1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
4  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
5  *
6  *  Modified by Cort Dougan (cort@cs.nmt.edu)
7  *  and Paul Mackerras (paulus@samba.org)
8  */
9 
10 /*
11  * This file handles the architecture-dependent parts of hardware exceptions
12  */
13 
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/pkeys.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/extable.h>
27 #include <linux/module.h>	/* print_modules */
28 #include <linux/prctl.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/backlight.h>
33 #include <linux/bug.h>
34 #include <linux/kdebug.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/smp.h>
38 #include <linux/console.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/debugfs.h>
41 
42 #include <asm/emulated_ops.h>
43 #include <linux/uaccess.h>
44 #include <asm/interrupt.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #endif
57 #include <asm/kexec.h>
58 #include <asm/ppc-opcode.h>
59 #include <asm/rio.h>
60 #include <asm/fadump.h>
61 #include <asm/switch_to.h>
62 #include <asm/tm.h>
63 #include <asm/debug.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/hmi.h>
66 #include <sysdev/fsl_pci.h>
67 #include <asm/kprobes.h>
68 #include <asm/stacktrace.h>
69 #include <asm/nmi.h>
70 #include <asm/disassemble.h>
71 #include <asm/udbg.h>
72 
73 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
74 int (*__debugger)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
79 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
80 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
81 
82 EXPORT_SYMBOL(__debugger);
83 EXPORT_SYMBOL(__debugger_ipi);
84 EXPORT_SYMBOL(__debugger_bpt);
85 EXPORT_SYMBOL(__debugger_sstep);
86 EXPORT_SYMBOL(__debugger_iabr_match);
87 EXPORT_SYMBOL(__debugger_break_match);
88 EXPORT_SYMBOL(__debugger_fault_handler);
89 #endif
90 
91 /* Transactional Memory trap debug */
92 #ifdef TM_DEBUG_SW
93 #define TM_DEBUG(x...) printk(KERN_INFO x)
94 #else
95 #define TM_DEBUG(x...) do { } while(0)
96 #endif
97 
signame(int signr)98 static const char *signame(int signr)
99 {
100 	switch (signr) {
101 	case SIGBUS:	return "bus error";
102 	case SIGFPE:	return "floating point exception";
103 	case SIGILL:	return "illegal instruction";
104 	case SIGSEGV:	return "segfault";
105 	case SIGTRAP:	return "unhandled trap";
106 	}
107 
108 	return "unknown signal";
109 }
110 
111 /*
112  * Trap & Exception support
113  */
114 
115 #ifdef CONFIG_PMAC_BACKLIGHT
pmac_backlight_unblank(void)116 static void pmac_backlight_unblank(void)
117 {
118 	mutex_lock(&pmac_backlight_mutex);
119 	if (pmac_backlight) {
120 		struct backlight_properties *props;
121 
122 		props = &pmac_backlight->props;
123 		props->brightness = props->max_brightness;
124 		props->power = BACKLIGHT_POWER_ON;
125 		backlight_update_status(pmac_backlight);
126 	}
127 	mutex_unlock(&pmac_backlight_mutex);
128 }
129 #else
pmac_backlight_unblank(void)130 static inline void pmac_backlight_unblank(void) { }
131 #endif
132 
133 /*
134  * If oops/die is expected to crash the machine, return true here.
135  *
136  * This should not be expected to be 100% accurate, there may be
137  * notifiers registered or other unexpected conditions that may bring
138  * down the kernel. Or if the current process in the kernel is holding
139  * locks or has other critical state, the kernel may become effectively
140  * unusable anyway.
141  */
die_will_crash(void)142 bool die_will_crash(void)
143 {
144 	if (should_fadump_crash())
145 		return true;
146 	if (kexec_should_crash(current))
147 		return true;
148 	if (in_interrupt() || panic_on_oops ||
149 			!current->pid || is_global_init(current))
150 		return true;
151 
152 	return false;
153 }
154 
155 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
156 static int die_owner = -1;
157 static unsigned int die_nest_count;
158 static int die_counter;
159 
panic_flush_kmsg_start(void)160 void panic_flush_kmsg_start(void)
161 {
162 	/*
163 	 * These are mostly taken from kernel/panic.c, but tries to do
164 	 * relatively minimal work. Don't use delay functions (TB may
165 	 * be broken), don't crash dump (need to set a firmware log),
166 	 * don't run notifiers. We do want to get some information to
167 	 * Linux console.
168 	 */
169 	console_verbose();
170 	bust_spinlocks(1);
171 }
172 
panic_flush_kmsg_end(void)173 void panic_flush_kmsg_end(void)
174 {
175 	kmsg_dump(KMSG_DUMP_PANIC);
176 	bust_spinlocks(0);
177 	debug_locks_off();
178 	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
179 }
180 
oops_begin(struct pt_regs * regs)181 static unsigned long oops_begin(struct pt_regs *regs)
182 {
183 	int cpu;
184 	unsigned long flags;
185 
186 	oops_enter();
187 
188 	/* racy, but better than risking deadlock. */
189 	raw_local_irq_save(flags);
190 	cpu = smp_processor_id();
191 	if (!arch_spin_trylock(&die_lock)) {
192 		if (cpu == die_owner)
193 			/* nested oops. should stop eventually */;
194 		else
195 			arch_spin_lock(&die_lock);
196 	}
197 	die_nest_count++;
198 	die_owner = cpu;
199 	console_verbose();
200 	bust_spinlocks(1);
201 	if (machine_is(powermac))
202 		pmac_backlight_unblank();
203 	return flags;
204 }
205 NOKPROBE_SYMBOL(oops_begin);
206 
oops_end(unsigned long flags,struct pt_regs * regs,int signr)207 static void oops_end(unsigned long flags, struct pt_regs *regs,
208 			       int signr)
209 {
210 	bust_spinlocks(0);
211 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
212 	die_nest_count--;
213 	oops_exit();
214 	printk("\n");
215 	if (!die_nest_count) {
216 		/* Nest count reaches zero, release the lock. */
217 		die_owner = -1;
218 		arch_spin_unlock(&die_lock);
219 	}
220 	raw_local_irq_restore(flags);
221 
222 	/*
223 	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
224 	 */
225 	if (TRAP(regs) == INTERRUPT_SYSTEM_RESET)
226 		return;
227 
228 	crash_fadump(regs, "die oops");
229 
230 	if (kexec_should_crash(current))
231 		crash_kexec(regs);
232 
233 	if (!signr)
234 		return;
235 
236 	/*
237 	 * While our oops output is serialised by a spinlock, output
238 	 * from panic() called below can race and corrupt it. If we
239 	 * know we are going to panic, delay for 1 second so we have a
240 	 * chance to get clean backtraces from all CPUs that are oopsing.
241 	 */
242 	if (in_interrupt() || panic_on_oops || !current->pid ||
243 	    is_global_init(current)) {
244 		mdelay(MSEC_PER_SEC);
245 	}
246 
247 	if (panic_on_oops)
248 		panic("Fatal exception");
249 	make_task_dead(signr);
250 }
251 NOKPROBE_SYMBOL(oops_end);
252 
get_mmu_str(void)253 static char *get_mmu_str(void)
254 {
255 	if (early_radix_enabled())
256 		return " MMU=Radix";
257 	if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
258 		return " MMU=Hash";
259 	return "";
260 }
261 
__die(const char * str,struct pt_regs * regs,long err)262 static int __die(const char *str, struct pt_regs *regs, long err)
263 {
264 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
265 
266 	printk("%s PAGE_SIZE=%luK%s %s%s%s%s %s\n",
267 	       IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
268 	       PAGE_SIZE / 1024, get_mmu_str(),
269 	       IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
270 	       IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
271 	       debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
272 	       IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
273 	       ppc_md.name ? ppc_md.name : "");
274 
275 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
276 		return 1;
277 
278 	print_modules();
279 	show_regs(regs);
280 
281 	return 0;
282 }
283 NOKPROBE_SYMBOL(__die);
284 
die(const char * str,struct pt_regs * regs,long err)285 void die(const char *str, struct pt_regs *regs, long err)
286 {
287 	unsigned long flags;
288 
289 	/*
290 	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
291 	 */
292 	if (TRAP(regs) != INTERRUPT_SYSTEM_RESET) {
293 		if (debugger(regs))
294 			return;
295 	}
296 
297 	flags = oops_begin(regs);
298 	if (__die(str, regs, err))
299 		err = 0;
300 	oops_end(flags, regs, err);
301 }
302 NOKPROBE_SYMBOL(die);
303 
user_single_step_report(struct pt_regs * regs)304 void user_single_step_report(struct pt_regs *regs)
305 {
306 	force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
307 }
308 
show_signal_msg(int signr,struct pt_regs * regs,int code,unsigned long addr)309 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
310 			    unsigned long addr)
311 {
312 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
313 				      DEFAULT_RATELIMIT_BURST);
314 
315 	if (!show_unhandled_signals)
316 		return;
317 
318 	if (!unhandled_signal(current, signr))
319 		return;
320 
321 	if (!__ratelimit(&rs))
322 		return;
323 
324 	pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
325 		current->comm, current->pid, signame(signr), signr,
326 		addr, regs->nip, regs->link, code);
327 
328 	print_vma_addr(KERN_CONT " in ", regs->nip);
329 
330 	pr_cont("\n");
331 
332 	show_user_instructions(regs);
333 }
334 
exception_common(int signr,struct pt_regs * regs,int code,unsigned long addr)335 static bool exception_common(int signr, struct pt_regs *regs, int code,
336 			      unsigned long addr)
337 {
338 	if (!user_mode(regs)) {
339 		die("Exception in kernel mode", regs, signr);
340 		return false;
341 	}
342 
343 	/*
344 	 * Must not enable interrupts even for user-mode exception, because
345 	 * this can be called from machine check, which may be a NMI or IRQ
346 	 * which don't like interrupts being enabled. Could check for
347 	 * in_hardirq || in_nmi perhaps, but there doesn't seem to be a good
348 	 * reason why _exception() should enable irqs for an exception handler,
349 	 * the handlers themselves do that directly.
