1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Christian Ehrhardt <ehrhardt@de.ibm.com> 10 * Jason J. Herne <jjherne@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "kvm-s390" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/compiler.h> 17 #include <linux/export.h> 18 #include <linux/err.h> 19 #include <linux/fs.h> 20 #include <linux/hrtimer.h> 21 #include <linux/init.h> 22 #include <linux/kvm.h> 23 #include <linux/kvm_host.h> 24 #include <linux/mman.h> 25 #include <linux/module.h> 26 #include <linux/moduleparam.h> 27 #include <linux/cpufeature.h> 28 #include <linux/random.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/vmalloc.h> 32 #include <linux/bitmap.h> 33 #include <linux/sched/signal.h> 34 #include <linux/string.h> 35 #include <linux/pgtable.h> 36 #include <linux/mmu_notifier.h> 37 38 #include <asm/access-regs.h> 39 #include <asm/asm-offsets.h> 40 #include <asm/lowcore.h> 41 #include <asm/machine.h> 42 #include <asm/stp.h> 43 #include <asm/gmap.h> 44 #include <asm/gmap_helpers.h> 45 #include <asm/nmi.h> 46 #include <asm/isc.h> 47 #include <asm/sclp.h> 48 #include <asm/cpacf.h> 49 #include <asm/timex.h> 50 #include <asm/asm.h> 51 #include <asm/fpu.h> 52 #include <asm/ap.h> 53 #include <asm/uv.h> 54 #include "kvm-s390.h" 55 #include "gaccess.h" 56 #include "pci.h" 57 58 #define CREATE_TRACE_POINTS 59 #include "trace.h" 60 #include "trace-s390.h" 61 62 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 63 #define LOCAL_IRQS 32 64 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 65 (KVM_MAX_VCPUS + LOCAL_IRQS)) 66 67 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 68 KVM_GENERIC_VM_STATS(), 69 STATS_DESC_COUNTER(VM, inject_io), 70 STATS_DESC_COUNTER(VM, inject_float_mchk), 71 STATS_DESC_COUNTER(VM, inject_pfault_done), 72 STATS_DESC_COUNTER(VM, inject_service_signal), 73 STATS_DESC_COUNTER(VM, inject_virtio), 74 STATS_DESC_COUNTER(VM, aen_forward), 75 STATS_DESC_COUNTER(VM, gmap_shadow_reuse), 76 STATS_DESC_COUNTER(VM, gmap_shadow_create), 77 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry), 78 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry), 79 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry), 80 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry), 81 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry), 82 }; 83 84 const struct kvm_stats_header kvm_vm_stats_header = { 85 .name_size = KVM_STATS_NAME_SIZE, 86 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 87 .id_offset = sizeof(struct kvm_stats_header), 88 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 89 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 90 sizeof(kvm_vm_stats_desc), 91 }; 92 93 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 94 KVM_GENERIC_VCPU_STATS(), 95 STATS_DESC_COUNTER(VCPU, exit_userspace), 96 STATS_DESC_COUNTER(VCPU, exit_null), 97 STATS_DESC_COUNTER(VCPU, exit_external_request), 98 STATS_DESC_COUNTER(VCPU, exit_io_request), 99 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 100 STATS_DESC_COUNTER(VCPU, exit_stop_request), 101 STATS_DESC_COUNTER(VCPU, exit_validity), 102 STATS_DESC_COUNTER(VCPU, exit_instruction), 103 STATS_DESC_COUNTER(VCPU, exit_pei), 104 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 105 STATS_DESC_COUNTER(VCPU, instruction_lctl), 106 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 107 STATS_DESC_COUNTER(VCPU, instruction_stctl), 108 STATS_DESC_COUNTER(VCPU, instruction_stctg), 109 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 110 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 111 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 112 STATS_DESC_COUNTER(VCPU, deliver_ckc), 113 STATS_DESC_COUNTER(VCPU, deliver_cputm), 114 STATS_DESC_COUNTER(VCPU, deliver_external_call), 115 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 116 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 117 STATS_DESC_COUNTER(VCPU, deliver_virtio), 118 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 119 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 120 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 121 STATS_DESC_COUNTER(VCPU, deliver_program), 122 STATS_DESC_COUNTER(VCPU, deliver_io), 123 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 124 STATS_DESC_COUNTER(VCPU, exit_wait_state), 125 STATS_DESC_COUNTER(VCPU, inject_ckc), 126 STATS_DESC_COUNTER(VCPU, inject_cputm), 127 STATS_DESC_COUNTER(VCPU, inject_external_call), 128 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 129 STATS_DESC_COUNTER(VCPU, inject_mchk), 130 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 131 STATS_DESC_COUNTER(VCPU, inject_program), 132 STATS_DESC_COUNTER(VCPU, inject_restart), 133 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 134 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 135 STATS_DESC_COUNTER(VCPU, instruction_epsw), 136 STATS_DESC_COUNTER(VCPU, instruction_gs), 137 STATS_DESC_COUNTER(VCPU, instruction_io_other), 138 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 139 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 140 STATS_DESC_COUNTER(VCPU, instruction_lpswey), 141 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 142 STATS_DESC_COUNTER(VCPU, instruction_ptff), 143 STATS_DESC_COUNTER(VCPU, instruction_sck), 144 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 145 STATS_DESC_COUNTER(VCPU, instruction_stidp), 146 STATS_DESC_COUNTER(VCPU, instruction_spx), 147 STATS_DESC_COUNTER(VCPU, instruction_stpx), 148 STATS_DESC_COUNTER(VCPU, instruction_stap), 149 STATS_DESC_COUNTER(VCPU, instruction_iske), 150 STATS_DESC_COUNTER(VCPU, instruction_ri), 151 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 152 STATS_DESC_COUNTER(VCPU, instruction_sske), 153 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 154 STATS_DESC_COUNTER(VCPU, instruction_stsi), 155 STATS_DESC_COUNTER(VCPU, instruction_stfl), 156 STATS_DESC_COUNTER(VCPU, instruction_tb), 157 STATS_DESC_COUNTER(VCPU, instruction_tpi), 158 STATS_DESC_COUNTER(VCPU, instruction_tprot), 159 STATS_DESC_COUNTER(VCPU, instruction_tsch), 160 STATS_DESC_COUNTER(VCPU, instruction_sie), 161 STATS_DESC_COUNTER(VCPU, instruction_essa), 162 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 166 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 167 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 168 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 169 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 170 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 171 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 172 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 173 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 174 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 175 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 176 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 177 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 178 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 181 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 182 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 183 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 184 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 185 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 186 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 187 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 188 STATS_DESC_COUNTER(VCPU, pfault_sync) 189 }; 190 191 const struct kvm_stats_header kvm_vcpu_stats_header = { 192 .name_size = KVM_STATS_NAME_SIZE, 193 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 194 .id_offset = sizeof(struct kvm_stats_header), 195 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 196 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 197 sizeof(kvm_vcpu_stats_desc), 198 }; 199 200 /* allow nested virtualization in KVM (if enabled by user space) */ 201 static int nested; 202 module_param(nested, int, S_IRUGO); 203 MODULE_PARM_DESC(nested, "Nested virtualization support"); 204 205 /* allow 1m huge page guest backing, if !nested */ 206 static int hpage; 207 module_param(hpage, int, 0444); 208 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 209 210 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 211 static u8 halt_poll_max_steal = 10; 212 module_param(halt_poll_max_steal, byte, 0644); 213 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 214 215 /* if set to true, the GISA will be initialized and used if available */ 216 static bool use_gisa = true; 217 module_param(use_gisa, bool, 0644); 218 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 219 220 /* maximum diag9c forwarding per second */ 221 unsigned int diag9c_forwarding_hz; 222 module_param(diag9c_forwarding_hz, uint, 0644); 223 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 224 225 /* 226 * allow asynchronous deinit for protected guests; enable by default since 227 * the feature is opt-in anyway 228 */ 229 static int async_destroy = 1; 230 module_param(async_destroy, int, 0444); 231 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); 232 233 /* 234 * For now we handle at most 16 double words as this is what the s390 base 235 * kernel handles and stores in the prefix page. If we ever need to go beyond 236 * this, this requires changes to code, but the external uapi can stay. 237 */ 238 #define SIZE_INTERNAL 16 239 240 /* 241 * Base feature mask that defines default mask for facilities. Consists of the 242 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 243 */ 244 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 245 /* 246 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 247 * and defines the facilities that can be enabled via a cpu model. 248 */ 249 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 250 kvm_s390_fac_size(void)251 static unsigned long kvm_s390_fac_size(void) 252 { 253 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 254 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 255 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 256 sizeof(stfle_fac_list)); 257 258 return SIZE_INTERNAL; 259 } 260 261 /* available cpu features supported by kvm */ 262 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 263 /* available subfunctions indicated via query / "test bit" */ 264 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 265 266 static struct gmap_notifier gmap_notifier; 267 static struct gmap_notifier vsie_gmap_notifier; 268 debug_info_t *kvm_s390_dbf; 269 debug_info_t *kvm_s390_dbf_uv; 270 271 /* Section: not file related */ 272 /* forward declarations */ 273 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 274 unsigned long end); 275 static int sca_switch_to_extended(struct kvm *kvm); 276 kvm_clock_sync_scb(struct kvm_s390_sie_block * scb,u64 delta)277 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 278 { 279 u8 delta_idx = 0; 280 281 /* 282 * The TOD jumps by delta, we have to compensate this by adding 283 * -delta to the epoch. 284 */ 285 delta = -delta; 286 287 /* sign-extension - we're adding to signed values below */ 288 if ((s64)delta < 0) 289 delta_idx = -1; 290 291 scb->epoch += delta; 292 if (scb->ecd & ECD_MEF) { 293 scb->epdx += delta_idx; 294 if (scb->epoch < delta) 295 scb->epdx += 1; 296 } 297 } 298 299 /* 300 * This callback is executed during stop_machine(). All CPUs are therefore 301 * temporarily stopped. In order not to change guest behavior, we have to 302 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 303 * so a CPU won't be stopped while calculating with the epoch. 304 */ kvm_clock_sync(struct notifier_block * notifier,unsigned long val,void * v)305 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 306 void *v) 307 { 308 struct kvm *kvm; 309 struct kvm_vcpu *vcpu; 310 unsigned long i; 311 unsigned long long *delta = v; 312 313 list_for_each_entry(kvm, &vm_list, vm_list) { 314 kvm_for_each_vcpu(i, vcpu, kvm) { 315 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 316 if (i == 0) { 317 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 318 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 319 } 320 if (vcpu->arch.cputm_enabled) 321 vcpu->arch.cputm_start += *delta; 322 if (vcpu->arch.vsie_block) 323 kvm_clock_sync_scb(vcpu->arch.vsie_block, 324 *delta); 325 } 326 } 327 return NOTIFY_OK; 328 } 329 330 static struct notifier_block kvm_clock_notifier = { 331 .notifier_call = kvm_clock_sync, 332 }; 333 allow_cpu_feat(unsigned long nr)334 static void allow_cpu_feat(unsigned long nr) 335 { 336 set_bit_inv(nr, kvm_s390_available_cpu_feat); 337 } 338 plo_test_bit(unsigned char nr)339 static inline int plo_test_bit(unsigned char nr) 340 { 341 unsigned long function = (unsigned long)nr | 0x100; 342 int cc; 343 344 asm volatile( 345 " lgr 0,%[function]\n" 346 /* Parameter registers are ignored for "test bit" */ 347 " plo 0,0,0,0(0)\n" 348 CC_IPM(cc) 349 : CC_OUT(cc, cc) 350 : [function] "d" (function) 351 : CC_CLOBBER_LIST("0")); 352 return CC_TRANSFORM(cc) == 0; 353 } 354 pfcr_query(u8 (* query)[16])355 static __always_inline void pfcr_query(u8 (*query)[16]) 356 { 357 asm volatile( 358 " lghi 0,0\n" 359 " .insn rsy,0xeb0000000016,0,0,%[query]\n" 360 : [query] "=QS" (*query) 361 : 362 : "cc", "0"); 363 } 364 __sortl_query(u8 (* query)[32])365 static __always_inline void __sortl_query(u8 (*query)[32]) 366 { 367 asm volatile( 368 " lghi 0,0\n" 369 " la 1,%[query]\n" 370 /* Parameter registers are ignored */ 371 " .insn rre,0xb9380000,2,4\n" 372 : [query] "=R" (*query) 373 : 374 : "cc", "0", "1"); 375 } 376 __dfltcc_query(u8 (* query)[32])377 static __always_inline void __dfltcc_query(u8 (*query)[32]) 378 { 379 asm volatile( 380 " lghi 0,0\n" 381 " la 1,%[query]\n" 382 /* Parameter registers are ignored */ 383 " .insn rrf,0xb9390000,2,4,6,0\n" 384 : [query] "=R" (*query) 385 : 386 : "cc", "0", "1"); 387 } 388 kvm_s390_cpu_feat_init(void)389 static void __init kvm_s390_cpu_feat_init(void) 390 { 391 int i; 392 393 for (i = 0; i < 256; ++i) { 394 if (plo_test_bit(i)) 395 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 396 } 397 398 if (test_facility(28)) /* TOD-clock steering */ 399 ptff(kvm_s390_available_subfunc.ptff, 400 sizeof(kvm_s390_available_subfunc.ptff), 401 PTFF_QAF); 402 403 if (test_facility(17)) { /* MSA */ 404 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 405 kvm_s390_available_subfunc.kmac); 406 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 407 kvm_s390_available_subfunc.kmc); 408 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 409 kvm_s390_available_subfunc.km); 410 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 411 kvm_s390_available_subfunc.kimd); 412 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 413 kvm_s390_available_subfunc.klmd); 414 } 415 if (test_facility(76)) /* MSA3 */ 416 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 417 kvm_s390_available_subfunc.pckmo); 418 if (test_facility(77)) { /* MSA4 */ 419 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 420 kvm_s390_available_subfunc.kmctr); 421 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 422 kvm_s390_available_subfunc.kmf); 423 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 424 kvm_s390_available_subfunc.kmo); 425 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 426 kvm_s390_available_subfunc.pcc); 427 } 428 if (test_facility(57)) /* MSA5 */ 429 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 430 kvm_s390_available_subfunc.ppno); 431 432 if (test_facility(146)) /* MSA8 */ 433 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 434 kvm_s390_available_subfunc.kma); 435 436 if (test_facility(155)) /* MSA9 */ 437 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 438 kvm_s390_available_subfunc.kdsa); 439 440 if (test_facility(150)) /* SORTL */ 441 __sortl_query(&kvm_s390_available_subfunc.sortl); 442 443 if (test_facility(151)) /* DFLTCC */ 444 __dfltcc_query(&kvm_s390_available_subfunc.dfltcc); 445 446 if (test_facility(201)) /* PFCR */ 447 pfcr_query(&kvm_s390_available_subfunc.pfcr); 448 449 if (machine_has_esop()) 450 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 451 /* 452 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 453 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 454 */ 455 if (!sclp.has_sief2 || !machine_has_esop() || !sclp.has_64bscao || 456 !test_facility(3) || !nested) 457 return; 458 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 459 if (sclp.has_64bscao) 460 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 461 if (sclp.has_siif) 462 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 463 if (sclp.has_gpere) 464 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 465 if (sclp.has_gsls) 466 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 467 if (sclp.has_ib) 468 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 469 if (sclp.has_cei) 470 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 471 if (sclp.has_ibs) 472 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 473 if (sclp.has_kss) 474 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 475 /* 476 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 477 * all skey handling functions read/set the skey from the PGSTE 478 * instead of the real storage key. 479 * 480 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 481 * pages being detected as preserved although they are resident. 482 * 483 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 484 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 485 * 486 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 487 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 488 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 489 * 490 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 491 * cannot easily shadow the SCA because of the ipte lock. 492 */ 493 } 494 __kvm_s390_init(void)495 static int __init __kvm_s390_init(void) 496 { 497 int rc = -ENOMEM; 498 499 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 500 if (!kvm_s390_dbf) 501 return -ENOMEM; 502 503 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 504 if (!kvm_s390_dbf_uv) 505 goto err_kvm_uv; 506 507 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 508 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 509 goto err_debug_view; 510 511 kvm_s390_cpu_feat_init(); 512 513 /* Register floating interrupt controller interface. */ 514 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 515 if (rc) { 516 pr_err("A FLIC registration call failed with rc=%d\n", rc); 517 goto err_flic; 518 } 519 520 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 521 rc = kvm_s390_pci_init(); 522 if (rc) { 523 pr_err("Unable to allocate AIFT for PCI\n"); 524 goto err_pci; 525 } 526 } 527 528 rc = kvm_s390_gib_init(GAL_ISC); 529 if (rc) 530 goto err_gib; 531 532 gmap_notifier.notifier_call = kvm_gmap_notifier; 533 gmap_register_pte_notifier(&gmap_notifier); 534 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 535 gmap_register_pte_notifier(&vsie_gmap_notifier); 536 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 537 &kvm_clock_notifier); 538 539 return 0; 540 541 err_gib: 542 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 543 kvm_s390_pci_exit(); 544 err_pci: 545 err_flic: 546 err_debug_view: 547 debug_unregister(kvm_s390_dbf_uv); 548 err_kvm_uv: 549 debug_unregister(kvm_s390_dbf); 550 return rc; 551 } 552 __kvm_s390_exit(void)553 static void __kvm_s390_exit(void) 554 { 555 gmap_unregister_pte_notifier(&gmap_notifier); 556 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 557 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 558 &kvm_clock_notifier); 559 560 kvm_s390_gib_destroy(); 561 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 562 kvm_s390_pci_exit(); 563 debug_unregister(kvm_s390_dbf); 564 debug_unregister(kvm_s390_dbf_uv); 565 } 566 567 /* Section: device related */ kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)568 long kvm_arch_dev_ioctl(struct file *filp, 569 unsigned int ioctl, unsigned long arg) 570 { 571 if (ioctl == KVM_S390_ENABLE_SIE) 572 return s390_enable_sie(); 573 return -EINVAL; 574 } 575 kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)576 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 577 { 578 int r; 579 580 switch (ext) { 581 case KVM_CAP_S390_PSW: 582 case KVM_CAP_S390_GMAP: 583 case KVM_CAP_SYNC_MMU: 584 #ifdef CONFIG_KVM_S390_UCONTROL 585 case KVM_CAP_S390_UCONTROL: 586 #endif 587 case KVM_CAP_ASYNC_PF: 588 case KVM_CAP_SYNC_REGS: 589 case KVM_CAP_ONE_REG: 590 case KVM_CAP_ENABLE_CAP: 591 case KVM_CAP_S390_CSS_SUPPORT: 592 case KVM_CAP_IOEVENTFD: 593 case KVM_CAP_S390_IRQCHIP: 594 case KVM_CAP_VM_ATTRIBUTES: 595 case KVM_CAP_MP_STATE: 596 case KVM_CAP_IMMEDIATE_EXIT: 597 case KVM_CAP_S390_INJECT_IRQ: 598 case KVM_CAP_S390_USER_SIGP: 599 case KVM_CAP_S390_USER_STSI: 600 case KVM_CAP_S390_SKEYS: 601 case KVM_CAP_S390_IRQ_STATE: 602 case KVM_CAP_S390_USER_INSTR0: 603 case KVM_CAP_S390_CMMA_MIGRATION: 604 case KVM_CAP_S390_AIS: 605 case KVM_CAP_S390_AIS_MIGRATION: 606 case KVM_CAP_S390_VCPU_RESETS: 607 case KVM_CAP_SET_GUEST_DEBUG: 608 case KVM_CAP_S390_DIAG318: 609 case KVM_CAP_IRQFD_RESAMPLE: 610 r = 1; 611 break; 612 case KVM_CAP_SET_GUEST_DEBUG2: 613 r = KVM_GUESTDBG_VALID_MASK; 614 break; 615 case KVM_CAP_S390_HPAGE_1M: 616 r = 0; 617 if (hpage && !