1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "gdbstub/enums.h"
31 #include "system/kvm_int.h"
32 #include "system/runstate.h"
33 #include "system/cpus.h"
34 #include "system/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/tswap.h"
37 #include "system/memory.h"
38 #include "system/ram_addr.h"
39 #include "qemu/event_notifier.h"
40 #include "qemu/main-loop.h"
41 #include "trace.h"
42 #include "hw/irq.h"
43 #include "qapi/visitor.h"
44 #include "qapi/qapi-types-common.h"
45 #include "qapi/qapi-visit-common.h"
46 #include "system/reset.h"
47 #include "qemu/guest-random.h"
48 #include "system/hw_accel.h"
49 #include "kvm-cpus.h"
50 #include "system/dirtylimit.h"
51 #include "qemu/range.h"
52
53 #include "hw/boards.h"
54 #include "system/stats.h"
55
56 /* This check must be after config-host.h is included */
57 #ifdef CONFIG_EVENTFD
58 #include <sys/eventfd.h>
59 #endif
60
61 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__)
62 # define KVM_HAVE_MCE_INJECTION 1
63 #endif
64
65
66 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
67 * need to use the real host PAGE_SIZE, as that's what KVM will use.
68 */
69 #ifdef PAGE_SIZE
70 #undef PAGE_SIZE
71 #endif
72 #define PAGE_SIZE qemu_real_host_page_size()
73
74 #ifndef KVM_GUESTDBG_BLOCKIRQ
75 #define KVM_GUESTDBG_BLOCKIRQ 0
76 #endif
77
78 /* Default num of memslots to be allocated when VM starts */
79 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16
80 /* Default max allowed memslots if kernel reported nothing */
81 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32
82
83 struct KVMParkedVcpu {
84 unsigned long vcpu_id;
85 int kvm_fd;
86 QLIST_ENTRY(KVMParkedVcpu) node;
87 };
88
89 KVMState *kvm_state;
90 bool kvm_kernel_irqchip;
91 bool kvm_split_irqchip;
92 bool kvm_async_interrupts_allowed;
93 bool kvm_halt_in_kernel_allowed;
94 bool kvm_resamplefds_allowed;
95 bool kvm_msi_via_irqfd_allowed;
96 bool kvm_gsi_routing_allowed;
97 bool kvm_gsi_direct_mapping;
98 bool kvm_allowed;
99 bool kvm_readonly_mem_allowed;
100 bool kvm_vm_attributes_allowed;
101 bool kvm_msi_use_devid;
102 bool kvm_pre_fault_memory_supported;
103 static bool kvm_has_guest_debug;
104 static int kvm_sstep_flags;
105 static bool kvm_immediate_exit;
106 static uint64_t kvm_supported_memory_attributes;
107 static bool kvm_guest_memfd_supported;
108 static hwaddr kvm_max_slot_size = ~0;
109
110 static const KVMCapabilityInfo kvm_required_capabilites[] = {
111 KVM_CAP_INFO(USER_MEMORY),
112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
114 KVM_CAP_INFO(INTERNAL_ERROR_DATA),
115 KVM_CAP_INFO(IOEVENTFD),
116 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
117 KVM_CAP_LAST_INFO
118 };
119
120 static NotifierList kvm_irqchip_change_notifiers =
121 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
122
123 struct KVMResampleFd {
124 int gsi;
125 EventNotifier *resample_event;
126 QLIST_ENTRY(KVMResampleFd) node;
127 };
128 typedef struct KVMResampleFd KVMResampleFd;
129
130 /*
131 * Only used with split irqchip where we need to do the resample fd
132 * kick for the kernel from userspace.
133 */
134 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
135 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
136
137 static QemuMutex kml_slots_lock;
138
139 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
140 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
141
142 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
143
kvm_resample_fd_remove(int gsi)144 static inline void kvm_resample_fd_remove(int gsi)
145 {
146 KVMResampleFd *rfd;
147
148 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
149 if (rfd->gsi == gsi) {
150 QLIST_REMOVE(rfd, node);
151 g_free(rfd);
152 break;
153 }
154 }
155 }
156
kvm_resample_fd_insert(int gsi,EventNotifier * event)157 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
158 {
159 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
160
161 rfd->gsi = gsi;
162 rfd->resample_event = event;
163
164 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
165 }
166
kvm_resample_fd_notify(int gsi)167 void kvm_resample_fd_notify(int gsi)
168 {
169 KVMResampleFd *rfd;
170
171 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
172 if (rfd->gsi == gsi) {
173 event_notifier_set(rfd->resample_event);
174 trace_kvm_resample_fd_notify(gsi);
175 return;
176 }
177 }
178 }
179
180 /**
181 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener
182 *
183 * @kml: The KVMMemoryListener* to grow the slots[] array
184 * @nr_slots_new: The new size of slots[] array
185 *
186 * Returns: True if the array grows larger, false otherwise.
187 */
kvm_slots_grow(KVMMemoryListener * kml,unsigned int nr_slots_new)188 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new)
189 {
190 unsigned int i, cur = kml->nr_slots_allocated;
191 KVMSlot *slots;
192
193 if (nr_slots_new > kvm_state->nr_slots_max) {
194 nr_slots_new = kvm_state->nr_slots_max;
195 }
196
197 if (cur >= nr_slots_new) {
198 /* Big enough, no need to grow, or we reached max */
199 return false;
200 }
201
202 if (cur == 0) {
203 slots = g_new0(KVMSlot, nr_slots_new);
204 } else {
205 assert(kml->slots);
206 slots = g_renew(KVMSlot, kml->slots, nr_slots_new);
207 /*
208 * g_renew() doesn't initialize extended buffers, however kvm
209 * memslots require fields to be zero-initialized. E.g. pointers,
210 * memory_size field, etc.
211 */
212 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur));
213 }
214
215 for (i = cur; i < nr_slots_new; i++) {
216 slots[i].slot = i;
217 }
218
219 kml->slots = slots;
220 kml->nr_slots_allocated = nr_slots_new;
221 trace_kvm_slots_grow(cur, nr_slots_new);
222
223 return true;
224 }
225
kvm_slots_double(KVMMemoryListener * kml)226 static bool kvm_slots_double(KVMMemoryListener *kml)
227 {
228 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2);
229 }
230
kvm_get_max_memslots(void)231 unsigned int kvm_get_max_memslots(void)
232 {
233 KVMState *s = KVM_STATE(current_accel());
234
235 return s->nr_slots_max;
236 }
237
kvm_get_free_memslots(void)238 unsigned int kvm_get_free_memslots(void)
239 {
240 unsigned int used_slots = 0;
241 KVMState *s = kvm_state;
242 int i;
243
244 kvm_slots_lock();
245 for (i = 0; i < s->nr_as; i++) {
246 if (!s->as[i].ml) {
247 continue;
248 }
249 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used);
250 }
251 kvm_slots_unlock();
252
253 return s->nr_slots_max - used_slots;
254 }
255
256 /* Called with KVMMemoryListener.slots_lock held */
kvm_get_free_slot(KVMMemoryListener * kml)257 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
258 {
259 unsigned int n;
260 int i;
261
262 for (i = 0; i < kml->nr_slots_allocated; i++) {
263 if (kml->slots[i].memory_size == 0) {
264 return &kml->slots[i];
265 }
266 }
267
268 /*
269 * If no free slots, try to grow first by doubling. Cache the old size
270 * here to avoid another round of search: if the grow succeeded, it
271 * means slots[] now must have the existing "n" slots occupied,
272 * followed by one or more free slots starting from slots[n].
273 */
274 n = kml->nr_slots_allocated;
275 if (kvm_slots_double(kml)) {
276 return &kml->slots[n];
277 }
278
279 return NULL;
280 }
281
282 /* Called with KVMMemoryListener.slots_lock held */
kvm_alloc_slot(KVMMemoryListener * kml)283 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
284 {
285 KVMSlot *slot = kvm_get_free_slot(kml);
286
287 if (slot) {
288 return slot;
289 }
290
291 fprintf(stderr, "%s: no free slot available\n", __func__);
292 abort();
293 }
294
kvm_lookup_matching_slot(KVMMemoryListener * kml,hwaddr start_addr,hwaddr size)295 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
296 hwaddr start_addr,
297 hwaddr size)
298 {
299 int i;
300
301 for (i = 0; i < kml->nr_slots_allocated; i++) {
302 KVMSlot *mem = &kml->slots[i];
303
304 if (start_addr == mem->start_addr && size == mem->memory_size) {
305 return mem;
306 }
307 }
308
309 return NULL;
310 }
311
312 /*
313 * Calculate and align the start address and the size of the section.
314 * Return the size. If the size is 0, the aligned section is empty.
315 */
kvm_align_section(MemoryRegionSection * section,hwaddr * start)316 static hwaddr kvm_align_section(MemoryRegionSection *section,
317 hwaddr *start)
318 {
319 hwaddr size = int128_get64(section->size);
320 hwaddr delta, aligned;
321
322 /* kvm works in page size chunks, but the function may be called
323 with sub-page size and unaligned start address. Pad the start
324 address to next and truncate size to previous page boundary. */
325 aligned = ROUND_UP(section->offset_within_address_space,
326 qemu_real_host_page_size());
327 delta = aligned - section->offset_within_address_space;
328 *start = aligned;
329 if (delta > size) {
330 return 0;
331 }
332
333 return (size - delta) & qemu_real_host_page_mask();
334 }
335
kvm_physical_memory_addr_from_host(KVMState * s,void * ram,hwaddr * phys_addr)336 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
337 hwaddr *phys_addr)
338 {
339 KVMMemoryListener *kml = &s->memory_listener;
340 int i, ret = 0;
341
342 kvm_slots_lock();
343 for (i = 0; i < kml->nr_slots_allocated; i++) {
344 KVMSlot *mem = &kml->slots[i];
345
346 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
347 *phys_addr = mem->start_addr + (ram - mem->ram);
348 ret = 1;
349 break;
350 }
351 }
352 kvm_slots_unlock();
353
354 return ret;
355 }
356
kvm_set_user_memory_region(KVMMemoryListener * kml,KVMSlot * slot,bool new)357 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
358 {
359 KVMState *s = kvm_state;
360 struct kvm_userspace_memory_region2 mem;
361 int ret;
362
363 mem.slot = slot->slot | (kml->as_id << 16);
364 mem.guest_phys_addr = slot->start_addr;
365 mem.userspace_addr = (unsigned long)slot->ram;
366 mem.flags = slot->flags;
367 mem.guest_memfd = slot->guest_memfd;
368 mem.guest_memfd_offset = slot->guest_memfd_offset;
369
370 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
371 /* Set the slot size to 0 before setting the slot to the desired
372 * value. This is needed based on KVM commit 75d61fbc. */
373 mem.memory_size = 0;
374
375 if (kvm_guest_memfd_supported) {
376 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
377 } else {
378 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
379 }
380 if (ret < 0) {
381 goto err;
382 }
383 }
384 mem.memory_size = slot->memory_size;
385 if (kvm_guest_memfd_supported) {
386 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
387 } else {
388 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
389 }
390 slot->old_flags = mem.flags;
391 err:
392 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags,
393 mem.guest_phys_addr, mem.memory_size,
394 mem.userspace_addr, mem.guest_memfd,
395 mem.guest_memfd_offset, ret);
396 if (ret < 0) {
397 if (kvm_guest_memfd_supported) {
398 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d,"
399 " start=0x%" PRIx64 ", size=0x%" PRIx64 ","
400 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 ","
401 " guest_memfd_offset=0x%" PRIx64 ": %s",
402 __func__, mem.slot, slot->start_addr,
403 (uint64_t)mem.memory_size, mem.flags,
404 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset,
405 strerror(errno));
406 } else {
407 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
408 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
409 __func__, mem.slot, slot->start_addr,
410 (uint64_t)mem.memory_size, strerror(errno));
411 }
412 }
413 return ret;
414 }
415
kvm_park_vcpu(CPUState * cpu)416 void kvm_park_vcpu(CPUState *cpu)
417 {
418 struct KVMParkedVcpu *vcpu;
419
420 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
421
422 vcpu = g_malloc0(sizeof(*vcpu));
423 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
424 vcpu->kvm_fd = cpu->kvm_fd;
425 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
426 }
427
kvm_unpark_vcpu(KVMState * s,unsigned long vcpu_id)428 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id)
429 {
430 struct KVMParkedVcpu *cpu;
431 int kvm_fd = -ENOENT;
432
433 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
434 if (cpu->vcpu_id == vcpu_id) {
435 QLIST_REMOVE(cpu, node);
436 kvm_fd = cpu->kvm_fd;
437 g_free(cpu);
438 break;
439 }
440 }
441
442 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked");
443
444 return kvm_fd;
445 }
446
kvm_reset_parked_vcpus(KVMState * s)447 static void kvm_reset_parked_vcpus(KVMState *s)
448 {
449 struct KVMParkedVcpu *cpu;
450
451 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
452 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd);
453 }
454 }
455
kvm_create_vcpu(CPUState * cpu)456 int kvm_create_vcpu(CPUState *cpu)
457 {
458 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu);
459 KVMState *s = kvm_state;
460 int kvm_fd;
461
462 /* check if the KVM vCPU already exist but is parked */
463 kvm_fd = kvm_unpark_vcpu(s, vcpu_id);
464 if (kvm_fd < 0) {
465 /* vCPU not parked: create a new KVM vCPU */
466 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id);
467 if (kvm_fd < 0) {
468 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id);
469 return kvm_fd;
470 }
471 }
472
473 cpu->kvm_fd = kvm_fd;
474 cpu->kvm_state = s;
475 if (!s->guest_state_protected) {
476 cpu->vcpu_dirty = true;
477 }
478 cpu->dirty_pages = 0;
479 cpu->throttle_us_per_full = 0;
480
481 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd);
482
483 return 0;
484 }
485
kvm_create_and_park_vcpu(CPUState * cpu)486 int kvm_create_and_park_vcpu(CPUState *cpu)
487 {
488 int ret = 0;
489
490 ret = kvm_create_vcpu(cpu);
491 if (!ret) {
492 kvm_park_vcpu(cpu);
493 }
494
495 return ret;
496 }
497
do_kvm_destroy_vcpu(CPUState * cpu)498 static int do_kvm_destroy_vcpu(CPUState *cpu)
499 {
500 KVMState *s = kvm_state;
501 int mmap_size;
502 int ret = 0;
503
504 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
505
506 ret = kvm_arch_destroy_vcpu(cpu);
507 if (ret < 0) {
508 goto err;
509 }
510
511 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
512 if (mmap_size < 0) {
513 ret = mmap_size;
514 trace_kvm_failed_get_vcpu_mmap_size();
515 goto err;
516 }
517
518 ret = munmap(cpu->kvm_run, mmap_size);
519 if (ret < 0) {
520 goto err;
521 }
522
523 if (cpu->kvm_dirty_gfns) {
524 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
525 if (ret < 0) {
526 goto err;
527 }
528 }
529
530 kvm_park_vcpu(cpu);
531 err:
532 return ret;
533 }
534
kvm_destroy_vcpu(CPUState * cpu)535 void kvm_destroy_vcpu(CPUState *cpu)
536 {
537 if (do_kvm_destroy_vcpu(cpu) < 0) {
538 error_report("kvm_destroy_vcpu failed");
539 exit(EXIT_FAILURE);
540 }
541 }
542
kvm_init_vcpu(CPUState * cpu,Error ** errp)543 int kvm_init_vcpu(CPUState *cpu, Error **errp)
544 {
545 KVMState *s = kvm_state;
546 int mmap_size;
547 int ret;
548
549 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
550
551 ret = kvm_arch_pre_create_vcpu(cpu, errp);
552 if (ret < 0) {
553 goto err;
554 }
555
556 ret = kvm_create_vcpu(cpu);
557 if (ret < 0) {
558 error_setg_errno(errp, -ret,
559 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)",
560 kvm_arch_vcpu_id(cpu));
561 goto err;
562 }
563
564 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
565 if (mmap_size < 0) {
566 ret = mmap_size;
567 error_setg_errno(errp, -mmap_size,
568 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
569 goto err;
570 }
571
572 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
573 cpu->kvm_fd, 0);
574 if (cpu->kvm_run == MAP_FAILED) {
575 ret = -errno;
576 error_setg_errno(errp, ret,
577 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
578 kvm_arch_vcpu_id(cpu));
579 goto err;
580 }
581
582 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
583 s->coalesced_mmio_ring =
584 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
585 }
586
587 if (s->kvm_dirty_ring_size) {
588 /* Use MAP_SHARED to share pages with the kernel */
589 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
590 PROT_READ | PROT_WRITE, MAP_SHARED,
591 cpu->kvm_fd,
592 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
593 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
594 ret = -errno;
595 goto err;
596 }
597 }
598
599 ret = kvm_arch_init_vcpu(cpu);
600 if (ret < 0) {
601 error_setg_errno(errp, -ret,
602 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
603 kvm_arch_vcpu_id(cpu));
604 }
605 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
606
607 err:
608 return ret;
609 }
610
611 /*
612 * dirty pages logging control
613 */
614
kvm_mem_flags(MemoryRegion * mr)615 static int kvm_mem_flags(MemoryRegion *mr)
616 {
617 bool readonly = mr->readonly || memory_region_is_romd(mr);
618 int flags = 0;
619
620 if (memory_region_get_dirty_log_mask(mr) != 0) {
621 flags |= KVM_MEM_LOG_DIRTY_PAGES;
622 }
623 if (readonly && kvm_readonly_mem_allowed) {
624 flags |= KVM_MEM_READONLY;
625 }
626 if (memory_region_has_guest_memfd(mr)) {
627 assert(kvm_guest_memfd_supported);
628 flags |= KVM_MEM_GUEST_MEMFD;
629 }
630 return flags;
631 }
632
633 /* Called with KVMMemoryListener.slots_lock held */
kvm_slot_update_flags(KVMMemoryListener * kml,KVMSlot * mem,MemoryRegion * mr)634 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
635 MemoryRegion *mr)
636 {
637 mem->flags = kvm_mem_flags(mr);
638
639 /* If nothing changed effectively, no need to issue ioctl */
640 if (mem->flags == mem->old_flags) {
641 return 0;
642 }
643
644 kvm_slot_init_dirty_bitmap(mem);
645 return kvm_set_user_memory_region(kml, mem, false);
646 }
647
kvm_section_update_flags(KVMMemoryListener * kml,MemoryRegionSection * section)648 static int kvm_section_update_flags(KVMMemoryListener *kml,
649 MemoryRegionSection *section)
650 {
651 hwaddr start_addr, size, slot_size;
652 KVMSlot *mem;
653 int ret = 0;
654
655 size = kvm_align_section(section, &start_addr);
656 if (!size) {
657 return 0;
658 }
659
660 kvm_slots_lock();
661
662 while (size && !ret) {
663 slot_size = MIN(kvm_max_slot_size, size);
664 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
665 if (!mem) {
666 /* We don't have a slot if we want to trap every access. */
667 goto out;
668 }
669
670 ret = kvm_slot_update_flags(kml, mem, section->mr);
671 start_addr += slot_size;
672 size -= slot_size;
673 }
674
675 out:
676 kvm_slots_unlock();
677 return ret;
678 }
679
kvm_log_start(MemoryListener * listener,MemoryRegionSection * section,int old,int new)680 static void kvm_log_start(MemoryListener *listener,
681 MemoryRegionSection *section,
682 int old, int new)
683 {
684 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
685 int r;
686
687 if (old != 0) {
688 return;
689 }
690
691 r = kvm_section_update_flags(kml, section);
692 if (r < 0) {
693 abort();
694 }
695 }
696
kvm_log_stop(MemoryListener * listener,MemoryRegionSection * section,int old,int new)697 static void kvm_log_stop(MemoryListener *listener,
698 MemoryRegionSection *section,
699 int old, int new)
700 {
701 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
702 int r;
703
704 if (new != 0) {
705 return;
706 }
707
708 r = kvm_section_update_flags(kml, section);
709 if (r < 0) {
710 abort();
711 }
712 }
713
714 /* get kvm's dirty pages bitmap and update qemu's */
kvm_slot_sync_dirty_pages(KVMSlot * slot)715 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
716 {
717 ram_addr_t start = slot->ram_start_offset;
718 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
719
720 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
721 }
722
kvm_slot_reset_dirty_pages(KVMSlot * slot)723 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
724 {
725 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
726 }
727
728 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
729
730 /* Allocate the dirty bitmap for a slot */
kvm_slot_init_dirty_bitmap(KVMSlot * mem)731 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
732 {
733 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
734 return;
735 }
736
737 /*
738 * XXX bad kernel interface alert
739 * For dirty bitmap, kernel allocates array of size aligned to
740 * bits-per-long. But for case when the kernel is 64bits and
741 * the userspace is 32bits, userspace can't align to the same
742 * bits-per-long, since sizeof(long) is different between kernel
743 * and user space. This way, userspace will provide buffer which
744 * may be 4 bytes less than the kernel will use, resulting in
745 * userspace memory corruption (which is not detectable by valgrind
746 * too, in most cases).
