1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
hwpoison_filter_dev(struct page * p)79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
hwpoison_filter_flags(struct page * p)109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	/* root_mem_cgroup has NULL dentries */
149 	if (!css->cgroup->dentry)
150 		return -EINVAL;
151 
152 	ino = css->cgroup->dentry->d_inode->i_ino;
153 	css_put(css);
154 
155 	if (ino != hwpoison_filter_memcg)
156 		return -EINVAL;
157 
158 	return 0;
159 }
160 #else
hwpoison_filter_task(struct page * p)161 static int hwpoison_filter_task(struct page *p) { return 0; }
162 #endif
163 
hwpoison_filter(struct page * p)164 int hwpoison_filter(struct page *p)
165 {
166 	if (!hwpoison_filter_enable)
167 		return 0;
168 
169 	if (hwpoison_filter_dev(p))
170 		return -EINVAL;
171 
172 	if (hwpoison_filter_flags(p))
173 		return -EINVAL;
174 
175 	if (hwpoison_filter_task(p))
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 #else
hwpoison_filter(struct page * p)181 int hwpoison_filter(struct page *p)
182 {
183 	return 0;
184 }
185 #endif
186 
187 EXPORT_SYMBOL_GPL(hwpoison_filter);
188 
189 /*
190  * Send all the processes who have the page mapped an ``action optional''
191  * signal.
192  */
kill_proc_ao(struct task_struct * t,unsigned long addr,int trapno,unsigned long pfn,struct page * page)193 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
194 			unsigned long pfn, struct page *page)
195 {
196 	struct siginfo si;
197 	int ret;
198 
199 	printk(KERN_ERR
200 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
201 		pfn, t->comm, t->pid);
202 	si.si_signo = SIGBUS;
203 	si.si_errno = 0;
204 	si.si_code = BUS_MCEERR_AO;
205 	si.si_addr = (void *)addr;
206 #ifdef __ARCH_SI_TRAPNO
207 	si.si_trapno = trapno;
208 #endif
209 	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
210 	/*
211 	 * Don't use force here, it's convenient if the signal
212 	 * can be temporarily blocked.
213 	 * This could cause a loop when the user sets SIGBUS
214 	 * to SIG_IGN, but hopefully no one will do that?
215 	 */
216 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
217 	if (ret < 0)
218 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
219 		       t->comm, t->pid, ret);
220 	return ret;
221 }
222 
223 /*
224  * When a unknown page type is encountered drain as many buffers as possible
225  * in the hope to turn the page into a LRU or free page, which we can handle.
226  */
shake_page(struct page * p,int access)227 void shake_page(struct page *p, int access)
228 {
229 	if (!PageSlab(p)) {
230 		lru_add_drain_all();
231 		if (PageLRU(p))
232 			return;
233 		drain_all_pages();
234 		if (PageLRU(p) || is_free_buddy_page(p))
235 			return;
236 	}
237 
238 	/*
239 	 * Only call shrink_slab here (which would also shrink other caches) if
240 	 * access is not potentially fatal.
241 	 */
242 	if (access) {
243 		int nr;
244 		do {
245 			struct shrink_control shrink = {
246 				.gfp_mask = GFP_KERNEL,
247 			};
248 
249 			nr = shrink_slab(&shrink, 1000, 1000);
250 			if (page_count(p) == 1)
251 				break;
252 		} while (nr > 10);
253 	}
254 }
255 EXPORT_SYMBOL_GPL(shake_page);
256 
257 /*
258  * Kill all processes that have a poisoned page mapped and then isolate
259  * the page.
260  *
261  * General strategy:
262  * Find all processes having the page mapped and kill them.
263  * But we keep a page reference around so that the page is not
264  * actually freed yet.
265  * Then stash the page away
266  *
267  * There's no convenient way to get back to mapped processes
268  * from the VMAs. So do a brute-force search over all
269  * running processes.
270  *
271  * Remember that machine checks are not common (or rather
272  * if they are common you have other problems), so this shouldn't
273  * be a performance issue.
274  *
275  * Also there are some races possible while we get from the
276  * error detection to actually handle it.
277  */
278 
279 struct to_kill {
280 	struct list_head nd;
281 	struct task_struct *tsk;
282 	unsigned long addr;
283 	char addr_valid;
284 };
285 
286 /*
287  * Failure handling: if we can't find or can't kill a process there's
288  * not much we can do.	We just print a message and ignore otherwise.
289  */
290 
291 /*
292  * Schedule a process for later kill.
293  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
294  * TBD would GFP_NOIO be enough?
295  */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,struct to_kill ** tkc)296 static void add_to_kill(struct task_struct *tsk, struct page *p,
297 		       struct vm_area_struct *vma,
298 		       struct list_head *to_kill,
299 		       struct to_kill **tkc)
300 {
301 	struct to_kill *tk;
302 
303 	if (*tkc) {
304 		tk = *tkc;
305 		*tkc = NULL;
306 	} else {
307 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
308 		if (!tk) {
309 			printk(KERN_ERR
310 		"MCE: Out of memory while machine check handling\n");
311 			return;
312 		}
313 	}
314 	tk->addr = page_address_in_vma(p, vma);
315 	tk->addr_valid = 1;
316 
317 	/*
318 	 * In theory we don't have to kill when the page was
319 	 * munmaped. But it could be also a mremap. Since that's
320 	 * likely very rare kill anyways just out of paranoia, but use
321 	 * a SIGKILL because the error is not contained anymore.
322 	 */
323 	if (tk->addr == -EFAULT) {
324 		pr_info("MCE: Unable to find user space address %lx in %s\n",
325 			page_to_pfn(p), tsk->comm);
326 		tk->addr_valid = 0;
327 	}
328 	get_task_struct(tsk);
329 	tk->tsk = tsk;
330 	list_add_tail(&tk->nd, to_kill);
331 }
332 
333 /*
334  * Kill the processes that have been collected earlier.