(kvm && kvm_is_ucontrol(kvm))) 618 r = 1; 619 break; 620 case KVM_CAP_S390_MEM_OP: 621 r = MEM_OP_MAX_SIZE; 622 break; 623 case KVM_CAP_S390_MEM_OP_EXTENSION: 624 /* 625 * Flag bits indicating which extensions are supported. 626 * If r > 0, the base extension must also be supported/indicated, 627 * in order to maintain backwards compatibility. 628 */ 629 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | 630 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; 631 break; 632 case KVM_CAP_NR_VCPUS: 633 case KVM_CAP_MAX_VCPUS: 634 case KVM_CAP_MAX_VCPU_ID: 635 r = KVM_S390_BSCA_CPU_SLOTS; 636 if (!kvm_s390_use_sca_entries()) 637 r = KVM_MAX_VCPUS; 638 else if (sclp.has_esca && sclp.has_64bscao) 639 r = KVM_S390_ESCA_CPU_SLOTS; 640 if (ext == KVM_CAP_NR_VCPUS) 641 r = min_t(unsigned int, num_online_cpus(), r); 642 break; 643 case KVM_CAP_S390_COW: 644 r = machine_has_esop(); 645 break; 646 case KVM_CAP_S390_VECTOR_REGISTERS: 647 r = test_facility(129); 648 break; 649 case KVM_CAP_S390_RI: 650 r = test_facility(64); 651 break; 652 case KVM_CAP_S390_GS: 653 r = test_facility(133); 654 break; 655 case KVM_CAP_S390_BPB: 656 r = test_facility(82); 657 break; 658 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: 659 r = async_destroy && is_prot_virt_host(); 660 break; 661 case KVM_CAP_S390_PROTECTED: 662 r = is_prot_virt_host(); 663 break; 664 case KVM_CAP_S390_PROTECTED_DUMP: { 665 u64 pv_cmds_dump[] = { 666 BIT_UVC_CMD_DUMP_INIT, 667 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, 668 BIT_UVC_CMD_DUMP_CPU, 669 BIT_UVC_CMD_DUMP_COMPLETE, 670 }; 671 int i; 672 673 r = is_prot_virt_host(); 674 675 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { 676 if (!test_bit_inv(pv_cmds_dump[i], 677 (unsigned long *)&uv_info.inst_calls_list)) { 678 r = 0; 679 break; 680 } 681 } 682 break; 683 } 684 case KVM_CAP_S390_ZPCI_OP: 685 r = kvm_s390_pci_interp_allowed(); 686 break; 687 case KVM_CAP_S390_CPU_TOPOLOGY: 688 r = test_facility(11); 689 break; 690 default: 691 r = 0; 692 } 693 return r; 694 } 695 kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)696 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 697 { 698 int i; 699 gfn_t cur_gfn, last_gfn; 700 unsigned long gaddr, vmaddr; 701 struct gmap *gmap = kvm->arch.gmap; 702 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 703 704 /* Loop over all guest segments */ 705 cur_gfn = memslot->base_gfn; 706 last_gfn = memslot->base_gfn + memslot->npages; 707 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 708 gaddr = gfn_to_gpa(cur_gfn); 709 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 710 if (kvm_is_error_hva(vmaddr)) 711 continue; 712 713 bitmap_zero(bitmap, _PAGE_ENTRIES); 714 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 715 for (i = 0; i < _PAGE_ENTRIES; i++) { 716 if (test_bit(i, bitmap)) 717 mark_page_dirty(kvm, cur_gfn + i); 718 } 719 720 if (fatal_signal_pending(current)) 721 return; 722 cond_resched(); 723 } 724 } 725 726 /* Section: vm related */ 727 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 728 729 /* 730 * Get (and clear) the dirty memory log for a memory slot. 731 */ kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)732 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 733 struct kvm_dirty_log *log) 734 { 735 int r; 736 unsigned long n; 737 struct kvm_memory_slot *memslot; 738 int is_dirty; 739 740 if (kvm_is_ucontrol(kvm)) 741 return -EINVAL; 742 743 mutex_lock(&kvm->slots_lock); 744 745 r = -EINVAL; 746 if (log->slot >= KVM_USER_MEM_SLOTS) 747 goto out; 748 749 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 750 if (r) 751 goto out; 752 753 /* Clear the dirty log */ 754 if (is_dirty) { 755 n = kvm_dirty_bitmap_bytes(memslot); 756 memset(memslot->dirty_bitmap, 0, n); 757 } 758 r = 0; 759 out: 760 mutex_unlock(&kvm->slots_lock); 761 return r; 762 } 763 icpt_operexc_on_all_vcpus(struct kvm * kvm)764 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 765 { 766 unsigned long i; 767 struct kvm_vcpu *vcpu; 768 769 kvm_for_each_vcpu(i, vcpu, kvm) { 770 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 771 } 772 } 773 kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)774 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 775 { 776 int r; 777 778 if (cap->flags) 779 return -EINVAL; 780 781 switch (cap->cap) { 782 case KVM_CAP_S390_IRQCHIP: 783 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 784 kvm->arch.use_irqchip = 1; 785 r = 0; 786 break; 787 case KVM_CAP_S390_USER_SIGP: 788 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 789 kvm->arch.user_sigp = 1; 790 r = 0; 791 break; 792 case KVM_CAP_S390_VECTOR_REGISTERS: 793 mutex_lock(&kvm->lock); 794 if (kvm->created_vcpus) { 795 r = -EBUSY; 796 } else if (cpu_has_vx()) { 797 set_kvm_facility(kvm->arch.model.fac_mask, 129); 798 set_kvm_facility(kvm->arch.model.fac_list, 129); 799 if (test_facility(134)) { 800 set_kvm_facility(kvm->arch.model.fac_mask, 134); 801 set_kvm_facility(kvm->arch.model.fac_list, 134); 802 } 803 if (test_facility(135)) { 804 set_kvm_facility(kvm->arch.model.fac_mask, 135); 805 set_kvm_facility(kvm->arch.model.fac_list, 135); 806 } 807 if (test_facility(148)) { 808 set_kvm_facility(kvm->arch.model.fac_mask, 148); 809 set_kvm_facility(kvm->arch.model.fac_list, 148); 810 } 811 if (test_facility(152)) { 812 set_kvm_facility(kvm->arch.model.fac_mask, 152); 813 set_kvm_facility(kvm->arch.model.fac_list, 152); 814 } 815 if (test_facility(192)) { 816 set_kvm_facility(kvm->arch.model.fac_mask, 192); 817 set_kvm_facility(kvm->arch.model.fac_list, 192); 818 } 819 if (test_facility(198)) { 820 set_kvm_facility(kvm->arch.model.fac_mask, 198); 821 set_kvm_facility(kvm->arch.model.fac_list, 198); 822 } 823 if (test_facility(199)) { 824 set_kvm_facility(kvm->arch.model.fac_mask, 199); 825 set_kvm_facility(kvm->arch.model.fac_list, 199); 826 } 827 r = 0; 828 } else 829 r = -EINVAL; 830 mutex_unlock(&kvm->lock); 831 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 832 r ? "(not available)" : "(success)"); 833 break; 834 case KVM_CAP_S390_RI: 835 r = -EINVAL; 836 mutex_lock(&kvm->lock); 837 if (kvm->created_vcpus) { 838 r = -EBUSY; 839 } else if (test_facility(64)) { 840 set_kvm_facility(kvm->arch.model.fac_mask, 64); 841 set_kvm_facility(kvm->arch.model.fac_list, 64); 842 r = 0; 843 } 844 mutex_unlock(&kvm->lock); 845 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 846 r ? "(not available)" : "(success)"); 847 break; 848 case KVM_CAP_S390_AIS: 849 mutex_lock(&kvm->lock); 850 if (kvm->created_vcpus) { 851 r = -EBUSY; 852 } else { 853 set_kvm_facility(kvm->arch.model.fac_mask, 72); 854 set_kvm_facility(kvm->arch.model.fac_list, 72); 855 r = 0; 856 } 857 mutex_unlock(&kvm->lock); 858 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 859 r ? "(not available)" : "(success)"); 860 break; 861 case KVM_CAP_S390_GS: 862 r = -EINVAL; 863 mutex_lock(&kvm->lock); 864 if (kvm->created_vcpus) { 865 r = -EBUSY; 866 } else if (test_facility(133)) { 867 set_kvm_facility(kvm->arch.model.fac_mask, 133); 868 set_kvm_facility(kvm->arch.model.fac_list, 133); 869 r = 0; 870 } 871 mutex_unlock(&kvm->lock); 872 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 873 r ? "(not available)" : "(success)"); 874 break; 875 case KVM_CAP_S390_HPAGE_1M: 876 mutex_lock(&kvm->lock); 877 if (kvm->created_vcpus) 878 r = -EBUSY; 879 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 880 r = -EINVAL; 881 else { 882 r = 0; 883 mmap_write_lock(kvm->mm); 884 kvm->mm->context.allow_gmap_hpage_1m = 1; 885 mmap_write_unlock(kvm->mm); 886 /* 887 * We might have to create fake 4k page 888 * tables. To avoid that the hardware works on 889 * stale PGSTEs, we emulate these instructions. 890 */ 891 kvm->arch.use_skf = 0; 892 kvm->arch.use_pfmfi = 0; 893 } 894 mutex_unlock(&kvm->lock); 895 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 896 r ? "(not available)" : "(success)"); 897 break; 898 case KVM_CAP_S390_USER_STSI: 899 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 900 kvm->arch.user_stsi = 1; 901 r = 0; 902 break; 903 case KVM_CAP_S390_USER_INSTR0: 904 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 905 kvm->arch.user_instr0 = 1; 906 icpt_operexc_on_all_vcpus(kvm); 907 r = 0; 908 break; 909 case KVM_CAP_S390_CPU_TOPOLOGY: 910 r = -EINVAL; 911 mutex_lock(&kvm->lock); 912 if (kvm->created_vcpus) { 913 r = -EBUSY; 914 } else if (test_facility(11)) { 915 set_kvm_facility(kvm->arch.model.fac_mask, 11); 916 set_kvm_facility(kvm->arch.model.fac_list, 11); 917 r = 0; 918 } 919 mutex_unlock(&kvm->lock); 920 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", 921 r ? "(not available)" : "(success)"); 922 break; 923 default: 924 r = -EINVAL; 925 break; 926 } 927 return r; 928 } 929 kvm_s390_get_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)930 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 931 { 932 int ret; 933 934 switch (attr->attr) { 935 case KVM_S390_VM_MEM_LIMIT_SIZE: 936 ret = 0; 937 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 938 kvm->arch.mem_limit); 939 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 940 ret = -EFAULT; 941 break; 942 default: 943 ret = -ENXIO; 944 break; 945 } 946 return ret; 947 } 948 kvm_s390_set_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)949 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 950 { 951 int ret; 952 unsigned int idx; 953 switch (attr->attr) { 954 case KVM_S390_VM_MEM_ENABLE_CMMA: 955 ret = -ENXIO; 956 if (!sclp.has_cmma) 957 break; 958 959 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 960 mutex_lock(&kvm->lock); 961 if (kvm->created_vcpus) 962 ret = -EBUSY; 963 else if (kvm->mm->context.allow_gmap_hpage_1m) 964 ret = -EINVAL; 965 else { 966 kvm->arch.use_cmma = 1; 967 /* Not compatible with cmma. */ 968 kvm->arch.use_pfmfi = 0; 969 ret = 0; 970 } 971 mutex_unlock(&kvm->lock); 972 break; 973 case KVM_S390_VM_MEM_CLR_CMMA: 974 ret = -ENXIO; 975 if (!sclp.has_cmma) 976 break; 977 ret = -EINVAL; 978 if (!kvm->arch.use_cmma) 979 break; 980 981 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 982 mutex_lock(&kvm->lock); 983 idx = srcu_read_lock(&kvm->srcu); 984 s390_reset_cmma(kvm->arch.gmap->mm); 985 srcu_read_unlock(&kvm->srcu, idx); 986 mutex_unlock(&kvm->lock); 987 ret = 0; 988 break; 989 case KVM_S390_VM_MEM_LIMIT_SIZE: { 990 unsigned long new_limit; 991 992 if (kvm_is_ucontrol(kvm)) 993 return -EINVAL; 994 995 if (get_user(new_limit, (u64 __user *)attr->addr)) 996 return -EFAULT; 997 998 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 999 new_limit > kvm->arch.mem_limit) 1000 return -E2BIG; 1001 1002 if (!new_limit) 1003 return -EINVAL; 1004 1005 /* gmap_create takes last usable address */ 1006 if (new_limit != KVM_S390_NO_MEM_LIMIT) 1007 new_limit -= 1; 1008 1009 ret = -EBUSY; 1010 mutex_lock(&kvm->lock); 1011 if (!kvm->created_vcpus) { 1012 /* gmap_create will round the limit up */ 1013 struct gmap *new = gmap_create(current->mm, new_limit); 1014 1015 if (!new) { 1016 ret = -ENOMEM; 1017 } else { 1018 gmap_remove(kvm->arch.gmap); 1019 new->private = kvm; 1020 kvm->arch.gmap = new; 1021 ret = 0; 1022 } 1023 } 1024 mutex_unlock(&kvm->lock); 1025 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 1026 VM_EVENT(kvm, 3, "New guest asce: 0x%p", 1027 (void *) kvm->arch.gmap->asce); 1028 break; 1029 } 1030 default: 1031 ret = -ENXIO; 1032 break; 1033 } 1034 return ret; 1035 } 1036 1037 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 1038 kvm_s390_vcpu_crypto_reset_all(struct kvm * kvm)1039 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 1040 { 1041 struct kvm_vcpu *vcpu; 1042 unsigned long i; 1043 1044 kvm_s390_vcpu_block_all(kvm); 1045 1046 kvm_for_each_vcpu(i, vcpu, kvm) { 1047 kvm_s390_vcpu_crypto_setup(vcpu); 1048 /* recreate the shadow crycb by leaving the VSIE handler */ 1049 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1050 } 1051 1052 kvm_s390_vcpu_unblock_all(kvm); 1053 } 1054 kvm_s390_vm_set_crypto(struct kvm * kvm,struct kvm_device_attr * attr)1055 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 1056 { 1057 mutex_lock(&kvm->lock); 1058 switch (attr->attr) { 1059 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1060 if (!test_kvm_facility(kvm, 76)) { 1061 mutex_unlock(&kvm->lock); 1062 return -EINVAL; 1063 } 1064 get_random_bytes( 1065 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1066 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1067 kvm->arch.crypto.aes_kw = 1; 1068 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 1069 break; 1070 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1071 if (!test_kvm_facility(kvm, 76)) { 1072 mutex_unlock(&kvm->lock); 1073 return -EINVAL; 1074 } 1075 get_random_bytes( 1076 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1077 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1078 kvm->arch.crypto.dea_kw = 1; 1079 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 1080 break; 1081 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1082 if (!test_kvm_facility(kvm, 76)) { 1083 mutex_unlock(&kvm->lock); 1084 return -EINVAL; 1085 } 1086 kvm->arch.crypto.aes_kw = 0; 1087 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 1088 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1089 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 1090 break; 1091 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1092 if (!test_kvm_facility(kvm, 76)) { 1093 mutex_unlock(&kvm->lock); 1094 return -EINVAL; 1095 } 1096 kvm->arch.crypto.dea_kw = 0; 1097 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 1098 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1099 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 1100 break; 1101 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1102 if (!ap_instructions_available()) { 1103 mutex_unlock(&kvm->lock); 1104 return -EOPNOTSUPP; 1105 } 1106 kvm->arch.crypto.apie = 1; 1107 break; 1108 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1109 if (!ap_instructions_available()) { 1110 mutex_unlock(&kvm->lock); 1111 return -EOPNOTSUPP; 1112 } 1113 kvm->arch.crypto.apie = 0; 1114 break; 1115 default: 1116 mutex_unlock(&kvm->lock); 1117 return -ENXIO; 1118 } 1119 1120 kvm_s390_vcpu_crypto_reset_all(kvm); 1121 mutex_unlock(&kvm->lock); 1122 return 0; 1123 } 1124 kvm_s390_vcpu_pci_setup(struct kvm_vcpu * vcpu)1125 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) 1126 { 1127 /* Only set the ECB bits after guest requests zPCI interpretation */ 1128 if (!vcpu->kvm->arch.use_zpci_interp) 1129 return; 1130 1131 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; 1132 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; 1133 } 1134 kvm_s390_vcpu_pci_enable_interp(struct kvm * kvm)1135 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) 1136 { 1137 struct kvm_vcpu *vcpu; 1138 unsigned long i; 1139 1140 lockdep_assert_held(&kvm->lock); 1141 1142 if (!kvm_s390_pci_interp_allowed()) 1143 return; 1144 1145 /* 1146 * If host is configured for PCI and the necessary facilities are 1147 * available, turn on interpretation for the life of this guest 1148 */ 1149 kvm->arch.use_zpci_interp = 1; 1150 1151 kvm_s390_vcpu_block_all(kvm); 1152 1153 kvm_for_each_vcpu(i, vcpu, kvm) { 1154 kvm_s390_vcpu_pci_setup(vcpu); 1155 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1156 } 1157 1158 kvm_s390_vcpu_unblock_all(kvm); 1159 } 1160 kvm_s390_sync_request_broadcast(struct kvm * kvm,int req)1161 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1162 { 1163 unsigned long cx; 1164 struct kvm_vcpu *vcpu; 1165 1166 kvm_for_each_vcpu(cx, vcpu, kvm) 1167 kvm_s390_sync_request(req, vcpu); 1168 } 1169 1170 /* 1171 * Must be called with kvm->srcu held to avoid races on memslots, and with 1172 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1173 */ kvm_s390_vm_start_migration(struct kvm * kvm)1174 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1175 { 1176 struct kvm_memory_slot *ms; 1177 struct kvm_memslots *slots; 1178 unsigned long ram_pages = 0; 1179 int bkt; 1180 1181 /* migration mode already enabled */ 1182 if (kvm->arch.migration_mode) 1183 return 0; 1184 slots = kvm_memslots(kvm); 1185 if (!slots || kvm_memslots_empty(slots)) 1186 return -EINVAL; 1187 1188 if (!kvm->arch.use_cmma) { 1189 kvm->arch.migration_mode = 1; 1190 return 0; 1191 } 1192 /* mark all the pages in active slots as dirty */ 1193 kvm_for_each_memslot(ms, bkt, slots) { 1194 if (!ms->dirty_bitmap) 1195 return -EINVAL; 1196 /* 1197 * The second half of the bitmap is only used on x86, 1198 * and would be wasted otherwise, so we put it to good 1199 * use here to keep track of the state of the storage 1200 * attributes. 1201 */ 1202 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1203 ram_pages += ms->npages; 1204 } 1205 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1206 kvm->arch.migration_mode = 1; 1207 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1208 return 0; 1209 } 1210 1211 /* 1212 * Must be called with kvm->slots_lock to avoid races with ourselves and 1213 * kvm_s390_vm_start_migration. 1214 */ kvm_s390_vm_stop_migration(struct kvm * kvm)1215 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1216 { 1217 /* migration mode already disabled */ 1218 if (!kvm->arch.migration_mode) 1219 return 0; 1220 kvm->arch.migration_mode = 0; 1221 if (kvm->arch.use_cmma) 1222 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1223 return 0; 1224 } 1225 kvm_s390_vm_set_migration(struct kvm * kvm,struct kvm_device_attr * attr)1226 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1227 struct kvm_device_attr *attr) 1228 { 1229 int res = -ENXIO; 1230 1231 mutex_lock(&kvm->slots_lock); 1232 switch (attr->attr) { 1233 case KVM_S390_VM_MIGRATION_START: 1234 res = kvm_s390_vm_start_migration(kvm); 1235 break; 1236 case KVM_S390_VM_MIGRATION_STOP: 1237 res = kvm_s390_vm_stop_migration(kvm); 1238 break; 1239 default: 1240 break; 1241 } 1242 mutex_unlock(&kvm->slots_lock); 1243 1244 return res; 1245 } 1246 kvm_s390_vm_get_migration(struct kvm * kvm,struct kvm_device_attr * attr)1247 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1248 struct kvm_device_attr *attr) 1249 { 1250 u64 mig = kvm->arch.migration_mode; 1251 1252 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1253 return -ENXIO; 1254 1255 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1256 return -EFAULT; 1257 return 0; 1258 } 1259 1260 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); 1261 kvm_s390_set_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1262 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1263 { 1264 struct kvm_s390_vm_tod_clock gtod; 1265 1266 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1267 return -EFAULT; 1268 1269 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1270 return -EINVAL; 1271 __kvm_s390_set_tod_clock(kvm, >od); 1272 1273 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1274 gtod.epoch_idx, gtod.tod); 1275 1276 return 0; 1277 } 1278 kvm_s390_set_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1279 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1280 { 1281 u8 gtod_high; 1282 1283 if (copy_from_user(>od_high, (void __user *)attr->addr, 1284 sizeof(gtod_high))) 1285 return -EFAULT; 1286 1287 if (gtod_high != 0) 1288 return -EINVAL; 1289 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1290 1291 return 0; 1292 } 1293 kvm_s390_set_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1294 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1295 { 1296 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1297 1298 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1299 sizeof(gtod.tod))) 1300 return -EFAULT; 1301 1302 __kvm_s390_set_tod_clock(kvm, >od); 1303 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1304 return 0; 1305 } 1306 kvm_s390_set_tod(struct kvm * kvm,struct kvm_device_attr * attr)1307 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1308 { 1309 int ret; 1310 1311 if (attr->flags) 1312 return -EINVAL; 1313 1314 mutex_lock(&kvm->lock); 1315 /* 1316 * For protected guests, the TOD is managed by the ultravisor, so trying 1317 * to change it will never bring the expected results. 