1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5 
6 #include <linux/uaccess.h>
7 #include <linux/interrupt.h>
8 #include <linux/cpu.h>
9 #include <linux/kvm_host.h>
10 #include <kvm/arm_vgic.h>
11 #include <asm/kvm_emulate.h>
12 #include <asm/kvm_mmu.h>
13 #include "vgic.h"
14 
15 /*
16  * Initialization rules: there are multiple stages to the vgic
17  * initialization, both for the distributor and the CPU interfaces.  The basic
18  * idea is that even though the VGIC is not functional or not requested from
19  * user space, the critical path of the run loop can still call VGIC functions
20  * that just won't do anything, without them having to check additional
21  * initialization flags to ensure they don't look at uninitialized data
22  * structures.
23  *
24  * Distributor:
25  *
26  * - kvm_vgic_early_init(): initialization of static data that doesn't
27  *   depend on any sizing information or emulation type. No allocation
28  *   is allowed there.
29  *
30  * - vgic_init(): allocation and initialization of the generic data
31  *   structures that depend on sizing information (number of CPUs,
32  *   number of interrupts). Also initializes the vcpu specific data
33  *   structures. Can be executed lazily for GICv2.
34  *
35  * CPU Interface:
36  *
37  * - kvm_vgic_vcpu_init(): initialization of static data that doesn't depend
38  *   on any sizing information. Private interrupts are allocated if not
39  *   already allocated at vgic-creation time.
40  */
41 
42 /* EARLY INIT */
43 
44 /**
45  * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
46  * @kvm: The VM whose VGIC districutor should be initialized
47  *
48  * Only do initialization of static structures that don't require any
49  * allocation or sizing information from userspace.  vgic_init() called
50  * kvm_vgic_dist_init() which takes care of the rest.
51  */
kvm_vgic_early_init(struct kvm * kvm)52 void kvm_vgic_early_init(struct kvm *kvm)
53 {
54 	struct vgic_dist *dist = &kvm->arch.vgic;
55 
56 	xa_init_flags(&dist->lpi_xa, XA_FLAGS_LOCK_IRQ);
57 }
58 
59 /* CREATION */
60 
61 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type);
62 
63 /**
64  * kvm_vgic_create: triggered by the instantiation of the VGIC device by
65  * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
66  * or through the generic KVM_CREATE_DEVICE API ioctl.
67  * irqchip_in_kernel() tells you if this function succeeded or not.
68  * @kvm: kvm struct pointer
69  * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
70  */
kvm_vgic_create(struct kvm * kvm,u32 type)71 int kvm_vgic_create(struct kvm *kvm, u32 type)
72 {
73 	struct kvm_vcpu *vcpu;
74 	unsigned long i;
75 	int ret;
76 
77 	/*
78 	 * This function is also called by the KVM_CREATE_IRQCHIP handler,
79 	 * which had no chance yet to check the availability of the GICv2
80 	 * emulation. So check this here again. KVM_CREATE_DEVICE does
81 	 * the proper checks already.