335  *
336  * Only do anything when DOIT is set, otherwise just free the list
337  * (this is used for clean pages which do not need killing)
338  * Also when FAIL is set do a force kill because something went
339  * wrong earlier.
340  */
kill_procs_ao(struct list_head * to_kill,int doit,int trapno,int fail,struct page * page,unsigned long pfn)341 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
342 			  int fail, struct page *page, unsigned long pfn)
343 {
344 	struct to_kill *tk, *next;
345 
346 	list_for_each_entry_safe (tk, next, to_kill, nd) {
347 		if (doit) {
348 			/*
349 			 * In case something went wrong with munmapping
350 			 * make sure the process doesn't catch the
351 			 * signal and then access the memory. Just kill it.
352 			 */
353 			if (fail || tk->addr_valid == 0) {
354 				printk(KERN_ERR
355 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
356 					pfn, tk->tsk->comm, tk->tsk->pid);
357 				force_sig(SIGKILL, tk->tsk);
358 			}
359 
360 			/*
361 			 * In theory the process could have mapped
362 			 * something else on the address in-between. We could
363 			 * check for that, but we need to tell the
364 			 * process anyways.
365 			 */
366 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
367 					      pfn, page) < 0)
368 				printk(KERN_ERR
369 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
370 					pfn, tk->tsk->comm, tk->tsk->pid);
371 		}
372 		put_task_struct(tk->tsk);
373 		kfree(tk);
374 	}
375 }
376 
task_early_kill(struct task_struct * tsk)377 static int task_early_kill(struct task_struct *tsk)
378 {
379 	if (!tsk->mm)
380 		return 0;
381 	if (tsk->flags & PF_MCE_PROCESS)
382 		return !!(tsk->flags & PF_MCE_EARLY);
383 	return sysctl_memory_failure_early_kill;
384 }
385 
386 /*
387  * Collect processes when the error hit an anonymous page.
388  */
collect_procs_anon(struct page * page,struct list_head * to_kill,struct to_kill ** tkc)389 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
390 			      struct to_kill **tkc)
391 {
392 	struct vm_area_struct *vma;
393 	struct task_struct *tsk;
394 	struct anon_vma *av;
395 
396 	av = page_lock_anon_vma(page);
397 	if (av == NULL)	/* Not actually mapped anymore */
398 		return;
399 
400 	read_lock(&tasklist_lock);
401 	for_each_process (tsk) {
402 		struct anon_vma_chain *vmac;
403 
404 		if (!task_early_kill(tsk))
405 			continue;
406 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
407 			vma = vmac->vma;
408 			if (!page_mapped_in_vma(page, vma))
409 				continue;
410 			if (vma->vm_mm == tsk->mm)
411 				add_to_kill(tsk, page, vma, to_kill, tkc);
412 		}
413 	}
414 	read_unlock(&tasklist_lock);
415 	page_unlock_anon_vma(av);
416 }
417 
418 /*
419  * Collect processes when the error hit a file mapped page.
420  */
collect_procs_file(struct page * page,struct list_head * to_kill,struct to_kill ** tkc)421 static void collect_procs_file(struct page *page, struct list_head *to_kill,
422 			      struct to_kill **tkc)
423 {
424 	struct vm_area_struct *vma;
425 	struct task_struct *tsk;
426 	struct prio_tree_iter iter;
427 	struct address_space *mapping = page->mapping;
428 
429 	mutex_lock(&mapping->i_mmap_mutex);
430 	read_lock(&tasklist_lock);
431 	for_each_process(tsk) {
432 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
433 
434 		if (!task_early_kill(tsk))
435 			continue;
436 
437 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
438 				      pgoff) {
439 			/*
440 			 * Send early kill signal to tasks where a vma covers
441 			 * the page but the corrupted page is not necessarily
442 			 * mapped it in its pte.
443 			 * Assume applications who requested early kill want
444 			 * to be informed of all such data corruptions.
445 			 */
446 			if (vma->vm_mm == tsk->mm)
447 				add_to_kill(tsk, page, vma, to_kill, tkc);
448 		}
449 	}
450 	read_unlock(&tasklist_lock);
451 	mutex_unlock(&mapping->i_mmap_mutex);
452 }
453 
454 /*
455  * Collect the processes who have the corrupted page mapped to kill.
456  * This is done in two steps for locking reasons.
457  * First preallocate one tokill structure outside the spin locks,
458  * so that we can kill at least one process reasonably reliable.
459  */
collect_procs(struct page * page,struct list_head * tokill)460 static void collect_procs(struct page *page, struct list_head *tokill)
461 {
462 	struct to_kill *tk;
463 
464 	if (!page->mapping)
465 		return;
466 
467 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
468 	if (!tk)
469 		return;
470 	if (PageAnon(page))
471 		collect_procs_anon(page, tokill, &tk);
472 	else
473 		collect_procs_file(page, tokill, &tk);
474 	kfree(tk);
475 }
476 
477 /*
478  * Error handlers for various types of pages.
479  */
480 
481 enum outcome {
482 	IGNORED,	/* Error: cannot be handled */
483 	FAILED,		/* Error: handling failed */
484 	DELAYED,	/* Will be handled later */
485 	RECOVERED,	/* Successfully recovered */
486 };
487 
488 static const char *action_name[] = {
489 	[IGNORED] = "Ignored",
490 	[FAILED] = "Failed",
491 	[DELAYED] = "Delayed",
492 	[RECOVERED] = "Recovered",
493 };
494 
495 /*
496  * XXX: It is possible that a page is isolated from LRU cache,
497  * and then kept in swap cache or failed to remove from page cache.
498  * The page count will stop it from being freed by unpoison.
499  * Stress tests should be aware of this memory leak problem.
500  */
delete_from_lru_cache(struct page * p)501 static int delete_from_lru_cache(struct page *p)
502 {
503 	if (!isolate_lru_page(p)) {
504 		/*
505 		 * Clear sensible page flags, so that the buddy system won't
506 		 * complain when the page is unpoison-and-freed.