350 	 */
351 
352 	show_signal_msg(signr, regs, code, addr);
353 
354 	current->thread.trap_nr = code;
355 
356 	return true;
357 }
358 
_exception_pkey(struct pt_regs * regs,unsigned long addr,int key)359 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
360 {
361 	if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
362 		return;
363 
364 	force_sig_pkuerr((void __user *) addr, key);
365 }
366 
_exception(int signr,struct pt_regs * regs,int code,unsigned long addr)367 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
368 {
369 	if (!exception_common(signr, regs, code, addr))
370 		return;
371 
372 	force_sig_fault(signr, code, (void __user *)addr);
373 }
374 
375 /*
376  * The interrupt architecture has a quirk in that the HV interrupts excluding
377  * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
378  * that an interrupt handler must do is save off a GPR into a scratch register,
379  * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
380  * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
381  * that it is non-reentrant, which leads to random data corruption.
382  *
383  * The solution is for NMI interrupts in HV mode to check if they originated
384  * from these critical HV interrupt regions. If so, then mark them not
385  * recoverable.
386  *
387  * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
388  * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
389  * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
390  * that would work. However any other guest OS that may have the SPRG live
391  * and MSR[RI]=1 could encounter silent corruption.
392  *
393  * Builds that do not support KVM could take this second option to increase
394  * the recoverability of NMIs.
395  */
hv_nmi_check_nonrecoverable(struct pt_regs * regs)396 noinstr void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
397 {
398 #ifdef CONFIG_PPC_POWERNV
399 	unsigned long kbase = (unsigned long)_stext;
400 	unsigned long nip = regs->nip;
401 
402 	if (!(regs->msr & MSR_RI))
403 		return;
404 	if (!(regs->msr & MSR_HV))
405 		return;
406 	if (user_mode(regs))
407 		return;
408 
409 	/*
410 	 * Now test if the interrupt has hit a range that may be using
411 	 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
412 	 * problem ranges all run un-relocated. Test real and virt modes
413 	 * at the same time by dropping the high bit of the nip (virt mode
414 	 * entry points still have the +0x4000 offset).
415 	 */
416 	nip &= ~0xc000000000000000ULL;
417 	if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
418 		goto nonrecoverable;
419 	if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
420 		goto nonrecoverable;
421 	if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
422 		goto nonrecoverable;
423 	if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
424 		goto nonrecoverable;
425 
426 	/* Trampoline code runs un-relocated so subtract kbase. */
427 	if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
428 			nip < (unsigned long)(end_real_trampolines - kbase))
429 		goto nonrecoverable;
430 	if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
431 			nip < (unsigned long)(end_virt_trampolines - kbase))
432 		goto nonrecoverable;
433 	return;
434 
435 nonrecoverable:
436 	regs->msr &= ~MSR_RI;
437 	local_paca->hsrr_valid = 0;
438 	local_paca->srr_valid = 0;
439 #endif
440 }
DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception)441 DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception)
442 {
443 	unsigned long hsrr0, hsrr1;
444 	bool saved_hsrrs = false;
445 
446 	/*
447 	 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
448 	 * The system reset interrupt itself may clobber HSRRs (e.g., to call
449 	 * OPAL), so save them here and restore them before returning.
450 	 *
451 	 * Machine checks don't need to save HSRRs, as the real mode handler
452 	 * is careful to avoid them, and the regular handler is not delivered
453 	 * as an NMI.
454 	 */
455 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
456 		hsrr0 = mfspr(SPRN_HSRR0);
457 		hsrr1 = mfspr(SPRN_HSRR1);
458 		saved_hsrrs = true;
459 	}
460 
461 	hv_nmi_check_nonrecoverable(regs);
462 
463 	__this_cpu_inc(irq_stat.sreset_irqs);
464 
465 	/* See if any machine dependent calls */
466 	if (ppc_md.system_reset_exception) {
467 		if (ppc_md.system_reset_exception(regs))
468 			goto out;
469 	}
470 
471 	if (debugger(regs))
472 		goto out;
473 
474 	kmsg_dump(KMSG_DUMP_OOPS);
475 	/*
476 	 * A system reset is a request to dump, so we always send
477 	 * it through the crashdump code (if fadump or kdump are
478 	 * registered).
479 	 */
480 	crash_fadump(regs, "System Reset");
481 
482 	crash_kexec(regs);
483 
484 	/*
485 	 * We aren't the primary crash CPU. We need to send it
486 	 * to a holding pattern to avoid it ending up in the panic
487 	 * code.
488 	 */
489 	crash_kexec_secondary(regs);
490 
491 	/*
492 	 * No debugger or crash dump registered, print logs then
493 	 * panic.
494 	 */
495 	die("System Reset", regs, SIGABRT);
496 
497 	mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
498 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
499 	nmi_panic(regs, "System Reset");
500 
501 out:
502 #ifdef CONFIG_PPC_BOOK3S_64
503 	BUG_ON(get_paca()->in_nmi == 0);
504 	if (get_paca()->in_nmi > 1)
505 		die("Unrecoverable nested System Reset", regs, SIGABRT);
506 #endif
507 	/* Must die if the interrupt is not recoverable */
508 	if (regs_is_unrecoverable(regs)) {
509 		/* For the reason explained in die_mce, nmi_exit before die */
510 		nmi_exit();
511 		die("Unrecoverable System Reset", regs, SIGABRT);
512 	}
513 
514 	if (saved_hsrrs) {
515 		mtspr(SPRN_HSRR0, hsrr0);
516 		mtspr(SPRN_HSRR1, hsrr1);
517 	}
518 
519 	/* What should we do here? We could issue a shutdown or hard reset. */
520 
521 	return 0;
522 }
523 
524 /*
525  * I/O accesses can cause machine checks on powermacs.
526  * Check if the NIP corresponds to the address of a sync
527  * instruction for which there is an entry in the exception
528  * table.
529  *  -- paulus.
530  */
check_io_access(struct pt_regs * regs)531 static inline int check_io_access(struct pt_regs *regs)
532 {
533 #ifdef CONFIG_PPC32
534 	unsigned long msr = regs->msr;
535 	const struct exception_table_entry *entry;
536 	unsigned int *nip = (unsigned int *)regs->nip;
537 
538 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
539 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
540 		/*
541 		 * Check that it's a sync instruction, or somewhere
542 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
543 		 * As the address is in the exception table
544 		 * we should be able to read the instr there.
545 		 * For the debug message, we look at the preceding
546 		 * load or store.
547 		 */
548 		if (*nip == PPC_RAW_NOP())
549 			nip -= 2;
550 		else if (*nip == PPC_RAW_ISYNC())
551 			--nip;
552 		if (*nip == PPC_RAW_SYNC() || get_op(*nip) == OP_TRAP) {
553 			unsigned int rb;
554 
555 			--nip;
556 			rb = (*nip >> 11) & 0x1f;
557 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
558 			       (*nip & 0x100)? "OUT to": "IN from",
559 			       regs->gpr[rb] - _IO_BASE, nip);
560 			regs_set_recoverable(regs);
561 			regs_set_return_ip(regs, extable_fixup(entry));
562 			return 1;
563 		}
564 	}
565 #endif /* CONFIG_PPC32 */
566 	return 0;
567 }
568 
569 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
570 /* On 4xx, the reason for the machine check or program exception
571    is in the ESR. */
572 #define get_reason(regs)	((regs)->esr)
573 #define REASON_FP		ESR_FP
574 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
575 #define REASON_PRIVILEGED	ESR_PPR
576 #define REASON_TRAP		ESR_PTR
577 #define REASON_PREFIXED		0
578 #define REASON_BOUNDARY		0
579 
580 /* single-step stuff */
581 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
582 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
583 #define clear_br_trace(regs)	do {} while(0)
584 #else
585 /* On non-4xx, the reason for the machine check or program
586    exception is in the MSR. */
587 #define get_reason(regs)	((regs)->msr)
588 #define REASON_TM		SRR1_PROGTM
589 #define REASON_FP		SRR1_PROGFPE
590 #define REASON_ILLEGAL		SRR1_PROGILL
591 #define REASON_PRIVILEGED	SRR1_PROGPRIV
592 #define REASON_TRAP		SRR1_PROGTRAP
593 #define REASON_PREFIXED		SRR1_PREFIXED
594 #define REASON_BOUNDARY		SRR1_BOUNDARY
595 
596 #define single_stepping(regs)	((regs)->msr & MSR_SE)
597 #define clear_single_step(regs)	(regs_set_return_msr((regs), (regs)->msr & ~MSR_SE))
598 #define clear_br_trace(regs)	(regs_set_return_msr((regs), (regs)->msr & ~MSR_BE))
599 #endif
600 
601 #define inst_length(reason)	(((reason) & REASON_PREFIXED) ? 8 : 4)
602 
603 #if defined(CONFIG_PPC_E500)
machine_check_e500mc(struct pt_regs * regs)604 int machine_check_e500mc(struct pt_regs *regs)
605 {
606 	unsigned long mcsr = mfspr(SPRN_MCSR);
607 	unsigned long pvr = mfspr(SPRN_PVR);
608 	unsigned long reason = mcsr;
609 	int recoverable = 1;
610 
611 	if (reason & MCSR_LD) {
612 		recoverable = fsl_rio_mcheck_exception(regs);
613 		if (recoverable == 1)
614 			goto silent_out;
615 	}
616 
617 	printk("Machine check in kernel mode.\n");
618 	printk("Caused by (from MCSR=%lx): ", reason);
619 
620 	if (reason & MCSR_MCP)
621 		pr_cont("Machine Check Signal\n");
622 
623 	if (reason & MCSR_ICPERR) {
624 		pr_cont("Instruction Cache Parity Error\n");
625 
626 		/*
627 		 * This is recoverable by invalidating the i-cache.