747 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
748 * a hope that sizeof(long) won't become >8 any time soon.
749 *
750 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
751 * And mem->memory_size is aligned to it (otherwise this mem can't
752 * be registered to KVM).
753 */
754 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
755 /*HOST_LONG_BITS*/ 64) / 8;
756 mem->dirty_bmap = g_malloc0(bitmap_size);
757 mem->dirty_bmap_size = bitmap_size;
758 }
759
760 /*
761 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
762 * succeeded, false otherwise
763 */
kvm_slot_get_dirty_log(KVMState * s,KVMSlot * slot)764 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
765 {
766 struct kvm_dirty_log d = {};
767 int ret;
768
769 d.dirty_bitmap = slot->dirty_bmap;
770 d.slot = slot->slot | (slot->as_id << 16);
771 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
772
773 if (ret == -ENOENT) {
774 /* kernel does not have dirty bitmap in this slot */
775 ret = 0;
776 }
777 if (ret) {
778 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
779 __func__, ret);
780 }
781 return ret == 0;
782 }
783
784 /* Should be with all slots_lock held for the address spaces. */
kvm_dirty_ring_mark_page(KVMState * s,uint32_t as_id,uint32_t slot_id,uint64_t offset)785 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
786 uint32_t slot_id, uint64_t offset)
787 {
788 KVMMemoryListener *kml;
789 KVMSlot *mem;
790
791 if (as_id >= s->nr_as) {
792 return;
793 }
794
795 kml = s->as[as_id].ml;
796 mem = &kml->slots[slot_id];
797
798 if (!mem->memory_size || offset >=
799 (mem->memory_size / qemu_real_host_page_size())) {
800 return;
801 }
802
803 set_bit(offset, mem->dirty_bmap);
804 }
805
dirty_gfn_is_dirtied(struct kvm_dirty_gfn * gfn)806 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
807 {
808 /*
809 * Read the flags before the value. Pairs with barrier in
810 * KVM's kvm_dirty_ring_push() function.
811 */
812 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
813 }
814
dirty_gfn_set_collected(struct kvm_dirty_gfn * gfn)815 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
816 {
817 /*
818 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
819 * sees the full content of the ring:
820 *
821 * CPU0 CPU1 CPU2
822 * ------------------------------------------------------------------------------
823 * fill gfn0
824 * store-rel flags for gfn0
825 * load-acq flags for gfn0
826 * store-rel RESET for gfn0
827 * ioctl(RESET_RINGS)
828 * load-acq flags for gfn0
829 * check if flags have RESET
830 *
831 * The synchronization goes from CPU2 to CPU0 to CPU1.
832 */
833 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
834 }
835
836 /*
837 * Should be with all slots_lock held for the address spaces. It returns the
838 * dirty page we've collected on this dirty ring.
839 */
kvm_dirty_ring_reap_one(KVMState * s,CPUState * cpu)840 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
841 {
842 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
843 uint32_t ring_size = s->kvm_dirty_ring_size;
844 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
845
846 /*
847 * It's possible that we race with vcpu creation code where the vcpu is
848 * put onto the vcpus list but not yet initialized the dirty ring
849 * structures. If so, skip it.
850 */
851 if (!cpu->created) {
852 return 0;
853 }
854
855 assert(dirty_gfns && ring_size);
856 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
857
858 while (true) {
859 cur = &dirty_gfns[fetch % ring_size];
860 if (!dirty_gfn_is_dirtied(cur)) {
861 break;
862 }
863 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
864 cur->offset);
865 dirty_gfn_set_collected(cur);
866 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
867 fetch++;
868 count++;
869 }
870 cpu->kvm_fetch_index = fetch;
871 cpu->dirty_pages += count;
872
873 return count;
874 }
875
876 /* Must be with slots_lock held */
kvm_dirty_ring_reap_locked(KVMState * s,CPUState * cpu)877 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
878 {
879 int ret;
880 uint64_t total = 0;
881 int64_t stamp;
882
883 stamp = get_clock();
884
885 if (cpu) {
886 total = kvm_dirty_ring_reap_one(s, cpu);
887 } else {
888 CPU_FOREACH(cpu) {
889 total += kvm_dirty_ring_reap_one(s, cpu);
890 }
891 }
892
893 if (total) {
894 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
895 assert(ret == total);
896 }
897
898 stamp = get_clock() - stamp;
899
900 if (total) {
901 trace_kvm_dirty_ring_reap(total, stamp / 1000);
902 }
903
904 return total;
905 }
906
907 /*
908 * Currently for simplicity, we must hold BQL before calling this. We can
909 * consider to drop the BQL if we're clear with all the race conditions.
910 */
kvm_dirty_ring_reap(KVMState * s,CPUState * cpu)911 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
912 {
913 uint64_t total;
914
915 /*
916 * We need to lock all kvm slots for all address spaces here,
917 * because:
918 *
919 * (1) We need to mark dirty for dirty bitmaps in multiple slots
920 * and for tons of pages, so it's better to take the lock here
921 * once rather than once per page. And more importantly,
922 *
923 * (2) We must _NOT_ publish dirty bits to the other threads
924 * (e.g., the migration thread) via the kvm memory slot dirty
925 * bitmaps before correctly re-protect those dirtied pages.
926 * Otherwise we can have potential risk of data corruption if
927 * the page data is read in the other thread before we do
928 * reset below.
929 */
930 kvm_slots_lock();
931 total = kvm_dirty_ring_reap_locked(s, cpu);
932 kvm_slots_unlock();
933
934 return total;
935 }
936
do_kvm_cpu_synchronize_kick(CPUState * cpu,run_on_cpu_data arg)937 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
938 {
939 /* No need to do anything */
940 }
941
942 /*
943 * Kick all vcpus out in a synchronized way. When returned, we
944 * guarantee that every vcpu has been kicked and at least returned to
945 * userspace once.
946 */
kvm_cpu_synchronize_kick_all(void)947 static void kvm_cpu_synchronize_kick_all(void)
948 {
949 CPUState *cpu;
950
951 CPU_FOREACH(cpu) {
952 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
953 }
954 }
955
956 /*
957 * Flush all the existing dirty pages to the KVM slot buffers. When
958 * this call returns, we guarantee that all the touched dirty pages
959 * before calling this function have been put into the per-kvmslot
960 * dirty bitmap.
961 *
962 * This function must be called with BQL held.
963 */
kvm_dirty_ring_flush(void)964 static void kvm_dirty_ring_flush(void)
965 {
966 trace_kvm_dirty_ring_flush(0);
967 /*
968 * The function needs to be serialized. Since this function
969 * should always be with BQL held, serialization is guaranteed.
970 * However, let's be sure of it.
971 */
972 assert(bql_locked());
973 /*
974 * First make sure to flush the hardware buffers by kicking all
975 * vcpus out in a synchronous way.
976 */
977 kvm_cpu_synchronize_kick_all();
978 kvm_dirty_ring_reap(kvm_state, NULL);
979 trace_kvm_dirty_ring_flush(1);
980 }
981
982 /**
983 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
984 *
985 * This function will first try to fetch dirty bitmap from the kernel,
986 * and then updates qemu's dirty bitmap.
987 *
988 * NOTE: caller must be with kml->slots_lock held.
989 *
990 * @kml: the KVM memory listener object
991 * @section: the memory section to sync the dirty bitmap with
992 */
kvm_physical_sync_dirty_bitmap(KVMMemoryListener * kml,MemoryRegionSection * section)993 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
994 MemoryRegionSection *section)
995 {
996 KVMState *s = kvm_state;
997 KVMSlot *mem;
998 hwaddr start_addr, size;
999 hwaddr slot_size;
1000
1001 size = kvm_align_section(section, &start_addr);
1002 while (size) {
1003 slot_size = MIN(kvm_max_slot_size, size);
1004 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1005 if (!mem) {
1006 /* We don't have a slot if we want to trap every access. */
1007 return;
1008 }
1009 if (kvm_slot_get_dirty_log(s, mem)) {
1010 kvm_slot_sync_dirty_pages(mem);
1011 }
1012 start_addr += slot_size;
1013 size -= slot_size;
1014 }
1015 }
1016
1017 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
1018 #define KVM_CLEAR_LOG_SHIFT 6
1019 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
1020 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
1021
kvm_log_clear_one_slot(KVMSlot * mem,int as_id,uint64_t start,uint64_t size)1022 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
1023 uint64_t size)
1024 {
1025 KVMState *s = kvm_state;
1026 uint64_t end, bmap_start, start_delta, bmap_npages;
1027 struct kvm_clear_dirty_log d;
1028 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
1029 int ret;
1030
1031 /*
1032 * We need to extend either the start or the size or both to
1033 * satisfy the KVM interface requirement. Firstly, do the start
1034 * page alignment on 64 host pages
1035 */
1036 bmap_start = start & KVM_CLEAR_LOG_MASK;
1037 start_delta = start - bmap_start;
1038 bmap_start /= psize;
1039
1040 /*
1041 * The kernel interface has restriction on the size too, that either:
1042 *
1043 * (1) the size is 64 host pages aligned (just like the start), or
1044 * (2) the size fills up until the end of the KVM memslot.
1045 */
1046 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
1047 << KVM_CLEAR_LOG_SHIFT;
1048 end = mem->memory_size / psize;
1049 if (bmap_npages > end - bmap_start) {
1050 bmap_npages = end - bmap_start;
1051 }
1052 start_delta /= psize;
1053
1054 /*
1055 * Prepare the bitmap to clear dirty bits. Here we must guarantee
1056 * that we won't clear any unknown dirty bits otherwise we might
1057 * accidentally clear some set bits which are not yet synced from
1058 * the kernel into QEMU's bitmap, then we'll lose track of the
1059 * guest modifications upon those pages (which can directly lead
1060 * to guest data loss or panic after migration).
1061 *
1062 * Layout of the KVMSlot.dirty_bmap:
1063 *
1064 * |<-------- bmap_npages -----------..>|
1065 * [1]
1066 * start_delta size
1067 * |----------------|-------------|------------------|------------|
1068 * ^ ^ ^ ^
1069 * | | | |
1070 * start bmap_start (start) end
1071 * of memslot of memslot
1072 *
1073 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
1074 */
1075
1076 assert(bmap_start % BITS_PER_LONG == 0);
1077 /* We should never do log_clear before log_sync */
1078 assert(mem->dirty_bmap);
1079 if (start_delta || bmap_npages - size / psize) {
1080 /* Slow path - we need to manipulate a temp bitmap */
1081 bmap_clear = bitmap_new(bmap_npages);
1082 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
1083 bmap_start, start_delta + size / psize);
1084 /*
1085 * We need to fill the holes at start because that was not
1086 * specified by the caller and we extended the bitmap only for
1087 * 64 pages alignment
1088 */
1089 bitmap_clear(bmap_clear, 0, start_delta);
1090 d.dirty_bitmap = bmap_clear;
1091 } else {
1092 /*
1093 * Fast path - both start and size align well with BITS_PER_LONG
1094 * (or the end of memory slot)
1095 */
1096 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
1097 }
1098
1099 d.first_page = bmap_start;
1100 /* It should never overflow. If it happens, say something */
1101 assert(bmap_npages <= UINT32_MAX);
1102 d.num_pages = bmap_npages;
1103 d.slot = mem->slot | (as_id << 16);
1104
1105 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
1106 if (ret < 0 && ret != -ENOENT) {
1107 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
1108 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
1109 __func__, d.slot, (uint64_t)d.first_page,
1110 (uint32_t)d.num_pages, ret);
1111 } else {
1112 ret = 0;
1113 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
1114 }
1115
1116 /*
1117 * After we have updated the remote dirty bitmap, we update the
1118 * cached bitmap as well for the memslot, then if another user
1119 * clears the same region we know we shouldn't clear it again on
1120 * the remote otherwise it's data loss as well.
1121 */
1122 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1123 size / psize);
1124 /* This handles the NULL case well */
1125 g_free(bmap_clear);
1126 return ret;
1127 }
1128
1129
1130 /**
1131 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1132 *
1133 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1134 * protection in the host kernel because in that case this operation
1135 * will be done within log_sync().