82 	 */
83 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
84 		!kvm_vgic_global_state.can_emulate_gicv2)
85 		return -ENODEV;
86 
87 	/* Must be held to avoid race with vCPU creation */
88 	lockdep_assert_held(&kvm->lock);
89 
90 	ret = -EBUSY;
91 	if (!lock_all_vcpus(kvm))
92 		return ret;
93 
94 	mutex_lock(&kvm->arch.config_lock);
95 
96 	if (irqchip_in_kernel(kvm)) {
97 		ret = -EEXIST;
98 		goto out_unlock;
99 	}
100 
101 	kvm_for_each_vcpu(i, vcpu, kvm) {
102 		if (vcpu_has_run_once(vcpu))
103 			goto out_unlock;
104 	}
105 	ret = 0;
106 
107 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
108 		kvm->max_vcpus = VGIC_V2_MAX_CPUS;
109 	else
110 		kvm->max_vcpus = VGIC_V3_MAX_CPUS;
111 
112 	if (atomic_read(&kvm->online_vcpus) > kvm->max_vcpus) {
113 		ret = -E2BIG;
114 		goto out_unlock;
115 	}
116 
117 	kvm_for_each_vcpu(i, vcpu, kvm) {
118 		ret = vgic_allocate_private_irqs_locked(vcpu, type);
119 		if (ret)
120 			break;
121 	}
122 
123 	if (ret) {
124 		kvm_for_each_vcpu(i, vcpu, kvm) {
125 			struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
126 			kfree(vgic_cpu->private_irqs);
127 			vgic_cpu->private_irqs = NULL;
128 		}
129 
130 		goto out_unlock;
131 	}
132 
133 	kvm->arch.vgic.in_kernel = true;
134 	kvm->arch.vgic.vgic_model = type;
135 
136 	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
137 
138 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
139 		kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
140 	else
141 		INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions);
142 
143 out_unlock:
144 	mutex_unlock(&kvm->arch.config_lock);
145 	unlock_all_vcpus(kvm);
146 	return ret;
147 }
148 
149 /* INIT/DESTROY */
150 
151 /**
152  * kvm_vgic_dist_init: initialize the dist data structures
153  * @kvm: kvm struct pointer
154  * @nr_spis: number of spis, frozen by caller
155  */
kvm_vgic_dist_init(struct kvm * kvm,unsigned int nr_spis)156 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
157 {
158 	struct vgic_dist *dist = &kvm->arch.vgic;
159 	struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
160 	int i;
161 
162 	dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
163 	if (!dist->spis)
164 		return  -ENOMEM;
165 
166 	/*
167 	 * In the following code we do not take the irq struct lock since
168 	 * no other action on irq structs can happen while the VGIC is
169 	 * not initialized yet:
170 	 * If someone wants to inject an interrupt or does a MMIO access, we
171 	 * require prior initialization in case of a virtual GICv3 or trigger
172 	 * initialization when using a virtual GICv2.
173 	 */
174 	for (i = 0; i < nr_spis; i++) {
175 		struct vgic_irq *irq = &dist->spis[i];
176 
177 		irq->intid = i + VGIC_NR_PRIVATE_IRQS;
178 		INIT_LIST_HEAD(&irq->ap_list);
179 		raw_spin_lock_init(&irq->irq_lock);
180 		irq->vcpu = NULL;
181 		irq->target_vcpu = vcpu0;
182 		kref_init(&irq->refcount);
183 		switch (dist->vgic_model) {
184 		case KVM_DEV_TYPE_ARM_VGIC_V2:
185 			irq->targets = 0;
186 			irq->group = 0;
187 			break;
188 		case KVM_DEV_TYPE_ARM_VGIC_V3:
189 			irq->mpidr = 0;
190 			irq->group = 1;
191 			break;
192 		default:
193 			kfree(dist->spis);
194 			dist->spis = NULL;
195 			return -EINVAL;
196 		}
197 	}
198 	return 0;
199 }
200 
201 /* Default GICv3 Maintenance Interrupt INTID, as per SBSA */
202 #define DEFAULT_MI_INTID	25
203 
kvm_vgic_vcpu_nv_init(struct kvm_vcpu * vcpu)204 int kvm_vgic_vcpu_nv_init(struct kvm_vcpu *vcpu)
205 {
206 	int ret;
207 
208 	guard(mutex)(&vcpu->kvm->arch.config_lock);
209 
210 	/*
211 	 * Matching the tradition established with the timers, provide
212 	 * a default PPI for the maintenance interrupt. It makes
213 	 * things easier to reason about.
214 	 */
215 	if (vcpu->kvm->arch.vgic.mi_intid == 0)
216 		vcpu->kvm->arch.vgic.mi_intid = DEFAULT_MI_INTID;
217 	ret = kvm_vgic_set_owner(vcpu, vcpu->kvm->arch.vgic.mi_intid, vcpu);
218 
219 	return ret;
220 }
221 
vgic_allocate_private_irqs_locked(struct kvm_vcpu * vcpu,u32 type)222 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type)
223 {
224 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
225 	int i;
226 
227 	lockdep_assert_held(&vcpu->kvm->arch.config_lock);
228 
229 	if (vgic_cpu->private_irqs)
230 		return 0;
231 
232 	vgic_cpu->private_irqs = kcalloc(VGIC_NR_PRIVATE_IRQS,
233 					 sizeof(struct vgic_irq),
234 					 GFP_KERNEL_ACCOUNT);
235 
236 	if (!vgic_cpu->private_irqs)
237 		return -ENOMEM;
238 
239 	/*
240 	 * Enable and configure all SGIs to be edge-triggered and
241 	 * configure all PPIs as level-triggered.
