1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration-stats.h"
39 #include "migration/register.h"
40 #include "migration/misc.h"
41 #include "qemu-file.h"
42 #include "postcopy-ram.h"
43 #include "page_cache.h"
44 #include "qemu/error-report.h"
45 #include "qapi/error.h"
46 #include "qapi/qapi-types-migration.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qapi-commands-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "system/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "system/cpu-throttle.h"
56 #include "savevm.h"
57 #include "qemu/iov.h"
58 #include "multifd.h"
59 #include "system/runstate.h"
60 #include "rdma.h"
61 #include "options.h"
62 #include "system/dirtylimit.h"
63 #include "system/kvm.h"
64
65 #include "hw/boards.h" /* for machine_dump_guest_core() */
66
67 #if defined(__linux__)
68 #include "qemu/userfaultfd.h"
69 #endif /* defined(__linux__) */
70
71 /***********************************************************/
72 /* ram save/restore */
73
74 /*
75 * mapped-ram migration supports O_DIRECT, so we need to make sure the
76 * userspace buffer, the IO operation size and the file offset are
77 * aligned according to the underlying device's block size. The first
78 * two are already aligned to page size, but we need to add padding to
79 * the file to align the offset. We cannot read the block size
80 * dynamically because the migration file can be moved between
81 * different systems, so use 1M to cover most block sizes and to keep
82 * the file offset aligned at page size as well.
83 */
84 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
85
86 /*
87 * When doing mapped-ram migration, this is the amount we read from
88 * the pages region in the migration file at a time.
89 */
90 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
91
92 XBZRLECacheStats xbzrle_counters;
93
94 /*
95 * This structure locates a specific location of a guest page. In QEMU,
96 * it's described in a tuple of (ramblock, offset).
97 */
98 struct PageLocation {
99 RAMBlock *block;
100 unsigned long offset;
101 };
102 typedef struct PageLocation PageLocation;
103
104 /**
105 * PageLocationHint: describes a hint to a page location
106 *
107 * @valid set if the hint is vaild and to be consumed
108 * @location: the hint content
109 *
110 * In postcopy preempt mode, the urgent channel may provide hints to the
111 * background channel, so that QEMU source can try to migrate whatever is
112 * right after the requested urgent pages.
113 *
114 * This is based on the assumption that the VM (already running on the
115 * destination side) tends to access the memory with spatial locality.
116 * This is also the default behavior of vanilla postcopy (preempt off).
117 */
118 struct PageLocationHint {
119 bool valid;
120 PageLocation location;
121 };
122 typedef struct PageLocationHint PageLocationHint;
123
124 /* used by the search for pages to send */
125 struct PageSearchStatus {
126 /* The migration channel used for a specific host page */
127 QEMUFile *pss_channel;
128 /* Last block from where we have sent data */
129 RAMBlock *last_sent_block;
130 /* Current block being searched */
131 RAMBlock *block;
132 /* Current page to search from */
133 unsigned long page;
134 /* Set once we wrap around */
135 bool complete_round;
136 /* Whether we're sending a host page */
137 bool host_page_sending;
138 /* The start/end of current host page. Invalid if host_page_sending==false */
139 unsigned long host_page_start;
140 unsigned long host_page_end;
141 };
142 typedef struct PageSearchStatus PageSearchStatus;
143
144 /* struct contains XBZRLE cache and a static page
145 used by the compression */
146 static struct {
147 /* buffer used for XBZRLE encoding */
148 uint8_t *encoded_buf;
149 /* buffer for storing page content */
150 uint8_t *current_buf;
151 /* Cache for XBZRLE, Protected by lock. */
152 PageCache *cache;
153 QemuMutex lock;
154 /* it will store a page full of zeros */
155 uint8_t *zero_target_page;
156 /* buffer used for XBZRLE decoding */
157 uint8_t *decoded_buf;
158 } XBZRLE;
159
XBZRLE_cache_lock(void)160 static void XBZRLE_cache_lock(void)
161 {
162 if (migrate_xbzrle()) {
163 qemu_mutex_lock(&XBZRLE.lock);
164 }
165 }
166
XBZRLE_cache_unlock(void)167 static void XBZRLE_cache_unlock(void)
168 {
169 if (migrate_xbzrle()) {
170 qemu_mutex_unlock(&XBZRLE.lock);
171 }
172 }
173
174 /**
175 * xbzrle_cache_resize: resize the xbzrle cache
176 *
177 * This function is called from migrate_params_apply in main
178 * thread, possibly while a migration is in progress. A running
179 * migration may be using the cache and might finish during this call,
180 * hence changes to the cache are protected by XBZRLE.lock().
181 *
182 * Returns 0 for success or -1 for error
183 *
184 * @new_size: new cache size
185 * @errp: set *errp if the check failed, with reason
186 */
xbzrle_cache_resize(uint64_t new_size,Error ** errp)187 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
188 {
189 PageCache *new_cache;
190 int64_t ret = 0;
191
192 /* Check for truncation */
193 if (new_size != (size_t)new_size) {
194 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
195 "exceeding address space");
196 return -1;
197 }
198
199 if (new_size == migrate_xbzrle_cache_size()) {
200 /* nothing to do */
201 return 0;
202 }
203
204 XBZRLE_cache_lock();
205
206 if (XBZRLE.cache != NULL) {
207 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
208 if (!new_cache) {
209 ret = -1;
210 goto out;
211 }
212
213 cache_fini(XBZRLE.cache);
214 XBZRLE.cache = new_cache;
215 }
216 out:
217 XBZRLE_cache_unlock();
218 return ret;
219 }
220
postcopy_preempt_active(void)221 static bool postcopy_preempt_active(void)
222 {
223 return migrate_postcopy_preempt() && migration_in_postcopy();
224 }
225
migrate_ram_is_ignored(RAMBlock * block)226 bool migrate_ram_is_ignored(RAMBlock *block)
227 {
228 MigMode mode = migrate_mode();
229 return !qemu_ram_is_migratable(block) ||
230 mode == MIG_MODE_CPR_TRANSFER ||
231 (migrate_ignore_shared() && qemu_ram_is_shared(block)
232 && qemu_ram_is_named_file(block));
233 }
234
235 #undef RAMBLOCK_FOREACH
236
foreach_not_ignored_block(RAMBlockIterFunc func,void * opaque)237 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
238 {
239 RAMBlock *block;
240 int ret = 0;
241
242 RCU_READ_LOCK_GUARD();
243
244 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
245 ret = func(block, opaque);
246 if (ret) {
247 break;
248 }
249 }
250 return ret;
251 }
252
ramblock_recv_map_init(void)253 static void ramblock_recv_map_init(void)
254 {
255 RAMBlock *rb;
256
257 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
258 assert(!rb->receivedmap);
259 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
260 }
261 }
262
ramblock_recv_bitmap_test(RAMBlock * rb,void * host_addr)263 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
264 {
265 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
266 rb->receivedmap);
267 }
268
ramblock_recv_bitmap_test_byte_offset(RAMBlock * rb,uint64_t byte_offset)269 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
270 {
271 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
272 }
273
ramblock_recv_bitmap_set(RAMBlock * rb,void * host_addr)274 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
275 {
276 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
277 }
278
ramblock_recv_bitmap_set_range(RAMBlock * rb,void * host_addr,size_t nr)279 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
280 size_t nr)
281 {
282 bitmap_set_atomic(rb->receivedmap,
283 ramblock_recv_bitmap_offset(host_addr, rb),
284 nr);
285 }
286
ramblock_recv_bitmap_set_offset(RAMBlock * rb,uint64_t byte_offset)287 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
288 {
289 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
290 }
291 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
292
293 /*
294 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
295 *
296 * Returns >0 if success with sent bytes, or <0 if error.
297 */
ramblock_recv_bitmap_send(QEMUFile * file,const char * block_name)298 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
299 const char *block_name)
300 {
301 RAMBlock *block = qemu_ram_block_by_name(block_name);
302 unsigned long *le_bitmap, nbits;
303 uint64_t size;
304
305 if (!block) {
306 error_report("%s: invalid block name: %s", __func__, block_name);
307 return -1;
308 }
309
310 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
311
312 /*
313 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
314 * machines we may need 4 more bytes for padding (see below
315 * comment). So extend it a bit before hand.
316 */
317 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
318
319 /*
320 * Always use little endian when sending the bitmap. This is
321 * required that when source and destination VMs are not using the
322 * same endianness. (Note: big endian won't work.)
323 */
324 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
325
326 /* Size of the bitmap, in bytes */
327 size = DIV_ROUND_UP(nbits, 8);
328
329 /*
330 * size is always aligned to 8 bytes for 64bit machines, but it
331 * may not be true for 32bit machines. We need this padding to
332 * make sure the migration can survive even between 32bit and
333 * 64bit machines.
334 */
335 size = ROUND_UP(size, 8);
336
337 qemu_put_be64(file, size);
338 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
339 g_free(le_bitmap);
340 /*
341 * Mark as an end, in case the middle part is screwed up due to
342 * some "mysterious" reason.
343 */
344 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
345 int ret = qemu_fflush(file);
346 if (ret) {
347 return ret;
348 }
349
350 return size + sizeof(size);
351 }
352
353 /*
354 * An outstanding page request, on the source, having been received
355 * and queued
356 */
357 struct RAMSrcPageRequest {
358 RAMBlock *rb;
359 hwaddr offset;
360 hwaddr len;
361
362 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
363 };
364
365 /* State of RAM for migration */
366 struct RAMState {
367 /*
368 * PageSearchStatus structures for the channels when send pages.
369 * Protected by the bitmap_mutex.
370 */
371 PageSearchStatus pss[RAM_CHANNEL_MAX];
372 /* UFFD file descriptor, used in 'write-tracking' migration */
373 int uffdio_fd;
374 /* total ram size in bytes */
375 uint64_t ram_bytes_total;
376 /* Last block that we have visited searching for dirty pages */
377 RAMBlock *last_seen_block;
378 /* Last dirty target page we have sent */
379 ram_addr_t last_page;
380 /* last ram version we have seen */
381 uint32_t last_version;
382 /* How many times we have dirty too many pages */
383 int dirty_rate_high_cnt;
384 /* these variables are used for bitmap sync */
385 /* last time we did a full bitmap_sync */
386 int64_t time_last_bitmap_sync;
387 /* bytes transferred at start_time */
388 uint64_t bytes_xfer_prev;
389 /* number of dirty pages since start_time */
390 uint64_t num_dirty_pages_period;
391 /* xbzrle misses since the beginning of the period */
392 uint64_t xbzrle_cache_miss_prev;
393 /* Amount of xbzrle pages since the beginning of the period */
394 uint64_t xbzrle_pages_prev;
395 /* Amount of xbzrle encoded bytes since the beginning of the period */
396 uint64_t xbzrle_bytes_prev;
397 /* Are we really using XBZRLE (e.g., after the first round). */
398 bool xbzrle_started;
399 /* Are we on the last stage of migration */
400 bool last_stage;
401
402 /* total handled target pages at the beginning of period */
403 uint64_t target_page_count_prev;
404 /* total handled target pages since start */
405 uint64_t target_page_count;
406 /* number of dirty bits in the bitmap */
407 uint64_t migration_dirty_pages;
408 /*
409 * Protects:
410 * - dirty/clear bitmap
411 * - migration_dirty_pages
412 * - pss structures
413 */
414 QemuMutex bitmap_mutex;
415 /* The RAMBlock used in the last src_page_requests */
416 RAMBlock *last_req_rb;
417 /* Queue of outstanding page requests from the destination */
418 QemuMutex src_page_req_mutex;
419 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
420
421 /*
422 * This is only used when postcopy is in recovery phase, to communicate
423 * between the migration thread and the return path thread on dirty
424 * bitmap synchronizations. This field is unused in other stages of
425 * RAM migration.
426 */
427 unsigned int postcopy_bmap_sync_requested;
428 /*
429 * Page hint during postcopy when preempt mode is on. Return path
430 * thread sets it, while background migration thread consumes it.
431 *
432 * Protected by @bitmap_mutex.
433 */
434 PageLocationHint page_hint;
435 };
436 typedef struct RAMState RAMState;
437
438 static RAMState *ram_state;
439
440 static NotifierWithReturnList precopy_notifier_list;
441
442 /* Whether postcopy has queued requests? */
postcopy_has_request(RAMState * rs)443 static bool postcopy_has_request(RAMState *rs)
444 {
445 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
446 }
447
precopy_infrastructure_init(void)448 void precopy_infrastructure_init(void)
449 {
450 notifier_with_return_list_init(&precopy_notifier_list);
451 }
452
precopy_add_notifier(NotifierWithReturn * n)453 void precopy_add_notifier(NotifierWithReturn *n)
454 {
455 notifier_with_return_list_add(&precopy_notifier_list, n);
456 }
457
precopy_remove_notifier(NotifierWithReturn * n)458 void precopy_remove_notifier(NotifierWithReturn *n)
459 {
460 notifier_with_return_remove(n);
461 }
462
precopy_notify(PrecopyNotifyReason reason,Error ** errp)463 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
464 {
465 PrecopyNotifyData pnd;
466 pnd.reason = reason;
467
468 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
469 }
470
ram_bytes_remaining(void)471 uint64_t ram_bytes_remaining(void)
472 {
473 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
474 0;
475 }
476
ram_transferred_add(uint64_t bytes)477 void ram_transferred_add(uint64_t bytes)
478 {
479 if (runstate_is_running()) {
480 stat64_add(&mig_stats.precopy_bytes, bytes);
481 } else if (migration_in_postcopy()) {
482 stat64_add(&mig_stats.postcopy_bytes, bytes);
483 } else {
484 stat64_add(&mig_stats.downtime_bytes, bytes);
485 }
486 }
487
488 static int ram_save_host_page_urgent(PageSearchStatus *pss);
489
490 /* NOTE: page is the PFN not real ram_addr_t. */
pss_init(PageSearchStatus * pss,RAMBlock * rb,ram_addr_t page)491 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
492 {
493 pss->block = rb;
494 pss->page = page;
495 pss->complete_round = false;
496 }
497
498 /*
499 * Check whether two PSSs are actively sending the same page. Return true
500 * if it is, false otherwise.
501 */
pss_overlap(PageSearchStatus * pss1,PageSearchStatus * pss2)502 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
503 {
504 return pss1->host_page_sending && pss2->host_page_sending &&
505 (pss1->host_page_start == pss2->host_page_start);
506 }
507
508 /**
509 * save_page_header: write page header to wire
510 *
511 * If this is the 1st block, it also writes the block identification
512 *
513 * Returns the number of bytes written
514 *
515 * @pss: current PSS channel status
516 * @block: block that contains the page we want to send
517 * @offset: offset inside the block for the page
518 * in the lower bits, it contains flags
519 */
save_page_header(PageSearchStatus * pss,QEMUFile * f,RAMBlock * block,ram_addr_t offset)520 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
521 RAMBlock *block, ram_addr_t offset)
522 {
523 size_t size, len;
524 bool same_block = (block == pss->last_sent_block);
525
526 if (same_block) {
527 offset |= RAM_SAVE_FLAG_CONTINUE;
528 }
529 qemu_put_be64(f, offset);
530 size = 8;
531
532 if (!same_block) {
533 len = strlen(block->idstr);
534 qemu_put_byte(f, len);
535 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
536 size += 1 + len;
537 pss->last_sent_block = block;
538 }
539 return size;
540 }
541
542 /**
543 * mig_throttle_guest_down: throttle down the guest
544 *
545 * Reduce amount of guest cpu execution to hopefully slow down memory
546 * writes. If guest dirty memory rate is reduced below the rate at
547 * which we can transfer pages to the destination then we should be
548 * able to complete migration. Some workloads dirty memory way too
549 * fast and will not effectively converge, even with auto-converge.
550 */
mig_throttle_guest_down(uint64_t bytes_dirty_period,uint64_t bytes_dirty_threshold)551 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
552 uint64_t bytes_dirty_threshold)
553 {
554 uint64_t pct_initial = migrate_cpu_throttle_initial();
555 uint64_t pct_increment = migrate_cpu_throttle_increment();
556 bool pct_tailslow = migrate_cpu_throttle_tailslow();
557 int pct_max = migrate_max_cpu_throttle();
558
559 uint64_t throttle_now = cpu_throttle_get_percentage();
560 uint64_t cpu_now, cpu_ideal, throttle_inc;
561
562 /* We have not started throttling yet. Let's start it. */
563 if (!cpu_throttle_active()) {
564 cpu_throttle_set(pct_initial);
565 } else {
566 /* Throttling already on, just increase the rate */
567 if (!pct_tailslow) {
568 throttle_inc = pct_increment;
569 } else {
570 /* Compute the ideal CPU percentage used by Guest, which may
571 * make the dirty rate match the dirty rate threshold. */
572 cpu_now = 100 - throttle_now;
573 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
574 bytes_dirty_period);
575 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
576 }
577 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
578 }
579 }
580
mig_throttle_counter_reset(void)581 void mig_throttle_counter_reset(void)
582 {
583 RAMState *rs = ram_state;
584
585 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
586 rs->num_dirty_pages_period = 0;
587 rs->bytes_xfer_prev = migration_transferred_bytes();
588 }
589
590 /**
591 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
592 *
593 * @current_addr: address for the zero page
594 *
595 * Update the xbzrle cache to reflect a page that's been sent as all 0.
596 * The important thing is that a stale (not-yet-0'd) page be replaced
597 * by the new data.
598 * As a bonus, if the page wasn't in the cache it gets added so that
599 * when a small write is made into the 0'd page it gets XBZRLE sent.
