xref: /qemu/target/s390x/kvm/kvm.c (revision a668268dc08f7f4d30cecd513054bb38ce48c0d6)
1 /*
2  * QEMU S390x KVM implementation
3  *
4  * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5  * Copyright IBM Corp. 2012
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26 
27 #include "cpu.h"
28 #include "s390x-internal.h"
29 #include "kvm_s390x.h"
30 #include "system/kvm_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "system/system.h"
40 #include "system/hw_accel.h"
41 #include "system/runstate.h"
42 #include "system/device_tree.h"
43 #include "gdbstub/enums.h"
44 #include "system/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-hypercall.h"
53 #include "target/s390x/kvm/pv.h"
54 #include CONFIG_DEVICES
55 
56 #define kvm_vm_check_mem_attr(s, attr) \
57     kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
58 
59 #define IPA0_DIAG                       0x8300
60 #define IPA0_SIGP                       0xae00
61 #define IPA0_B2                         0xb200
62 #define IPA0_B9                         0xb900
63 #define IPA0_EB                         0xeb00
64 #define IPA0_E3                         0xe300
65 
66 #define PRIV_B2_SCLP_CALL               0x20
67 #define PRIV_B2_CSCH                    0x30
68 #define PRIV_B2_HSCH                    0x31
69 #define PRIV_B2_MSCH                    0x32
70 #define PRIV_B2_SSCH                    0x33
71 #define PRIV_B2_STSCH                   0x34
72 #define PRIV_B2_TSCH                    0x35
73 #define PRIV_B2_TPI                     0x36
74 #define PRIV_B2_SAL                     0x37
75 #define PRIV_B2_RSCH                    0x38
76 #define PRIV_B2_STCRW                   0x39
77 #define PRIV_B2_STCPS                   0x3a
78 #define PRIV_B2_RCHP                    0x3b
79 #define PRIV_B2_SCHM                    0x3c
80 #define PRIV_B2_CHSC                    0x5f
81 #define PRIV_B2_SIGA                    0x74
82 #define PRIV_B2_XSCH                    0x76
83 
84 #define PRIV_EB_SQBS                    0x8a
85 #define PRIV_EB_PCISTB                  0xd0
86 #define PRIV_EB_SIC                     0xd1
87 
88 #define PRIV_B9_EQBS                    0x9c
89 #define PRIV_B9_CLP                     0xa0
90 #define PRIV_B9_PTF                     0xa2
91 #define PRIV_B9_PCISTG                  0xd0
92 #define PRIV_B9_PCILG                   0xd2
93 #define PRIV_B9_RPCIT                   0xd3
94 
95 #define PRIV_E3_MPCIFC                  0xd0
96 #define PRIV_E3_STPCIFC                 0xd4
97 
98 #define DIAG_TIMEREVENT                 0x288
99 #define DIAG_IPL                        0x308
100 #define DIAG_SET_CONTROL_PROGRAM_CODES  0x318
101 #define DIAG_KVM_HYPERCALL              0x500
102 #define DIAG_KVM_BREAKPOINT             0x501
103 
104 #define ICPT_INSTRUCTION                0x04
105 #define ICPT_PROGRAM                    0x08
106 #define ICPT_EXT_INT                    0x14
107 #define ICPT_WAITPSW                    0x1c
108 #define ICPT_SOFT_INTERCEPT             0x24
109 #define ICPT_CPU_STOP                   0x28
110 #define ICPT_OPEREXC                    0x2c
111 #define ICPT_IO                         0x40
112 #define ICPT_PV_INSTR                   0x68
113 #define ICPT_PV_INSTR_NOTIFICATION      0x6c
114 
115 #define NR_LOCAL_IRQS 32
116 /*
117  * Needs to be big enough to contain max_cpus emergency signals
118  * and in addition NR_LOCAL_IRQS interrupts
119  */
120 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
121                                      (max_cpus + NR_LOCAL_IRQS))
122 /*
123  * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
124  * as the dirty bitmap must be managed by bitops that take an int as
125  * position indicator. This would end at an unaligned  address
126  * (0x7fffff00000). As future variants might provide larger pages
127  * and to make all addresses properly aligned, let us split at 4TB.
128  */
129 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
130 
131 static CPUWatchpoint hw_watchpoint;
132 /*
133  * We don't use a list because this structure is also used to transmit the
134  * hardware breakpoints to the kernel.
135  */
136 static struct kvm_hw_breakpoint *hw_breakpoints;
137 static int nb_hw_breakpoints;
138 
139 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
140     KVM_CAP_LAST_INFO
141 };
142 
143 static int cap_async_pf;
144 static int cap_mem_op;
145 static int cap_mem_op_extension;
146 static int cap_s390_irq;
147 static int cap_ri;
148 static int cap_hpage_1m;
149 static int cap_vcpu_resets;
150 static int cap_protected;
151 static int cap_zpci_op;
152 static int cap_protected_dump;
153 
154 static bool mem_op_storage_key_support;
155 
156 static int active_cmma;
157 
kvm_s390_query_mem_limit(uint64_t * memory_limit)158 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
159 {
160     struct kvm_device_attr attr = {
161         .group = KVM_S390_VM_MEM_CTRL,
162         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
163         .addr = (uint64_t) memory_limit,
164     };
165 
166     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
167 }
168 
kvm_s390_set_mem_limit(uint64_t new_limit,uint64_t * hw_limit)169 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
170 {
171     int rc;
172 
173     struct kvm_device_attr attr = {
174         .group = KVM_S390_VM_MEM_CTRL,
175         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
176         .addr = (uint64_t) &new_limit,
177     };
178 
179     if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
180         return 0;
181     }
182 
183     rc = kvm_s390_query_mem_limit(hw_limit);
184     if (rc) {
185         return rc;
186     } else if (*hw_limit < new_limit) {
187         return -E2BIG;
188     }
189 
190     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
191 }
192 
kvm_s390_cmma_active(void)193 int kvm_s390_cmma_active(void)
194 {
195     return active_cmma;
196 }
197 
kvm_s390_cmma_available(void)198 static bool kvm_s390_cmma_available(void)
199 {
200     static bool initialized, value;
201 
202     if (!initialized) {
203         initialized = true;
204         value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
205                 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
206     }
207     return value;
208 }
209 
kvm_s390_cmma_reset(void)210 void kvm_s390_cmma_reset(void)
211 {
212     int rc;
213     struct kvm_device_attr attr = {
214         .group = KVM_S390_VM_MEM_CTRL,
215         .attr = KVM_S390_VM_MEM_CLR_CMMA,
216     };
217 
218     if (!kvm_s390_cmma_active()) {
219         return;
220     }
221 
222     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
223     trace_kvm_clear_cmma(rc);
224 }
225 
kvm_s390_enable_cmma(void)226 static void kvm_s390_enable_cmma(void)
227 {
228     int rc;
229     struct kvm_device_attr attr = {
230         .group = KVM_S390_VM_MEM_CTRL,
231         .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
232     };
233 
234     if (cap_hpage_1m) {
235         warn_report("CMM will not be enabled because it is not "
236                     "compatible with huge memory backings.");
237         return;
238     }
239     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
240     active_cmma = !rc;
241     trace_kvm_enable_cmma(rc);
242 }
243 
kvm_s390_set_crypto_attr(uint64_t attr)244 static void kvm_s390_set_crypto_attr(uint64_t attr)
245 {
246     struct kvm_device_attr attribute = {
247         .group = KVM_S390_VM_CRYPTO,
248         .attr  = attr,
249     };
250 
251     int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
252 
253     if (ret) {
254         error_report("Failed to set crypto device attribute %lu: %s",
255                      attr, strerror(-ret));
256     }
257 }
258 
kvm_s390_init_aes_kw(void)259 static void kvm_s390_init_aes_kw(void)
260 {
261     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
262 
263     if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
264                                  NULL)) {
265             attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
266     }
267 
268     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
269             kvm_s390_set_crypto_attr(attr);
270     }
271 }
272 
kvm_s390_init_dea_kw(void)273 static void kvm_s390_init_dea_kw(void)
274 {
275     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
276 
277     if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
278                                  NULL)) {
279             attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
280     }
281 
282     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
283             kvm_s390_set_crypto_attr(attr);
284     }
285 }
286 
kvm_s390_crypto_reset(void)287 void kvm_s390_crypto_reset(void)
288 {
289     if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
290         kvm_s390_init_aes_kw();
291         kvm_s390_init_dea_kw();
292     }
293 }
294 
kvm_s390_set_max_pagesize(uint64_t pagesize,Error ** errp)295 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
296 {
297     if (pagesize == 4 * KiB) {
298         return;
299     }
300 
301     if (pagesize != 1 * MiB) {
302         error_setg(errp, "Memory backing with 2G pages was specified, "
303                    "but KVM does not support this memory backing");
304         return;
305     }
306 
307     if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
308         error_setg(errp, "Memory backing with 1M pages was specified, "
309                    "but KVM does not support this memory backing");
310         return;
311     }
312 
313     cap_hpage_1m = 1;
314 }
315 
kvm_s390_get_hpage_1m(void)316 int kvm_s390_get_hpage_1m(void)
317 {
318     return cap_hpage_1m;
319 }
320 
ccw_machine_class_foreach(ObjectClass * oc,void * opaque)321 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
322 {
323     MachineClass *mc = MACHINE_CLASS(oc);
324 
325     mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
326 }
327 
kvm_arch_get_default_type(MachineState * ms)328 int kvm_arch_get_default_type(MachineState *ms)
329 {
330     return 0;
331 }
332 
kvm_arch_init(MachineState * ms,KVMState * s)333 int kvm_arch_init(MachineState *ms, KVMState *s)
334 {
335     int required_caps[] = {
336         KVM_CAP_DEVICE_CTRL,
337         KVM_CAP_SYNC_REGS,
338     };
339 
340     for (int i = 0; i < ARRAY_SIZE(required_caps); i++) {
341         if (!kvm_check_extension(s, required_caps[i])) {
342             error_report("KVM is missing capability #%d - "
343                          "please use kernel 3.15 or newer", required_caps[i]);
344             return -1;
345         }
346     }
347 
348     object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
349                          false, NULL);
350 
351     if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
352         error_report("KVM is missing capability KVM_CAP_S390_COW - "
353                      "unsupported environment");
354         return -1;
355     }
356 
357     cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
358     cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
359     cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION);
360     mem_op_storage_key_support = cap_mem_op_extension > 0;
361     cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
362     cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
363     cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
364     cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP);
365     cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP);
366 
367     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
368     kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
369     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
370     kvm_vm_enable_cap(s, KVM_CAP_S390_CPU_TOPOLOGY, 0);
371     kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0);
372     if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
373         cap_ri = 1;
374     }
375 
376     /*
377      * The migration interface for ais was introduced with kernel 4.13
378      * but the capability itself had been active since 4.12. As migration
379      * support is considered necessary, we only try to enable this for
380      * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
381      */
382     if (kvm_kernel_irqchip_allowed() &&
383         kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
384         kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
385     }
386 
387     kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
388     return 0;
389 }
390 
kvm_arch_irqchip_create(KVMState * s)391 int kvm_arch_irqchip_create(KVMState *s)
392 {
393     return 0;
394 }
395 
kvm_arch_vcpu_id(CPUState * cpu)396 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
397 {
398     return cpu->cpu_index;
399 }
400 
kvm_arch_pre_create_vcpu(CPUState * cpu,Error ** errp)401 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
402 {
403     return 0;
404 }
405 
kvm_arch_init_vcpu(CPUState * cs)406 int kvm_arch_init_vcpu(CPUState *cs)
407 {
408     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
409     S390CPU *cpu = S390_CPU(cs);
410     kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
411     cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
412     return 0;
413 }
414 
kvm_arch_destroy_vcpu(CPUState * cs)415 int kvm_arch_destroy_vcpu(CPUState *cs)
416 {
417     S390CPU *cpu = S390_CPU(cs);
418 
419     g_free(cpu->irqstate);
420     cpu->irqstate = NULL;
421 
422     return 0;
423 }
424 
kvm_s390_reset_vcpu(S390CPU * cpu,unsigned long type)425 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
426 {
427     CPUState *cs = CPU(cpu);
428 
429     /*
430      * The reset call is needed here to reset in-kernel vcpu data that
431      * we can't access directly from QEMU (i.e. with older kernels
432      * which don't support sync_regs/ONE_REG).  Before this ioctl
433      * cpu_synchronize_state() is called in common kvm code
434      * (kvm-all).