628 		 */
629 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
630 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
631 			;
632 
633 		/*
634 		 * This will generally be accompanied by an instruction
635 		 * fetch error report -- only treat MCSR_IF as fatal
636 		 * if it wasn't due to an L1 parity error.
637 		 */
638 		reason &= ~MCSR_IF;
639 	}
640 
641 	if (reason & MCSR_DCPERR_MC) {
642 		pr_cont("Data Cache Parity Error\n");
643 
644 		/*
645 		 * In write shadow mode we auto-recover from the error, but it
646 		 * may still get logged and cause a machine check.  We should
647 		 * only treat the non-write shadow case as non-recoverable.
648 		 */
649 		/* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
650 		 * is not implemented but L1 data cache always runs in write
651 		 * shadow mode. Hence on data cache parity errors HW will
652 		 * automatically invalidate the L1 Data Cache.
653 		 */
654 		if (PVR_VER(pvr) != PVR_VER_E6500) {
655 			if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
656 				recoverable = 0;
657 		}
658 	}
659 
660 	if (reason & MCSR_L2MMU_MHIT) {
661 		pr_cont("Hit on multiple TLB entries\n");
662 		recoverable = 0;
663 	}
664 
665 	if (reason & MCSR_NMI)
666 		pr_cont("Non-maskable interrupt\n");
667 
668 	if (reason & MCSR_IF) {
669 		pr_cont("Instruction Fetch Error Report\n");
670 		recoverable = 0;
671 	}
672 
673 	if (reason & MCSR_LD) {
674 		pr_cont("Load Error Report\n");
675 		recoverable = 0;
676 	}
677 
678 	if (reason & MCSR_ST) {
679 		pr_cont("Store Error Report\n");
680 		recoverable = 0;
681 	}
682 
683 	if (reason & MCSR_LDG) {
684 		pr_cont("Guarded Load Error Report\n");
685 		recoverable = 0;
686 	}
687 
688 	if (reason & MCSR_TLBSYNC)
689 		pr_cont("Simultaneous tlbsync operations\n");
690 
691 	if (reason & MCSR_BSL2_ERR) {
692 		pr_cont("Level 2 Cache Error\n");
693 		recoverable = 0;
694 	}
695 
696 	if (reason & MCSR_MAV) {
697 		u64 addr;
698 
699 		addr = mfspr(SPRN_MCAR);
700 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
701 
702 		pr_cont("Machine Check %s Address: %#llx\n",
703 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
704 	}
705 
706 silent_out:
707 	mtspr(SPRN_MCSR, mcsr);
708 	return mfspr(SPRN_MCSR) == 0 && recoverable;
709 }
710 
machine_check_e500(struct pt_regs * regs)711 int machine_check_e500(struct pt_regs *regs)
712 {
713 	unsigned long reason = mfspr(SPRN_MCSR);
714 
715 	if (reason & MCSR_BUS_RBERR) {
716 		if (fsl_rio_mcheck_exception(regs))
717 			return 1;
718 		if (fsl_pci_mcheck_exception(regs))
719 			return 1;
720 	}
721 
722 	printk("Machine check in kernel mode.\n");
723 	printk("Caused by (from MCSR=%lx): ", reason);
724 
725 	if (reason & MCSR_MCP)
726 		pr_cont("Machine Check Signal\n");
727 	if (reason & MCSR_ICPERR)
728 		pr_cont("Instruction Cache Parity Error\n");
729 	if (reason & MCSR_DCP_PERR)
730 		pr_cont("Data Cache Push Parity Error\n");
731 	if (reason & MCSR_DCPERR)
732 		pr_cont("Data Cache Parity Error\n");
733 	if (reason & MCSR_BUS_IAERR)
734 		pr_cont("Bus - Instruction Address Error\n");
735 	if (reason & MCSR_BUS_RAERR)
736 		pr_cont("Bus - Read Address Error\n");
737 	if (reason & MCSR_BUS_WAERR)
738 		pr_cont("Bus - Write Address Error\n");
739 	if (reason & MCSR_BUS_IBERR)
740 		pr_cont("Bus - Instruction Data Error\n");
741 	if (reason & MCSR_BUS_RBERR)
742 		pr_cont("Bus - Read Data Bus Error\n");
743 	if (reason & MCSR_BUS_WBERR)
744 		pr_cont("Bus - Write Data Bus Error\n");
745 	if (reason & MCSR_BUS_IPERR)
746 		pr_cont("Bus - Instruction Parity Error\n");
747 	if (reason & MCSR_BUS_RPERR)
748 		pr_cont("Bus - Read Parity Error\n");
749 
750 	return 0;
751 }
752 
machine_check_generic(struct pt_regs * regs)753 int machine_check_generic(struct pt_regs *regs)
754 {
755 	return 0;
756 }
757 #elif defined(CONFIG_PPC32)
machine_check_generic(struct pt_regs * regs)758 int machine_check_generic(struct pt_regs *regs)
759 {
760 	unsigned long reason = regs->msr;
761 
762 	printk("Machine check in kernel mode.\n");
763 	printk("Caused by (from SRR1=%lx): ", reason);
764 	switch (reason & 0x601F0000) {
765 	case 0x80000:
766 		pr_cont("Machine check signal\n");
767 		break;
768 	case 0x40000:
769 	case 0x140000:	/* 7450 MSS error and TEA */
770 		pr_cont("Transfer error ack signal\n");
771 		break;
772 	case 0x20000:
773 		pr_cont("Data parity error signal\n");
774 		break;
775 	case 0x10000:
776 		pr_cont("Address parity error signal\n");
777 		break;
778 	case 0x20000000:
779 		pr_cont("L1 Data Cache error\n");
780 		break;
781 	case 0x40000000:
782 		pr_cont("L1 Instruction Cache error\n");
783 		break;
784 	case 0x00100000:
785 		pr_cont("L2 data cache parity error\n");
786 		break;
787 	default:
788 		pr_cont("Unknown values in msr\n");
789 	}
790 	return 0;
791 }
792 #endif /* everything else */
793 
die_mce(const char * str,struct pt_regs * regs,long err)794 void die_mce(const char *str, struct pt_regs *regs, long err)
795 {
796 	/*
797 	 * The machine check wants to kill the interrupted context,
798 	 * but make_task_dead() checks for in_interrupt() and panics
799 	 * in that case, so exit the irq/nmi before calling die.
800 	 */
801 	if (in_nmi())
802 		nmi_exit();
803 	else
804 		irq_exit();
805 	die(str, regs, err);
806 }
807 
808 /*
809  * BOOK3S_64 does not usually call this handler as a non-maskable interrupt
810  * (it uses its own early real-mode handler to handle the MCE proper
811  * and then raises irq_work to call this handler when interrupts are
812  * enabled). The only time when this is not true is if the early handler
813  * is unrecoverable, then it does call this directly to try to get a
814  * message out.
815  */
__machine_check_exception(struct pt_regs * regs)816 static void __machine_check_exception(struct pt_regs *regs)
817 {
818 	int recover = 0;
819 
820 	__this_cpu_inc(irq_stat.mce_exceptions);
821 
822 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
823 
824 	/* See if any machine dependent calls. In theory, we would want
825 	 * to call the CPU first, and call the ppc_md. one if the CPU
826 	 * one returns a positive number. However there is existing code
827 	 * that assumes the board gets a first chance, so let's keep it
828 	 * that way for now and fix things later. --BenH.