507 		 */
508 		ClearPageActive(p);
509 		ClearPageUnevictable(p);
510 		/*
511 		 * drop the page count elevated by isolate_lru_page()
512 		 */
513 		page_cache_release(p);
514 		return 0;
515 	}
516 	return -EIO;
517 }
518 
519 /*
520  * Error hit kernel page.
521  * Do nothing, try to be lucky and not touch this instead. For a few cases we
522  * could be more sophisticated.
523  */
me_kernel(struct page * p,unsigned long pfn)524 static int me_kernel(struct page *p, unsigned long pfn)
525 {
526 	return IGNORED;
527 }
528 
529 /*
530  * Page in unknown state. Do nothing.
531  */
me_unknown(struct page * p,unsigned long pfn)532 static int me_unknown(struct page *p, unsigned long pfn)
533 {
534 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
535 	return FAILED;
536 }
537 
538 /*
539  * Clean (or cleaned) page cache page.
540  */
me_pagecache_clean(struct page * p,unsigned long pfn)541 static int me_pagecache_clean(struct page *p, unsigned long pfn)
542 {
543 	int err;
544 	int ret = FAILED;
545 	struct address_space *mapping;
546 
547 	delete_from_lru_cache(p);
548 
549 	/*
550 	 * For anonymous pages we're done the only reference left
551 	 * should be the one m_f() holds.
552 	 */
553 	if (PageAnon(p))
554 		return RECOVERED;
555 
556 	/*
557 	 * Now truncate the page in the page cache. This is really
558 	 * more like a "temporary hole punch"
559 	 * Don't do this for block devices when someone else
560 	 * has a reference, because it could be file system metadata
561 	 * and that's not safe to truncate.
562 	 */
563 	mapping = page_mapping(p);
564 	if (!mapping) {
565 		/*
566 		 * Page has been teared down in the meanwhile
567 		 */
568 		return FAILED;
569 	}
570 
571 	/*
572 	 * Truncation is a bit tricky. Enable it per file system for now.
573 	 *
574 	 * Open: to take i_mutex or not for this? Right now we don't.
575 	 */
576 	if (mapping->a_ops->error_remove_page) {
577 		err = mapping->a_ops->error_remove_page(mapping, p);
578 		if (err != 0) {
579 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
580 					pfn, err);
581 		} else if (page_has_private(p) &&
582 				!try_to_release_page(p, GFP_NOIO)) {
583 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
584 		} else {
585 			ret = RECOVERED;
586 		}
587 	} else {
588 		/*
589 		 * If the file system doesn't support it just invalidate
590 		 * This fails on dirty or anything with private pages
591 		 */
592 		if (invalidate_inode_page(p))
593 			ret = RECOVERED;
594 		else
595 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
596 				pfn);
597 	}
598 	return ret;
599 }
600 
601 /*
602  * Dirty cache page page
603  * Issues: when the error hit a hole page the error is not properly
604  * propagated.
605  */
me_pagecache_dirty(struct page * p,unsigned long pfn)606 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
607 {
608 	struct address_space *mapping = page_mapping(p);
609 
610 	SetPageError(p);
611 	/* TBD: print more information about the file. */
612 	if (mapping) {
613 		/*
614 		 * IO error will be reported by write(), fsync(), etc.
615 		 * who check the mapping.
616 		 * This way the application knows that something went
617 		 * wrong with its dirty file data.
618 		 *
619 		 * There's one open issue:
620 		 *
621 		 * The EIO will be only reported on the next IO
622 		 * operation and then cleared through the IO map.
623 		 * Normally Linux has two mechanisms to pass IO error
624 		 * first through the AS_EIO flag in the address space
625 		 * and then through the PageError flag in the page.
626 		 * Since we drop pages on memory failure handling the
627 		 * only mechanism open to use is through AS_AIO.
628 		 *
629 		 * This has the disadvantage that it gets cleared on
630 		 * the first operation that returns an error, while
631 		 * the PageError bit is more sticky and only cleared
632 		 * when the page is reread or dropped.  If an
633 		 * application assumes it will always get error on
634 		 * fsync, but does other operations on the fd before
635 		 * and the page is dropped between then the error
636 		 * will not be properly reported.
637 		 *
638 		 * This can already happen even without hwpoisoned
639 		 * pages: first on metadata IO errors (which only
640 		 * report through AS_EIO) or when the page is dropped
641 		 * at the wrong time.
642 		 *
643 		 * So right now we assume that the application DTRT on
644 		 * the first EIO, but we're not worse than other parts
645 		 * of the kernel.
646 		 */
647 		mapping_set_error(mapping, EIO);
648 	}
649 
650 	return me_pagecache_clean(p, pfn);
651 }
652 
653 /*
654  * Clean and dirty swap cache.
655  *
656  * Dirty swap cache page is tricky to handle. The page could live both in page
657  * cache and swap cache(ie. page is freshly swapped in). So it could be
658  * referenced concurrently by 2 types of PTEs:
659  * normal PTEs and swap PTEs. We try to handle them consistently by calling
660  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
661  * and then
662  *      - clear dirty bit to prevent IO
663  *      - remove from LRU
664  *      - but keep in the swap cache, so that when we return to it on
665  *        a later page fault, we know the application is accessing
666  *        corrupted data and shall be killed (we installed simple
667  *        interception code in do_swap_page to catch it).
668  *
669  * Clean swap cache pages can be directly isolated. A later page fault will
670  * bring in the known good data from disk.
671  */
me_swapcache_dirty(struct page * p,unsigned long pfn)672 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
673 {
674 	ClearPageDirty(p);
675 	/* Trigger EIO in shmem: */
676 	ClearPageUptodate(p);
677 
678 	if (!delete_from_lru_cache(p))
679 		return DELAYED;
680 	else
681 		return FAILED;
682 }
683 
me_swapcache_clean(struct page * p,unsigned long pfn)684 static int me_swapcache_clean(struct page *p, unsigned long pfn)
685 {
686 	delete_from_swap_cache(p);
687 
688 	if (!delete_from_lru_cache(p))
689 		return RECOVERED;
690 	else
691 		return FAILED;
692 }
693 
694 /*
695  * Huge pages. Needs work.