435      */
436     if (kvm_vcpu_ioctl(cs, type)) {
437         error_report("CPU reset failed on CPU %i type %lx",
438                      cs->cpu_index, type);
439     }
440 }
441 
kvm_s390_reset_vcpu_initial(S390CPU * cpu)442 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
443 {
444     kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
445 }
446 
kvm_s390_reset_vcpu_clear(S390CPU * cpu)447 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
448 {
449     if (cap_vcpu_resets) {
450         kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
451     } else {
452         kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
453     }
454 }
455 
kvm_s390_reset_vcpu_normal(S390CPU * cpu)456 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
457 {
458     if (cap_vcpu_resets) {
459         kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
460     }
461 }
462 
can_sync_regs(CPUState * cs,int regs)463 static int can_sync_regs(CPUState *cs, int regs)
464 {
465     return (cs->kvm_run->kvm_valid_regs & regs) == regs;
466 }
467 
468 #define KVM_SYNC_REQUIRED_REGS (KVM_SYNC_GPRS | KVM_SYNC_ACRS | \
469                                 KVM_SYNC_CRS | KVM_SYNC_PREFIX)
470 
kvm_arch_put_registers(CPUState * cs,int level,Error ** errp)471 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
472 {
473     CPUS390XState *env = cpu_env(cs);
474     struct kvm_fpu fpu = {};
475     int r;
476     int i;
477 
478     g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS));
479 
480     /* always save the PSW  and the GPRS*/
481     cs->kvm_run->psw_addr = env->psw.addr;
482     cs->kvm_run->psw_mask = env->psw.mask;
483 
484     memcpy(cs->kvm_run->s.regs.gprs, env->regs, sizeof(cs->kvm_run->s.regs.gprs));
485     cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
486 
487     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
488         for (i = 0; i < 32; i++) {
489             cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
490             cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
491         }
492         cs->kvm_run->s.regs.fpc = env->fpc;
493         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
494     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
495         for (i = 0; i < 16; i++) {
496             cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
497         }
498         cs->kvm_run->s.regs.fpc = env->fpc;
499         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
500     } else {
501         /* Floating point */
502         for (i = 0; i < 16; i++) {
503             fpu.fprs[i] = *get_freg(env, i);
504         }
505         fpu.fpc = env->fpc;
506 
507         r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
508         if (r < 0) {
509             return r;
510         }
511     }
512 
513     /* Do we need to save more than that? */
514     if (level == KVM_PUT_RUNTIME_STATE) {
515         return 0;
516     }
517 
518     /*
519      * Access registers, control registers and the prefix - these are
520      * always available via kvm_sync_regs in the kernels that we support
521      */
522     memcpy(cs->kvm_run->s.regs.acrs, env->aregs, sizeof(cs->kvm_run->s.regs.acrs));
523     memcpy(cs->kvm_run->s.regs.crs, env->cregs, sizeof(cs->kvm_run->s.regs.crs));
524     cs->kvm_run->s.regs.prefix = env->psa;
525     cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS | KVM_SYNC_CRS | KVM_SYNC_PREFIX;
526 
527     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
528         cs->kvm_run->s.regs.cputm = env->cputm;
529         cs->kvm_run->s.regs.ckc = env->ckc;
530         cs->kvm_run->s.regs.todpr = env->todpr;
531         cs->kvm_run->s.regs.gbea = env->gbea;
532         cs->kvm_run->s.regs.pp = env->pp;
533         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
534     } else {
535         /*
536          * These ONE_REGS are not protected by a capability. As they are only
537          * necessary for migration we just trace a possible error, but don't
538          * return with an error return code.
539          */
540         kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
541         kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
542         kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
543         kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
544         kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
545     }
546 
547     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
548         memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
549         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
550     }
551 
552     /* pfault parameters */
553     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
554         cs->kvm_run->s.regs.pft = env->pfault_token;
555         cs->kvm_run->s.regs.pfs = env->pfault_select;
556         cs->kvm_run->s.regs.pfc = env->pfault_compare;
557         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
558     } else if (cap_async_pf) {
559         r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
560         if (r < 0) {
561             return r;
562         }
563         r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
564         if (r < 0) {
565             return r;
566         }
567         r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
568         if (r < 0) {
569             return r;
570         }
571     }
572 
573     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
574         memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
575         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
576     }
577 
578     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
579         cs->kvm_run->s.regs.bpbc = env->bpbc;
580         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
581     }
582 
583     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
584         cs->kvm_run->s.regs.etoken = env->etoken;
585         cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
586         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
587     }
588 
589     if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
590         cs->kvm_run->s.regs.diag318 = env->diag318_info;
591         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
592     }
593 
594     return 0;
595 }
596 
kvm_arch_get_registers(CPUState * cs,Error ** errp)597 int kvm_arch_get_registers(CPUState *cs, Error **errp)
598 {
599     CPUS390XState *env = cpu_env(cs);
600     struct kvm_fpu fpu;
601     int i, r;
602 
603     /* get the PSW */
604     env->psw.addr = cs->kvm_run->psw_addr;
605     env->psw.mask = cs->kvm_run->psw_mask;
606 
607     /* the GPRS, ACRS and CRS */
608     g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS));
609     memcpy(env->regs, cs->kvm_run->s.regs.gprs, sizeof(env->regs));
610     memcpy(env->aregs, cs->kvm_run->s.regs.acrs, sizeof(env->aregs));
611     memcpy(env->cregs, cs->kvm_run->s.regs.crs, sizeof(env->cregs));
612 
613     /* The prefix */
614     env->psa = cs->kvm_run->s.regs.prefix;
615 
616     /* Floating point and vector registers */
617     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
618         for (i = 0; i < 32; i++) {
619             env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
620             env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
621         }
622         env->fpc = cs->kvm_run->s.regs.fpc;
623     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
624         for (i = 0; i < 16; i++) {
625             *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
626         }
627         env->fpc = cs->kvm_run->s.regs.fpc;
628     } else {
629         r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
630         if (r < 0) {
631             return r;
632         }
633         for (i = 0; i < 16; i++) {
634             *get_freg(env, i) = fpu.fprs[i];
635         }
636         env->fpc = fpu.fpc;
637     }
638 
639     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
640         env->cputm = cs->kvm_run->s.regs.cputm;
641         env->ckc = cs->kvm_run->s.regs.ckc;
642         env->todpr = cs->kvm_run->s.regs.todpr;
643         env->gbea = cs->kvm_run->s.regs.gbea;
644         env->pp = cs->kvm_run->s.regs.pp;
645     } else {
646         /*
647          * These ONE_REGS are not protected by a capability. As they are only
648          * necessary for migration we just trace a possible error, but don't
649          * return with an error return code.