1136 *
1137 * @kml: the kvm memory listener
1138 * @section: the memory range to clear dirty bitmap
1139 */
kvm_physical_log_clear(KVMMemoryListener * kml,MemoryRegionSection * section)1140 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1141 MemoryRegionSection *section)
1142 {
1143 KVMState *s = kvm_state;
1144 uint64_t start, size, offset, count;
1145 KVMSlot *mem;
1146 int ret = 0, i;
1147
1148 if (!s->manual_dirty_log_protect) {
1149 /* No need to do explicit clear */
1150 return ret;
1151 }
1152
1153 start = section->offset_within_address_space;
1154 size = int128_get64(section->size);
1155
1156 if (!size) {
1157 /* Nothing more we can do... */
1158 return ret;
1159 }
1160
1161 kvm_slots_lock();
1162
1163 for (i = 0; i < kml->nr_slots_allocated; i++) {
1164 mem = &kml->slots[i];
1165 /* Discard slots that are empty or do not overlap the section */
1166 if (!mem->memory_size ||
1167 mem->start_addr > start + size - 1 ||
1168 start > mem->start_addr + mem->memory_size - 1) {
1169 continue;
1170 }
1171
1172 if (start >= mem->start_addr) {
1173 /* The slot starts before section or is aligned to it. */
1174 offset = start - mem->start_addr;
1175 count = MIN(mem->memory_size - offset, size);
1176 } else {
1177 /* The slot starts after section. */
1178 offset = 0;
1179 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1180 }
1181 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1182 if (ret < 0) {
1183 break;
1184 }
1185 }
1186
1187 kvm_slots_unlock();
1188
1189 return ret;
1190 }
1191
kvm_coalesce_mmio_region(MemoryListener * listener,MemoryRegionSection * secion,hwaddr start,hwaddr size)1192 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1193 MemoryRegionSection *secion,
1194 hwaddr start, hwaddr size)
1195 {
1196 KVMState *s = kvm_state;
1197
1198 if (s->coalesced_mmio) {
1199 struct kvm_coalesced_mmio_zone zone;
1200
1201 zone.addr = start;
1202 zone.size = size;
1203 zone.pad = 0;
1204
1205 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1206 }
1207 }
1208
kvm_uncoalesce_mmio_region(MemoryListener * listener,MemoryRegionSection * secion,hwaddr start,hwaddr size)1209 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1210 MemoryRegionSection *secion,
1211 hwaddr start, hwaddr size)
1212 {
1213 KVMState *s = kvm_state;
1214
1215 if (s->coalesced_mmio) {
1216 struct kvm_coalesced_mmio_zone zone;
1217
1218 zone.addr = start;
1219 zone.size = size;
1220 zone.pad = 0;
1221
1222 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1223 }
1224 }
1225
kvm_coalesce_pio_add(MemoryListener * listener,MemoryRegionSection * section,hwaddr start,hwaddr size)1226 static void kvm_coalesce_pio_add(MemoryListener *listener,
1227 MemoryRegionSection *section,
1228 hwaddr start, hwaddr size)
1229 {
1230 KVMState *s = kvm_state;
1231
1232 if (s->coalesced_pio) {
1233 struct kvm_coalesced_mmio_zone zone;
1234
1235 zone.addr = start;
1236 zone.size = size;
1237 zone.pio = 1;
1238
1239 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1240 }
1241 }
1242
kvm_coalesce_pio_del(MemoryListener * listener,MemoryRegionSection * section,hwaddr start,hwaddr size)1243 static void kvm_coalesce_pio_del(MemoryListener *listener,
1244 MemoryRegionSection *section,
1245 hwaddr start, hwaddr size)
1246 {
1247 KVMState *s = kvm_state;
1248
1249 if (s->coalesced_pio) {
1250 struct kvm_coalesced_mmio_zone zone;
1251
1252 zone.addr = start;
1253 zone.size = size;
1254 zone.pio = 1;
1255
1256 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1257 }
1258 }
1259
kvm_check_extension(KVMState * s,unsigned int extension)1260 int kvm_check_extension(KVMState *s, unsigned int extension)
1261 {
1262 int ret;
1263
1264 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1265 if (ret < 0) {
1266 ret = 0;
1267 }
1268
1269 return ret;
1270 }
1271
kvm_vm_check_extension(KVMState * s,unsigned int extension)1272 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1273 {
1274 int ret;
1275
1276 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1277 if (ret < 0) {
1278 /* VM wide version not implemented, use global one instead */
1279 ret = kvm_check_extension(s, extension);
1280 }
1281
1282 return ret;
1283 }
1284
1285 /*
1286 * We track the poisoned pages to be able to:
1287 * - replace them on VM reset
1288 * - block a migration for a VM with a poisoned page
1289 */
1290 typedef struct HWPoisonPage {
1291 ram_addr_t ram_addr;
1292 QLIST_ENTRY(HWPoisonPage) list;
1293 } HWPoisonPage;
1294
1295 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1296 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1297
kvm_unpoison_all(void * param)1298 static void kvm_unpoison_all(void *param)
1299 {
1300 HWPoisonPage *page, *next_page;
1301
1302 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1303 QLIST_REMOVE(page, list);
1304 qemu_ram_remap(page->ram_addr);
1305 g_free(page);
1306 }
1307 }
1308
kvm_hwpoison_page_add(ram_addr_t ram_addr)1309 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1310 {
1311 HWPoisonPage *page;
1312
1313 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1314 if (page->ram_addr == ram_addr) {
1315 return;
1316 }
1317 }
1318 page = g_new(HWPoisonPage, 1);
1319 page->ram_addr = ram_addr;
1320 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1321 }
1322
kvm_hwpoisoned_mem(void)1323 bool kvm_hwpoisoned_mem(void)
1324 {
1325 return !QLIST_EMPTY(&hwpoison_page_list);
1326 }
1327
adjust_ioeventfd_endianness(uint32_t val,uint32_t size)1328 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1329 {
1330 if (target_needs_bswap()) {
1331 /*
1332 * The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1333 * endianness, but the memory core hands them in target endianness.
1334 * For example, PPC is always treated as big-endian even if running
1335 * on KVM and on PPC64LE. Correct here, swapping back.
1336 */
1337 switch (size) {
1338 case 2:
1339 val = bswap16(val);
1340 break;
1341 case 4:
1342 val = bswap32(val);
1343 break;
1344 }
1345 }
1346 return val;
1347 }
1348
kvm_set_ioeventfd_mmio(int fd,hwaddr addr,uint32_t val,bool assign,uint32_t size,bool datamatch)1349 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1350 bool assign, uint32_t size, bool datamatch)
1351 {
1352 int ret;
1353 struct kvm_ioeventfd iofd = {
1354 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1355 .addr = addr,
1356 .len = size,
1357 .flags = 0,
1358 .fd = fd,
1359 };
1360
1361 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1362 datamatch);
1363 if (!kvm_enabled()) {
1364 return -ENOSYS;
1365 }
1366
1367 if (datamatch) {
1368 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1369 }
1370 if (!assign) {
1371 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1372 }
1373
1374 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1375
1376 if (ret < 0) {
1377 return -errno;
1378 }
1379
1380 return 0;
1381 }
1382
kvm_set_ioeventfd_pio(int fd,uint16_t addr,uint16_t val,bool assign,uint32_t size,bool datamatch)1383 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1384 bool assign, uint32_t size, bool datamatch)
1385 {
1386 struct kvm_ioeventfd kick = {
1387 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1388 .addr = addr,
1389 .flags = KVM_IOEVENTFD_FLAG_PIO,
1390 .len = size,
1391 .fd = fd,
1392 };
1393 int r;
1394 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1395 if (!kvm_enabled()) {
1396 return -ENOSYS;
1397 }
1398 if (datamatch) {
1399 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1400 }
1401 if (!assign) {
1402 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1403 }
1404 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1405 if (r < 0) {
1406 return r;
1407 }
1408 return 0;
1409 }
1410
1411
1412 static const KVMCapabilityInfo *
kvm_check_extension_list(KVMState * s,const KVMCapabilityInfo * list)1413 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1414 {
1415 while (list->name) {
1416 if (!kvm_check_extension(s, list->value)) {
1417 return list;
1418 }
1419 list++;
1420 }
1421 return NULL;
1422 }
1423
kvm_set_max_memslot_size(hwaddr max_slot_size)1424 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1425 {
1426 g_assert(
1427 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1428 );
1429 kvm_max_slot_size = max_slot_size;
1430 }
1431
kvm_set_memory_attributes(hwaddr start,uint64_t size,uint64_t attr)1432 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr)
1433 {
1434 struct kvm_memory_attributes attrs;
1435 int r;
1436
1437 assert((attr & kvm_supported_memory_attributes) == attr);
1438 attrs.attributes = attr;
1439 attrs.address = start;
1440 attrs.size = size;
1441 attrs.flags = 0;
1442
1443 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs);
1444 if (r) {
1445 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") "
1446 "with attr 0x%" PRIx64 " error '%s'",
1447 start, size, attr, strerror(errno));
1448 }
1449 return r;
1450 }
1451
kvm_set_memory_attributes_private(hwaddr start,uint64_t size)1452 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size)
1453 {
1454 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
1455 }
1456
kvm_set_memory_attributes_shared(hwaddr start,uint64_t size)1457 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size)
1458 {
1459 return kvm_set_memory_attributes(start, size, 0);
1460 }
1461
1462 /* Called with KVMMemoryListener.slots_lock held */
kvm_set_phys_mem(KVMMemoryListener * kml,MemoryRegionSection * section,bool add)1463 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1464 MemoryRegionSection *section, bool add)
1465 {
1466 KVMSlot *mem;
1467 int err;
1468 MemoryRegion *mr = section->mr;
1469 bool writable = !mr->readonly && !mr->rom_device;
1470 hwaddr start_addr, size, slot_size, mr_offset;
1471 ram_addr_t ram_start_offset;
1472 void *ram;
1473
1474 if (!memory_region_is_ram(mr)) {
1475 if (writable || !kvm_readonly_mem_allowed) {
1476 return;
1477 } else if (!mr->romd_mode) {
1478 /* If the memory device is not in romd_mode, then we actually want
1479 * to remove the kvm memory slot so all accesses will trap. */
1480 add = false;
1481 }
1482 }
1483
1484 size = kvm_align_section(section, &start_addr);
1485 if (!size) {
1486 return;
1487 }
1488
1489 /* The offset of the kvmslot within the memory region */
1490 mr_offset = section->offset_within_region + start_addr -
1491 section->offset_within_address_space;
1492
1493 /* use aligned delta to align the ram address and offset */
1494 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1495 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1496
1497 if (!add) {
1498 do {
1499 slot_size = MIN(kvm_max_slot_size, size);
1500 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1501 if (!mem) {
1502 return;
1503 }
1504 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1505 /*
1506 * NOTE: We should be aware of the fact that here we're only
1507 * doing a best effort to sync dirty bits. No matter whether
1508 * we're using dirty log or dirty ring, we ignored two facts:
1509 *
1510 * (1) dirty bits can reside in hardware buffers (PML)
1511 *
1512 * (2) after we collected dirty bits here, pages can be dirtied
1513 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1514 * remove the slot.
1515 *
1516 * Not easy. Let's cross the fingers until it's fixed.
1517 */
1518 if (kvm_state->kvm_dirty_ring_size) {
1519 kvm_dirty_ring_reap_locked(kvm_state, NULL);
1520 if (kvm_state->kvm_dirty_ring_with_bitmap) {
1521 kvm_slot_sync_dirty_pages(mem);
1522 kvm_slot_get_dirty_log(kvm_state, mem);
1523 }
1524 } else {
1525 kvm_slot_get_dirty_log(kvm_state, mem);
1526 }
1527 kvm_slot_sync_dirty_pages(mem);
1528 }
1529
1530 /* unregister the slot */
1531 g_free(mem->dirty_bmap);
1532 mem->dirty_bmap = NULL;
1533 mem->memory_size = 0;
1534 mem->flags = 0;
1535 err = kvm_set_user_memory_region(kml, mem, false);
1536 if (err) {
1537 fprintf(stderr, "%s: error unregistering slot: %s\n",
1538 __func__, strerror(-err));
1539 abort();
1540 }
1541 start_addr += slot_size;
1542 size -= slot_size;
1543 kml->nr_slots_used--;
1544 } while (size);
1545 return;
1546 }
1547
1548 /* register the new slot */
1549 do {
1550 slot_size = MIN(kvm_max_slot_size, size);
1551 mem = kvm_alloc_slot(kml);
1552 mem->as_id = kml->as_id;
1553 mem->memory_size = slot_size;
1554 mem->start_addr = start_addr;
1555 mem->ram_start_offset = ram_start_offset;
1556 mem->ram = ram;
1557 mem->flags = kvm_mem_flags(mr);
1558 mem->guest_memfd = mr->ram_block->guest_memfd;
1559 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host;
1560
1561 kvm_slot_init_dirty_bitmap(mem);
1562 err = kvm_set_user_memory_region(kml, mem, true);
1563 if (err) {
1564 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1565 strerror(-err));
1566 abort();
1567 }
1568
1569 if (memory_region_has_guest_memfd(mr)) {
1570 err = kvm_set_memory_attributes_private(start_addr, slot_size);
1571 if (err) {
1572 error_report("%s: failed to set memory attribute private: %s",
1573 __func__, strerror(-err));
1574 exit(1);
1575 }
1576 }
1577
1578 start_addr += slot_size;
1579 ram_start_offset += slot_size;
1580 ram += slot_size;
1581 size -= slot_size;
1582 kml->nr_slots_used++;
1583 } while (size);
1584 }
1585
kvm_dirty_ring_reaper_thread(void * data)1586 static void *kvm_dirty_ring_reaper_thread(void *data)
1587 {
1588 KVMState *s = data;
1589 struct KVMDirtyRingReaper *r = &s->reaper;
1590
1591 rcu_register_thread();
1592
1593 trace_kvm_dirty_ring_reaper("init");
1594
1595 while (true) {
1596 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1597 trace_kvm_dirty_ring_reaper("wait");
1598 /*
1599 * TODO: provide a smarter timeout rather than a constant?
1600 */
1601 sleep(1);
1602
1603 /* keep sleeping so that dirtylimit not be interfered by reaper */
1604 if (dirtylimit_in_service()) {
1605 continue;
1606 }
1607
1608 trace_kvm_dirty_ring_reaper("wakeup");
1609 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1610
1611 bql_lock();
1612 kvm_dirty_ring_reap(s, NULL);
1613 bql_unlock();
1614
1615 r->reaper_iteration++;
1616 }
1617
1618 g_assert_not_reached();
1619 }
1620
kvm_dirty_ring_reaper_init(KVMState * s)1621 static void kvm_dirty_ring_reaper_init(KVMState *s)
1622 {
1623 struct KVMDirtyRingReaper *r = &s->reaper;
1624
1625 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1626 kvm_dirty_ring_reaper_thread,
1627 s, QEMU_THREAD_JOINABLE);
1628 }
1629
kvm_dirty_ring_init(KVMState * s)1630 static int kvm_dirty_ring_init(KVMState *s)
1631 {
1632 uint32_t ring_size = s->kvm_dirty_ring_size;
1633 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1634 unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1635 int ret;
1636
1637 s->kvm_dirty_ring_size = 0;
1638 s->kvm_dirty_ring_bytes = 0;
1639
1640 /* Bail if the dirty ring size isn't specified */
1641 if (!ring_size) {
1642 return 0;
1643 }
1644
1645 /*
1646 * Read the max supported pages. Fall back to dirty logging mode
1647 * if the dirty ring isn't supported.
1648 */
1649 ret = kvm_vm_check_extension(s, capability);
1650 if (ret <= 0) {
1651 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1652 ret = kvm_vm_check_extension(s, capability);
1653 }
1654
1655 if (ret <= 0) {
1656 warn_report("KVM dirty ring not available, using bitmap method");
1657 return 0;
1658 }
1659
1660 if (ring_bytes > ret) {
1661 error_report("KVM dirty ring size %" PRIu32 " too big "
1662 "(maximum is %ld). Please use a smaller value.",
1663 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1664 return -EINVAL;
1665 }
1666
1667 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1668 if (ret) {
1669 error_report("Enabling of KVM dirty ring failed: %s. "
1670 "Suggested minimum value is 1024.", strerror(-ret));
1671 return -EIO;
1672 }
1673
1674 /* Enable the backup bitmap if it is supported */
1675 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1676 if (ret > 0) {
1677 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1678 if (ret) {
1679 error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1680 "%s. ", strerror(-ret));
1681 return -EIO;
1682 }
1683
1684 s->kvm_dirty_ring_with_bitmap = true;
1685 }
1686
1687 s->kvm_dirty_ring_size = ring_size;
1688 s->kvm_dirty_ring_bytes = ring_bytes;
1689
1690 return 0;
1691 }
1692
kvm_region_add(MemoryListener * listener,MemoryRegionSection * section)1693 static void kvm_region_add(MemoryListener *listener,
1694 MemoryRegionSection *section)
1695 {
1696 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1697 KVMMemoryUpdate *update;
1698
1699 update = g_new0(KVMMemoryUpdate, 1);
1700 update->section = *section;
1701
1702 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1703 }
1704
kvm_region_del(MemoryListener * listener,MemoryRegionSection * section)1705 static void kvm_region_del(MemoryListener *listener,
1706 MemoryRegionSection *section)
1707 {
1708 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1709 KVMMemoryUpdate *update;
1710
1711 update = g_new0(KVMMemoryUpdate, 1);
1712 update->section = *section;
1713
1714 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1715 }
1716
kvm_region_commit(MemoryListener * listener)1717 static void kvm_region_commit(MemoryListener *listener)
1718 {
1719 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1720 listener);
1721 KVMMemoryUpdate *u1, *u2;
1722 bool need_inhibit = false;
1723
1724 if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1725 QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1726 return;
1727 }
1728
1729 /*
1730 * We have to be careful when regions to add overlap with ranges to remove.