829 	 */
830 	if (ppc_md.machine_check_exception)
831 		recover = ppc_md.machine_check_exception(regs);
832 	else if (cur_cpu_spec->machine_check)
833 		recover = cur_cpu_spec->machine_check(regs);
834 
835 	if (recover > 0)
836 		goto bail;
837 
838 	if (debugger_fault_handler(regs))
839 		goto bail;
840 
841 	if (check_io_access(regs))
842 		goto bail;
843 
844 	die_mce("Machine check", regs, SIGBUS);
845 
846 bail:
847 	/* Must die if the interrupt is not recoverable */
848 	if (regs_is_unrecoverable(regs))
849 		die_mce("Unrecoverable Machine check", regs, SIGBUS);
850 }
851 
852 #ifdef CONFIG_PPC_BOOK3S_64
DEFINE_INTERRUPT_HANDLER_RAW(machine_check_early_boot)853 DEFINE_INTERRUPT_HANDLER_RAW(machine_check_early_boot)
854 {
855 	udbg_printf("Machine check (early boot)\n");
856 	udbg_printf("SRR0=0x%016lx   SRR1=0x%016lx\n", regs->nip, regs->msr);
857 	udbg_printf(" DAR=0x%016lx  DSISR=0x%08lx\n", regs->dar, regs->dsisr);
858 	udbg_printf("  LR=0x%016lx     R1=0x%08lx\n", regs->link, regs->gpr[1]);
859 	udbg_printf("------\n");
860 	die("Machine check (early boot)", regs, SIGBUS);
861 	for (;;)
862 		;
863 	return 0;
864 }
865 
DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async)866 DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async)
867 {
868 	__machine_check_exception(regs);
869 }
870 #endif
DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception)871 DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception)
872 {
873 	__machine_check_exception(regs);
874 
875 	return 0;
876 }
877 
DEFINE_INTERRUPT_HANDLER(SMIException)878 DEFINE_INTERRUPT_HANDLER(SMIException) /* async? */
879 {
880 	die("System Management Interrupt", regs, SIGABRT);
881 }
882 
883 #ifdef CONFIG_VSX
p9_hmi_special_emu(struct pt_regs * regs)884 static void p9_hmi_special_emu(struct pt_regs *regs)
885 {
886 	unsigned int ra, rb, t, i, sel, instr, rc;
887 	const void __user *addr;
888 	u8 vbuf[16] __aligned(16), *vdst;
889 	unsigned long ea, msr, msr_mask;
890 	bool swap;
891 
892 	if (__get_user(instr, (unsigned int __user *)regs->nip))
893 		return;
894 
895 	/*
896 	 * lxvb16x	opcode: 0x7c0006d8
897 	 * lxvd2x	opcode: 0x7c000698
898 	 * lxvh8x	opcode: 0x7c000658
899 	 * lxvw4x	opcode: 0x7c000618
900 	 */
901 	if ((instr & 0xfc00073e) != 0x7c000618) {
902 		pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
903 			 " instr=%08x\n",
904 			 smp_processor_id(), current->comm, current->pid,
905 			 regs->nip, instr);
906 		return;
907 	}
908 
909 	/* Grab vector registers into the task struct */
910 	msr = regs->msr; /* Grab msr before we flush the bits */
911 	flush_vsx_to_thread(current);
912 	enable_kernel_altivec();
913 
914 	/*
915 	 * Is userspace running with a different endian (this is rare but
916 	 * not impossible)
917 	 */
918 	swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
919 
920 	/* Decode the instruction */
921 	ra = (instr >> 16) & 0x1f;
922 	rb = (instr >> 11) & 0x1f;
923 	t = (instr >> 21) & 0x1f;
924 	if (instr & 1)
925 		vdst = (u8 *)&current->thread.vr_state.vr[t];
926 	else
927 		vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
928 
929 	/* Grab the vector address */
930 	ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
931 	if (is_32bit_task())
932 		ea &= 0xfffffffful;
933 	addr = (__force const void __user *)ea;
934 
935 	/* Check it */
936 	if (!access_ok(addr, 16)) {
937 		pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
938 			 " instr=%08x addr=%016lx\n",
939 			 smp_processor_id(), current->comm, current->pid,
940 			 regs->nip, instr, (unsigned long)addr);
941 		return;
942 	}
943 
944 	/* Read the vector */
945 	rc = 0;
946 	if ((unsigned long)addr & 0xfUL)
947 		/* unaligned case */
948 		rc = __copy_from_user_inatomic(vbuf, addr, 16);
949 	else
950 		__get_user_atomic_128_aligned(vbuf, addr, rc);
951 	if (rc) {
952 		pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
953 			 " instr=%08x addr=%016lx\n",
954 			 smp_processor_id(), current->comm, current->pid,
955 			 regs->nip, instr, (unsigned long)addr);
956 		return;
957 	}
958 
959 	pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
960 		 " instr=%08x addr=%016lx\n",
961 		 smp_processor_id(), current->comm, current->pid, regs->nip,
962 		 instr, (unsigned long) addr);
963 
964 	/* Grab instruction "selector" */
965 	sel = (instr >> 6) & 3;
966 
967 	/*
968 	 * Check to make sure the facility is actually enabled. This
969 	 * could happen if we get a false positive hit.
970 	 *
971 	 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
972 	 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
973 	 */
974 	msr_mask = MSR_VSX;
975 	if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
976 		msr_mask = MSR_VEC;
977 	if (!(msr & msr_mask)) {
978 		pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
979 			 " instr=%08x msr:%016lx\n",
980 			 smp_processor_id(), current->comm, current->pid,
981 			 regs->nip, instr, msr);
982 		return;
983 	}
984 
985 	/* Do logging here before we modify sel based on endian */
986 	switch (sel) {
987 	case 0:	/* lxvw4x */
988 		PPC_WARN_EMULATED(lxvw4x, regs);
989 		break;
990 	case 1: /* lxvh8x */
991 		PPC_WARN_EMULATED(lxvh8x, regs);
992 		break;
993 	case 2: /* lxvd2x */
994 		PPC_WARN_EMULATED(lxvd2x, regs);
995 		break;
996 	case 3: /* lxvb16x */
997 		PPC_WARN_EMULATED(lxvb16x, regs);
998 		break;
999 	}
1000 
1001 #ifdef __LITTLE_ENDIAN__
1002 	/*
1003 	 * An LE kernel stores the vector in the task struct as an LE
1004 	 * byte array (effectively swapping both the components and
1005 	 * the content of the components). Those instructions expect
1006 	 * the components to remain in ascending address order, so we
1007 	 * swap them back.
1008 	 *
1009 	 * If we are running a BE user space, the expectation is that
1010 	 * of a simple memcpy, so forcing the emulation to look like
1011 	 * a lxvb16x should do the trick.
1012 	 */
1013 	if (swap)
1014 		sel = 3;
1015 
1016 	switch (sel) {
1017 	case 0:	/* lxvw4x */
1018 		for (i = 0; i < 4; i++)
1019 			((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1020 		break;
1021 	case 1: /* lxvh8x */
1022 		for (i = 0; i < 8; i++)
1023 			((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1024 		break;
1025 	case 2: /* lxvd2x */
1026 		for (i = 0; i < 2; i++)
1027 			((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1028 		break;
1029 	case 3: /* lxvb16x */
1030 		for (i = 0; i < 16; i++)
1031 			vdst[i] = vbuf[15-i];
1032 		break;
1033 	}
1034 #else /* __LITTLE_ENDIAN__ */
1035 	/* On a big endian kernel, a BE userspace only needs a memcpy */
1036 	if (!swap)
1037 		sel = 3;
1038 
1039 	/* Otherwise, we need to swap the content of the components */
1040 	switch (sel) {
1041 	case 0:	/* lxvw4x */
1042 		for (i = 0; i < 4; i++)
1043 			((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1044 		break;
1045 	case 1: /* lxvh8x */
1046 		for (i = 0; i < 8; i++)
1047 			((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1048 		break;
1049 	case 2: /* lxvd2x */
1050 		for (i = 0; i < 2; i++)
1051 			((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1052 		break;
1053 	case 3: /* lxvb16x */
1054 		memcpy(vdst, vbuf, 16);
1055 		break;
1056 	}
1057 #endif /* !__LITTLE_ENDIAN__ */
1058 
1059 	/* Go to next instruction */
1060 	regs_add_return_ip(regs, 4);
1061 }
1062 #endif /* CONFIG_VSX */
1063 
DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception)1064 DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception)
1065 {
1066 	struct pt_regs *old_regs;
1067 
1068 	old_regs = set_irq_regs(regs);
1069 
1070 #ifdef CONFIG_VSX
1071 	/* Real mode flagged P9 special emu is needed */
1072 	if (local_paca->hmi_p9_special_emu) {
1073 		local_paca->hmi_p9_special_emu = 0;
1074 
1075 		/*
1076 		 * We don't want to take page faults while doing the
1077 		 * emulation, we just replay the instruction if necessary.
1078 		 */
1079 		pagefault_disable();
1080 		p9_hmi_special_emu(regs);
1081 		pagefault_enable();
1082 	}
1083 #endif /* CONFIG_VSX */
1084 
1085 	if (ppc_md.handle_hmi_exception)
1086 		ppc_md.handle_hmi_exception(regs);
1087 
1088 	set_irq_regs(old_regs);
1089 }
1090 
DEFINE_INTERRUPT_HANDLER(unknown_exception)1091 DEFINE_INTERRUPT_HANDLER(unknown_exception)
1092 {
1093 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1094 	       regs->nip, regs->msr, regs->trap);
1095 
1096 	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1097 }
1098 
DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception)1099 DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception)
1100 {
1101 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1102 	       regs->nip, regs->msr, regs->trap);
1103 
1104 	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1105 }
1106 
DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception)1107 DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception)
1108 {
1109 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1110 	       regs->nip, regs->msr, regs->trap);
1111 
1112 	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1113 
1114 	return 0;
1115 }
1116 
DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception)1117 DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception)
1118 {
1119 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1120 					5, SIGTRAP) == NOTIFY_STOP)
1121 		return;
1122 	if (debugger_iabr_match(regs))
1123 		return;
1124 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1125 }
1126 
DEFINE_INTERRUPT_HANDLER(RunModeException)1127 DEFINE_INTERRUPT_HANDLER(RunModeException)
1128 {
1129 	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1130 }
1131 
__single_step_exception(struct pt_regs * regs)1132 static void __single_step_exception(struct pt_regs *regs)
1133 {
1134 	clear_single_step(regs);
1135 	clear_br_trace(regs);
1136 
1137 	if (kprobe_post_handler(regs))
1138 		return;
1139 
1140 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1141 					5, SIGTRAP) == NOTIFY_STOP)
1142 		return;
1143 	if (debugger_sstep(regs))
1144 		return;
1145 
1146 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1147 }
1148 
DEFINE_INTERRUPT_HANDLER(single_step_exception)1149 DEFINE_INTERRUPT_HANDLER(single_step_exception)
1150 {
1151 	__single_step_exception(regs);
1152 }
1153 
1154 /*
1155  * After we have successfully emulated an instruction, we have to
1156  * check if the instruction was being single-stepped, and if so,
1157  * pretend we got a single-step exception.  This was pointed out
1158  * by Kumar Gala.  -- paulus
1159  */
emulate_single_step(struct pt_regs * regs)1160 void emulate_single_step(struct pt_regs *regs)
1161 {
1162 	if (single_stepping(regs))
1163 		__single_step_exception(regs);
1164 }
1165 
1166 #ifdef CONFIG_PPC_FPU_REGS
__parse_fpscr(unsigned long fpscr)1167 static inline int __parse_fpscr(unsigned long fpscr)
1168 {
1169 	int ret = FPE_FLTUNK;
1170 
1171 	/* Invalid operation */
1172 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1173 		ret = FPE_FLTINV;
1174 
1175 	/* Overflow */
1176 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1177 		ret = FPE_FLTOVF;
1178 
1179 	/* Underflow */
1180 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1181 		ret = FPE_FLTUND;
1182 
1183 	/* Divide by zero */
1184 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1185 		ret = FPE_FLTDIV;
1186 
1187 	/* Inexact result */
1188 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1189 		ret = FPE_FLTRES;
1190 
1191 	return ret;
1192 }
1193 #endif
1194 
parse_fpe(struct pt_regs * regs)1195 static void parse_fpe(struct pt_regs *regs)
1196 {
1197 	int code = 0;
1198 
1199 	flush_fp_to_thread(current);
1200 
1201 #ifdef CONFIG_PPC_FPU_REGS
1202 	code = __parse_fpscr(current->thread.fp_state.fpscr);
1203 #endif
1204 
1205 	_exception(SIGFPE, regs, code, regs->nip);
1206 }
1207 
1208 /*
1209  * Illegal instruction emulation support.  Originally written to
1210  * provide the PVR to user applications using the mfspr rd, PVR.