600 */
xbzrle_cache_zero_page(ram_addr_t current_addr)601 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
602 {
603 /* We don't care if this fails to allocate a new cache page
604 * as long as it updated an old one */
605 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
606 stat64_get(&mig_stats.dirty_sync_count));
607 }
608
609 #define ENCODING_FLAG_XBZRLE 0x1
610
611 /**
612 * save_xbzrle_page: compress and send current page
613 *
614 * Returns: 1 means that we wrote the page
615 * 0 means that page is identical to the one already sent
616 * -1 means that xbzrle would be longer than normal
617 *
618 * @rs: current RAM state
619 * @pss: current PSS channel
620 * @current_data: pointer to the address of the page contents
621 * @current_addr: addr of the page
622 * @block: block that contains the page we want to send
623 * @offset: offset inside the block for the page
624 */
save_xbzrle_page(RAMState * rs,PageSearchStatus * pss,uint8_t ** current_data,ram_addr_t current_addr,RAMBlock * block,ram_addr_t offset)625 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
626 uint8_t **current_data, ram_addr_t current_addr,
627 RAMBlock *block, ram_addr_t offset)
628 {
629 int encoded_len = 0, bytes_xbzrle;
630 uint8_t *prev_cached_page;
631 QEMUFile *file = pss->pss_channel;
632 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
633
634 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
635 xbzrle_counters.cache_miss++;
636 if (!rs->last_stage) {
637 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
638 generation) == -1) {
639 return -1;
640 } else {
641 /* update *current_data when the page has been
642 inserted into cache */
643 *current_data = get_cached_data(XBZRLE.cache, current_addr);
644 }
645 }
646 return -1;
647 }
648
649 /*
650 * Reaching here means the page has hit the xbzrle cache, no matter what
651 * encoding result it is (normal encoding, overflow or skipping the page),
652 * count the page as encoded. This is used to calculate the encoding rate.
653 *
654 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
655 * 2nd page turns out to be skipped (i.e. no new bytes written to the
656 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
657 * skipped page included. In this way, the encoding rate can tell if the
658 * guest page is good for xbzrle encoding.
659 */
660 xbzrle_counters.pages++;
661 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
662
663 /* save current buffer into memory */
664 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
665
666 /* XBZRLE encoding (if there is no overflow) */
667 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
668 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
669 TARGET_PAGE_SIZE);
670
671 /*
672 * Update the cache contents, so that it corresponds to the data
673 * sent, in all cases except where we skip the page.
674 */
675 if (!rs->last_stage && encoded_len != 0) {
676 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
677 /*
678 * In the case where we couldn't compress, ensure that the caller
679 * sends the data from the cache, since the guest might have
680 * changed the RAM since we copied it.
681 */
682 *current_data = prev_cached_page;
683 }
684
685 if (encoded_len == 0) {
686 trace_save_xbzrle_page_skipping();
687 return 0;
688 } else if (encoded_len == -1) {
689 trace_save_xbzrle_page_overflow();
690 xbzrle_counters.overflow++;
691 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
692 return -1;
693 }
694
695 /* Send XBZRLE based compressed page */
696 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
697 offset | RAM_SAVE_FLAG_XBZRLE);
698 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
699 qemu_put_be16(file, encoded_len);
700 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
701 bytes_xbzrle += encoded_len + 1 + 2;
702 /*
703 * The xbzrle encoded bytes don't count the 8 byte header with
704 * RAM_SAVE_FLAG_CONTINUE.
705 */
706 xbzrle_counters.bytes += bytes_xbzrle - 8;
707 ram_transferred_add(bytes_xbzrle);
708
709 return 1;
710 }
711
712 /**
713 * pss_find_next_dirty: find the next dirty page of current ramblock
714 *
715 * This function updates pss->page to point to the next dirty page index
716 * within the ramblock to migrate, or the end of ramblock when nothing
717 * found. Note that when pss->host_page_sending==true it means we're
718 * during sending a host page, so we won't look for dirty page that is
719 * outside the host page boundary.
720 *
721 * @pss: the current page search status
722 */
pss_find_next_dirty(PageSearchStatus * pss)723 static void pss_find_next_dirty(PageSearchStatus *pss)
724 {
725 RAMBlock *rb = pss->block;
726 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
727 unsigned long *bitmap = rb->bmap;
728
729 if (migrate_ram_is_ignored(rb)) {
730 /* Points directly to the end, so we know no dirty page */
731 pss->page = size;
732 return;
733 }
734
735 /*
736 * If during sending a host page, only look for dirty pages within the
737 * current host page being send.
738 */
739 if (pss->host_page_sending) {
740 assert(pss->host_page_end);
741 size = MIN(size, pss->host_page_end);
742 }
743
744 pss->page = find_next_bit(bitmap, size, pss->page);
745 }
746
migration_clear_memory_region_dirty_bitmap(RAMBlock * rb,unsigned long page)747 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
748 unsigned long page)
749 {
750 uint8_t shift;
751 hwaddr size, start;
752
753 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
754 return;
755 }
756
757 shift = rb->clear_bmap_shift;
758 /*
759 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
760 * can make things easier sometimes since then start address
761 * of the small chunk will always be 64 pages aligned so the
762 * bitmap will always be aligned to unsigned long. We should
763 * even be able to remove this restriction but I'm simply
764 * keeping it.
765 */
766 assert(shift >= 6);
767
768 size = 1ULL << (TARGET_PAGE_BITS + shift);
769 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
770 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
771 memory_region_clear_dirty_bitmap(rb->mr, start, size);
772 }
773
774 static void
migration_clear_memory_region_dirty_bitmap_range(RAMBlock * rb,unsigned long start,unsigned long npages)775 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
776 unsigned long start,
777 unsigned long npages)
778 {
779 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
780 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
781 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
782
783 /*
784 * Clear pages from start to start + npages - 1, so the end boundary is
785 * exclusive.
786 */
787 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
788 migration_clear_memory_region_dirty_bitmap(rb, i);
789 }
790 }
791
792 /*
793 * colo_bitmap_find_diry:find contiguous dirty pages from start
794 *
795 * Returns the page offset within memory region of the start of the contiguout
796 * dirty page
797 *
798 * @rs: current RAM state
799 * @rb: RAMBlock where to search for dirty pages
800 * @start: page where we start the search
801 * @num: the number of contiguous dirty pages
802 */
803 static inline
colo_bitmap_find_dirty(RAMState * rs,RAMBlock * rb,unsigned long start,unsigned long * num)804 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
805 unsigned long start, unsigned long *num)
806 {
807 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
808 unsigned long *bitmap = rb->bmap;
809 unsigned long first, next;
810
811 *num = 0;
812
813 if (migrate_ram_is_ignored(rb)) {
814 return size;
815 }
816
817 first = find_next_bit(bitmap, size, start);
818 if (first >= size) {
819 return first;
820 }
821 next = find_next_zero_bit(bitmap, size, first + 1);
822 assert(next >= first);
823 *num = next - first;
824 return first;
825 }
826
migration_bitmap_clear_dirty(RAMState * rs,RAMBlock * rb,unsigned long page)827 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
828 RAMBlock *rb,
829 unsigned long page)
830 {
831 bool ret;
832
833 /*
834 * Clear dirty bitmap if needed. This _must_ be called before we
835 * send any of the page in the chunk because we need to make sure
836 * we can capture further page content changes when we sync dirty
837 * log the next time. So as long as we are going to send any of
838 * the page in the chunk we clear the remote dirty bitmap for all.
839 * Clearing it earlier won't be a problem, but too late will.
840 */
841 migration_clear_memory_region_dirty_bitmap(rb, page);
842
843 ret = test_and_clear_bit(page, rb->bmap);
844 if (ret) {
845 rs->migration_dirty_pages--;
846 }
847
848 return ret;
849 }
850
dirty_bitmap_clear_section(MemoryRegionSection * section,void * opaque)851 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
852 void *opaque)
853 {
854 const hwaddr offset = section->offset_within_region;
855 const hwaddr size = int128_get64(section->size);
856 const unsigned long start = offset >> TARGET_PAGE_BITS;
857 const unsigned long npages = size >> TARGET_PAGE_BITS;
858 RAMBlock *rb = section->mr->ram_block;
859 uint64_t *cleared_bits = opaque;
860
861 /*
862 * We don't grab ram_state->bitmap_mutex because we expect to run
863 * only when starting migration or during postcopy recovery where
864 * we don't have concurrent access.
865 */
866 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
867 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
868 }
869 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
870 bitmap_clear(rb->bmap, start, npages);
871 }
872
873 /*
874 * Exclude all dirty pages from migration that fall into a discarded range as
875 * managed by a RamDiscardManager responsible for the mapped memory region of
876 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
877 *
878 * Discarded pages ("logically unplugged") have undefined content and must
879 * not get migrated, because even reading these pages for migration might
880 * result in undesired behavior.
881 *
882 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
883 *
884 * Note: The result is only stable while migrating (precopy/postcopy).
885 */
ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock * rb)886 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
887 {
888 uint64_t cleared_bits = 0;
889
890 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
891 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
892 MemoryRegionSection section = {
893 .mr = rb->mr,
894 .offset_within_region = 0,
895 .size = int128_make64(qemu_ram_get_used_length(rb)),
896 };
897
898 ram_discard_manager_replay_discarded(rdm, §ion,
899 dirty_bitmap_clear_section,
900 &cleared_bits);
901 }
902 return cleared_bits;
903 }
904
905 /*
906 * Check if a host-page aligned page falls into a discarded range as managed by
907 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
908 *
909 * Note: The result is only stable while migrating (precopy/postcopy).
910 */
ramblock_page_is_discarded(RAMBlock * rb,ram_addr_t start)911 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
912 {
913 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
914 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
915 MemoryRegionSection section = {
916 .mr = rb->mr,
917 .offset_within_region = start,
918 .size = int128_make64(qemu_ram_pagesize(rb)),
919 };
920
921 return !ram_discard_manager_is_populated(rdm, §ion);
922 }
923 return false;
924 }
925
926 /* Called with RCU critical section */
ramblock_sync_dirty_bitmap(RAMState * rs,RAMBlock * rb)927 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
928 {
929 uint64_t new_dirty_pages =
930 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
931
932 rs->migration_dirty_pages += new_dirty_pages;
933 rs->num_dirty_pages_period += new_dirty_pages;
934 }
935
936 /**
937 * ram_pagesize_summary: calculate all the pagesizes of a VM
938 *
939 * Returns a summary bitmap of the page sizes of all RAMBlocks
940 *
941 * For VMs with just normal pages this is equivalent to the host page
942 * size. If it's got some huge pages then it's the OR of all the
943 * different page sizes.
944 */
ram_pagesize_summary(void)945 uint64_t ram_pagesize_summary(void)
946 {
947 RAMBlock *block;
948 uint64_t summary = 0;
949
950 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
951 summary |= block->page_size;
952 }
953
954 return summary;
955 }
956
ram_get_total_transferred_pages(void)957 uint64_t ram_get_total_transferred_pages(void)
958 {
959 return stat64_get(&mig_stats.normal_pages) +
960 stat64_get(&mig_stats.zero_pages) +
961 xbzrle_counters.pages;
962 }
963
migration_update_rates(RAMState * rs,int64_t end_time)964 static void migration_update_rates(RAMState *rs, int64_t end_time)
965 {
966 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
967
968 /* calculate period counters */
969 stat64_set(&mig_stats.dirty_pages_rate,
970 rs->num_dirty_pages_period * 1000 /
971 (end_time - rs->time_last_bitmap_sync));
972
973 if (!page_count) {
974 return;
975 }
976
977 if (migrate_xbzrle()) {
978 double encoded_size, unencoded_size;
979
980 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
981 rs->xbzrle_cache_miss_prev) / page_count;
982 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
983 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
984 TARGET_PAGE_SIZE;
985 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
986 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
987 xbzrle_counters.encoding_rate = 0;
988 } else {
989 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
990 }
991 rs->xbzrle_pages_prev = xbzrle_counters.pages;
992 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
993 }
994 }
995
996 /*
997 * Enable dirty-limit to throttle down the guest
998 */
migration_dirty_limit_guest(void)999 static void migration_dirty_limit_guest(void)
1000 {
1001 /*
1002 * dirty page rate quota for all vCPUs fetched from
1003 * migration parameter 'vcpu_dirty_limit'
1004 */
1005 static int64_t quota_dirtyrate;
1006 MigrationState *s = migrate_get_current();
1007
1008 /*
1009 * If dirty limit already enabled and migration parameter
1010 * vcpu-dirty-limit untouched.
1011 */
1012 if (dirtylimit_in_service() &&
1013 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1014 return;
1015 }
1016
1017 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1018
1019 /*
1020 * Set all vCPU a quota dirtyrate, note that the second
1021 * parameter will be ignored if setting all vCPU for the vm
1022 */
1023 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1024 trace_migration_dirty_limit_guest(quota_dirtyrate);
1025 }
1026
migration_trigger_throttle(RAMState * rs)1027 static void migration_trigger_throttle(RAMState *rs)
1028 {
1029 uint64_t threshold = migrate_throttle_trigger_threshold();
1030 uint64_t bytes_xfer_period =
1031 migration_transferred_bytes() - rs->bytes_xfer_prev;
1032 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1033 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1034
1035 /*
1036 * The following detection logic can be refined later. For now:
1037 * Check to see if the ratio between dirtied bytes and the approx.
1038 * amount of bytes that just got transferred since the last time
1039 * we were in this routine reaches the threshold. If that happens
1040 * twice, start or increase throttling.
1041 */
1042 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1043 (++rs->dirty_rate_high_cnt >= 2)) {
1044 rs->dirty_rate_high_cnt = 0;
1045 if (migrate_auto_converge()) {
1046 trace_migration_throttle();
1047 mig_throttle_guest_down(bytes_dirty_period,
1048 bytes_dirty_threshold);
1049 } else if (migrate_dirty_limit()) {
1050 migration_dirty_limit_guest();
1051 }
1052 }
1053 }
1054
migration_bitmap_sync(RAMState * rs,bool last_stage)1055 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1056 {
1057 RAMBlock *block;
1058 int64_t end_time;
1059
1060 stat64_add(&mig_stats.dirty_sync_count, 1);
1061
1062 if (!rs->time_last_bitmap_sync) {
1063 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1064 }
1065
1066 trace_migration_bitmap_sync_start();
1067 memory_global_dirty_log_sync(last_stage);
1068
1069 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
1070 WITH_RCU_READ_LOCK_GUARD() {
1071 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1072 ramblock_sync_dirty_bitmap(rs, block);
1073 }
1074 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1075 }
1076 }
1077
1078 memory_global_after_dirty_log_sync();
1079 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1080
1081 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1082
1083 /* more than 1 second = 1000 millisecons */
1084 if (end_time > rs->time_last_bitmap_sync + 1000) {
1085 migration_trigger_throttle(rs);
1086
1087 migration_update_rates(rs, end_time);
1088
1089 rs->target_page_count_prev = rs->target_page_count;
1090
1091 /* reset period counters */
1092 rs->time_last_bitmap_sync = end_time;
1093 rs->num_dirty_pages_period = 0;
1094 rs->bytes_xfer_prev = migration_transferred_bytes();
1095 }
1096 if (migrate_events()) {
1097 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1098 qapi_event_send_migration_pass(generation);
1099 }
1100 }
1101
migration_bitmap_sync_precopy(bool last_stage)1102 void migration_bitmap_sync_precopy(bool last_stage)
1103 {
1104 Error *local_err = NULL;
1105 assert(ram_state);
1106
1107 /*
1108 * The current notifier usage is just an optimization to migration, so we
1109 * don't stop the normal migration process in the error case.
1110 */
1111 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1112 error_report_err(local_err);
1113 local_err = NULL;
1114 }
1115
1116 migration_bitmap_sync(ram_state, last_stage);
1117
1118 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1119 error_report_err(local_err);
1120 }
1121 }
1122
ram_release_page(const char * rbname,uint64_t offset)1123 void ram_release_page(const char *rbname, uint64_t offset)
1124 {
1125 if (!migrate_release_ram() || !migration_in_postcopy()) {
1126 return;
1127 }
1128
1129 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1130 }
1131
1132 /**
1133 * save_zero_page: send the zero page to the stream
1134 *
1135 * Returns the number of pages written.
1136 *
1137 * @rs: current RAM state
1138 * @pss: current PSS channel
1139 * @offset: offset inside the block for the page
1140 */
save_zero_page(RAMState * rs,PageSearchStatus * pss,ram_addr_t offset)1141 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1142 ram_addr_t offset)
1143 {
1144 uint8_t *p = pss->block->host + offset;
1145 QEMUFile *file = pss->pss_channel;
1146 int len = 0;
1147
1148 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1149 return 0;
1150 }
1151
1152 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1153 return 0;
1154 }
1155
1156 stat64_add(&mig_stats.zero_pages, 1);
1157
1158 if (migrate_mapped_ram()) {
1159 /* zero pages are not transferred with mapped-ram */
1160 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1161 return 1;
1162 }
1163
1164 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1165 qemu_put_byte(file, 0);
1166 len += 1;
1167 ram_release_page(pss->block->idstr, offset);
1168 ram_transferred_add(len);
1169
1170 /*
1171 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1172 * page would be stale.
1173 */
1174 if (rs->xbzrle_started) {
1175 XBZRLE_cache_lock();
1176 xbzrle_cache_zero_page(pss->block->offset + offset);
1177 XBZRLE_cache_unlock();
1178 }
1179
1180 return len;
1181 }
1182
1183 /*
1184 * directly send the page to the stream
1185 *
1186 * Returns the number of pages written.