242 	 */
243 	for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
244 		struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
245 
246 		INIT_LIST_HEAD(&irq->ap_list);
247 		raw_spin_lock_init(&irq->irq_lock);
248 		irq->intid = i;
249 		irq->vcpu = NULL;
250 		irq->target_vcpu = vcpu;
251 		kref_init(&irq->refcount);
252 		if (vgic_irq_is_sgi(i)) {
253 			/* SGIs */
254 			irq->enabled = 1;
255 			irq->config = VGIC_CONFIG_EDGE;
256 		} else {
257 			/* PPIs */
258 			irq->config = VGIC_CONFIG_LEVEL;
259 		}
260 
261 		switch (type) {
262 		case KVM_DEV_TYPE_ARM_VGIC_V3:
263 			irq->group = 1;
264 			irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
265 			break;
266 		case KVM_DEV_TYPE_ARM_VGIC_V2:
267 			irq->group = 0;
268 			irq->targets = BIT(vcpu->vcpu_id);
269 			break;
270 		}
271 	}
272 
273 	return 0;
274 }
275 
vgic_allocate_private_irqs(struct kvm_vcpu * vcpu,u32 type)276 static int vgic_allocate_private_irqs(struct kvm_vcpu *vcpu, u32 type)
277 {
278 	int ret;
279 
280 	mutex_lock(&vcpu->kvm->arch.config_lock);
281 	ret = vgic_allocate_private_irqs_locked(vcpu, type);
282 	mutex_unlock(&vcpu->kvm->arch.config_lock);
283 
284 	return ret;
285 }
286 
287 /**
288  * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data
289  * structures and register VCPU-specific KVM iodevs
290  *
291  * @vcpu: pointer to the VCPU being created and initialized
292  *
293  * Only do initialization, but do not actually enable the
294  * VGIC CPU interface
295  */
kvm_vgic_vcpu_init(struct kvm_vcpu * vcpu)296 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
297 {
298 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
299 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
300 	int ret = 0;
301 
302 	vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
303 
304 	INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
305 	raw_spin_lock_init(&vgic_cpu->ap_list_lock);
306 	atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0);
307 
308 	if (!irqchip_in_kernel(vcpu->kvm))
309 		return 0;
310 
311 	ret = vgic_allocate_private_irqs(vcpu, dist->vgic_model);
312 	if (ret)
313 		return ret;
314 
315 	/*
316 	 * If we are creating a VCPU with a GICv3 we must also register the
317 	 * KVM io device for the redistributor that belongs to this VCPU.
318 	 */
319 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
320 		mutex_lock(&vcpu->kvm->slots_lock);
321 		ret = vgic_register_redist_iodev(vcpu);
322 		mutex_unlock(&vcpu->kvm->slots_lock);
323 	}
324 	return ret;
325 }
326 
kvm_vgic_vcpu_enable(struct kvm_vcpu * vcpu)327 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
328 {
329 	if (kvm_vgic_global_state.type == VGIC_V2)
330 		vgic_v2_enable(vcpu);
331 	else
332 		vgic_v3_enable(vcpu);
333 }
334 
335 /*
336  * vgic_init: allocates and initializes dist and vcpu data structures
337  * depending on two dimensioning parameters:
338  * - the number of spis
339  * - the number of vcpus
340  * The function is generally called when nr_spis has been explicitly set
341  * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
342  * vgic_initialized() returns true when this function has succeeded.
343  */
vgic_init(struct kvm * kvm)344 int vgic_init(struct kvm *kvm)
345 {
346 	struct vgic_dist *dist = &kvm->arch.vgic;
347 	struct kvm_vcpu *vcpu;
348 	int ret = 0;
349 	unsigned long idx;
350 
351 	lockdep_assert_held(&kvm->arch.config_lock);
352 
353 	if (vgic_initialized(kvm))
354 		return 0;
355 
356 	/* Are we also in the middle of creating a VCPU? */
357 	if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus))
358 		return -EBUSY;
359 
360 	/* freeze the number of spis */
361 	if (!dist->nr_spis)
362 		dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
363 
364 	ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
365 	if (ret)
366 		goto out;
367 
368 	/*
369 	 * If we have GICv4.1 enabled, unconditionally request enable the
370 	 * v4 support so that we get HW-accelerated vSGIs. Otherwise, only
371 	 * enable it if we present a virtual ITS to the guest.
