 }
1385 
1386 /*
1387  * Return true if a page type of a given page is supported by hwpoison
1388  * mechanism (while handling could fail), otherwise false.  This function
1389  * does not return true for hugetlb or device memory pages, so it's assumed
1390  * to be called only in the context where we never have such pages.
1391  */
HWPoisonHandlable(struct page * page,unsigned long flags)1392 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1393 {
1394 	if (PageSlab(page))
1395 		return false;
1396 
1397 	/* Soft offline could migrate movable_ops pages */
1398 	if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
1399 		return true;
1400 
1401 	return PageLRU(page) || is_free_buddy_page(page);
1402 }
1403 
__get_hwpoison_page(struct page * page,unsigned long flags)1404 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1405 {
1406 	struct folio *folio = page_folio(page);
1407 	int ret = 0;
1408 	bool hugetlb = false;
1409 
1410 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1411 	if (hugetlb) {
1412 		/* Make sure hugetlb demotion did not happen from under us. */
1413 		if (folio == page_folio(page))
1414 			return ret;
1415 		if (ret > 0) {
1416 			folio_put(folio);
1417 			folio = page_folio(page);
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * This check prevents from calling folio_try_get() for any
1423 	 * unsupported type of folio in order to reduce the risk of unexpected
1424 	 * races caused by taking a folio refcount.
1425 	 */
1426 	if (!HWPoisonHandlable(&folio->page, flags))
1427 		return -EBUSY;
1428 
1429 	if (folio_try_get(folio)) {
1430 		if (folio == page_folio(page))
1431 			return 1;
1432 
1433 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1434 		folio_put(folio);
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 #define GET_PAGE_MAX_RETRY_NUM 3
1441 
get_any_page(struct page * p,unsigned long flags)1442 static int get_any_page(struct page *p, unsigned long flags)
1443 {
1444 	int ret = 0, pass = 0;
1445 	bool count_increased = false;
1446 
1447 	if (flags & MF_COUNT_INCREASED)
1448 		count_increased = true;
1449 
1450 try_again:
1451 	if (!count_increased) {
1452 		ret = __get_hwpoison_page(p, flags);
1453 		if (!ret) {
1454 			if (page_count(p)) {
1455 				/* We raced with an allocation, retry. */
1456 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1457 					goto try_again;
1458 				ret = -EBUSY;
1459 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1460 				/* We raced with put_page, retry. */
1461 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1462 					goto try_again;
1463 				ret = -EIO;
1464 			}
1465 			goto out;
1466 		} else if (ret == -EBUSY) {
1467 			/*
1468 			 * We raced with (possibly temporary) unhandlable
1469 			 * page, retry.
1470 			 */
1471 			if (pass++ < 3) {
1472 				shake_page(p);
1473 				goto try_again;
1474 			}
1475 			ret = -EIO;
1476 			goto out;
1477 		}
1478 	}
1479 
1480 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1481 		ret = 1;
1482 	} else {
1483 		/*
1484 		 * A page we cannot handle. Check whether we can turn
1485 		 * it into something we can handle.
1486 		 */
1487 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1488 			put_page(p);
1489 			shake_page(p);
1490 			count_increased = false;
1491 			goto try_again;
1492 		}
1493 		put_page(p);
1494 		ret = -EIO;
1495 	}
1496 out:
1497 	if (ret == -EIO)
1498 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1499 
1500 	return ret;
1501 }
1502 
__get_unpoison_page(struct page * page)1503 static int __get_unpoison_page(struct page *page)
1504 {
1505 	struct folio *folio = page_folio(page);
1506 	int ret = 0;
1507 	bool hugetlb = false;
1508 
1509 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1510 	if (hugetlb) {
1511 		/* Make sure hugetlb demotion did not happen from under us. */
1512 		if (folio == page_folio(page))
1513 			return ret;
1514 		if (ret > 0)
1515 			folio_put(folio);
1516 	}
1517 
1518 	/*
1519 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1520 	 * but also isolated from buddy freelist, so need to identify the
1521 	 * state and have to cancel both operations to unpoison.
1522 	 */
1523 	if (PageHWPoisonTakenOff(page))
1524 		return -EHWPOISON;
1525 
1526 	return get_page_unless_zero(page) ? 1 : 0;
1527 }
1528 
1529 /**
1530  * get_hwpoison_page() - Get refcount for memory error handling
1531  * @p:		Raw error page (hit by memory error)
1532  * @flags:	Flags controlling behavior of error handling
1533  *
1534  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1535  * error on it, after checking that the error page is in a well-defined state
1536  * (defined as a page-type we can successfully handle the memory error on it,
1537  * such as LRU page and hugetlb page).
1538  *
1539  * Memory error handling could be triggered at any time on any type of page,
1540  * so it's prone to race with typical memory management lifecycle (like
1541  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1542  * extra care for the error page's state (as done in __get_hwpoison_page()),
1543  * and has some retry logic in get_any_page().
1544  *
1545  * When called from unpoison_memory(), the caller should already ensure that
1546  * the given page has PG_hwpoison. So it's never reused for other page
1547  * allocations, and __get_unpoison_page() never races with them.
1548  *
1549  * Return: 0 on failure or free buddy (hugetlb) page,
1550  *         1 on success for in-use pages in a well-defined state,
1551  *         -EIO for pages on which we can not handle memory errors,
1552  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1553  *         operations like allocation and free,
1554  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1555  */
get_hwpoison_page(struct page * p,unsigned long flags)1556 static int get_hwpoison_page(struct page *p, unsigned long flags)
1557 {
1558 	int ret;
1559 
1560 	zone_pcp_disable(page_zone(p));
1561 	if (flags & MF_UNPOISON)
1562 		ret = __get_unpoison_page(p);
1563 	else
1564 		ret = get_any_page(p, flags);
1565 	zone_pcp_enable(page_zone(p));
1566 
1567 	return ret;
1568 }
1569 
1570 /*
1571  * The caller must guarantee the folio isn't large folio, except hugetlb.