1187 *
1188 * @pss: current PSS channel
1189 * @block: block that contains the page we want to send
1190 * @offset: offset inside the block for the page
1191 * @buf: the page to be sent
1192 * @async: send to page asyncly
1193 */
save_normal_page(PageSearchStatus * pss,RAMBlock * block,ram_addr_t offset,uint8_t * buf,bool async)1194 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1195 ram_addr_t offset, uint8_t *buf, bool async)
1196 {
1197 QEMUFile *file = pss->pss_channel;
1198
1199 if (migrate_mapped_ram()) {
1200 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1201 block->pages_offset + offset);
1202 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1203 } else {
1204 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1205 offset | RAM_SAVE_FLAG_PAGE));
1206 if (async) {
1207 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1208 migrate_release_ram() &&
1209 migration_in_postcopy());
1210 } else {
1211 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1212 }
1213 }
1214 ram_transferred_add(TARGET_PAGE_SIZE);
1215 stat64_add(&mig_stats.normal_pages, 1);
1216 return 1;
1217 }
1218
1219 /**
1220 * ram_save_page: send the given page to the stream
1221 *
1222 * Returns the number of pages written.
1223 * < 0 - error
1224 * >=0 - Number of pages written - this might legally be 0
1225 * if xbzrle noticed the page was the same.
1226 *
1227 * @rs: current RAM state
1228 * @block: block that contains the page we want to send
1229 * @offset: offset inside the block for the page
1230 */
ram_save_page(RAMState * rs,PageSearchStatus * pss)1231 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1232 {
1233 int pages = -1;
1234 uint8_t *p;
1235 bool send_async = true;
1236 RAMBlock *block = pss->block;
1237 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1238 ram_addr_t current_addr = block->offset + offset;
1239
1240 p = block->host + offset;
1241 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1242
1243 XBZRLE_cache_lock();
1244 if (rs->xbzrle_started && !migration_in_postcopy()) {
1245 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1246 block, offset);
1247 if (!rs->last_stage) {
1248 /* Can't send this cached data async, since the cache page
1249 * might get updated before it gets to the wire
1250 */
1251 send_async = false;
1252 }
1253 }
1254
1255 /* XBZRLE overflow or normal page */
1256 if (pages == -1) {
1257 pages = save_normal_page(pss, block, offset, p, send_async);
1258 }
1259
1260 XBZRLE_cache_unlock();
1261
1262 return pages;
1263 }
1264
ram_save_multifd_page(RAMBlock * block,ram_addr_t offset)1265 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1266 {
1267 if (!multifd_queue_page(block, offset)) {
1268 return -1;
1269 }
1270
1271 return 1;
1272 }
1273
1274
1275 #define PAGE_ALL_CLEAN 0
1276 #define PAGE_TRY_AGAIN 1
1277 #define PAGE_DIRTY_FOUND 2
1278 /**
1279 * find_dirty_block: find the next dirty page and update any state
1280 * associated with the search process.
1281 *
1282 * Returns:
1283 * <0: An error happened
1284 * PAGE_ALL_CLEAN: no dirty page found, give up
1285 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1286 * PAGE_DIRTY_FOUND: dirty page found
1287 *
1288 * @rs: current RAM state
1289 * @pss: data about the state of the current dirty page scan
1290 * @again: set to false if the search has scanned the whole of RAM
1291 */
find_dirty_block(RAMState * rs,PageSearchStatus * pss)1292 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1293 {
1294 /* Update pss->page for the next dirty bit in ramblock */
1295 pss_find_next_dirty(pss);
1296
1297 if (pss->complete_round && pss->block == rs->last_seen_block &&
1298 pss->page >= rs->last_page) {
1299 /*
1300 * We've been once around the RAM and haven't found anything.
1301 * Give up.
1302 */
1303 return PAGE_ALL_CLEAN;
1304 }
1305 if (!offset_in_ramblock(pss->block,
1306 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1307 /* Didn't find anything in this RAM Block */
1308 pss->page = 0;
1309 pss->block = QLIST_NEXT_RCU(pss->block, next);
1310 if (!pss->block) {
1311 if (multifd_ram_sync_per_round()) {
1312 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1313 int ret = multifd_ram_flush_and_sync(f);
1314 if (ret < 0) {
1315 return ret;
1316 }
1317 }
1318
1319 /* Hit the end of the list */
1320 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1321 /* Flag that we've looped */
1322 pss->complete_round = true;
1323 /* After the first round, enable XBZRLE. */
1324 if (migrate_xbzrle()) {
1325 rs->xbzrle_started = true;
1326 }
1327 }
1328 /* Didn't find anything this time, but try again on the new block */
1329 return PAGE_TRY_AGAIN;
1330 } else {
1331 /* We've found something */
1332 return PAGE_DIRTY_FOUND;
1333 }
1334 }
1335
1336 /**
1337 * unqueue_page: gets a page of the queue
1338 *
1339 * Helper for 'get_queued_page' - gets a page off the queue
1340 *
1341 * Returns the block of the page (or NULL if none available)
1342 *
1343 * @rs: current RAM state
1344 * @offset: used to return the offset within the RAMBlock
1345 */
unqueue_page(RAMState * rs,ram_addr_t * offset)1346 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1347 {
1348 struct RAMSrcPageRequest *entry;
1349 RAMBlock *block = NULL;
1350
1351 if (!postcopy_has_request(rs)) {
1352 return NULL;
1353 }
1354
1355 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1356
1357 /*
1358 * This should _never_ change even after we take the lock, because no one
1359 * should be taking anything off the request list other than us.
1360 */
1361 assert(postcopy_has_request(rs));
1362
1363 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1364 block = entry->rb;
1365 *offset = entry->offset;
1366
1367 if (entry->len > TARGET_PAGE_SIZE) {
1368 entry->len -= TARGET_PAGE_SIZE;
1369 entry->offset += TARGET_PAGE_SIZE;
1370 } else {
1371 memory_region_unref(block->mr);
1372 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1373 g_free(entry);
1374 migration_consume_urgent_request();
1375 }
1376
1377 return block;
1378 }
1379
1380 #if defined(__linux__)
1381 /**
1382 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1383 * is found, return RAM block pointer and page offset
1384 *
1385 * Returns pointer to the RAMBlock containing faulting page,
1386 * NULL if no write faults are pending
1387 *
1388 * @rs: current RAM state
1389 * @offset: page offset from the beginning of the block
1390 */
poll_fault_page(RAMState * rs,ram_addr_t * offset)1391 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1392 {
1393 struct uffd_msg uffd_msg;
1394 void *page_address;
1395 RAMBlock *block;
1396 int res;
1397
1398 if (!migrate_background_snapshot()) {
1399 return NULL;
1400 }
1401
1402 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1403 if (res <= 0) {
1404 return NULL;
1405 }
1406
1407 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1408 block = qemu_ram_block_from_host(page_address, false, offset);
1409 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1410 return block;
1411 }
1412
1413 /**
1414 * ram_save_release_protection: release UFFD write protection after
1415 * a range of pages has been saved
1416 *
1417 * @rs: current RAM state
1418 * @pss: page-search-status structure
1419 * @start_page: index of the first page in the range relative to pss->block
1420 *
1421 * Returns 0 on success, negative value in case of an error
1422 */
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1423 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1424 unsigned long start_page)
1425 {
1426 int res = 0;
1427
1428 /* Check if page is from UFFD-managed region. */
1429 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1430 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1431 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1432
1433 /* Flush async buffers before un-protect. */
1434 qemu_fflush(pss->pss_channel);
1435 /* Un-protect memory range. */
1436 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1437 false, false);
1438 }
1439
1440 return res;
1441 }
1442
1443 /* ram_write_tracking_available: check if kernel supports required UFFD features
1444 *
1445 * Returns true if supports, false otherwise
1446 */
ram_write_tracking_available(void)1447 bool ram_write_tracking_available(void)
1448 {
1449 uint64_t uffd_features;
1450 int res;
1451
1452 res = uffd_query_features(&uffd_features);
1453 return (res == 0 &&
1454 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1455 }
1456
1457 /* ram_write_tracking_compatible: check if guest configuration is
1458 * compatible with 'write-tracking'
1459 *
1460 * Returns true if compatible, false otherwise
1461 */
ram_write_tracking_compatible(void)1462 bool ram_write_tracking_compatible(void)
1463 {
1464 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1465 int uffd_fd;
1466 RAMBlock *block;
1467 bool ret = false;
1468
1469 /* Open UFFD file descriptor */
1470 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1471 if (uffd_fd < 0) {
1472 return false;
1473 }
1474
1475 RCU_READ_LOCK_GUARD();
1476
1477 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1478 uint64_t uffd_ioctls;
1479
1480 /* Nothing to do with read-only and MMIO-writable regions */
1481 if (block->mr->readonly || block->mr->rom_device) {
1482 continue;
1483 }
1484 /* Try to register block memory via UFFD-IO to track writes */
1485 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1486 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1487 goto out;
1488 }
1489 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1490 goto out;
1491 }
1492 }
1493 ret = true;
1494
1495 out:
1496 uffd_close_fd(uffd_fd);
1497 return ret;
1498 }
1499
populate_read_range(RAMBlock * block,ram_addr_t offset,ram_addr_t size)1500 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1501 ram_addr_t size)
1502 {
1503 const ram_addr_t end = offset + size;
1504
1505 /*
1506 * We read one byte of each page; this will preallocate page tables if
1507 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1508 * where no page was populated yet. This might require adaption when
1509 * supporting other mappings, like shmem.
1510 */
1511 for (; offset < end; offset += block->page_size) {
1512 char tmp = *((char *)block->host + offset);
1513
1514 /* Don't optimize the read out */
1515 asm volatile("" : "+r" (tmp));
1516 }
1517 }
1518
populate_read_section(MemoryRegionSection * section,void * opaque)1519 static inline int populate_read_section(MemoryRegionSection *section,
1520 void *opaque)
1521 {
1522 const hwaddr size = int128_get64(section->size);
1523 hwaddr offset = section->offset_within_region;
1524 RAMBlock *block = section->mr->ram_block;
1525
1526 populate_read_range(block, offset, size);
1527 return 0;
1528 }
1529
1530 /*
1531 * ram_block_populate_read: preallocate page tables and populate pages in the
1532 * RAM block by reading a byte of each page.
1533 *
1534 * Since it's solely used for userfault_fd WP feature, here we just
1535 * hardcode page size to qemu_real_host_page_size.
1536 *
1537 * @block: RAM block to populate
1538 */
ram_block_populate_read(RAMBlock * rb)1539 static void ram_block_populate_read(RAMBlock *rb)
1540 {
1541 /*
1542 * Skip populating all pages that fall into a discarded range as managed by
1543 * a RamDiscardManager responsible for the mapped memory region of the
1544 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1545 * must not get populated automatically. We don't have to track
1546 * modifications via userfaultfd WP reliably, because these pages will
1547 * not be part of the migration stream either way -- see
1548 * ramblock_dirty_bitmap_exclude_discarded_pages().
1549 *
1550 * Note: The result is only stable while migrating (precopy/postcopy).
1551 */
1552 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1553 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1554 MemoryRegionSection section = {
1555 .mr = rb->mr,
1556 .offset_within_region = 0,
1557 .size = rb->mr->size,
1558 };
1559
1560 ram_discard_manager_replay_populated(rdm, §ion,
1561 populate_read_section, NULL);
1562 } else {
1563 populate_read_range(rb, 0, rb->used_length);
1564 }
1565 }
1566
1567 /*
1568 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1569 */
ram_write_tracking_prepare(void)1570 void ram_write_tracking_prepare(void)
1571 {
1572 RAMBlock *block;
1573
1574 RCU_READ_LOCK_GUARD();
1575
1576 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1577 /* Nothing to do with read-only and MMIO-writable regions */
1578 if (block->mr->readonly || block->mr->rom_device) {
1579 continue;
1580 }
1581
1582 /*
1583 * Populate pages of the RAM block before enabling userfault_fd
1584 * write protection.
1585 *
1586 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1587 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1588 * pages with pte_none() entries in page table.
1589 */
1590 ram_block_populate_read(block);
1591 }
1592 }
1593
uffd_protect_section(MemoryRegionSection * section,void * opaque)1594 static inline int uffd_protect_section(MemoryRegionSection *section,
1595 void *opaque)
1596 {
1597 const hwaddr size = int128_get64(section->size);
1598 const hwaddr offset = section->offset_within_region;
1599 RAMBlock *rb = section->mr->ram_block;
1600 int uffd_fd = (uintptr_t)opaque;
1601
1602 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1603 false);
1604 }
1605
ram_block_uffd_protect(RAMBlock * rb,int uffd_fd)1606 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1607 {
1608 assert(rb->flags & RAM_UF_WRITEPROTECT);
1609
1610 /* See ram_block_populate_read() */
1611 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1612 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1613 MemoryRegionSection section = {
1614 .mr = rb->mr,
1615 .offset_within_region = 0,
1616 .size = rb->mr->size,
1617 };
1618
1619 return ram_discard_manager_replay_populated(rdm, §ion,
1620 uffd_protect_section,
1621 (void *)(uintptr_t)uffd_fd);
1622 }
1623 return uffd_change_protection(uffd_fd, rb->host,
1624 rb->used_length, true, false);
1625 }
1626
1627 /*
1628 * ram_write_tracking_start: start UFFD-WP memory tracking
1629 *
1630 * Returns 0 for success or negative value in case of error
1631 */
ram_write_tracking_start(void)1632 int ram_write_tracking_start(void)
1633 {
1634 int uffd_fd;
1635 RAMState *rs = ram_state;
1636 RAMBlock *block;
1637
1638 /* Open UFFD file descriptor */
1639 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1640 if (uffd_fd < 0) {
1641 return uffd_fd;
1642 }
1643 rs->uffdio_fd = uffd_fd;
1644
1645 RCU_READ_LOCK_GUARD();
1646
1647 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1648 /* Nothing to do with read-only and MMIO-writable regions */
1649 if (block->mr->readonly || block->mr->rom_device) {
1650 continue;
1651 }
1652
1653 /* Register block memory with UFFD to track writes */
1654 if (uffd_register_memory(rs->uffdio_fd, block->host,
1655 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1656 goto fail;
1657 }
1658 block->flags |= RAM_UF_WRITEPROTECT;
1659 memory_region_ref(block->mr);
1660
1661 /* Apply UFFD write protection to the block memory range */
1662 if (ram_block_uffd_protect(block, uffd_fd)) {
1663 goto fail;
1664 }
1665
1666 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1667 block->host, block->max_length);
1668 }
1669
1670 return 0;
1671
1672 fail:
1673 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1674
1675 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1676 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1677 continue;
1678 }
1679 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1680 /* Cleanup flags and remove reference */
1681 block->flags &= ~RAM_UF_WRITEPROTECT;
1682 memory_region_unref(block->mr);
1683 }
1684
1685 uffd_close_fd(uffd_fd);
1686 rs->uffdio_fd = -1;
1687 return -1;
1688 }
1689
1690 /**
1691 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1692 */
ram_write_tracking_stop(void)1693 void ram_write_tracking_stop(void)
1694 {
1695 RAMState *rs = ram_state;
1696 RAMBlock *block;
1697
1698 RCU_READ_LOCK_GUARD();
1699
1700 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1701 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1702 continue;
1703 }
1704 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1705
1706 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1707 block->host, block->max_length);
1708
1709 /* Cleanup flags and remove reference */
1710 block->flags &= ~RAM_UF_WRITEPROTECT;
1711 memory_region_unref(block->mr);
1712 }
1713
1714 /* Finally close UFFD file descriptor */
1715 uffd_close_fd(rs->uffdio_fd);
1716 rs->uffdio_fd = -1;
1717 }
1718
1719 #else
1720 /* No target OS support, stubs just fail or ignore */
1721
poll_fault_page(RAMState * rs,ram_addr_t * offset)1722 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1723 {
1724 (void) rs;
1725 (void) offset;
1726
1727 return NULL;
1728 }
1729
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1730 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1731 unsigned long start_page)
1732 {
1733 (void) rs;
1734 (void) pss;
1735 (void) start_page;
1736
1737 return 0;
1738 }
1739
ram_write_tracking_available(void)1740 bool ram_write_tracking_available(void)
1741 {
1742 return false;
1743 }
1744
ram_write_tracking_compatible(void)1745 bool ram_write_tracking_compatible(void)
1746 {
1747 g_assert_not_reached();
1748 }
1749
ram_write_tracking_start(void)1750 int ram_write_tracking_start(void)
1751 {
1752 g_assert_not_reached();
1753 }
1754
ram_write_tracking_stop(void)1755 void ram_write_tracking_stop(void)
1756 {
1757 g_assert_not_reached();
1758 }
1759 #endif /* defined(__linux__) */
1760
1761 /**
1762 * get_queued_page: unqueue a page from the postcopy requests
1763 *
1764 * Skips pages that are already sent (!dirty)
1765 *
1766 * Returns true if a queued page is found
1767 *
1768 * @rs: current RAM state
1769 * @pss: data about the state of the current dirty page scan
1770 */
get_queued_page(RAMState * rs,PageSearchStatus * pss)1771 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1772 {
1773 RAMBlock *block;
1774 ram_addr_t offset;
1775 bool dirty = false;
1776
1777 do {
1778 block = unqueue_page(rs, &offset);
1779 /*
1780 * We're sending this page, and since it's postcopy nothing else
1781 * will dirty it, and we must make sure it doesn't get sent again
1782 * even if this queue request was received after the background
1783 * search already sent it.