1731 * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1732 * is currently active.
1733 *
1734 * The lists are order by addresses, so it's easy to find overlaps.
1735 */
1736 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1737 u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1738 while (u1 && u2) {
1739 Range r1, r2;
1740
1741 range_init_nofail(&r1, u1->section.offset_within_address_space,
1742 int128_get64(u1->section.size));
1743 range_init_nofail(&r2, u2->section.offset_within_address_space,
1744 int128_get64(u2->section.size));
1745
1746 if (range_overlaps_range(&r1, &r2)) {
1747 need_inhibit = true;
1748 break;
1749 }
1750 if (range_lob(&r1) < range_lob(&r2)) {
1751 u1 = QSIMPLEQ_NEXT(u1, next);
1752 } else {
1753 u2 = QSIMPLEQ_NEXT(u2, next);
1754 }
1755 }
1756
1757 kvm_slots_lock();
1758 if (need_inhibit) {
1759 accel_ioctl_inhibit_begin();
1760 }
1761
1762 /* Remove all memslots before adding the new ones. */
1763 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1764 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1765 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1766
1767 kvm_set_phys_mem(kml, &u1->section, false);
1768 memory_region_unref(u1->section.mr);
1769
1770 g_free(u1);
1771 }
1772 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1773 u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1774 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1775
1776 memory_region_ref(u1->section.mr);
1777 kvm_set_phys_mem(kml, &u1->section, true);
1778
1779 g_free(u1);
1780 }
1781
1782 if (need_inhibit) {
1783 accel_ioctl_inhibit_end();
1784 }
1785 kvm_slots_unlock();
1786 }
1787
kvm_log_sync(MemoryListener * listener,MemoryRegionSection * section)1788 static void kvm_log_sync(MemoryListener *listener,
1789 MemoryRegionSection *section)
1790 {
1791 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1792
1793 kvm_slots_lock();
1794 kvm_physical_sync_dirty_bitmap(kml, section);
1795 kvm_slots_unlock();
1796 }
1797
kvm_log_sync_global(MemoryListener * l,bool last_stage)1798 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1799 {
1800 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1801 KVMState *s = kvm_state;
1802 KVMSlot *mem;
1803 int i;
1804
1805 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1806 kvm_dirty_ring_flush();
1807
1808 kvm_slots_lock();
1809 for (i = 0; i < kml->nr_slots_allocated; i++) {
1810 mem = &kml->slots[i];
1811 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1812 kvm_slot_sync_dirty_pages(mem);
1813
1814 if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1815 kvm_slot_get_dirty_log(s, mem)) {
1816 kvm_slot_sync_dirty_pages(mem);
1817 }
1818
1819 /*
1820 * This is not needed by KVM_GET_DIRTY_LOG because the
1821 * ioctl will unconditionally overwrite the whole region.
1822 * However kvm dirty ring has no such side effect.
1823 */
1824 kvm_slot_reset_dirty_pages(mem);
1825 }
1826 }
1827 kvm_slots_unlock();
1828 }
1829
kvm_log_clear(MemoryListener * listener,MemoryRegionSection * section)1830 static void kvm_log_clear(MemoryListener *listener,
1831 MemoryRegionSection *section)
1832 {
1833 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1834 int r;
1835
1836 r = kvm_physical_log_clear(kml, section);
1837 if (r < 0) {
1838 error_report_once("%s: kvm log clear failed: mr=%s "
1839 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1840 section->mr->name, section->offset_within_region,
1841 int128_get64(section->size));
1842 abort();
1843 }
1844 }
1845
kvm_mem_ioeventfd_add(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1846 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1847 MemoryRegionSection *section,
1848 bool match_data, uint64_t data,
1849 EventNotifier *e)
1850 {
1851 int fd = event_notifier_get_fd(e);
1852 int r;
1853
1854 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1855 data, true, int128_get64(section->size),
1856 match_data);
1857 if (r < 0) {
1858 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1859 __func__, strerror(-r), -r);
1860 abort();
1861 }
1862 }
1863
kvm_mem_ioeventfd_del(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1864 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1865 MemoryRegionSection *section,
1866 bool match_data, uint64_t data,
1867 EventNotifier *e)
1868 {
1869 int fd = event_notifier_get_fd(e);
1870 int r;
1871
1872 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1873 data, false, int128_get64(section->size),
1874 match_data);
1875 if (r < 0) {
1876 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1877 __func__, strerror(-r), -r);
1878 abort();
1879 }
1880 }
1881
kvm_io_ioeventfd_add(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1882 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1883 MemoryRegionSection *section,
1884 bool match_data, uint64_t data,
1885 EventNotifier *e)
1886 {
1887 int fd = event_notifier_get_fd(e);
1888 int r;
1889
1890 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1891 data, true, int128_get64(section->size),
1892 match_data);
1893 if (r < 0) {
1894 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1895 __func__, strerror(-r), -r);
1896 abort();
1897 }
1898 }
1899
kvm_io_ioeventfd_del(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1900 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1901 MemoryRegionSection *section,
1902 bool match_data, uint64_t data,
1903 EventNotifier *e)
1904
1905 {
1906 int fd = event_notifier_get_fd(e);
1907 int r;
1908
1909 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1910 data, false, int128_get64(section->size),
1911 match_data);
1912 if (r < 0) {
1913 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1914 __func__, strerror(-r), -r);
1915 abort();
1916 }
1917 }
1918
kvm_memory_listener_register(KVMState * s,KVMMemoryListener * kml,AddressSpace * as,int as_id,const char * name)1919 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1920 AddressSpace *as, int as_id, const char *name)
1921 {
1922 int i;
1923
1924 kml->as_id = as_id;
1925
1926 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT);
1927
1928 QSIMPLEQ_INIT(&kml->transaction_add);
1929 QSIMPLEQ_INIT(&kml->transaction_del);
1930
1931 kml->listener.region_add = kvm_region_add;
1932 kml->listener.region_del = kvm_region_del;
1933 kml->listener.commit = kvm_region_commit;
1934 kml->listener.log_start = kvm_log_start;
1935 kml->listener.log_stop = kvm_log_stop;
1936 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1937 kml->listener.name = name;
1938
1939 if (s->kvm_dirty_ring_size) {
1940 kml->listener.log_sync_global = kvm_log_sync_global;
1941 } else {
1942 kml->listener.log_sync = kvm_log_sync;
1943 kml->listener.log_clear = kvm_log_clear;
1944 }
1945
1946 memory_listener_register(&kml->listener, as);
1947
1948 for (i = 0; i < s->nr_as; ++i) {
1949 if (!s->as[i].as) {
1950 s->as[i].as = as;
1951 s->as[i].ml = kml;
1952 break;
1953 }
1954 }
1955 }
1956
1957 static MemoryListener kvm_io_listener = {
1958 .name = "kvm-io",
1959 .coalesced_io_add = kvm_coalesce_pio_add,
1960 .coalesced_io_del = kvm_coalesce_pio_del,
1961 .eventfd_add = kvm_io_ioeventfd_add,
1962 .eventfd_del = kvm_io_ioeventfd_del,
1963 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1964 };
1965
kvm_set_irq(KVMState * s,int irq,int level)1966 int kvm_set_irq(KVMState *s, int irq, int level)
1967 {
1968 struct kvm_irq_level event;
1969 int ret;
1970
1971 assert(kvm_async_interrupts_enabled());
1972
1973 event.level = level;
1974 event.irq = irq;
1975 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1976 if (ret < 0) {
1977 perror("kvm_set_irq");
1978 abort();
1979 }
1980
1981 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1982 }
1983
1984 #ifdef KVM_CAP_IRQ_ROUTING
1985 typedef struct KVMMSIRoute {
1986 struct kvm_irq_routing_entry kroute;
1987 QTAILQ_ENTRY(KVMMSIRoute) entry;
1988 } KVMMSIRoute;
1989
set_gsi(KVMState * s,unsigned int gsi)1990 static void set_gsi(KVMState *s, unsigned int gsi)
1991 {
1992 set_bit(gsi, s->used_gsi_bitmap);
1993 }
1994
clear_gsi(KVMState * s,unsigned int gsi)1995 static void clear_gsi(KVMState *s, unsigned int gsi)
1996 {
1997 clear_bit(gsi, s->used_gsi_bitmap);
1998 }
1999
kvm_init_irq_routing(KVMState * s)2000 void kvm_init_irq_routing(KVMState *s)
2001 {
2002 int gsi_count;
2003
2004 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
2005 if (gsi_count > 0) {
2006 /* Round up so we can search ints using ffs */
2007 s->used_gsi_bitmap = bitmap_new(gsi_count);
2008 s->gsi_count = gsi_count;
2009 }
2010
2011 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
2012 s->nr_allocated_irq_routes = 0;
2013
2014 kvm_arch_init_irq_routing(s);
2015 }
2016
kvm_irqchip_commit_routes(KVMState * s)2017 void kvm_irqchip_commit_routes(KVMState *s)
2018 {
2019 int ret;
2020
2021 if (kvm_gsi_direct_mapping()) {
2022 return;
2023 }
2024
2025 if (!kvm_gsi_routing_enabled()) {
2026 return;
2027 }
2028
2029 s->irq_routes->flags = 0;
2030 trace_kvm_irqchip_commit_routes();
2031 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
2032 assert(ret == 0);
2033 }
2034
kvm_add_routing_entry(KVMState * s,struct kvm_irq_routing_entry * entry)2035 void kvm_add_routing_entry(KVMState *s,
2036 struct kvm_irq_routing_entry *entry)
2037 {
2038 struct kvm_irq_routing_entry *new;
2039 int n, size;
2040
2041 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
2042 n = s->nr_allocated_irq_routes * 2;
2043 if (n < 64) {
2044 n = 64;
2045 }
2046 size = sizeof(struct kvm_irq_routing);
2047 size += n * sizeof(*new);
2048 s->irq_routes = g_realloc(s->irq_routes, size);
2049 s->nr_allocated_irq_routes = n;
2050 }
2051 n = s->irq_routes->nr++;
2052 new = &s->irq_routes->entries[n];
2053
2054 *new = *entry;
2055
2056 set_gsi(s, entry->gsi);
2057 }
2058
kvm_update_routing_entry(KVMState * s,struct kvm_irq_routing_entry * new_entry)2059 static int kvm_update_routing_entry(KVMState *s,
2060 struct kvm_irq_routing_entry *new_entry)
2061 {
2062 struct kvm_irq_routing_entry *entry;
2063 int n;
2064
2065 for (n = 0; n < s->irq_routes->nr; n++) {
2066 entry = &s->irq_routes->entries[n];
2067 if (entry->gsi != new_entry->gsi) {
2068 continue;
2069 }
2070
2071 if(!memcmp(entry, new_entry, sizeof *entry)) {
2072 return 0;
2073 }
2074
2075 *entry = *new_entry;
2076
2077 return 0;
2078 }
2079
2080 return -ESRCH;
2081 }
2082
kvm_irqchip_add_irq_route(KVMState * s,int irq,int irqchip,int pin)2083 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
2084 {
2085 struct kvm_irq_routing_entry e = {};
2086
2087 assert(pin < s->gsi_count);
2088
2089 e.gsi = irq;
2090 e.type = KVM_IRQ_ROUTING_IRQCHIP;
2091 e.flags = 0;
2092 e.u.irqchip.irqchip = irqchip;
2093 e.u.irqchip.pin = pin;
2094 kvm_add_routing_entry(s, &e);
2095 }
2096
kvm_irqchip_release_virq(KVMState * s,int virq)2097 void kvm_irqchip_release_virq(KVMState *s, int virq)
2098 {
2099 struct kvm_irq_routing_entry *e;
2100 int i;
2101
2102 if (kvm_gsi_direct_mapping()) {
2103 return;
2104 }
2105
2106 for (i = 0; i < s->irq_routes->nr; i++) {
2107 e = &s->irq_routes->entries[i];
2108 if (e->gsi == virq) {
2109 s->irq_routes->nr--;
2110 *e = s->irq_routes->entries[s->irq_routes->nr];
2111 }
2112 }
2113 clear_gsi(s, virq);
2114 kvm_arch_release_virq_post(virq);
2115 trace_kvm_irqchip_release_virq(virq);
2116 }
2117
kvm_irqchip_add_change_notifier(Notifier * n)2118 void kvm_irqchip_add_change_notifier(Notifier *n)
2119 {
2120 notifier_list_add(&kvm_irqchip_change_notifiers, n);
2121 }
2122
kvm_irqchip_remove_change_notifier(Notifier * n)2123 void kvm_irqchip_remove_change_notifier(Notifier *n)
2124 {
2125 notifier_remove(n);
2126 }
2127
kvm_irqchip_change_notify(void)2128 void kvm_irqchip_change_notify(void)
2129 {
2130 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
2131 }
2132
kvm_irqchip_get_virq(KVMState * s)2133 int kvm_irqchip_get_virq(KVMState *s)
2134 {
2135 int next_virq;
2136
2137 /* Return the lowest unused GSI in the bitmap */
2138 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2139 if (next_virq >= s->gsi_count) {
2140 return -ENOSPC;
2141 } else {
2142 return next_virq;
2143 }
2144 }
2145
kvm_irqchip_send_msi(KVMState * s,MSIMessage msg)2146 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2147 {
2148 struct kvm_msi msi;
2149
2150 msi.address_lo = (uint32_t)msg.address;
2151 msi.address_hi = msg.address >> 32;
2152 msi.data = le32_to_cpu(msg.data);
2153 msi.flags = 0;
2154 memset(msi.pad, 0, sizeof(msi.pad));
2155
2156 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2157 }
2158
kvm_irqchip_add_msi_route(KVMRouteChange * c,int vector,PCIDevice * dev)2159 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2160 {
2161 struct kvm_irq_routing_entry kroute = {};
2162 int virq;
2163 KVMState *s = c->s;
2164 MSIMessage msg = {0, 0};
2165
2166 if (pci_available && dev) {
2167 msg = pci_get_msi_message(dev, vector);
2168 }
2169
2170 if (kvm_gsi_direct_mapping()) {
2171 return kvm_arch_msi_data_to_gsi(msg.data);
2172 }
2173
2174 if (!kvm_gsi_routing_enabled()) {
2175 return -ENOSYS;
2176 }
2177
2178 virq = kvm_irqchip_get_virq(s);
2179 if (virq < 0) {
2180 return virq;
2181 }
2182
2183 kroute.gsi = virq;
2184 kroute.type = KVM_IRQ_ROUTING_MSI;
2185 kroute.flags = 0;
2186 kroute.u.msi.address_lo = (uint32_t)msg.address;
2187 kroute.u.msi.address_hi = msg.address >> 32;
2188 kroute.u.msi.data = le32_to_cpu(msg.data);
2189 if (pci_available && kvm_msi_devid_required()) {
2190 kroute.flags = KVM_MSI_VALID_DEVID;
2191 kroute.u.msi.devid = pci_requester_id(dev);
2192 }
2193 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2194 kvm_irqchip_release_virq(s, virq);
2195 return -EINVAL;
2196 }
2197
2198 if (s->irq_routes->nr < s->gsi_count) {
2199 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2200 vector, virq);
2201
2202 kvm_add_routing_entry(s, &kroute);
2203 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2204 c->changes++;
2205 } else {
2206 kvm_irqchip_release_virq(s, virq);
2207 return -ENOSPC;
2208 }
2209
2210 return virq;
2211 }
2212
kvm_irqchip_update_msi_route(KVMState * s,int virq,MSIMessage msg,PCIDevice * dev)2213 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2214 PCIDevice *dev)
2215 {
2216 struct kvm_irq_routing_entry kroute = {};
2217
2218 if (kvm_gsi_direct_mapping()) {
2219 return 0;
2220 }
2221
2222 if (!kvm_irqchip_in_kernel()) {
2223 return -ENOSYS;
2224 }
2225
2226 kroute.gsi = virq;
2227 kroute.type = KVM_IRQ_ROUTING_MSI;
2228 kroute.flags = 0;
2229 kroute.u.msi.address_lo = (uint32_t)msg.address;
2230 kroute.u.msi.address_hi = msg.address >> 32;
2231 kroute.u.msi.data = le32_to_cpu(msg.data);
2232 if (pci_available && kvm_msi_devid_required()) {
2233 kroute.flags = KVM_MSI_VALID_DEVID;
2234 kroute.u.msi.devid = pci_requester_id(dev);
2235 }
2236 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2237 return -EINVAL;
2238 }
2239
2240 trace_kvm_irqchip_update_msi_route(virq);
2241
2242 return kvm_update_routing_entry(s, &kroute);
2243 }
2244
kvm_irqchip_assign_irqfd(KVMState * s,EventNotifier * event,EventNotifier * resample,int virq,bool assign)2245 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2246 EventNotifier *resample, int virq,
2247 bool assign)
2248 {
2249 int fd = event_notifier_get_fd(event);
2250 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2251
2252 struct kvm_irqfd irqfd = {
2253 .fd = fd,
2254 .gsi = virq,
2255 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2256 };
2257
2258 if (rfd != -1) {
2259 assert(assign);
2260 if (kvm_irqchip_is_split()) {
2261 /*
2262 * When the slow irqchip (e.g. IOAPIC) is in the
2263 * userspace, KVM kernel resamplefd will not work because
2264 * the EOI of the interrupt will be delivered to userspace
2265 * instead, so the KVM kernel resamplefd kick will be
2266 * skipped. The userspace here mimics what the kernel
2267 * provides with resamplefd, remember the resamplefd and
2268 * kick it when we receive EOI of this IRQ.