1572  * try_to_unmap() can't handle it.
1573  */
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1574 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1575 {
1576 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1577 	struct address_space *mapping;
1578 
1579 	if (folio_test_swapcache(folio)) {
1580 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1581 		ttu &= ~TTU_HWPOISON;
1582 	}
1583 
1584 	/*
1585 	 * Propagate the dirty bit from PTEs to struct page first, because we
1586 	 * need this to decide if we should kill or just drop the page.
1587 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1588 	 * be called inside page lock (it's recommended but not enforced).
1589 	 */
1590 	mapping = folio_mapping(folio);
1591 	if (!must_kill && !folio_test_dirty(folio) && mapping &&
1592 	    mapping_can_writeback(mapping)) {
1593 		if (folio_mkclean(folio)) {
1594 			folio_set_dirty(folio);
1595 		} else {
1596 			ttu &= ~TTU_HWPOISON;
1597 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1598 				pfn);
1599 		}
1600 	}
1601 
1602 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1603 		/*
1604 		 * For hugetlb folios in shared mappings, try_to_unmap
1605 		 * could potentially call huge_pmd_unshare.  Because of
1606 		 * this, take semaphore in write mode here and set
1607 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1608 		 * at this higher level.
1609 		 */
1610 		mapping = hugetlb_folio_mapping_lock_write(folio);
1611 		if (!mapping) {
1612 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1613 				folio_pfn(folio));
1614 			return -EBUSY;
1615 		}
1616 
1617 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1618 		i_mmap_unlock_write(mapping);
1619 	} else {
1620 		try_to_unmap(folio, ttu);
1621 	}
1622 
1623 	return folio_mapped(folio) ? -EBUSY : 0;
1624 }
1625 
1626 /*
1627  * Do all that is necessary to remove user space mappings. Unmap
1628  * the pages and send SIGBUS to the processes if the data was dirty.
1629  */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1630 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1631 		unsigned long pfn, int flags)
1632 {
1633 	LIST_HEAD(tokill);
1634 	bool unmap_success;
1635 	int forcekill;
1636 	bool mlocked = folio_test_mlocked(folio);
1637 
1638 	/*
1639 	 * Here we are interested only in user-mapped pages, so skip any
1640 	 * other types of pages.
1641 	 */
1642 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1643 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1644 		return true;
1645 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1646 		return true;
1647 
1648 	/*
1649 	 * This check implies we don't kill processes if their pages
1650 	 * are in the swap cache early. Those are always late kills.
1651 	 */
1652 	if (!folio_mapped(folio))
1653 		return true;
1654 
1655 	/*
1656 	 * First collect all the processes that have the page
1657 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1658 	 * because ttu takes the rmap data structures down.
1659 	 */
1660 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1661 
1662 	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1663 	if (!unmap_success)
1664 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1665 		       pfn, folio_mapcount(folio));
1666 
1667 	/*
1668 	 * try_to_unmap() might put mlocked page in lru cache, so call
1669 	 * shake_page() again to ensure that it's flushed.
1670 	 */
1671 	if (mlocked)
1672 		shake_folio(folio);
1673 
1674 	/*
1675 	 * Now that the dirty bit has been propagated to the
1676 	 * struct page and all unmaps done we can decide if
1677 	 * killing is needed or not.  Only kill when the page
1678 	 * was dirty or the process is not restartable,
1679 	 * otherwise the tokill list is merely
1680 	 * freed.  When there was a problem unmapping earlier
1681 	 * use a more force-full uncatchable kill to prevent
1682 	 * any accesses to the poisoned memory.
1683 	 */
1684 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1685 		    !unmap_success;
1686 	kill_procs(&tokill, forcekill, pfn, flags);
1687 
1688 	return unmap_success;
1689 }
1690 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1691 static int identify_page_state(unsigned long pfn, struct page *p,
1692 				unsigned long page_flags)
1693 {
1694 	struct page_state *ps;
1695 
1696 	/*
1697 	 * The first check uses the current page flags which may not have any
1698 	 * relevant information. The second check with the saved page flags is
1699 	 * carried out only if the first check can't determine the page status.
1700 	 */
1701 	for (ps = error_states;; ps++)
1702 		if ((p->flags & ps->mask) == ps->res)
1703 			break;
1704 
1705 	page_flags |= (p->flags & (1UL << PG_dirty));
1706 
1707 	if (!ps->mask)
1708 		for (ps = error_states;; ps++)
1709 			if ((page_flags & ps->mask) == ps->res)
1710 				break;
1711 	return page_action(ps, p, pfn);
1712 }
1713 
1714 /*
1715  * When 'release' is 'false', it means that if thp split has failed,
1716  * there is still more to do, hence the page refcount we took earlier
1717  * is still needed.
1718  */
try_to_split_thp_page(struct page * page,bool release)1719 static int try_to_split_thp_page(struct page *page, bool release)
1720 {
1721 	int ret;
1722 
1723 	lock_page(page);
1724 	ret = split_huge_page(page);
1725 	unlock_page(page);
1726 
1727 	if (ret && release)
1728 		put_page(page);
1729 
1730 	return ret;
1731 }
1732 
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1733 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1734 		struct address_space *mapping, pgoff_t index, int flags)
1735 {
1736 	struct to_kill *tk;
1737 	unsigned long size = 0;
1738 
1739 	list_for_each_entry(tk, to_kill, nd)
1740 		if (tk->size_shift)
1741 			size = max(size, 1UL << tk->size_shift);
1742 
1743 	if (size) {
1744 		/*
1745 		 * Unmap the largest mapping to avoid breaking up device-dax
1746 		 * mappings which are constant size. The actual size of the
1747 		 * mapping being torn down is communicated in siginfo, see
1748 		 * kill_proc()
1749 		 */
1750 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1751 
1752 		unmap_mapping_range(mapping, start, size, 0);
1753 	}
1754 
1755 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1756 }
1757 
1758 /*
1759  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1760  * either do not claim or fails to claim a hwpoison event, or devdax.