1784 */
1785 if (block) {
1786 unsigned long page;
1787
1788 page = offset >> TARGET_PAGE_BITS;
1789 dirty = test_bit(page, block->bmap);
1790 if (!dirty) {
1791 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1792 page);
1793 } else {
1794 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1795 }
1796 }
1797
1798 } while (block && !dirty);
1799
1800 if (!block) {
1801 /*
1802 * Poll write faults too if background snapshot is enabled; that's
1803 * when we have vcpus got blocked by the write protected pages.
1804 */
1805 block = poll_fault_page(rs, &offset);
1806 }
1807
1808 if (block) {
1809 /*
1810 * We want the background search to continue from the queued page
1811 * since the guest is likely to want other pages near to the page
1812 * it just requested.
1813 */
1814 pss->block = block;
1815 pss->page = offset >> TARGET_PAGE_BITS;
1816
1817 /*
1818 * This unqueued page would break the "one round" check, even is
1819 * really rare.
1820 */
1821 pss->complete_round = false;
1822 }
1823
1824 return !!block;
1825 }
1826
1827 /**
1828 * migration_page_queue_free: drop any remaining pages in the ram
1829 * request queue
1830 *
1831 * It should be empty at the end anyway, but in error cases there may
1832 * be some left. in case that there is any page left, we drop it.
1833 *
1834 */
migration_page_queue_free(RAMState * rs)1835 static void migration_page_queue_free(RAMState *rs)
1836 {
1837 struct RAMSrcPageRequest *mspr, *next_mspr;
1838 /* This queue generally should be empty - but in the case of a failed
1839 * migration might have some droppings in.
1840 */
1841 RCU_READ_LOCK_GUARD();
1842 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1843 memory_region_unref(mspr->rb->mr);
1844 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1845 g_free(mspr);
1846 }
1847 }
1848
1849 /**
1850 * ram_save_queue_pages: queue the page for transmission
1851 *
1852 * A request from postcopy destination for example.
1853 *
1854 * Returns zero on success or negative on error
1855 *
1856 * @rbname: Name of the RAMBLock of the request. NULL means the
1857 * same that last one.
1858 * @start: starting address from the start of the RAMBlock
1859 * @len: length (in bytes) to send
1860 */
ram_save_queue_pages(const char * rbname,ram_addr_t start,ram_addr_t len,Error ** errp)1861 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1862 Error **errp)
1863 {
1864 RAMBlock *ramblock;
1865 RAMState *rs = ram_state;
1866
1867 stat64_add(&mig_stats.postcopy_requests, 1);
1868 RCU_READ_LOCK_GUARD();
1869
1870 if (!rbname) {
1871 /* Reuse last RAMBlock */
1872 ramblock = rs->last_req_rb;
1873
1874 if (!ramblock) {
1875 /*
1876 * Shouldn't happen, we can't reuse the last RAMBlock if
1877 * it's the 1st request.
1878 */
1879 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1880 return -1;
1881 }
1882 } else {
1883 ramblock = qemu_ram_block_by_name(rbname);
1884
1885 if (!ramblock) {
1886 /* We shouldn't be asked for a non-existent RAMBlock */
1887 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1888 return -1;
1889 }
1890 rs->last_req_rb = ramblock;
1891 }
1892 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1893 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1894 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1895 "start=" RAM_ADDR_FMT " len="
1896 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1897 start, len, ramblock->used_length);
1898 return -1;
1899 }
1900
1901 /*
1902 * When with postcopy preempt, we send back the page directly in the
1903 * rp-return thread.
1904 */
1905 if (postcopy_preempt_active()) {
1906 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1907 size_t page_size = qemu_ram_pagesize(ramblock);
1908 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1909 int ret = 0;
1910
1911 qemu_mutex_lock(&rs->bitmap_mutex);
1912
1913 pss_init(pss, ramblock, page_start);
1914 /*
1915 * Always use the preempt channel, and make sure it's there. It's
1916 * safe to access without lock, because when rp-thread is running
1917 * we should be the only one who operates on the qemufile
1918 */
1919 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1920 assert(pss->pss_channel);
1921
1922 /*
1923 * It must be either one or multiple of host page size. Just
1924 * assert; if something wrong we're mostly split brain anyway.
1925 */
1926 assert(len % page_size == 0);
1927 while (len) {
1928 if (ram_save_host_page_urgent(pss)) {
1929 error_setg(errp, "ram_save_host_page_urgent() failed: "
1930 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1931 ramblock->idstr, start);
1932 ret = -1;
1933 break;
1934 }
1935 /*
1936 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1937 * will automatically be moved and point to the next host page
1938 * we're going to send, so no need to update here.
1939 *
1940 * Normally QEMU never sends >1 host page in requests, so
1941 * logically we don't even need that as the loop should only
1942 * run once, but just to be consistent.
1943 */
1944 len -= page_size;
1945 };
1946 qemu_mutex_unlock(&rs->bitmap_mutex);
1947
1948 return ret;
1949 }
1950
1951 struct RAMSrcPageRequest *new_entry =
1952 g_new0(struct RAMSrcPageRequest, 1);
1953 new_entry->rb = ramblock;
1954 new_entry->offset = start;
1955 new_entry->len = len;
1956
1957 memory_region_ref(ramblock->mr);
1958 qemu_mutex_lock(&rs->src_page_req_mutex);
1959 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1960 migration_make_urgent_request();
1961 qemu_mutex_unlock(&rs->src_page_req_mutex);
1962
1963 return 0;
1964 }
1965
1966 /**
1967 * ram_save_target_page: save one target page to the precopy thread
1968 * OR to multifd workers.
1969 *
1970 * @rs: current RAM state
1971 * @pss: data about the page we want to send
1972 */
ram_save_target_page(RAMState * rs,PageSearchStatus * pss)1973 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss)
1974 {
1975 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1976 int res;
1977
1978 /* Hand over to RDMA first */
1979 if (migrate_rdma()) {
1980 res = rdma_control_save_page(pss->pss_channel, pss->block->offset,
1981 offset, TARGET_PAGE_SIZE);
1982
1983 if (res == RAM_SAVE_CONTROL_DELAYED) {
1984 res = 1;
1985 }
1986 return res;
1987 }
1988
1989 if (!migrate_multifd()
1990 || migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
1991 if (save_zero_page(rs, pss, offset)) {
1992 return 1;
1993 }
1994 }
1995
1996 if (migrate_multifd() && !migration_in_postcopy()) {
1997 return ram_save_multifd_page(pss->block, offset);
1998 }
1999
2000 return ram_save_page(rs, pss);
2001 }
2002
2003 /* Should be called before sending a host page */
pss_host_page_prepare(PageSearchStatus * pss)2004 static void pss_host_page_prepare(PageSearchStatus *pss)
2005 {
2006 /* How many guest pages are there in one host page? */
2007 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2008
2009 pss->host_page_sending = true;
2010 if (guest_pfns <= 1) {
2011 /*
2012 * This covers both when guest psize == host psize, or when guest
2013 * has larger psize than the host (guest_pfns==0).
2014 *
2015 * For the latter, we always send one whole guest page per
2016 * iteration of the host page (example: an Alpha VM on x86 host
2017 * will have guest psize 8K while host psize 4K).
2018 */
2019 pss->host_page_start = pss->page;
2020 pss->host_page_end = pss->page + 1;
2021 } else {
2022 /*
2023 * The host page spans over multiple guest pages, we send them
2024 * within the same host page iteration.
2025 */
2026 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2027 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2028 }
2029 }
2030
2031 /*
2032 * Whether the page pointed by PSS is within the host page being sent.
2033 * Must be called after a previous pss_host_page_prepare().
2034 */
pss_within_range(PageSearchStatus * pss)2035 static bool pss_within_range(PageSearchStatus *pss)
2036 {
2037 ram_addr_t ram_addr;
2038
2039 assert(pss->host_page_sending);
2040
2041 /* Over host-page boundary? */
2042 if (pss->page >= pss->host_page_end) {
2043 return false;
2044 }
2045
2046 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2047
2048 return offset_in_ramblock(pss->block, ram_addr);
2049 }
2050
pss_host_page_finish(PageSearchStatus * pss)2051 static void pss_host_page_finish(PageSearchStatus *pss)
2052 {
2053 pss->host_page_sending = false;
2054 /* This is not needed, but just to reset it */
2055 pss->host_page_start = pss->host_page_end = 0;
2056 }
2057
ram_page_hint_update(RAMState * rs,PageSearchStatus * pss)2058 static void ram_page_hint_update(RAMState *rs, PageSearchStatus *pss)
2059 {
2060 PageLocationHint *hint = &rs->page_hint;
2061
2062 /* If there's a pending hint not consumed, don't bother */
2063 if (hint->valid) {
2064 return;
2065 }
2066
2067 /* Provide a hint to the background stream otherwise */
2068 hint->location.block = pss->block;
2069 hint->location.offset = pss->page;
2070 hint->valid = true;
2071 }
2072
2073 /*
2074 * Send an urgent host page specified by `pss'. Need to be called with
2075 * bitmap_mutex held.
2076 *
2077 * Returns 0 if save host page succeeded, false otherwise.
2078 */
ram_save_host_page_urgent(PageSearchStatus * pss)2079 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2080 {
2081 bool page_dirty, sent = false;
2082 RAMState *rs = ram_state;
2083 int ret = 0;
2084
2085 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2086 pss_host_page_prepare(pss);
2087
2088 /*
2089 * If precopy is sending the same page, let it be done in precopy, or
2090 * we could send the same page in two channels and none of them will
2091 * receive the whole page.
2092 */
2093 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2094 trace_postcopy_preempt_hit(pss->block->idstr,
2095 pss->page << TARGET_PAGE_BITS);
2096 return 0;
2097 }
2098
2099 do {
2100 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2101
2102 if (page_dirty) {
2103 /* Be strict to return code; it must be 1, or what else? */
2104 if (ram_save_target_page(rs, pss) != 1) {
2105 error_report_once("%s: ram_save_target_page failed", __func__);
2106 ret = -1;
2107 goto out;
2108 }
2109 sent = true;
2110 }
2111 pss_find_next_dirty(pss);
2112 } while (pss_within_range(pss));
2113 out:
2114 pss_host_page_finish(pss);
2115 /* For urgent requests, flush immediately if sent */
2116 if (sent) {
2117 qemu_fflush(pss->pss_channel);
2118 ram_page_hint_update(rs, pss);
2119 }
2120 return ret;
2121 }
2122
2123 /**
2124 * ram_save_host_page: save a whole host page
2125 *
2126 * Starting at *offset send pages up to the end of the current host
2127 * page. It's valid for the initial offset to point into the middle of
2128 * a host page in which case the remainder of the hostpage is sent.
2129 * Only dirty target pages are sent. Note that the host page size may
2130 * be a huge page for this block.
2131 *
2132 * The saving stops at the boundary of the used_length of the block
2133 * if the RAMBlock isn't a multiple of the host page size.
2134 *
2135 * The caller must be with ram_state.bitmap_mutex held to call this
2136 * function. Note that this function can temporarily release the lock, but
2137 * when the function is returned it'll make sure the lock is still held.
2138 *
2139 * Returns the number of pages written or negative on error
2140 *
2141 * @rs: current RAM state
2142 * @pss: data about the page we want to send
2143 */
ram_save_host_page(RAMState * rs,PageSearchStatus * pss)2144 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2145 {
2146 bool page_dirty, preempt_active = postcopy_preempt_active();
2147 int tmppages, pages = 0;
2148 size_t pagesize_bits =
2149 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2150 unsigned long start_page = pss->page;
2151 int res;
2152
2153 if (migrate_ram_is_ignored(pss->block)) {
2154 error_report("block %s should not be migrated !", pss->block->idstr);
2155 return 0;
2156 }
2157
2158 /* Update host page boundary information */
2159 pss_host_page_prepare(pss);
2160
2161 do {
2162 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2163
2164 /* Check the pages is dirty and if it is send it */
2165 if (page_dirty) {
2166 /*
2167 * Properly yield the lock only in postcopy preempt mode
2168 * because both migration thread and rp-return thread can
2169 * operate on the bitmaps.
2170 */
2171 if (preempt_active) {
2172 qemu_mutex_unlock(&rs->bitmap_mutex);
2173 }
2174 tmppages = ram_save_target_page(rs, pss);
2175 if (tmppages >= 0) {
2176 pages += tmppages;
2177 /*
2178 * Allow rate limiting to happen in the middle of huge pages if
2179 * something is sent in the current iteration.
2180 */
2181 if (pagesize_bits > 1 && tmppages > 0) {
2182 migration_rate_limit();
2183 }
2184 }
2185 if (preempt_active) {
2186 qemu_mutex_lock(&rs->bitmap_mutex);
2187 }
2188 } else {
2189 tmppages = 0;
2190 }
2191
2192 if (tmppages < 0) {
2193 pss_host_page_finish(pss);
2194 return tmppages;
2195 }
2196
2197 pss_find_next_dirty(pss);
2198 } while (pss_within_range(pss));
2199
2200 pss_host_page_finish(pss);
2201
2202 res = ram_save_release_protection(rs, pss, start_page);
2203 return (res < 0 ? res : pages);
2204 }
2205
ram_page_hint_valid(RAMState * rs)2206 static bool ram_page_hint_valid(RAMState *rs)
2207 {
2208 /* There's only page hint during postcopy preempt mode */
2209 if (!postcopy_preempt_active()) {
2210 return false;
2211 }
2212
2213 return rs->page_hint.valid;
2214 }
2215
ram_page_hint_collect(RAMState * rs,RAMBlock ** block,unsigned long * page)2216 static void ram_page_hint_collect(RAMState *rs, RAMBlock **block,
2217 unsigned long *page)
2218 {
2219 PageLocationHint *hint = &rs->page_hint;
2220
2221 assert(hint->valid);
2222
2223 *block = hint->location.block;
2224 *page = hint->location.offset;
2225
2226 /* Mark the hint consumed */
2227 hint->valid = false;
2228 }
2229
2230 /**
2231 * ram_find_and_save_block: finds a dirty page and sends it to f
2232 *
2233 * Called within an RCU critical section.
2234 *
2235 * Returns the number of pages written where zero means no dirty pages,
2236 * or negative on error
2237 *
2238 * @rs: current RAM state
2239 *
2240 * On systems where host-page-size > target-page-size it will send all the
2241 * pages in a host page that are dirty.
2242 */
ram_find_and_save_block(RAMState * rs)2243 static int ram_find_and_save_block(RAMState *rs)
2244 {
2245 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2246 unsigned long next_page;
2247 RAMBlock *next_block;
2248 int pages = 0;
2249
2250 /* No dirty page as there is zero RAM */
2251 if (!rs->ram_bytes_total) {
2252 return pages;
2253 }
2254
2255 /*
2256 * Always keep last_seen_block/last_page valid during this procedure,
2257 * because find_dirty_block() relies on these values (e.g., we compare
2258 * last_seen_block with pss.block to see whether we searched all the
2259 * ramblocks) to detect the completion of migration. Having NULL value
2260 * of last_seen_block can conditionally cause below loop to run forever.