696  * Issues:
697  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
698  *   To narrow down kill region to one page, we need to break up pmd.
699  */
me_huge_page(struct page * p,unsigned long pfn)700 static int me_huge_page(struct page *p, unsigned long pfn)
701 {
702 	int res = 0;
703 	struct page *hpage = compound_head(p);
704 	/*
705 	 * We can safely recover from error on free or reserved (i.e.
706 	 * not in-use) hugepage by dequeuing it from freelist.
707 	 * To check whether a hugepage is in-use or not, we can't use
708 	 * page->lru because it can be used in other hugepage operations,
709 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
710 	 * So instead we use page_mapping() and PageAnon().
711 	 * We assume that this function is called with page lock held,
712 	 * so there is no race between isolation and mapping/unmapping.
713 	 */
714 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
715 		res = dequeue_hwpoisoned_huge_page(hpage);
716 		if (!res)
717 			return RECOVERED;
718 	}
719 	return DELAYED;
720 }
721 
722 /*
723  * Various page states we can handle.
724  *
725  * A page state is defined by its current page->flags bits.
726  * The table matches them in order and calls the right handler.
727  *
728  * This is quite tricky because we can access page at any time
729  * in its live cycle, so all accesses have to be extremely careful.
730  *
731  * This is not complete. More states could be added.
732  * For any missing state don't attempt recovery.
733  */
734 
735 #define dirty		(1UL << PG_dirty)
736 #define sc		(1UL << PG_swapcache)
737 #define unevict		(1UL << PG_unevictable)
738 #define mlock		(1UL << PG_mlocked)
739 #define writeback	(1UL << PG_writeback)
740 #define lru		(1UL << PG_lru)
741 #define swapbacked	(1UL << PG_swapbacked)
742 #define head		(1UL << PG_head)
743 #define tail		(1UL << PG_tail)
744 #define compound	(1UL << PG_compound)
745 #define slab		(1UL << PG_slab)
746 #define reserved	(1UL << PG_reserved)
747 
748 static struct page_state {
749 	unsigned long mask;
750 	unsigned long res;
751 	char *msg;
752 	int (*action)(struct page *p, unsigned long pfn);
753 } error_states[] = {
754 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
755 	/*
756 	 * free pages are specially detected outside this table:
757 	 * PG_buddy pages only make a small fraction of all free pages.
758 	 */
759 
760 	/*
761 	 * Could in theory check if slab page is free or if we can drop
762 	 * currently unused objects without touching them. But just
763 	 * treat it as standard kernel for now.
764 	 */
765 	{ slab,		slab,		"kernel slab",	me_kernel },
766 
767 #ifdef CONFIG_PAGEFLAGS_EXTENDED
768 	{ head,		head,		"huge",		me_huge_page },
769 	{ tail,		tail,		"huge",		me_huge_page },
770 #else
771 	{ compound,	compound,	"huge",		me_huge_page },
772 #endif
773 
774 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
775 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
776 
777 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
778 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
779 
780 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
781 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
782 
783 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
784 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
785 
786 	/*
787 	 * Catchall entry: must be at end.
788 	 */
789 	{ 0,		0,		"unknown page state",	me_unknown },
790 };
791 
792 #undef dirty
793 #undef sc
794 #undef unevict
795 #undef mlock
796 #undef writeback
797 #undef lru
798 #undef swapbacked
799 #undef head
800 #undef tail
801 #undef compound
802 #undef slab
803 #undef reserved
804 
action_result(unsigned long pfn,char * msg,int result)805 static void action_result(unsigned long pfn, char *msg, int result)
806 {
807 	struct page *page = pfn_to_page(pfn);
808 
809 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
810 		pfn,
811 		PageDirty(page) ? "dirty " : "",
812 		msg, action_name[result]);
813 }
814 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)815 static int page_action(struct page_state *ps, struct page *p,
816 			unsigned long pfn)
817 {
818 	int result;
819 	int count;
820 
821 	result = ps->action(p, pfn);
822 	action_result(pfn, ps->msg, result);
823 
824 	count = page_count(p) - 1;
825 	if (ps->action == me_swapcache_dirty && result == DELAYED)
826 		count--;
827 	if (count != 0) {
828 		printk(KERN_ERR
829 		       "MCE %#lx: %s page still referenced by %d users\n",
830 		       pfn, ps->msg, count);
831 		result = FAILED;
832 	}
833 
834 	/* Could do more checks here if page looks ok */
835 	/*
836 	 * Could adjust zone counters here to correct for the missing page.
837 	 */
838 
839 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
840 }
841 
842 /*
843  * Do all that is necessary to remove user space mappings. Unmap
844  * the pages and send SIGBUS to the processes if the data was dirty.
845  */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int trapno)846 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
847 				  int trapno)
848 {
849 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
850 	struct address_space *mapping;
851 	LIST_HEAD(tokill);
852 	int ret;
853 	int kill = 1;
854 	struct page *hpage = compound_head(p);
855 	struct page *ppage;
856 
857 	if (PageReserved(p) || PageSlab(p))
858 		return SWAP_SUCCESS;
859 
860 	/*
861 	 * This check implies we don't kill processes if their pages
862 	 * are in the swap cache early. Those are always late kills.
863 	 */
864 	if (!page_mapped(hpage))
865 		return SWAP_SUCCESS;
866 
867 	if (PageKsm(p))
868 		return SWAP_FAIL;
869 
870 	if (PageSwapCache(p)) {
871 		printk(KERN_ERR
872 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
873 		ttu |= TTU_IGNORE_HWPOISON;
874 	}
875 
876 	/*
877 	 * Propagate the dirty bit from PTEs to struct page first, because we
878 	 * need this to decide if we should kill or just drop the page.