2269 *
2270 * This is hackery because IOAPIC is mostly bypassed
2271 * (except EOI broadcasts) when irqfd is used. However
2272 * this can bring much performance back for split irqchip
2273 * with INTx IRQs (for VFIO, this gives 93% perf of the
2274 * full fast path, which is 46% perf boost comparing to
2275 * the INTx slow path).
2276 */
2277 kvm_resample_fd_insert(virq, resample);
2278 } else {
2279 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2280 irqfd.resamplefd = rfd;
2281 }
2282 } else if (!assign) {
2283 if (kvm_irqchip_is_split()) {
2284 kvm_resample_fd_remove(virq);
2285 }
2286 }
2287
2288 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2289 }
2290
2291 #else /* !KVM_CAP_IRQ_ROUTING */
2292
kvm_init_irq_routing(KVMState * s)2293 void kvm_init_irq_routing(KVMState *s)
2294 {
2295 }
2296
kvm_irqchip_release_virq(KVMState * s,int virq)2297 void kvm_irqchip_release_virq(KVMState *s, int virq)
2298 {
2299 }
2300
kvm_irqchip_send_msi(KVMState * s,MSIMessage msg)2301 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2302 {
2303 abort();
2304 }
2305
kvm_irqchip_add_msi_route(KVMRouteChange * c,int vector,PCIDevice * dev)2306 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2307 {
2308 return -ENOSYS;
2309 }
2310
kvm_irqchip_add_adapter_route(KVMState * s,AdapterInfo * adapter)2311 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2312 {
2313 return -ENOSYS;
2314 }
2315
kvm_irqchip_add_hv_sint_route(KVMState * s,uint32_t vcpu,uint32_t sint)2316 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2317 {
2318 return -ENOSYS;
2319 }
2320
kvm_irqchip_assign_irqfd(KVMState * s,EventNotifier * event,EventNotifier * resample,int virq,bool assign)2321 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2322 EventNotifier *resample, int virq,
2323 bool assign)
2324 {
2325 abort();
2326 }
2327
kvm_irqchip_update_msi_route(KVMState * s,int virq,MSIMessage msg)2328 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2329 {
2330 return -ENOSYS;
2331 }
2332 #endif /* !KVM_CAP_IRQ_ROUTING */
2333
kvm_irqchip_add_irqfd_notifier_gsi(KVMState * s,EventNotifier * n,EventNotifier * rn,int virq)2334 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2335 EventNotifier *rn, int virq)
2336 {
2337 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2338 }
2339
kvm_irqchip_remove_irqfd_notifier_gsi(KVMState * s,EventNotifier * n,int virq)2340 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2341 int virq)
2342 {
2343 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2344 }
2345
kvm_irqchip_add_irqfd_notifier(KVMState * s,EventNotifier * n,EventNotifier * rn,qemu_irq irq)2346 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2347 EventNotifier *rn, qemu_irq irq)
2348 {
2349 gpointer key, gsi;
2350 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2351
2352 if (!found) {
2353 return -ENXIO;
2354 }
2355 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2356 }
2357
kvm_irqchip_remove_irqfd_notifier(KVMState * s,EventNotifier * n,qemu_irq irq)2358 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2359 qemu_irq irq)
2360 {
2361 gpointer key, gsi;
2362 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2363
2364 if (!found) {
2365 return -ENXIO;
2366 }
2367 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2368 }
2369
kvm_irqchip_set_qemuirq_gsi(KVMState * s,qemu_irq irq,int gsi)2370 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2371 {
2372 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2373 }
2374
kvm_irqchip_create(KVMState * s)2375 static void kvm_irqchip_create(KVMState *s)
2376 {
2377 int ret;
2378
2379 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2380 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2381 ;
2382 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2383 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2384 if (ret < 0) {
2385 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2386 exit(1);
2387 }
2388 } else {
2389 return;
2390 }
2391
2392 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2393 fprintf(stderr, "kvm: irqfd not implemented\n");
2394 exit(1);
2395 }
2396
2397 /* First probe and see if there's a arch-specific hook to create the
2398 * in-kernel irqchip for us */
2399 ret = kvm_arch_irqchip_create(s);
2400 if (ret == 0) {
2401 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2402 error_report("Split IRQ chip mode not supported.");
2403 exit(1);
2404 } else {
2405 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2406 }
2407 }
2408 if (ret < 0) {
2409 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2410 exit(1);
2411 }
2412
2413 kvm_kernel_irqchip = true;
2414 /* If we have an in-kernel IRQ chip then we must have asynchronous
2415 * interrupt delivery (though the reverse is not necessarily true)
2416 */
2417 kvm_async_interrupts_allowed = true;
2418 kvm_halt_in_kernel_allowed = true;
2419
2420 kvm_init_irq_routing(s);
2421
2422 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2423 }
2424
2425 /* Find number of supported CPUs using the recommended
2426 * procedure from the kernel API documentation to cope with
2427 * older kernels that may be missing capabilities.
2428 */
kvm_recommended_vcpus(KVMState * s)2429 static int kvm_recommended_vcpus(KVMState *s)
2430 {
2431 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2432 return (ret) ? ret : 4;
2433 }
2434
kvm_max_vcpus(KVMState * s)2435 static int kvm_max_vcpus(KVMState *s)
2436 {
2437 int ret = kvm_vm_check_extension(s, KVM_CAP_MAX_VCPUS);
2438 return (ret) ? ret : kvm_recommended_vcpus(s);
2439 }
2440
kvm_max_vcpu_id(KVMState * s)2441 static int kvm_max_vcpu_id(KVMState *s)
2442 {
2443 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2444 return (ret) ? ret : kvm_max_vcpus(s);
2445 }
2446
kvm_vcpu_id_is_valid(int vcpu_id)2447 bool kvm_vcpu_id_is_valid(int vcpu_id)
2448 {
2449 KVMState *s = KVM_STATE(current_accel());
2450 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2451 }
2452
kvm_dirty_ring_enabled(void)2453 bool kvm_dirty_ring_enabled(void)
2454 {
2455 return kvm_state && kvm_state->kvm_dirty_ring_size;
2456 }
2457
2458 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2459 strList *names, strList *targets, Error **errp);
2460 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2461
kvm_dirty_ring_size(void)2462 uint32_t kvm_dirty_ring_size(void)
2463 {
2464 return kvm_state->kvm_dirty_ring_size;
2465 }
2466
do_kvm_create_vm(MachineState * ms,int type)2467 static int do_kvm_create_vm(MachineState *ms, int type)
2468 {
2469 KVMState *s;
2470 int ret;
2471
2472 s = KVM_STATE(ms->accelerator);
2473
2474 do {
2475 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2476 } while (ret == -EINTR);
2477
2478 if (ret < 0) {
2479 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret));
2480
2481 #ifdef TARGET_S390X
2482 if (ret == -EINVAL) {
2483 error_printf("Host kernel setup problem detected."
2484 " Please verify:\n");
2485 error_printf("- for kernels supporting the"
2486 " switch_amode or user_mode parameters, whether");
2487 error_printf(" user space is running in primary address space\n");
2488 error_printf("- for kernels supporting the vm.allocate_pgste"
2489 " sysctl, whether it is enabled\n");
2490 }
2491 #elif defined(TARGET_PPC)
2492 if (ret == -EINVAL) {
2493 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2494 (type == 2) ? "pr" : "hv");
2495 }
2496 #endif
2497 }
2498
2499 return ret;
2500 }
2501
find_kvm_machine_type(MachineState * ms)2502 static int find_kvm_machine_type(MachineState *ms)
2503 {
2504 MachineClass *mc = MACHINE_GET_CLASS(ms);
2505 int type;
2506
2507 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2508 g_autofree char *kvm_type;
2509 kvm_type = object_property_get_str(OBJECT(current_machine),
2510 "kvm-type",
2511 &error_abort);
2512 type = mc->kvm_type(ms, kvm_type);
2513 } else if (mc->kvm_type) {
2514 type = mc->kvm_type(ms, NULL);
2515 } else {
2516 type = kvm_arch_get_default_type(ms);
2517 }
2518 return type;
2519 }
2520
kvm_setup_dirty_ring(KVMState * s)2521 static int kvm_setup_dirty_ring(KVMState *s)
2522 {
2523 uint64_t dirty_log_manual_caps;
2524 int ret;
2525
2526 /*
2527 * Enable KVM dirty ring if supported, otherwise fall back to
2528 * dirty logging mode
2529 */
2530 ret = kvm_dirty_ring_init(s);
2531 if (ret < 0) {
2532 return ret;
2533 }
2534
2535 /*
2536 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2537 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2538 * page is wr-protected initially, which is against how kvm dirty ring is
2539 * usage - kvm dirty ring requires all pages are wr-protected at the very
2540 * beginning. Enabling this feature for dirty ring causes data corruption.
2541 *
2542 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2543 * we may expect a higher stall time when starting the migration. In the
2544 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2545 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2546 * guest pages.
2547 */
2548 if (!s->kvm_dirty_ring_size) {
2549 dirty_log_manual_caps =
2550 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2551 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2552 KVM_DIRTY_LOG_INITIALLY_SET);
2553 s->manual_dirty_log_protect = dirty_log_manual_caps;
2554 if (dirty_log_manual_caps) {
2555 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2556 dirty_log_manual_caps);
2557 if (ret) {
2558 warn_report("Trying to enable capability %"PRIu64" of "
2559 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2560 "Falling back to the legacy mode. ",
2561 dirty_log_manual_caps);
2562 s->manual_dirty_log_protect = 0;
2563 }
2564 }
2565 }
2566
2567 return 0;
2568 }
2569
kvm_init(MachineState * ms)2570 static int kvm_init(MachineState *ms)
2571 {
2572 MachineClass *mc = MACHINE_GET_CLASS(ms);
2573 static const char upgrade_note[] =
2574 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2575 "(see http://sourceforge.net/projects/kvm).\n";
2576 const struct {
2577 const char *name;
2578 int num;
2579 } num_cpus[] = {
2580 { "SMP", ms->smp.cpus },
2581 { "hotpluggable", ms->smp.max_cpus },
2582 { /* end of list */ }
2583 }, *nc = num_cpus;
2584 int soft_vcpus_limit, hard_vcpus_limit;
2585 KVMState *s;
2586 const KVMCapabilityInfo *missing_cap;
2587 int ret;
2588 int type;
2589
2590 qemu_mutex_init(&kml_slots_lock);
2591
2592 s = KVM_STATE(ms->accelerator);
2593
2594 /*
2595 * On systems where the kernel can support different base page
2596 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2597 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2598 * page size for the system though.
2599 */
2600 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2601
2602 s->sigmask_len = 8;
2603 accel_blocker_init();
2604
2605 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2606 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2607 #endif
2608 QLIST_INIT(&s->kvm_parked_vcpus);
2609 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2610 if (s->fd == -1) {
2611 error_report("Could not access KVM kernel module: %m");
2612 ret = -errno;
2613 goto err;
2614 }
2615
2616 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2617 if (ret < KVM_API_VERSION) {
2618 if (ret >= 0) {
2619 ret = -EINVAL;
2620 }
2621 error_report("kvm version too old");
2622 goto err;
2623 }
2624
2625 if (ret > KVM_API_VERSION) {
2626 ret = -EINVAL;
2627 error_report("kvm version not supported");
2628 goto err;
2629 }
2630
2631 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2632 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2633
2634 /* If unspecified, use the default value */
2635 if (!s->nr_slots_max) {
2636 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT;
2637 }
2638
2639 type = find_kvm_machine_type(ms);
2640 if (type < 0) {
2641 ret = -EINVAL;
2642 goto err;
2643 }
2644
2645 ret = do_kvm_create_vm(ms, type);
2646 if (ret < 0) {
2647 goto err;
2648 }
2649
2650 s->vmfd = ret;
2651
2652 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2653 if (s->nr_as <= 1) {
2654 s->nr_as = 1;
2655 }
2656 s->as = g_new0(struct KVMAs, s->nr_as);
2657
2658 /* check the vcpu limits */
2659 soft_vcpus_limit = kvm_recommended_vcpus(s);
2660 hard_vcpus_limit = kvm_max_vcpus(s);
2661
2662 while (nc->name) {
2663 if (nc->num > soft_vcpus_limit) {
2664 warn_report("Number of %s cpus requested (%d) exceeds "
2665 "the recommended cpus supported by KVM (%d)",
2666 nc->name, nc->num, soft_vcpus_limit);
2667
2668 if (nc->num > hard_vcpus_limit) {
2669 error_report("Number of %s cpus requested (%d) exceeds "
2670 "the maximum cpus supported by KVM (%d)",
2671 nc->name, nc->num, hard_vcpus_limit);
2672 exit(1);
2673 }
2674 }
2675 nc++;
2676 }
2677
2678 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2679 if (!missing_cap) {
2680 missing_cap =
2681 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2682 }
2683 if (missing_cap) {
2684 ret = -EINVAL;
2685 error_report("kvm does not support %s", missing_cap->name);
2686 error_printf("%s", upgrade_note);
2687 goto err;
2688 }
2689
2690 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2691 s->coalesced_pio = s->coalesced_mmio &&
2692 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2693
2694 ret = kvm_setup_dirty_ring(s);
2695 if (ret < 0) {
2696 goto err;
2697 }
2698
2699 #ifdef KVM_CAP_VCPU_EVENTS
2700 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2701 #endif
2702 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2703
2704 s->irq_set_ioctl = KVM_IRQ_LINE;
2705 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2706 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2707 }
2708
2709 kvm_readonly_mem_allowed =
2710 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2711
2712 kvm_resamplefds_allowed =
2713 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2714
2715 kvm_vm_attributes_allowed =
2716 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2717
2718 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2719 kvm_has_guest_debug =
2720 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2721 #endif
2722
2723 kvm_sstep_flags = 0;
2724 if (kvm_has_guest_debug) {
2725 kvm_sstep_flags = SSTEP_ENABLE;
2726
2727 #if defined TARGET_KVM_HAVE_GUEST_DEBUG
2728 int guest_debug_flags =
2729 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2730
2731 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2732 kvm_sstep_flags |= SSTEP_NOIRQ;
2733 }
2734 #endif
2735 }
2736
2737 kvm_state = s;
2738
2739 ret = kvm_arch_init(ms, s);
2740 if (ret < 0) {
2741 goto err;
2742 }
2743
2744 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES);
2745 kvm_guest_memfd_supported =
2746 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) &&
2747 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) &&
2748 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE);
2749 kvm_pre_fault_memory_supported = kvm_vm_check_extension(s, KVM_CAP_PRE_FAULT_MEMORY);
2750
2751 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2752 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2753 }
2754
2755 qemu_register_reset(kvm_unpoison_all, NULL);
2756
2757 if (s->kernel_irqchip_allowed) {
2758 kvm_irqchip_create(s);
2759 }
2760
2761 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2762 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2763 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2764 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2765
2766 kvm_memory_listener_register(s, &s->memory_listener,
2767 &address_space_memory, 0, "kvm-memory");
2768 memory_listener_register(&kvm_io_listener,
2769 &address_space_io);
2770
2771 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2772 if (!s->sync_mmu) {
2773 ret = ram_block_discard_disable(true);
2774 assert(!ret);
2775 }
2776
2777 if (s->kvm_dirty_ring_size) {
2778 kvm_dirty_ring_reaper_init(s);
2779 }
2780
2781 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2782 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2783 query_stats_schemas_cb);
2784 }
2785
2786 return 0;
2787
2788 err:
2789 assert(ret < 0);
2790 if (s->vmfd >= 0) {
2791 close(s->vmfd);
2792 }
2793 if (s->fd != -1) {
2794 close(s->fd);
2795 }
2796 g_free(s->as);
2797 g_free(s->memory_listener.slots);
2798
2799 return ret;
2800 }
2801
kvm_set_sigmask_len(KVMState * s,unsigned int sigmask_len)2802 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2803 {
2804 s->sigmask_len = sigmask_len;
2805 }
2806
kvm_handle_io(uint16_t port,MemTxAttrs attrs,void * data,int direction,int size,uint32_t count)2807 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2808 int size, uint32_t count)
2809 {
2810 int i;
2811 uint8_t *ptr = data;
2812
2813 for (i = 0; i < count; i++) {
2814 address_space_rw(&address_space_io, port, attrs,
2815 ptr, size,
2816 direction == KVM_EXIT_IO_OUT);
2817 ptr += size;
2818 }
2819 }
2820
kvm_handle_internal_error(CPUState * cpu,struct kvm_run * run)2821 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2822 {
2823 int i;
2824
2825 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2826 run->internal.suberror);
2827
2828 for (i = 0; i < run->internal.ndata; ++i) {
2829 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2830 i, (uint64_t)run->internal.data[i]);
2831 }
2832 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2833 fprintf(stderr, "emulation failure\n");
2834 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2835 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2836 return EXCP_INTERRUPT;
2837 }
2838 }
2839 /* FIXME: Should trigger a qmp message to let management know
2840 * something went wrong.