2261 */
2262 if (!rs->last_seen_block) {
2263 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2264 rs->last_page = 0;
2265 }
2266
2267 if (ram_page_hint_valid(rs)) {
2268 ram_page_hint_collect(rs, &next_block, &next_page);
2269 } else {
2270 next_block = rs->last_seen_block;
2271 next_page = rs->last_page;
2272 }
2273
2274 pss_init(pss, next_block, next_page);
2275
2276 while (true){
2277 if (!get_queued_page(rs, pss)) {
2278 /* priority queue empty, so just search for something dirty */
2279 int res = find_dirty_block(rs, pss);
2280 if (res != PAGE_DIRTY_FOUND) {
2281 if (res == PAGE_ALL_CLEAN) {
2282 break;
2283 } else if (res == PAGE_TRY_AGAIN) {
2284 continue;
2285 } else if (res < 0) {
2286 pages = res;
2287 break;
2288 }
2289 }
2290 }
2291 pages = ram_save_host_page(rs, pss);
2292 if (pages) {
2293 break;
2294 }
2295 }
2296
2297 rs->last_seen_block = pss->block;
2298 rs->last_page = pss->page;
2299
2300 return pages;
2301 }
2302
ram_bytes_total_with_ignored(void)2303 static uint64_t ram_bytes_total_with_ignored(void)
2304 {
2305 RAMBlock *block;
2306 uint64_t total = 0;
2307
2308 RCU_READ_LOCK_GUARD();
2309
2310 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2311 total += block->used_length;
2312 }
2313 return total;
2314 }
2315
ram_bytes_total(void)2316 uint64_t ram_bytes_total(void)
2317 {
2318 RAMBlock *block;
2319 uint64_t total = 0;
2320
2321 RCU_READ_LOCK_GUARD();
2322
2323 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2324 total += block->used_length;
2325 }
2326 return total;
2327 }
2328
xbzrle_load_setup(void)2329 static void xbzrle_load_setup(void)
2330 {
2331 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2332 }
2333
xbzrle_load_cleanup(void)2334 static void xbzrle_load_cleanup(void)
2335 {
2336 g_free(XBZRLE.decoded_buf);
2337 XBZRLE.decoded_buf = NULL;
2338 }
2339
ram_state_cleanup(RAMState ** rsp)2340 static void ram_state_cleanup(RAMState **rsp)
2341 {
2342 if (*rsp) {
2343 migration_page_queue_free(*rsp);
2344 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2345 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2346 g_free(*rsp);
2347 *rsp = NULL;
2348 }
2349 }
2350
xbzrle_cleanup(void)2351 static void xbzrle_cleanup(void)
2352 {
2353 XBZRLE_cache_lock();
2354 if (XBZRLE.cache) {
2355 cache_fini(XBZRLE.cache);
2356 g_free(XBZRLE.encoded_buf);
2357 g_free(XBZRLE.current_buf);
2358 g_free(XBZRLE.zero_target_page);
2359 XBZRLE.cache = NULL;
2360 XBZRLE.encoded_buf = NULL;
2361 XBZRLE.current_buf = NULL;
2362 XBZRLE.zero_target_page = NULL;
2363 }
2364 XBZRLE_cache_unlock();
2365 }
2366
ram_bitmaps_destroy(void)2367 static void ram_bitmaps_destroy(void)
2368 {
2369 RAMBlock *block;
2370
2371 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2372 g_free(block->clear_bmap);
2373 block->clear_bmap = NULL;
2374 g_free(block->bmap);
2375 block->bmap = NULL;
2376 g_free(block->file_bmap);
2377 block->file_bmap = NULL;
2378 }
2379 }
2380
ram_save_cleanup(void * opaque)2381 static void ram_save_cleanup(void *opaque)
2382 {
2383 RAMState **rsp = opaque;
2384
2385 /* We don't use dirty log with background snapshots */
2386 if (!migrate_background_snapshot()) {
2387 /* caller have hold BQL or is in a bh, so there is
2388 * no writing race against the migration bitmap
2389 */
2390 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2391 /*
2392 * do not stop dirty log without starting it, since
2393 * memory_global_dirty_log_stop will assert that
2394 * memory_global_dirty_log_start/stop used in pairs
2395 */
2396 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2397 }
2398 }
2399
2400 ram_bitmaps_destroy();
2401
2402 xbzrle_cleanup();
2403 multifd_ram_save_cleanup();
2404 ram_state_cleanup(rsp);
2405 }
2406
ram_page_hint_reset(PageLocationHint * hint)2407 static void ram_page_hint_reset(PageLocationHint *hint)
2408 {
2409 hint->location.block = NULL;
2410 hint->location.offset = 0;
2411 hint->valid = false;
2412 }
2413
ram_state_reset(RAMState * rs)2414 static void ram_state_reset(RAMState *rs)
2415 {
2416 int i;
2417
2418 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2419 rs->pss[i].last_sent_block = NULL;
2420 }
2421
2422 rs->last_seen_block = NULL;
2423 rs->last_page = 0;
2424 rs->last_version = ram_list.version;
2425 rs->xbzrle_started = false;
2426
2427 ram_page_hint_reset(&rs->page_hint);
2428 }
2429
2430 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2431
2432 /* **** functions for postcopy ***** */
2433
ram_postcopy_migrated_memory_release(MigrationState * ms)2434 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2435 {
2436 struct RAMBlock *block;
2437
2438 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2439 unsigned long *bitmap = block->bmap;
2440 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2441 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2442
2443 while (run_start < range) {
2444 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2445 ram_discard_range(block->idstr,
2446 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2447 ((ram_addr_t)(run_end - run_start))
2448 << TARGET_PAGE_BITS);
2449 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2450 }
2451 }
2452 }
2453
2454 /**
2455 * postcopy_send_discard_bm_ram: discard a RAMBlock
2456 *
2457 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2458 *
2459 * @ms: current migration state
2460 * @block: RAMBlock to discard
2461 */
postcopy_send_discard_bm_ram(MigrationState * ms,RAMBlock * block)2462 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2463 {
2464 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2465 unsigned long current;
2466 unsigned long *bitmap = block->bmap;
2467
2468 for (current = 0; current < end; ) {
2469 unsigned long one = find_next_bit(bitmap, end, current);
2470 unsigned long zero, discard_length;
2471
2472 if (one >= end) {
2473 break;
2474 }
2475
2476 zero = find_next_zero_bit(bitmap, end, one + 1);
2477
2478 if (zero >= end) {
2479 discard_length = end - one;
2480 } else {
2481 discard_length = zero - one;
2482 }
2483 postcopy_discard_send_range(ms, one, discard_length);
2484 current = one + discard_length;
2485 }
2486 }
2487
2488 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2489
2490 /**
2491 * postcopy_each_ram_send_discard: discard all RAMBlocks
2492 *
2493 * Utility for the outgoing postcopy code.
2494 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2495 * passing it bitmap indexes and name.
2496 * (qemu_ram_foreach_block ends up passing unscaled lengths
2497 * which would mean postcopy code would have to deal with target page)
2498 *
2499 * @ms: current migration state
2500 */
postcopy_each_ram_send_discard(MigrationState * ms)2501 static void postcopy_each_ram_send_discard(MigrationState *ms)
2502 {
2503 struct RAMBlock *block;
2504
2505 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2506 postcopy_discard_send_init(ms, block->idstr);
2507
2508 /*
2509 * Deal with TPS != HPS and huge pages. It discard any partially sent
2510 * host-page size chunks, mark any partially dirty host-page size
2511 * chunks as all dirty. In this case the host-page is the host-page
2512 * for the particular RAMBlock, i.e. it might be a huge page.
2513 */
2514 postcopy_chunk_hostpages_pass(ms, block);
2515
2516 /*
2517 * Postcopy sends chunks of bitmap over the wire, but it
2518 * just needs indexes at this point, avoids it having
2519 * target page specific code.
2520 */
2521 postcopy_send_discard_bm_ram(ms, block);
2522 postcopy_discard_send_finish(ms);
2523 }
2524 }
2525
2526 /**
2527 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2528 *
2529 * Helper for postcopy_chunk_hostpages; it's called twice to
2530 * canonicalize the two bitmaps, that are similar, but one is
2531 * inverted.
2532 *
2533 * Postcopy requires that all target pages in a hostpage are dirty or
2534 * clean, not a mix. This function canonicalizes the bitmaps.
2535 *
2536 * @ms: current migration state
2537 * @block: block that contains the page we want to canonicalize
2538 */
postcopy_chunk_hostpages_pass(MigrationState * ms,RAMBlock * block)2539 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2540 {
2541 RAMState *rs = ram_state;
2542 unsigned long *bitmap = block->bmap;
2543 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2544 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2545 unsigned long run_start;
2546
2547 if (block->page_size == TARGET_PAGE_SIZE) {
2548 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2549 return;
2550 }
2551
2552 /* Find a dirty page */
2553 run_start = find_next_bit(bitmap, pages, 0);
2554
2555 while (run_start < pages) {
2556
2557 /*
2558 * If the start of this run of pages is in the middle of a host
2559 * page, then we need to fixup this host page.
2560 */
2561 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2562 /* Find the end of this run */
2563 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2564 /*
2565 * If the end isn't at the start of a host page, then the
2566 * run doesn't finish at the end of a host page
2567 * and we need to discard.
2568 */
2569 }
2570
2571 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2572 unsigned long page;
2573 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2574 host_ratio);
2575 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2576
2577 /* Clean up the bitmap */
2578 for (page = fixup_start_addr;
2579 page < fixup_start_addr + host_ratio; page++) {
2580 /*
2581 * Remark them as dirty, updating the count for any pages
2582 * that weren't previously dirty.
2583 */
2584 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2585 }
2586 }
2587
2588 /* Find the next dirty page for the next iteration */
2589 run_start = find_next_bit(bitmap, pages, run_start);
2590 }
2591 }
2592
2593 /**
2594 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2595 *
2596 * Transmit the set of pages to be discarded after precopy to the target
2597 * these are pages that:
2598 * a) Have been previously transmitted but are now dirty again
2599 * b) Pages that have never been transmitted, this ensures that
2600 * any pages on the destination that have been mapped by background
2601 * tasks get discarded (transparent huge pages is the specific concern)
2602 * Hopefully this is pretty sparse
2603 *
2604 * @ms: current migration state
2605 */
ram_postcopy_send_discard_bitmap(MigrationState * ms)2606 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2607 {
2608 RAMState *rs = ram_state;
2609
2610 RCU_READ_LOCK_GUARD();
2611
2612 /* This should be our last sync, the src is now paused */
2613 migration_bitmap_sync(rs, false);
2614
2615 /* Easiest way to make sure we don't resume in the middle of a host-page */
2616 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2617 rs->last_seen_block = NULL;
2618 rs->last_page = 0;
2619
2620 postcopy_each_ram_send_discard(ms);
2621
2622 trace_ram_postcopy_send_discard_bitmap();
2623 }
2624
2625 /**
2626 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2627 *
2628 * Returns zero on success
2629 *
2630 * @rbname: name of the RAMBlock of the request. NULL means the
2631 * same that last one.
2632 * @start: RAMBlock starting page
2633 * @length: RAMBlock size
2634 */
ram_discard_range(const char * rbname,uint64_t start,size_t length)2635 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2636 {
2637 trace_ram_discard_range(rbname, start, length);
2638
2639 RCU_READ_LOCK_GUARD();
2640 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2641
2642 if (!rb) {
2643 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2644 return -1;
2645 }
2646
2647 /*
2648 * On source VM, we don't need to update the received bitmap since
2649 * we don't even have one.
2650 */
2651 if (rb->receivedmap) {
2652 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2653 length >> qemu_target_page_bits());
2654 }
2655
2656 return ram_block_discard_range(rb, start, length);
2657 }
2658
2659 /*
2660 * For every allocation, we will try not to crash the VM if the
2661 * allocation failed.
2662 */
xbzrle_init(Error ** errp)2663 static bool xbzrle_init(Error **errp)
2664 {
2665 if (!migrate_xbzrle()) {
2666 return true;
2667 }
2668
2669 XBZRLE_cache_lock();
2670
2671 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2672 if (!XBZRLE.zero_target_page) {
2673 error_setg(errp, "%s: Error allocating zero page", __func__);
2674 goto err_out;
2675 }
2676
2677 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2678 TARGET_PAGE_SIZE, errp);
2679 if (!XBZRLE.cache) {
2680 goto free_zero_page;
2681 }
2682
2683 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2684 if (!XBZRLE.encoded_buf) {
2685 error_setg(errp, "%s: Error allocating encoded_buf", __func__);
2686 goto free_cache;
2687 }
2688
2689 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2690 if (!XBZRLE.current_buf) {
2691 error_setg(errp, "%s: Error allocating current_buf", __func__);
2692 goto free_encoded_buf;
2693 }
2694
2695 /* We are all good */
2696 XBZRLE_cache_unlock();
2697 return true;
2698
2699 free_encoded_buf:
2700 g_free(XBZRLE.encoded_buf);
2701 XBZRLE.encoded_buf = NULL;
2702 free_cache:
2703 cache_fini(XBZRLE.cache);
2704 XBZRLE.cache = NULL;
2705 free_zero_page:
2706 g_free(XBZRLE.zero_target_page);
2707 XBZRLE.zero_target_page = NULL;
2708 err_out:
2709 XBZRLE_cache_unlock();
2710 return false;
2711 }
2712
ram_state_init(RAMState ** rsp,Error ** errp)2713 static bool ram_state_init(RAMState **rsp, Error **errp)
2714 {
2715 *rsp = g_try_new0(RAMState, 1);
2716
2717 if (!*rsp) {
2718 error_setg(errp, "%s: Init ramstate fail", __func__);
2719 return false;
2720 }
2721
2722 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2723 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2724 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2725 (*rsp)->ram_bytes_total = ram_bytes_total();
2726
2727 /*
2728 * Count the total number of pages used by ram blocks not including any
2729 * gaps due to alignment or unplugs.
2730 * This must match with the initial values of dirty bitmap.
2731 */
2732 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2733 ram_state_reset(*rsp);
2734
2735 return true;
2736 }
2737
ram_list_init_bitmaps(void)2738 static void ram_list_init_bitmaps(void)
2739 {
2740 MigrationState *ms = migrate_get_current();
2741 RAMBlock *block;
2742 unsigned long pages;
2743 uint8_t shift;
2744
2745 /* Skip setting bitmap if there is no RAM */
2746 if (ram_bytes_total()) {
2747 shift = ms->clear_bitmap_shift;
2748 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2749 error_report("clear_bitmap_shift (%u) too big, using "
2750 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2751 shift = CLEAR_BITMAP_SHIFT_MAX;
2752 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2753 error_report("clear_bitmap_shift (%u) too small, using "
2754 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2755 shift = CLEAR_BITMAP_SHIFT_MIN;
2756 }
2757
2758 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2759 pages = block->max_length >> TARGET_PAGE_BITS;
2760 /*
2761 * The initial dirty bitmap for migration must be set with all
2762 * ones to make sure we'll migrate every guest RAM page to
2763 * destination.
2764 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2765 * new migration after a failed migration, ram_list.
2766 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2767 * guest memory.
2768 */
2769 block->bmap = bitmap_new(pages);
2770 bitmap_set(block->bmap, 0, pages);
2771 if (migrate_mapped_ram()) {
2772 block->file_bmap = bitmap_new(pages);
2773 }
2774 block->clear_bmap_shift = shift;
2775 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2776 }
2777 }
2778 }
2779
migration_bitmap_clear_discarded_pages(RAMState * rs)2780 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2781 {
2782 unsigned long pages;
2783 RAMBlock *rb;
2784
2785 RCU_READ_LOCK_GUARD();
2786
2787 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2788 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2789 rs->migration_dirty_pages -= pages;
2790 }
2791 }
2792
ram_init_bitmaps(RAMState * rs,Error ** errp)2793 static bool ram_init_bitmaps(RAMState *rs, Error **errp)
2794 {
2795 bool ret = true;
2796
2797 qemu_mutex_lock_ramlist();
2798
2799 WITH_RCU_READ_LOCK_GUARD() {
2800 ram_list_init_bitmaps();
2801 /* We don't use dirty log with background snapshots */
2802 if (!migrate_background_snapshot()) {
2803 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
2804 if (!ret) {
2805 goto out_unlock;
2806 }
2807 migration_bitmap_sync_precopy(false);
2808 }
2809 }
2810 out_unlock:
2811 qemu_mutex_unlock_ramlist();
2812
2813 if (!ret) {
2814 ram_bitmaps_destroy();
2815 return false;
2816 }
2817
2818 /*
2819 * After an eventual first bitmap sync, fixup the initial bitmap
2820 * containing all 1s to exclude any discarded pages from migration.
2821 */
2822 migration_bitmap_clear_discarded_pages(rs);
2823 return true;
2824 }
2825
ram_init_all(RAMState ** rsp,Error ** errp)2826 static int ram_init_all(RAMState **rsp, Error **errp)
2827 {
2828 if (!ram_state_init(rsp, errp)) {
2829 return -1;
2830 }
2831
2832 if (!xbzrle_init(errp)) {
2833 ram_state_cleanup(rsp);
2834 return -1;
2835 }
2836
2837 if (!ram_init_bitmaps(*rsp, errp)) {
2838 return -1;
2839 }
2840
2841 return 0;
2842 }
2843
ram_state_resume_prepare(RAMState * rs,QEMUFile * out)2844 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2845 {
2846 RAMBlock *block;
2847 uint64_t pages = 0;
2848
2849 /*
2850 * Postcopy is not using xbzrle/compression, so no need for that.
2851 * Also, since source are already halted, we don't need to care
2852 * about dirty page logging as well.
2853 */
2854
2855 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2856 pages += bitmap_count_one(block->bmap,
2857 block->used_length >> TARGET_PAGE_BITS);
2858 }
2859
2860 /* This may not be aligned with current bitmaps. Recalculate. */
2861 rs->migration_dirty_pages = pages;
2862
2863 ram_state_reset(rs);
2864
2865 /* Update RAMState cache of output QEMUFile */
2866 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2867
2868 trace_ram_state_resume_prepare(pages);
2869 }
2870
2871 /*
2872 * This function clears bits of the free pages reported by the caller from the
2873 * migration dirty bitmap. @addr is the host address corresponding to the
2874 * start of the continuous guest free pages, and @len is the total bytes of
2875 * those pages.
2876 */
qemu_guest_free_page_hint(void * addr,size_t len)2877 void qemu_guest_free_page_hint(void *addr, size_t len)
2878 {
2879 RAMBlock *block;
2880 ram_addr_t offset;
2881 size_t used_len, start, npages;
2882
2883 /* This function is currently expected to be used during live migration */
2884 if (!migration_is_running()) {
2885 return;
2886 }
2887
2888 for (; len > 0; len -= used_len, addr += used_len) {
2889 block = qemu_ram_block_from_host(addr, false, &offset);
2890 if (unlikely(!block || offset >= block->used_length)) {
2891 /*
2892 * The implementation might not support RAMBlock resize during
2893 * live migration, but it could happen in theory with future
2894 * updates. So we add a check here to capture that case.
2895 */
2896 error_report_once("%s unexpected error", __func__);
2897 return;
2898 }
2899
2900 if (len <= block->used_length - offset) {
2901 used_len = len;
2902 } else {
2903 used_len = block->used_length - offset;
2904 }
2905
2906 start = offset >> TARGET_PAGE_BITS;
2907 npages = used_len >> TARGET_PAGE_BITS;
2908
2909 qemu_mutex_lock(&ram_state->bitmap_mutex);
2910 /*
2911 * The skipped free pages are equavalent to be sent from clear_bmap's
2912 * perspective, so clear the bits from the memory region bitmap which
2913 * are initially set. Otherwise those skipped pages will be sent in
2914 * the next round after syncing from the memory region bitmap.