650          */
651         kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
652         kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
653         kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
654         kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
655         kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
656     }
657 
658     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
659         memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
660     }
661 
662     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
663         memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
664     }
665 
666     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
667         env->bpbc = cs->kvm_run->s.regs.bpbc;
668     }
669 
670     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
671         env->etoken = cs->kvm_run->s.regs.etoken;
672         env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
673     }
674 
675     /* pfault parameters */
676     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
677         env->pfault_token = cs->kvm_run->s.regs.pft;
678         env->pfault_select = cs->kvm_run->s.regs.pfs;
679         env->pfault_compare = cs->kvm_run->s.regs.pfc;
680     } else if (cap_async_pf) {
681         r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
682         if (r < 0) {
683             return r;
684         }
685         r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
686         if (r < 0) {
687             return r;
688         }
689         r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
690         if (r < 0) {
691             return r;
692         }
693     }
694 
695     if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
696         env->diag318_info = cs->kvm_run->s.regs.diag318;
697     }
698 
699     return 0;
700 }
701 
kvm_s390_get_clock(uint8_t * tod_high,uint64_t * tod_low)702 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
703 {
704     int r;
705     struct kvm_device_attr attr = {
706         .group = KVM_S390_VM_TOD,
707         .attr = KVM_S390_VM_TOD_LOW,
708         .addr = (uint64_t)tod_low,
709     };
710 
711     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
712     if (r) {
713         return r;
714     }
715 
716     attr.attr = KVM_S390_VM_TOD_HIGH;
717     attr.addr = (uint64_t)tod_high;
718     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
719 }
720 
kvm_s390_get_clock_ext(uint8_t * tod_high,uint64_t * tod_low)721 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
722 {
723     int r;
724     struct kvm_s390_vm_tod_clock gtod;
725     struct kvm_device_attr attr = {
726         .group = KVM_S390_VM_TOD,
727         .attr = KVM_S390_VM_TOD_EXT,
728         .addr = (uint64_t)&gtod,
729     };
730 
731     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
732     *tod_high = gtod.epoch_idx;
733     *tod_low  = gtod.tod;
734 
735     return r;
736 }
737 
kvm_s390_set_clock(uint8_t tod_high,uint64_t tod_low)738 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
739 {
740     int r;
741     struct kvm_device_attr attr = {
742         .group = KVM_S390_VM_TOD,
743         .attr = KVM_S390_VM_TOD_LOW,
744         .addr = (uint64_t)&tod_low,
745     };
746 
747     r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
748     if (r) {
749         return r;
750     }
751 
752     attr.attr = KVM_S390_VM_TOD_HIGH;
753     attr.addr = (uint64_t)&tod_high;
754     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
755 }
756 
kvm_s390_set_clock_ext(uint8_t tod_high,uint64_t tod_low)757 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
758 {
759     struct kvm_s390_vm_tod_clock gtod = {
760         .epoch_idx = tod_high,
761         .tod  = tod_low,
762     };
763     struct kvm_device_attr attr = {
764         .group = KVM_S390_VM_TOD,
765         .attr = KVM_S390_VM_TOD_EXT,
766         .addr = (uint64_t)&gtod,
767     };
768 
769     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
770 }
771 
772 /**
773  * kvm_s390_mem_op:
774  * @addr:      the logical start address in guest memory
775  * @ar:        the access register number
776  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
777  * @len:       length that should be transferred
778  * @is_write:  true = write, false = read
779  * Returns:    0 on success, non-zero if an exception or error occurred
780  *
781  * Use KVM ioctl to read/write from/to guest memory. An access exception
782  * is injected into the vCPU in case of translation errors.
783  */
kvm_s390_mem_op(S390CPU * cpu,vaddr addr,uint8_t ar,void * hostbuf,int len,bool is_write)784 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
785                     int len, bool is_write)
786 {
787     struct kvm_s390_mem_op mem_op = {
788         .gaddr = addr,
789         .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
790         .size = len,
791         .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
792                        : KVM_S390_MEMOP_LOGICAL_READ,
793         .buf = (uint64_t)hostbuf,
794         .ar = ar,
795         .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY,
796     };
797     int ret;
798 
799     if (!cap_mem_op) {
800         return -ENOSYS;
801     }
802     if (!hostbuf) {
803         mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
804     }
805     if (mem_op_storage_key_support) {
806         mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
807     }
808 
809     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
810     if (ret < 0) {
811         warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
812     }
813     return ret;
814 }
815 
kvm_s390_mem_op_pv(S390CPU * cpu,uint64_t offset,void * hostbuf,int len,bool is_write)816 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
817                        int len, bool is_write)
818 {
819     struct kvm_s390_mem_op mem_op = {
820         .sida_offset = offset,
821         .size = len,
822         .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
823                        : KVM_S390_MEMOP_SIDA_READ,
824         .buf = (uint64_t)hostbuf,
825     };
826     int ret;
827 
828     if (!cap_mem_op || !cap_protected) {
829         return -ENOSYS;
830     }
831 
832     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
833     if (ret < 0) {
834         error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
835         abort();
836     }
837     return ret;
838 }
839 
840 static uint8_t const *sw_bp_inst;
841 static uint8_t sw_bp_ilen;
842 
determine_sw_breakpoint_instr(void)843 static void determine_sw_breakpoint_instr(void)
844 {
845         /* DIAG 501 is used for sw breakpoints with old kernels */
846         static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
847         /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
848         static const uint8_t instr_0x0000[] = {0x00, 0x00};
849 
850         if (sw_bp_inst) {
851             return;
852         }
853         if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
854             sw_bp_inst = diag_501;
855             sw_bp_ilen = sizeof(diag_501);
856             trace_kvm_sw_breakpoint(4);
857         } else {
858             sw_bp_inst = instr_0x0000;
859             sw_bp_ilen = sizeof(instr_0x0000);
860             trace_kvm_sw_breakpoint(2);
861         }
862 }
863 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)864 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
865 {
866     determine_sw_breakpoint_instr();
867 
868     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
869                             sw_bp_ilen, 0) ||
870         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
871         return -EINVAL;
872     }
873     return 0;
874 }
875 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)876 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
877 {
878     uint8_t t[MAX_ILEN];
879 
880     if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
881         return -EINVAL;
882     } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
883         return -EINVAL;
884     } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
885                                    sw_bp_ilen, 1)) {
886         return -EINVAL;
887     }
888 
889     return 0;
890 }
891 
find_hw_breakpoint(target_ulong addr,int len,int type)892 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
893                                                     int len, int type)
894 {
895     int n;
896 
897     for (n = 0; n < nb_hw_breakpoints; n++) {
898         if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
899             (hw_breakpoints[n].len == len || len == -1)) {
900             return &hw_breakpoints[n];
901         }
902     }
903 
904     return NULL;
905 }
906 
insert_hw_breakpoint(target_ulong addr,int len,int type)907 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
908 {
909     int size;
910 
911     if (find_hw_breakpoint(addr, len, type)) {
912         return -EEXIST;
913     }
914 
915     size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
916 
917     if (!hw_breakpoints) {
918         nb_hw_breakpoints = 0;
919         hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
920     } else {
921         hw_breakpoints =
922             (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
923     }
924 
925     if (!hw_breakpoints) {
926         nb_hw_breakpoints = 0;
927         return -ENOMEM;
928     }
929 
930     hw_breakpoints[nb_hw_breakpoints].addr = addr;
931     hw_breakpoints[nb_hw_breakpoints].len = len;
932     hw_breakpoints[nb_hw_breakpoints].type = type;
933 
934     nb_hw_breakpoints++;
935 
936     return 0;
937 }
938 
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)939 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
940 {
941     switch (type) {
942     case GDB_BREAKPOINT_HW:
943         type = KVM_HW_BP;
944         break;
945     case GDB_WATCHPOINT_WRITE:
946         if (len < 1) {
947             return -EINVAL;
948         }
949         type = KVM_HW_WP_WRITE;
950         break;
951     default:
952         return -ENOSYS;
953     }
954     return insert_hw_breakpoint(addr, len, type);
955 }
956 
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)957 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
958 {
959     int size;
960     struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
961 
962     if (bp == NULL) {
963         return -ENOENT;
964     }
965 
966     nb_hw_breakpoints--;
967     if (nb_hw_breakpoints > 0) {
968         /*
969          * In order to trim the array, move the last element to the position to
970          * be removed - if necessary.