372 	 */
373 	if (vgic_supports_direct_msis(kvm)) {
374 		ret = vgic_v4_init(kvm);
375 		if (ret)
376 			goto out;
377 	}
378 
379 	kvm_for_each_vcpu(idx, vcpu, kvm)
380 		kvm_vgic_vcpu_enable(vcpu);
381 
382 	ret = kvm_vgic_setup_default_irq_routing(kvm);
383 	if (ret)
384 		goto out;
385 
386 	vgic_debug_init(kvm);
387 
388 	/*
389 	 * If userspace didn't set the GIC implementation revision,
390 	 * default to the latest and greatest. You know want it.
391 	 */
392 	if (!dist->implementation_rev)
393 		dist->implementation_rev = KVM_VGIC_IMP_REV_LATEST;
394 	dist->initialized = true;
395 
396 out:
397 	return ret;
398 }
399 
kvm_vgic_dist_destroy(struct kvm * kvm)400 static void kvm_vgic_dist_destroy(struct kvm *kvm)
401 {
402 	struct vgic_dist *dist = &kvm->arch.vgic;
403 	struct vgic_redist_region *rdreg, *next;
404 
405 	dist->ready = false;
406 	dist->initialized = false;
407 
408 	kfree(dist->spis);
409 	dist->spis = NULL;
410 	dist->nr_spis = 0;
411 	dist->vgic_dist_base = VGIC_ADDR_UNDEF;
412 
413 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
414 		list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list)
415 			vgic_v3_free_redist_region(kvm, rdreg);
416 		INIT_LIST_HEAD(&dist->rd_regions);
417 	} else {
418 		dist->vgic_cpu_base = VGIC_ADDR_UNDEF;
419 	}
420 
421 	if (vgic_supports_direct_msis(kvm))
422 		vgic_v4_teardown(kvm);
423 
424 	xa_destroy(&dist->lpi_xa);
425 }
426 
__kvm_vgic_vcpu_destroy(struct kvm_vcpu * vcpu)427 static void __kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
428 {
429 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
430 
431 	/*
432 	 * Retire all pending LPIs on this vcpu anyway as we're
433 	 * going to destroy it.
434 	 */
435 	vgic_flush_pending_lpis(vcpu);
436 
437 	INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
438 	kfree(vgic_cpu->private_irqs);
439 	vgic_cpu->private_irqs = NULL;
440 
441 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
442 		/*
443 		 * If this vCPU is being destroyed because of a failed creation
444 		 * then unregister the redistributor to avoid leaving behind a
445 		 * dangling pointer to the vCPU struct.
446 		 *
447 		 * vCPUs that have been successfully created (i.e. added to
448 		 * kvm->vcpu_array) get unregistered in kvm_vgic_destroy(), as
449 		 * this function gets called while holding kvm->arch.config_lock
450 		 * in the VM teardown path and would otherwise introduce a lock
451 		 * inversion w.r.t. kvm->srcu.
452 		 *
453 		 * vCPUs that failed creation are torn down outside of the
454 		 * kvm->arch.config_lock and do not get unregistered in
455 		 * kvm_vgic_destroy(), meaning it is both safe and necessary to
456 		 * do so here.