2915 */
2916 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2917 ram_state->migration_dirty_pages -=
2918 bitmap_count_one_with_offset(block->bmap, start, npages);
2919 bitmap_clear(block->bmap, start, npages);
2920 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2921 }
2922 }
2923
2924 #define MAPPED_RAM_HDR_VERSION 1
2925 struct MappedRamHeader {
2926 uint32_t version;
2927 /*
2928 * The target's page size, so we know how many pages are in the
2929 * bitmap.
2930 */
2931 uint64_t page_size;
2932 /*
2933 * The offset in the migration file where the pages bitmap is
2934 * stored.
2935 */
2936 uint64_t bitmap_offset;
2937 /*
2938 * The offset in the migration file where the actual pages (data)
2939 * are stored.
2940 */
2941 uint64_t pages_offset;
2942 } QEMU_PACKED;
2943 typedef struct MappedRamHeader MappedRamHeader;
2944
mapped_ram_setup_ramblock(QEMUFile * file,RAMBlock * block)2945 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2946 {
2947 g_autofree MappedRamHeader *header = NULL;
2948 size_t header_size, bitmap_size;
2949 long num_pages;
2950
2951 header = g_new0(MappedRamHeader, 1);
2952 header_size = sizeof(MappedRamHeader);
2953
2954 num_pages = block->used_length >> TARGET_PAGE_BITS;
2955 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
2956
2957 /*
2958 * Save the file offsets of where the bitmap and the pages should
2959 * go as they are written at the end of migration and during the
2960 * iterative phase, respectively.
2961 */
2962 block->bitmap_offset = qemu_get_offset(file) + header_size;
2963 block->pages_offset = ROUND_UP(block->bitmap_offset +
2964 bitmap_size,
2965 MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
2966
2967 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
2968 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
2969 header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
2970 header->pages_offset = cpu_to_be64(block->pages_offset);
2971
2972 qemu_put_buffer(file, (uint8_t *) header, header_size);
2973
2974 /* prepare offset for next ramblock */
2975 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
2976 }
2977
mapped_ram_read_header(QEMUFile * file,MappedRamHeader * header,Error ** errp)2978 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
2979 Error **errp)
2980 {
2981 size_t ret, header_size = sizeof(MappedRamHeader);
2982
2983 ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
2984 if (ret != header_size) {
2985 error_setg(errp, "Could not read whole mapped-ram migration header "
2986 "(expected %zd, got %zd bytes)", header_size, ret);
2987 return false;
2988 }
2989
2990 /* migration stream is big-endian */
2991 header->version = be32_to_cpu(header->version);
2992
2993 if (header->version > MAPPED_RAM_HDR_VERSION) {
2994 error_setg(errp, "Migration mapped-ram capability version not "
2995 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
2996 header->version);
2997 return false;
2998 }
2999
3000 header->page_size = be64_to_cpu(header->page_size);
3001 header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3002 header->pages_offset = be64_to_cpu(header->pages_offset);
3003
3004 return true;
3005 }
3006
3007 /*
3008 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3009 * long-running RCU critical section. When rcu-reclaims in the code
3010 * start to become numerous it will be necessary to reduce the
3011 * granularity of these critical sections.
3012 */
3013
3014 /**
3015 * ram_save_setup: Setup RAM for migration
3016 *
3017 * Returns zero to indicate success and negative for error
3018 *
3019 * @f: QEMUFile where to send the data
3020 * @opaque: RAMState pointer
3021 * @errp: pointer to Error*, to store an error if it happens.
3022 */
ram_save_setup(QEMUFile * f,void * opaque,Error ** errp)3023 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
3024 {
3025 RAMState **rsp = opaque;
3026 RAMBlock *block;
3027 int ret, max_hg_page_size;
3028
3029 /* migration has already setup the bitmap, reuse it. */
3030 if (!migration_in_colo_state()) {
3031 if (ram_init_all(rsp, errp) != 0) {
3032 return -1;
3033 }
3034 }
3035 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3036
3037 /*
3038 * ??? Mirrors the previous value of qemu_host_page_size,
3039 * but is this really what was intended for the migration?
3040 */
3041 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3042
3043 WITH_RCU_READ_LOCK_GUARD() {
3044 qemu_put_be64(f, ram_bytes_total_with_ignored()
3045 | RAM_SAVE_FLAG_MEM_SIZE);
3046
3047 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3048 qemu_put_byte(f, strlen(block->idstr));
3049 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3050 qemu_put_be64(f, block->used_length);
3051 if (migrate_postcopy_ram() &&
3052 block->page_size != max_hg_page_size) {
3053 qemu_put_be64(f, block->page_size);
3054 }
3055 if (migrate_ignore_shared()) {
3056 qemu_put_be64(f, block->mr->addr);
3057 }
3058
3059 if (migrate_mapped_ram()) {
3060 mapped_ram_setup_ramblock(f, block);
3061 }
3062 }
3063 }
3064
3065 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3066 if (ret < 0) {
3067 error_setg(errp, "%s: failed to start RDMA registration", __func__);
3068 qemu_file_set_error(f, ret);
3069 return ret;
3070 }
3071
3072 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3073 if (ret < 0) {
3074 error_setg(errp, "%s: failed to stop RDMA registration", __func__);
3075 qemu_file_set_error(f, ret);
3076 return ret;
3077 }
3078
3079 if (migrate_multifd()) {
3080 multifd_ram_save_setup();
3081 }
3082
3083 /*
3084 * This operation is unfortunate..
3085 *
3086 * For legacy QEMUs using per-section sync
3087 * =======================================
3088 *
3089 * This must exist because the EOS below requires the SYNC messages
3090 * per-channel to work.
3091 *
3092 * For modern QEMUs using per-round sync
3093 * =====================================
3094 *
3095 * Logically such sync is not needed, and recv threads should not run
3096 * until setup ready (using things like channels_ready on src). Then
3097 * we should be all fine.
3098 *
3099 * However even if we add channels_ready to recv side in new QEMUs, old
3100 * QEMU won't have them so this sync will still be needed to make sure
3101 * multifd recv threads won't start processing guest pages early before
3102 * ram_load_setup() is properly done.
3103 *
3104 * Let's stick with this. Fortunately the overhead is low to sync
3105 * during setup because the VM is running, so at least it's not
3106 * accounted as part of downtime.
3107 */
3108 bql_unlock();
3109 ret = multifd_ram_flush_and_sync(f);
3110 bql_lock();
3111 if (ret < 0) {
3112 error_setg(errp, "%s: multifd synchronization failed", __func__);
3113 return ret;
3114 }
3115
3116 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3117 ret = qemu_fflush(f);
3118 if (ret < 0) {
3119 error_setg_errno(errp, -ret, "%s failed", __func__);
3120 }
3121 return ret;
3122 }
3123
ram_save_file_bmap(QEMUFile * f)3124 static void ram_save_file_bmap(QEMUFile *f)
3125 {
3126 RAMBlock *block;
3127
3128 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3129 long num_pages = block->used_length >> TARGET_PAGE_BITS;
3130 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3131
3132 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3133 block->bitmap_offset);
3134 ram_transferred_add(bitmap_size);
3135
3136 /*
3137 * Free the bitmap here to catch any synchronization issues
3138 * with multifd channels. No channels should be sending pages
3139 * after we've written the bitmap to file.
3140 */
3141 g_free(block->file_bmap);
3142 block->file_bmap = NULL;
3143 }
3144 }
3145
ramblock_set_file_bmap_atomic(RAMBlock * block,ram_addr_t offset,bool set)3146 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3147 {
3148 if (set) {
3149 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3150 } else {
3151 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3152 }
3153 }
3154
3155 /**
3156 * ram_save_iterate: iterative stage for migration
3157 *
3158 * Returns zero to indicate success and negative for error
3159 *
3160 * @f: QEMUFile where to send the data
3161 * @opaque: RAMState pointer
3162 */
ram_save_iterate(QEMUFile * f,void * opaque)3163 static int ram_save_iterate(QEMUFile *f, void *opaque)
3164 {
3165 RAMState **temp = opaque;
3166 RAMState *rs = *temp;
3167 int ret = 0;
3168 int i;
3169 int64_t t0;
3170 int done = 0;
3171
3172 /*
3173 * We'll take this lock a little bit long, but it's okay for two reasons.
3174 * Firstly, the only possible other thread to take it is who calls
3175 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3176 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3177 * guarantees that we'll at least released it in a regular basis.
3178 */
3179 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3180 WITH_RCU_READ_LOCK_GUARD() {
3181 if (ram_list.version != rs->last_version) {
3182 ram_state_reset(rs);
3183 }
3184
3185 /* Read version before ram_list.blocks */
3186 smp_rmb();
3187
3188 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3189 if (ret < 0) {
3190 qemu_file_set_error(f, ret);
3191 goto out;
3192 }
3193
3194 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3195 i = 0;
3196 while ((ret = migration_rate_exceeded(f)) == 0 ||
3197 postcopy_has_request(rs)) {
3198 int pages;
3199
3200 if (qemu_file_get_error(f)) {
3201 break;
3202 }
3203
3204 pages = ram_find_and_save_block(rs);
3205 /* no more pages to sent */
3206 if (pages == 0) {
3207 done = 1;
3208 break;
3209 }
3210
3211 if (pages < 0) {
3212 qemu_file_set_error(f, pages);
3213 break;
3214 }
3215
3216 rs->target_page_count += pages;
3217
3218 /*
3219 * we want to check in the 1st loop, just in case it was the 1st
3220 * time and we had to sync the dirty bitmap.
3221 * qemu_clock_get_ns() is a bit expensive, so we only check each
3222 * some iterations
3223 */
3224 if ((i & 63) == 0) {
3225 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3226 1000000;
3227 if (t1 > MAX_WAIT) {
3228 trace_ram_save_iterate_big_wait(t1, i);
3229 break;
3230 }
3231 }
3232 i++;
3233 }
3234 }
3235 }
3236
3237 /*
3238 * Must occur before EOS (or any QEMUFile operation)
3239 * because of RDMA protocol.
3240 */
3241 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3242 if (ret < 0) {
3243 qemu_file_set_error(f, ret);
3244 }
3245
3246 out:
3247 if (ret >= 0 && migration_is_running()) {
3248 if (multifd_ram_sync_per_section()) {
3249 ret = multifd_ram_flush_and_sync(f);
3250 if (ret < 0) {
3251 return ret;
3252 }
3253 }
3254
3255 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3256 ram_transferred_add(8);
3257 ret = qemu_fflush(f);
3258 }
3259 if (ret < 0) {
3260 return ret;
3261 }
3262
3263 return done;
3264 }
3265
3266 /**
3267 * ram_save_complete: function called to send the remaining amount of ram
3268 *
3269 * Returns zero to indicate success or negative on error
3270 *
3271 * Called with the BQL
3272 *
3273 * @f: QEMUFile where to send the data
3274 * @opaque: RAMState pointer
3275 */
ram_save_complete(QEMUFile * f,void * opaque)3276 static int ram_save_complete(QEMUFile *f, void *opaque)
3277 {
3278 RAMState **temp = opaque;
3279 RAMState *rs = *temp;
3280 int ret = 0;
3281
3282 rs->last_stage = !migration_in_colo_state();
3283
3284 WITH_RCU_READ_LOCK_GUARD() {
3285 if (!migration_in_postcopy()) {
3286 migration_bitmap_sync_precopy(true);
3287 }
3288
3289 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3290 if (ret < 0) {
3291 qemu_file_set_error(f, ret);
3292 return ret;
3293 }
3294
3295 /* try transferring iterative blocks of memory */
3296
3297 /* flush all remaining blocks regardless of rate limiting */
3298 qemu_mutex_lock(&rs->bitmap_mutex);
3299 while (true) {
3300 int pages;
3301
3302 pages = ram_find_and_save_block(rs);
3303 /* no more blocks to sent */
3304 if (pages == 0) {
3305 break;
3306 }
3307 if (pages < 0) {
3308 qemu_mutex_unlock(&rs->bitmap_mutex);
3309 return pages;
3310 }
3311 }
3312 qemu_mutex_unlock(&rs->bitmap_mutex);
3313
3314 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3315 if (ret < 0) {
3316 qemu_file_set_error(f, ret);
3317 return ret;
3318 }
3319 }
3320
3321 if (multifd_ram_sync_per_section()) {
3322 /*
3323 * Only the old dest QEMU will need this sync, because each EOS
3324 * will require one SYNC message on each channel.
3325 */
3326 ret = multifd_ram_flush_and_sync(f);
3327 if (ret < 0) {
3328 return ret;
3329 }
3330 }
3331
3332 if (migrate_mapped_ram()) {
3333 ram_save_file_bmap(f);
3334
3335 if (qemu_file_get_error(f)) {
3336 Error *local_err = NULL;
3337 int err = qemu_file_get_error_obj(f, &local_err);
3338
3339 error_reportf_err(local_err, "Failed to write bitmap to file: ");
3340 return -err;
3341 }
3342 }
3343
3344 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3345 return qemu_fflush(f);
3346 }
3347
ram_state_pending_estimate(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3348 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3349 uint64_t *can_postcopy)
3350 {
3351 RAMState **temp = opaque;
3352 RAMState *rs = *temp;
3353
3354 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3355
3356 if (migrate_postcopy_ram()) {
3357 /* We can do postcopy, and all the data is postcopiable */
3358 *can_postcopy += remaining_size;
3359 } else {
3360 *must_precopy += remaining_size;
3361 }
3362 }
3363
ram_state_pending_exact(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3364 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3365 uint64_t *can_postcopy)
3366 {
3367 RAMState **temp = opaque;
3368 RAMState *rs = *temp;
3369 uint64_t remaining_size;
3370
3371 if (!migration_in_postcopy()) {
3372 bql_lock();
3373 WITH_RCU_READ_LOCK_GUARD() {
3374 migration_bitmap_sync_precopy(false);
3375 }
3376 bql_unlock();
3377 }
3378
3379 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3380
3381 if (migrate_postcopy_ram()) {
3382 /* We can do postcopy, and all the data is postcopiable */
3383 *can_postcopy += remaining_size;
3384 } else {
3385 *must_precopy += remaining_size;
3386 }
3387 }
3388
load_xbzrle(QEMUFile * f,ram_addr_t addr,void * host)3389 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3390 {
3391 unsigned int xh_len;
3392 int xh_flags;
3393 uint8_t *loaded_data;
3394
3395 /* extract RLE header */
3396 xh_flags = qemu_get_byte(f);
3397 xh_len = qemu_get_be16(f);
3398
3399 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3400 error_report("Failed to load XBZRLE page - wrong compression!");
3401 return -1;
3402 }
3403
3404 if (xh_len > TARGET_PAGE_SIZE) {
3405 error_report("Failed to load XBZRLE page - len overflow!");
3406 return -1;
3407 }
3408 loaded_data = XBZRLE.decoded_buf;
3409 /* load data and decode */
3410 /* it can change loaded_data to point to an internal buffer */
3411 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3412
3413 /* decode RLE */
3414 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3415 TARGET_PAGE_SIZE) == -1) {
3416 error_report("Failed to load XBZRLE page - decode error!");
3417 return -1;
3418 }
3419
3420 return 0;
3421 }
3422
3423 /**
3424 * ram_block_from_stream: read a RAMBlock id from the migration stream
3425 *
3426 * Must be called from within a rcu critical section.
3427 *
3428 * Returns a pointer from within the RCU-protected ram_list.
3429 *
3430 * @mis: the migration incoming state pointer
3431 * @f: QEMUFile where to read the data from
3432 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3433 * @channel: the channel we're using
3434 */
ram_block_from_stream(MigrationIncomingState * mis,QEMUFile * f,int flags,int channel)3435 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3436 QEMUFile *f, int flags,
3437 int channel)
3438 {
3439 RAMBlock *block = mis->last_recv_block[channel];
3440 char id[256];
3441 uint8_t len;
3442
3443 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3444 if (!block) {
3445 error_report("Ack, bad migration stream!");
3446 return NULL;
3447 }
3448 return block;
3449 }
3450
3451 len = qemu_get_byte(f);
3452 qemu_get_buffer(f, (uint8_t *)id, len);
3453 id[len] = 0;
3454
3455 block = qemu_ram_block_by_name(id);
3456 if (!block) {
3457 error_report("Can't find block %s", id);
3458 return NULL;
3459 }
3460
3461 if (migrate_ram_is_ignored(block)) {
3462 error_report("block %s should not be migrated !", id);
3463 return NULL;
3464 }
3465
3466 mis->last_recv_block[channel] = block;
3467
3468 return block;
3469 }
3470
host_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3471 static inline void *host_from_ram_block_offset(RAMBlock *block,
3472 ram_addr_t offset)
3473 {
3474 if (!offset_in_ramblock(block, offset)) {
3475 return NULL;
3476 }
3477
3478 return block->host + offset;
3479 }
3480
host_page_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3481 static void *host_page_from_ram_block_offset(RAMBlock *block,
3482 ram_addr_t offset)
3483 {
3484 /* Note: Explicitly no check against offset_in_ramblock(). */
3485 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3486 block->page_size);
3487 }
3488
host_page_offset_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3489 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3490 ram_addr_t offset)
3491 {
3492 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3493 }
3494
colo_record_bitmap(RAMBlock * block,ram_addr_t * normal,uint32_t pages)3495 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3496 {
3497 qemu_mutex_lock(&ram_state->bitmap_mutex);
3498 for (int i = 0; i < pages; i++) {
3499 ram_addr_t offset = normal[i];
3500 ram_state->migration_dirty_pages += !test_and_set_bit(
3501 offset >> TARGET_PAGE_BITS,
3502 block->bmap);
3503 }
3504 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3505 }
3506
colo_cache_from_block_offset(RAMBlock * block,ram_addr_t offset,bool record_bitmap)3507 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3508 ram_addr_t offset, bool record_bitmap)
3509 {
3510 if (!offset_in_ramblock(block, offset)) {
3511 return NULL;
3512 }
3513 if (!block->colo_cache) {
3514 error_report("%s: colo_cache is NULL in block :%s",
3515 __func__, block->idstr);
3516 return NULL;
3517 }
3518
3519 /*
3520 * During colo checkpoint, we need bitmap of these migrated pages.