971          */
972         if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
973             *bp = hw_breakpoints[nb_hw_breakpoints];
974         }
975         size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
976         hw_breakpoints =
977              g_realloc(hw_breakpoints, size);
978     } else {
979         g_free(hw_breakpoints);
980         hw_breakpoints = NULL;
981     }
982 
983     return 0;
984 }
985 
kvm_arch_remove_all_hw_breakpoints(void)986 void kvm_arch_remove_all_hw_breakpoints(void)
987 {
988     nb_hw_breakpoints = 0;
989     g_free(hw_breakpoints);
990     hw_breakpoints = NULL;
991 }
992 
kvm_arch_update_guest_debug(CPUState * cpu,struct kvm_guest_debug * dbg)993 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
994 {
995     int i;
996 
997     if (nb_hw_breakpoints > 0) {
998         dbg->arch.nr_hw_bp = nb_hw_breakpoints;
999         dbg->arch.hw_bp = hw_breakpoints;
1000 
1001         for (i = 0; i < nb_hw_breakpoints; ++i) {
1002             hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1003                                                        hw_breakpoints[i].addr);
1004         }
1005         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1006     } else {
1007         dbg->arch.nr_hw_bp = 0;
1008         dbg->arch.hw_bp = NULL;
1009     }
1010 }
1011 
kvm_arch_pre_run(CPUState * cpu,struct kvm_run * run)1012 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1013 {
1014 }
1015 
kvm_arch_post_run(CPUState * cs,struct kvm_run * run)1016 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1017 {
1018     return MEMTXATTRS_UNSPECIFIED;
1019 }
1020 
kvm_arch_process_async_events(CPUState * cs)1021 int kvm_arch_process_async_events(CPUState *cs)
1022 {
1023     return cs->halted;
1024 }
1025 
s390_kvm_irq_to_interrupt(struct kvm_s390_irq * irq,struct kvm_s390_interrupt * interrupt)1026 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1027                                      struct kvm_s390_interrupt *interrupt)
1028 {
1029     int r = 0;
1030 
1031     interrupt->type = irq->type;
1032     switch (irq->type) {
1033     case KVM_S390_INT_VIRTIO:
1034         interrupt->parm = irq->u.ext.ext_params;
1035         /* fall through */
1036     case KVM_S390_INT_PFAULT_INIT:
1037     case KVM_S390_INT_PFAULT_DONE:
1038         interrupt->parm64 = irq->u.ext.ext_params2;
1039         break;
1040     case KVM_S390_PROGRAM_INT:
1041         interrupt->parm = irq->u.pgm.code;
1042         break;
1043     case KVM_S390_SIGP_SET_PREFIX:
1044         interrupt->parm = irq->u.prefix.address;
1045         break;
1046     case KVM_S390_INT_SERVICE:
1047         interrupt->parm = irq->u.ext.ext_params;
1048         break;
1049     case KVM_S390_MCHK:
1050         interrupt->parm = irq->u.mchk.cr14;
1051         interrupt->parm64 = irq->u.mchk.mcic;
1052         break;
1053     case KVM_S390_INT_EXTERNAL_CALL:
1054         interrupt->parm = irq->u.extcall.code;
1055         break;
1056     case KVM_S390_INT_EMERGENCY:
1057         interrupt->parm = irq->u.emerg.code;
1058         break;
1059     case KVM_S390_SIGP_STOP:
1060     case KVM_S390_RESTART:
1061         break; /* These types have no parameters */
1062     case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1063         interrupt->parm = irq->u.io.subchannel_id << 16;
1064         interrupt->parm |= irq->u.io.subchannel_nr;
1065         interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1066         interrupt->parm64 |= irq->u.io.io_int_word;
1067         break;
1068     default:
1069         r = -EINVAL;
1070         break;
1071     }
1072     return r;
1073 }
1074 
inject_vcpu_irq_legacy(CPUState * cs,struct kvm_s390_irq * irq)1075 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1076 {
1077     struct kvm_s390_interrupt kvmint = {};
1078     int r;
1079 
1080     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1081     if (r < 0) {
1082         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1083         exit(1);
1084     }
1085 
1086     r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1087     if (r < 0) {
1088         fprintf(stderr, "KVM failed to inject interrupt\n");
1089         exit(1);
1090     }
1091 }
1092 
kvm_s390_vcpu_interrupt(S390CPU * cpu,struct kvm_s390_irq * irq)1093 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1094 {
1095     CPUState *cs = CPU(cpu);
1096     int r;
1097 
1098     if (cap_s390_irq) {
1099         r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1100         if (!r) {
1101             return;
1102         }
1103         error_report("KVM failed to inject interrupt %llx", irq->type);
1104         exit(1);
1105     }
1106 
1107     inject_vcpu_irq_legacy(cs, irq);
1108 }
1109 
kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq * irq)1110 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1111 {
1112     struct kvm_s390_interrupt kvmint = {};
1113     int r;
1114 
1115     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1116     if (r < 0) {
1117         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1118         exit(1);
1119     }
1120 
1121     r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1122     if (r < 0) {
1123         fprintf(stderr, "KVM failed to inject interrupt\n");
1124         exit(1);
1125     }
1126 }
1127 
kvm_s390_program_interrupt(S390CPU * cpu,uint16_t code)1128 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1129 {
1130     struct kvm_s390_irq irq = {
1131         .type = KVM_S390_PROGRAM_INT,
1132         .u.pgm.code = code,
1133     };
1134     qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1135                   cpu->env.psw.addr);
1136     kvm_s390_vcpu_interrupt(cpu, &irq);
1137 }
1138 
kvm_s390_access_exception(S390CPU * cpu,uint16_t code,uint64_t te_code)1139 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1140 {
1141     struct kvm_s390_irq irq = {
1142         .type = KVM_S390_PROGRAM_INT,
1143         .u.pgm.code = code,
1144         .u.pgm.trans_exc_code = te_code,
1145         .u.pgm.exc_access_id = te_code & 3,
1146     };
1147 
1148     kvm_s390_vcpu_interrupt(cpu, &irq);
1149 }
1150 
kvm_sclp_service_call(S390CPU * cpu,struct kvm_run * run,uint16_t ipbh0)1151 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1152                                  uint16_t ipbh0)
1153 {
1154     CPUS390XState *env = &cpu->env;
1155     uint64_t sccb;
1156     uint32_t code;
1157     int r;
1158 
1159     sccb = env->regs[ipbh0 & 0xf];
1160     code = env->regs[(ipbh0 & 0xf0) >> 4];
1161 
1162     switch (run->s390_sieic.icptcode) {
1163     case ICPT_PV_INSTR_NOTIFICATION:
1164         g_assert(s390_is_pv());
1165         /* The notification intercepts are currently handled by KVM */
1166         error_report("unexpected SCLP PV notification");
1167         exit(1);
1168         break;
1169     case ICPT_PV_INSTR:
1170         g_assert(s390_is_pv());
1171         sclp_service_call_protected(cpu, sccb, code);
1172         /* Setting the CC is done by the Ultravisor. */
1173         break;
1174     case ICPT_INSTRUCTION:
1175         g_assert(!s390_is_pv());
1176         r = sclp_service_call(cpu, sccb, code);
1177         if (r < 0) {
1178             kvm_s390_program_interrupt(cpu, -r);
1179             return;
1180         }
1181         setcc(cpu, r);
1182     }
1183 }
1184 
handle_b2(S390CPU * cpu,struct kvm_run * run,uint8_t ipa1)1185 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1186 {
1187     CPUS390XState *env = &cpu->env;
1188     int rc = 0;
1189     uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1190 
1191     switch (ipa1) {
1192     case PRIV_B2_XSCH:
1193         ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1194         break;
1195     case PRIV_B2_CSCH:
1196         ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1197         break;
1198     case PRIV_B2_HSCH:
1199         ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1200         break;
1201     case PRIV_B2_MSCH:
1202         ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1203         break;
1204     case PRIV_B2_SSCH:
1205         ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1206         break;
1207     case PRIV_B2_STCRW:
1208         ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1209         break;
1210     case PRIV_B2_STSCH:
1211         ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1212         break;
1213     case PRIV_B2_TSCH:
1214         /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1215         fprintf(stderr, "Spurious tsch intercept\n");
1216         break;
1217     case PRIV_B2_CHSC:
1218         ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1219         break;
1220     case PRIV_B2_TPI:
1221         /* This should have been handled by kvm already. */
1222         fprintf(stderr, "Spurious tpi intercept\n");
1223         break;
1224     case PRIV_B2_SCHM:
1225         ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1226                            run->s390_sieic.ipb, RA_IGNORED);
1227         break;
1228     case PRIV_B2_RSCH:
1229         ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1230         break;
1231     case PRIV_B2_RCHP:
1232         ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1233         break;
1234     case PRIV_B2_STCPS:
1235         /* We do not provide this instruction, it is suppressed. */
1236         break;
1237     case PRIV_B2_SAL:
1238         ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1239         break;
1240     case PRIV_B2_SIGA:
1241         /* Not provided, set CC = 3 for subchannel not operational */
1242         setcc(cpu, 3);
1243         break;
1244     case PRIV_B2_SCLP_CALL:
1245         kvm_sclp_service_call(cpu, run, ipbh0);
1246         break;
1247     default:
1248         rc = -1;
1249         trace_kvm_insn_unhandled_priv(ipa1);
1250         break;
1251     }
1252 
1253     return rc;
1254 }
1255 
get_base_disp_rxy(S390CPU * cpu,struct kvm_run * run,uint8_t * ar)1256 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1257                                   uint8_t *ar)
1258 {
1259     CPUS390XState *env = &cpu->env;
1260     uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1261     uint32_t base2 = run->s390_sieic.ipb >> 28;
1262     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1263                      ((run->s390_sieic.ipb & 0xff00) << 4);
1264 
1265     if (disp2 & 0x80000) {
1266         disp2 += 0xfff00000;
1267     }
1268     if (ar) {
1269         *ar = base2;
1270     }
1271 
1272     return (base2 ? env->regs[base2] : 0) +
1273            (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1274 }
1275 
get_base_disp_rsy(S390CPU * cpu,struct kvm_run * run,uint8_t * ar)1276 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1277                                   uint8_t *ar)
1278 {
1279     CPUS390XState *env = &cpu->env;
1280     uint32_t base2 = run->s390_sieic.ipb >> 28;
1281     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1282                      ((run->s390_sieic.ipb & 0xff00) << 4);
1283 
1284     if (disp2 & 0x80000) {
1285         disp2 += 0xfff00000;
1286     }
1287     if (ar) {
1288         *ar = base2;
1289     }
1290 
1291     return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1292 }
1293 
kvm_clp_service_call(S390CPU * cpu,struct kvm_run * run)1294 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1295 {
1296     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1297 
1298     if (s390_has_feat(S390_FEAT_ZPCI)) {
1299         return clp_service_call(cpu, r2, RA_IGNORED);
1300     } else {
1301         return -1;
1302     }
1303 }
1304 
kvm_pcilg_service_call(S390CPU * cpu,struct kvm_run * run)1305 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1306 {
1307     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1308     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1309 
1310     if (s390_has_feat(S390_FEAT_ZPCI)) {