1318 */ 1319 if (kvm_s390_pv_is_protected(kvm)) { 1320 ret = -EOPNOTSUPP; 1321 goto out_unlock; 1322 } 1323 1324 switch (attr->attr) { 1325 case KVM_S390_VM_TOD_EXT: 1326 ret = kvm_s390_set_tod_ext(kvm, attr); 1327 break; 1328 case KVM_S390_VM_TOD_HIGH: 1329 ret = kvm_s390_set_tod_high(kvm, attr); 1330 break; 1331 case KVM_S390_VM_TOD_LOW: 1332 ret = kvm_s390_set_tod_low(kvm, attr); 1333 break; 1334 default: 1335 ret = -ENXIO; 1336 break; 1337 } 1338 1339 out_unlock: 1340 mutex_unlock(&kvm->lock); 1341 return ret; 1342 } 1343 kvm_s390_get_tod_clock(struct kvm * kvm,struct kvm_s390_vm_tod_clock * gtod)1344 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1345 struct kvm_s390_vm_tod_clock *gtod) 1346 { 1347 union tod_clock clk; 1348 1349 preempt_disable(); 1350 1351 store_tod_clock_ext(&clk); 1352 1353 gtod->tod = clk.tod + kvm->arch.epoch; 1354 gtod->epoch_idx = 0; 1355 if (test_kvm_facility(kvm, 139)) { 1356 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1357 if (gtod->tod < clk.tod) 1358 gtod->epoch_idx += 1; 1359 } 1360 1361 preempt_enable(); 1362 } 1363 kvm_s390_get_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1364 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1365 { 1366 struct kvm_s390_vm_tod_clock gtod; 1367 1368 memset(>od, 0, sizeof(gtod)); 1369 kvm_s390_get_tod_clock(kvm, >od); 1370 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1371 return -EFAULT; 1372 1373 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1374 gtod.epoch_idx, gtod.tod); 1375 return 0; 1376 } 1377 kvm_s390_get_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1378 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1379 { 1380 u8 gtod_high = 0; 1381 1382 if (copy_to_user((void __user *)attr->addr, >od_high, 1383 sizeof(gtod_high))) 1384 return -EFAULT; 1385 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1386 1387 return 0; 1388 } 1389 kvm_s390_get_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1390 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1391 { 1392 u64 gtod; 1393 1394 gtod = kvm_s390_get_tod_clock_fast(kvm); 1395 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1396 return -EFAULT; 1397 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1398 1399 return 0; 1400 } 1401 kvm_s390_get_tod(struct kvm * kvm,struct kvm_device_attr * attr)1402 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1403 { 1404 int ret; 1405 1406 if (attr->flags) 1407 return -EINVAL; 1408 1409 switch (attr->attr) { 1410 case KVM_S390_VM_TOD_EXT: 1411 ret = kvm_s390_get_tod_ext(kvm, attr); 1412 break; 1413 case KVM_S390_VM_TOD_HIGH: 1414 ret = kvm_s390_get_tod_high(kvm, attr); 1415 break; 1416 case KVM_S390_VM_TOD_LOW: 1417 ret = kvm_s390_get_tod_low(kvm, attr); 1418 break; 1419 default: 1420 ret = -ENXIO; 1421 break; 1422 } 1423 return ret; 1424 } 1425 kvm_s390_set_processor(struct kvm * kvm,struct kvm_device_attr * attr)1426 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1427 { 1428 struct kvm_s390_vm_cpu_processor *proc; 1429 u16 lowest_ibc, unblocked_ibc; 1430 int ret = 0; 1431 1432 mutex_lock(&kvm->lock); 1433 if (kvm->created_vcpus) { 1434 ret = -EBUSY; 1435 goto out; 1436 } 1437 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1438 if (!proc) { 1439 ret = -ENOMEM; 1440 goto out; 1441 } 1442 if (!copy_from_user(proc, (void __user *)attr->addr, 1443 sizeof(*proc))) { 1444 kvm->arch.model.cpuid = proc->cpuid; 1445 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1446 unblocked_ibc = sclp.ibc & 0xfff; 1447 if (lowest_ibc && proc->ibc) { 1448 if (proc->ibc > unblocked_ibc) 1449 kvm->arch.model.ibc = unblocked_ibc; 1450 else if (proc->ibc < lowest_ibc) 1451 kvm->arch.model.ibc = lowest_ibc; 1452 else 1453 kvm->arch.model.ibc = proc->ibc; 1454 } 1455 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1456 S390_ARCH_FAC_LIST_SIZE_BYTE); 1457 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1458 kvm->arch.model.ibc, 1459 kvm->arch.model.cpuid); 1460 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1461 kvm->arch.model.fac_list[0], 1462 kvm->arch.model.fac_list[1], 1463 kvm->arch.model.fac_list[2]); 1464 } else 1465 ret = -EFAULT; 1466 kfree(proc); 1467 out: 1468 mutex_unlock(&kvm->lock); 1469 return ret; 1470 } 1471 kvm_s390_set_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1472 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1473 struct kvm_device_attr *attr) 1474 { 1475 struct kvm_s390_vm_cpu_feat data; 1476 1477 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1478 return -EFAULT; 1479 if (!bitmap_subset((unsigned long *) data.feat, 1480 kvm_s390_available_cpu_feat, 1481 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1482 return -EINVAL; 1483 1484 mutex_lock(&kvm->lock); 1485 if (kvm->created_vcpus) { 1486 mutex_unlock(&kvm->lock); 1487 return -EBUSY; 1488 } 1489 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1490 mutex_unlock(&kvm->lock); 1491 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1492 data.feat[0], 1493 data.feat[1], 1494 data.feat[2]); 1495 return 0; 1496 } 1497 kvm_s390_set_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1498 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1499 struct kvm_device_attr *attr) 1500 { 1501 mutex_lock(&kvm->lock); 1502 if (kvm->created_vcpus) { 1503 mutex_unlock(&kvm->lock); 1504 return -EBUSY; 1505 } 1506 1507 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1508 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1509 mutex_unlock(&kvm->lock); 1510 return -EFAULT; 1511 } 1512 mutex_unlock(&kvm->lock); 1513 1514 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1515 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1516 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1517 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1518 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1519 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1520 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1521 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1522 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1523 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1524 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1525 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1526 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1527 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1528 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1529 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1530 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1531 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1532 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1533 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1534 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1535 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1536 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1537 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1538 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1539 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1540 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1541 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1542 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1543 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1544 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1545 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1546 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1547 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1548 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1549 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1550 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1551 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1552 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1553 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1554 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1555 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1556 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1557 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1558 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1559 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1560 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1561 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1562 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1563 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1564 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1565 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1566 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1567 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1568 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1569 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1570 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1571 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx", 1572 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1573 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1574 1575 return 0; 1576 } 1577 1578 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \ 1579 ( \ 1580 ((struct kvm_s390_vm_cpu_uv_feat){ \ 1581 .ap = 1, \ 1582 .ap_intr = 1, \ 1583 }) \ 1584 .feat \ 1585 ) 1586 kvm_s390_set_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1587 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1588 { 1589 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr; 1590 unsigned long data, filter; 1591 1592 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1593 if (get_user(data, &ptr->feat)) 1594 return -EFAULT; 1595 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS)) 1596 return -EINVAL; 1597 1598 mutex_lock(&kvm->lock); 1599 if (kvm->created_vcpus) { 1600 mutex_unlock(&kvm->lock); 1601 return -EBUSY; 1602 } 1603 kvm->arch.model.uv_feat_guest.feat = data; 1604 mutex_unlock(&kvm->lock); 1605 1606 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data); 1607 1608 return 0; 1609 } 1610 kvm_s390_set_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1611 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1612 { 1613 int ret = -ENXIO; 1614 1615 switch (attr->attr) { 1616 case KVM_S390_VM_CPU_PROCESSOR: 1617 ret = kvm_s390_set_processor(kvm, attr); 1618 break; 1619 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1620 ret = kvm_s390_set_processor_feat(kvm, attr); 1621 break; 1622 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1623 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1624 break; 1625 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1626 ret = kvm_s390_set_uv_feat(kvm, attr); 1627 break; 1628 } 1629 return ret; 1630 } 1631 kvm_s390_get_processor(struct kvm * kvm,struct kvm_device_attr * attr)1632 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1633 { 1634 struct kvm_s390_vm_cpu_processor *proc; 1635 int ret = 0; 1636 1637 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1638 if (!proc) { 1639 ret = -ENOMEM; 1640 goto out; 1641 } 1642 proc->cpuid = kvm->arch.model.cpuid; 1643 proc->ibc = kvm->arch.model.ibc; 1644 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1645 S390_ARCH_FAC_LIST_SIZE_BYTE); 1646 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1647 kvm->arch.model.ibc, 1648 kvm->arch.model.cpuid); 1649 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1650 kvm->arch.model.fac_list[0], 1651 kvm->arch.model.fac_list[1], 1652 kvm->arch.model.fac_list[2]); 1653 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1654 ret = -EFAULT; 1655 kfree(proc); 1656 out: 1657 return ret; 1658 } 1659 kvm_s390_get_machine(struct kvm * kvm,struct kvm_device_attr * attr)1660 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1661 { 1662 struct kvm_s390_vm_cpu_machine *mach; 1663 int ret = 0; 1664 1665 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1666 if (!mach) { 1667 ret = -ENOMEM; 1668 goto out; 1669 } 1670 get_cpu_id((struct cpuid *) &mach->cpuid); 1671 mach->ibc = sclp.ibc; 1672 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1673 S390_ARCH_FAC_LIST_SIZE_BYTE); 1674 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1675 sizeof(stfle_fac_list)); 1676 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1677 kvm->arch.model.ibc, 1678 kvm->arch.model.cpuid); 1679 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1680 mach->fac_mask[0], 1681 mach->fac_mask[1], 1682 mach->fac_mask[2]); 1683 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1684 mach->fac_list[0], 1685 mach->fac_list[1], 1686 mach->fac_list[2]); 1687 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1688 ret = -EFAULT; 1689 kfree(mach); 1690 out: 1691 return ret; 1692 } 1693 kvm_s390_get_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1694 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1695 struct kvm_device_attr *attr) 1696 { 1697 struct kvm_s390_vm_cpu_feat data; 1698 1699 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1700 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1701 return -EFAULT; 1702 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1703 data.feat[0], 1704 data.feat[1], 1705 data.feat[2]); 1706 return 0; 1707 } 1708 kvm_s390_get_machine_feat(struct kvm * kvm,struct kvm_device_attr * attr)1709 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1710 struct kvm_device_attr *attr) 1711 { 1712 struct kvm_s390_vm_cpu_feat data; 1713 1714 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1715 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1716 return -EFAULT; 1717 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1718 data.feat[0], 1719 data.feat[1], 1720 data.feat[2]); 1721 return 0; 1722 } 1723 kvm_s390_get_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1724 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1725 struct kvm_device_attr *attr) 1726 { 1727 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1728 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1729 return -EFAULT; 1730 1731 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1732 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1733 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1734 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1735 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1736 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1737 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1738 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1739 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1740 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1741 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1742 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1743 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1744 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1745 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1746 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1747 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1748 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1749 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1750 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1751 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1752 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1753 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1754 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1755 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1756 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1757 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1758 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1759 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1760 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1761 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1762 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1763 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1764 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1765 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1766 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1767 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1768 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1769 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1770 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1771 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1772 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1773 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1774 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1775 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1776 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1777 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1778 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1779 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1780 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1781 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1782 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1783 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1784 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1785 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1786 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1787 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1788 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx", 1789 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1790 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1791 1792 return 0; 1793 } 1794 kvm_s390_get_machine_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1795 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1796 struct kvm_device_attr *attr) 1797 { 1798 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1799 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1800 return -EFAULT; 1801 1802 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1803 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1804 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1805 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1806 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1807 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1808 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1809 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1810 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1811 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1812 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1813 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1814 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1815 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1816 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1817 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1818 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1819 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1820 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1821 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1822 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1823 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1824 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1825 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1826 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1827 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1828 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1829 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1830 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1831 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1832 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1833 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1834 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1835 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1836 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1837 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1838 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1839 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1840 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1841 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1842 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1843 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1844 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1845 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1846 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1847 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1848 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1849 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1850 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1851 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1852 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1853 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1854 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1855 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1856 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1857 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1858 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1859 VM_EVENT(kvm, 3, "GET: host PFCR subfunc 0x%16.16lx.