1761  * The fsdax pages are initialized per base page, and the devdax pages
1762  * could be initialized either as base pages, or as compound pages with
1763  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1764  * hwpoison, such that, if a subpage of a compound page is poisoned,
1765  * simply mark the compound head page is by far sufficient.
1766  */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1767 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1768 		struct dev_pagemap *pgmap)
1769 {
1770 	struct folio *folio = pfn_folio(pfn);
1771 	LIST_HEAD(to_kill);
1772 	dax_entry_t cookie;
1773 	int rc = 0;
1774 
1775 	/*
1776 	 * Prevent the inode from being freed while we are interrogating
1777 	 * the address_space, typically this would be handled by
1778 	 * lock_page(), but dax pages do not use the page lock. This
1779 	 * also prevents changes to the mapping of this pfn until
1780 	 * poison signaling is complete.
1781 	 */
1782 	cookie = dax_lock_folio(folio);
1783 	if (!cookie)
1784 		return -EBUSY;
1785 
1786 	if (hwpoison_filter(&folio->page)) {
1787 		rc = -EOPNOTSUPP;
1788 		goto unlock;
1789 	}
1790 
1791 	switch (pgmap->type) {
1792 	case MEMORY_DEVICE_PRIVATE:
1793 	case MEMORY_DEVICE_COHERENT:
1794 		/*
1795 		 * TODO: Handle device pages which may need coordination
1796 		 * with device-side memory.
1797 		 */
1798 		rc = -ENXIO;
1799 		goto unlock;
1800 	default:
1801 		break;
1802 	}
1803 
1804 	/*
1805 	 * Use this flag as an indication that the dax page has been
1806 	 * remapped UC to prevent speculative consumption of poison.
1807 	 */
1808 	SetPageHWPoison(&folio->page);
1809 
1810 	/*
1811 	 * Unlike System-RAM there is no possibility to swap in a
1812 	 * different physical page at a given virtual address, so all
1813 	 * userspace consumption of ZONE_DEVICE memory necessitates
1814 	 * SIGBUS (i.e. MF_MUST_KILL)
1815 	 */
1816 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1817 	collect_procs(folio, &folio->page, &to_kill, true);
1818 
1819 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1820 unlock:
1821 	dax_unlock_folio(folio, cookie);
1822 	return rc;
1823 }
1824 
1825 #ifdef CONFIG_FS_DAX
1826 /**
1827  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1828  * @mapping:	address_space of the file in use
1829  * @index:	start pgoff of the range within the file
1830  * @count:	length of the range, in unit of PAGE_SIZE
1831  * @mf_flags:	memory failure flags
1832  */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1833 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1834 		unsigned long count, int mf_flags)
1835 {
1836 	LIST_HEAD(to_kill);
1837 	dax_entry_t cookie;
1838 	struct page *page;
1839 	size_t end = index + count;
1840 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1841 
1842 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1843 
1844 	for (; index < end; index++) {
1845 		page = NULL;
1846 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1847 		if (!cookie)
1848 			return -EBUSY;
1849 		if (!page)
1850 			goto unlock;
1851 
1852 		if (!pre_remove)
1853 			SetPageHWPoison(page);
1854 
1855 		/*
1856 		 * The pre_remove case is revoking access, the memory is still
1857 		 * good and could theoretically be put back into service.
1858 		 */
1859 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1860 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1861 				index, mf_flags);
1862 unlock:
1863 		dax_unlock_mapping_entry(mapping, index, cookie);
1864 	}
1865 	return 0;
1866 }
1867 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1868 #endif /* CONFIG_FS_DAX */
1869 
1870 #ifdef CONFIG_HUGETLB_PAGE
1871 
1872 /*
1873  * Struct raw_hwp_page represents information about "raw error page",
1874  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1875  */
1876 struct raw_hwp_page {
1877 	struct llist_node node;
1878 	struct page *page;
1879 };
1880 
raw_hwp_list_head(struct folio * folio)1881 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1882 {
1883 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1884 }
1885 
is_raw_hwpoison_page_in_hugepage(struct page * page)1886 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1887 {
1888 	struct llist_head *raw_hwp_head;
1889 	struct raw_hwp_page *p;
1890 	struct folio *folio = page_folio(page);
1891 	bool ret = false;
1892 
1893 	if (!folio_test_hwpoison(folio))
1894 		return false;
1895 
1896 	if (!folio_test_hugetlb(folio))
1897 		return PageHWPoison(page);
1898 
1899 	/*
1900 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1901 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1902 	 */
1903 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1904 		return true;
1905 
1906 	mutex_lock(&mf_mutex);
1907 
1908 	raw_hwp_head = raw_hwp_list_head(folio);
1909 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1910 		if (page == p->page) {
1911 			ret = true;
1912 			break;
1913 		}
1914 	}
1915 
1916 	mutex_unlock(&mf_mutex);
1917 
1918 	return ret;
1919 }
1920 
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1921 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1922 {
1923 	struct llist_node *head;
1924 	struct raw_hwp_page *p, *next;
1925 	unsigned long count = 0;
1926 
1927 	head = llist_del_all(raw_hwp_list_head(folio));
1928 	llist_for_each_entry_safe(p, next, head, node) {
1929 		if (move_flag)
1930 			SetPageHWPoison(p->page);
1931 		else
1932 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1933 		kfree(p);
1934 		count++;
1935 	}
1936 	return count;
1937 }
1938 
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1939 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1940 {
1941 	struct llist_head *head;
1942 	struct raw_hwp_page *raw_hwp;
1943 	struct raw_hwp_page *p;
1944 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1945 
1946 	/*
1947 	 * Once the hwpoison hugepage has lost reliable raw error info,
1948 	 * there is little meaning to keep additional error info precisely,
1949 	 * so skip to add additional raw error info.