1311         return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1312     } else {
1313         return -1;
1314     }
1315 }
1316 
kvm_pcistg_service_call(S390CPU * cpu,struct kvm_run * run)1317 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1318 {
1319     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1320     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1321 
1322     if (s390_has_feat(S390_FEAT_ZPCI)) {
1323         return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1324     } else {
1325         return -1;
1326     }
1327 }
1328 
kvm_stpcifc_service_call(S390CPU * cpu,struct kvm_run * run)1329 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1330 {
1331     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1332     uint64_t fiba;
1333     uint8_t ar;
1334 
1335     if (s390_has_feat(S390_FEAT_ZPCI)) {
1336         fiba = get_base_disp_rxy(cpu, run, &ar);
1337 
1338         return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1339     } else {
1340         return -1;
1341     }
1342 }
1343 
kvm_sic_service_call(S390CPU * cpu,struct kvm_run * run)1344 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1345 {
1346     CPUS390XState *env = &cpu->env;
1347     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1348     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1349     uint8_t isc;
1350     uint16_t mode;
1351     int r;
1352 
1353     mode = env->regs[r1] & 0xffff;
1354     isc = (env->regs[r3] >> 27) & 0x7;
1355     r = css_do_sic(cpu, isc, mode);
1356     if (r) {
1357         kvm_s390_program_interrupt(cpu, -r);
1358     }
1359 
1360     return 0;
1361 }
1362 
kvm_rpcit_service_call(S390CPU * cpu,struct kvm_run * run)1363 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1364 {
1365     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1366     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1367 
1368     if (s390_has_feat(S390_FEAT_ZPCI)) {
1369         return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1370     } else {
1371         return -1;
1372     }
1373 }
1374 
kvm_pcistb_service_call(S390CPU * cpu,struct kvm_run * run)1375 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1376 {
1377     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1378     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1379     uint64_t gaddr;
1380     uint8_t ar;
1381 
1382     if (s390_has_feat(S390_FEAT_ZPCI)) {
1383         gaddr = get_base_disp_rsy(cpu, run, &ar);
1384 
1385         return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1386     } else {
1387         return -1;
1388     }
1389 }
1390 
kvm_mpcifc_service_call(S390CPU * cpu,struct kvm_run * run)1391 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1392 {
1393     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1394     uint64_t fiba;
1395     uint8_t ar;
1396 
1397     if (s390_has_feat(S390_FEAT_ZPCI)) {
1398         fiba = get_base_disp_rxy(cpu, run, &ar);
1399 
1400         return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1401     } else {
1402         return -1;
1403     }
1404 }
1405 
kvm_handle_ptf(S390CPU * cpu,struct kvm_run * run)1406 static void kvm_handle_ptf(S390CPU *cpu, struct kvm_run *run)
1407 {
1408     uint8_t r1 = (run->s390_sieic.ipb >> 20) & 0x0f;
1409 
1410     s390_handle_ptf(cpu, r1, RA_IGNORED);
1411 }
1412 
handle_b9(S390CPU * cpu,struct kvm_run * run,uint8_t ipa1)1413 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1414 {
1415     int r = 0;
1416 
1417     switch (ipa1) {
1418     case PRIV_B9_CLP:
1419         r = kvm_clp_service_call(cpu, run);
1420         break;
1421     case PRIV_B9_PCISTG:
1422         r = kvm_pcistg_service_call(cpu, run);
1423         break;
1424     case PRIV_B9_PCILG:
1425         r = kvm_pcilg_service_call(cpu, run);
1426         break;
1427     case PRIV_B9_RPCIT:
1428         r = kvm_rpcit_service_call(cpu, run);
1429         break;
1430     case PRIV_B9_PTF:
1431         kvm_handle_ptf(cpu, run);
1432         break;
1433     case PRIV_B9_EQBS:
1434         /* just inject exception */
1435         r = -1;
1436         break;
1437     default:
1438         r = -1;
1439         trace_kvm_insn_unhandled_priv(ipa1);
1440         break;
1441     }
1442 
1443     return r;
1444 }
1445 
handle_eb(S390CPU * cpu,struct kvm_run * run,uint8_t ipbl)1446 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1447 {
1448     int r = 0;
1449 
1450     switch (ipbl) {
1451     case PRIV_EB_PCISTB:
1452         r = kvm_pcistb_service_call(cpu, run);
1453         break;
1454     case PRIV_EB_SIC:
1455         r = kvm_sic_service_call(cpu, run);
1456         break;
1457     case PRIV_EB_SQBS:
1458         /* just inject exception */
1459         r = -1;
1460         break;
1461     default:
1462         r = -1;
1463         trace_kvm_insn_unhandled_priv(ipbl);
1464         break;
1465     }
1466 
1467     return r;
1468 }
1469 
handle_e3(S390CPU * cpu,struct kvm_run * run,uint8_t ipbl)1470 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1471 {
1472     int r = 0;
1473 
1474     switch (ipbl) {
1475     case PRIV_E3_MPCIFC:
1476         r = kvm_mpcifc_service_call(cpu, run);
1477         break;
1478     case PRIV_E3_STPCIFC:
1479         r = kvm_stpcifc_service_call(cpu, run);
1480         break;
1481     default:
1482         r = -1;
1483         trace_kvm_insn_unhandled_priv(ipbl);
1484         break;
1485     }
1486 
1487     return r;
1488 }
1489 
kvm_handle_diag_288(S390CPU * cpu,struct kvm_run * run)1490 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1491 {
1492     uint64_t r1, r3;
1493     int rc;
1494 
1495     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1496     r3 = run->s390_sieic.ipa & 0x000f;
1497     rc = handle_diag_288(&cpu->env, r1, r3);
1498     if (rc) {
1499         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1500     }
1501 }
1502 
kvm_handle_diag_308(S390CPU * cpu,struct kvm_run * run)1503 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1504 {
1505     uint64_t r1, r3;
1506 
1507     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1508     r3 = run->s390_sieic.ipa & 0x000f;
1509     handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1510 }
1511 
handle_sw_breakpoint(S390CPU * cpu,struct kvm_run * run)1512 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1513 {
1514     CPUS390XState *env = &cpu->env;
1515     unsigned long pc;
1516 
1517     pc = env->psw.addr - sw_bp_ilen;
1518     if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1519         env->psw.addr = pc;
1520         return EXCP_DEBUG;
1521     }
1522 
1523     return -ENOENT;
1524 }
1525 
kvm_s390_set_diag318(CPUState * cs,uint64_t diag318_info)1526 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1527 {
1528     CPUS390XState *env = &S390_CPU(cs)->env;
1529 
1530     /* Feat bit is set only if KVM supports sync for diag318 */
1531     if (s390_has_feat(S390_FEAT_DIAG_318)) {
1532         env->diag318_info = diag318_info;
1533         cs->kvm_run->s.regs.diag318 = diag318_info;
1534         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1535         /*
1536          * diag 318 info is zeroed during a clear reset and
1537          * diag 308 IPL subcodes.
1538          */
1539     }
1540 }
1541 
handle_diag_318(S390CPU * cpu,struct kvm_run * run)1542 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1543 {
1544     uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1545     uint64_t diag318_info = run->s.regs.gprs[reg];
1546     CPUState *t;
1547 
1548     /*
1549      * DIAG 318 can only be enabled with KVM support. As such, let's
1550      * ensure a guest cannot execute this instruction erroneously.
1551      */
1552     if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1553         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1554         return;
1555     }
1556 
1557     CPU_FOREACH(t) {
1558         run_on_cpu(t, s390_do_cpu_set_diag318,
1559                    RUN_ON_CPU_HOST_ULONG(diag318_info));
1560     }
1561 }
1562 
1563 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1564 
handle_diag(S390CPU * cpu,struct kvm_run * run,uint32_t ipb)1565 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1566 {
1567     int r = 0;
1568     uint16_t func_code;
1569 
1570     /*
1571      * For any diagnose call we support, bits 48-63 of the resulting
1572      * address specify the function code; the remainder is ignored.
1573      */
1574     func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1575     switch (func_code) {
1576     case DIAG_TIMEREVENT:
1577         kvm_handle_diag_288(cpu, run);
1578         break;
1579     case DIAG_IPL:
1580         kvm_handle_diag_308(cpu, run);
1581         break;
1582     case DIAG_SET_CONTROL_PROGRAM_CODES:
1583         handle_diag_318(cpu, run);
1584         break;
1585 #ifdef CONFIG_S390_CCW_VIRTIO
1586     case DIAG_KVM_HYPERCALL:
1587         handle_diag_500(cpu, RA_IGNORED);
1588         break;
1589 #endif /* CONFIG_S390_CCW_VIRTIO */
1590     case DIAG_KVM_BREAKPOINT:
1591         r = handle_sw_breakpoint(cpu, run);
1592         break;
1593     default:
1594         trace_kvm_insn_diag(func_code);
1595         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1596         break;
1597     }
1598 
1599     return r;
1600 }
1601 
kvm_s390_handle_sigp(S390CPU * cpu,uint8_t ipa1,uint32_t ipb)1602 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1603 {
1604     CPUS390XState *env = &cpu->env;
1605     const uint8_t r1 = ipa1 >> 4;
1606     const uint8_t r3 = ipa1 & 0x0f;
1607     int ret;
1608     uint8_t order;
1609 
1610     /* get order code */
1611     order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1612 
1613     ret = handle_sigp(env, order, r1, r3);
1614     setcc(cpu, ret);
1615     return 0;
1616 }
1617 
handle_instruction(S390CPU * cpu,struct kvm_run * run)1618 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1619 {
1620     unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1621     uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1622     int r = -1;
1623 
1624     trace_kvm_insn(run->s390_sieic.ipa, run->s390_sieic.ipb);
1625     switch (ipa0) {
1626     case IPA0_B2:
1627         r = handle_b2(cpu, run, ipa1);
1628         break;
1629     case IPA0_B9:
1630         r = handle_b9(cpu, run, ipa1);
1631         break;
1632     case IPA0_EB:
1633         r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1634         break;
1635     case IPA0_E3:
1636         r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1637         break;
1638     case IPA0_DIAG:
1639         r = handle_diag(cpu, run, run->s390_sieic.ipb);
1640         break;
1641     case IPA0_SIGP:
1642         r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1643         break;
1644     }
1645 
1646     if (r < 0) {
1647         r = 0;
1648         kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1649     }
1650 
1651     return r;
1652 }
1653 
unmanageable_intercept(S390CPU * cpu,S390CrashReason reason,int pswoffset)1654 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1655                                    int pswoffset)
1656 {
1657     CPUState *cs = CPU(cpu);
1658 
1659     s390_cpu_halt(cpu);
1660     cpu->env.crash_reason = reason;
1661     qemu_system_guest_panicked(cpu_get_crash_info(cs));
1662 }
1663 
1664 /* try to detect pgm check loops */
handle_oper_loop(S390CPU * cpu,struct kvm_run * run)1665 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1666 {
1667     CPUState *cs = CPU(cpu);
1668     PSW oldpsw, newpsw;
1669 
1670     newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1671                            offsetof(LowCore, program_new_psw));
1672     newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1673                            offsetof(LowCore, program_new_psw) + 8);
1674     oldpsw.mask  = run->psw_mask;
1675     oldpsw.addr  = run->psw_addr;
1676     /*
1677      * Avoid endless loops of operation exceptions, if the pgm new
1678      * PSW will cause a new operation exception.