%16.16lx", 1860 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1861 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1862 1863 return 0; 1864 } 1865 kvm_s390_get_processor_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1866 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1867 { 1868 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1869 unsigned long feat = kvm->arch.model.uv_feat_guest.feat; 1870 1871 if (put_user(feat, &dst->feat)) 1872 return -EFAULT; 1873 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1874 1875 return 0; 1876 } 1877 kvm_s390_get_machine_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1878 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1879 { 1880 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1881 unsigned long feat; 1882 1883 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications)); 1884 1885 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1886 if (put_user(feat, &dst->feat)) 1887 return -EFAULT; 1888 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1889 1890 return 0; 1891 } 1892 kvm_s390_get_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1893 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1894 { 1895 int ret = -ENXIO; 1896 1897 switch (attr->attr) { 1898 case KVM_S390_VM_CPU_PROCESSOR: 1899 ret = kvm_s390_get_processor(kvm, attr); 1900 break; 1901 case KVM_S390_VM_CPU_MACHINE: 1902 ret = kvm_s390_get_machine(kvm, attr); 1903 break; 1904 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1905 ret = kvm_s390_get_processor_feat(kvm, attr); 1906 break; 1907 case KVM_S390_VM_CPU_MACHINE_FEAT: 1908 ret = kvm_s390_get_machine_feat(kvm, attr); 1909 break; 1910 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1911 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1912 break; 1913 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1914 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1915 break; 1916 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1917 ret = kvm_s390_get_processor_uv_feat(kvm, attr); 1918 break; 1919 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 1920 ret = kvm_s390_get_machine_uv_feat(kvm, attr); 1921 break; 1922 } 1923 return ret; 1924 } 1925 1926 /** 1927 * kvm_s390_update_topology_change_report - update CPU topology change report 1928 * @kvm: guest KVM description 1929 * @val: set or clear the MTCR bit 1930 * 1931 * Updates the Multiprocessor Topology-Change-Report bit to signal 1932 * the guest with a topology change. 1933 * This is only relevant if the topology facility is present. 1934 * 1935 * The SCA version, bsca or esca, doesn't matter as offset is the same. 1936 */ kvm_s390_update_topology_change_report(struct kvm * kvm,bool val)1937 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) 1938 { 1939 union sca_utility new, old; 1940 struct bsca_block *sca; 1941 1942 read_lock(&kvm->arch.sca_lock); 1943 sca = kvm->arch.sca; 1944 old = READ_ONCE(sca->utility); 1945 do { 1946 new = old; 1947 new.mtcr = val; 1948 } while (!try_cmpxchg(&sca->utility.val, &old.val, new.val)); 1949 read_unlock(&kvm->arch.sca_lock); 1950 } 1951 kvm_s390_set_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1952 static int kvm_s390_set_topo_change_indication(struct kvm *kvm, 1953 struct kvm_device_attr *attr) 1954 { 1955 if (!test_kvm_facility(kvm, 11)) 1956 return -ENXIO; 1957 1958 kvm_s390_update_topology_change_report(kvm, !!attr->attr); 1959 return 0; 1960 } 1961 kvm_s390_get_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1962 static int kvm_s390_get_topo_change_indication(struct kvm *kvm, 1963 struct kvm_device_attr *attr) 1964 { 1965 u8 topo; 1966 1967 if (!test_kvm_facility(kvm, 11)) 1968 return -ENXIO; 1969 1970 read_lock(&kvm->arch.sca_lock); 1971 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; 1972 read_unlock(&kvm->arch.sca_lock); 1973 1974 return put_user(topo, (u8 __user *)attr->addr); 1975 } 1976 kvm_s390_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1977 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1978 { 1979 int ret; 1980 1981 switch (attr->group) { 1982 case KVM_S390_VM_MEM_CTRL: 1983 ret = kvm_s390_set_mem_control(kvm, attr); 1984 break; 1985 case KVM_S390_VM_TOD: 1986 ret = kvm_s390_set_tod(kvm, attr); 1987 break; 1988 case KVM_S390_VM_CPU_MODEL: 1989 ret = kvm_s390_set_cpu_model(kvm, attr); 1990 break; 1991 case KVM_S390_VM_CRYPTO: 1992 ret = kvm_s390_vm_set_crypto(kvm, attr); 1993 break; 1994 case KVM_S390_VM_MIGRATION: 1995 ret = kvm_s390_vm_set_migration(kvm, attr); 1996 break; 1997 case KVM_S390_VM_CPU_TOPOLOGY: 1998 ret = kvm_s390_set_topo_change_indication(kvm, attr); 1999 break; 2000 default: 2001 ret = -ENXIO; 2002 break; 2003 } 2004 2005 return ret; 2006 } 2007 kvm_s390_vm_get_attr(struct kvm * kvm,struct kvm_device_attr * attr)2008 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 2009 { 2010 int ret; 2011 2012 switch (attr->group) { 2013 case KVM_S390_VM_MEM_CTRL: 2014 ret = kvm_s390_get_mem_control(kvm, attr); 2015 break; 2016 case KVM_S390_VM_TOD: 2017 ret = kvm_s390_get_tod(kvm, attr); 2018 break; 2019 case KVM_S390_VM_CPU_MODEL: 2020 ret = kvm_s390_get_cpu_model(kvm, attr); 2021 break; 2022 case KVM_S390_VM_MIGRATION: 2023 ret = kvm_s390_vm_get_migration(kvm, attr); 2024 break; 2025 case KVM_S390_VM_CPU_TOPOLOGY: 2026 ret = kvm_s390_get_topo_change_indication(kvm, attr); 2027 break; 2028 default: 2029 ret = -ENXIO; 2030 break; 2031 } 2032 2033 return ret; 2034 } 2035 kvm_s390_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)2036 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 2037 { 2038 int ret; 2039 2040 switch (attr->group) { 2041 case KVM_S390_VM_MEM_CTRL: 2042 switch (attr->attr) { 2043 case KVM_S390_VM_MEM_ENABLE_CMMA: 2044 case KVM_S390_VM_MEM_CLR_CMMA: 2045 ret = sclp.has_cmma ? 0 : -ENXIO; 2046 break; 2047 case KVM_S390_VM_MEM_LIMIT_SIZE: 2048 ret = 0; 2049 break; 2050 default: 2051 ret = -ENXIO; 2052 break; 2053 } 2054 break; 2055 case KVM_S390_VM_TOD: 2056 switch (attr->attr) { 2057 case KVM_S390_VM_TOD_LOW: 2058 case KVM_S390_VM_TOD_HIGH: 2059 ret = 0; 2060 break; 2061 default: 2062 ret = -ENXIO; 2063 break; 2064 } 2065 break; 2066 case KVM_S390_VM_CPU_MODEL: 2067 switch (attr->attr) { 2068 case KVM_S390_VM_CPU_PROCESSOR: 2069 case KVM_S390_VM_CPU_MACHINE: 2070 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 2071 case KVM_S390_VM_CPU_MACHINE_FEAT: 2072 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 2073 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 2074 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 2075 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 2076 ret = 0; 2077 break; 2078 default: 2079 ret = -ENXIO; 2080 break; 2081 } 2082 break; 2083 case KVM_S390_VM_CRYPTO: 2084 switch (attr->attr) { 2085 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 2086 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 2087 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 2088 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 2089 ret = 0; 2090 break; 2091 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 2092 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 2093 ret = ap_instructions_available() ? 0 : -ENXIO; 2094 break; 2095 default: 2096 ret = -ENXIO; 2097 break; 2098 } 2099 break; 2100 case KVM_S390_VM_MIGRATION: 2101 ret = 0; 2102 break; 2103 case KVM_S390_VM_CPU_TOPOLOGY: 2104 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; 2105 break; 2106 default: 2107 ret = -ENXIO; 2108 break; 2109 } 2110 2111 return ret; 2112 } 2113 kvm_s390_get_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2114 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2115 { 2116 uint8_t *keys; 2117 uint64_t hva; 2118 int srcu_idx, i, r = 0; 2119 2120 if (args->flags != 0) 2121 return -EINVAL; 2122 2123 /* Is this guest using storage keys? */ 2124 if (!mm_uses_skeys(current->mm)) 2125 return KVM_S390_GET_SKEYS_NONE; 2126 2127 /* Enforce sane limit on memory allocation */ 2128 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2129 return -EINVAL; 2130 2131 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2132 if (!keys) 2133 return -ENOMEM; 2134 2135 mmap_read_lock(current->mm); 2136 srcu_idx = srcu_read_lock(&kvm->srcu); 2137 for (i = 0; i < args->count; i++) { 2138 hva = gfn_to_hva(kvm, args->start_gfn + i); 2139 if (kvm_is_error_hva(hva)) { 2140 r = -EFAULT; 2141 break; 2142 } 2143 2144 r = get_guest_storage_key(current->mm, hva, &keys[i]); 2145 if (r) 2146 break; 2147 } 2148 srcu_read_unlock(&kvm->srcu, srcu_idx); 2149 mmap_read_unlock(current->mm); 2150 2151 if (!r) { 2152 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 2153 sizeof(uint8_t) * args->count); 2154 if (r) 2155 r = -EFAULT; 2156 } 2157 2158 kvfree(keys); 2159 return r; 2160 } 2161 kvm_s390_set_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2162 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2163 { 2164 uint8_t *keys; 2165 uint64_t hva; 2166 int srcu_idx, i, r = 0; 2167 bool unlocked; 2168 2169 if (args->flags != 0) 2170 return -EINVAL; 2171 2172 /* Enforce sane limit on memory allocation */ 2173 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2174 return -EINVAL; 2175 2176 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2177 if (!keys) 2178 return -ENOMEM; 2179 2180 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 2181 sizeof(uint8_t) * args->count); 2182 if (r) { 2183 r = -EFAULT; 2184 goto out; 2185 } 2186 2187 /* Enable storage key handling for the guest */ 2188 r = s390_enable_skey(); 2189 if (r) 2190 goto out; 2191 2192 i = 0; 2193 mmap_read_lock(current->mm); 2194 srcu_idx = srcu_read_lock(&kvm->srcu); 2195 while (i < args->count) { 2196 unlocked = false; 2197 hva = gfn_to_hva(kvm, args->start_gfn + i); 2198 if (kvm_is_error_hva(hva)) { 2199 r = -EFAULT; 2200 break; 2201 } 2202 2203 /* Lowest order bit is reserved */ 2204 if (keys[i] & 0x01) { 2205 r = -EINVAL; 2206 break; 2207 } 2208 2209 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 2210 if (r) { 2211 r = fixup_user_fault(current->mm, hva, 2212 FAULT_FLAG_WRITE, &unlocked); 2213 if (r) 2214 break; 2215 } 2216 if (!r) 2217 i++; 2218 } 2219 srcu_read_unlock(&kvm->srcu, srcu_idx); 2220 mmap_read_unlock(current->mm); 2221 out: 2222 kvfree(keys); 2223 return r; 2224 } 2225 2226 /* 2227 * Base address and length must be sent at the start of each block, therefore 2228 * it's cheaper to send some clean data, as long as it's less than the size of 2229 * two longs. 2230 */ 2231 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 2232 /* for consistency */ 2233 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 2234 kvm_s390_peek_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2235 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2236 u8 *res, unsigned long bufsize) 2237 { 2238 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 2239 2240 args->count = 0; 2241 while (args->count < bufsize) { 2242 hva = gfn_to_hva(kvm, cur_gfn); 2243 /* 2244 * We return an error if the first value was invalid, but we 2245 * return successfully if at least one value was copied. 2246 */ 2247 if (kvm_is_error_hva(hva)) 2248 return args->count ? 0 : -EFAULT; 2249 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2250 pgstev = 0; 2251 res[args->count++] = (pgstev >> 24) & 0x43; 2252 cur_gfn++; 2253 } 2254 2255 return 0; 2256 } 2257 gfn_to_memslot_approx(struct kvm_memslots * slots,gfn_t gfn)2258 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, 2259 gfn_t gfn) 2260 { 2261 return ____gfn_to_memslot(slots, gfn, true); 2262 } 2263 kvm_s390_next_dirty_cmma(struct kvm_memslots * slots,unsigned long cur_gfn)2264 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2265 unsigned long cur_gfn) 2266 { 2267 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); 2268 unsigned long ofs = cur_gfn - ms->base_gfn; 2269 struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; 2270 2271 if (ms->base_gfn + ms->npages <= cur_gfn) { 2272 mnode = rb_next(mnode); 2273 /* If we are above the highest slot, wrap around */ 2274 if (!mnode) 2275 mnode = rb_first(&slots->gfn_tree); 2276 2277 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2278 ofs = 0; 2279 } 2280 2281 if (cur_gfn < ms->base_gfn) 2282 ofs = 0; 2283 2284 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2285 while (ofs >= ms->npages && (mnode = rb_next(mnode))) { 2286 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2287 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); 2288 } 2289 return ms->base_gfn + ofs; 2290 } 2291 kvm_s390_get_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2292 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2293 u8 *res, unsigned long bufsize) 2294 { 2295 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2296 struct kvm_memslots *slots = kvm_memslots(kvm); 2297 struct kvm_memory_slot *ms; 2298 2299 if (unlikely(kvm_memslots_empty(slots))) 2300 return 0; 2301 2302 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2303 ms = gfn_to_memslot(kvm, cur_gfn); 2304 args->count = 0; 2305 args->start_gfn = cur_gfn; 2306 if (!ms) 2307 return 0; 2308 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2309 mem_end = kvm_s390_get_gfn_end(slots); 2310 2311 while (args->count < bufsize) { 2312 hva = gfn_to_hva(kvm, cur_gfn); 2313 if (kvm_is_error_hva(hva)) 2314 return 0; 2315 /* Decrement only if we actually flipped the bit to 0 */ 2316 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2317 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2318 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2319 pgstev = 0; 2320 /* Save the value */ 2321 res[args->count++] = (pgstev >> 24) & 0x43; 2322 /* If the next bit is too far away, stop. */ 2323 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2324 return 0; 2325 /* If we reached the previous "next", find the next one */ 2326 if (cur_gfn == next_gfn) 2327 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2328 /* Reached the end of memory or of the buffer, stop */ 2329 if ((next_gfn >= mem_end) || 2330 (next_gfn - args->start_gfn >= bufsize)) 2331 return 0; 2332 cur_gfn++; 2333 /* Reached the end of the current memslot, take the next one. */ 2334 if (cur_gfn - ms->base_gfn >= ms->npages) { 2335 ms = gfn_to_memslot(kvm, cur_gfn); 2336 if (!ms) 2337 return 0; 2338 } 2339 } 2340 return 0; 2341 } 2342 2343 /* 2344 * This function searches for the next page with dirty CMMA attributes, and 2345 * saves the attributes in the buffer up to either the end of the buffer or 2346 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2347 * no trailing clean bytes are saved. 2348 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2349 * output buffer will indicate 0 as length. 2350 */ kvm_s390_get_cmma_bits(struct kvm * kvm,struct kvm_s390_cmma_log * args)2351 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2352 struct kvm_s390_cmma_log *args) 2353 { 2354 unsigned long bufsize; 2355 int srcu_idx, peek, ret; 2356 u8 *values; 2357 2358 if (!kvm->arch.use_cmma) 2359 return -ENXIO; 2360 /* Invalid/unsupported flags were specified */ 2361 if (args->flags & ~KVM_S390_CMMA_PEEK) 2362 return -EINVAL; 2363 /* Migration mode query, and we are not doing a migration */ 2364 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2365 if (!peek && !kvm->arch.migration_mode) 2366 return -EINVAL; 2367 /* CMMA is disabled or was not used, or the buffer has length zero */ 2368 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2369 if (!bufsize || !kvm->mm->context.uses_cmm) { 2370 memset(args, 0, sizeof(*args)); 2371 return 0; 2372 } 2373 /* We are not peeking, and there are no dirty pages */ 2374 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2375 memset(args, 0, sizeof(*args)); 2376 return 0; 2377 } 2378 2379 values = vmalloc(bufsize); 2380 if (!values) 2381 return -ENOMEM; 2382 2383 mmap_read_lock(kvm->mm); 2384 srcu_idx = srcu_read_lock(&kvm->srcu); 2385 if (peek) 2386 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2387 else 2388 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2389 srcu_read_unlock(&kvm->srcu, srcu_idx); 2390 mmap_read_unlock(kvm->mm); 2391 2392 if (kvm->arch.migration_mode) 2393 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2394 else 2395 args->remaining = 0; 2396 2397 if (copy_to_user((void __user *)args->values, values, args->count)) 2398 ret = -EFAULT; 2399 2400 vfree(values); 2401 return ret; 2402 } 2403 2404 /* 2405 * This function sets the CMMA attributes for the given pages. If the input 2406 * buffer has zero length, no action is taken, otherwise the attributes are 2407 * set and the mm->context.uses_cmm flag is set. 2408 */ kvm_s390_set_cmma_bits(struct kvm * kvm,const struct kvm_s390_cmma_log * args)2409 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2410 const struct kvm_s390_cmma_log *args) 2411 { 2412 unsigned long hva, mask, pgstev, i; 2413 uint8_t *bits; 2414 int srcu_idx, r = 0; 2415 2416 mask = args->mask; 2417 2418 if (!kvm->arch.use_cmma) 2419 return -ENXIO; 2420 /* invalid/unsupported flags */ 2421 if (args->flags != 0) 2422 return -EINVAL; 2423 /* Enforce sane limit on memory allocation */ 2424 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2425 return -EINVAL; 2426 /* Nothing to do */ 2427 if (args->count == 0) 2428 return 0; 2429 2430 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2431 if (!bits) 2432 return -ENOMEM; 2433 2434 r = copy_from_user(bits, (void __user *)args->values, args->count); 2435 if (r) { 2436 r = -EFAULT; 2437 goto out; 2438 } 2439 2440 mmap_read_lock(kvm->mm); 2441 srcu_idx = srcu_read_lock(&kvm->srcu); 2442 for (i = 0; i < args->count; i++) { 2443 hva = gfn_to_hva(kvm, args->start_gfn + i); 2444 if (kvm_is_error_hva(hva)) { 2445 r = -EFAULT; 2446 break; 2447 } 2448 2449 pgstev = bits[i]; 2450 pgstev = pgstev << 24; 2451 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2452 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2453 } 2454 srcu_read_unlock(&kvm->srcu, srcu_idx); 2455 mmap_read_unlock(kvm->mm); 2456 2457 if (!kvm->mm->context.uses_cmm) { 2458 mmap_write_lock(kvm->mm); 2459 kvm->mm->context.uses_cmm = 1; 2460 mmap_write_unlock(kvm->mm); 2461 } 2462 out: 2463 vfree(bits); 2464 return r; 2465 } 2466 2467 /** 2468 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to 2469 * non protected. 2470 * @kvm: the VM whose protected vCPUs are to be converted 2471 * @rc: return value for the RC field of the UVC (in case of error) 2472 * @rrc: return value for the RRC field of the UVC (in case of error) 2473 * 2474 * Does not stop in case of error, tries to convert as many 2475 * CPUs as possible. In case of error, the RC and RRC of the last error are 2476 * returned. 2477 * 2478 * Return: 0 in case of success, otherwise -EIO 2479 */ kvm_s390_cpus_from_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2480 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2481 { 2482 struct kvm_vcpu *vcpu; 2483 unsigned long i; 2484 u16 _rc, _rrc; 2485 int ret = 0; 2486 2487 /* 2488 * We ignore failures and try to destroy as many CPUs as possible. 2489 * At the same time we must not free the assigned resources when 2490 * this fails, as the ultravisor has still access to that memory. 2491 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2492 * behind. 2493 * We want to return the first failure rc and rrc, though. 2494 */ 2495 kvm_for_each_vcpu(i, vcpu, kvm) { 2496 mutex_lock(&vcpu->mutex); 2497 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { 2498 *rc = _rc; 2499 *rrc = _rrc; 2500 ret = -EIO; 2501 } 2502 mutex_unlock(&vcpu->mutex); 2503 } 2504 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ 2505 if (use_gisa) 2506 kvm_s390_gisa_enable(kvm); 2507 return ret; 2508 } 2509 2510 /** 2511 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM 2512 * to protected. 