2841 */
2842 return -1;
2843 }
2844
kvm_flush_coalesced_mmio_buffer(void)2845 void kvm_flush_coalesced_mmio_buffer(void)
2846 {
2847 KVMState *s = kvm_state;
2848
2849 if (!s || s->coalesced_flush_in_progress) {
2850 return;
2851 }
2852
2853 s->coalesced_flush_in_progress = true;
2854
2855 if (s->coalesced_mmio_ring) {
2856 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2857 while (ring->first != ring->last) {
2858 struct kvm_coalesced_mmio *ent;
2859
2860 ent = &ring->coalesced_mmio[ring->first];
2861
2862 if (ent->pio == 1) {
2863 address_space_write(&address_space_io, ent->phys_addr,
2864 MEMTXATTRS_UNSPECIFIED, ent->data,
2865 ent->len);
2866 } else {
2867 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2868 }
2869 smp_wmb();
2870 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2871 }
2872 }
2873
2874 s->coalesced_flush_in_progress = false;
2875 }
2876
do_kvm_cpu_synchronize_state(CPUState * cpu,run_on_cpu_data arg)2877 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2878 {
2879 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2880 Error *err = NULL;
2881 int ret = kvm_arch_get_registers(cpu, &err);
2882 if (ret) {
2883 if (err) {
2884 error_reportf_err(err, "Failed to synchronize CPU state: ");
2885 } else {
2886 error_report("Failed to get registers: %s", strerror(-ret));
2887 }
2888
2889 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2890 vm_stop(RUN_STATE_INTERNAL_ERROR);
2891 }
2892
2893 cpu->vcpu_dirty = true;
2894 }
2895 }
2896
kvm_cpu_synchronize_state(CPUState * cpu)2897 void kvm_cpu_synchronize_state(CPUState *cpu)
2898 {
2899 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2900 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2901 }
2902 }
2903
do_kvm_cpu_synchronize_post_reset(CPUState * cpu,run_on_cpu_data arg)2904 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2905 {
2906 Error *err = NULL;
2907 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err);
2908 if (ret) {
2909 if (err) {
2910 error_reportf_err(err, "Restoring resisters after reset: ");
2911 } else {
2912 error_report("Failed to put registers after reset: %s",
2913 strerror(-ret));
2914 }
2915 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2916 vm_stop(RUN_STATE_INTERNAL_ERROR);
2917 }
2918
2919 cpu->vcpu_dirty = false;
2920 }
2921
kvm_cpu_synchronize_post_reset(CPUState * cpu)2922 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2923 {
2924 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2925
2926 if (cpu == first_cpu) {
2927 kvm_reset_parked_vcpus(kvm_state);
2928 }
2929 }
2930
do_kvm_cpu_synchronize_post_init(CPUState * cpu,run_on_cpu_data arg)2931 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2932 {
2933 Error *err = NULL;
2934 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err);
2935 if (ret) {
2936 if (err) {
2937 error_reportf_err(err, "Putting registers after init: ");
2938 } else {
2939 error_report("Failed to put registers after init: %s",
2940 strerror(-ret));
2941 }
2942 exit(1);
2943 }
2944
2945 cpu->vcpu_dirty = false;
2946 }
2947
kvm_cpu_synchronize_post_init(CPUState * cpu)2948 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2949 {
2950 if (!kvm_state->guest_state_protected) {
2951 /*
2952 * This runs before the machine_init_done notifiers, and is the last
2953 * opportunity to synchronize the state of confidential guests.
2954 */
2955 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2956 }
2957 }
2958
do_kvm_cpu_synchronize_pre_loadvm(CPUState * cpu,run_on_cpu_data arg)2959 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2960 {
2961 cpu->vcpu_dirty = true;
2962 }
2963
kvm_cpu_synchronize_pre_loadvm(CPUState * cpu)2964 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2965 {
2966 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2967 }
2968
2969 #ifdef KVM_HAVE_MCE_INJECTION
2970 static __thread void *pending_sigbus_addr;
2971 static __thread int pending_sigbus_code;
2972 static __thread bool have_sigbus_pending;
2973 #endif
2974
kvm_cpu_kick(CPUState * cpu)2975 static void kvm_cpu_kick(CPUState *cpu)
2976 {
2977 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2978 }
2979
kvm_cpu_kick_self(void)2980 static void kvm_cpu_kick_self(void)
2981 {
2982 if (kvm_immediate_exit) {
2983 kvm_cpu_kick(current_cpu);
2984 } else {
2985 qemu_cpu_kick_self();
2986 }
2987 }
2988
kvm_eat_signals(CPUState * cpu)2989 static void kvm_eat_signals(CPUState *cpu)
2990 {
2991 struct timespec ts = { 0, 0 };
2992 siginfo_t siginfo;
2993 sigset_t waitset;
2994 sigset_t chkset;
2995 int r;
2996
2997 if (kvm_immediate_exit) {
2998 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2999 /* Write kvm_run->immediate_exit before the cpu->exit_request
3000 * write in kvm_cpu_exec.
3001 */
3002 smp_wmb();
3003 return;
3004 }
3005
3006 sigemptyset(&waitset);
3007 sigaddset(&waitset, SIG_IPI);
3008
3009 do {
3010 r = sigtimedwait(&waitset, &siginfo, &ts);
3011 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
3012 perror("sigtimedwait");
3013 exit(1);
3014 }
3015
3016 r = sigpending(&chkset);
3017 if (r == -1) {
3018 perror("sigpending");
3019 exit(1);
3020 }
3021 } while (sigismember(&chkset, SIG_IPI));
3022 }
3023
kvm_convert_memory(hwaddr start,hwaddr size,bool to_private)3024 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private)
3025 {
3026 MemoryRegionSection section;
3027 ram_addr_t offset;
3028 MemoryRegion *mr;
3029 RAMBlock *rb;
3030 void *addr;
3031 int ret = -EINVAL;
3032
3033 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared");
3034
3035 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) ||
3036 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) {
3037 return ret;
3038 }
3039
3040 if (!size) {
3041 return ret;
3042 }
3043
3044 section = memory_region_find(get_system_memory(), start, size);
3045 mr = section.mr;
3046 if (!mr) {
3047 /*
3048 * Ignore converting non-assigned region to shared.
3049 *
3050 * TDX requires vMMIO region to be shared to inject #VE to guest.
3051 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region,
3052 * and vIO-APIC 0xFEC00000 4K page.
3053 * OVMF assigns 32bit PCI MMIO region to
3054 * [top of low memory: typically 2GB=0xC000000, 0xFC00000)
3055 */
3056 if (!to_private) {
3057 return 0;
3058 }
3059 return ret;
3060 }
3061
3062 if (!memory_region_has_guest_memfd(mr)) {
3063 /*
3064 * Because vMMIO region must be shared, guest TD may convert vMMIO
3065 * region to shared explicitly. Don't complain such case. See
3066 * memory_region_type() for checking if the region is MMIO region.
3067 */
3068 if (!to_private &&
3069 !memory_region_is_ram(mr) &&
3070 !memory_region_is_ram_device(mr) &&
3071 !memory_region_is_rom(mr) &&
3072 !memory_region_is_romd(mr)) {
3073 ret = 0;
3074 } else {
3075 error_report("Convert non guest_memfd backed memory region "
3076 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s",
3077 start, size, to_private ? "private" : "shared");
3078 }
3079 goto out_unref;
3080 }
3081
3082 if (to_private) {
3083 ret = kvm_set_memory_attributes_private(start, size);
3084 } else {
3085 ret = kvm_set_memory_attributes_shared(start, size);
3086 }
3087 if (ret) {
3088 goto out_unref;
3089 }
3090
3091 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region;
3092 rb = qemu_ram_block_from_host(addr, false, &offset);
3093
3094 if (to_private) {
3095 if (rb->page_size != qemu_real_host_page_size()) {
3096 /*
3097 * shared memory is backed by hugetlb, which is supposed to be
3098 * pre-allocated and doesn't need to be discarded
3099 */
3100 goto out_unref;
3101 }
3102 ret = ram_block_discard_range(rb, offset, size);
3103 } else {
3104 ret = ram_block_discard_guest_memfd_range(rb, offset, size);
3105 }
3106
3107 out_unref:
3108 memory_region_unref(mr);
3109 return ret;
3110 }
3111
kvm_cpu_exec(CPUState * cpu)3112 int kvm_cpu_exec(CPUState *cpu)
3113 {
3114 struct kvm_run *run = cpu->kvm_run;
3115 int ret, run_ret;
3116
3117 trace_kvm_cpu_exec();
3118
3119 if (kvm_arch_process_async_events(cpu)) {
3120 qatomic_set(&cpu->exit_request, 0);
3121 return EXCP_HLT;
3122 }
3123
3124 bql_unlock();
3125 cpu_exec_start(cpu);
3126
3127 do {
3128 MemTxAttrs attrs;
3129
3130 if (cpu->vcpu_dirty) {
3131 Error *err = NULL;
3132 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err);
3133 if (ret) {
3134 if (err) {
3135 error_reportf_err(err, "Putting registers after init: ");
3136 } else {
3137 error_report("Failed to put registers after init: %s",
3138 strerror(-ret));
3139 }
3140 ret = -1;
3141 break;
3142 }
3143
3144 cpu->vcpu_dirty = false;
3145 }
3146
3147 kvm_arch_pre_run(cpu, run);
3148 if (qatomic_read(&cpu->exit_request)) {
3149 trace_kvm_interrupt_exit_request();
3150 /*
3151 * KVM requires us to reenter the kernel after IO exits to complete
3152 * instruction emulation. This self-signal will ensure that we
3153 * leave ASAP again.
3154 */
3155 kvm_cpu_kick_self();
3156 }
3157
3158 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
3159 * Matching barrier in kvm_eat_signals.
3160 */
3161 smp_rmb();
3162
3163 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
3164
3165 attrs = kvm_arch_post_run(cpu, run);
3166
3167 #ifdef KVM_HAVE_MCE_INJECTION
3168 if (unlikely(have_sigbus_pending)) {
3169 bql_lock();
3170 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
3171 pending_sigbus_addr);
3172 have_sigbus_pending = false;
3173 bql_unlock();
3174 }
3175 #endif
3176
3177 if (run_ret < 0) {
3178 if (run_ret == -EINTR || run_ret == -EAGAIN) {
3179 trace_kvm_io_window_exit();
3180 kvm_eat_signals(cpu);
3181 ret = EXCP_INTERRUPT;
3182 break;
3183 }
3184 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) {
3185 fprintf(stderr, "error: kvm run failed %s\n",
3186 strerror(-run_ret));
3187 #ifdef TARGET_PPC
3188 if (run_ret == -EBUSY) {
3189 fprintf(stderr,
3190 "This is probably because your SMT is enabled.\n"
3191 "VCPU can only run on primary threads with all "
3192 "secondary threads offline.\n");
3193 }
3194 #endif
3195 ret = -1;
3196 break;
3197 }
3198 }
3199
3200 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3201 switch (run->exit_reason) {
3202 case KVM_EXIT_IO:
3203 /* Called outside BQL */
3204 kvm_handle_io(run->io.port, attrs,
3205 (uint8_t *)run + run->io.data_offset,
3206 run->io.direction,
3207 run->io.size,
3208 run->io.count);
3209 ret = 0;
3210 break;
3211 case KVM_EXIT_MMIO:
3212 /* Called outside BQL */
3213 address_space_rw(&address_space_memory,
3214 run->mmio.phys_addr, attrs,
3215 run->mmio.data,
3216 run->mmio.len,
3217 run->mmio.is_write);
3218 ret = 0;
3219 break;
3220 case KVM_EXIT_IRQ_WINDOW_OPEN:
3221 ret = EXCP_INTERRUPT;
3222 break;
3223 case KVM_EXIT_SHUTDOWN:
3224 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3225 ret = EXCP_INTERRUPT;
3226 break;
3227 case KVM_EXIT_UNKNOWN:
3228 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3229 (uint64_t)run->hw.hardware_exit_reason);
3230 ret = -1;
3231 break;
3232 case KVM_EXIT_INTERNAL_ERROR:
3233 ret = kvm_handle_internal_error(cpu, run);
3234 break;
3235 case KVM_EXIT_DIRTY_RING_FULL:
3236 /*
3237 * We shouldn't continue if the dirty ring of this vcpu is
3238 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
3239 */
3240 trace_kvm_dirty_ring_full(cpu->cpu_index);
3241 bql_lock();
3242 /*
3243 * We throttle vCPU by making it sleep once it exit from kernel
3244 * due to dirty ring full. In the dirtylimit scenario, reaping
3245 * all vCPUs after a single vCPU dirty ring get full result in
3246 * the miss of sleep, so just reap the ring-fulled vCPU.
3247 */
3248 if (dirtylimit_in_service()) {
3249 kvm_dirty_ring_reap(kvm_state, cpu);
3250 } else {
3251 kvm_dirty_ring_reap(kvm_state, NULL);
3252 }
3253 bql_unlock();
3254 dirtylimit_vcpu_execute(cpu);
3255 ret = 0;
3256 break;
3257 case KVM_EXIT_SYSTEM_EVENT:
3258 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
3259 switch (run->system_event.type) {
3260 case KVM_SYSTEM_EVENT_SHUTDOWN:
3261 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3262 ret = EXCP_INTERRUPT;
3263 break;
3264 case KVM_SYSTEM_EVENT_RESET:
3265 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3266 ret = EXCP_INTERRUPT;
3267 break;
3268 case KVM_SYSTEM_EVENT_CRASH:
3269 kvm_cpu_synchronize_state(cpu);
3270 bql_lock();
3271 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3272 bql_unlock();
3273 ret = 0;
3274 break;
3275 default:
3276 ret = kvm_arch_handle_exit(cpu, run);
3277 break;
3278 }
3279 break;
3280 case KVM_EXIT_MEMORY_FAULT:
3281 trace_kvm_memory_fault(run->memory_fault.gpa,
3282 run->memory_fault.size,
3283 run->memory_fault.flags);
3284 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) {
3285 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64,
3286 (uint64_t)run->memory_fault.flags);
3287 ret = -1;
3288 break;
3289 }
3290 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size,
3291 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE);
3292 break;
3293 default:
3294 ret = kvm_arch_handle_exit(cpu, run);
3295 break;
3296 }
3297 } while (ret == 0);
3298
3299 cpu_exec_end(cpu);
3300 bql_lock();
3301
3302 if (ret < 0) {
3303 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3304 vm_stop(RUN_STATE_INTERNAL_ERROR);
3305 }
3306
3307 qatomic_set(&cpu->exit_request, 0);
3308 return ret;
3309 }
3310
kvm_ioctl(KVMState * s,unsigned long type,...)3311 int kvm_ioctl(KVMState *s, unsigned long type, ...)
3312 {
3313 int ret;
3314 void *arg;
3315 va_list ap;
3316
3317 va_start(ap, type);
3318 arg = va_arg(ap, void *);
3319 va_end(ap);
3320
3321 trace_kvm_ioctl(type, arg);
3322 ret = ioctl(s->fd, type, arg);
3323 if (ret == -1) {
3324 ret = -errno;
3325 }
3326 return ret;
3327 }
3328
kvm_vm_ioctl(KVMState * s,unsigned long type,...)3329 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...)
3330 {
3331 int ret;
3332 void *arg;
3333 va_list ap;
3334
3335 va_start(ap, type);
3336 arg = va_arg(ap, void *);
3337 va_end(ap);
3338
3339 trace_kvm_vm_ioctl(type, arg);
3340 accel_ioctl_begin();
3341 ret = ioctl(s->vmfd, type, arg);
3342 accel_ioctl_end();
3343 if (ret == -1) {
3344 ret = -errno;
3345 }
3346 return ret;
3347 }
3348
kvm_vcpu_ioctl(CPUState * cpu,unsigned long type,...)3349 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...)
3350 {
3351 int ret;
3352 void *arg;
3353 va_list ap;
3354
3355 va_start(ap, type);
3356 arg = va_arg(ap, void *);
3357 va_end(ap);
3358
3359 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3360 accel_cpu_ioctl_begin(cpu);
3361 ret = ioctl(cpu->kvm_fd, type, arg);
3362 accel_cpu_ioctl_end(cpu);
3363 if (ret == -1) {
3364 ret = -errno;
3365 }
3366 return ret;
3367 }
3368
kvm_device_ioctl(int fd,unsigned long type,...)3369 int kvm_device_ioctl(int fd, unsigned long type, ...)