1679      * The heuristic checks if the pgm new psw is within 6 bytes before
1680      * the faulting psw address (with same DAT, AS settings) and the
1681      * new psw is not a wait psw and the fault was not triggered by
1682      * problem state. In that case go into crashed state.
1683      */
1684 
1685     if (oldpsw.addr - newpsw.addr <= 6 &&
1686         !(newpsw.mask & PSW_MASK_WAIT) &&
1687         !(oldpsw.mask & PSW_MASK_PSTATE) &&
1688         (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1689         (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1690         unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1691                                offsetof(LowCore, program_new_psw));
1692         return EXCP_HALTED;
1693     }
1694     return 0;
1695 }
1696 
handle_intercept(S390CPU * cpu)1697 static int handle_intercept(S390CPU *cpu)
1698 {
1699     CPUState *cs = CPU(cpu);
1700     struct kvm_run *run = cs->kvm_run;
1701     int icpt_code = run->s390_sieic.icptcode;
1702     int r = 0;
1703 
1704     trace_kvm_intercept(icpt_code, (long)run->psw_addr);
1705     switch (icpt_code) {
1706         case ICPT_INSTRUCTION:
1707         case ICPT_PV_INSTR:
1708         case ICPT_PV_INSTR_NOTIFICATION:
1709             r = handle_instruction(cpu, run);
1710             break;
1711         case ICPT_PROGRAM:
1712             unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1713                                    offsetof(LowCore, program_new_psw));
1714             r = EXCP_HALTED;
1715             break;
1716         case ICPT_EXT_INT:
1717             unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1718                                    offsetof(LowCore, external_new_psw));
1719             r = EXCP_HALTED;
1720             break;
1721         case ICPT_WAITPSW:
1722             /* disabled wait, since enabled wait is handled in kernel */
1723             s390_handle_wait(cpu);
1724             r = EXCP_HALTED;
1725             break;
1726         case ICPT_CPU_STOP:
1727             do_stop_interrupt(&cpu->env);
1728             r = EXCP_HALTED;
1729             break;
1730         case ICPT_OPEREXC:
1731             /* check for break points */
1732             r = handle_sw_breakpoint(cpu, run);
1733             if (r == -ENOENT) {
1734                 /* Then check for potential pgm check loops */
1735                 r = handle_oper_loop(cpu, run);
1736                 if (r == 0) {
1737                     kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1738                 }
1739             }
1740             break;
1741         case ICPT_SOFT_INTERCEPT:
1742             fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1743             exit(1);
1744             break;
1745         case ICPT_IO:
1746             fprintf(stderr, "KVM unimplemented icpt IO\n");
1747             exit(1);
1748             break;
1749         default:
1750             fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1751             exit(1);
1752             break;
1753     }
1754 
1755     return r;
1756 }
1757 
handle_tsch(S390CPU * cpu)1758 static int handle_tsch(S390CPU *cpu)
1759 {
1760     CPUState *cs = CPU(cpu);
1761     struct kvm_run *run = cs->kvm_run;
1762     int ret;
1763 
1764     ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1765                              RA_IGNORED);
1766     if (ret < 0) {
1767         /*
1768          * Failure.
1769          * If an I/O interrupt had been dequeued, we have to reinject it.
1770          */
1771         if (run->s390_tsch.dequeued) {
1772             s390_io_interrupt(run->s390_tsch.subchannel_id,
1773                               run->s390_tsch.subchannel_nr,
1774                               run->s390_tsch.io_int_parm,
1775                               run->s390_tsch.io_int_word);
1776         }
1777         ret = 0;
1778     }
1779     return ret;
1780 }
1781 
insert_stsi_3_2_2(S390CPU * cpu,__u64 addr,uint8_t ar)1782 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1783 {
1784     const MachineState *ms = MACHINE(qdev_get_machine());
1785     uint16_t conf_cpus = 0, reserved_cpus = 0;
1786     SysIB_322 sysib;
1787     int del, i;
1788 
1789     if (s390_is_pv()) {
1790         s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1791     } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1792         return;
1793     }
1794     /* Shift the stack of Extended Names to prepare for our own data */
1795     memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1796             sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1797     /* First virt level, that doesn't provide Ext Names delimits stack. It is
1798      * assumed it's not capable of managing Extended Names for lower levels.
1799      */
1800     for (del = 1; del < sysib.count; del++) {
1801         if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1802             break;
1803         }
1804     }
1805     if (del < sysib.count) {
1806         memset(sysib.ext_names[del], 0,
1807                sizeof(sysib.ext_names[0]) * (sysib.count - del));
1808     }
1809 
1810     /* count the cpus and split them into configured and reserved ones */
1811     for (i = 0; i < ms->possible_cpus->len; i++) {
1812         if (ms->possible_cpus->cpus[i].cpu) {
1813             conf_cpus++;
1814         } else {
1815             reserved_cpus++;
1816         }
1817     }
1818     sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1819     sysib.vm[0].conf_cpus = conf_cpus;
1820     sysib.vm[0].reserved_cpus = reserved_cpus;
1821 
1822     /* Insert short machine name in EBCDIC, padded with blanks */
1823     if (qemu_name) {
1824         memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1825         ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1826                                                     strlen(qemu_name)));
1827     }
1828     sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1829     /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1830      * considered by s390 as not capable of providing any Extended Name.
1831      * Therefore if no name was specified on qemu invocation, we go with the
1832      * same "KVMguest" default, which KVM has filled into short name field.
1833      */
1834     strpadcpy((char *)sysib.ext_names[0],
1835               sizeof(sysib.ext_names[0]),
1836               qemu_name ?: "KVMguest", '\0');
1837 
1838     /* Insert UUID */
1839     memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1840 
1841     if (s390_is_pv()) {
1842         s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1843     } else {
1844         s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1845     }
1846 }
1847 
handle_stsi(S390CPU * cpu)1848 static int handle_stsi(S390CPU *cpu)
1849 {
1850     CPUState *cs = CPU(cpu);
1851     struct kvm_run *run = cs->kvm_run;
1852 
1853     switch (run->s390_stsi.fc) {
1854     case 3:
1855         if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1856             return 0;
1857         }
1858         insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1859         return 0;
1860     case 15:
1861         insert_stsi_15_1_x(cpu, run->s390_stsi.sel2, run->s390_stsi.addr,
1862                            run->s390_stsi.ar, RA_IGNORED);
1863         return 0;
1864     default:
1865         return 0;
1866     }
1867 }
1868 
kvm_arch_handle_debug_exit(S390CPU * cpu)1869 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1870 {
1871     CPUState *cs = CPU(cpu);
1872     struct kvm_run *run = cs->kvm_run;
1873 
1874     int ret = 0;
1875     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1876 
1877     switch (arch_info->type) {
1878     case KVM_HW_WP_WRITE:
1879         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1880             cs->watchpoint_hit = &hw_watchpoint;
1881             hw_watchpoint.vaddr = arch_info->addr;
1882             hw_watchpoint.flags = BP_MEM_WRITE;
1883             ret = EXCP_DEBUG;
1884         }
1885         break;
1886     case KVM_HW_BP:
1887         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1888             ret = EXCP_DEBUG;
1889         }
1890         break;
1891     case KVM_SINGLESTEP:
1892         if (cs->singlestep_enabled) {
1893             ret = EXCP_DEBUG;
1894         }
1895         break;
1896     default:
1897         ret = -ENOSYS;
1898     }
1899 
1900     return ret;
1901 }
1902 
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)1903 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1904 {
1905     S390CPU *cpu = S390_CPU(cs);
1906     int ret = 0;
1907 
1908     bql_lock();
1909 
1910     kvm_cpu_synchronize_state(cs);
1911 
1912     switch (run->exit_reason) {
1913         case KVM_EXIT_S390_SIEIC:
1914             ret = handle_intercept(cpu);
1915             break;
1916         case KVM_EXIT_S390_RESET:
1917             s390_ipl_reset_request(cs, S390_RESET_REIPL);
1918             break;
1919         case KVM_EXIT_S390_TSCH:
1920             ret = handle_tsch(cpu);
1921             break;
1922         case KVM_EXIT_S390_STSI:
1923             ret = handle_stsi(cpu);
1924             break;
1925         case KVM_EXIT_DEBUG:
1926             ret = kvm_arch_handle_debug_exit(cpu);
1927             break;
1928         default:
1929             fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1930             break;
1931     }
1932     bql_unlock();
1933 
1934     if (ret == 0) {
1935         ret = EXCP_INTERRUPT;
1936     }
1937     return ret;
1938 }
1939 
kvm_arch_stop_on_emulation_error(CPUState * cpu)1940 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1941 {
1942     return true;
1943 }
1944 
kvm_s390_enable_css_support(S390CPU * cpu)1945 void kvm_s390_enable_css_support(S390CPU *cpu)
1946 {
1947     int r;
1948 
1949     /* Activate host kernel channel subsystem support. */
1950     r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1951     assert(r == 0);
1952 }
1953 
kvm_arch_init_irq_routing(KVMState * s)1954 void kvm_arch_init_irq_routing(KVMState *s)
1955 {
1956     /*
1957      * Note that while irqchip capabilities generally imply that cpustates
1958      * are handled in-kernel, it is not true for s390 (yet); therefore, we
1959      * have to override the common code kvm_halt_in_kernel_allowed setting.