2513 * @kvm: the VM whose protected vCPUs are to be converted 2514 * @rc: return value for the RC field of the UVC (in case of error) 2515 * @rrc: return value for the RRC field of the UVC (in case of error) 2516 * 2517 * Tries to undo the conversion in case of error. 2518 * 2519 * Return: 0 in case of success, otherwise -EIO 2520 */ kvm_s390_cpus_to_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2521 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2522 { 2523 unsigned long i; 2524 int r = 0; 2525 u16 dummy; 2526 2527 struct kvm_vcpu *vcpu; 2528 2529 /* Disable the GISA if the ultravisor does not support AIV. */ 2530 if (!uv_has_feature(BIT_UV_FEAT_AIV)) 2531 kvm_s390_gisa_disable(kvm); 2532 2533 kvm_for_each_vcpu(i, vcpu, kvm) { 2534 mutex_lock(&vcpu->mutex); 2535 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2536 mutex_unlock(&vcpu->mutex); 2537 if (r) 2538 break; 2539 } 2540 if (r) 2541 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2542 return r; 2543 } 2544 2545 /* 2546 * Here we provide user space with a direct interface to query UV 2547 * related data like UV maxima and available features as well as 2548 * feature specific data. 2549 * 2550 * To facilitate future extension of the data structures we'll try to 2551 * write data up to the maximum requested length. 2552 */ kvm_s390_handle_pv_info(struct kvm_s390_pv_info * info)2553 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) 2554 { 2555 ssize_t len_min; 2556 2557 switch (info->header.id) { 2558 case KVM_PV_INFO_VM: { 2559 len_min = sizeof(info->header) + sizeof(info->vm); 2560 2561 if (info->header.len_max < len_min) 2562 return -EINVAL; 2563 2564 memcpy(info->vm.inst_calls_list, 2565 uv_info.inst_calls_list, 2566 sizeof(uv_info.inst_calls_list)); 2567 2568 /* It's max cpuid not max cpus, so it's off by one */ 2569 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; 2570 info->vm.max_guests = uv_info.max_num_sec_conf; 2571 info->vm.max_guest_addr = uv_info.max_sec_stor_addr; 2572 info->vm.feature_indication = uv_info.uv_feature_indications; 2573 2574 return len_min; 2575 } 2576 case KVM_PV_INFO_DUMP: { 2577 len_min = sizeof(info->header) + sizeof(info->dump); 2578 2579 if (info->header.len_max < len_min) 2580 return -EINVAL; 2581 2582 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; 2583 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; 2584 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; 2585 return len_min; 2586 } 2587 default: 2588 return -EINVAL; 2589 } 2590 } 2591 kvm_s390_pv_dmp(struct kvm * kvm,struct kvm_pv_cmd * cmd,struct kvm_s390_pv_dmp dmp)2592 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, 2593 struct kvm_s390_pv_dmp dmp) 2594 { 2595 int r = -EINVAL; 2596 void __user *result_buff = (void __user *)dmp.buff_addr; 2597 2598 switch (dmp.subcmd) { 2599 case KVM_PV_DUMP_INIT: { 2600 if (kvm->arch.pv.dumping) 2601 break; 2602 2603 /* 2604 * Block SIE entry as concurrent dump UVCs could lead 2605 * to validities. 2606 */ 2607 kvm_s390_vcpu_block_all(kvm); 2608 2609 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2610 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); 2611 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", 2612 cmd->rc, cmd->rrc); 2613 if (!r) { 2614 kvm->arch.pv.dumping = true; 2615 } else { 2616 kvm_s390_vcpu_unblock_all(kvm); 2617 r = -EINVAL; 2618 } 2619 break; 2620 } 2621 case KVM_PV_DUMP_CONFIG_STOR_STATE: { 2622 if (!kvm->arch.pv.dumping) 2623 break; 2624 2625 /* 2626 * gaddr is an output parameter since we might stop 2627 * early. As dmp will be copied back in our caller, we 2628 * don't need to do it ourselves. 2629 */ 2630 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, 2631 &cmd->rc, &cmd->rrc); 2632 break; 2633 } 2634 case KVM_PV_DUMP_COMPLETE: { 2635 if (!kvm->arch.pv.dumping) 2636 break; 2637 2638 r = -EINVAL; 2639 if (dmp.buff_len < uv_info.conf_dump_finalize_len) 2640 break; 2641 2642 r = kvm_s390_pv_dump_complete(kvm, result_buff, 2643 &cmd->rc, &cmd->rrc); 2644 break; 2645 } 2646 default: 2647 r = -ENOTTY; 2648 break; 2649 } 2650 2651 return r; 2652 } 2653 kvm_s390_handle_pv(struct kvm * kvm,struct kvm_pv_cmd * cmd)2654 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2655 { 2656 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); 2657 void __user *argp = (void __user *)cmd->data; 2658 int r = 0; 2659 u16 dummy; 2660 2661 if (need_lock) 2662 mutex_lock(&kvm->lock); 2663 2664 switch (cmd->cmd) { 2665 case KVM_PV_ENABLE: { 2666 r = -EINVAL; 2667 if (kvm_s390_pv_is_protected(kvm)) 2668 break; 2669 2670 /* 2671 * FMT 4 SIE needs esca. As we never switch back to bsca from 2672 * esca, we need no cleanup in the error cases below 2673 */ 2674 r = sca_switch_to_extended(kvm); 2675 if (r) 2676 break; 2677 2678 mmap_write_lock(kvm->mm); 2679 r = gmap_helper_disable_cow_sharing(); 2680 mmap_write_unlock(kvm->mm); 2681 if (r) 2682 break; 2683 2684 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2685 if (r) 2686 break; 2687 2688 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2689 if (r) 2690 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2691 2692 /* we need to block service interrupts from now on */ 2693 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2694 break; 2695 } 2696 case KVM_PV_ASYNC_CLEANUP_PREPARE: 2697 r = -EINVAL; 2698 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) 2699 break; 2700 2701 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2702 /* 2703 * If a CPU could not be destroyed, destroy VM will also fail. 2704 * There is no point in trying to destroy it. Instead return 2705 * the rc and rrc from the first CPU that failed destroying. 2706 */ 2707 if (r) 2708 break; 2709 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); 2710 2711 /* no need to block service interrupts any more */ 2712 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2713 break; 2714 case KVM_PV_ASYNC_CLEANUP_PERFORM: 2715 r = -EINVAL; 2716 if (!async_destroy) 2717 break; 2718 /* kvm->lock must not be held; this is asserted inside the function. */ 2719 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); 2720 break; 2721 case KVM_PV_DISABLE: { 2722 r = -EINVAL; 2723 if (!kvm_s390_pv_is_protected(kvm)) 2724 break; 2725 2726 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2727 /* 2728 * If a CPU could not be destroyed, destroy VM will also fail. 2729 * There is no point in trying to destroy it. Instead return 2730 * the rc and rrc from the first CPU that failed destroying. 2731 */ 2732 if (r) 2733 break; 2734 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); 2735 2736 /* no need to block service interrupts any more */ 2737 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2738 break; 2739 } 2740 case KVM_PV_SET_SEC_PARMS: { 2741 struct kvm_s390_pv_sec_parm parms = {}; 2742 void *hdr; 2743 2744 r = -EINVAL; 2745 if (!kvm_s390_pv_is_protected(kvm)) 2746 break; 2747 2748 r = -EFAULT; 2749 if (copy_from_user(&parms, argp, sizeof(parms))) 2750 break; 2751 2752 /* Currently restricted to 8KB */ 2753 r = -EINVAL; 2754 if (parms.length > PAGE_SIZE * 2) 2755 break; 2756 2757 r = -ENOMEM; 2758 hdr = vmalloc(parms.length); 2759 if (!hdr) 2760 break; 2761 2762 r = -EFAULT; 2763 if (!copy_from_user(hdr, (void __user *)parms.origin, 2764 parms.length)) 2765 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2766 &cmd->rc, &cmd->rrc); 2767 2768 vfree(hdr); 2769 break; 2770 } 2771 case KVM_PV_UNPACK: { 2772 struct kvm_s390_pv_unp unp = {}; 2773 2774 r = -EINVAL; 2775 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2776 break; 2777 2778 r = -EFAULT; 2779 if (copy_from_user(&unp, argp, sizeof(unp))) 2780 break; 2781 2782 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2783 &cmd->rc, &cmd->rrc); 2784 break; 2785 } 2786 case KVM_PV_VERIFY: { 2787 r = -EINVAL; 2788 if (!kvm_s390_pv_is_protected(kvm)) 2789 break; 2790 2791 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2792 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2793 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2794 cmd->rrc); 2795 break; 2796 } 2797 case KVM_PV_PREP_RESET: { 2798 r = -EINVAL; 2799 if (!kvm_s390_pv_is_protected(kvm)) 2800 break; 2801 2802 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2803 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2804 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2805 cmd->rc, cmd->rrc); 2806 break; 2807 } 2808 case KVM_PV_UNSHARE_ALL: { 2809 r = -EINVAL; 2810 if (!kvm_s390_pv_is_protected(kvm)) 2811 break; 2812 2813 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2814 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2815 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2816 cmd->rc, cmd->rrc); 2817 break; 2818 } 2819 case KVM_PV_INFO: { 2820 struct kvm_s390_pv_info info = {}; 2821 ssize_t data_len; 2822 2823 /* 2824 * No need to check the VM protection here. 2825 * 2826 * Maybe user space wants to query some of the data 2827 * when the VM is still unprotected. If we see the 2828 * need to fence a new data command we can still 2829 * return an error in the info handler. 2830 */ 2831 2832 r = -EFAULT; 2833 if (copy_from_user(&info, argp, sizeof(info.header))) 2834 break; 2835 2836 r = -EINVAL; 2837 if (info.header.len_max < sizeof(info.header)) 2838 break; 2839 2840 data_len = kvm_s390_handle_pv_info(&info); 2841 if (data_len < 0) { 2842 r = data_len; 2843 break; 2844 } 2845 /* 2846 * If a data command struct is extended (multiple 2847 * times) this can be used to determine how much of it 2848 * is valid. 2849 */ 2850 info.header.len_written = data_len; 2851 2852 r = -EFAULT; 2853 if (copy_to_user(argp, &info, data_len)) 2854 break; 2855 2856 r = 0; 2857 break; 2858 } 2859 case KVM_PV_DUMP: { 2860 struct kvm_s390_pv_dmp dmp; 2861 2862 r = -EINVAL; 2863 if (!kvm_s390_pv_is_protected(kvm)) 2864 break; 2865 2866 r = -EFAULT; 2867 if (copy_from_user(&dmp, argp, sizeof(dmp))) 2868 break; 2869 2870 r = kvm_s390_pv_dmp(kvm, cmd, dmp); 2871 if (r) 2872 break; 2873 2874 if (copy_to_user(argp, &dmp, sizeof(dmp))) { 2875 r = -EFAULT; 2876 break; 2877 } 2878 2879 break; 2880 } 2881 default: 2882 r = -ENOTTY; 2883 } 2884 if (need_lock) 2885 mutex_unlock(&kvm->lock); 2886 2887 return r; 2888 } 2889 mem_op_validate_common(struct kvm_s390_mem_op * mop,u64 supported_flags)2890 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) 2891 { 2892 if (mop->flags & ~supported_flags || !mop->size) 2893 return -EINVAL; 2894 if (mop->size > MEM_OP_MAX_SIZE) 2895 return -E2BIG; 2896 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { 2897 if (mop->key > 0xf) 2898 return -EINVAL; 2899 } else { 2900 mop->key = 0; 2901 } 2902 return 0; 2903 } 2904 kvm_s390_vm_mem_op_abs(struct kvm * kvm,struct kvm_s390_mem_op * mop)2905 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2906 { 2907 void __user *uaddr = (void __user *)mop->buf; 2908 enum gacc_mode acc_mode; 2909 void *tmpbuf = NULL; 2910 int r, srcu_idx; 2911 2912 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | 2913 KVM_S390_MEMOP_F_CHECK_ONLY); 2914 if (r) 2915 return r; 2916 2917 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2918 tmpbuf = vmalloc(mop->size); 2919 if (!tmpbuf) 2920 return -ENOMEM; 2921 } 2922 2923 srcu_idx = srcu_read_lock(&kvm->srcu); 2924 2925 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { 2926 r = PGM_ADDRESSING; 2927 goto out_unlock; 2928 } 2929 2930 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; 2931 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2932 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); 2933 goto out_unlock; 2934 } 2935 if (acc_mode == GACC_FETCH) { 2936 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2937 mop->size, GACC_FETCH, mop->key); 2938 if (r) 2939 goto out_unlock; 2940 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2941 r = -EFAULT; 2942 } else { 2943 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2944 r = -EFAULT; 2945 goto out_unlock; 2946 } 2947 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2948 mop->size, GACC_STORE, mop->key); 2949 } 2950 2951 out_unlock: 2952 srcu_read_unlock(&kvm->srcu, srcu_idx); 2953 2954 vfree(tmpbuf); 2955 return r; 2956 } 2957 kvm_s390_vm_mem_op_cmpxchg(struct kvm * kvm,struct kvm_s390_mem_op * mop)2958 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2959 { 2960 void __user *uaddr = (void __user *)mop->buf; 2961 void __user *old_addr = (void __user *)mop->old_addr; 2962 union { 2963 __uint128_t quad; 2964 char raw[sizeof(__uint128_t)]; 2965 } old = { .quad = 0}, new = { .quad = 0 }; 2966 unsigned int off_in_quad = sizeof(new) - mop->size; 2967 int r, srcu_idx; 2968 bool success; 2969 2970 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); 2971 if (r) 2972 return r; 2973 /* 2974 * This validates off_in_quad. Checking that size is a power 2975 * of two is not necessary, as cmpxchg_guest_abs_with_key 2976 * takes care of that 2977 */ 2978 if (mop->size > sizeof(new)) 2979 return -EINVAL; 2980 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) 2981 return -EFAULT; 2982 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) 2983 return -EFAULT; 2984 2985 srcu_idx = srcu_read_lock(&kvm->srcu); 2986 2987 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { 2988 r = PGM_ADDRESSING; 2989 goto out_unlock; 2990 } 2991 2992 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, 2993 new.quad, mop->key, &success); 2994 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) 2995 r = -EFAULT; 2996 2997 out_unlock: 2998 srcu_read_unlock(&kvm->srcu, srcu_idx); 2999 return r; 3000 } 3001 kvm_s390_vm_mem_op(struct kvm * kvm,struct kvm_s390_mem_op * mop)3002 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) 3003 { 3004 /* 3005 * This is technically a heuristic only, if the kvm->lock is not 3006 * taken, it is not guaranteed that the vm is/remains non-protected. 3007 * This is ok from a kernel perspective, wrongdoing is detected 3008 * on the access, -EFAULT is returned and the vm may crash the 3009 * next time it accesses the memory in question. 3010 * There is no sane usecase to do switching and a memop on two 3011 * different CPUs at the same time. 3012 */ 3013 if (kvm_s390_pv_get_handle(kvm)) 3014 return -EINVAL; 3015 3016 switch (mop->op) { 3017 case KVM_S390_MEMOP_ABSOLUTE_READ: 3018 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 3019 return kvm_s390_vm_mem_op_abs(kvm, mop); 3020 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 3021 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); 3022 default: 3023 return -EINVAL; 3024 } 3025 } 3026 kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3027 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 3028 { 3029 struct kvm *kvm = filp->private_data; 3030 void __user *argp = (void __user *)arg; 3031 struct kvm_device_attr attr; 3032 int r; 3033 3034 switch (ioctl) { 3035 case KVM_S390_INTERRUPT: { 3036 struct kvm_s390_interrupt s390int; 3037 3038 r = -EFAULT; 3039 if (copy_from_user(&s390int, argp, sizeof(s390int))) 3040 break; 3041 r = kvm_s390_inject_vm(kvm, &s390int); 3042 break; 3043 } 3044 case KVM_CREATE_IRQCHIP: { 3045 r = -EINVAL; 3046 if (kvm->arch.use_irqchip) 3047 r = 0; 3048 break; 3049 } 3050 case KVM_SET_DEVICE_ATTR: { 3051 r = -EFAULT; 3052 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3053 break; 3054 r = kvm_s390_vm_set_attr(kvm, &attr); 3055 break; 3056 } 3057 case KVM_GET_DEVICE_ATTR: { 3058 r = -EFAULT; 3059 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3060 break; 3061 r = kvm_s390_vm_get_attr(kvm, &attr); 3062 break; 3063 } 3064 case KVM_HAS_DEVICE_ATTR: { 3065 r = -EFAULT; 3066 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3067 break; 3068 r = kvm_s390_vm_has_attr(kvm, &attr); 3069 break; 3070 } 3071 case KVM_S390_GET_SKEYS: { 3072 struct kvm_s390_skeys args; 3073 3074 r = -EFAULT; 3075 if (copy_from_user(&args, argp, 3076 sizeof(struct kvm_s390_skeys))) 3077 break; 3078 r = kvm_s390_get_skeys(kvm, &args); 3079 break; 3080 } 3081 case KVM_S390_SET_SKEYS: { 3082 struct kvm_s390_skeys args; 3083 3084 r = -EFAULT; 3085 if (copy_from_user(&args, argp, 3086 sizeof(struct kvm_s390_skeys))) 3087 break; 3088 r = kvm_s390_set_skeys(kvm, &args); 3089 break; 3090 } 3091 case KVM_S390_GET_CMMA_BITS: { 3092 struct kvm_s390_cmma_log args; 3093 3094 r = -EFAULT; 3095 if (copy_from_user(&args, argp, sizeof(args))) 3096 break; 3097 mutex_lock(&kvm->slots_lock); 3098 r = kvm_s390_get_cmma_bits(kvm, &args); 3099 mutex_unlock(&kvm->slots_lock); 3100 if (!r) { 3101 r = copy_to_user(argp, &args, sizeof(args)); 3102 if (r) 3103 r = -EFAULT; 3104 } 3105 break; 3106 } 3107 case KVM_S390_SET_CMMA_BITS: { 3108 struct kvm_s390_cmma_log args; 3109 3110 r = -EFAULT; 3111 if (copy_from_user(&args, argp, sizeof(args))) 3112 break; 3113 mutex_lock(&kvm->slots_lock); 3114 r = kvm_s390_set_cmma_bits(kvm, &args); 3115 mutex_unlock(&kvm->slots_lock); 3116 break; 3117 } 3118 case KVM_S390_PV_COMMAND: { 3119 struct kvm_pv_cmd args; 3120 3121 /* protvirt means user cpu state */ 3122 kvm_s390_set_user_cpu_state_ctrl(kvm); 3123 r = 0; 3124 if (!is_prot_virt_host()) { 3125 r = -EINVAL; 3126 break; 3127 } 3128 if (copy_from_user(&args, argp, sizeof(args))) { 3129 r = -EFAULT; 3130 break; 3131 } 3132 if (args.flags) { 3133 r = -EINVAL; 3134 break; 3135 } 3136 /* must be called without kvm->lock */ 3137 r = kvm_s390_handle_pv(kvm, &args); 3138 if (copy_to_user(argp, &args, sizeof(args))) { 3139 r = -EFAULT; 3140 break; 3141 } 3142 break; 3143 } 3144 case KVM_S390_MEM_OP: { 3145 struct kvm_s390_mem_op mem_op; 3146 3147 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3148 r = kvm_s390_vm_mem_op(kvm, &mem_op); 3149 else 3150 r = -EFAULT; 3151 break; 3152 } 3153 case KVM_S390_ZPCI_OP: { 3154 struct kvm_s390_zpci_op args; 3155 3156 r = -EINVAL; 3157 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3158 break; 3159 if (copy_from_user(&args, argp, sizeof(args))) { 3160 r = -EFAULT; 3161 break; 3162 } 3163 r = kvm_s390_pci_zpci_op(kvm, &args); 3164 break; 3165 } 3166 default: 3167 r = -ENOTTY; 3168 } 3169 3170 return r; 3171 } 3172 kvm_s390_apxa_installed(void)3173 static int kvm_s390_apxa_installed(void) 3174 { 3175 struct ap_config_info info; 3176 3177 if (ap_instructions_available()) { 3178 if (ap_qci(&info) == 0) 3179 return info.apxa; 3180 } 3181 3182 return 0; 3183 } 3184 3185 /* 3186 * The format of the crypto control block (CRYCB) is specified in the 3 low 3187 * order bits of the CRYCB designation (CRYCBD) field as follows: 3188 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 3189 * AP extended addressing (APXA) facility are installed. 3190 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 3191 * Format 2: Both the APXA and MSAX3 facilities are installed 3192 */ kvm_s390_set_crycb_format(struct kvm * kvm)3193 static void kvm_s390_set_crycb_format(struct kvm *kvm) 3194 { 3195 kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb); 3196 3197 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 3198 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 3199 3200 /* Check whether MSAX3 is installed */ 3201 if (!test_kvm_facility(kvm, 76)) 3202 return; 3203 3204 if (kvm_s390_apxa_installed()) 3205 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 3206 else 3207 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 3208 } 3209 3210 /* 3211 * kvm_arch_crypto_set_masks 3212 * 3213 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3214 * to be set. 3215 * @apm: the mask identifying the accessible AP adapters 3216 * @aqm: the mask identifying the accessible AP domains 3217 * @adm: the mask identifying the accessible AP control domains 3218 * 3219 * Set the masks that identify the adapters, domains and control domains to 3220 * which the KVM guest is granted access. 3221 * 3222 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3223 * function. 