879 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
880 	 * be called inside page lock (it's recommended but not enforced).
881 	 */
882 	mapping = page_mapping(hpage);
883 	if (!PageDirty(hpage) && mapping &&
884 	    mapping_cap_writeback_dirty(mapping)) {
885 		if (page_mkclean(hpage)) {
886 			SetPageDirty(hpage);
887 		} else {
888 			kill = 0;
889 			ttu |= TTU_IGNORE_HWPOISON;
890 			printk(KERN_INFO
891 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
892 				pfn);
893 		}
894 	}
895 
896 	/*
897 	 * ppage: poisoned page
898 	 *   if p is regular page(4k page)
899 	 *        ppage == real poisoned page;
900 	 *   else p is hugetlb or THP, ppage == head page.
901 	 */
902 	ppage = hpage;
903 
904 	if (PageTransHuge(hpage)) {
905 		/*
906 		 * Verify that this isn't a hugetlbfs head page, the check for
907 		 * PageAnon is just for avoid tripping a split_huge_page
908 		 * internal debug check, as split_huge_page refuses to deal with
909 		 * anything that isn't an anon page. PageAnon can't go away fro
910 		 * under us because we hold a refcount on the hpage, without a
911 		 * refcount on the hpage. split_huge_page can't be safely called
912 		 * in the first place, having a refcount on the tail isn't
913 		 * enough * to be safe.
914 		 */
915 		if (!PageHuge(hpage) && PageAnon(hpage)) {
916 			if (unlikely(split_huge_page(hpage))) {
917 				/*
918 				 * FIXME: if splitting THP is failed, it is
919 				 * better to stop the following operation rather
920 				 * than causing panic by unmapping. System might
921 				 * survive if the page is freed later.
922 				 */
923 				printk(KERN_INFO
924 					"MCE %#lx: failed to split THP\n", pfn);
925 
926 				BUG_ON(!PageHWPoison(p));
927 				return SWAP_FAIL;
928 			}
929 			/* THP is split, so ppage should be the real poisoned page. */
930 			ppage = p;
931 		}
932 	}
933 
934 	/*
935 	 * First collect all the processes that have the page
936 	 * mapped in dirty form.  This has to be done before try_to_unmap,
937 	 * because ttu takes the rmap data structures down.
938 	 *
939 	 * Error handling: We ignore errors here because
940 	 * there's nothing that can be done.
941 	 */
942 	if (kill)
943 		collect_procs(ppage, &tokill);
944 
945 	if (hpage != ppage)
946 		lock_page(ppage);
947 
948 	ret = try_to_unmap(ppage, ttu);
949 	if (ret != SWAP_SUCCESS)
950 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
951 				pfn, page_mapcount(ppage));
952 
953 	if (hpage != ppage)
954 		unlock_page(ppage);
955 
956 	/*
957 	 * Now that the dirty bit has been propagated to the
958 	 * struct page and all unmaps done we can decide if
959 	 * killing is needed or not.  Only kill when the page
960 	 * was dirty, otherwise the tokill list is merely
961 	 * freed.  When there was a problem unmapping earlier
962 	 * use a more force-full uncatchable kill to prevent
963 	 * any accesses to the poisoned memory.
964 	 */
965 	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
966 		      ret != SWAP_SUCCESS, p, pfn);
967 
968 	return ret;
969 }
970 
set_page_hwpoison_huge_page(struct page * hpage)971 static void set_page_hwpoison_huge_page(struct page *hpage)
972 {
973 	int i;
974 	int nr_pages = 1 << compound_trans_order(hpage);
975 	for (i = 0; i < nr_pages; i++)
976 		SetPageHWPoison(hpage + i);
977 }
978 
clear_page_hwpoison_huge_page(struct page * hpage)979 static void clear_page_hwpoison_huge_page(struct page *hpage)
980 {
981 	int i;
982 	int nr_pages = 1 << compound_trans_order(hpage);
983 	for (i = 0; i < nr_pages; i++)
984 		ClearPageHWPoison(hpage + i);
985 }
986 
__memory_failure(unsigned long pfn,int trapno,int flags)987 int __memory_failure(unsigned long pfn, int trapno, int flags)
988 {
989 	struct page_state *ps;
990 	struct page *p;
991 	struct page *hpage;
992 	int res;
993 	unsigned int nr_pages;
994 
995 	if (!sysctl_memory_failure_recovery)
996 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
997 
998 	if (!pfn_valid(pfn)) {
999 		printk(KERN_ERR
1000 		       "MCE %#lx: memory outside kernel control\n",
1001 		       pfn);
1002 		return -ENXIO;
1003 	}
1004 
1005 	p = pfn_to_page(pfn);
1006 	hpage = compound_head(p);
1007 	if (TestSetPageHWPoison(p)) {
1008 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1009 		return 0;
1010 	}
1011 
1012 	nr_pages = 1 << compound_trans_order(hpage);
1013 	atomic_long_add(nr_pages, &mce_bad_pages);
1014 
1015 	/*
1016 	 * We need/can do nothing about count=0 pages.
1017 	 * 1) it's a free page, and therefore in safe hand:
1018 	 *    prep_new_page() will be the gate keeper.
1019 	 * 2) it's a free hugepage, which is also safe:
1020 	 *    an affected hugepage will be dequeued from hugepage freelist,
1021 	 *    so there's no concern about reusing it ever after.
1022 	 * 3) it's part of a non-compound high order page.
1023 	 *    Implies some kernel user: cannot stop them from
1024 	 *    R/W the page; let's pray that the page has been
1025 	 *    used and will be freed some time later.
1026 	 * In fact it's dangerous to directly bump up page count from 0,
1027 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1028 	 */
1029 	if (!(flags & MF_COUNT_INCREASED) &&
1030 		!get_page_unless_zero(hpage)) {
1031 		if (is_free_buddy_page(p)) {
1032 			action_result(pfn, "free buddy", DELAYED);
1033 			return 0;
1034 		} else if (PageHuge(hpage)) {
1035 			/*
1036 			 * Check "just unpoisoned", "filter hit", and
1037 			 * "race with other subpage."