457 		 */
458 		if (kvm_get_vcpu_by_id(vcpu->kvm, vcpu->vcpu_id) != vcpu)
459 			vgic_unregister_redist_iodev(vcpu);
460 
461 		vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
462 	}
463 }
464 
kvm_vgic_vcpu_destroy(struct kvm_vcpu * vcpu)465 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
466 {
467 	struct kvm *kvm = vcpu->kvm;
468 
469 	mutex_lock(&kvm->slots_lock);
470 	__kvm_vgic_vcpu_destroy(vcpu);
471 	mutex_unlock(&kvm->slots_lock);
472 }
473 
kvm_vgic_destroy(struct kvm * kvm)474 void kvm_vgic_destroy(struct kvm *kvm)
475 {
476 	struct kvm_vcpu *vcpu;
477 	unsigned long i;
478 
479 	mutex_lock(&kvm->slots_lock);
480 	mutex_lock(&kvm->arch.config_lock);
481 
482 	vgic_debug_destroy(kvm);
483 
484 	kvm_for_each_vcpu(i, vcpu, kvm)
485 		__kvm_vgic_vcpu_destroy(vcpu);
486 
487 	kvm_vgic_dist_destroy(kvm);
488 
489 	mutex_unlock(&kvm->arch.config_lock);
490 
491 	if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
492 		kvm_for_each_vcpu(i, vcpu, kvm)
493 			vgic_unregister_redist_iodev(vcpu);
494 
495 	mutex_unlock(&kvm->slots_lock);
496 }
497 
498 /**
499  * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
500  * is a GICv2. A GICv3 must be explicitly initialized by userspace using the
501  * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
502  * @kvm: kvm struct pointer
503  */
vgic_lazy_init(struct kvm * kvm)504 int vgic_lazy_init(struct kvm *kvm)
505 {
506 	int ret = 0;
507 
508 	if (unlikely(!vgic_initialized(kvm))) {
509 		/*
510 		 * We only provide the automatic initialization of the VGIC
511 		 * for the legacy case of a GICv2. Any other type must
512 		 * be explicitly initialized once setup with the respective
513 		 * KVM device call.
514 		 */
515 		if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
516 			return -EBUSY;
517 
518 		mutex_lock(&kvm->arch.config_lock);
519 		ret = vgic_init(kvm);
520 		mutex_unlock(&kvm->arch.config_lock);
521 	}
522 
523 	return ret;
524 }
525 
526 /* RESOURCE MAPPING */
527 
528 /**
529  * kvm_vgic_map_resources - map the MMIO regions
530  * @kvm: kvm struct pointer
531  *
532  * Map the MMIO regions depending on the VGIC model exposed to the guest
533  * called on the first VCPU run.
534  * Also map the virtual CPU interface into the VM.
535  * v2 calls vgic_init() if not already done.
536  * v3 and derivatives return an error if the VGIC is not initialized.
537  * vgic_ready() returns true if this function has succeeded.
538  */
kvm_vgic_map_resources(struct kvm * kvm)539 int kvm_vgic_map_resources(struct kvm *kvm)
540 {
541 	struct vgic_dist *dist = &kvm->arch.vgic;
542 	enum vgic_type type;
543 	gpa_t dist_base;
544 	int ret = 0;
545 
546 	if (likely(vgic_ready(kvm)))
547 		return 0;
548 
549 	mutex_lock(&kvm->slots_lock);
550 	mutex_lock(&kvm->arch.config_lock);
551 	if (vgic_ready(kvm))
552 		goto out;
553 
554 	if (!irqchip_in_kernel(kvm))
555 		goto out;
556 
557 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) {
558 		ret = vgic_v2_map_resources(kvm);
559 		type = VGIC_V2;
560 	} else {
561 		ret = vgic_v3_map_resources(kvm);
562 		type = VGIC_V3;
563 	}
564 
565 	if (ret)
566 		goto out;
567 
568 	dist_base = dist->vgic_dist_base;
569 	mutex_unlock(&kvm->arch.config_lock);
570 
571 	ret = vgic_register_dist_iodev(kvm, dist_base, type);
572 	if (ret) {
573 		kvm_err("Unable to register VGIC dist MMIO regions\n");
574 		goto out_slots;
575 	}
576 
577 	/*
578 	 * kvm_io_bus_register_dev() guarantees all readers see the new MMIO
579 	 * registration before returning through synchronize_srcu(), which also
580 	 * implies a full memory barrier. As such, marking the distributor as
581 	 * 'ready' here is guaranteed to be ordered after all vCPUs having seen
582 	 * a completely configured distributor.