1211  * Return non-zero if we can't emulate, or -EFAULT if the associated
1212  * memory access caused an access fault.  Return zero on success.
1213  *
1214  * There are a couple of ways to do this, either "decode" the instruction
1215  * or directly match lots of bits.  In this case, matching lots of
1216  * bits is faster and easier.
1217  *
1218  */
emulate_string_inst(struct pt_regs * regs,u32 instword)1219 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1220 {
1221 	u8 rT = (instword >> 21) & 0x1f;
1222 	u8 rA = (instword >> 16) & 0x1f;
1223 	u8 NB_RB = (instword >> 11) & 0x1f;
1224 	u32 num_bytes;
1225 	unsigned long EA;
1226 	int pos = 0;
1227 
1228 	/* Early out if we are an invalid form of lswx */
1229 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1230 		if ((rT == rA) || (rT == NB_RB))
1231 			return -EINVAL;
1232 
1233 	EA = (rA == 0) ? 0 : regs->gpr[rA];
1234 
1235 	switch (instword & PPC_INST_STRING_MASK) {
1236 		case PPC_INST_LSWX:
1237 		case PPC_INST_STSWX:
1238 			EA += NB_RB;
1239 			num_bytes = regs->xer & 0x7f;
1240 			break;
1241 		case PPC_INST_LSWI:
1242 		case PPC_INST_STSWI:
1243 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1244 			break;
1245 		default:
1246 			return -EINVAL;
1247 	}
1248 
1249 	while (num_bytes != 0)
1250 	{
1251 		u8 val;
1252 		u32 shift = 8 * (3 - (pos & 0x3));
1253 
1254 		/* if process is 32-bit, clear upper 32 bits of EA */
1255 		if ((regs->msr & MSR_64BIT) == 0)
1256 			EA &= 0xFFFFFFFF;
1257 
1258 		switch ((instword & PPC_INST_STRING_MASK)) {
1259 			case PPC_INST_LSWX:
1260 			case PPC_INST_LSWI:
1261 				if (get_user(val, (u8 __user *)EA))
1262 					return -EFAULT;
1263 				/* first time updating this reg,
1264 				 * zero it out */
1265 				if (pos == 0)
1266 					regs->gpr[rT] = 0;
1267 				regs->gpr[rT] |= val << shift;
1268 				break;
1269 			case PPC_INST_STSWI:
1270 			case PPC_INST_STSWX:
1271 				val = regs->gpr[rT] >> shift;
1272 				if (put_user(val, (u8 __user *)EA))
1273 					return -EFAULT;
1274 				break;
1275 		}
1276 		/* move EA to next address */
1277 		EA += 1;
1278 		num_bytes--;
1279 
1280 		/* manage our position within the register */
1281 		if (++pos == 4) {
1282 			pos = 0;
1283 			if (++rT == 32)
1284 				rT = 0;
1285 		}
1286 	}
1287 
1288 	return 0;
1289 }
1290 
emulate_popcntb_inst(struct pt_regs * regs,u32 instword)1291 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1292 {
1293 	u32 ra,rs;
1294 	unsigned long tmp;
1295 
1296 	ra = (instword >> 16) & 0x1f;
1297 	rs = (instword >> 21) & 0x1f;
1298 
1299 	tmp = regs->gpr[rs];
1300 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1301 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1302 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1303 	regs->gpr[ra] = tmp;
1304 
1305 	return 0;
1306 }
1307 
emulate_isel(struct pt_regs * regs,u32 instword)1308 static int emulate_isel(struct pt_regs *regs, u32 instword)
1309 {
1310 	u8 rT = (instword >> 21) & 0x1f;
1311 	u8 rA = (instword >> 16) & 0x1f;
1312 	u8 rB = (instword >> 11) & 0x1f;
1313 	u8 BC = (instword >> 6) & 0x1f;
1314 	u8 bit;
1315 	unsigned long tmp;
1316 
1317 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1318 	bit = (regs->ccr >> (31 - BC)) & 0x1;
1319 
1320 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1321 
1322 	return 0;
1323 }
1324 
1325 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_abort_check(struct pt_regs * regs,int cause)1326 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1327 {
1328         /* If we're emulating a load/store in an active transaction, we cannot
1329          * emulate it as the kernel operates in transaction suspended context.
1330          * We need to abort the transaction.  This creates a persistent TM
1331          * abort so tell the user what caused it with a new code.
1332 	 */
1333 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1334 		tm_enable();
1335 		tm_abort(cause);
1336 		return true;
1337 	}
1338 	return false;
1339 }
1340 #else
tm_abort_check(struct pt_regs * regs,int reason)1341 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1342 {
1343 	return false;
1344 }
1345 #endif
1346 
emulate_instruction(struct pt_regs * regs)1347 static int emulate_instruction(struct pt_regs *regs)
1348 {
1349 	u32 instword;
1350 	u32 rd;
1351 
1352 	if (!user_mode(regs))
1353 		return -EINVAL;
1354 
1355 	if (get_user(instword, (u32 __user *)(regs->nip)))
1356 		return -EFAULT;
1357 
1358 	/* Emulate the mfspr rD, PVR. */
1359 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1360 		PPC_WARN_EMULATED(mfpvr, regs);
1361 		rd = (instword >> 21) & 0x1f;
1362 		regs->gpr[rd] = mfspr(SPRN_PVR);
1363 		return 0;
1364 	}
1365 
1366 	/* Emulating the dcba insn is just a no-op.  */
1367 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1368 		PPC_WARN_EMULATED(dcba, regs);
1369 		return 0;
1370 	}
1371 
1372 	/* Emulate the mcrxr insn.  */
1373 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1374 		int shift = (instword >> 21) & 0x1c;
1375 		unsigned long msk = 0xf0000000UL >> shift;
1376 
1377 		PPC_WARN_EMULATED(mcrxr, regs);
1378 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1379 		regs->xer &= ~0xf0000000UL;
1380 		return 0;
1381 	}
1382 
1383 	/* Emulate load/store string insn. */
1384 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1385 		if (tm_abort_check(regs,
1386 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1387 			return -EINVAL;
1388 		PPC_WARN_EMULATED(string, regs);
1389 		return emulate_string_inst(regs, instword);
1390 	}
1391 
1392 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1393 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1394 		PPC_WARN_EMULATED(popcntb, regs);
1395 		return emulate_popcntb_inst(regs, instword);
1396 	}
1397 
1398 	/* Emulate isel (Integer Select) instruction */
1399 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1400 		PPC_WARN_EMULATED(isel, regs);
1401 		return emulate_isel(regs, instword);
1402 	}
1403 
1404 	/* Emulate sync instruction variants */
1405 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1406 		PPC_WARN_EMULATED(sync, regs);
1407 		asm volatile("sync");
1408 		return 0;
1409 	}
1410 
1411 #ifdef CONFIG_PPC64
1412 	/* Emulate the mfspr rD, DSCR. */
1413 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1414 		PPC_INST_MFSPR_DSCR_USER) ||
1415 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1416 		PPC_INST_MFSPR_DSCR)) &&
1417 			cpu_has_feature(CPU_FTR_DSCR)) {
1418 		PPC_WARN_EMULATED(mfdscr, regs);
1419 		rd = (instword >> 21) & 0x1f;
1420 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1421 		return 0;
1422 	}
1423 	/* Emulate the mtspr DSCR, rD. */
1424 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1425 		PPC_INST_MTSPR_DSCR_USER) ||
1426 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1427 		PPC_INST_MTSPR_DSCR)) &&
1428 			cpu_has_feature(CPU_FTR_DSCR)) {
1429 		PPC_WARN_EMULATED(mtdscr, regs);
1430 		rd = (instword >> 21) & 0x1f;
1431 		current->thread.dscr = regs->gpr[rd];
1432 		current->thread.dscr_inherit = 1;
1433 		mtspr(SPRN_DSCR, current->thread.dscr);
1434 		return 0;
1435 	}
1436 #endif
1437 
1438 	return -EINVAL;
1439 }
1440 
1441 #ifdef CONFIG_GENERIC_BUG
is_valid_bugaddr(unsigned long addr)1442 int is_valid_bugaddr(unsigned long addr)
1443 {
1444 	return is_kernel_addr(addr);
1445 }
1446 #endif
1447 
1448 #ifdef CONFIG_MATH_EMULATION
emulate_math(struct pt_regs * regs)1449 static int emulate_math(struct pt_regs *regs)
1450 {
1451 	int ret;
1452 
1453 	ret = do_mathemu(regs);
1454 	if (ret >= 0)
1455 		PPC_WARN_EMULATED(math, regs);
1456 
1457 	switch (ret) {
1458 	case 0:
1459 		emulate_single_step(regs);
1460 		return 0;
1461 	case 1: {
1462 			int code = 0;
1463 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1464 			_exception(SIGFPE, regs, code, regs->nip);
1465 			return 0;
1466 		}
1467 	case -EFAULT:
1468 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1469 		return 0;
1470 	}
1471 
1472 	return -1;
1473 }
1474 #else
emulate_math(struct pt_regs * regs)1475 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1476 #endif
1477 
do_program_check(struct pt_regs * regs)1478 static void do_program_check(struct pt_regs *regs)
1479 {
1480 	unsigned int reason = get_reason(regs);
1481 
1482 	/* We can now get here via a FP Unavailable exception if the core
1483 	 * has no FPU, in that case the reason flags will be 0 */
1484 
1485 	if (reason & REASON_FP) {
1486 		/* IEEE FP exception */
1487 		parse_fpe(regs);
1488 		return;
1489 	}
1490 	if (reason & REASON_TRAP) {
1491 		unsigned long bugaddr;
1492 		/* Debugger is first in line to stop recursive faults in
1493 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1494 		if (debugger_bpt(regs))
1495 			return;
1496 
1497 		if (kprobe_handler(regs))
1498 			return;
1499 
1500 		/* trap exception */
1501 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1502 				== NOTIFY_STOP)
1503 			return;
1504 
1505 		bugaddr = regs->nip;
1506 		/*
1507 		 * Fixup bugaddr for BUG_ON() in real mode
1508 		 */
1509 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1510 			bugaddr += PAGE_OFFSET;
1511 
1512 		if (!user_mode(regs) &&
1513 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1514 			regs_add_return_ip(regs, 4);
1515 			return;
1516 		}
1517 
1518 		/* User mode considers other cases after enabling IRQs */
1519 		if (!user_mode(regs)) {
1520 			_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1521 			return;
1522 		}
1523 	}
1524 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1525 	if (reason & REASON_TM) {
1526 		/* This is a TM "Bad Thing Exception" program check.