1038 			 */
1039 			lock_page(hpage);
1040 			if (!PageHWPoison(hpage)
1041 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1042 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1043 				atomic_long_sub(nr_pages, &mce_bad_pages);
1044 				return 0;
1045 			}
1046 			set_page_hwpoison_huge_page(hpage);
1047 			res = dequeue_hwpoisoned_huge_page(hpage);
1048 			action_result(pfn, "free huge",
1049 				      res ? IGNORED : DELAYED);
1050 			unlock_page(hpage);
1051 			return res;
1052 		} else {
1053 			action_result(pfn, "high order kernel", IGNORED);
1054 			return -EBUSY;
1055 		}
1056 	}
1057 
1058 	/*
1059 	 * We ignore non-LRU pages for good reasons.
1060 	 * - PG_locked is only well defined for LRU pages and a few others
1061 	 * - to avoid races with __set_page_locked()
1062 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1063 	 * The check (unnecessarily) ignores LRU pages being isolated and
1064 	 * walked by the page reclaim code, however that's not a big loss.
1065 	 */
1066 	if (!PageHuge(p) && !PageTransCompound(p)) {
1067 		if (!PageLRU(p))
1068 			shake_page(p, 0);
1069 		if (!PageLRU(p)) {
1070 			/*
1071 			 * shake_page could have turned it free.
1072 			 */
1073 			if (is_free_buddy_page(p)) {
1074 				action_result(pfn, "free buddy, 2nd try",
1075 						DELAYED);
1076 				return 0;
1077 			}
1078 			action_result(pfn, "non LRU", IGNORED);
1079 			put_page(p);
1080 			return -EBUSY;
1081 		}
1082 	}
1083 
1084 	/*
1085 	 * Lock the page and wait for writeback to finish.
1086 	 * It's very difficult to mess with pages currently under IO
1087 	 * and in many cases impossible, so we just avoid it here.
1088 	 */
1089 	lock_page(hpage);
1090 
1091 	/*
1092 	 * unpoison always clear PG_hwpoison inside page lock
1093 	 */
1094 	if (!PageHWPoison(p)) {
1095 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1096 		res = 0;
1097 		goto out;
1098 	}
1099 	if (hwpoison_filter(p)) {
1100 		if (TestClearPageHWPoison(p))
1101 			atomic_long_sub(nr_pages, &mce_bad_pages);
1102 		unlock_page(hpage);
1103 		put_page(hpage);
1104 		return 0;
1105 	}
1106 
1107 	/*
1108 	 * For error on the tail page, we should set PG_hwpoison
1109 	 * on the head page to show that the hugepage is hwpoisoned
1110 	 */
1111 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1112 		action_result(pfn, "hugepage already hardware poisoned",
1113 				IGNORED);
1114 		unlock_page(hpage);
1115 		put_page(hpage);
1116 		return 0;
1117 	}
1118 	/*
1119 	 * Set PG_hwpoison on all pages in an error hugepage,
1120 	 * because containment is done in hugepage unit for now.
1121 	 * Since we have done TestSetPageHWPoison() for the head page with
1122 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1123 	 */
1124 	if (PageHuge(p))
1125 		set_page_hwpoison_huge_page(hpage);
1126 
1127 	wait_on_page_writeback(p);
1128 
1129 	/*
1130 	 * Now take care of user space mappings.
1131 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1132 	 */
1133 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1134 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1135 		res = -EBUSY;
1136 		goto out;
1137 	}
1138 
1139 	/*
1140 	 * Torn down by someone else?
1141 	 */
1142 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1143 		action_result(pfn, "already truncated LRU", IGNORED);
1144 		res = -EBUSY;
1145 		goto out;
1146 	}
1147 
1148 	res = -EBUSY;
1149 	for (ps = error_states;; ps++) {
1150 		if ((p->flags & ps->mask) == ps->res) {
1151 			res = page_action(ps, p, pfn);
1152 			break;
1153 		}
1154 	}
1155 out:
1156 	unlock_page(hpage);
1157 	return res;
1158 }
1159 EXPORT_SYMBOL_GPL(__memory_failure);
1160 
1161 /**
1162  * memory_failure - Handle memory failure of a page.
1163  * @pfn: Page Number of the corrupted page
1164  * @trapno: Trap number reported in the signal to user space.
1165  *
1166  * This function is called by the low level machine check code
1167  * of an architecture when it detects hardware memory corruption
1168  * of a page. It tries its best to recover, which includes
1169  * dropping pages, killing processes etc.
1170  *
1171  * The function is primarily of use for corruptions that
1172  * happen outside the current execution context (e.g. when
1173  * detected by a background scrubber)
1174  *
1175  * Must run in process context (e.g. a work queue) with interrupts
1176  * enabled and no spinlocks hold.
1177  */
memory_failure(unsigned long pfn,int trapno)1178 void memory_failure(unsigned long pfn, int trapno)
1179 {
1180 	__memory_failure(pfn, trapno, 0);
1181 }
1182 
1183 #define MEMORY_FAILURE_FIFO_ORDER	4
1184 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1185 
1186 struct memory_failure_entry {
1187 	unsigned long pfn;
1188 	int trapno;
1189 	int flags;
1190 };
1191 
1192 struct memory_failure_cpu {
1193 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1194 		      MEMORY_FAILURE_FIFO_SIZE);
1195 	spinlock_t lock;
1196 	struct work_struct work;
1197 };
1198 
1199 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1200 
1201 /**
1202  * memory_failure_queue - Schedule handling memory failure of a page.
1203  * @pfn: Page Number of the corrupted page
1204  * @trapno: Trap number reported in the signal to user space.
1205  * @flags: Flags for memory failure handling
1206  *
1207  * This function is called by the low level hardware error handler
1208  * when it detects hardware memory corruption of a page. It schedules
1209  * the recovering of error page, including dropping pages, killing
1210  * processes etc.