583 	 */
584 	dist->ready = true;
585 	goto out_slots;
586 out:
587 	mutex_unlock(&kvm->arch.config_lock);
588 out_slots:
589 	if (ret)
590 		kvm_vm_dead(kvm);
591 
592 	mutex_unlock(&kvm->slots_lock);
593 
594 	return ret;
595 }
596 
597 /* GENERIC PROBE */
598 
kvm_vgic_cpu_up(void)599 void kvm_vgic_cpu_up(void)
600 {
601 	enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
602 }
603 
604 
kvm_vgic_cpu_down(void)605 void kvm_vgic_cpu_down(void)
606 {
607 	disable_percpu_irq(kvm_vgic_global_state.maint_irq);
608 }
609 
vgic_maintenance_handler(int irq,void * data)610 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
611 {
612 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)data;
613 
614 	/*
615 	 * We cannot rely on the vgic maintenance interrupt to be
616 	 * delivered synchronously. This means we can only use it to
617 	 * exit the VM, and we perform the handling of EOIed
618 	 * interrupts on the exit path (see vgic_fold_lr_state).
619 	 *
620 	 * Of course, NV throws a wrench in this plan, and needs
621 	 * something special.
622 	 */
623 	if (vcpu && vgic_state_is_nested(vcpu))
624 		vgic_v3_handle_nested_maint_irq(vcpu);
625 
626 	return IRQ_HANDLED;
627 }
628 
629 static struct gic_kvm_info *gic_kvm_info;
630 
vgic_set_kvm_info(const struct gic_kvm_info * info)631 void __init vgic_set_kvm_info(const struct gic_kvm_info *info)
632 {
633 	BUG_ON(gic_kvm_info != NULL);
634 	gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL);
635 	if (gic_kvm_info)
636 		*gic_kvm_info = *info;
637 }
638 
639 /**
640  * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
641  *
642  * For a specific CPU, initialize the GIC VE hardware.
643  */
kvm_vgic_init_cpu_hardware(void)644 void kvm_vgic_init_cpu_hardware(void)
645 {
646 	BUG_ON(preemptible());
647 
648 	/*
649 	 * We want to make sure the list registers start out clear so that we
650 	 * only have the program the used registers.
651 	 */
652 	if (kvm_vgic_global_state.type == VGIC_V2)
653 		vgic_v2_init_lrs();
654 	else
655 		kvm_call_hyp(__vgic_v3_init_lrs);
656 }
657 
658 /**
659  * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
660  * according to the host GIC model. Accordingly calls either
661  * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
662  * instantiated by a guest later on .
663  */
kvm_vgic_hyp_init(void)664 int kvm_vgic_hyp_init(void)
665 {
666 	bool has_mask;
667 	int ret;
668 
669 	if (!gic_kvm_info)
670 		return -ENODEV;
671 
672 	has_mask = !gic_kvm_info->no_maint_irq_mask;
673 
674 	if (has_mask && !gic_kvm_info->maint_irq) {
675 		kvm_err("No vgic maintenance irq\n");
676 		return -ENXIO;
677 	}
678 
679 	/*
680 	 * If we get one of these oddball non-GICs, taint the kernel,
681 	 * as we have no idea of how they *really* behave.
682 	 */
683 	if (gic_kvm_info->no_hw_deactivation) {
684 		kvm_info("Non-architectural vgic, tainting kernel\n");
685 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
686 		kvm_vgic_global_state.no_hw_deactivation = true;
687 	}
688 
689 	switch (gic_kvm_info->type) {
690 	case GIC_V2:
691 		ret = vgic_v2_probe(gic_kvm_info);
692 		break;
693 	case GIC_V3:
694 		ret = vgic_v3_probe(gic_kvm_info);
695 		if (!ret) {
696 			static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
697 			kvm_info("GIC system register CPU interface enabled\n");
698 		}
699 		break;
700 	default:
701 		ret = -ENODEV;
702 	}
703 
704 	kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
705 
706 	kfree(gic_kvm_info);
707 	gic_kvm_info = NULL;
708 
709 	if (ret)
710 		return ret;
711 
712 	if (!has_mask && !kvm_vgic_global_state.maint_irq)
713 		return 0;
714 
715 	ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
716 				 vgic_maintenance_handler,
717 				 "vgic", kvm_get_running_vcpus());
718 	if (ret) {
719 		kvm_err("Cannot register interrupt %d\n",
720 			kvm_vgic_global_state.maint_irq);
721 		return ret;
722 	}
723 
724 	kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
725 	return 0;
726 }
727