1527 		 * This occurs when:
1528 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1529 		 *    transition in TM states.
1530 		 * -  A trechkpt is attempted when transactional.
1531 		 * -  A treclaim is attempted when non transactional.
1532 		 * -  A tend is illegally attempted.
1533 		 * -  writing a TM SPR when transactional.
1534 		 *
1535 		 * If usermode caused this, it's done something illegal and
1536 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1537 		 * operand to distinguish from the instruction just being bad
1538 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1539 		 * illegal /placement/ of a valid instruction.
1540 		 */
1541 		if (user_mode(regs)) {
1542 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1543 			return;
1544 		} else {
1545 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1546 			       "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1547 			       regs->nip, regs->msr, get_paca()->tm_scratch);
1548 			die("Unrecoverable exception", regs, SIGABRT);
1549 		}
1550 	}
1551 #endif
1552 
1553 	/*
1554 	 * If we took the program check in the kernel skip down to sending a
1555 	 * SIGILL. The subsequent cases all relate to user space, such as
1556 	 * emulating instructions which we should only do for user space. We
1557 	 * also do not want to enable interrupts for kernel faults because that
1558 	 * might lead to further faults, and loose the context of the original
1559 	 * exception.
1560 	 */
1561 	if (!user_mode(regs))
1562 		goto sigill;
1563 
1564 	interrupt_cond_local_irq_enable(regs);
1565 
1566 	/*
1567 	 * (reason & REASON_TRAP) is mostly handled before enabling IRQs,
1568 	 * except get_user_instr() can sleep so we cannot reliably inspect the
1569 	 * current instruction in that context. Now that we know we are
1570 	 * handling a user space trap and can sleep, we can check if the trap
1571 	 * was a hashchk failure.
1572 	 */
1573 	if (reason & REASON_TRAP) {
1574 		if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
1575 			ppc_inst_t insn;
1576 
1577 			if (get_user_instr(insn, (void __user *)regs->nip)) {
1578 				_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1579 				return;
1580 			}
1581 
1582 			if (ppc_inst_primary_opcode(insn) == 31 &&
1583 			    get_xop(ppc_inst_val(insn)) == OP_31_XOP_HASHCHK) {
1584 				_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1585 				return;
1586 			}
1587 		}
1588 
1589 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1590 		return;
1591 	}
1592 
1593 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1594 	 * but there seems to be a hardware bug on the 405GP (RevD)
1595 	 * that means ESR is sometimes set incorrectly - either to
1596 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1597 	 * hardware people - not sure if it can happen on any illegal
1598 	 * instruction or only on FP instructions, whether there is a
1599 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1600 	 */
1601 	if (!emulate_math(regs))
1602 		return;
1603 
1604 	/* Try to emulate it if we should. */
1605 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1606 		switch (emulate_instruction(regs)) {
1607 		case 0:
1608 			regs_add_return_ip(regs, 4);
1609 			emulate_single_step(regs);
1610 			return;
1611 		case -EFAULT:
1612 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1613 			return;
1614 		}
1615 	}
1616 
1617 sigill:
1618 	if (reason & REASON_PRIVILEGED)
1619 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1620 	else
1621 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1622 
1623 }
1624 
DEFINE_INTERRUPT_HANDLER(program_check_exception)1625 DEFINE_INTERRUPT_HANDLER(program_check_exception)
1626 {
1627 	do_program_check(regs);
1628 }
1629 
1630 /*
1631  * This occurs when running in hypervisor mode on POWER6 or later
1632  * and an illegal instruction is encountered.
1633  */
DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt)1634 DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt)
1635 {
1636 	regs_set_return_msr(regs, regs->msr | REASON_ILLEGAL);
1637 	do_program_check(regs);
1638 }
1639 
DEFINE_INTERRUPT_HANDLER(alignment_exception)1640 DEFINE_INTERRUPT_HANDLER(alignment_exception)
1641 {
1642 	int sig, code, fixed = 0;
1643 	unsigned long  reason;
1644 
1645 	interrupt_cond_local_irq_enable(regs);
1646 
1647 	reason = get_reason(regs);
1648 	if (reason & REASON_BOUNDARY) {
1649 		sig = SIGBUS;
1650 		code = BUS_ADRALN;
1651 		goto bad;
1652 	}
1653 
1654 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1655 		return;
1656 
1657 	/* we don't implement logging of alignment exceptions */
1658 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1659 		fixed = fix_alignment(regs);
1660 
1661 	if (fixed == 1) {
1662 		/* skip over emulated instruction */
1663 		regs_add_return_ip(regs, inst_length(reason));
1664 		emulate_single_step(regs);
1665 		return;
1666 	}
1667 
1668 	/* Operand address was bad */
1669 	if (fixed == -EFAULT) {
1670 		sig = SIGSEGV;
1671 		code = SEGV_ACCERR;
1672 	} else {
1673 		sig = SIGBUS;
1674 		code = BUS_ADRALN;
1675 	}
1676 bad:
1677 	if (user_mode(regs))
1678 		_exception(sig, regs, code, regs->dar);
1679 	else
1680 		bad_page_fault(regs, sig);
1681 }
1682 
DEFINE_INTERRUPT_HANDLER(stack_overflow_exception)1683 DEFINE_INTERRUPT_HANDLER(stack_overflow_exception)
1684 {
1685 	die("Kernel stack overflow", regs, SIGSEGV);
1686 }
1687 
DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception)1688 DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception)
1689 {
1690 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1691 			  "%lx at %lx\n", regs->trap, regs->nip);
1692 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1693 }
1694 
DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception)1695 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception)
1696 {
1697 	if (user_mode(regs)) {
1698 		/* A user program has executed an altivec instruction,
1699 		   but this kernel doesn't support altivec. */
1700 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1701 		return;
1702 	}
1703 
1704 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1705 			"%lx at %lx\n", regs->trap, regs->nip);
1706 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1707 }
1708 
DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception)1709 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception)
1710 {
1711 	if (user_mode(regs)) {
1712 		/* A user program has executed an vsx instruction,
1713 		   but this kernel doesn't support vsx. */
1714 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1715 		return;
1716 	}
1717 
1718 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1719 			"%lx at %lx\n", regs->trap, regs->nip);
1720 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1721 }
1722 
1723 #ifdef CONFIG_PPC_BOOK3S_64
tm_unavailable(struct pt_regs * regs)1724 static void tm_unavailable(struct pt_regs *regs)
1725 {
1726 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1727 	if (user_mode(regs)) {
1728 		current->thread.load_tm++;
1729 		regs_set_return_msr(regs, regs->msr | MSR_TM);
1730 		tm_enable();
1731 		tm_restore_sprs(&current->thread);
1732 		return;
1733 	}
1734 #endif
1735 	pr_emerg("Unrecoverable TM Unavailable Exception "
1736 			"%lx at %lx\n", regs->trap, regs->nip);
1737 	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1738 }
1739 
DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception)1740 DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception)
1741 {
1742 	static char *facility_strings[] = {
1743 		[FSCR_FP_LG] = "FPU",
1744 		[FSCR_VECVSX_LG] = "VMX/VSX",
1745 		[FSCR_DSCR_LG] = "DSCR",
1746 		[FSCR_PM_LG] = "PMU SPRs",
1747 		[FSCR_BHRB_LG] = "BHRB",
1748 		[FSCR_TM_LG] = "TM",
1749 		[FSCR_EBB_LG] = "EBB",
1750 		[FSCR_TAR_LG] = "TAR",
1751 		[FSCR_MSGP_LG] = "MSGP",
1752 		[FSCR_SCV_LG] = "SCV",
1753 		[FSCR_PREFIX_LG] = "PREFIX",
1754 	};
1755 	char *facility = "unknown";
1756 	u64 value;
1757 	u32 instword, rd;
1758 	u8 status;
1759 	bool hv;
1760 
1761 	hv = (TRAP(regs) == INTERRUPT_H_FAC_UNAVAIL);
1762 	if (hv)
1763 		value = mfspr(SPRN_HFSCR);
1764 	else
1765 		value = mfspr(SPRN_FSCR);
1766 
1767 	status = value >> 56;
1768 	if ((hv || status >= 2) &&
1769 	    (status < ARRAY_SIZE(facility_strings)) &&
1770 	    facility_strings[status])
1771 		facility = facility_strings[status];
1772 
1773 	/* We should not have taken this interrupt in kernel */
1774 	if (!user_mode(regs)) {
1775 		pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1776 			 facility, status, regs->nip);
1777 		die("Unexpected facility unavailable exception", regs, SIGABRT);
1778 	}
1779 
1780 	interrupt_cond_local_irq_enable(regs);
1781 
1782 	if (status == FSCR_DSCR_LG) {
1783 		/*
1784 		 * User is accessing the DSCR register using the problem
1785 		 * state only SPR number (0x03) either through a mfspr or
1786 		 * a mtspr instruction. If it is a write attempt through
1787 		 * a mtspr, then we set the inherit bit. This also allows
1788 		 * the user to write or read the register directly in the
1789 		 * future by setting via the FSCR DSCR bit. But in case it
1790 		 * is a read DSCR attempt through a mfspr instruction, we
1791 		 * just emulate the instruction instead. This code path will
1792 		 * always emulate all the mfspr instructions till the user
1793 		 * has attempted at least one mtspr instruction. This way it
1794 		 * preserves the same behaviour when the user is accessing
1795 		 * the DSCR through privilege level only SPR number (0x11)
1796 		 * which is emulated through illegal instruction exception.