3521 * It help us to decide which pages in ram cache should be flushed
3522 * into VM's RAM later.
3523 */
3524 if (record_bitmap) {
3525 colo_record_bitmap(block, &offset, 1);
3526 }
3527 return block->colo_cache + offset;
3528 }
3529
3530 /**
3531 * ram_handle_zero: handle the zero page case
3532 *
3533 * If a page (or a whole RDMA chunk) has been
3534 * determined to be zero, then zap it.
3535 *
3536 * @host: host address for the zero page
3537 * @ch: what the page is filled from. We only support zero
3538 * @size: size of the zero page
3539 */
ram_handle_zero(void * host,uint64_t size)3540 void ram_handle_zero(void *host, uint64_t size)
3541 {
3542 if (!buffer_is_zero(host, size)) {
3543 memset(host, 0, size);
3544 }
3545 }
3546
colo_init_ram_state(void)3547 static void colo_init_ram_state(void)
3548 {
3549 Error *local_err = NULL;
3550
3551 if (!ram_state_init(&ram_state, &local_err)) {
3552 error_report_err(local_err);
3553 }
3554 }
3555
3556 /*
3557 * colo cache: this is for secondary VM, we cache the whole
3558 * memory of the secondary VM, it is need to hold the global lock
3559 * to call this helper.
3560 */
colo_init_ram_cache(void)3561 int colo_init_ram_cache(void)
3562 {
3563 RAMBlock *block;
3564
3565 WITH_RCU_READ_LOCK_GUARD() {
3566 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3567 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3568 NULL, false, false);
3569 if (!block->colo_cache) {
3570 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3571 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3572 block->used_length);
3573 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3574 if (block->colo_cache) {
3575 qemu_anon_ram_free(block->colo_cache, block->used_length);
3576 block->colo_cache = NULL;
3577 }
3578 }
3579 return -errno;
3580 }
3581 if (!machine_dump_guest_core(current_machine)) {
3582 qemu_madvise(block->colo_cache, block->used_length,
3583 QEMU_MADV_DONTDUMP);
3584 }
3585 }
3586 }
3587
3588 /*
3589 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3590 * with to decide which page in cache should be flushed into SVM's RAM. Here
3591 * we use the same name 'ram_bitmap' as for migration.
3592 */
3593 if (ram_bytes_total()) {
3594 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3595 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3596 block->bmap = bitmap_new(pages);
3597 }
3598 }
3599
3600 colo_init_ram_state();
3601 return 0;
3602 }
3603
3604 /* TODO: duplicated with ram_init_bitmaps */
colo_incoming_start_dirty_log(void)3605 void colo_incoming_start_dirty_log(void)
3606 {
3607 RAMBlock *block = NULL;
3608 Error *local_err = NULL;
3609
3610 /* For memory_global_dirty_log_start below. */
3611 bql_lock();
3612 qemu_mutex_lock_ramlist();
3613
3614 memory_global_dirty_log_sync(false);
3615 WITH_RCU_READ_LOCK_GUARD() {
3616 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3617 ramblock_sync_dirty_bitmap(ram_state, block);
3618 /* Discard this dirty bitmap record */
3619 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3620 }
3621 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
3622 &local_err)) {
3623 error_report_err(local_err);
3624 }
3625 }
3626 ram_state->migration_dirty_pages = 0;
3627 qemu_mutex_unlock_ramlist();
3628 bql_unlock();
3629 }
3630
3631 /* It is need to hold the global lock to call this helper */
colo_release_ram_cache(void)3632 void colo_release_ram_cache(void)
3633 {
3634 RAMBlock *block;
3635
3636 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3637 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3638 g_free(block->bmap);
3639 block->bmap = NULL;
3640 }
3641
3642 WITH_RCU_READ_LOCK_GUARD() {
3643 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3644 if (block->colo_cache) {
3645 qemu_anon_ram_free(block->colo_cache, block->used_length);
3646 block->colo_cache = NULL;
3647 }
3648 }
3649 }
3650 ram_state_cleanup(&ram_state);
3651 }
3652
3653 /**
3654 * ram_load_setup: Setup RAM for migration incoming side
3655 *
3656 * Returns zero to indicate success and negative for error
3657 *
3658 * @f: QEMUFile where to receive the data
3659 * @opaque: RAMState pointer
3660 * @errp: pointer to Error*, to store an error if it happens.
3661 */
ram_load_setup(QEMUFile * f,void * opaque,Error ** errp)3662 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
3663 {
3664 xbzrle_load_setup();
3665 ramblock_recv_map_init();
3666
3667 return 0;
3668 }
3669
ram_load_cleanup(void * opaque)3670 static int ram_load_cleanup(void *opaque)
3671 {
3672 RAMBlock *rb;
3673
3674 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3675 qemu_ram_block_writeback(rb);
3676 }
3677
3678 xbzrle_load_cleanup();
3679
3680 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3681 g_free(rb->receivedmap);
3682 rb->receivedmap = NULL;
3683 }
3684
3685 return 0;
3686 }
3687
3688 /**
3689 * ram_postcopy_incoming_init: allocate postcopy data structures
3690 *
3691 * Returns 0 for success and negative if there was one error
3692 *
3693 * @mis: current migration incoming state
3694 *
3695 * Allocate data structures etc needed by incoming migration with
3696 * postcopy-ram. postcopy-ram's similarly names
3697 * postcopy_ram_incoming_init does the work.
3698 */
ram_postcopy_incoming_init(MigrationIncomingState * mis)3699 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3700 {
3701 return postcopy_ram_incoming_init(mis);
3702 }
3703
3704 /**
3705 * ram_load_postcopy: load a page in postcopy case
3706 *
3707 * Returns 0 for success or -errno in case of error
3708 *
3709 * Called in postcopy mode by ram_load().
3710 * rcu_read_lock is taken prior to this being called.
3711 *
3712 * @f: QEMUFile where to send the data
3713 * @channel: the channel to use for loading
3714 */
ram_load_postcopy(QEMUFile * f,int channel)3715 int ram_load_postcopy(QEMUFile *f, int channel)
3716 {
3717 int flags = 0, ret = 0;
3718 bool place_needed = false;
3719 bool matches_target_page_size = false;
3720 MigrationIncomingState *mis = migration_incoming_get_current();
3721 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3722
3723 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3724 ram_addr_t addr;
3725 void *page_buffer = NULL;
3726 void *place_source = NULL;
3727 RAMBlock *block = NULL;
3728 uint8_t ch;
3729
3730 addr = qemu_get_be64(f);
3731
3732 /*
3733 * If qemu file error, we should stop here, and then "addr"
3734 * may be invalid
3735 */
3736 ret = qemu_file_get_error(f);
3737 if (ret) {
3738 break;
3739 }
3740
3741 flags = addr & ~TARGET_PAGE_MASK;
3742 addr &= TARGET_PAGE_MASK;
3743
3744 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3745 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3746 block = ram_block_from_stream(mis, f, flags, channel);
3747 if (!block) {
3748 ret = -EINVAL;
3749 break;
3750 }
3751
3752 /*
3753 * Relying on used_length is racy and can result in false positives.
3754 * We might place pages beyond used_length in case RAM was shrunk
3755 * while in postcopy, which is fine - trying to place via
3756 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3757 */
3758 if (!block->host || addr >= block->postcopy_length) {
3759 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3760 ret = -EINVAL;
3761 break;
3762 }
3763 tmp_page->target_pages++;
3764 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3765 /*
3766 * Postcopy requires that we place whole host pages atomically;
3767 * these may be huge pages for RAMBlocks that are backed by
3768 * hugetlbfs.
3769 * To make it atomic, the data is read into a temporary page
3770 * that's moved into place later.
3771 * The migration protocol uses, possibly smaller, target-pages
3772 * however the source ensures it always sends all the components
3773 * of a host page in one chunk.
3774 */
3775 page_buffer = tmp_page->tmp_huge_page +
3776 host_page_offset_from_ram_block_offset(block, addr);
3777 /* If all TP are zero then we can optimise the place */
3778 if (tmp_page->target_pages == 1) {
3779 tmp_page->host_addr =
3780 host_page_from_ram_block_offset(block, addr);
3781 } else if (tmp_page->host_addr !=
3782 host_page_from_ram_block_offset(block, addr)) {
3783 /* not the 1st TP within the HP */
3784 error_report("Non-same host page detected on channel %d: "
3785 "Target host page %p, received host page %p "
3786 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3787 channel, tmp_page->host_addr,
3788 host_page_from_ram_block_offset(block, addr),
3789 block->idstr, addr, tmp_page->target_pages);
3790 ret = -EINVAL;
3791 break;
3792 }
3793
3794 /*
3795 * If it's the last part of a host page then we place the host
3796 * page
3797 */
3798 if (tmp_page->target_pages ==
3799 (block->page_size / TARGET_PAGE_SIZE)) {
3800 place_needed = true;
3801 }
3802 place_source = tmp_page->tmp_huge_page;
3803 }
3804
3805 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3806 case RAM_SAVE_FLAG_ZERO:
3807 ch = qemu_get_byte(f);
3808 if (ch != 0) {
3809 error_report("Found a zero page with value %d", ch);
3810 ret = -EINVAL;
3811 break;
3812 }
3813 /*
3814 * Can skip to set page_buffer when
3815 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3816 */
3817 if (!matches_target_page_size) {
3818 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3819 }
3820 break;
3821
3822 case RAM_SAVE_FLAG_PAGE:
3823 tmp_page->all_zero = false;
3824 if (!matches_target_page_size) {
3825 /* For huge pages, we always use temporary buffer */
3826 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3827 } else {
3828 /*
3829 * For small pages that matches target page size, we
3830 * avoid the qemu_file copy. Instead we directly use
3831 * the buffer of QEMUFile to place the page. Note: we
3832 * cannot do any QEMUFile operation before using that
3833 * buffer to make sure the buffer is valid when
3834 * placing the page.
3835 */
3836 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3837 TARGET_PAGE_SIZE);
3838 }
3839 break;
3840 case RAM_SAVE_FLAG_EOS:
3841 break;
3842 default:
3843 error_report("Unknown combination of migration flags: 0x%x"
3844 " (postcopy mode)", flags);
3845 ret = -EINVAL;
3846 break;
3847 }
3848
3849 /* Detect for any possible file errors */
3850 if (!ret && qemu_file_get_error(f)) {
3851 ret = qemu_file_get_error(f);
3852 }
3853
3854 if (!ret && place_needed) {
3855 if (tmp_page->all_zero) {
3856 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3857 } else {
3858 ret = postcopy_place_page(mis, tmp_page->host_addr,
3859 place_source, block);
3860 }
3861 place_needed = false;
3862 postcopy_temp_page_reset(tmp_page);
3863 }
3864 }
3865
3866 return ret;
3867 }
3868
postcopy_is_running(void)3869 static bool postcopy_is_running(void)
3870 {
3871 PostcopyState ps = postcopy_state_get();
3872 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3873 }
3874
3875 /*
3876 * Flush content of RAM cache into SVM's memory.
3877 * Only flush the pages that be dirtied by PVM or SVM or both.
3878 */
colo_flush_ram_cache(void)3879 void colo_flush_ram_cache(void)
3880 {
3881 RAMBlock *block = NULL;
3882 void *dst_host;
3883 void *src_host;
3884 unsigned long offset = 0;
3885
3886 memory_global_dirty_log_sync(false);
3887 qemu_mutex_lock(&ram_state->bitmap_mutex);
3888 WITH_RCU_READ_LOCK_GUARD() {
3889 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3890 ramblock_sync_dirty_bitmap(ram_state, block);
3891 }
3892 }
3893
3894 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3895 WITH_RCU_READ_LOCK_GUARD() {
3896 block = QLIST_FIRST_RCU(&ram_list.blocks);
3897
3898 while (block) {
3899 unsigned long num = 0;
3900
3901 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3902 if (!offset_in_ramblock(block,
3903 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3904 offset = 0;
3905 num = 0;
3906 block = QLIST_NEXT_RCU(block, next);
3907 } else {
3908 unsigned long i = 0;
3909
3910 for (i = 0; i < num; i++) {
3911 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3912 }
3913 dst_host = block->host
3914 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3915 src_host = block->colo_cache
3916 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3917 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3918 offset += num;
3919 }
3920 }
3921 }
3922 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3923 trace_colo_flush_ram_cache_end();
3924 }
3925
ram_load_multifd_pages(void * host_addr,size_t size,uint64_t offset)3926 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3927 uint64_t offset)
3928 {
3929 MultiFDRecvData *data = multifd_get_recv_data();
3930
3931 data->opaque = host_addr;
3932 data->file_offset = offset;
3933 data->size = size;
3934
3935 if (!multifd_recv()) {
3936 return 0;
3937 }
3938
3939 return size;
3940 }
3941
read_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,long num_pages,unsigned long * bitmap,Error ** errp)3942 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3943 long num_pages, unsigned long *bitmap,
3944 Error **errp)
3945 {
3946 ERRP_GUARD();
3947 unsigned long set_bit_idx, clear_bit_idx;
3948 ram_addr_t offset;
3949 void *host;
3950 size_t read, unread, size;
3951
3952 for (set_bit_idx = find_first_bit(bitmap, num_pages);
3953 set_bit_idx < num_pages;
3954 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
3955
3956 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
3957
3958 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
3959 offset = set_bit_idx << TARGET_PAGE_BITS;
3960
3961 while (unread > 0) {
3962 host = host_from_ram_block_offset(block, offset);
3963 if (!host) {
3964 error_setg(errp, "page outside of ramblock %s range",
3965 block->idstr);
3966 return false;
3967 }
3968
3969 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
3970
3971 if (migrate_multifd()) {
3972 read = ram_load_multifd_pages(host, size,
3973 block->pages_offset + offset);
3974 } else {
3975 read = qemu_get_buffer_at(f, host, size,
3976 block->pages_offset + offset);
3977 }
3978
3979 if (!read) {
3980 goto err;
3981 }
3982 offset += read;
3983 unread -= read;
3984 }
3985 }
3986
3987 return true;
3988
3989 err:
3990 qemu_file_get_error_obj(f, errp);
3991 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
3992 "from file offset %" PRIx64 ": ", block->idstr, offset,
3993 block->pages_offset + offset);
3994 return false;
3995 }
3996
parse_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,ram_addr_t length,Error ** errp)3997 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3998 ram_addr_t length, Error **errp)
3999 {
4000 g_autofree unsigned long *bitmap = NULL;
4001 MappedRamHeader header;
4002 size_t bitmap_size;
4003 long num_pages;
4004
4005 if (!mapped_ram_read_header(f, &header, errp)) {
4006 return;
4007 }
4008
4009 block->pages_offset = header.pages_offset;
4010
4011 /*
4012 * Check the alignment of the file region that contains pages. We
4013 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4014 * value to change in the future. Do only a sanity check with page
4015 * size alignment.
4016 */
4017 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4018 error_setg(errp,
4019 "Error reading ramblock %s pages, region has bad alignment",
4020 block->idstr);
4021 return;
4022 }
4023
4024 num_pages = length / header.page_size;
4025 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4026
4027 bitmap = g_malloc0(bitmap_size);
4028 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4029 header.bitmap_offset) != bitmap_size) {
4030 error_setg(errp, "Error reading dirty bitmap");
4031 return;
4032 }
4033
4034 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4035 return;
4036 }
4037
4038 /* Skip pages array */
4039 qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4040 }
4041
parse_ramblock(QEMUFile * f,RAMBlock * block,ram_addr_t length)4042 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4043 {
4044 int ret = 0;
4045 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4046 bool postcopy_advised = migration_incoming_postcopy_advised();
4047 int max_hg_page_size;
4048 Error *local_err = NULL;
4049
4050 assert(block);
4051
4052 if (migrate_mapped_ram()) {
4053 parse_ramblock_mapped_ram(f, block, length, &local_err);
4054 if (local_err) {
4055 error_report_err(local_err);
4056 return -EINVAL;
4057 }
4058 return 0;
4059 }
4060
4061 if (!qemu_ram_is_migratable(block)) {
4062 error_report("block %s should not be migrated !", block->idstr);
4063 return -EINVAL;
4064 }
4065
4066 if (length != block->used_length) {
4067 ret = qemu_ram_resize(block, length, &local_err);
4068 if (local_err) {
4069 error_report_err(local_err);
4070 return ret;
4071 }
4072 }
4073
4074 /*
4075 * ??? Mirrors the previous value of qemu_host_page_size,
4076 * but is this really what was intended for the migration?