1950 	 */
1951 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1952 		return -EHWPOISON;
1953 	head = raw_hwp_list_head(folio);
1954 	llist_for_each_entry(p, head->first, node) {
1955 		if (p->page == page)
1956 			return -EHWPOISON;
1957 	}
1958 
1959 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1960 	if (raw_hwp) {
1961 		raw_hwp->page = page;
1962 		llist_add(&raw_hwp->node, head);
1963 		/* the first error event will be counted in action_result(). */
1964 		if (ret)
1965 			num_poisoned_pages_inc(page_to_pfn(page));
1966 	} else {
1967 		/*
1968 		 * Failed to save raw error info.  We no longer trace all
1969 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1970 		 * this hwpoisoned hugepage.
1971 		 */
1972 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1973 		/*
1974 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1975 		 * used any more, so free it.
1976 		 */
1977 		__folio_free_raw_hwp(folio, false);
1978 	}
1979 	return ret;
1980 }
1981 
folio_free_raw_hwp(struct folio * folio,bool move_flag)1982 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1983 {
1984 	/*
1985 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1986 	 * pages for tail pages are required but they don't exist.
1987 	 */
1988 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1989 		return 0;
1990 
1991 	/*
1992 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1993 	 * definition.
1994 	 */
1995 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1996 		return 0;
1997 
1998 	return __folio_free_raw_hwp(folio, move_flag);
1999 }
2000 
folio_clear_hugetlb_hwpoison(struct folio * folio)2001 void folio_clear_hugetlb_hwpoison(struct folio *folio)
2002 {
2003 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
2004 		return;
2005 	if (folio_test_hugetlb_vmemmap_optimized(folio))
2006 		return;
2007 	folio_clear_hwpoison(folio);
2008 	folio_free_raw_hwp(folio, true);
2009 }
2010 
2011 /*
2012  * Called from hugetlb code with hugetlb_lock held.
2013  *
2014  * Return values:
2015  *   0             - free hugepage
2016  *   1             - in-use hugepage
2017  *   2             - not a hugepage
2018  *   -EBUSY        - the hugepage is busy (try to retry)
2019  *   -EHWPOISON    - the hugepage is already hwpoisoned
2020  */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)2021 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2022 				 bool *migratable_cleared)
2023 {
2024 	struct page *page = pfn_to_page(pfn);
2025 	struct folio *folio = page_folio(page);
2026 	int ret = 2;	/* fallback to normal page handling */
2027 	bool count_increased = false;
2028 
2029 	if (!folio_test_hugetlb(folio))
2030 		goto out;
2031 
2032 	if (flags & MF_COUNT_INCREASED) {
2033 		ret = 1;
2034 		count_increased = true;
2035 	} else if (folio_test_hugetlb_freed(folio)) {
2036 		ret = 0;
2037 	} else if (folio_test_hugetlb_migratable(folio)) {
2038 		ret = folio_try_get(folio);
2039 		if (ret)
2040 			count_increased = true;
2041 	} else {
2042 		ret = -EBUSY;
2043 		if (!(flags & MF_NO_RETRY))
2044 			goto out;
2045 	}
2046 
2047 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2048 		ret = -EHWPOISON;
2049 		goto out;
2050 	}
2051 
2052 	/*
2053 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2054 	 * from being migrated by memory hotremove.
2055 	 */
2056 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2057 		folio_clear_hugetlb_migratable(folio);
2058 		*migratable_cleared = true;
2059 	}
2060 
2061 	return ret;
2062 out:
2063 	if (count_increased)
2064 		folio_put(folio);
2065 	return ret;
2066 }
2067 
2068 /*
2069  * Taking refcount of hugetlb pages needs extra care about race conditions
2070  * with basic operations like hugepage allocation/free/demotion.
2071  * So some of prechecks for hwpoison (pinning, and testing/setting
2072  * PageHWPoison) should be done in single hugetlb_lock range.
2073  */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2074 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2075 {
2076 	int res;
2077 	struct page *p = pfn_to_page(pfn);
2078 	struct folio *folio;
2079 	unsigned long page_flags;
2080 	bool migratable_cleared = false;
2081 
2082 	*hugetlb = 1;
2083 retry:
2084 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2085 	if (res == 2) { /* fallback to normal page handling */
2086 		*hugetlb = 0;
2087 		return 0;
2088 	} else if (res == -EHWPOISON) {
2089 		pr_err("%#lx: already hardware poisoned\n", pfn);
2090 		if (flags & MF_ACTION_REQUIRED) {
2091 			folio = page_folio(p);
2092 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2093 			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2094 		}
2095 		return res;
2096 	} else if (res == -EBUSY) {
2097 		if (!(flags & MF_NO_RETRY)) {
2098 			flags |= MF_NO_RETRY;
2099 			goto retry;
2100 		}
2101 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2102 	}
2103 
2104 	folio = page_folio(p);
2105 	folio_lock(folio);
2106 
2107 	if (hwpoison_filter(p)) {
2108 		folio_clear_hugetlb_hwpoison(folio);
2109 		if (migratable_cleared)
2110 			folio_set_hugetlb_migratable(folio);
2111 		folio_unlock(folio);
2112 		if (res == 1)
2113 			folio_put(folio);
2114 		return -EOPNOTSUPP;
2115 	}
2116 
2117 	/*
2118 	 * Handling free hugepage.  The possible race with hugepage allocation
2119 	 * or demotion can be prevented by PageHWPoison flag.