1797 		 * We always leave HFSCR DSCR set.
1798 		 */
1799 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1800 			pr_err("Failed to fetch the user instruction\n");
1801 			return;
1802 		}
1803 
1804 		/* Write into DSCR (mtspr 0x03, RS) */
1805 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1806 				== PPC_INST_MTSPR_DSCR_USER) {
1807 			rd = (instword >> 21) & 0x1f;
1808 			current->thread.dscr = regs->gpr[rd];
1809 			current->thread.dscr_inherit = 1;
1810 			current->thread.fscr |= FSCR_DSCR;
1811 			mtspr(SPRN_FSCR, current->thread.fscr);
1812 		}
1813 
1814 		/* Read from DSCR (mfspr RT, 0x03) */
1815 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1816 				== PPC_INST_MFSPR_DSCR_USER) {
1817 			if (emulate_instruction(regs)) {
1818 				pr_err("DSCR based mfspr emulation failed\n");
1819 				return;
1820 			}
1821 			regs_add_return_ip(regs, 4);
1822 			emulate_single_step(regs);
1823 		}
1824 		return;
1825 	}
1826 
1827 	if (status == FSCR_TM_LG) {
1828 		/*
1829 		 * If we're here then the hardware is TM aware because it
1830 		 * generated an exception with FSRM_TM set.
1831 		 *
1832 		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1833 		 * told us not to do TM, or the kernel is not built with TM
1834 		 * support.
1835 		 *
1836 		 * If both of those things are true, then userspace can spam the
1837 		 * console by triggering the printk() below just by continually
1838 		 * doing tbegin (or any TM instruction). So in that case just
1839 		 * send the process a SIGILL immediately.
1840 		 */
1841 		if (!cpu_has_feature(CPU_FTR_TM))
1842 			goto out;
1843 
1844 		tm_unavailable(regs);
1845 		return;
1846 	}
1847 
1848 	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1849 		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1850 
1851 out:
1852 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1853 }
1854 #endif
1855 
1856 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1857 
DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm)1858 DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm)
1859 {
1860 	/* Note:  This does not handle any kind of FP laziness. */
1861 
1862 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1863 		 regs->nip, regs->msr);
1864 
1865         /* We can only have got here if the task started using FP after
1866          * beginning the transaction.  So, the transactional regs are just a
1867          * copy of the checkpointed ones.  But, we still need to recheckpoint
1868          * as we're enabling FP for the process; it will return, abort the
1869          * transaction, and probably retry but now with FP enabled.  So the
1870          * checkpointed FP registers need to be loaded.
1871 	 */
1872 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1873 
1874 	/*
1875 	 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1876 	 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1877 	 *
1878 	 * At this point, ck{fp,vr}_state contains the exact values we want to
1879 	 * recheckpoint.
1880 	 */
1881 
1882 	/* Enable FP for the task: */
1883 	current->thread.load_fp = 1;
1884 
1885 	/*
1886 	 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1887 	 */
1888 	tm_recheckpoint(&current->thread);
1889 }
1890 
DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm)1891 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm)
1892 {
1893 	/* See the comments in fp_unavailable_tm().  This function operates
1894 	 * the same way.
1895 	 */
1896 
1897 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1898 		 "MSR=%lx\n",
1899 		 regs->nip, regs->msr);
1900 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1901 	current->thread.load_vec = 1;
1902 	tm_recheckpoint(&current->thread);
1903 	current->thread.used_vr = 1;
1904 }
1905 
DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm)1906 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm)
1907 {
1908 	/* See the comments in fp_unavailable_tm().  This works similarly,
1909 	 * though we're loading both FP and VEC registers in here.
1910 	 *
1911 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1912 	 * regs.  Either way, set MSR_VSX.
1913 	 */
1914 
1915 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1916 		 "MSR=%lx\n",
1917 		 regs->nip, regs->msr);
1918 
1919 	current->thread.used_vsr = 1;
1920 
1921 	/* This reclaims FP and/or VR regs if they're already enabled */
1922 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1923 
1924 	current->thread.load_vec = 1;
1925 	current->thread.load_fp = 1;
1926 
1927 	tm_recheckpoint(&current->thread);
1928 }
1929 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1930 
1931 #ifdef CONFIG_PPC64
1932 DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi);
DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi)1933 DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi)
1934 {
1935 	__this_cpu_inc(irq_stat.pmu_irqs);
1936 
1937 	perf_irq(regs);
1938 
1939 	return 0;
1940 }
1941 #endif
1942 
1943 DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async);
DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async)1944 DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async)
1945 {
1946 	__this_cpu_inc(irq_stat.pmu_irqs);
1947 
1948 	perf_irq(regs);
1949 }
1950 
DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception)1951 DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception)
1952 {
1953 	/*
1954 	 * On 64-bit, if perf interrupts hit in a local_irq_disable
1955 	 * (soft-masked) region, we consider them as NMIs. This is required to
1956 	 * prevent hash faults on user addresses when reading callchains (and
1957 	 * looks better from an irq tracing perspective).
1958 	 */
1959 	if (IS_ENABLED(CONFIG_PPC64) && unlikely(arch_irq_disabled_regs(regs)))
1960 		performance_monitor_exception_nmi(regs);
1961 	else
1962 		performance_monitor_exception_async(regs);
1963 
1964 	return 0;
1965 }
1966 
1967 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
handle_debug(struct pt_regs * regs,unsigned long debug_status)1968 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1969 {
1970 	int changed = 0;
1971 	/*
1972 	 * Determine the cause of the debug event, clear the
1973 	 * event flags and send a trap to the handler. Torez
1974 	 */
1975 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1976 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1977 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1978 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1979 #endif
1980 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1981 			     5);
1982 		changed |= 0x01;
1983 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1984 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1985 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1986 			     6);
1987 		changed |= 0x01;
1988 	}  else if (debug_status & DBSR_IAC1) {
1989 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1990 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1991 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1992 			     1);
1993 		changed |= 0x01;
1994 	}  else if (debug_status & DBSR_IAC2) {
1995 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1996 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1997 			     2);
1998 		changed |= 0x01;
1999 	}  else if (debug_status & DBSR_IAC3) {
2000 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2001 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
2002 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
2003 			     3);
2004 		changed |= 0x01;
2005 	}  else if (debug_status & DBSR_IAC4) {
2006 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2007 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
2008 			     4);
2009 		changed |= 0x01;
2010 	}
2011 	/*
2012 	 * At the point this routine was called, the MSR(DE) was turned off.
2013 	 * Check all other debug flags and see if that bit needs to be turned
2014 	 * back on or not.