3224 */ kvm_arch_crypto_set_masks(struct kvm * kvm,unsigned long * apm,unsigned long * aqm,unsigned long * adm)3225 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 3226 unsigned long *aqm, unsigned long *adm) 3227 { 3228 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 3229 3230 kvm_s390_vcpu_block_all(kvm); 3231 3232 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 3233 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 3234 memcpy(crycb->apcb1.apm, apm, 32); 3235 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 3236 apm[0], apm[1], apm[2], apm[3]); 3237 memcpy(crycb->apcb1.aqm, aqm, 32); 3238 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 3239 aqm[0], aqm[1], aqm[2], aqm[3]); 3240 memcpy(crycb->apcb1.adm, adm, 32); 3241 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 3242 adm[0], adm[1], adm[2], adm[3]); 3243 break; 3244 case CRYCB_FORMAT1: 3245 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 3246 memcpy(crycb->apcb0.apm, apm, 8); 3247 memcpy(crycb->apcb0.aqm, aqm, 2); 3248 memcpy(crycb->apcb0.adm, adm, 2); 3249 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 3250 apm[0], *((unsigned short *)aqm), 3251 *((unsigned short *)adm)); 3252 break; 3253 default: /* Can not happen */ 3254 break; 3255 } 3256 3257 /* recreate the shadow crycb for each vcpu */ 3258 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3259 kvm_s390_vcpu_unblock_all(kvm); 3260 } 3261 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 3262 3263 /* 3264 * kvm_arch_crypto_clear_masks 3265 * 3266 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3267 * to be cleared. 3268 * 3269 * Clear the masks that identify the adapters, domains and control domains to 3270 * which the KVM guest is granted access. 3271 * 3272 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3273 * function. 3274 */ kvm_arch_crypto_clear_masks(struct kvm * kvm)3275 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 3276 { 3277 kvm_s390_vcpu_block_all(kvm); 3278 3279 memset(&kvm->arch.crypto.crycb->apcb0, 0, 3280 sizeof(kvm->arch.crypto.crycb->apcb0)); 3281 memset(&kvm->arch.crypto.crycb->apcb1, 0, 3282 sizeof(kvm->arch.crypto.crycb->apcb1)); 3283 3284 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 3285 /* recreate the shadow crycb for each vcpu */ 3286 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3287 kvm_s390_vcpu_unblock_all(kvm); 3288 } 3289 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 3290 kvm_s390_get_initial_cpuid(void)3291 static u64 kvm_s390_get_initial_cpuid(void) 3292 { 3293 struct cpuid cpuid; 3294 3295 get_cpu_id(&cpuid); 3296 cpuid.version = 0xff; 3297 return *((u64 *) &cpuid); 3298 } 3299 kvm_s390_crypto_init(struct kvm * kvm)3300 static void kvm_s390_crypto_init(struct kvm *kvm) 3301 { 3302 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 3303 kvm_s390_set_crycb_format(kvm); 3304 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); 3305 3306 if (!test_kvm_facility(kvm, 76)) 3307 return; 3308 3309 /* Enable AES/DEA protected key functions by default */ 3310 kvm->arch.crypto.aes_kw = 1; 3311 kvm->arch.crypto.dea_kw = 1; 3312 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 3313 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 3314 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 3315 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 3316 } 3317 sca_dispose(struct kvm * kvm)3318 static void sca_dispose(struct kvm *kvm) 3319 { 3320 if (kvm->arch.use_esca) 3321 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 3322 else 3323 free_page((unsigned long)(kvm->arch.sca)); 3324 kvm->arch.sca = NULL; 3325 } 3326 kvm_arch_free_vm(struct kvm * kvm)3327 void kvm_arch_free_vm(struct kvm *kvm) 3328 { 3329 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3330 kvm_s390_pci_clear_list(kvm); 3331 3332 __kvm_arch_free_vm(kvm); 3333 } 3334 kvm_arch_init_vm(struct kvm * kvm,unsigned long type)3335 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 3336 { 3337 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 3338 int i, rc; 3339 char debug_name[16]; 3340 static unsigned long sca_offset; 3341 3342 rc = -EINVAL; 3343 #ifdef CONFIG_KVM_S390_UCONTROL 3344 if (type & ~KVM_VM_S390_UCONTROL) 3345 goto out_err; 3346 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 3347 goto out_err; 3348 #else 3349 if (type) 3350 goto out_err; 3351 #endif 3352 3353 rc = s390_enable_sie(); 3354 if (rc) 3355 goto out_err; 3356 3357 rc = -ENOMEM; 3358 3359 if (!sclp.has_64bscao) 3360 alloc_flags |= GFP_DMA; 3361 rwlock_init(&kvm->arch.sca_lock); 3362 /* start with basic SCA */ 3363 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 3364 if (!kvm->arch.sca) 3365 goto out_err; 3366 mutex_lock(&kvm_lock); 3367 sca_offset += 16; 3368 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 3369 sca_offset = 0; 3370 kvm->arch.sca = (struct bsca_block *) 3371 ((char *) kvm->arch.sca + sca_offset); 3372 mutex_unlock(&kvm_lock); 3373 3374 sprintf(debug_name, "kvm-%u", current->pid); 3375 3376 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 3377 if (!kvm->arch.dbf) 3378 goto out_err; 3379 3380 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 3381 kvm->arch.sie_page2 = 3382 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3383 if (!kvm->arch.sie_page2) 3384 goto out_err; 3385 3386 kvm->arch.sie_page2->kvm = kvm; 3387 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 3388 3389 for (i = 0; i < kvm_s390_fac_size(); i++) { 3390 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 3391 (kvm_s390_fac_base[i] | 3392 kvm_s390_fac_ext[i]); 3393 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 3394 kvm_s390_fac_base[i]; 3395 } 3396 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 3397 3398 /* we are always in czam mode - even on pre z14 machines */ 3399 set_kvm_facility(kvm->arch.model.fac_mask, 138); 3400 set_kvm_facility(kvm->arch.model.fac_list, 138); 3401 /* we emulate STHYI in kvm */ 3402 set_kvm_facility(kvm->arch.model.fac_mask, 74); 3403 set_kvm_facility(kvm->arch.model.fac_list, 74); 3404 if (machine_has_tlb_guest()) { 3405 set_kvm_facility(kvm->arch.model.fac_mask, 147); 3406 set_kvm_facility(kvm->arch.model.fac_list, 147); 3407 } 3408 3409 if (css_general_characteristics.aiv && test_facility(65)) 3410 set_kvm_facility(kvm->arch.model.fac_mask, 65); 3411 3412 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 3413 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 3414 3415 kvm->arch.model.uv_feat_guest.feat = 0; 3416 3417 kvm_s390_crypto_init(kvm); 3418 3419 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3420 mutex_lock(&kvm->lock); 3421 kvm_s390_pci_init_list(kvm); 3422 kvm_s390_vcpu_pci_enable_interp(kvm); 3423 mutex_unlock(&kvm->lock); 3424 } 3425 3426 mutex_init(&kvm->arch.float_int.ais_lock); 3427 spin_lock_init(&kvm->arch.float_int.lock); 3428 for (i = 0; i < FIRQ_LIST_COUNT; i++) 3429 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 3430 init_waitqueue_head(&kvm->arch.ipte_wq); 3431 mutex_init(&kvm->arch.ipte_mutex); 3432 3433 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 3434 VM_EVENT(kvm, 3, "vm created with type %lu", type); 3435 3436 if (type & KVM_VM_S390_UCONTROL) { 3437 struct kvm_userspace_memory_region2 fake_memslot = { 3438 .slot = KVM_S390_UCONTROL_MEMSLOT, 3439 .guest_phys_addr = 0, 3440 .userspace_addr = 0, 3441 .memory_size = ALIGN_DOWN(TASK_SIZE, _SEGMENT_SIZE), 3442 .flags = 0, 3443 }; 3444 3445 kvm->arch.gmap = NULL; 3446 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 3447 /* one flat fake memslot covering the whole address-space */ 3448 mutex_lock(&kvm->slots_lock); 3449 KVM_BUG_ON(kvm_set_internal_memslot(kvm, &fake_memslot), kvm); 3450 mutex_unlock(&kvm->slots_lock); 3451 } else { 3452 if (sclp.hamax == U64_MAX) 3453 kvm->arch.mem_limit = TASK_SIZE_MAX; 3454 else 3455 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 3456 sclp.hamax + 1); 3457 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 3458 if (!kvm->arch.gmap) 3459 goto out_err; 3460 kvm->arch.gmap->private = kvm; 3461 kvm->arch.gmap->pfault_enabled = 0; 3462 } 3463 3464 kvm->arch.use_pfmfi = sclp.has_pfmfi; 3465 kvm->arch.use_skf = sclp.has_skey; 3466 spin_lock_init(&kvm->arch.start_stop_lock); 3467 kvm_s390_vsie_init(kvm); 3468 if (use_gisa) 3469 kvm_s390_gisa_init(kvm); 3470 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); 3471 kvm->arch.pv.set_aside = NULL; 3472 KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid); 3473 3474 return 0; 3475 out_err: 3476 free_page((unsigned long)kvm->arch.sie_page2); 3477 debug_unregister(kvm->arch.dbf); 3478 sca_dispose(kvm); 3479 KVM_EVENT(3, "creation of vm failed: %d", rc); 3480 return rc; 3481 } 3482 kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)3483 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 3484 { 3485 u16 rc, rrc; 3486 3487 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 3488 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 3489 kvm_s390_clear_local_irqs(vcpu); 3490 kvm_clear_async_pf_completion_queue(vcpu); 3491 if (!kvm_is_ucontrol(vcpu->kvm)) 3492 sca_del_vcpu(vcpu); 3493 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3494 3495 if (kvm_is_ucontrol(vcpu->kvm)) 3496 gmap_remove(vcpu->arch.gmap); 3497 3498 if (vcpu->kvm->arch.use_cmma) 3499 kvm_s390_vcpu_unsetup_cmma(vcpu); 3500 /* We can not hold the vcpu mutex here, we are already dying */ 3501 if (kvm_s390_pv_cpu_get_handle(vcpu)) 3502 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 3503 free_page((unsigned long)(vcpu->arch.sie_block)); 3504 } 3505 kvm_arch_destroy_vm(struct kvm * kvm)3506 void kvm_arch_destroy_vm(struct kvm *kvm) 3507 { 3508 u16 rc, rrc; 3509 3510 kvm_destroy_vcpus(kvm); 3511 sca_dispose(kvm); 3512 kvm_s390_gisa_destroy(kvm); 3513 /* 3514 * We are already at the end of life and kvm->lock is not taken. 3515 * This is ok as the file descriptor is closed by now and nobody 3516 * can mess with the pv state. 3517 */ 3518 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); 3519 /* 3520 * Remove the mmu notifier only when the whole KVM VM is torn down, 3521 * and only if one was registered to begin with. If the VM is 3522 * currently not protected, but has been previously been protected, 3523 * then it's possible that the notifier is still registered. 3524 */ 3525 if (kvm->arch.pv.mmu_notifier.ops) 3526 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); 3527 3528 debug_unregister(kvm->arch.dbf); 3529 free_page((unsigned long)kvm->arch.sie_page2); 3530 if (!kvm_is_ucontrol(kvm)) 3531 gmap_remove(kvm->arch.gmap); 3532 kvm_s390_destroy_adapters(kvm); 3533 kvm_s390_clear_float_irqs(kvm); 3534 kvm_s390_vsie_destroy(kvm); 3535 KVM_EVENT(3, "vm 0x%p destroyed", kvm); 3536 } 3537 3538 /* Section: vcpu related */ __kvm_ucontrol_vcpu_init(struct kvm_vcpu * vcpu)3539 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 3540 { 3541 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 3542 if (!vcpu->arch.gmap) 3543 return -ENOMEM; 3544 vcpu->arch.gmap->private = vcpu->kvm; 3545 3546 return 0; 3547 } 3548 sca_del_vcpu(struct kvm_vcpu * vcpu)3549 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 3550 { 3551 if (!kvm_s390_use_sca_entries()) 3552 return; 3553 read_lock(&vcpu->kvm->arch.sca_lock); 3554 if (vcpu->kvm->arch.use_esca) { 3555 struct esca_block *sca = vcpu->kvm->arch.sca; 3556 3557 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3558 sca->cpu[vcpu->vcpu_id].sda = 0; 3559 } else { 3560 struct bsca_block *sca = vcpu->kvm->arch.sca; 3561 3562 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3563 sca->cpu[vcpu->vcpu_id].sda = 0; 3564 } 3565 read_unlock(&vcpu->kvm->arch.sca_lock); 3566 } 3567 sca_add_vcpu(struct kvm_vcpu * vcpu)3568 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 3569 { 3570 if (!kvm_s390_use_sca_entries()) { 3571 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); 3572 3573 /* we still need the basic sca for the ipte control */ 3574 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3575 vcpu->arch.sie_block->scaol = sca_phys; 3576 return; 3577 } 3578 read_lock(&vcpu->kvm->arch.sca_lock); 3579 if (vcpu->kvm->arch.use_esca) { 3580 struct esca_block *sca = vcpu->kvm->arch.sca; 3581 phys_addr_t sca_phys = virt_to_phys(sca); 3582 3583 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3584 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3585 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; 3586 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3587 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3588 } else { 3589 struct bsca_block *sca = vcpu->kvm->arch.sca; 3590 phys_addr_t sca_phys = virt_to_phys(sca); 3591 3592 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3593 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3594 vcpu->arch.sie_block->scaol = sca_phys; 3595 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3596 } 3597 read_unlock(&vcpu->kvm->arch.sca_lock); 3598 } 3599 3600 /* Basic SCA to Extended SCA data copy routines */ sca_copy_entry(struct esca_entry * d,struct bsca_entry * s)3601 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 3602 { 3603 d->sda = s->sda; 3604 d->sigp_ctrl.c = s->sigp_ctrl.c; 3605 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 3606 } 3607 sca_copy_b_to_e(struct esca_block * d,struct bsca_block * s)3608 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 3609 { 3610 int i; 3611 3612 d->ipte_control = s->ipte_control; 3613 d->mcn[0] = s->mcn; 3614 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 3615 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 3616 } 3617 sca_switch_to_extended(struct kvm * kvm)3618 static int sca_switch_to_extended(struct kvm *kvm) 3619 { 3620 struct bsca_block *old_sca = kvm->arch.sca; 3621 struct esca_block *new_sca; 3622 struct kvm_vcpu *vcpu; 3623 unsigned long vcpu_idx; 3624 u32 scaol, scaoh; 3625 phys_addr_t new_sca_phys; 3626 3627 if (kvm->arch.use_esca) 3628 return 0; 3629 3630 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3631 if (!new_sca) 3632 return -ENOMEM; 3633 3634 new_sca_phys = virt_to_phys(new_sca); 3635 scaoh = new_sca_phys >> 32; 3636 scaol = new_sca_phys & ESCA_SCAOL_MASK; 3637 3638 kvm_s390_vcpu_block_all(kvm); 3639 write_lock(&kvm->arch.sca_lock); 3640 3641 sca_copy_b_to_e(new_sca, old_sca); 3642 3643 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 3644 vcpu->arch.sie_block->scaoh = scaoh; 3645 vcpu->arch.sie_block->scaol = scaol; 3646 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3647 } 3648 kvm->arch.sca = new_sca; 3649 kvm->arch.use_esca = 1; 3650 3651 write_unlock(&kvm->arch.sca_lock); 3652 kvm_s390_vcpu_unblock_all(kvm); 3653 3654 free_page((unsigned long)old_sca); 3655 3656 VM_EVENT(kvm, 2, "Switched to ESCA (0x%p -> 0x%p)", 3657 old_sca, kvm->arch.sca); 3658 return 0; 3659 } 3660 sca_can_add_vcpu(struct kvm * kvm,unsigned int id)3661 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 3662 { 3663 int rc; 3664 3665 if (!kvm_s390_use_sca_entries()) { 3666 if (id < KVM_MAX_VCPUS) 3667 return true; 3668 return false; 3669 } 3670 if (id < KVM_S390_BSCA_CPU_SLOTS) 3671 return true; 3672 if (!sclp.has_esca || !sclp.has_64bscao) 3673 return false; 3674 3675 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 3676 3677 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 3678 } 3679 3680 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ __start_cpu_timer_accounting(struct kvm_vcpu * vcpu)3681 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3682 { 3683 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 3684 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3685 vcpu->arch.cputm_start = get_tod_clock_fast(); 3686 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3687 } 3688 3689 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ __stop_cpu_timer_accounting(struct kvm_vcpu * vcpu)3690 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3691 { 3692 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 3693 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3694 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3695 vcpu->arch.cputm_start = 0; 3696 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3697 } 3698 3699 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ __enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3700 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3701 { 3702 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3703 vcpu->arch.cputm_enabled = true; 3704 __start_cpu_timer_accounting(vcpu); 3705 } 3706 3707 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ __disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3708 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3709 { 3710 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3711 __stop_cpu_timer_accounting(vcpu); 3712 vcpu->arch.cputm_enabled = false; 3713 } 3714 enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3715 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3716 { 3717 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3718 __enable_cpu_timer_accounting(vcpu); 3719 preempt_enable(); 3720 } 3721 disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3722 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3723 { 3724 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3725 __disable_cpu_timer_accounting(vcpu); 3726 preempt_enable(); 3727 } 3728 3729 /* set the cpu timer - may only be called from the VCPU thread itself */ kvm_s390_set_cpu_timer(struct kvm_vcpu * vcpu,__u64 cputm)3730 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3731 { 3732 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3733 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3734 if (vcpu->arch.cputm_enabled) 3735 vcpu->arch.cputm_start = get_tod_clock_fast(); 3736 vcpu->arch.sie_block->cputm = cputm; 3737 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3738 preempt_enable(); 3739 } 3740 3741 /* update and get the cpu timer - can also be called from other VCPU threads */ kvm_s390_get_cpu_timer(struct kvm_vcpu * vcpu)3742 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3743 { 3744 unsigned int seq; 3745 __u64 value; 3746 3747 if (unlikely(!vcpu->arch.cputm_enabled)) 3748 return vcpu->arch.sie_block->cputm; 3749 3750 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3751 do { 3752 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3753 /* 3754 * If the writer would ever execute a read in the critical 3755 * section, e.g. in irq context, we have a deadlock. 