2120 	 */
2121 	if (res == 0) {
2122 		folio_unlock(folio);
2123 		if (__page_handle_poison(p) > 0) {
2124 			page_ref_inc(p);
2125 			res = MF_RECOVERED;
2126 		} else {
2127 			res = MF_FAILED;
2128 		}
2129 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2130 	}
2131 
2132 	page_flags = folio->flags;
2133 
2134 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2135 		folio_unlock(folio);
2136 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2137 	}
2138 
2139 	return identify_page_state(pfn, p, page_flags);
2140 }
2141 
2142 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2143 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2144 {
2145 	return 0;
2146 }
2147 
folio_free_raw_hwp(struct folio * folio,bool flag)2148 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2149 {
2150 	return 0;
2151 }
2152 #endif	/* CONFIG_HUGETLB_PAGE */
2153 
2154 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2155 static void put_ref_page(unsigned long pfn, int flags)
2156 {
2157 	if (!(flags & MF_COUNT_INCREASED))
2158 		return;
2159 
2160 	put_page(pfn_to_page(pfn));
2161 }
2162 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2163 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2164 		struct dev_pagemap *pgmap)
2165 {
2166 	int rc = -ENXIO;
2167 
2168 	/* device metadata space is not recoverable */
2169 	if (!pgmap_pfn_valid(pgmap, pfn))
2170 		goto out;
2171 
2172 	/*
2173 	 * Call driver's implementation to handle the memory failure, otherwise
2174 	 * fall back to generic handler.
2175 	 */
2176 	if (pgmap_has_memory_failure(pgmap)) {
2177 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2178 		/*
2179 		 * Fall back to generic handler too if operation is not
2180 		 * supported inside the driver/device/filesystem.
2181 		 */
2182 		if (rc != -EOPNOTSUPP)
2183 			goto out;
2184 	}
2185 
2186 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2187 out:
2188 	/* drop pgmap ref acquired in caller */
2189 	put_dev_pagemap(pgmap);
2190 	if (rc != -EOPNOTSUPP)
2191 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2192 	return rc;
2193 }
2194 
2195 /*
2196  * The calling condition is as such: thp split failed, page might have
2197  * been RDMA pinned, not much can be done for recovery.
2198  * But a SIGBUS should be delivered with vaddr provided so that the user
2199  * application has a chance to recover. Also, application processes'
2200  * election for MCE early killed will be honored.
2201  */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2202 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2203 				struct folio *folio)
2204 {
2205 	LIST_HEAD(tokill);
2206 
2207 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2208 	kill_procs(&tokill, true, pfn, flags);
2209 }
2210 
2211 /**
2212  * memory_failure - Handle memory failure of a page.
2213  * @pfn: Page Number of the corrupted page
2214  * @flags: fine tune action taken
2215  *
2216  * This function is called by the low level machine check code
2217  * of an architecture when it detects hardware memory corruption
2218  * of a page. It tries its best to recover, which includes
2219  * dropping pages, killing processes etc.
2220  *
2221  * The function is primarily of use for corruptions that
2222  * happen outside the current execution context (e.g. when
2223  * detected by a background scrubber)
2224  *
2225  * Must run in process context (e.g. a work queue) with interrupts
2226  * enabled and no spinlocks held.
2227  *
2228  * Return:
2229  *   0             - success,
2230  *   -ENXIO        - memory not managed by the kernel
2231  *   -EOPNOTSUPP   - hwpoison_filter() filtered the error event,
2232  *   -EHWPOISON    - the page was already poisoned, potentially
2233  *                   kill process,
2234  *   other negative values - failure.
2235  */
memory_failure(unsigned long pfn,int flags)2236 int memory_failure(unsigned long pfn, int flags)
2237 {
2238 	struct page *p;
2239 	struct folio *folio;
2240 	struct dev_pagemap *pgmap;
2241 	int res = 0;
2242 	unsigned long page_flags;
2243 	bool retry = true;
2244 	int hugetlb = 0;
2245 
2246 	if (!sysctl_memory_failure_recovery)
2247 		panic("Memory failure on page %lx", pfn);
2248 
2249 	mutex_lock(&mf_mutex);
2250 
2251 	if (!(flags & MF_SW_SIMULATED))
2252 		hw_memory_failure = true;
2253 
2254 	p = pfn_to_online_page(pfn);
2255 	if (!p) {
2256 		res = arch_memory_failure(pfn, flags);
2257 		if (res == 0)
2258 			goto unlock_mutex;
2259 
2260 		if (pfn_valid(pfn)) {
2261 			pgmap = get_dev_pagemap(pfn, NULL);
2262 			put_ref_page(pfn, flags);
2263 			if (pgmap) {
2264 				res = memory_failure_dev_pagemap(pfn, flags,
2265 								 pgmap);
2266 				goto unlock_mutex;
2267 			}
2268 		}
2269 		pr_err("%#lx: memory outside kernel control\n", pfn);
2270 		res = -ENXIO;
2271 		goto unlock_mutex;
2272 	}
2273 
2274 try_again:
2275 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2276 	if (hugetlb)
2277 		goto unlock_mutex;
2278 
2279 	if (TestSetPageHWPoison(p)) {
2280 		pr_err("%#lx: already hardware poisoned\n", pfn);
2281 		res = -EHWPOISON;
2282 		if (flags & MF_ACTION_REQUIRED)
2283 			res = kill_accessing_process(current, pfn, flags);
2284 		if (flags & MF_COUNT_INCREASED)
2285 			put_page(p);
2286 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2287 		goto unlock_mutex;
2288 	}
2289 
2290 	/*
2291 	 * We need/can do nothing about count=0 pages.
2292 	 * 1) it's a free page, and therefore in safe hand:
2293 	 *    check_new_page() will be the gate keeper.
2294 	 * 2) it's part of a non-compound high order page.
2295 	 *    Implies some kernel user: cannot stop them from
2296 	 *    R/W the page; let's pray that the page has been
2297 	 *    used and will be freed some time later.