2015 	 */
2016 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2017 			       current->thread.debug.dbcr1))
2018 		regs_set_return_msr(regs, regs->msr | MSR_DE);
2019 	else
2020 		/* Make sure the IDM flag is off */
2021 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2022 
2023 	if (changed & 0x01)
2024 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
2025 }
2026 
DEFINE_INTERRUPT_HANDLER(DebugException)2027 DEFINE_INTERRUPT_HANDLER(DebugException)
2028 {
2029 	unsigned long debug_status = regs->dsisr;
2030 
2031 	current->thread.debug.dbsr = debug_status;
2032 
2033 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
2034 	 * on server, it stops on the target of the branch. In order to simulate
2035 	 * the server behaviour, we thus restart right away with a single step
2036 	 * instead of stopping here when hitting a BT
2037 	 */
2038 	if (debug_status & DBSR_BT) {
2039 		regs_set_return_msr(regs, regs->msr & ~MSR_DE);
2040 
2041 		/* Disable BT */
2042 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
2043 		/* Clear the BT event */
2044 		mtspr(SPRN_DBSR, DBSR_BT);
2045 
2046 		/* Do the single step trick only when coming from userspace */
2047 		if (user_mode(regs)) {
2048 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
2049 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2050 			regs_set_return_msr(regs, regs->msr | MSR_DE);
2051 			return;
2052 		}
2053 
2054 		if (kprobe_post_handler(regs))
2055 			return;
2056 
2057 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
2058 			       5, SIGTRAP) == NOTIFY_STOP) {
2059 			return;
2060 		}
2061 		if (debugger_sstep(regs))
2062 			return;
2063 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
2064 		regs_set_return_msr(regs, regs->msr & ~MSR_DE);
2065 
2066 		/* Disable instruction completion */
2067 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
2068 		/* Clear the instruction completion event */
2069 		mtspr(SPRN_DBSR, DBSR_IC);
2070 
2071 		if (kprobe_post_handler(regs))
2072 			return;
2073 
2074 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2075 			       5, SIGTRAP) == NOTIFY_STOP) {
2076 			return;
2077 		}
2078 
2079 		if (debugger_sstep(regs))
2080 			return;
2081 
2082 		if (user_mode(regs)) {
2083 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
2084 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2085 					       current->thread.debug.dbcr1))
2086 				regs_set_return_msr(regs, regs->msr | MSR_DE);
2087 			else
2088 				/* Make sure the IDM bit is off */
2089 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2090 		}
2091 
2092 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2093 	} else
2094 		handle_debug(regs, debug_status);
2095 }
2096 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2097 
2098 #ifdef CONFIG_ALTIVEC
DEFINE_INTERRUPT_HANDLER(altivec_assist_exception)2099 DEFINE_INTERRUPT_HANDLER(altivec_assist_exception)
2100 {
2101 	int err;
2102 
2103 	if (!user_mode(regs)) {
2104 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2105 		       " at %lx\n", regs->nip);
2106 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2107 	}
2108 
2109 	flush_altivec_to_thread(current);
2110 
2111 	PPC_WARN_EMULATED(altivec, regs);
2112 	err = emulate_altivec(regs);
2113 	if (err == 0) {
2114 		regs_add_return_ip(regs, 4); /* skip emulated instruction */
2115 		emulate_single_step(regs);
2116 		return;
2117 	}
2118 
2119 	if (err == -EFAULT) {
2120 		/* got an error reading the instruction */
2121 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2122 	} else {
2123 		/* didn't recognize the instruction */
2124 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
2125 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2126 				   "in %s at %lx\n", current->comm, regs->nip);
2127 		current->thread.vr_state.vscr.u[3] |= 0x10000;
2128 	}
2129 }
2130 #endif /* CONFIG_ALTIVEC */
2131 
2132 #ifdef CONFIG_PPC_85xx
DEFINE_INTERRUPT_HANDLER(CacheLockingException)2133 DEFINE_INTERRUPT_HANDLER(CacheLockingException)
2134 {
2135 	unsigned long error_code = regs->dsisr;
2136 
2137 	/* We treat cache locking instructions from the user
2138 	 * as priv ops, in the future we could try to do
2139 	 * something smarter
2140 	 */
2141 	if (error_code & (ESR_DLK|ESR_ILK))
2142 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2143 	return;
2144 }
2145 #endif /* CONFIG_PPC_85xx */
2146 
2147 #ifdef CONFIG_SPE
DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException)2148 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException)
2149 {
2150 	unsigned long spefscr;
2151 	int fpexc_mode;
2152 	int code = FPE_FLTUNK;
2153 	int err;
2154 
2155 	interrupt_cond_local_irq_enable(regs);
2156 
2157 	flush_spe_to_thread(current);
2158 
2159 	spefscr = current->thread.spefscr;
2160 	fpexc_mode = current->thread.fpexc_mode;
2161 
2162 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2163 		code = FPE_FLTOVF;
2164 	}
2165 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2166 		code = FPE_FLTUND;
2167 	}
2168 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2169 		code = FPE_FLTDIV;
2170 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2171 		code = FPE_FLTINV;
2172 	}
2173 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2174 		code = FPE_FLTRES;
2175 
2176 	err = do_spe_mathemu(regs);
2177 	if (err == 0) {
2178 		regs_add_return_ip(regs, 4); /* skip emulated instruction */
2179 		emulate_single_step(regs);
2180 		return;
2181 	}
2182 
2183 	if (err == -EFAULT) {
2184 		/* got an error reading the instruction */
2185 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2186 	} else if (err == -EINVAL) {
2187 		/* didn't recognize the instruction */
2188 		printk(KERN_ERR "unrecognized spe instruction "
2189 		       "in %s at %lx\n", current->comm, regs->nip);
2190 	} else {
2191 		_exception(SIGFPE, regs, code, regs->nip);
2192 	}
2193 
2194 	return;
2195 }
2196 
DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException)2197 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException)
2198 {
2199 	int err;
2200 
2201 	interrupt_cond_local_irq_enable(regs);
2202 
2203 	preempt_disable();
2204 	if (regs->msr & MSR_SPE)
2205 		giveup_spe(current);
2206 	preempt_enable();
2207 
2208 	regs_add_return_ip(regs, -4);
2209 	err = speround_handler(regs);
2210 	if (err == 0) {
2211 		regs_add_return_ip(regs, 4); /* skip emulated instruction */
2212 		emulate_single_step(regs);
2213 		return;
2214 	}
2215 
2216 	if (err == -EFAULT) {
2217 		/* got an error reading the instruction */
2218 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2219 	} else if (err == -EINVAL) {
2220 		/* didn't recognize the instruction */
2221 		printk(KERN_ERR "unrecognized spe instruction "
2222 		       "in %s at %lx\n", current->comm, regs->nip);
2223 	} else {
2224 		_exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2225 		return;
2226 	}
2227 }
2228 #endif
2229 
2230 /*
2231  * We enter here if we get an unrecoverable exception, that is, one
2232  * that happened at a point where the RI (recoverable interrupt) bit
2233  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2234  * we therefore lost state by taking this exception.
2235  */
unrecoverable_exception(struct pt_regs * regs)2236 void __noreturn unrecoverable_exception(struct pt_regs *regs)
2237 {
2238 	pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2239 		 regs->trap, regs->nip, regs->msr);
2240 	die("Unrecoverable exception", regs, SIGABRT);
2241 	/* die() should not return */
2242 	for (;;)
2243 		;
2244 }
2245 
2246 #ifdef CONFIG_BOOKE_WDT
DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException)2247 DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException)
2248 {
2249 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2250 	mtspr(SPRN_TCR, mfspr(SPRN_TCR) & ~TCR_WIE);
2251 	return 0;
2252 }
2253 #endif
2254 
2255 /*
2256  * We enter here if we discover during exception entry that we are
2257  * running in supervisor mode with a userspace value in the stack pointer.
2258  */
DEFINE_INTERRUPT_HANDLER(kernel_bad_stack)2259 DEFINE_INTERRUPT_HANDLER(kernel_bad_stack)
2260 {
2261 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2262 	       regs->gpr[1], regs->nip);
2263 	die("Bad kernel stack pointer", regs, SIGABRT);
2264 }
2265 
2266 #ifdef CONFIG_PPC_EMULATED_STATS
2267 
2268 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
2269 
2270 struct ppc_emulated ppc_emulated = {
2271 #ifdef CONFIG_ALTIVEC
2272 	WARN_EMULATED_SETUP(altivec),
2273 #endif
2274 	WARN_EMULATED_SETUP(dcba),
2275 	WARN_EMULATED_SETUP(dcbz),
2276 	WARN_EMULATED_SETUP(fp_pair),
2277 	WARN_EMULATED_SETUP(isel),
2278 	WARN_EMULATED_SETUP(mcrxr),
2279 	WARN_EMULATED_SETUP(mfpvr),
2280 	WARN_EMULATED_SETUP(multiple),
2281 	WARN_EMULATED_SETUP(popcntb),
2282 	WARN_EMULATED_SETUP(spe),
2283 	WARN_EMULATED_SETUP(string),
2284 	WARN_EMULATED_SETUP(sync),
2285 	WARN_EMULATED_SETUP(unaligned),
2286 #ifdef CONFIG_MATH_EMULATION
2287 	WARN_EMULATED_SETUP(math),
2288 #endif
2289 #ifdef CONFIG_VSX
2290 	WARN_EMULATED_SETUP(vsx),
2291 #endif
2292 #ifdef CONFIG_PPC64
2293 	WARN_EMULATED_SETUP(mfdscr),
2294 	WARN_EMULATED_SETUP(mtdscr),
2295 	WARN_EMULATED_SETUP(lq_stq),
2296 	WARN_EMULATED_SETUP(lxvw4x),
2297 	WARN_EMULATED_SETUP(lxvh8x),
2298 	WARN_EMULATED_SETUP(lxvd2x),
2299 	WARN_EMULATED_SETUP(lxvb16x),
2300 #endif
2301 };
2302 
2303 u32 ppc_warn_emulated;
2304 
ppc_warn_emulated_print(const char * type)2305 void ppc_warn_emulated_print(const char *type)
2306 {
2307 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2308 			    type);
2309 }
2310 
ppc_warn_emulated_init(void)2311 static int __init ppc_warn_emulated_init(void)
2312 {
2313 	struct dentry *dir;
2314 	unsigned int i;
2315 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2316 
2317 	dir = debugfs_create_dir("emulated_instructions",
2318 				 arch_debugfs_dir);
2319 
2320 	debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
2321 
2322 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
2323 		debugfs_create_u32(entries[i].name, 0644, dir,
2324 				   (u32 *)&entries[i].val.counter);
2325 
2326 	return 0;
2327 }
2328 
2329 device_initcall(ppc_warn_emulated_init);
2330 
2331 #endif /* CONFIG_PPC_EMULATED_STATS */
2332