1211  *
1212  * The function is primarily of use for corruptions that
1213  * happen outside the current execution context (e.g. when
1214  * detected by a background scrubber)
1215  *
1216  * Can run in IRQ context.
1217  */
memory_failure_queue(unsigned long pfn,int trapno,int flags)1218 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1219 {
1220 	struct memory_failure_cpu *mf_cpu;
1221 	unsigned long proc_flags;
1222 	struct memory_failure_entry entry = {
1223 		.pfn =		pfn,
1224 		.trapno =	trapno,
1225 		.flags =	flags,
1226 	};
1227 
1228 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1229 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1230 	if (kfifo_put(&mf_cpu->fifo, &entry))
1231 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1232 	else
1233 		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1234 		       pfn);
1235 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1236 	put_cpu_var(memory_failure_cpu);
1237 }
1238 EXPORT_SYMBOL_GPL(memory_failure_queue);
1239 
memory_failure_work_func(struct work_struct * work)1240 static void memory_failure_work_func(struct work_struct *work)
1241 {
1242 	struct memory_failure_cpu *mf_cpu;
1243 	struct memory_failure_entry entry = { 0, };
1244 	unsigned long proc_flags;
1245 	int gotten;
1246 
1247 	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1248 	for (;;) {
1249 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1250 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1251 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1252 		if (!gotten)
1253 			break;
1254 		__memory_failure(entry.pfn, entry.trapno, entry.flags);
1255 	}
1256 }
1257 
memory_failure_init(void)1258 static int __init memory_failure_init(void)
1259 {
1260 	struct memory_failure_cpu *mf_cpu;
1261 	int cpu;
1262 
1263 	for_each_possible_cpu(cpu) {
1264 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1265 		spin_lock_init(&mf_cpu->lock);
1266 		INIT_KFIFO(mf_cpu->fifo);
1267 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1268 	}
1269 
1270 	return 0;
1271 }
1272 core_initcall(memory_failure_init);
1273 
1274 /**
1275  * unpoison_memory - Unpoison a previously poisoned page
1276  * @pfn: Page number of the to be unpoisoned page
1277  *
1278  * Software-unpoison a page that has been poisoned by
1279  * memory_failure() earlier.
1280  *
1281  * This is only done on the software-level, so it only works
1282  * for linux injected failures, not real hardware failures
1283  *
1284  * Returns 0 for success, otherwise -errno.
1285  */
unpoison_memory(unsigned long pfn)1286 int unpoison_memory(unsigned long pfn)
1287 {
1288 	struct page *page;
1289 	struct page *p;
1290 	int freeit = 0;
1291 	unsigned int nr_pages;
1292 
1293 	if (!pfn_valid(pfn))
1294 		return -ENXIO;
1295 
1296 	p = pfn_to_page(pfn);
1297 	page = compound_head(p);
1298 
1299 	if (!PageHWPoison(p)) {
1300 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1301 		return 0;
1302 	}
1303 
1304 	nr_pages = 1 << compound_trans_order(page);
1305 
1306 	if (!get_page_unless_zero(page)) {
1307 		/*
1308 		 * Since HWPoisoned hugepage should have non-zero refcount,
1309 		 * race between memory failure and unpoison seems to happen.
1310 		 * In such case unpoison fails and memory failure runs
1311 		 * to the end.
1312 		 */
1313 		if (PageHuge(page)) {
1314 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1315 			return 0;
1316 		}
1317 		if (TestClearPageHWPoison(p))
1318 			atomic_long_sub(nr_pages, &mce_bad_pages);
1319 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1320 		return 0;
1321 	}
1322 
1323 	lock_page(page);
1324 	/*
1325 	 * This test is racy because PG_hwpoison is set outside of page lock.
1326 	 * That's acceptable because that won't trigger kernel panic. Instead,
1327 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1328 	 * the free buddy page pool.
1329 	 */
1330 	if (TestClearPageHWPoison(page)) {
1331 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1332 		atomic_long_sub(nr_pages, &mce_bad_pages);
1333 		freeit = 1;
1334 		if (PageHuge(page))
1335 			clear_page_hwpoison_huge_page(page);
1336 	}
1337 	unlock_page(page);
1338 
1339 	put_page(page);
1340 	if (freeit)
1341 		put_page(page);
1342 
1343 	return 0;
1344 }
1345 EXPORT_SYMBOL(unpoison_memory);
1346 
new_page(struct page * p,unsigned long private,int ** x)1347 static struct page *new_page(struct page *p, unsigned long private, int **x)
1348 {
1349 	int nid = page_to_nid(p);
1350 	if (PageHuge(p))
1351 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1352 						   nid);
1353 	else
1354 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1355 }
1356 
1357 /*
1358  * Safely get reference count of an arbitrary page.
1359  * Returns 0 for a free page, -EIO for a zero refcount page
1360  * that is not free, and 1 for any other page type.
1361  * For 1 the page is returned with increased page count, otherwise not.
1362  */
get_any_page(struct page * p,unsigned long pfn,int flags)1363 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1364 {
1365 	int ret;
1366 
1367 	if (flags & MF_COUNT_INCREASED)
1368 		return 1;
1369 
1370 	/*
1371 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1372 	 * This is a big hammer, a better would be nicer.
1373 	 */
1374 	lock_memory_hotplug();
1375 
1376 	/*
1377 	 * Isolate the page, so that it doesn't get reallocated if it
1378 	 * was free.
1379 	 */
1380 	set_migratetype_isolate(p);
1381 	/*
1382 	 * When the target page is a free hugepage, just remove it
1383 	 * from free hugepage list.