2298 	 * In fact it's dangerous to directly bump up page count from 0,
2299 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2300 	 */
2301 	if (!(flags & MF_COUNT_INCREASED)) {
2302 		res = get_hwpoison_page(p, flags);
2303 		if (!res) {
2304 			if (is_free_buddy_page(p)) {
2305 				if (take_page_off_buddy(p)) {
2306 					page_ref_inc(p);
2307 					res = MF_RECOVERED;
2308 				} else {
2309 					/* We lost the race, try again */
2310 					if (retry) {
2311 						ClearPageHWPoison(p);
2312 						retry = false;
2313 						goto try_again;
2314 					}
2315 					res = MF_FAILED;
2316 				}
2317 				res = action_result(pfn, MF_MSG_BUDDY, res);
2318 			} else {
2319 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2320 			}
2321 			goto unlock_mutex;
2322 		} else if (res < 0) {
2323 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2324 			goto unlock_mutex;
2325 		}
2326 	}
2327 
2328 	folio = page_folio(p);
2329 
2330 	/* filter pages that are protected from hwpoison test by users */
2331 	folio_lock(folio);
2332 	if (hwpoison_filter(p)) {
2333 		ClearPageHWPoison(p);
2334 		folio_unlock(folio);
2335 		folio_put(folio);
2336 		res = -EOPNOTSUPP;
2337 		goto unlock_mutex;
2338 	}
2339 	folio_unlock(folio);
2340 
2341 	if (folio_test_large(folio)) {
2342 		/*
2343 		 * The flag must be set after the refcount is bumped
2344 		 * otherwise it may race with THP split.
2345 		 * And the flag can't be set in get_hwpoison_page() since
2346 		 * it is called by soft offline too and it is just called
2347 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2348 		 * place.
2349 		 *
2350 		 * Don't need care about the above error handling paths for
2351 		 * get_hwpoison_page() since they handle either free page
2352 		 * or unhandlable page.  The refcount is bumped iff the
2353 		 * page is a valid handlable page.
2354 		 */
2355 		folio_set_has_hwpoisoned(folio);
2356 		if (try_to_split_thp_page(p, false) < 0) {
2357 			res = -EHWPOISON;
2358 			kill_procs_now(p, pfn, flags, folio);
2359 			put_page(p);
2360 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2361 			goto unlock_mutex;
2362 		}
2363 		VM_BUG_ON_PAGE(!page_count(p), p);
2364 		folio = page_folio(p);
2365 	}
2366 
2367 	/*
2368 	 * We ignore non-LRU pages for good reasons.
2369 	 * - PG_locked is only well defined for LRU pages and a few others
2370 	 * - to avoid races with __SetPageLocked()
2371 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2372 	 * The check (unnecessarily) ignores LRU pages being isolated and
2373 	 * walked by the page reclaim code, however that's not a big loss.
2374 	 */
2375 	shake_folio(folio);
2376 
2377 	folio_lock(folio);
2378 
2379 	/*
2380 	 * We're only intended to deal with the non-Compound page here.
2381 	 * The page cannot become compound pages again as folio has been
2382 	 * splited and extra refcnt is held.
2383 	 */
2384 	WARN_ON(folio_test_large(folio));
2385 
2386 	/*
2387 	 * We use page flags to determine what action should be taken, but
2388 	 * the flags can be modified by the error containment action.  One
2389 	 * example is an mlocked page, where PG_mlocked is cleared by
2390 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2391 	 * status correctly, we save a copy of the page flags at this time.
2392 	 */
2393 	page_flags = folio->flags;
2394 
2395 	/*
2396 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2397 	 * the folio lock. We need to wait for writeback completion for this
2398 	 * folio or it may trigger a vfs BUG while evicting inode.
2399 	 */
2400 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2401 		goto identify_page_state;
2402 
2403 	/*
2404 	 * It's very difficult to mess with pages currently under IO
2405 	 * and in many cases impossible, so we just avoid it here.
2406 	 */
2407 	folio_wait_writeback(folio);
2408 
2409 	/*
2410 	 * Now take care of user space mappings.
2411 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2412 	 */
2413 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2414 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2415 		goto unlock_page;
2416 	}
2417 
2418 	/*
2419 	 * Torn down by someone else?
2420 	 */
2421 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2422 	    folio->mapping == NULL) {
2423 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2424 		goto unlock_page;
2425 	}
2426 
2427 identify_page_state:
2428 	res = identify_page_state(pfn, p, page_flags);
2429 	mutex_unlock(&mf_mutex);
2430 	return res;
2431 unlock_page:
2432 	folio_unlock(folio);
2433 unlock_mutex:
2434 	mutex_unlock(&mf_mutex);
2435 	return res;
2436 }
2437 EXPORT_SYMBOL_GPL(memory_failure);
2438 
2439 #define MEMORY_FAILURE_FIFO_ORDER	4
2440 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2441 
2442 struct memory_failure_entry {
2443 	unsigned long pfn;
2444 	int flags;
2445 };
2446 
2447 struct memory_failure_cpu {
2448 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2449 		      MEMORY_FAILURE_FIFO_SIZE);
2450 	raw_spinlock_t lock;
2451 	struct work_struct work;
2452 };
2453 
2454 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2455 
2456 /**
2457  * memory_failure_queue - Schedule handling memory failure of a page.
2458  * @pfn: Page Number of the corrupted page
2459  * @flags: Flags for memory failure handling
2460  *
2461  * This function is called by the low level hardware error handler
2462  * when it detects hardware memory corruption of a page. It schedules
2463  * the recovering of error page, including dropping pages, killing
2464  * processes etc.
2465  *
2466  * The function is primarily of use for corruptions that
2467  * happen outside the current execution context (e.g. when
2468  * detected by a background scrubber)
2469  *
2470  * Can run in IRQ context.