3756 */ 3757 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3758 value = vcpu->arch.sie_block->cputm; 3759 /* if cputm_start is 0, accounting is being started/stopped */ 3760 if (likely(vcpu->arch.cputm_start)) 3761 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3762 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3763 preempt_enable(); 3764 return value; 3765 } 3766 kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3767 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3768 { 3769 3770 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3771 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3772 __start_cpu_timer_accounting(vcpu); 3773 vcpu->cpu = cpu; 3774 } 3775 kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3776 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3777 { 3778 vcpu->cpu = -1; 3779 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3780 __stop_cpu_timer_accounting(vcpu); 3781 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3782 3783 } 3784 kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)3785 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3786 { 3787 mutex_lock(&vcpu->kvm->lock); 3788 preempt_disable(); 3789 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3790 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3791 preempt_enable(); 3792 mutex_unlock(&vcpu->kvm->lock); 3793 if (!kvm_is_ucontrol(vcpu->kvm)) { 3794 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3795 sca_add_vcpu(vcpu); 3796 } 3797 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3798 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3799 } 3800 kvm_has_pckmo_subfunc(struct kvm * kvm,unsigned long nr)3801 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3802 { 3803 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3804 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3805 return true; 3806 return false; 3807 } 3808 kvm_has_pckmo_ecc(struct kvm * kvm)3809 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3810 { 3811 /* At least one ECC subfunction must be present */ 3812 return kvm_has_pckmo_subfunc(kvm, 32) || 3813 kvm_has_pckmo_subfunc(kvm, 33) || 3814 kvm_has_pckmo_subfunc(kvm, 34) || 3815 kvm_has_pckmo_subfunc(kvm, 40) || 3816 kvm_has_pckmo_subfunc(kvm, 41); 3817 3818 } 3819 kvm_has_pckmo_hmac(struct kvm * kvm)3820 static bool kvm_has_pckmo_hmac(struct kvm *kvm) 3821 { 3822 /* At least one HMAC subfunction must be present */ 3823 return kvm_has_pckmo_subfunc(kvm, 118) || 3824 kvm_has_pckmo_subfunc(kvm, 122); 3825 } 3826 kvm_s390_vcpu_crypto_setup(struct kvm_vcpu * vcpu)3827 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3828 { 3829 /* 3830 * If the AP instructions are not being interpreted and the MSAX3 3831 * facility is not configured for the guest, there is nothing to set up. 3832 */ 3833 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3834 return; 3835 3836 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3837 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3838 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3839 vcpu->arch.sie_block->ecd &= ~(ECD_ECC | ECD_HMAC); 3840 3841 if (vcpu->kvm->arch.crypto.apie) 3842 vcpu->arch.sie_block->eca |= ECA_APIE; 3843 3844 /* Set up protected key support */ 3845 if (vcpu->kvm->arch.crypto.aes_kw) { 3846 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3847 /* ecc/hmac is also wrapped with AES key */ 3848 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3849 vcpu->arch.sie_block->ecd |= ECD_ECC; 3850 if (kvm_has_pckmo_hmac(vcpu->kvm)) 3851 vcpu->arch.sie_block->ecd |= ECD_HMAC; 3852 } 3853 3854 if (vcpu->kvm->arch.crypto.dea_kw) 3855 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3856 } 3857 kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu * vcpu)3858 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3859 { 3860 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); 3861 vcpu->arch.sie_block->cbrlo = 0; 3862 } 3863 kvm_s390_vcpu_setup_cmma(struct kvm_vcpu * vcpu)3864 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3865 { 3866 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3867 3868 if (!cbrlo_page) 3869 return -ENOMEM; 3870 3871 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); 3872 return 0; 3873 } 3874 kvm_s390_vcpu_setup_model(struct kvm_vcpu * vcpu)3875 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3876 { 3877 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3878 3879 vcpu->arch.sie_block->ibc = model->ibc; 3880 if (test_kvm_facility(vcpu->kvm, 7)) 3881 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); 3882 } 3883 kvm_s390_vcpu_setup(struct kvm_vcpu * vcpu)3884 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3885 { 3886 int rc = 0; 3887 u16 uvrc, uvrrc; 3888 3889 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3890 CPUSTAT_SM | 3891 CPUSTAT_STOPPED); 3892 3893 if (test_kvm_facility(vcpu->kvm, 78)) 3894 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3895 else if (test_kvm_facility(vcpu->kvm, 8)) 3896 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3897 3898 kvm_s390_vcpu_setup_model(vcpu); 3899 3900 /* pgste_set_pte has special handling for !machine_has_esop() */ 3901 if (machine_has_esop()) 3902 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3903 if (test_kvm_facility(vcpu->kvm, 9)) 3904 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3905 if (test_kvm_facility(vcpu->kvm, 11)) 3906 vcpu->arch.sie_block->ecb |= ECB_PTF; 3907 if (test_kvm_facility(vcpu->kvm, 73)) 3908 vcpu->arch.sie_block->ecb |= ECB_TE; 3909 if (!kvm_is_ucontrol(vcpu->kvm)) 3910 vcpu->arch.sie_block->ecb |= ECB_SPECI; 3911 3912 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3913 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3914 if (test_kvm_facility(vcpu->kvm, 130)) 3915 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3916 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3917 if (sclp.has_cei) 3918 vcpu->arch.sie_block->eca |= ECA_CEI; 3919 if (sclp.has_ib) 3920 vcpu->arch.sie_block->eca |= ECA_IB; 3921 if (sclp.has_siif) 3922 vcpu->arch.sie_block->eca |= ECA_SII; 3923 if (sclp.has_sigpif) 3924 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3925 if (test_kvm_facility(vcpu->kvm, 129)) { 3926 vcpu->arch.sie_block->eca |= ECA_VX; 3927 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3928 } 3929 if (test_kvm_facility(vcpu->kvm, 139)) 3930 vcpu->arch.sie_block->ecd |= ECD_MEF; 3931 if (test_kvm_facility(vcpu->kvm, 156)) 3932 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3933 if (vcpu->arch.sie_block->gd) { 3934 vcpu->arch.sie_block->eca |= ECA_AIV; 3935 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3936 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3937 } 3938 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; 3939 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); 3940 3941 if (sclp.has_kss) 3942 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3943 else 3944 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3945 3946 if (vcpu->kvm->arch.use_cmma) { 3947 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3948 if (rc) 3949 return rc; 3950 } 3951 hrtimer_setup(&vcpu->arch.ckc_timer, kvm_s390_idle_wakeup, CLOCK_MONOTONIC, 3952 HRTIMER_MODE_REL); 3953 3954 vcpu->arch.sie_block->hpid = HPID_KVM; 3955 3956 kvm_s390_vcpu_crypto_setup(vcpu); 3957 3958 kvm_s390_vcpu_pci_setup(vcpu); 3959 3960 mutex_lock(&vcpu->kvm->lock); 3961 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3962 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3963 if (rc) 3964 kvm_s390_vcpu_unsetup_cmma(vcpu); 3965 } 3966 mutex_unlock(&vcpu->kvm->lock); 3967 3968 return rc; 3969 } 3970 kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)3971 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3972 { 3973 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3974 return -EINVAL; 3975 return 0; 3976 } 3977 kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)3978 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3979 { 3980 struct sie_page *sie_page; 3981 int rc; 3982 3983 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3984 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3985 if (!sie_page) 3986 return -ENOMEM; 3987 3988 vcpu->arch.sie_block = &sie_page->sie_block; 3989 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); 3990 3991 /* the real guest size will always be smaller than msl */ 3992 vcpu->arch.sie_block->mso = 0; 3993 vcpu->arch.sie_block->msl = sclp.hamax; 3994 3995 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3996 spin_lock_init(&vcpu->arch.local_int.lock); 3997 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); 3998 seqcount_init(&vcpu->arch.cputm_seqcount); 3999 4000 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4001 kvm_clear_async_pf_completion_queue(vcpu); 4002 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 4003 KVM_SYNC_GPRS | 4004 KVM_SYNC_ACRS | 4005 KVM_SYNC_CRS | 4006 KVM_SYNC_ARCH0 | 4007 KVM_SYNC_PFAULT | 4008 KVM_SYNC_DIAG318; 4009 vcpu->arch.acrs_loaded = false; 4010 kvm_s390_set_prefix(vcpu, 0); 4011 if (test_kvm_facility(vcpu->kvm, 64)) 4012 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 4013 if (test_kvm_facility(vcpu->kvm, 82)) 4014 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 4015 if (test_kvm_facility(vcpu->kvm, 133)) 4016 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 4017 if (test_kvm_facility(vcpu->kvm, 156)) 4018 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 4019 /* fprs can be synchronized via vrs, even if the guest has no vx. With 4020 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format. 4021 */ 4022 if (cpu_has_vx()) 4023 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 4024 else 4025 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 4026 4027 if (kvm_is_ucontrol(vcpu->kvm)) { 4028 rc = __kvm_ucontrol_vcpu_init(vcpu); 4029 if (rc) 4030 goto out_free_sie_block; 4031 } 4032 4033 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%p, sie block at 0x%p", 4034 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 4035 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 4036 4037 rc = kvm_s390_vcpu_setup(vcpu); 4038 if (rc) 4039 goto out_ucontrol_uninit; 4040 4041 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 4042 return 0; 4043 4044 out_ucontrol_uninit: 4045 if (kvm_is_ucontrol(vcpu->kvm)) 4046 gmap_remove(vcpu->arch.gmap); 4047 out_free_sie_block: 4048 free_page((unsigned long)(vcpu->arch.sie_block)); 4049 return rc; 4050 } 4051 kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)4052 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 4053 { 4054 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4055 return kvm_s390_vcpu_has_irq(vcpu, 0); 4056 } 4057 kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)4058 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 4059 { 4060 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 4061 } 4062 kvm_s390_vcpu_block(struct kvm_vcpu * vcpu)4063 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 4064 { 4065 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4066 exit_sie(vcpu); 4067 } 4068 kvm_s390_vcpu_unblock(struct kvm_vcpu * vcpu)4069 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 4070 { 4071 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4072 } 4073 kvm_s390_vcpu_request(struct kvm_vcpu * vcpu)4074 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 4075 { 4076 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4077 exit_sie(vcpu); 4078 } 4079 kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu * vcpu)4080 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 4081 { 4082 return atomic_read(&vcpu->arch.sie_block->prog20) & 4083 (PROG_BLOCK_SIE | PROG_REQUEST); 4084 } 4085 kvm_s390_vcpu_request_handled(struct kvm_vcpu * vcpu)4086 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 4087 { 4088 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4089 } 4090 4091 /* 4092 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 4093 * If the CPU is not running (e.g. waiting as idle) the function will 4094 * return immediately. */ exit_sie(struct kvm_vcpu * vcpu)4095 void exit_sie(struct kvm_vcpu *vcpu) 4096 { 4097 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 4098 kvm_s390_vsie_kick(vcpu); 4099 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 4100 cpu_relax(); 4101 } 4102 4103 /* Kick a guest cpu out of SIE to process a request synchronously */ kvm_s390_sync_request(int req,struct kvm_vcpu * vcpu)4104 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 4105 { 4106 __kvm_make_request(req, vcpu); 4107 kvm_s390_vcpu_request(vcpu); 4108 } 4109 kvm_gmap_notifier(struct gmap * gmap,unsigned long start,unsigned long end)4110 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 4111 unsigned long end) 4112 { 4113 struct kvm *kvm = gmap->private; 4114 struct kvm_vcpu *vcpu; 4115 unsigned long prefix; 4116 unsigned long i; 4117 4118 trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap)); 4119 4120 if (gmap_is_shadow(gmap)) 4121 return; 4122 if (start >= 1UL << 31) 4123 /* We are only interested in prefix pages */ 4124 return; 4125 kvm_for_each_vcpu(i, vcpu, kvm) { 4126 /* match against both prefix pages */ 4127 prefix = kvm_s390_get_prefix(vcpu); 4128 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 4129 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 4130 start, end); 4131 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4132 } 4133 } 4134 } 4135 kvm_arch_no_poll(struct kvm_vcpu * vcpu)4136 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 4137 { 4138 /* do not poll with more than halt_poll_max_steal percent of steal time */ 4139 if (get_lowcore()->avg_steal_timer * 100 / (TICK_USEC << 12) >= 4140 READ_ONCE(halt_poll_max_steal)) { 4141 vcpu->stat.halt_no_poll_steal++; 4142 return true; 4143 } 4144 return false; 4145 } 4146 kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)4147 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 4148 { 4149 /* kvm common code refers to this, but never calls it */ 4150 BUG(); 4151 return 0; 4152 } 4153 kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4154 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 4155 struct kvm_one_reg *reg) 4156 { 4157 int r = -EINVAL; 4158 4159 switch (reg->id) { 4160 case KVM_REG_S390_TODPR: 4161 r = put_user(vcpu->arch.sie_block->todpr, 4162 (u32 __user *)reg->addr); 4163 break; 4164 case KVM_REG_S390_EPOCHDIFF: 4165 r = put_user(vcpu->arch.sie_block->epoch, 4166 (u64 __user *)reg->addr); 4167 break; 4168 case KVM_REG_S390_CPU_TIMER: 4169 r = put_user(kvm_s390_get_cpu_timer(vcpu), 4170 (u64 __user *)reg->addr); 4171 break; 4172 case KVM_REG_S390_CLOCK_COMP: 4173 r = put_user(vcpu->arch.sie_block->ckc, 4174 (u64 __user *)reg->addr); 4175 break; 4176 case KVM_REG_S390_PFTOKEN: 4177 r = put_user(vcpu->arch.pfault_token, 4178 (u64 __user *)reg->addr); 4179 break; 4180 case KVM_REG_S390_PFCOMPARE: 4181 r = put_user(vcpu->arch.pfault_compare, 4182 (u64 __user *)reg->addr); 4183 break; 4184 case KVM_REG_S390_PFSELECT: 4185 r = put_user(vcpu->arch.pfault_select, 4186 (u64 __user *)reg->addr); 4187 break; 4188 case KVM_REG_S390_PP: 4189 r = put_user(vcpu->arch.sie_block->pp, 4190 (u64 __user *)reg->addr); 4191 break; 4192 case KVM_REG_S390_GBEA: 4193 r = put_user(vcpu->arch.sie_block->gbea, 4194 (u64 __user *)reg->addr); 4195 break; 4196 default: 4197 break; 4198 } 4199 4200 return r; 4201 } 4202 kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4203 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 4204 struct kvm_one_reg *reg) 4205 { 4206 int r = -EINVAL; 4207 __u64 val; 4208 4209 switch (reg->id) { 4210 case KVM_REG_S390_TODPR: 4211 r = get_user(vcpu->arch.sie_block->todpr, 4212 (u32 __user *)reg->addr); 4213 break; 4214 case KVM_REG_S390_EPOCHDIFF: 4215 r = get_user(vcpu->arch.sie_block->epoch, 4216 (u64 __user *)reg->addr); 4217 break; 4218 case KVM_REG_S390_CPU_TIMER: 4219 r = get_user(val, (u64 __user *)reg->addr); 4220 if (!r) 4221 kvm_s390_set_cpu_timer(vcpu, val); 4222 break; 4223 case KVM_REG_S390_CLOCK_COMP: 4224 r = get_user(vcpu->arch.sie_block->ckc, 4225 (u64 __user *)reg->addr); 4226 break; 4227 case KVM_REG_S390_PFTOKEN: 4228 r = get_user(vcpu->arch.pfault_token, 4229 (u64 __user *)reg->addr); 4230 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4231 kvm_clear_async_pf_completion_queue(vcpu); 4232 break; 4233 case KVM_REG_S390_PFCOMPARE: 4234 r = get_user(vcpu->arch.pfault_compare, 4235 (u64 __user *)reg->addr); 4236 break; 4237 case KVM_REG_S390_PFSELECT: 4238 r = get_user(vcpu->arch.pfault_select, 4239 (u64 __user *)reg->addr); 4240 break; 4241 case KVM_REG_S390_PP: 4242 r = get_user(vcpu->arch.sie_block->pp, 4243 (u64 __user *)reg->addr); 4244 break; 4245 case KVM_REG_S390_GBEA: 4246 r = get_user(vcpu->arch.sie_block->gbea, 4247 (u64 __user *)reg->addr); 4248 break; 4249 default: 4250 break; 4251 } 4252 4253 return r; 4254 } 4255 kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu * vcpu)4256 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 4257 { 4258 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 4259 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4260 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 4261 4262 kvm_clear_async_pf_completion_queue(vcpu); 4263 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 4264 kvm_s390_vcpu_stop(vcpu); 4265 kvm_s390_clear_local_irqs(vcpu); 4266 } 4267 kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu * vcpu)4268 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 4269 { 4270 /* Initial reset is a superset of the normal reset */ 4271 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4272 4273 /* 4274 * This equals initial cpu reset in pop, but we don't switch to ESA. 4275 * We do not only reset the internal data, but also ... 4276 */ 4277 vcpu->arch.sie_block->gpsw.mask = 0; 4278 vcpu->arch.sie_block->gpsw.addr = 0; 4279 kvm_s390_set_prefix(vcpu, 0); 4280 kvm_s390_set_cpu_timer(vcpu, 0); 4281 vcpu->arch.sie_block->ckc = 0; 4282 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 4283 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 4284 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 4285 4286 /* ... the data in sync regs */ 4287 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 4288 vcpu->run->s.regs.ckc = 0; 4289 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 4290 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 4291 vcpu->run->psw_addr = 0; 4292 vcpu->run->psw_mask = 0; 4293 vcpu->run->s.regs.todpr = 0; 4294 vcpu->run->s.regs.cputm = 0; 4295 vcpu->run->s.regs.ckc = 0; 4296 vcpu->run->s.regs.pp = 0; 4297 vcpu->run->s.regs.gbea = 1; 4298 vcpu->run->s.regs.fpc = 0; 4299 /* 4300 * Do not reset these registers in the protected case, as some of 4301 * them are overlaid and they are not accessible in this case 4302 * anyway. 4303 */ 4304 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4305 vcpu->arch.sie_block->gbea = 1; 4306 vcpu->arch.sie_block->pp = 0; 4307 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4308 vcpu->arch.sie_block->todpr = 0; 4309 } 4310 } 4311 kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu * vcpu)4312 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 4313 { 4314 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 4315 4316 /* Clear reset is a superset of the initial reset */ 4317 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4318 4319 memset(®s->gprs, 0, sizeof(regs->gprs)); 4320 memset(®s->vrs, 0, sizeof(regs->vrs)); 4321 memset(®s->acrs, 0, sizeof(regs->acrs)); 4322 memset(®s->gscb, 0, sizeof(regs->gscb)); 4323 4324 regs->etoken = 0; 4325 regs->etoken_extension = 0; 4326 } 4327 kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4328 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4329 { 4330 vcpu_load(vcpu); 4331 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 4332 vcpu_put(vcpu); 4333 return 0; 4334 } 4335 kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4336 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4337 { 4338 vcpu_load(vcpu); 4339 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 4340 vcpu_put(vcpu); 4341 return 0; 4342 } 4343 kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4344 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 4345 struct kvm_sregs *sregs) 4346 { 4347 vcpu_load(vcpu); 4348 4349 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 4350 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 4351 4352 vcpu_put(vcpu); 4353 return 0; 4354 } 4355 kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4356 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 4357 struct kvm_sregs *sregs) 4358 { 4359 vcpu_load(vcpu); 4360 4361 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 4362 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 4363 4364 vcpu_put(vcpu); 4365 return 0; 4366 } 4367 kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4368 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4369 { 4370 int ret = 0; 4371 4372 vcpu_load(vcpu); 4373 4374 vcpu->run->s.regs.fpc = fpu->fpc; 4375 if (cpu_has_vx()) 4376 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 4377 (freg_t *) fpu->fprs); 4378 else 4379 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 4380 4381 vcpu_put(vcpu); 4382 return ret; 4383 } 4384 kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4385 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4386 { 4387 vcpu_load(vcpu); 4388 4389 if (cpu_has_vx()) 4390 convert_vx_to_fp((freg_t *) fpu->fprs, 4391 (__vector128 *) vcpu->run->s.regs.vrs); 4392 else 4393 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 4394 fpu->fpc = vcpu->run->s.regs.fpc; 4395 4396 vcpu_put(vcpu); 4397 return 0; 4398 } 4399 kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu * vcpu,psw_t psw)4400 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 4401 { 4402 int rc = 0; 4403 4404 if (!is_vcpu_stopped(vcpu)) 4405 rc = -EBUSY; 4406 else { 4407 vcpu->run->psw_mask = psw.mask; 4408 vcpu->run->psw_addr = psw.addr; 4409 } 4410 return rc; 4411 } 4412 kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)4413 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 4414 struct kvm_translation *tr) 4415 { 4416 return -EINVAL; /* not implemented yet */ 4417 } 4418 4419 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 4420 KVM_GUESTDBG_USE_HW_BP | \ 4421 KVM_GUESTDBG_ENABLE) 4422 kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)4423 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 4424 struct kvm_guest_debug *dbg) 4425 { 4426 int rc = 0; 4427 4428 vcpu_load(vcpu); 4429 4430 vcpu->guest_debug = 0; 4431 kvm_s390_clear_bp_data(vcpu); 4432 4433 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 4434 rc = -EINVAL; 4435 goto out; 4436 } 4437 if (!sclp.has_gpere) { 4438 rc = -EINVAL; 4439 goto out; 4440 } 4441 4442 if (dbg->control & KVM_GUESTDBG_ENABLE) { 4443 vcpu->guest_debug = dbg->control; 4444 /* enforce guest PER */ 4445 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 4446 4447 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 4448 rc = kvm_s390_import_bp_data(vcpu, dbg); 4449 } else { 4450 