1384 	 */
1385 	if (!get_page_unless_zero(compound_head(p))) {
1386 		if (PageHuge(p)) {
1387 			pr_info("get_any_page: %#lx free huge page\n", pfn);
1388 			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1389 		} else if (is_free_buddy_page(p)) {
1390 			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1391 			/* Set hwpoison bit while page is still isolated */
1392 			SetPageHWPoison(p);
1393 			ret = 0;
1394 		} else {
1395 			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1396 				pfn, p->flags);
1397 			ret = -EIO;
1398 		}
1399 	} else {
1400 		/* Not a free page */
1401 		ret = 1;
1402 	}
1403 	unset_migratetype_isolate(p);
1404 	unlock_memory_hotplug();
1405 	return ret;
1406 }
1407 
soft_offline_huge_page(struct page * page,int flags)1408 static int soft_offline_huge_page(struct page *page, int flags)
1409 {
1410 	int ret;
1411 	unsigned long pfn = page_to_pfn(page);
1412 	struct page *hpage = compound_head(page);
1413 	LIST_HEAD(pagelist);
1414 
1415 	ret = get_any_page(page, pfn, flags);
1416 	if (ret < 0)
1417 		return ret;
1418 	if (ret == 0)
1419 		goto done;
1420 
1421 	if (PageHWPoison(hpage)) {
1422 		put_page(hpage);
1423 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1424 		return -EBUSY;
1425 	}
1426 
1427 	/* Keep page count to indicate a given hugepage is isolated. */
1428 
1429 	list_add(&hpage->lru, &pagelist);
1430 	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1431 				true);
1432 	if (ret) {
1433 		struct page *page1, *page2;
1434 		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1435 			put_page(page1);
1436 
1437 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1438 			pfn, ret, page->flags);
1439 		if (ret > 0)
1440 			ret = -EIO;
1441 		return ret;
1442 	}
1443 done:
1444 	if (!PageHWPoison(hpage))
1445 		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1446 	set_page_hwpoison_huge_page(hpage);
1447 	dequeue_hwpoisoned_huge_page(hpage);
1448 	/* keep elevated page count for bad page */
1449 	return ret;
1450 }
1451 
1452 /**
1453  * soft_offline_page - Soft offline a page.
1454  * @page: page to offline
1455  * @flags: flags. Same as memory_failure().
1456  *
1457  * Returns 0 on success, otherwise negated errno.
1458  *
1459  * Soft offline a page, by migration or invalidation,
1460  * without killing anything. This is for the case when
1461  * a page is not corrupted yet (so it's still valid to access),
1462  * but has had a number of corrected errors and is better taken
1463  * out.
1464  *
1465  * The actual policy on when to do that is maintained by
1466  * user space.
1467  *
1468  * This should never impact any application or cause data loss,
1469  * however it might take some time.
1470  *
1471  * This is not a 100% solution for all memory, but tries to be
1472  * ``good enough'' for the majority of memory.
1473  */
soft_offline_page(struct page * page,int flags)1474 int soft_offline_page(struct page *page, int flags)
1475 {
1476 	int ret;
1477 	unsigned long pfn = page_to_pfn(page);
1478 
1479 	if (PageHuge(page))
1480 		return soft_offline_huge_page(page, flags);
1481 
1482 	ret = get_any_page(page, pfn, flags);
1483 	if (ret < 0)
1484 		return ret;
1485 	if (ret == 0)
1486 		goto done;
1487 
1488 	/*
1489 	 * Page cache page we can handle?
1490 	 */
1491 	if (!PageLRU(page)) {
1492 		/*
1493 		 * Try to free it.
1494 		 */
1495 		put_page(page);
1496 		shake_page(page, 1);
1497 
1498 		/*
1499 		 * Did it turn free?
1500 		 */
1501 		ret = get_any_page(page, pfn, 0);
1502 		if (ret < 0)
1503 			return ret;
1504 		if (ret == 0)
1505 			goto done;
1506 	}
1507 	if (!PageLRU(page)) {
1508 		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1509 			pfn, page->flags);
1510 		return -EIO;
1511 	}
1512 
1513 	lock_page(page);
1514 	wait_on_page_writeback(page);
1515 
1516 	/*
1517 	 * Synchronized using the page lock with memory_failure()
1518 	 */
1519 	if (PageHWPoison(page)) {
1520 		unlock_page(page);
1521 		put_page(page);
1522 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1523 		return -EBUSY;
1524 	}
1525 
1526 	/*
1527 	 * Try to invalidate first. This should work for
1528 	 * non dirty unmapped page cache pages.
1529 	 */
1530 	ret = invalidate_inode_page(page);
1531 	unlock_page(page);
1532 	/*
1533 	 * RED-PEN would be better to keep it isolated here, but we
1534 	 * would need to fix isolation locking first.
1535 	 */
1536 	if (ret == 1) {
1537 		put_page(page);
1538 		ret = 0;
1539 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1540 		goto done;
1541 	}
1542 
1543 	/*
1544 	 * Simple invalidation didn't work.
1545 	 * Try to migrate to a new page instead. migrate.c
1546 	 * handles a large number of cases for us.
1547 	 */
1548 	ret = isolate_lru_page(page);
1549 	/*
1550 	 * Drop page reference which is came from get_any_page()
1551 	 * successful isolate_lru_page() already took another one.
1552 	 */
1553 	put_page(page);
1554 	if (!ret) {
1555 		LIST_HEAD(pagelist);
1556 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1557 					    page_is_file_cache(page));
1558 		list_add(&page->lru, &pagelist);
1559 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1560 							0, MIGRATE_SYNC);
1561 		if (ret) {
1562 			putback_lru_pages(&pagelist);
1563 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1564 				pfn, ret, page->flags);
1565 			if (ret > 0)
1566 				ret = -EIO;
1567 		}
1568 	} else {
1569 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1570 			pfn, ret, page_count(page), page->flags);
1571 	}
1572 	if (ret)
1573 		return ret;
1574 
1575 done:
1576 	atomic_long_add(1, &mce_bad_pages);
1577 	SetPageHWPoison(page);
1578 	/* keep elevated page count for bad page */
1579 	return ret;
1580 }
1581