2471  */
memory_failure_queue(unsigned long pfn,int flags)2472 void memory_failure_queue(unsigned long pfn, int flags)
2473 {
2474 	struct memory_failure_cpu *mf_cpu;
2475 	unsigned long proc_flags;
2476 	bool buffer_overflow;
2477 	struct memory_failure_entry entry = {
2478 		.pfn =		pfn,
2479 		.flags =	flags,
2480 	};
2481 
2482 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2483 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2484 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2485 	if (!buffer_overflow)
2486 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2487 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2488 	put_cpu_var(memory_failure_cpu);
2489 	if (buffer_overflow)
2490 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2491 		       pfn);
2492 }
2493 EXPORT_SYMBOL_GPL(memory_failure_queue);
2494 
memory_failure_work_func(struct work_struct * work)2495 static void memory_failure_work_func(struct work_struct *work)
2496 {
2497 	struct memory_failure_cpu *mf_cpu;
2498 	struct memory_failure_entry entry = { 0, };
2499 	unsigned long proc_flags;
2500 	int gotten;
2501 
2502 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2503 	for (;;) {
2504 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2505 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2506 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2507 		if (!gotten)
2508 			break;
2509 		if (entry.flags & MF_SOFT_OFFLINE)
2510 			soft_offline_page(entry.pfn, entry.flags);
2511 		else
2512 			memory_failure(entry.pfn, entry.flags);
2513 	}
2514 }
2515 
memory_failure_init(void)2516 static int __init memory_failure_init(void)
2517 {
2518 	struct memory_failure_cpu *mf_cpu;
2519 	int cpu;
2520 
2521 	for_each_possible_cpu(cpu) {
2522 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2523 		raw_spin_lock_init(&mf_cpu->lock);
2524 		INIT_KFIFO(mf_cpu->fifo);
2525 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2526 	}
2527 
2528 	register_sysctl_init("vm", memory_failure_table);
2529 
2530 	return 0;
2531 }
2532 core_initcall(memory_failure_init);
2533 
2534 #undef pr_fmt
2535 #define pr_fmt(fmt)	"Unpoison: " fmt
2536 #define unpoison_pr_info(fmt, pfn, rs)			\
2537 ({							\
2538 	if (__ratelimit(rs))				\
2539 		pr_info(fmt, pfn);			\
2540 })
2541 
2542 /**
2543  * unpoison_memory - Unpoison a previously poisoned page
2544  * @pfn: Page number of the to be unpoisoned page
2545  *
2546  * Software-unpoison a page that has been poisoned by
2547  * memory_failure() earlier.
2548  *
2549  * This is only done on the software-level, so it only works
2550  * for linux injected failures, not real hardware failures
2551  *
2552  * Returns 0 for success, otherwise -errno.
2553  */
unpoison_memory(unsigned long pfn)2554 int unpoison_memory(unsigned long pfn)
2555 {
2556 	struct folio *folio;
2557 	struct page *p;
2558 	int ret = -EBUSY, ghp;
2559 	unsigned long count;
2560 	bool huge = false;
2561 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2562 					DEFAULT_RATELIMIT_BURST);
2563 
2564 	if (!pfn_valid(pfn))
2565 		return -ENXIO;
2566 
2567 	p = pfn_to_page(pfn);
2568 	folio = page_folio(p);
2569 
2570 	mutex_lock(&mf_mutex);
2571 
2572 	if (hw_memory_failure) {
2573 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2574 				 pfn, &unpoison_rs);
2575 		ret = -EOPNOTSUPP;
2576 		goto unlock_mutex;
2577 	}
2578 
2579 	if (is_huge_zero_folio(folio)) {
2580 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2581 				 pfn, &unpoison_rs);
2582 		ret = -EOPNOTSUPP;
2583 		goto unlock_mutex;
2584 	}
2585 
2586 	if (!PageHWPoison(p)) {
2587 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2588 				 pfn, &unpoison_rs);
2589 		goto unlock_mutex;
2590 	}
2591 
2592 	if (folio_ref_count(folio) > 1) {
2593 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2594 				 pfn, &unpoison_rs);
2595 		goto unlock_mutex;
2596 	}
2597 
2598 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2599 	    folio_test_reserved(folio) || folio_test_offline(folio))
2600 		goto unlock_mutex;
2601 
2602 	if (folio_mapped(folio)) {
2603 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2604 				 pfn, &unpoison_rs);
2605 		goto unlock_mutex;
2606 	}
2607 
2608 	if (folio_mapping(folio)) {
2609 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2610 				 pfn, &unpoison_rs);
2611 		goto unlock_mutex;
2612 	}
2613 
2614 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2615 	if (!ghp) {
2616 		if (folio_test_hugetlb(folio)) {
2617 			huge = true;
2618 			count = folio_free_raw_hwp(folio, false);
2619 			if (count == 0)
2620 				goto unlock_mutex;
2621 		}
2622 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2623 	} else if (ghp < 0) {
2624 		if (ghp == -EHWPOISON) {
2625 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2626 		} else {
2627 			ret = ghp;
2628 			unpoison_pr_info("%#lx: failed to grab page\n",
2629 					 pfn, &unpoison_rs);
2630 		}
2631 	} else {
2632 		if (folio_test_hugetlb(folio)) {
2633 			huge = true;
2634 			count = folio_free_raw_hwp(folio, false);
2635 			if (count == 0) {
2636 				folio_put(folio);
2637 				goto unlock_mutex;
2638 			}
2639 		}
2640 
2641 		folio_put(folio);
2642 		if (TestClearPageHWPoison(p)) {
2643 			folio_put(folio);
2644 			ret = 0;
2645 		}
2646 	}
2647 
2648 unlock_mutex:
2649 	mutex_unlock(&mf_mutex);
2650 	if (!ret) {
2651 		if (!huge)
2652 			num_poisoned_pages_sub(pfn, 1);
2653 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2654 				 page_to_pfn(p), &unpoison_rs);
2655 	}
2656 	return ret;
2657 }
2658 EXPORT_SYMBOL(unpoison_memory);
2659 
2660 #undef pr_fmt
2661 #define pr_fmt(fmt) "Soft offline: " fmt
2662 
2663 /*
2664  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2665  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2666  * If the page is mapped, it migrates the contents over.