1960      */
1961     if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1962         kvm_gsi_routing_allowed = true;
1963         kvm_halt_in_kernel_allowed = false;
1964     }
1965 }
1966 
kvm_s390_assign_subch_ioeventfd(EventNotifier * notifier,uint32_t sch,int vq,bool assign)1967 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1968                                     int vq, bool assign)
1969 {
1970     struct kvm_ioeventfd kick = {
1971         .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1972         KVM_IOEVENTFD_FLAG_DATAMATCH,
1973         .fd = event_notifier_get_fd(notifier),
1974         .datamatch = vq,
1975         .addr = sch,
1976         .len = 8,
1977     };
1978     trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
1979                                      kick.datamatch);
1980     if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1981         return -ENOSYS;
1982     }
1983     if (!assign) {
1984         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1985     }
1986     return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1987 }
1988 
kvm_s390_get_protected_dump(void)1989 int kvm_s390_get_protected_dump(void)
1990 {
1991     return cap_protected_dump;
1992 }
1993 
kvm_s390_get_ri(void)1994 int kvm_s390_get_ri(void)
1995 {
1996     return cap_ri;
1997 }
1998 
kvm_s390_set_cpu_state(S390CPU * cpu,uint8_t cpu_state)1999 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2000 {
2001     struct kvm_mp_state mp_state = {};
2002     int ret;
2003 
2004     /* the kvm part might not have been initialized yet */
2005     if (CPU(cpu)->kvm_state == NULL) {
2006         return 0;
2007     }
2008 
2009     switch (cpu_state) {
2010     case S390_CPU_STATE_STOPPED:
2011         mp_state.mp_state = KVM_MP_STATE_STOPPED;
2012         break;
2013     case S390_CPU_STATE_CHECK_STOP:
2014         mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2015         break;
2016     case S390_CPU_STATE_OPERATING:
2017         mp_state.mp_state = KVM_MP_STATE_OPERATING;
2018         break;
2019     case S390_CPU_STATE_LOAD:
2020         mp_state.mp_state = KVM_MP_STATE_LOAD;
2021         break;
2022     default:
2023         error_report("Requested CPU state is not a valid S390 CPU state: %u",
2024                      cpu_state);
2025         exit(1);
2026     }
2027 
2028     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2029     if (ret) {
2030         trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2031                                        strerror(-ret));
2032     }
2033 
2034     return ret;
2035 }
2036 
kvm_s390_vcpu_interrupt_pre_save(S390CPU * cpu)2037 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2038 {
2039     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2040     struct kvm_s390_irq_state irq_state = {
2041         .buf = (uint64_t) cpu->irqstate,
2042         .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2043     };
2044     CPUState *cs = CPU(cpu);
2045     int32_t bytes;
2046 
2047     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2048         return;
2049     }
2050 
2051     bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2052     if (bytes < 0) {
2053         cpu->irqstate_saved_size = 0;
2054         error_report("Migration of interrupt state failed");
2055         return;
2056     }
2057 
2058     cpu->irqstate_saved_size = bytes;
2059 }
2060 
kvm_s390_vcpu_interrupt_post_load(S390CPU * cpu)2061 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2062 {
2063     CPUState *cs = CPU(cpu);
2064     struct kvm_s390_irq_state irq_state = {
2065         .buf = (uint64_t) cpu->irqstate,
2066         .len = cpu->irqstate_saved_size,
2067     };
2068     int r;
2069 
2070     if (cpu->irqstate_saved_size == 0) {
2071         return 0;
2072     }
2073 
2074     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2075         return -ENOSYS;
2076     }
2077 
2078     r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2079     if (r) {
2080         error_report("Setting interrupt state failed %d", r);
2081     }
2082     return r;
2083 }
2084 
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)2085 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2086                              uint64_t address, uint32_t data, PCIDevice *dev)
2087 {
2088     S390PCIBusDevice *pbdev;
2089     uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2090 
2091     if (!dev) {
2092         trace_kvm_msi_route_fixup("no pci device");
2093         return -ENODEV;
2094     }
2095 
2096     pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2097     if (!pbdev) {
2098         trace_kvm_msi_route_fixup("no zpci device");
2099         return -ENODEV;
2100     }
2101 
2102     route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2103     route->flags = 0;
2104     route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2105     route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2106     route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2107     route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2108     route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2109     return 0;
2110 }
2111 
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)2112 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2113                                 int vector, PCIDevice *dev)
2114 {
2115     return 0;
2116 }
2117 
kvm_arch_release_virq_post(int virq)2118 int kvm_arch_release_virq_post(int virq)
2119 {
2120     return 0;
2121 }
2122 
kvm_arch_msi_data_to_gsi(uint32_t data)2123 int kvm_arch_msi_data_to_gsi(uint32_t data)
2124 {
2125     abort();
2126 }
2127 
query_cpu_subfunc(S390FeatBitmap features)2128 static int query_cpu_subfunc(S390FeatBitmap features)
2129 {
2130     struct kvm_s390_vm_cpu_subfunc prop = {};
2131     struct kvm_device_attr attr = {
2132         .group = KVM_S390_VM_CPU_MODEL,
2133         .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2134         .addr = (uint64_t) &prop,
2135     };
2136     int rc;
2137 
2138     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2139     if (rc) {
2140         return  rc;
2141     }
2142 
2143     /*
2144      * We're going to add all subfunctions now, if the corresponding feature
2145      * is available that unlocks the query functions.
2146      */
2147     s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2148     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2149         s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2150     }
2151     if (test_bit(S390_FEAT_MSA, features)) {
2152         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2153         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2154         s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2155         s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2156         s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2157     }
2158     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2159         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2160     }
2161     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2162         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2163         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2164         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2165         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2166     }
2167     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2168         s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2169     }
2170     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2171         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2172     }
2173     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2174         s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2175     }
2176     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2177         s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2178     }
2179     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2180         s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2181     }
2182     if (test_bit(S390_FEAT_CCF_BASE, features)) {
2183         s390_add_from_feat_block(features, S390_FEAT_TYPE_PFCR, prop.pfcr);
2184     }
2185     return 0;
2186 }
2187 
configure_cpu_subfunc(const S390FeatBitmap features)2188 static int configure_cpu_subfunc(const S390FeatBitmap features)
2189 {
2190     struct kvm_s390_vm_cpu_subfunc prop = {};
2191     struct kvm_device_attr attr = {
2192         .group = KVM_S390_VM_CPU_MODEL,
2193         .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2194         .addr = (uint64_t) &prop,
2195     };
2196 
2197     if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2198                            KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2199         /* hardware support might be missing, IBC will handle most of this */
2200         return 0;
2201     }
2202 
2203     s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2204     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2205         s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2206     }
2207     if (test_bit(S390_FEAT_MSA, features)) {
2208         s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2209         s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2210         s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2211         s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2212         s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2213     }
2214     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2215         s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2216     }
2217     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2218         s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2219         s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2220         s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2221         s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2222     }
2223     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2224         s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2225     }
2226     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2227         s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2228     }
2229     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2230         s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2231     }
2232     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2233         s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2234     }
2235     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2236         s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2237     }
2238     if (test_bit(S390_FEAT_CCF_BASE, features)) {
2239         s390_fill_feat_block(features, S390_FEAT_TYPE_PFCR, prop.pfcr);
2240     }
2241     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2242 }
2243 
ap_available(void)2244 static bool ap_available(void)
2245 {
2246     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2247                              KVM_S390_VM_CRYPTO_ENABLE_APIE);
2248 }
2249 
ap_enabled(const S390FeatBitmap features)2250 static bool ap_enabled(const S390FeatBitmap features)
2251 {
2252     return test_bit(S390_FEAT_AP, features);
2253 }
2254 
uv_feat_supported(void)2255 static bool uv_feat_supported(void)
2256 {
2257     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2258                              KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST);
2259 }
2260 
query_uv_feat_guest(S390FeatBitmap features)2261 static int query_uv_feat_guest(S390FeatBitmap features)
2262 {
2263     struct kvm_s390_vm_cpu_uv_feat prop = {};
2264     struct kvm_device_attr attr = {
2265         .group = KVM_S390_VM_CPU_MODEL,
2266         .attr = KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST,
2267         .addr = (uint64_t) &prop,
2268     };
2269     int rc;
2270 
2271     /* AP support check is currently the only user of the UV feature test */
2272     if (!(uv_feat_supported() && ap_available())) {
2273         return 0;
2274     }
2275 
2276     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2277     if (rc) {
2278         return  rc;
2279     }
2280 
2281     if (prop.ap) {
2282         set_bit(S390_FEAT_UV_FEAT_AP, features);
2283     }
2284     if (prop.ap_intr) {
2285         set_bit(S390_FEAT_UV_FEAT_AP_INTR, features);
2286     }
2287 
2288     return 0;
2289 }
2290 
2291 static int kvm_to_feat[][2] = {
2292     { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2293     { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2294     { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2295     { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2296     { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2297     { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2298     { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2299     { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2300     { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2301     { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2302     { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2303     { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2304     { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2305     { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2306 };