4077 */
4078 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4079
4080 /* For postcopy we need to check hugepage sizes match */
4081 if (postcopy_advised && migrate_postcopy_ram() &&
4082 block->page_size != max_hg_page_size) {
4083 uint64_t remote_page_size = qemu_get_be64(f);
4084 if (remote_page_size != block->page_size) {
4085 error_report("Mismatched RAM page size %s "
4086 "(local) %zd != %" PRId64, block->idstr,
4087 block->page_size, remote_page_size);
4088 return -EINVAL;
4089 }
4090 }
4091 if (migrate_ignore_shared()) {
4092 hwaddr addr = qemu_get_be64(f);
4093 if (migrate_ram_is_ignored(block) &&
4094 block->mr->addr != addr) {
4095 error_report("Mismatched GPAs for block %s "
4096 "%" PRId64 "!= %" PRId64, block->idstr,
4097 (uint64_t)addr, (uint64_t)block->mr->addr);
4098 return -EINVAL;
4099 }
4100 }
4101 ret = rdma_block_notification_handle(f, block->idstr);
4102 if (ret < 0) {
4103 qemu_file_set_error(f, ret);
4104 }
4105
4106 return ret;
4107 }
4108
parse_ramblocks(QEMUFile * f,ram_addr_t total_ram_bytes)4109 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4110 {
4111 int ret = 0;
4112
4113 /* Synchronize RAM block list */
4114 while (!ret && total_ram_bytes) {
4115 RAMBlock *block;
4116 char id[256];
4117 ram_addr_t length;
4118 int len = qemu_get_byte(f);
4119
4120 qemu_get_buffer(f, (uint8_t *)id, len);
4121 id[len] = 0;
4122 length = qemu_get_be64(f);
4123
4124 block = qemu_ram_block_by_name(id);
4125 if (block) {
4126 ret = parse_ramblock(f, block, length);
4127 } else {
4128 error_report("Unknown ramblock \"%s\", cannot accept "
4129 "migration", id);
4130 ret = -EINVAL;
4131 }
4132 total_ram_bytes -= length;
4133 }
4134
4135 return ret;
4136 }
4137
4138 /**
4139 * ram_load_precopy: load pages in precopy case
4140 *
4141 * Returns 0 for success or -errno in case of error
4142 *
4143 * Called in precopy mode by ram_load().
4144 * rcu_read_lock is taken prior to this being called.
4145 *
4146 * @f: QEMUFile where to send the data
4147 */
ram_load_precopy(QEMUFile * f)4148 static int ram_load_precopy(QEMUFile *f)
4149 {
4150 MigrationIncomingState *mis = migration_incoming_get_current();
4151 int flags = 0, ret = 0, invalid_flags = 0, i = 0;
4152
4153 if (migrate_mapped_ram()) {
4154 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4155 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4156 RAM_SAVE_FLAG_ZERO);
4157 }
4158
4159 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4160 ram_addr_t addr;
4161 void *host = NULL, *host_bak = NULL;
4162 uint8_t ch;
4163
4164 /*
4165 * Yield periodically to let main loop run, but an iteration of
4166 * the main loop is expensive, so do it each some iterations
4167 */
4168 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4169 aio_co_schedule(qemu_get_current_aio_context(),
4170 qemu_coroutine_self());
4171 qemu_coroutine_yield();
4172 }
4173 i++;
4174
4175 addr = qemu_get_be64(f);
4176 ret = qemu_file_get_error(f);
4177 if (ret) {
4178 error_report("Getting RAM address failed");
4179 break;
4180 }
4181
4182 flags = addr & ~TARGET_PAGE_MASK;
4183 addr &= TARGET_PAGE_MASK;
4184
4185 if (flags & invalid_flags) {
4186 error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4187
4188 ret = -EINVAL;
4189 break;
4190 }
4191
4192 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4193 RAM_SAVE_FLAG_XBZRLE)) {
4194 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4195 RAM_CHANNEL_PRECOPY);
4196
4197 host = host_from_ram_block_offset(block, addr);
4198 /*
4199 * After going into COLO stage, we should not load the page
4200 * into SVM's memory directly, we put them into colo_cache firstly.
4201 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4202 * Previously, we copied all these memory in preparing stage of COLO
4203 * while we need to stop VM, which is a time-consuming process.
4204 * Here we optimize it by a trick, back-up every page while in
4205 * migration process while COLO is enabled, though it affects the
4206 * speed of the migration, but it obviously reduce the downtime of
4207 * back-up all SVM'S memory in COLO preparing stage.
4208 */
4209 if (migration_incoming_colo_enabled()) {
4210 if (migration_incoming_in_colo_state()) {
4211 /* In COLO stage, put all pages into cache temporarily */
4212 host = colo_cache_from_block_offset(block, addr, true);
4213 } else {
4214 /*
4215 * In migration stage but before COLO stage,
4216 * Put all pages into both cache and SVM's memory.
4217 */
4218 host_bak = colo_cache_from_block_offset(block, addr, false);
4219 }
4220 }
4221 if (!host) {
4222 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4223 ret = -EINVAL;
4224 break;
4225 }
4226 if (!migration_incoming_in_colo_state()) {
4227 ramblock_recv_bitmap_set(block, host);
4228 }
4229
4230 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4231 }
4232
4233 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4234 case RAM_SAVE_FLAG_MEM_SIZE:
4235 ret = parse_ramblocks(f, addr);
4236 /*
4237 * For mapped-ram migration (to a file) using multifd, we sync
4238 * once and for all here to make sure all tasks we queued to
4239 * multifd threads are completed, so that all the ramblocks
4240 * (including all the guest memory pages within) are fully
4241 * loaded after this sync returns.
4242 */
4243 if (migrate_mapped_ram()) {
4244 multifd_recv_sync_main();
4245 }
4246 break;
4247
4248 case RAM_SAVE_FLAG_ZERO:
4249 ch = qemu_get_byte(f);
4250 if (ch != 0) {
4251 error_report("Found a zero page with value %d", ch);
4252 ret = -EINVAL;
4253 break;
4254 }
4255 ram_handle_zero(host, TARGET_PAGE_SIZE);
4256 break;
4257
4258 case RAM_SAVE_FLAG_PAGE:
4259 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4260 break;
4261
4262 case RAM_SAVE_FLAG_XBZRLE:
4263 if (load_xbzrle(f, addr, host) < 0) {
4264 error_report("Failed to decompress XBZRLE page at "
4265 RAM_ADDR_FMT, addr);
4266 ret = -EINVAL;
4267 break;
4268 }
4269 break;
4270 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4271 multifd_recv_sync_main();
4272 break;
4273 case RAM_SAVE_FLAG_EOS:
4274 /* normal exit */
4275 if (migrate_multifd() &&
4276 migrate_multifd_flush_after_each_section() &&
4277 /*
4278 * Mapped-ram migration flushes once and for all after
4279 * parsing ramblocks. Always ignore EOS for it.
4280 */
4281 !migrate_mapped_ram()) {
4282 multifd_recv_sync_main();
4283 }
4284 break;
4285 case RAM_SAVE_FLAG_HOOK:
4286 ret = rdma_registration_handle(f);
4287 if (ret < 0) {
4288 qemu_file_set_error(f, ret);
4289 }
4290 break;
4291 default:
4292 error_report("Unknown combination of migration flags: 0x%x", flags);
4293 ret = -EINVAL;
4294 }
4295 if (!ret) {
4296 ret = qemu_file_get_error(f);
4297 }
4298 if (!ret && host_bak) {
4299 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4300 }
4301 }
4302
4303 return ret;
4304 }
4305
ram_load(QEMUFile * f,void * opaque,int version_id)4306 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4307 {
4308 int ret = 0;
4309 static uint64_t seq_iter;
4310 /*
4311 * If system is running in postcopy mode, page inserts to host memory must
4312 * be atomic
4313 */
4314 bool postcopy_running = postcopy_is_running();
4315
4316 seq_iter++;
4317
4318 if (version_id != 4) {
4319 return -EINVAL;
4320 }
4321
4322 /*
4323 * This RCU critical section can be very long running.
4324 * When RCU reclaims in the code start to become numerous,
4325 * it will be necessary to reduce the granularity of this
4326 * critical section.
4327 */
4328 trace_ram_load_start();
4329 WITH_RCU_READ_LOCK_GUARD() {
4330 if (postcopy_running) {
4331 /*
4332 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4333 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4334 * service fast page faults.
4335 */
4336 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4337 } else {
4338 ret = ram_load_precopy(f);
4339 }
4340 }
4341 trace_ram_load_complete(ret, seq_iter);
4342
4343 return ret;
4344 }
4345
ram_has_postcopy(void * opaque)4346 static bool ram_has_postcopy(void *opaque)
4347 {
4348 RAMBlock *rb;
4349 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4350 if (ramblock_is_pmem(rb)) {
4351 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4352 "is not supported now!", rb->idstr, rb->host);
4353 return false;
4354 }
4355 }
4356
4357 return migrate_postcopy_ram();
4358 }
4359
4360 /* Sync all the dirty bitmap with destination VM. */
ram_dirty_bitmap_sync_all(MigrationState * s,RAMState * rs)4361 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4362 {
4363 RAMBlock *block;
4364 QEMUFile *file = s->to_dst_file;
4365
4366 trace_ram_dirty_bitmap_sync_start();
4367
4368 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4369 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4370 qemu_savevm_send_recv_bitmap(file, block->idstr);
4371 trace_ram_dirty_bitmap_request(block->idstr);
4372 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4373 }
4374
4375 trace_ram_dirty_bitmap_sync_wait();
4376
4377 /* Wait until all the ramblocks' dirty bitmap synced */
4378 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4379 if (migration_rp_wait(s)) {
4380 return -1;
4381 }
4382 }
4383
4384 trace_ram_dirty_bitmap_sync_complete();
4385
4386 return 0;
4387 }
4388
4389 /*
4390 * Read the received bitmap, revert it as the initial dirty bitmap.
4391 * This is only used when the postcopy migration is paused but wants
4392 * to resume from a middle point.
4393 *
4394 * Returns true if succeeded, false for errors.
4395 */
ram_dirty_bitmap_reload(MigrationState * s,RAMBlock * block,Error ** errp)4396 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4397 {
4398 /* from_dst_file is always valid because we're within rp_thread */
4399 QEMUFile *file = s->rp_state.from_dst_file;
4400 g_autofree unsigned long *le_bitmap = NULL;
4401 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4402 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4403 uint64_t size, end_mark;
4404 RAMState *rs = ram_state;
4405
4406 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4407
4408 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4409 error_setg(errp, "Reload bitmap in incorrect state %s",
4410 MigrationStatus_str(s->state));
4411 return false;
4412 }
4413
4414 /*
4415 * Note: see comments in ramblock_recv_bitmap_send() on why we
4416 * need the endianness conversion, and the paddings.
4417 */
4418 local_size = ROUND_UP(local_size, 8);
4419
4420 /* Add paddings */
4421 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4422
4423 size = qemu_get_be64(file);
4424
4425 /* The size of the bitmap should match with our ramblock */
4426 if (size != local_size) {
4427 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4428 " != 0x%"PRIx64")", block->idstr, size, local_size);
4429 return false;
4430 }
4431
4432 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4433 end_mark = qemu_get_be64(file);
4434
4435 if (qemu_file_get_error(file) || size != local_size) {
4436 error_setg(errp, "read bitmap failed for ramblock '%s': "
4437 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4438 block->idstr, local_size, size);
4439 return false;
4440 }
4441
4442 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4443 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4444 block->idstr, end_mark);
4445 return false;
4446 }
4447
4448 /*
4449 * Endianness conversion. We are during postcopy (though paused).
4450 * The dirty bitmap won't change. We can directly modify it.
4451 */
4452 bitmap_from_le(block->bmap, le_bitmap, nbits);
4453
4454 /*
4455 * What we received is "received bitmap". Revert it as the initial
4456 * dirty bitmap for this ramblock.
4457 */
4458 bitmap_complement(block->bmap, block->bmap, nbits);
4459
4460 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4461 ramblock_dirty_bitmap_clear_discarded_pages(block);
4462
4463 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4464 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4465
4466 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4467
4468 /*
4469 * We succeeded to sync bitmap for current ramblock. Always kick the
4470 * migration thread to check whether all requested bitmaps are
4471 * reloaded. NOTE: it's racy to only kick when requested==0, because
4472 * we don't know whether the migration thread may still be increasing
4473 * it.
4474 */
4475 migration_rp_kick(s);
4476
4477 return true;
4478 }
4479
ram_resume_prepare(MigrationState * s,void * opaque)4480 static int ram_resume_prepare(MigrationState *s, void *opaque)
4481 {
4482 RAMState *rs = *(RAMState **)opaque;
4483 int ret;
4484
4485 ret = ram_dirty_bitmap_sync_all(s, rs);
4486 if (ret) {
4487 return ret;
4488 }
4489
4490 ram_state_resume_prepare(rs, s->to_dst_file);
4491
4492 return 0;
4493 }
4494
ram_save_postcopy_prepare(QEMUFile * f,void * opaque,Error ** errp)4495 static bool ram_save_postcopy_prepare(QEMUFile *f, void *opaque, Error **errp)
4496 {
4497 int ret;
4498
4499 if (migrate_multifd()) {
4500 /*
4501 * When multifd is enabled, source QEMU needs to make sure all the
4502 * pages queued before postcopy starts have been flushed.
4503 *
4504 * The load of these pages must happen before switching to postcopy.
4505 * It's because loading of guest pages (so far) in multifd recv
4506 * threads is still non-atomic, so the load cannot happen with vCPUs
4507 * running on the destination side.
4508 *
4509 * This flush and sync will guarantee that those pages are loaded
4510 * _before_ postcopy starts on the destination. The rationale is,
4511 * this happens before VM stops (and before source QEMU sends all
4512 * the rest of the postcopy messages). So when the destination QEMU
4513 * receives the postcopy messages, it must have received the sync
4514 * message on the main channel (either RAM_SAVE_FLAG_MULTIFD_FLUSH,
4515 * or RAM_SAVE_FLAG_EOS), and such message would guarantee that
4516 * all previous guest pages queued in the multifd channels are
4517 * completely loaded.
4518 */
4519 ret = multifd_ram_flush_and_sync(f);
4520 if (ret < 0) {
4521 error_setg(errp, "%s: multifd flush and sync failed", __func__);
4522 return false;
4523 }
4524 }
4525
4526 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
4527
4528 return true;
4529 }
4530
postcopy_preempt_shutdown_file(MigrationState * s)4531 void postcopy_preempt_shutdown_file(MigrationState *s)
4532 {
4533 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4534 qemu_fflush(s->postcopy_qemufile_src);
4535 }
4536
4537 static SaveVMHandlers savevm_ram_handlers = {
4538 .save_setup = ram_save_setup,
4539 .save_live_iterate = ram_save_iterate,
4540 .save_live_complete_postcopy = ram_save_complete,
4541 .save_live_complete_precopy = ram_save_complete,
4542 .has_postcopy = ram_has_postcopy,
4543 .state_pending_exact = ram_state_pending_exact,
4544 .state_pending_estimate = ram_state_pending_estimate,
4545 .load_state = ram_load,
4546 .save_cleanup = ram_save_cleanup,
4547 .load_setup = ram_load_setup,
4548 .load_cleanup = ram_load_cleanup,
4549 .resume_prepare = ram_resume_prepare,
4550 .save_postcopy_prepare = ram_save_postcopy_prepare,
4551 };
4552
ram_mig_ram_block_resized(RAMBlockNotifier * n,void * host,size_t old_size,size_t new_size)4553 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4554 size_t old_size, size_t new_size)
4555 {
4556 PostcopyState ps = postcopy_state_get();
4557 ram_addr_t offset;
4558 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4559 Error *err = NULL;
4560
4561 if (!rb) {
4562 error_report("RAM block not found");
4563 return;
4564 }
4565
4566 if (migrate_ram_is_ignored(rb)) {
4567 return;
4568 }
4569
4570 if (migration_is_running()) {
4571 /*
4572 * Precopy code on the source cannot deal with the size of RAM blocks
4573 * changing at random points in time - especially after sending the
4574 * RAM block sizes in the migration stream, they must no longer change.
4575 * Abort and indicate a proper reason.
4576 */
4577 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4578 migrate_set_error(migrate_get_current(), err);
4579 error_free(err);
4580
4581 migration_cancel();
4582 }
4583
4584 switch (ps) {
4585 case POSTCOPY_INCOMING_ADVISE:
4586 /*
4587 * Update what ram_postcopy_incoming_init()->init_range() does at the
4588 * time postcopy was advised. Syncing RAM blocks with the source will
4589 * result in RAM resizes.
4590 */
4591 if (old_size < new_size) {
4592 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4593 error_report("RAM block '%s' discard of resized RAM failed",
4594 rb->idstr);
4595 }
4596 }
4597 rb->postcopy_length = new_size;
4598 break;
4599 case POSTCOPY_INCOMING_NONE:
4600 case POSTCOPY_INCOMING_RUNNING:
4601 case POSTCOPY_INCOMING_END:
4602 /*
4603 * Once our guest is running, postcopy does no longer care about
4604 * resizes. When growing, the new memory was not available on the
4605 * source, no handler needed.
4606 */
4607 break;
4608 default:
4609 error_report("RAM block '%s' resized during postcopy state: %d",
4610 rb->idstr, ps);
4611 exit(-1);
4612 }
4613 }
4614
4615 static RAMBlockNotifier ram_mig_ram_notifier = {
4616 .ram_block_resized = ram_mig_ram_block_resized,
4617 };
4618
ram_mig_init(void)4619 void ram_mig_init(void)
4620 {
4621 qemu_mutex_init(&XBZRLE.lock);
4622 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4623 ram_block_notifier_add(&ram_mig_ram_notifier);
4624 }
4625