2667  */
soft_offline_in_use_page(struct page * page)2668 static int soft_offline_in_use_page(struct page *page)
2669 {
2670 	long ret = 0;
2671 	unsigned long pfn = page_to_pfn(page);
2672 	struct folio *folio = page_folio(page);
2673 	char const *msg_page[] = {"page", "hugepage"};
2674 	bool huge = folio_test_hugetlb(folio);
2675 	bool isolated;
2676 	LIST_HEAD(pagelist);
2677 	struct migration_target_control mtc = {
2678 		.nid = NUMA_NO_NODE,
2679 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2680 		.reason = MR_MEMORY_FAILURE,
2681 	};
2682 
2683 	if (!huge && folio_test_large(folio)) {
2684 		if (try_to_split_thp_page(page, true)) {
2685 			pr_info("%#lx: thp split failed\n", pfn);
2686 			return -EBUSY;
2687 		}
2688 		folio = page_folio(page);
2689 	}
2690 
2691 	folio_lock(folio);
2692 	if (!huge)
2693 		folio_wait_writeback(folio);
2694 	if (PageHWPoison(page)) {
2695 		folio_unlock(folio);
2696 		folio_put(folio);
2697 		pr_info("%#lx: page already poisoned\n", pfn);
2698 		return 0;
2699 	}
2700 
2701 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2702 		/*
2703 		 * Try to invalidate first. This should work for
2704 		 * non dirty unmapped page cache pages.
2705 		 */
2706 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2707 	folio_unlock(folio);
2708 
2709 	if (ret) {
2710 		pr_info("%#lx: invalidated\n", pfn);
2711 		page_handle_poison(page, false, true);
2712 		return 0;
2713 	}
2714 
2715 	isolated = isolate_folio_to_list(folio, &pagelist);
2716 
2717 	/*
2718 	 * If we succeed to isolate the folio, we grabbed another refcount on
2719 	 * the folio, so we can safely drop the one we got from get_any_page().
2720 	 * If we failed to isolate the folio, it means that we cannot go further
2721 	 * and we will return an error, so drop the reference we got from
2722 	 * get_any_page() as well.
2723 	 */
2724 	folio_put(folio);
2725 
2726 	if (isolated) {
2727 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2728 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2729 		if (!ret) {
2730 			bool release = !huge;
2731 
2732 			if (!page_handle_poison(page, huge, release))
2733 				ret = -EBUSY;
2734 		} else {
2735 			if (!list_empty(&pagelist))
2736 				putback_movable_pages(&pagelist);
2737 
2738 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2739 				pfn, msg_page[huge], ret, &page->flags);
2740 			if (ret > 0)
2741 				ret = -EBUSY;
2742 		}
2743 	} else {
2744 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2745 			pfn, msg_page[huge], page_count(page), &page->flags);
2746 		ret = -EBUSY;
2747 	}
2748 	return ret;
2749 }
2750 
2751 /**
2752  * soft_offline_page - Soft offline a page.
2753  * @pfn: pfn to soft-offline
2754  * @flags: flags. Same as memory_failure().
2755  *
2756  * Returns 0 on success,
2757  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2758  *         disabled by /proc/sys/vm/enable_soft_offline,
2759  *         < 0 otherwise negated errno.
2760  *
2761  * Soft offline a page, by migration or invalidation,
2762  * without killing anything. This is for the case when
2763  * a page is not corrupted yet (so it's still valid to access),
2764  * but has had a number of corrected errors and is better taken
2765  * out.
2766  *
2767  * The actual policy on when to do that is maintained by
2768  * user space.
2769  *
2770  * This should never impact any application or cause data loss,
2771  * however it might take some time.
2772  *
2773  * This is not a 100% solution for all memory, but tries to be
2774  * ``good enough'' for the majority of memory.
2775  */
soft_offline_page(unsigned long pfn,int flags)2776 int soft_offline_page(unsigned long pfn, int flags)
2777 {
2778 	int ret;
2779 	bool try_again = true;
2780 	struct page *page;
2781 
2782 	if (!pfn_valid(pfn)) {
2783 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2784 		return -ENXIO;
2785 	}
2786 
2787 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2788 	page = pfn_to_online_page(pfn);
2789 	if (!page) {
2790 		put_ref_page(pfn, flags);
2791 		return -EIO;
2792 	}
2793 
2794 	if (!sysctl_enable_soft_offline) {
2795 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2796 		put_ref_page(pfn, flags);
2797 		return -EOPNOTSUPP;
2798 	}
2799 
2800 	mutex_lock(&mf_mutex);
2801 
2802 	if (PageHWPoison(page)) {
2803 		pr_info("%#lx: page already poisoned\n", pfn);
2804 		put_ref_page(pfn, flags);
2805 		mutex_unlock(&mf_mutex);
2806 		return 0;
2807 	}
2808 
2809 retry:
2810 	get_online_mems();
2811 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2812 	put_online_mems();
2813 
2814 	if (hwpoison_filter(page)) {
2815 		if (ret > 0)
2816 			put_page(page);
2817 
2818 		mutex_unlock(&mf_mutex);
2819 		return -EOPNOTSUPP;
2820 	}
2821 
2822 	if (ret > 0) {
2823 		ret = soft_offline_in_use_page(page);
2824 	} else if (ret == 0) {
2825 		if (!page_handle_poison(page, true, false)) {
2826 			if (try_again) {
2827 				try_again = false;
2828 				flags &= ~MF_COUNT_INCREASED;
2829 				goto retry;
2830 			}
2831 			ret = -EBUSY;
2832 		}
2833 	}
2834 
2835 	mutex_unlock(&mf_mutex);
2836 
2837 	return ret;
2838 }
2839