2307 
query_cpu_feat(S390FeatBitmap features)2308 static int query_cpu_feat(S390FeatBitmap features)
2309 {
2310     struct kvm_s390_vm_cpu_feat prop = {};
2311     struct kvm_device_attr attr = {
2312         .group = KVM_S390_VM_CPU_MODEL,
2313         .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2314         .addr = (uint64_t) &prop,
2315     };
2316     int rc;
2317     int i;
2318 
2319     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2320     if (rc) {
2321         return  rc;
2322     }
2323 
2324     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2325         if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2326             set_bit(kvm_to_feat[i][1], features);
2327         }
2328     }
2329     return 0;
2330 }
2331 
configure_cpu_feat(const S390FeatBitmap features)2332 static int configure_cpu_feat(const S390FeatBitmap features)
2333 {
2334     struct kvm_s390_vm_cpu_feat prop = {};
2335     struct kvm_device_attr attr = {
2336         .group = KVM_S390_VM_CPU_MODEL,
2337         .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2338         .addr = (uint64_t) &prop,
2339     };
2340     int i;
2341 
2342     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2343         if (test_bit(kvm_to_feat[i][1], features)) {
2344             set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2345         }
2346     }
2347     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2348 }
2349 
kvm_s390_cpu_models_supported(void)2350 bool kvm_s390_cpu_models_supported(void)
2351 {
2352     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2353                              KVM_S390_VM_CPU_MACHINE) &&
2354            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2355                              KVM_S390_VM_CPU_PROCESSOR) &&
2356            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2357                              KVM_S390_VM_CPU_MACHINE_FEAT) &&
2358            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2359                              KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2360            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2361                              KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2362 }
2363 
kvm_s390_get_host_cpu_model(S390CPUModel * model,Error ** errp)2364 bool kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2365 {
2366     struct kvm_s390_vm_cpu_machine prop = {};
2367     struct kvm_device_attr attr = {
2368         .group = KVM_S390_VM_CPU_MODEL,
2369         .attr = KVM_S390_VM_CPU_MACHINE,
2370         .addr = (uint64_t) &prop,
2371     };
2372     uint16_t unblocked_ibc = 0, cpu_type = 0;
2373     int rc;
2374 
2375     memset(model, 0, sizeof(*model));
2376 
2377     if (!kvm_s390_cpu_models_supported()) {
2378         error_setg(errp, "KVM doesn't support CPU models");
2379         return false;
2380     }
2381 
2382     /* query the basic cpu model properties */
2383     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2384     if (rc) {
2385         error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2386         return false;
2387     }
2388 
2389     cpu_type = cpuid_type(prop.cpuid);
2390     if (has_ibc(prop.ibc)) {
2391         model->lowest_ibc = lowest_ibc(prop.ibc);
2392         unblocked_ibc = unblocked_ibc(prop.ibc);
2393     }
2394     model->cpu_id = cpuid_id(prop.cpuid);
2395     model->cpu_id_format = cpuid_format(prop.cpuid);
2396     model->cpu_ver = 0xff;
2397 
2398     /* get supported cpu features indicated via STFL(E) */
2399     s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2400                              (uint8_t *) prop.fac_mask);
2401     /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2402     if (test_bit(S390_FEAT_STFLE, model->features)) {
2403         set_bit(S390_FEAT_DAT_ENH_2, model->features);
2404     }
2405     /* get supported cpu features indicated e.g. via SCLP */
2406     rc = query_cpu_feat(model->features);
2407     if (rc) {
2408         error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2409         return false;
2410     }
2411     /* get supported cpu subfunctions indicated via query / test bit */
2412     rc = query_cpu_subfunc(model->features);
2413     if (rc) {
2414         error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2415         return false;
2416     }
2417 
2418     /* PTFF subfunctions might be indicated although kernel support missing */
2419     if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2420         clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2421         clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2422         clear_bit(S390_FEAT_PTFF_STOE, model->features);
2423         clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2424     }
2425 
2426     /* with cpu model support, CMM is only indicated if really available */
2427     if (kvm_s390_cmma_available()) {
2428         set_bit(S390_FEAT_CMM, model->features);
2429     } else {
2430         /* no cmm -> no cmm nt */
2431         clear_bit(S390_FEAT_CMM_NT, model->features);
2432     }
2433 
2434     /* bpb needs kernel support for migration, VSIE and reset */
2435     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2436         clear_bit(S390_FEAT_BPB, model->features);
2437     }
2438 
2439     /*
2440      * If we have support for protected virtualization, indicate
2441      * the protected virtualization IPL unpack facility.
2442      */
2443     if (cap_protected) {
2444         set_bit(S390_FEAT_UNPACK, model->features);
2445     }
2446 
2447     /*
2448      * If we have kernel support for CPU Topology indicate the
2449      * configuration-topology facility.
2450      */
2451     if (kvm_check_extension(kvm_state, KVM_CAP_S390_CPU_TOPOLOGY)) {
2452         set_bit(S390_FEAT_CONFIGURATION_TOPOLOGY, model->features);
2453     }
2454 
2455     /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2456     set_bit(S390_FEAT_ZPCI, model->features);
2457     set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2458 
2459     if (s390_known_cpu_type(cpu_type)) {
2460         /* we want the exact model, even if some features are missing */
2461         model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2462                                        ibc_ec_ga(unblocked_ibc), NULL);
2463     } else {
2464         /* model unknown, e.g. too new - search using features */
2465         model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2466                                        ibc_ec_ga(unblocked_ibc),
2467                                        model->features);
2468     }
2469     if (!model->def) {
2470         error_setg(errp, "KVM: host CPU model could not be identified");
2471         return false;
2472     }
2473     /* for now, we can only provide the AP feature with HW support */
2474     if (ap_available()) {
2475         set_bit(S390_FEAT_AP, model->features);
2476     }
2477 
2478     /*
2479      * Extended-Length SCCB is handled entirely within QEMU.
2480      * For PV guests this is completely fenced by the Ultravisor, as Service
2481      * Call error checking and STFLE interpretation are handled via SIE.
2482      */
2483     set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2484 
2485     if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2486         set_bit(S390_FEAT_DIAG_318, model->features);
2487     }
2488 
2489     /* Test for Ultravisor features that influence secure guest behavior */
2490     query_uv_feat_guest(model->features);
2491 
2492     /* strip of features that are not part of the maximum model */
2493     bitmap_and(model->features, model->features, model->def->full_feat,
2494                S390_FEAT_MAX);
2495     return true;
2496 }
2497 
configure_uv_feat_guest(const S390FeatBitmap features)2498 static int configure_uv_feat_guest(const S390FeatBitmap features)
2499 {
2500     struct kvm_s390_vm_cpu_uv_feat uv_feat = {};
2501     struct kvm_device_attr attribute = {
2502         .group = KVM_S390_VM_CPU_MODEL,
2503         .attr = KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST,
2504         .addr = (__u64) &uv_feat,
2505     };
2506 
2507     /* AP support check is currently the only user of the UV feature test */
2508     if (!(uv_feat_supported() && ap_enabled(features))) {
2509         return 0;
2510     }
2511 
2512     if (test_bit(S390_FEAT_UV_FEAT_AP, features)) {
2513         uv_feat.ap = 1;
2514     }
2515     if (test_bit(S390_FEAT_UV_FEAT_AP_INTR, features)) {
2516         uv_feat.ap_intr = 1;
2517     }
2518 
2519     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
2520 }
2521 
kvm_s390_configure_apie(bool interpret)2522 static void kvm_s390_configure_apie(bool interpret)
2523 {
2524     uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2525                                 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2526 
2527     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2528         kvm_s390_set_crypto_attr(attr);
2529     }
2530 }
2531 
kvm_s390_apply_cpu_model(const S390CPUModel * model,Error ** errp)2532 bool kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2533 {
2534     struct kvm_s390_vm_cpu_processor prop  = {
2535         .fac_list = { 0 },
2536     };
2537     struct kvm_device_attr attr = {
2538         .group = KVM_S390_VM_CPU_MODEL,
2539         .attr = KVM_S390_VM_CPU_PROCESSOR,
2540         .addr = (uint64_t) &prop,
2541     };
2542     int rc;
2543 
2544     if (!model) {
2545         /* compatibility handling if cpu models are disabled */
2546         if (kvm_s390_cmma_available()) {
2547             kvm_s390_enable_cmma();
2548         }
2549         return true;
2550     }
2551     if (!kvm_s390_cpu_models_supported()) {
2552         error_setg(errp, "KVM doesn't support CPU models");
2553         return false;
2554     }
2555     prop.cpuid = s390_cpuid_from_cpu_model(model);
2556     prop.ibc = s390_ibc_from_cpu_model(model);
2557     /* configure cpu features indicated via STFL(e) */
2558     s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2559                          (uint8_t *) prop.fac_list);
2560     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2561     if (rc) {
2562         error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2563         return false;
2564     }
2565     /* configure cpu features indicated e.g. via SCLP */
2566     rc = configure_cpu_feat(model->features);
2567     if (rc) {
2568         error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2569         return false;
2570     }
2571     /* configure cpu subfunctions indicated via query / test bit */
2572     rc = configure_cpu_subfunc(model->features);
2573     if (rc) {
2574         error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2575         return false;
2576     }
2577     /* enable CMM via CMMA */
2578     if (test_bit(S390_FEAT_CMM, model->features)) {
2579         kvm_s390_enable_cmma();
2580     }
2581 
2582     if (ap_enabled(model->features)) {
2583         kvm_s390_configure_apie(true);
2584     }
2585 
2586     /* configure UV-features for the guest indicated via query / test_bit */
2587     rc = configure_uv_feat_guest(model->features);
2588     if (rc) {
2589         error_setg(errp, "KVM: Error configuring CPU UV features %d", rc);
2590         return false;
2591     }
2592     return true;
2593 }
2594 
kvm_s390_restart_interrupt(S390CPU * cpu)2595 void kvm_s390_restart_interrupt(S390CPU *cpu)
2596 {
2597     struct kvm_s390_irq irq = {
2598         .type = KVM_S390_RESTART,
2599     };
2600 
2601     kvm_s390_vcpu_interrupt(cpu, &irq);
2602 }
2603 
kvm_s390_stop_interrupt(S390CPU * cpu)2604 void kvm_s390_stop_interrupt(S390CPU *cpu)
2605 {
2606     struct kvm_s390_irq irq = {
2607         .type = KVM_S390_SIGP_STOP,
2608     };
2609 
2610     kvm_s390_vcpu_interrupt(cpu, &irq);
2611 }
2612 
kvm_s390_get_zpci_op(void)2613 int kvm_s390_get_zpci_op(void)
2614 {
2615     return cap_zpci_op;
2616 }
2617 
kvm_s390_topology_set_mtcr(uint64_t attr)2618 int kvm_s390_topology_set_mtcr(uint64_t attr)
2619 {
2620     struct kvm_device_attr attribute = {
2621         .group = KVM_S390_VM_CPU_TOPOLOGY,
2622         .attr  = attr,
2623     };
2624 
2625     if (!s390_has_feat(S390_FEAT_CONFIGURATION_TOPOLOGY)) {
2626         return 0;
2627     }
2628     if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_TOPOLOGY, attr)) {
2629         return -ENOTSUP;
2630     }
2631 
2632     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
2633 }
2634 
kvm_arch_accel_class_init(ObjectClass * oc)2635 void kvm_arch_accel_class_init(ObjectClass *oc)
2636 {
2637 }
2638