3370 {
3371 int ret;
3372 void *arg;
3373 va_list ap;
3374
3375 va_start(ap, type);
3376 arg = va_arg(ap, void *);
3377 va_end(ap);
3378
3379 trace_kvm_device_ioctl(fd, type, arg);
3380 accel_ioctl_begin();
3381 ret = ioctl(fd, type, arg);
3382 accel_ioctl_end();
3383 if (ret == -1) {
3384 ret = -errno;
3385 }
3386 return ret;
3387 }
3388
kvm_vm_check_attr(KVMState * s,uint32_t group,uint64_t attr)3389 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3390 {
3391 int ret;
3392 struct kvm_device_attr attribute = {
3393 .group = group,
3394 .attr = attr,
3395 };
3396
3397 if (!kvm_vm_attributes_allowed) {
3398 return 0;
3399 }
3400
3401 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3402 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3403 return ret ? 0 : 1;
3404 }
3405
kvm_device_check_attr(int dev_fd,uint32_t group,uint64_t attr)3406 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3407 {
3408 struct kvm_device_attr attribute = {
3409 .group = group,
3410 .attr = attr,
3411 .flags = 0,
3412 };
3413
3414 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3415 }
3416
kvm_device_access(int fd,int group,uint64_t attr,void * val,bool write,Error ** errp)3417 int kvm_device_access(int fd, int group, uint64_t attr,
3418 void *val, bool write, Error **errp)
3419 {
3420 struct kvm_device_attr kvmattr;
3421 int err;
3422
3423 kvmattr.flags = 0;
3424 kvmattr.group = group;
3425 kvmattr.attr = attr;
3426 kvmattr.addr = (uintptr_t)val;
3427
3428 err = kvm_device_ioctl(fd,
3429 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3430 &kvmattr);
3431 if (err < 0) {
3432 error_setg_errno(errp, -err,
3433 "KVM_%s_DEVICE_ATTR failed: Group %d "
3434 "attr 0x%016" PRIx64,
3435 write ? "SET" : "GET", group, attr);
3436 }
3437 return err;
3438 }
3439
kvm_has_sync_mmu(void)3440 bool kvm_has_sync_mmu(void)
3441 {
3442 return kvm_state->sync_mmu;
3443 }
3444
kvm_has_vcpu_events(void)3445 int kvm_has_vcpu_events(void)
3446 {
3447 return kvm_state->vcpu_events;
3448 }
3449
kvm_max_nested_state_length(void)3450 int kvm_max_nested_state_length(void)
3451 {
3452 return kvm_state->max_nested_state_len;
3453 }
3454
kvm_has_gsi_routing(void)3455 int kvm_has_gsi_routing(void)
3456 {
3457 #ifdef KVM_CAP_IRQ_ROUTING
3458 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3459 #else
3460 return false;
3461 #endif
3462 }
3463
kvm_arm_supports_user_irq(void)3464 bool kvm_arm_supports_user_irq(void)
3465 {
3466 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3467 }
3468
3469 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
kvm_find_sw_breakpoint(CPUState * cpu,vaddr pc)3470 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3471 {
3472 struct kvm_sw_breakpoint *bp;
3473
3474 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3475 if (bp->pc == pc) {
3476 return bp;
3477 }
3478 }
3479 return NULL;
3480 }
3481
kvm_sw_breakpoints_active(CPUState * cpu)3482 int kvm_sw_breakpoints_active(CPUState *cpu)
3483 {
3484 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3485 }
3486
3487 struct kvm_set_guest_debug_data {
3488 struct kvm_guest_debug dbg;
3489 int err;
3490 };
3491
kvm_invoke_set_guest_debug(CPUState * cpu,run_on_cpu_data data)3492 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3493 {
3494 struct kvm_set_guest_debug_data *dbg_data =
3495 (struct kvm_set_guest_debug_data *) data.host_ptr;
3496
3497 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3498 &dbg_data->dbg);
3499 }
3500
kvm_update_guest_debug(CPUState * cpu,unsigned long reinject_trap)3501 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3502 {
3503 struct kvm_set_guest_debug_data data;
3504
3505 data.dbg.control = reinject_trap;
3506
3507 if (cpu->singlestep_enabled) {
3508 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3509
3510 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3511 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3512 }
3513 }
3514 kvm_arch_update_guest_debug(cpu, &data.dbg);
3515
3516 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3517 RUN_ON_CPU_HOST_PTR(&data));
3518 return data.err;
3519 }
3520
kvm_supports_guest_debug(void)3521 bool kvm_supports_guest_debug(void)
3522 {
3523 /* probed during kvm_init() */
3524 return kvm_has_guest_debug;
3525 }
3526
kvm_insert_breakpoint(CPUState * cpu,int type,vaddr addr,vaddr len)3527 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3528 {
3529 struct kvm_sw_breakpoint *bp;
3530 int err;
3531
3532 if (type == GDB_BREAKPOINT_SW) {
3533 bp = kvm_find_sw_breakpoint(cpu, addr);
3534 if (bp) {
3535 bp->use_count++;
3536 return 0;
3537 }
3538
3539 bp = g_new(struct kvm_sw_breakpoint, 1);
3540 bp->pc = addr;
3541 bp->use_count = 1;
3542 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3543 if (err) {
3544 g_free(bp);
3545 return err;
3546 }
3547
3548 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3549 } else {
3550 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3551 if (err) {
3552 return err;
3553 }
3554 }
3555
3556 CPU_FOREACH(cpu) {
3557 err = kvm_update_guest_debug(cpu, 0);
3558 if (err) {
3559 return err;
3560 }
3561 }
3562 return 0;
3563 }
3564
kvm_remove_breakpoint(CPUState * cpu,int type,vaddr addr,vaddr len)3565 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3566 {
3567 struct kvm_sw_breakpoint *bp;
3568 int err;
3569
3570 if (type == GDB_BREAKPOINT_SW) {
3571 bp = kvm_find_sw_breakpoint(cpu, addr);
3572 if (!bp) {
3573 return -ENOENT;
3574 }
3575
3576 if (bp->use_count > 1) {
3577 bp->use_count--;
3578 return 0;
3579 }
3580
3581 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3582 if (err) {
3583 return err;
3584 }
3585
3586 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3587 g_free(bp);
3588 } else {
3589 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3590 if (err) {
3591 return err;
3592 }
3593 }
3594
3595 CPU_FOREACH(cpu) {
3596 err = kvm_update_guest_debug(cpu, 0);
3597 if (err) {
3598 return err;
3599 }
3600 }
3601 return 0;
3602 }
3603
kvm_remove_all_breakpoints(CPUState * cpu)3604 void kvm_remove_all_breakpoints(CPUState *cpu)
3605 {
3606 struct kvm_sw_breakpoint *bp, *next;
3607 KVMState *s = cpu->kvm_state;
3608 CPUState *tmpcpu;
3609
3610 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3611 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3612 /* Try harder to find a CPU that currently sees the breakpoint. */
3613 CPU_FOREACH(tmpcpu) {
3614 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3615 break;
3616 }
3617 }
3618 }
3619 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3620 g_free(bp);
3621 }
3622 kvm_arch_remove_all_hw_breakpoints();
3623
3624 CPU_FOREACH(cpu) {
3625 kvm_update_guest_debug(cpu, 0);
3626 }
3627 }
3628
3629 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */
3630
kvm_set_signal_mask(CPUState * cpu,const sigset_t * sigset)3631 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3632 {
3633 KVMState *s = kvm_state;
3634 struct kvm_signal_mask *sigmask;
3635 int r;
3636
3637 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3638
3639 sigmask->len = s->sigmask_len;
3640 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3641 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3642 g_free(sigmask);
3643
3644 return r;
3645 }
3646
kvm_ipi_signal(int sig)3647 static void kvm_ipi_signal(int sig)
3648 {
3649 if (current_cpu) {
3650 assert(kvm_immediate_exit);
3651 kvm_cpu_kick(current_cpu);
3652 }
3653 }
3654
kvm_init_cpu_signals(CPUState * cpu)3655 void kvm_init_cpu_signals(CPUState *cpu)
3656 {
3657 int r;
3658 sigset_t set;
3659 struct sigaction sigact;
3660
3661 memset(&sigact, 0, sizeof(sigact));
3662 sigact.sa_handler = kvm_ipi_signal;
3663 sigaction(SIG_IPI, &sigact, NULL);
3664
3665 pthread_sigmask(SIG_BLOCK, NULL, &set);
3666 #if defined KVM_HAVE_MCE_INJECTION
3667 sigdelset(&set, SIGBUS);
3668 pthread_sigmask(SIG_SETMASK, &set, NULL);
3669 #endif
3670 sigdelset(&set, SIG_IPI);
3671 if (kvm_immediate_exit) {
3672 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3673 } else {
3674 r = kvm_set_signal_mask(cpu, &set);
3675 }
3676 if (r) {
3677 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3678 exit(1);
3679 }
3680 }
3681
3682 /* Called asynchronously in VCPU thread. */
kvm_on_sigbus_vcpu(CPUState * cpu,int code,void * addr)3683 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3684 {
3685 #ifdef KVM_HAVE_MCE_INJECTION
3686 if (have_sigbus_pending) {
3687 return 1;
3688 }
3689 have_sigbus_pending = true;
3690 pending_sigbus_addr = addr;
3691 pending_sigbus_code = code;
3692 qatomic_set(&cpu->exit_request, 1);
3693 return 0;
3694 #else
3695 return 1;
3696 #endif
3697 }
3698
3699 /* Called synchronously (via signalfd) in main thread. */
kvm_on_sigbus(int code,void * addr)3700 int kvm_on_sigbus(int code, void *addr)
3701 {
3702 #ifdef KVM_HAVE_MCE_INJECTION
3703 /* Action required MCE kills the process if SIGBUS is blocked. Because
3704 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3705 * we can only get action optional here.
3706 */
3707 assert(code != BUS_MCEERR_AR);
3708 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3709 return 0;
3710 #else
3711 return 1;
3712 #endif
3713 }
3714
kvm_create_device(KVMState * s,uint64_t type,bool test)3715 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3716 {
3717 int ret;
3718 struct kvm_create_device create_dev;
3719
3720 create_dev.type = type;
3721 create_dev.fd = -1;
3722 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3723
3724 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3725 return -ENOTSUP;
3726 }
3727
3728 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3729 if (ret) {
3730 return ret;
3731 }
3732
3733 return test ? 0 : create_dev.fd;
3734 }
3735
kvm_device_supported(int vmfd,uint64_t type)3736 bool kvm_device_supported(int vmfd, uint64_t type)
3737 {
3738 struct kvm_create_device create_dev = {
3739 .type = type,
3740 .fd = -1,
3741 .flags = KVM_CREATE_DEVICE_TEST,
3742 };
3743
3744 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3745 return false;
3746 }
3747
3748 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3749 }
3750
kvm_set_one_reg(CPUState * cs,uint64_t id,void * source)3751 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3752 {
3753 struct kvm_one_reg reg;
3754 int r;
3755
3756 reg.id = id;
3757 reg.addr = (uintptr_t) source;
3758 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
3759 if (r) {
3760 trace_kvm_failed_reg_set(id, strerror(-r));
3761 }
3762 return r;
3763 }
3764
kvm_get_one_reg(CPUState * cs,uint64_t id,void * target)3765 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3766 {
3767 struct kvm_one_reg reg;
3768 int r;
3769
3770 reg.id = id;
3771 reg.addr = (uintptr_t) target;
3772 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
3773 if (r) {
3774 trace_kvm_failed_reg_get(id, strerror(-r));
3775 }
3776 return r;
3777 }
3778
kvm_accel_has_memory(MachineState * ms,AddressSpace * as,hwaddr start_addr,hwaddr size)3779 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3780 hwaddr start_addr, hwaddr size)
3781 {
3782 KVMState *kvm = KVM_STATE(ms->accelerator);
3783 int i;
3784
3785 for (i = 0; i < kvm->nr_as; ++i) {
3786 if (kvm->as[i].as == as && kvm->as[i].ml) {
3787 size = MIN(kvm_max_slot_size, size);
3788 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3789 start_addr, size);
3790 }
3791 }
3792
3793 return false;
3794 }
3795
kvm_get_kvm_shadow_mem(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3796 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3797 const char *name, void *opaque,
3798 Error **errp)
3799 {
3800 KVMState *s = KVM_STATE(obj);
3801 int64_t value = s->kvm_shadow_mem;
3802
3803 visit_type_int(v, name, &value, errp);
3804 }
3805
kvm_set_kvm_shadow_mem(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3806 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3807 const char *name, void *opaque,
3808 Error **errp)
3809 {
3810 KVMState *s = KVM_STATE(obj);
3811 int64_t value;
3812
3813 if (s->fd != -1) {
3814 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3815 return;
3816 }
3817
3818 if (!visit_type_int(v, name, &value, errp)) {
3819 return;
3820 }
3821
3822 s->kvm_shadow_mem = value;
3823 }
3824
kvm_set_kernel_irqchip(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3825 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3826 const char *name, void *opaque,
3827 Error **errp)
3828 {
3829 KVMState *s = KVM_STATE(obj);
3830 OnOffSplit mode;
3831
3832 if (s->fd != -1) {
3833 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3834 return;
3835 }
3836
3837 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3838 return;
3839 }
3840 switch (mode) {
3841 case ON_OFF_SPLIT_ON:
3842 s->kernel_irqchip_allowed = true;
3843 s->kernel_irqchip_required = true;
3844 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3845 break;
3846 case ON_OFF_SPLIT_OFF:
3847 s->kernel_irqchip_allowed = false;
3848 s->kernel_irqchip_required = false;
3849 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3850 break;
3851 case ON_OFF_SPLIT_SPLIT:
3852 s->kernel_irqchip_allowed = true;
3853 s->kernel_irqchip_required = true;
3854 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3855 break;
3856 default:
3857 /* The value was checked in visit_type_OnOffSplit() above. If
3858 * we get here, then something is wrong in QEMU.
3859 */
3860 abort();
3861 }
3862 }
3863
kvm_kernel_irqchip_allowed(void)3864 bool kvm_kernel_irqchip_allowed(void)
3865 {
3866 return kvm_state->kernel_irqchip_allowed;
3867 }
3868
kvm_kernel_irqchip_required(void)3869 bool kvm_kernel_irqchip_required(void)
3870 {
3871 return kvm_state->kernel_irqchip_required;
3872 }
3873
kvm_kernel_irqchip_split(void)3874 bool kvm_kernel_irqchip_split(void)
3875 {
3876 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3877 }
3878
kvm_get_dirty_ring_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3879 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3880 const char *name, void *opaque,
3881 Error **errp)
3882 {
3883 KVMState *s = KVM_STATE(obj);
3884 uint32_t value = s->kvm_dirty_ring_size;
3885
3886 visit_type_uint32(v, name, &value, errp);
3887 }
3888
kvm_set_dirty_ring_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3889 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3890 const char *name, void *opaque,
3891 Error **errp)
3892 {
3893 KVMState *s = KVM_STATE(obj);
3894 uint32_t value;
3895
3896 if (s->fd != -1) {
3897 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3898 return;
3899 }
3900
3901 if (!visit_type_uint32(v, name, &value, errp)) {
3902 return;
3903 }
3904 if (value & (value - 1)) {
3905 error_setg(errp, "dirty-ring-size must be a power of two.");
3906 return;
3907 }
3908
3909 s->kvm_dirty_ring_size = value;
3910 }
3911
kvm_get_device(Object * obj,Error ** errp G_GNUC_UNUSED)3912 static char *kvm_get_device(Object *obj,
3913 Error **errp G_GNUC_UNUSED)
3914 {
3915 KVMState *s = KVM_STATE(obj);
3916
3917 return g_strdup(s->device);
3918 }
3919
kvm_set_device(Object * obj,const char * value,Error ** errp G_GNUC_UNUSED)3920 static void kvm_set_device(Object *obj,
3921 const char *value,
3922 Error **errp G_GNUC_UNUSED)
3923 {
3924 KVMState *s = KVM_STATE(obj);
3925
3926 g_free(s->device);
3927 s->device = g_strdup(value);
3928 }
3929
kvm_set_kvm_rapl(Object * obj,bool value,Error ** errp)3930 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp)
3931 {
3932 KVMState *s = KVM_STATE(obj);
3933 s->msr_energy.enable = value;
3934 }
3935
kvm_set_kvm_rapl_socket_path(Object * obj,const char * str,Error ** errp)3936 static void kvm_set_kvm_rapl_socket_path(Object *obj,
3937 const char *str,
3938 Error **errp)
3939 {
3940 KVMState *s = KVM_STATE(obj);
3941 g_free(s->msr_energy.socket_path);
3942 s->msr_energy.socket_path = g_strdup(str);
3943 }
3944
kvm_accel_instance_init(Object * obj)3945 static void kvm_accel_instance_init(Object *obj)
3946 {
3947 KVMState *s = KVM_STATE(obj);
3948
3949 s->fd = -1;
3950 s->vmfd = -1;
3951 s->kvm_shadow_mem = -1;
3952 s->kernel_irqchip_allowed = true;
3953 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3954 /* KVM dirty ring is by default off */
3955 s->kvm_dirty_ring_size = 0;
3956 s->kvm_dirty_ring_with_bitmap = false;
3957 s->kvm_eager_split_size = 0;
3958 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3959 s->notify_window = 0;
3960 s->xen_version = 0;
3961 s->xen_gnttab_max_frames = 64;
3962 s->xen_evtchn_max_pirq = 256;
3963 s->device = NULL;
3964 s->msr_energy.enable = false;
3965 }
3966
3967 /**
3968 * kvm_gdbstub_sstep_flags():
3969 *
3970 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3971 * support is probed during kvm_init()
3972 */
kvm_gdbstub_sstep_flags(void)3973 static int kvm_gdbstub_sstep_flags(void)
3974 {
3975 return kvm_sstep_flags;
3976 }
3977
kvm_accel_class_init(ObjectClass * oc,const void * data)3978 static void kvm_accel_class_init(ObjectClass *oc, const void *data)
3979 {
3980 AccelClass *ac = ACCEL_CLASS(oc);
3981 ac->name = "KVM";
3982 ac->init_machine = kvm_init;
3983 ac->has_memory = kvm_accel_has_memory;
3984 ac->allowed = &kvm_allowed;
3985 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3986
3987 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3988 NULL, kvm_set_kernel_irqchip,
3989 NULL, NULL);
3990 object_class_property_set_description(oc, "kernel-irqchip",
3991 "Configure KVM in-kernel irqchip");
3992
3993 object_class_property_add(oc, "kvm-shadow-mem", "int",
3994 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3995 NULL, NULL);
3996 object_class_property_set_description(oc, "kvm-shadow-mem",
3997 "KVM shadow MMU size");
3998
3999 object_class_property_add(oc, "dirty-ring-size", "uint32",
4000 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
4001 NULL, NULL);
4002 object_class_property_set_description(oc, "dirty-ring-size",
4003 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
4004
4005 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
4006 object_class_property_set_description(oc, "device",
4007 "Path to the device node to use (default: /dev/kvm)");
4008
4009 object_class_property_add_bool(oc, "rapl",
4010 NULL,
4011 kvm_set_kvm_rapl);
4012 object_class_property_set_description(oc, "rapl",
4013 "Allow energy related MSRs for RAPL interface in Guest");
4014
4015 object_class_property_add_str(oc, "rapl-helper-socket", NULL,
4016 kvm_set_kvm_rapl_socket_path);
4017 object_class_property_set_description(oc, "rapl-helper-socket",
4018 "Socket Path for comminucating with the Virtual MSR helper daemon");
4019
4020 kvm_arch_accel_class_init(oc);
4021 }
4022
4023 static const TypeInfo kvm_accel_type = {
4024 .name = TYPE_KVM_ACCEL,
4025 .parent = TYPE_ACCEL,
4026 .instance_init = kvm_accel_instance_init,
4027 .class_init = kvm_accel_class_init,
4028 .instance_size = sizeof(KVMState),
4029 };
4030
kvm_type_init(void)4031 static void kvm_type_init(void)
4032 {
4033 type_register_static(&kvm_accel_type);
4034 }
4035
4036 type_init(kvm_type_init);
4037
4038 typedef struct StatsArgs {
4039 union StatsResultsType {
4040 StatsResultList **stats;
4041 StatsSchemaList **schema;
4042 } result;
4043 strList *names;
4044 Error **errp;
4045 } StatsArgs;
4046
add_kvmstat_entry(struct kvm_stats_desc * pdesc,uint64_t * stats_data,StatsList * stats_list,Error ** errp)4047 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
4048 uint64_t *stats_data,
4049 StatsList *stats_list,
4050 Error **errp)
4051 {
4052
4053 Stats *stats;
4054 uint64List *val_list = NULL;
4055
4056 /* Only add stats that we understand. */
4057 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
4058 case KVM_STATS_TYPE_CUMULATIVE:
4059 case KVM_STATS_TYPE_INSTANT:
4060 case KVM_STATS_TYPE_PEAK:
4061 case KVM_STATS_TYPE_LINEAR_HIST:
4062 case KVM_STATS_TYPE_LOG_HIST:
4063 break;
4064 default:
4065 return stats_list;
4066 }
4067
4068 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
4069 case KVM_STATS_UNIT_NONE:
4070 case KVM_STATS_UNIT_BYTES:
4071 case KVM_STATS_UNIT_CYCLES:
4072 case KVM_STATS_UNIT_SECONDS:
4073 case KVM_STATS_UNIT_BOOLEAN:
4074 break;
4075 default:
4076 return stats_list;
4077 }
4078
4079 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
4080 case KVM_STATS_BASE_POW10:
4081 case KVM_STATS_BASE_POW2:
4082 break;
4083 default:
4084 return stats_list;
4085 }
4086
4087 /* Alloc and populate data list */
4088 stats = g_new0(Stats, 1);
4089 stats->name = g_strdup(pdesc->name);
4090 stats->value = g_new0(StatsValue, 1);
4091
4092 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
4093 stats->value->u.boolean = *stats_data;
4094 stats->value->type = QTYPE_QBOOL;
4095 } else if (pdesc->size == 1) {
4096 stats->value->u.scalar = *stats_data;
4097 stats->value->type = QTYPE_QNUM;
4098 } else {
4099 int i;
4100 for (i = 0; i < pdesc->size; i++) {
4101 QAPI_LIST_PREPEND(val_list, stats_data[i]);
4102 }
4103 stats->value->u.list = val_list;
4104 stats->value->type = QTYPE_QLIST;
4105 }
4106
4107 QAPI_LIST_PREPEND(stats_list, stats);
4108 return stats_list;
4109 }
4110
add_kvmschema_entry(struct kvm_stats_desc * pdesc,StatsSchemaValueList * list,Error ** errp)4111 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
4112 StatsSchemaValueList *list,
4113 Error **errp)
4114 {
4115 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
4116 schema_entry->value = g_new0(StatsSchemaValue, 1);
4117
4118 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
4119 case KVM_STATS_TYPE_CUMULATIVE:
4120 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
4121 break;
4122 case KVM_STATS_TYPE_INSTANT:
4123 schema_entry->value->type = STATS_TYPE_INSTANT;
4124 break;
4125 case KVM_STATS_TYPE_PEAK:
4126 schema_entry->value->type = STATS_TYPE_PEAK;
4127 break;
4128 case KVM_STATS_TYPE_LINEAR_HIST:
4129 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
4130 schema_entry->value->bucket_size = pdesc->bucket_size;
4131 schema_entry->value->has_bucket_size = true;
4132 break;
4133 case KVM_STATS_TYPE_LOG_HIST:
4134 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
4135 break;
4136 default:
4137 goto exit;
4138 }
4139
4140 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
4141 case KVM_STATS_UNIT_NONE:
4142 break;
4143 case KVM_STATS_UNIT_BOOLEAN:
4144 schema_entry->value->has_unit = true;
4145 schema_entry->value->unit = STATS_UNIT_BOOLEAN;
4146 break;
4147 case KVM_STATS_UNIT_BYTES:
4148 schema_entry->value->has_unit = true;
4149 schema_entry->value->unit = STATS_UNIT_BYTES;
4150 break;
4151 case KVM_STATS_UNIT_CYCLES:
4152 schema_entry->value->has_unit = true;
4153 schema_entry->value->unit = STATS_UNIT_CYCLES;
4154 break;
4155 case KVM_STATS_UNIT_SECONDS:
4156 schema_entry->value->has_unit = true;
4157 schema_entry->value->unit = STATS_UNIT_SECONDS;
4158 break;
4159 default:
4160 goto exit;
4161 }
4162
4163 schema_entry->value->exponent = pdesc->exponent;
4164 if (pdesc->exponent) {
4165 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
4166 case KVM_STATS_BASE_POW10:
4167 schema_entry->value->has_base = true;
4168 schema_entry->value->base = 10;
4169 break;
4170 case KVM_STATS_BASE_POW2:
4171 schema_entry->value->has_base = true;
4172 schema_entry->value->base = 2;
4173 break;
4174 default:
4175 goto exit;
4176 }
4177 }
4178
4179 schema_entry->value->name = g_strdup(pdesc->name);
4180 schema_entry->next = list;
4181 return schema_entry;
4182 exit:
4183 g_free(schema_entry->value);
4184 g_free(schema_entry);
4185 return list;
4186 }
4187
4188 /* Cached stats descriptors */
4189 typedef struct StatsDescriptors {
4190 const char *ident; /* cache key, currently the StatsTarget */
4191 struct kvm_stats_desc *kvm_stats_desc;
4192 struct kvm_stats_header kvm_stats_header;
4193 QTAILQ_ENTRY(StatsDescriptors) next;
4194 } StatsDescriptors;
4195
4196 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
4197 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
4198
4199 /*
4200 * Return the descriptors for 'target', that either have already been read
4201 * or are retrieved from 'stats_fd'.
4202 */
find_stats_descriptors(StatsTarget target,int stats_fd,Error ** errp)4203 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
4204 Error **errp)
4205 {
4206 StatsDescriptors *descriptors;
4207 const char *ident;
4208 struct kvm_stats_desc *kvm_stats_desc;
4209 struct kvm_stats_header *kvm_stats_header;
4210 size_t size_desc;
4211 ssize_t ret;
4212
4213 ident = StatsTarget_str(target);
4214 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4215 if (g_str_equal(descriptors->ident, ident)) {
4216 return descriptors;
4217 }
4218 }
4219
4220 descriptors = g_new0(StatsDescriptors, 1);
4221
4222 /* Read stats header */
4223 kvm_stats_header = &descriptors->kvm_stats_header;
4224 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4225 if (ret != sizeof(*kvm_stats_header)) {
4226 error_setg(errp, "KVM stats: failed to read stats header: "
4227 "expected %zu actual %zu",
4228 sizeof(*kvm_stats_header), ret);
4229 g_free(descriptors);
4230 return NULL;
4231 }
4232 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4233
4234 /* Read stats descriptors */
4235 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4236 ret = pread(stats_fd, kvm_stats_desc,
4237 size_desc * kvm_stats_header->num_desc,
4238 kvm_stats_header->desc_offset);
4239
4240 if (ret != size_desc * kvm_stats_header->num_desc) {
4241 error_setg(errp, "KVM stats: failed to read stats descriptors: "
4242 "expected %zu actual %zu",
4243 size_desc * kvm_stats_header->num_desc, ret);
4244 g_free(descriptors);
4245 g_free(kvm_stats_desc);
4246 return NULL;
4247 }
4248 descriptors->kvm_stats_desc = kvm_stats_desc;
4249 descriptors->ident = ident;
4250 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4251 return descriptors;
4252 }
4253
query_stats(StatsResultList ** result,StatsTarget target,strList * names,int stats_fd,CPUState * cpu,Error ** errp)4254 static void query_stats(StatsResultList **result, StatsTarget target,
4255 strList *names, int stats_fd, CPUState *cpu,
4256 Error **errp)
4257 {
4258 struct kvm_stats_desc *kvm_stats_desc;
4259 struct kvm_stats_header *kvm_stats_header;
4260 StatsDescriptors *descriptors;
4261 g_autofree uint64_t *stats_data = NULL;
4262 struct kvm_stats_desc *pdesc;
4263 StatsList *stats_list = NULL;
4264 size_t size_desc, size_data = 0;
4265 ssize_t ret;
4266 int i;
4267
4268 descriptors = find_stats_descriptors(target, stats_fd, errp);
4269 if (!descriptors) {
4270 return;
4271 }
4272
4273 kvm_stats_header = &descriptors->kvm_stats_header;
4274 kvm_stats_desc = descriptors->kvm_stats_desc;
4275 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4276
4277 /* Tally the total data size; read schema data */
4278 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4279 pdesc = (void *)kvm_stats_desc + i * size_desc;
4280 size_data += pdesc->size * sizeof(*stats_data);
4281 }
4282
4283 stats_data = g_malloc0(size_data);
4284 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4285
4286 if (ret != size_data) {
4287 error_setg(errp, "KVM stats: failed to read data: "
4288 "expected %zu actual %zu", size_data, ret);
4289 return;
4290 }
4291
4292 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4293 uint64_t *stats;
4294 pdesc = (void *)kvm_stats_desc + i * size_desc;
4295
4296 /* Add entry to the list */
4297 stats = (void *)stats_data + pdesc->offset;
4298 if (!apply_str_list_filter(pdesc->name, names)) {
4299 continue;
4300 }
4301 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4302 }
4303
4304 if (!stats_list) {
4305 return;
4306 }
4307
4308 switch (target) {
4309 case STATS_TARGET_VM:
4310 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4311 break;
4312 case STATS_TARGET_VCPU:
4313 add_stats_entry(result, STATS_PROVIDER_KVM,
4314 cpu->parent_obj.canonical_path,
4315 stats_list);
4316 break;
4317 default:
4318 g_assert_not_reached();
4319 }
4320 }
4321
query_stats_schema(StatsSchemaList ** result,StatsTarget target,int stats_fd,Error ** errp)4322 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4323 int stats_fd, Error **errp)
4324 {
4325 struct kvm_stats_desc *kvm_stats_desc;
4326 struct kvm_stats_header *kvm_stats_header;
4327 StatsDescriptors *descriptors;
4328 struct kvm_stats_desc *pdesc;
4329 StatsSchemaValueList *stats_list = NULL;
4330 size_t size_desc;
4331 int i;
4332
4333 descriptors = find_stats_descriptors(target, stats_fd, errp);
4334 if (!descriptors) {
4335 return;
4336 }
4337
4338 kvm_stats_header = &descriptors->kvm_stats_header;
4339 kvm_stats_desc = descriptors->kvm_stats_desc;
4340 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4341
4342 /* Tally the total data size; read schema data */
4343 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4344 pdesc = (void *)kvm_stats_desc + i * size_desc;
4345 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4346 }
4347
4348 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4349 }
4350
query_stats_vcpu(CPUState * cpu,StatsArgs * kvm_stats_args)4351 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4352 {
4353 int stats_fd = cpu->kvm_vcpu_stats_fd;
4354 Error *local_err = NULL;
4355
4356 if (stats_fd == -1) {
4357 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4358 error_propagate(kvm_stats_args->errp, local_err);
4359 return;
4360 }
4361 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4362 kvm_stats_args->names, stats_fd, cpu,
4363 kvm_stats_args->errp);
4364 }
4365
query_stats_schema_vcpu(CPUState * cpu,StatsArgs * kvm_stats_args)4366 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4367 {
4368 int stats_fd = cpu->kvm_vcpu_stats_fd;
4369 Error *local_err = NULL;
4370
4371 if (stats_fd == -1) {
4372 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4373 error_propagate(kvm_stats_args->errp, local_err);
4374 return;
4375 }
4376 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4377 kvm_stats_args->errp);
4378 }
4379
query_stats_cb(StatsResultList ** result,StatsTarget target,strList * names,strList * targets,Error ** errp)4380 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4381 strList *names, strList *targets, Error **errp)
4382 {
4383 KVMState *s = kvm_state;
4384 CPUState *cpu;
4385 int stats_fd;
4386
4387 switch (target) {
4388 case STATS_TARGET_VM:
4389 {
4390 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4391 if (stats_fd == -1) {
4392 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4393 return;
4394 }
4395 query_stats(result, target, names, stats_fd, NULL, errp);
4396 close(stats_fd);
4397 break;
4398 }
4399 case STATS_TARGET_VCPU:
4400 {
4401 StatsArgs stats_args;
4402 stats_args.result.stats = result;
4403 stats_args.names = names;
4404 stats_args.errp = errp;
4405 CPU_FOREACH(cpu) {
4406 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4407 continue;
4408 }
4409 query_stats_vcpu(cpu, &stats_args);
4410 }
4411 break;
4412 }
4413 default:
4414 break;
4415 }
4416 }
4417
query_stats_schemas_cb(StatsSchemaList ** result,Error ** errp)4418 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4419 {
4420 StatsArgs stats_args;
4421 KVMState *s = kvm_state;
4422 int stats_fd;
4423
4424 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4425 if (stats_fd == -1) {
4426 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4427 return;
4428 }
4429 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4430 close(stats_fd);
4431
4432 if (first_cpu) {
4433 stats_args.result.schema = result;
4434 stats_args.errp = errp;
4435 query_stats_schema_vcpu(first_cpu, &stats_args);
4436 }
4437 }
4438
kvm_mark_guest_state_protected(void)4439 void kvm_mark_guest_state_protected(void)
4440 {
4441 kvm_state->guest_state_protected = true;
4442 }
4443
kvm_create_guest_memfd(uint64_t size,uint64_t flags,Error ** errp)4444 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp)
4445 {
4446 int fd;
4447 struct kvm_create_guest_memfd guest_memfd = {
4448 .size = size,
4449 .flags = flags,
4450 };
4451
4452 if (!kvm_guest_memfd_supported) {
4453 error_setg(errp, "KVM does not support guest_memfd");
4454 return -1;
4455 }
4456
4457 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
4458 if (fd < 0) {
4459 error_setg_errno(errp, errno, "Error creating KVM guest_memfd");
4460 return -1;
4461 }
4462
4463 return fd;
4464 }
4465