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4451 vcpu->arch.guestdbg.last_bp = 0; 4452 } 4453 4454 if (rc) { 4455 vcpu->guest_debug = 0; 4456 kvm_s390_clear_bp_data(vcpu); 4457 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4458 } 4459 4460 out: 4461 vcpu_put(vcpu); 4462 return rc; 4463 } 4464 kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4465 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 4466 struct kvm_mp_state *mp_state) 4467 { 4468 int ret; 4469 4470 vcpu_load(vcpu); 4471 4472 /* CHECK_STOP and LOAD are not supported yet */ 4473 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 4474 KVM_MP_STATE_OPERATING; 4475 4476 vcpu_put(vcpu); 4477 return ret; 4478 } 4479 kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4480 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 4481 struct kvm_mp_state *mp_state) 4482 { 4483 int rc = 0; 4484 4485 vcpu_load(vcpu); 4486 4487 /* user space knows about this interface - let it control the state */ 4488 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); 4489 4490 switch (mp_state->mp_state) { 4491 case KVM_MP_STATE_STOPPED: 4492 rc = kvm_s390_vcpu_stop(vcpu); 4493 break; 4494 case KVM_MP_STATE_OPERATING: 4495 rc = kvm_s390_vcpu_start(vcpu); 4496 break; 4497 case KVM_MP_STATE_LOAD: 4498 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4499 rc = -ENXIO; 4500 break; 4501 } 4502 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 4503 break; 4504 case KVM_MP_STATE_CHECK_STOP: 4505 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 4506 default: 4507 rc = -ENXIO; 4508 } 4509 4510 vcpu_put(vcpu); 4511 return rc; 4512 } 4513 ibs_enabled(struct kvm_vcpu * vcpu)4514 static bool ibs_enabled(struct kvm_vcpu *vcpu) 4515 { 4516 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 4517 } 4518 __kvm_s390_fixup_fault_sync(struct gmap * gmap,gpa_t gaddr,unsigned int flags)4519 static int __kvm_s390_fixup_fault_sync(struct gmap *gmap, gpa_t gaddr, unsigned int flags) 4520 { 4521 struct kvm *kvm = gmap->private; 4522 gfn_t gfn = gpa_to_gfn(gaddr); 4523 bool unlocked; 4524 hva_t vmaddr; 4525 gpa_t tmp; 4526 int rc; 4527 4528 if (kvm_is_ucontrol(kvm)) { 4529 tmp = __gmap_translate(gmap, gaddr); 4530 gfn = gpa_to_gfn(tmp); 4531 } 4532 4533 vmaddr = gfn_to_hva(kvm, gfn); 4534 rc = fixup_user_fault(gmap->mm, vmaddr, FAULT_FLAG_WRITE, &unlocked); 4535 if (!rc) 4536 rc = __gmap_link(gmap, gaddr, vmaddr); 4537 return rc; 4538 } 4539 4540 /** 4541 * __kvm_s390_mprotect_many() - Apply specified protection to guest pages 4542 * @gmap: the gmap of the guest 4543 * @gpa: the starting guest address 4544 * @npages: how many pages to protect 4545 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 4546 * @bits: pgste notification bits to set 4547 * 4548 * Returns: 0 in case of success, < 0 in case of error - see gmap_protect_one() 4549 * 4550 * Context: kvm->srcu and gmap->mm need to be held in read mode 4551 */ __kvm_s390_mprotect_many(struct gmap * gmap,gpa_t gpa,u8 npages,unsigned int prot,unsigned long bits)4552 int __kvm_s390_mprotect_many(struct gmap *gmap, gpa_t gpa, u8 npages, unsigned int prot, 4553 unsigned long bits) 4554 { 4555 unsigned int fault_flag = (prot & PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 4556 gpa_t end = gpa + npages * PAGE_SIZE; 4557 int rc; 4558 4559 for (; gpa < end; gpa = ALIGN(gpa + 1, rc)) { 4560 rc = gmap_protect_one(gmap, gpa, prot, bits); 4561 if (rc == -EAGAIN) { 4562 __kvm_s390_fixup_fault_sync(gmap, gpa, fault_flag); 4563 rc = gmap_protect_one(gmap, gpa, prot, bits); 4564 } 4565 if (rc < 0) 4566 return rc; 4567 } 4568 4569 return 0; 4570 } 4571 kvm_s390_mprotect_notify_prefix(struct kvm_vcpu * vcpu)4572 static int kvm_s390_mprotect_notify_prefix(struct kvm_vcpu *vcpu) 4573 { 4574 gpa_t gaddr = kvm_s390_get_prefix(vcpu); 4575 int idx, rc; 4576 4577 idx = srcu_read_lock(&vcpu->kvm->srcu); 4578 mmap_read_lock(vcpu->arch.gmap->mm); 4579 4580 rc = __kvm_s390_mprotect_many(vcpu->arch.gmap, gaddr, 2, PROT_WRITE, GMAP_NOTIFY_MPROT); 4581 4582 mmap_read_unlock(vcpu->arch.gmap->mm); 4583 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4584 4585 return rc; 4586 } 4587 kvm_s390_handle_requests(struct kvm_vcpu * vcpu)4588 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 4589 { 4590 retry: 4591 kvm_s390_vcpu_request_handled(vcpu); 4592 if (!kvm_request_pending(vcpu)) 4593 return 0; 4594 /* 4595 * If the guest prefix changed, re-arm the ipte notifier for the 4596 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 4597 * This ensures that the ipte instruction for this request has 4598 * already finished. We might race against a second unmapper that 4599 * wants to set the blocking bit. Lets just retry the request loop. 4600 */ 4601 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { 4602 int rc; 4603 4604 rc = kvm_s390_mprotect_notify_prefix(vcpu); 4605 if (rc) { 4606 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4607 return rc; 4608 } 4609 goto retry; 4610 } 4611 4612 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 4613 vcpu->arch.sie_block->ihcpu = 0xffff; 4614 goto retry; 4615 } 4616 4617 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 4618 if (!ibs_enabled(vcpu)) { 4619 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 4620 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 4621 } 4622 goto retry; 4623 } 4624 4625 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 4626 if (ibs_enabled(vcpu)) { 4627 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 4628 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 4629 } 4630 goto retry; 4631 } 4632 4633 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 4634 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 4635 goto retry; 4636 } 4637 4638 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 4639 /* 4640 * Disable CMM virtualization; we will emulate the ESSA 4641 * instruction manually, in order to provide additional 4642 * functionalities needed for live migration. 4643 */ 4644 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 4645 goto retry; 4646 } 4647 4648 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 4649 /* 4650 * Re-enable CMM virtualization if CMMA is available and 4651 * CMM has been used. 4652 */ 4653 if ((vcpu->kvm->arch.use_cmma) && 4654 (vcpu->kvm->mm->context.uses_cmm)) 4655 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 4656 goto retry; 4657 } 4658 4659 /* we left the vsie handler, nothing to do, just clear the request */ 4660 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 4661 4662 return 0; 4663 } 4664 __kvm_s390_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4665 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4666 { 4667 struct kvm_vcpu *vcpu; 4668 union tod_clock clk; 4669 unsigned long i; 4670 4671 preempt_disable(); 4672 4673 store_tod_clock_ext(&clk); 4674 4675 kvm->arch.epoch = gtod->tod - clk.tod; 4676 kvm->arch.epdx = 0; 4677 if (test_kvm_facility(kvm, 139)) { 4678 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 4679 if (kvm->arch.epoch > gtod->tod) 4680 kvm->arch.epdx -= 1; 4681 } 4682 4683 kvm_s390_vcpu_block_all(kvm); 4684 kvm_for_each_vcpu(i, vcpu, kvm) { 4685 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 4686 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 4687 } 4688 4689 kvm_s390_vcpu_unblock_all(kvm); 4690 preempt_enable(); 4691 } 4692 kvm_s390_try_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4693 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4694 { 4695 if (!mutex_trylock(&kvm->lock)) 4696 return 0; 4697 __kvm_s390_set_tod_clock(kvm, gtod); 4698 mutex_unlock(&kvm->lock); 4699 return 1; 4700 } 4701 __kvm_inject_pfault_token(struct kvm_vcpu * vcpu,bool start_token,unsigned long token)4702 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 4703 unsigned long token) 4704 { 4705 struct kvm_s390_interrupt inti; 4706 struct kvm_s390_irq irq; 4707 4708 if (start_token) { 4709 irq.u.ext.ext_params2 = token; 4710 irq.type = KVM_S390_INT_PFAULT_INIT; 4711 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 4712 } else { 4713 inti.type = KVM_S390_INT_PFAULT_DONE; 4714 inti.parm64 = token; 4715 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 4716 } 4717 } 4718 kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4719 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 4720 struct kvm_async_pf *work) 4721 { 4722 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 4723 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 4724 4725 return true; 4726 } 4727 kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4728 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 4729 struct kvm_async_pf *work) 4730 { 4731 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 4732 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 4733 } 4734 kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4735 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 4736 struct kvm_async_pf *work) 4737 { 4738 /* s390 will always inject the page directly */ 4739 } 4740 kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)4741 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 4742 { 4743 /* 4744 * s390 will always inject the page directly, 4745 * but we still want check_async_completion to cleanup 4746 */ 4747 return true; 4748 } 4749 kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu)4750 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 4751 { 4752 hva_t hva; 4753 struct kvm_arch_async_pf arch; 4754 4755 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4756 return false; 4757 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 4758 vcpu->arch.pfault_compare) 4759 return false; 4760 if (psw_extint_disabled(vcpu)) 4761 return false; 4762 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4763 return false; 4764 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4765 return false; 4766 if (!vcpu->arch.gmap->pfault_enabled) 4767 return false; 4768 4769 hva = gfn_to_hva(vcpu->kvm, current->thread.gmap_teid.addr); 4770 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4771 return false; 4772 4773 return kvm_setup_async_pf(vcpu, current->thread.gmap_teid.addr * PAGE_SIZE, hva, &arch); 4774 } 4775 vcpu_pre_run(struct kvm_vcpu * vcpu)4776 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4777 { 4778 int rc, cpuflags; 4779 4780 /* 4781 * On s390 notifications for arriving pages will be delivered directly 4782 * to the guest but the house keeping for completed pfaults is 4783 * handled outside the worker. 4784 */ 4785 kvm_check_async_pf_completion(vcpu); 4786 4787 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4788 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4789 4790 if (need_resched()) 4791 schedule(); 4792 4793 if (!kvm_is_ucontrol(vcpu->kvm)) { 4794 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4795 if (rc || guestdbg_exit_pending(vcpu)) 4796 return rc; 4797 } 4798 4799 rc = kvm_s390_handle_requests(vcpu); 4800 if (rc) 4801 return rc; 4802 4803 if (guestdbg_enabled(vcpu)) { 4804 kvm_s390_backup_guest_per_regs(vcpu); 4805 kvm_s390_patch_guest_per_regs(vcpu); 4806 } 4807 4808 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4809 4810 vcpu->arch.sie_block->icptcode = 0; 4811 current->thread.gmap_int_code = 0; 4812 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4813 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4814 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4815 4816 return 0; 4817 } 4818 vcpu_post_run_addressing_exception(struct kvm_vcpu * vcpu)4819 static int vcpu_post_run_addressing_exception(struct kvm_vcpu *vcpu) 4820 { 4821 struct kvm_s390_pgm_info pgm_info = { 4822 .code = PGM_ADDRESSING, 4823 }; 4824 u8 opcode, ilen; 4825 int rc; 4826 4827 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4828 trace_kvm_s390_sie_fault(vcpu); 4829 4830 /* 4831 * We want to inject an addressing exception, which is defined as a 4832 * suppressing or terminating exception. However, since we came here 4833 * by a DAT access exception, the PSW still points to the faulting 4834 * instruction since DAT exceptions are nullifying. So we've got 4835 * to look up the current opcode to get the length of the instruction 4836 * to be able to forward the PSW. 4837 */ 4838 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4839 ilen = insn_length(opcode); 4840 if (rc < 0) { 4841 return rc; 4842 } else if (rc) { 4843 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4844 * Forward by arbitrary ilc, injection will take care of 4845 * nullification if necessary. 4846 */ 4847 pgm_info = vcpu->arch.pgm; 4848 ilen = 4; 4849 } 4850 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4851 kvm_s390_forward_psw(vcpu, ilen); 4852 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4853 } 4854 kvm_s390_assert_primary_as(struct kvm_vcpu * vcpu)4855 static void kvm_s390_assert_primary_as(struct kvm_vcpu *vcpu) 4856 { 4857 KVM_BUG(current->thread.gmap_teid.as != PSW_BITS_AS_PRIMARY, vcpu->kvm, 4858 "Unexpected program interrupt 0x%x, TEID 0x%016lx", 4859 current->thread.gmap_int_code, current->thread.gmap_teid.val); 4860 } 4861 4862 /* 4863 * __kvm_s390_handle_dat_fault() - handle a dat fault for the gmap of a vcpu 4864 * @vcpu: the vCPU whose gmap is to be fixed up 4865 * @gfn: the guest frame number used for memslots (including fake memslots) 4866 * @gaddr: the gmap address, does not have to match @gfn for ucontrol gmaps 4867 * @flags: FOLL_* flags 4868 * 4869 * Return: 0 on success, < 0 in case of error. 4870 * Context: The mm lock must not be held before calling. May sleep. 4871 */ __kvm_s390_handle_dat_fault(struct kvm_vcpu * vcpu,gfn_t gfn,gpa_t gaddr,unsigned int flags)4872 int __kvm_s390_handle_dat_fault(struct kvm_vcpu *vcpu, gfn_t gfn, gpa_t gaddr, unsigned int flags) 4873 { 4874 struct kvm_memory_slot *slot; 4875 unsigned int fault_flags; 4876 bool writable, unlocked; 4877 unsigned long vmaddr; 4878 struct page *page; 4879 kvm_pfn_t pfn; 4880 int rc; 4881 4882 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 4883 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 4884 return vcpu_post_run_addressing_exception(vcpu); 4885 4886 fault_flags = flags & FOLL_WRITE ? FAULT_FLAG_WRITE : 0; 4887 if (vcpu->arch.gmap->pfault_enabled) 4888 flags |= FOLL_NOWAIT; 4889 vmaddr = __gfn_to_hva_memslot(slot, gfn); 4890 4891 try_again: 4892 pfn = __kvm_faultin_pfn(slot, gfn, flags, &writable, &page); 4893 4894 /* Access outside memory, inject addressing exception */ 4895 if (is_noslot_pfn(pfn)) 4896 return vcpu_post_run_addressing_exception(vcpu); 4897 /* Signal pending: try again */ 4898 if (pfn == KVM_PFN_ERR_SIGPENDING) 4899 return -EAGAIN; 4900 4901 /* Needs I/O, try to setup async pfault (only possible with FOLL_NOWAIT) */ 4902 if (pfn == KVM_PFN_ERR_NEEDS_IO) { 4903 trace_kvm_s390_major_guest_pfault(vcpu); 4904 if (kvm_arch_setup_async_pf(vcpu)) 4905 return 0; 4906 vcpu->stat.pfault_sync++; 4907 /* Could not setup async pfault, try again synchronously */ 4908 flags &= ~FOLL_NOWAIT; 4909 goto try_again; 4910 } 4911 /* Any other error */ 4912 if (is_error_pfn(pfn)) 4913 return -EFAULT; 4914 4915 /* Success */ 4916 mmap_read_lock(vcpu->arch.gmap->mm); 4917 /* Mark the userspace PTEs as young and/or dirty, to avoid page fault loops */ 4918 rc = fixup_user_fault(vcpu->arch.gmap->mm, vmaddr, fault_flags, &unlocked); 4919 if (!rc) 4920 rc = __gmap_link(vcpu->arch.gmap, gaddr, vmaddr); 4921 scoped_guard(spinlock, &vcpu->kvm->mmu_lock) { 4922 kvm_release_faultin_page(vcpu->kvm, page, false, writable); 4923 } 4924 mmap_read_unlock(vcpu->arch.gmap->mm); 4925 return rc; 4926 } 4927 vcpu_dat_fault_handler(struct kvm_vcpu * vcpu,unsigned long gaddr,unsigned int flags)4928 static int vcpu_dat_fault_handler(struct kvm_vcpu *vcpu, unsigned long gaddr, unsigned int flags) 4929 { 4930 unsigned long gaddr_tmp; 4931 gfn_t gfn; 4932 4933 gfn = gpa_to_gfn(gaddr); 4934 if (kvm_is_ucontrol(vcpu->kvm)) { 4935 /* 4936 * This translates the per-vCPU guest address into a 4937 * fake guest address, which can then be used with the 4938 * fake memslots that are identity mapping userspace. 4939 * This allows ucontrol VMs to use the normal fault 4940 * resolution path, like normal VMs. 4941 */ 4942 mmap_read_lock(vcpu->arch.gmap->mm); 4943 gaddr_tmp = __gmap_translate(vcpu->arch.gmap, gaddr); 4944 mmap_read_unlock(vcpu->arch.gmap->mm); 4945 if (gaddr_tmp == -EFAULT) { 4946 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4947 vcpu->run->s390_ucontrol.trans_exc_code = gaddr; 4948 vcpu->run->s390_ucontrol.pgm_code = PGM_SEGMENT_TRANSLATION; 4949 return -EREMOTE; 4950 } 4951 gfn = gpa_to_gfn(gaddr_tmp); 4952 } 4953 return __kvm_s390_handle_dat_fault(vcpu, gfn, gaddr, flags); 4954 } 4955 vcpu_post_run_handle_fault(struct kvm_vcpu * vcpu)4956 static int vcpu_post_run_handle_fault(struct kvm_vcpu *vcpu) 4957 { 4958 unsigned int flags = 0; 4959 unsigned long gaddr; 4960 int rc; 4961 4962 gaddr = current->thread.gmap_teid.addr * PAGE_SIZE; 4963 if (kvm_s390_cur_gmap_fault_is_write()) 4964 flags = FAULT_FLAG_WRITE; 4965 4966 switch (current->thread.gmap_int_code & PGM_INT_CODE_MASK) { 4967 case 0: 4968 vcpu->stat.exit_null++; 4969 break; 4970 case PGM_SECURE_STORAGE_ACCESS: 4971 case PGM_SECURE_STORAGE_VIOLATION: 4972 kvm_s390_assert_primary_as(vcpu); 4973 /* 4974 * This can happen after a reboot with asynchronous teardown; 4975 * the new guest (normal or protected) will run on top of the 4976 * previous protected guest. The old pages need to be destroyed 4977 * so the new guest can use them. 4978 */ 4979 if (kvm_s390_pv_destroy_page(vcpu->kvm, gaddr)) { 4980 /* 4981 * Either KVM messed up the secure guest mapping or the 4982 * same page is mapped into multiple secure guests. 4983 * 4984 * This exception is only triggered when a guest 2 is 4985 * running and can therefore never occur in kernel 4986 * context. 4987 */ 4988 pr_warn_ratelimited("Secure storage violation (%x) in task: %s, pid %d\n", 4989 current->thread.gmap_int_code, current->comm, 4990 current->pid); 4991 send_sig(SIGSEGV, current, 0); 4992 } 4993 break; 4994 case PGM_NON_SECURE_STORAGE_ACCESS: 4995 kvm_s390_assert_primary_as(vcpu); 4996 /* 4997 * This is normal operation; a page belonging to a protected 4998 * guest has not been imported yet. Try to import the page into 4999 * the protected guest. 5000 */ 5001 rc = kvm_s390_pv_convert_to_secure(vcpu->kvm, gaddr); 5002 if (rc == -EINVAL) 5003 send_sig(SIGSEGV, current, 0); 5004 if (rc != -ENXIO) 5005 break; 5006 flags = FAULT_FLAG_WRITE; 5007 fallthrough; 5008 case PGM_PROTECTION: 5009 case PGM_SEGMENT_TRANSLATION: 5010 case PGM_PAGE_TRANSLATION: 5011 case PGM_ASCE_TYPE: 5012 case PGM_REGION_FIRST_TRANS: 5013 case PGM_REGION_SECOND_TRANS: 5014 case PGM_REGION_THIRD_TRANS: 5015 kvm_s390_assert_primary_as(vcpu); 5016 return vcpu_dat_fault_handler(vcpu, gaddr, flags); 5017 default: 5018 KVM_BUG(1, vcpu->kvm, "Unexpected program interrupt 0x%x, TEID 0x%016lx", 5019 current->thread.gmap_int_code, current->thread.gmap_teid.val); 5020 send_sig(SIGSEGV, current, 0); 5021 break; 5022 } 5023 return 0; 5024 } 5025 vcpu_post_run(struct kvm_vcpu * vcpu,int exit_reason)5026 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 5027 { 5028 struct mcck_volatile_info *mcck_info; 5029 struct sie_page *sie_page; 5030 int rc; 5031 5032 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 5033 vcpu->arch.sie_block->icptcode); 5034 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 5035 5036 if (guestdbg_enabled(vcpu)) 5037 kvm_s390_restore_guest_per_regs(vcpu); 5038 5039 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 5040 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 5041 5042 if (exit_reason == -EINTR) { 5043 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 5044 sie_page = container_of(vcpu->arch.sie_block, 5045 struct sie_page, sie_block); 5046 mcck_info = &sie_page->mcck_info; 5047 kvm_s390_reinject_machine_check(vcpu, mcck_info); 5048 return 0; 5049 } 5050 5051 if (vcpu->arch.sie_block->icptcode > 0) { 5052 rc = kvm_handle_sie_intercept(vcpu); 5053 5054 if (rc != -EOPNOTSUPP) 5055 return rc; 5056 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 5057 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 5058 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 5059 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 5060 return -EREMOTE; 5061 } 5062 5063 return vcpu_post_run_handle_fault(vcpu); 5064 } 5065 kvm_s390_enter_exit_sie(struct kvm_s390_sie_block * scb,u64 * gprs,unsigned long gasce)5066 int noinstr kvm_s390_enter_exit_sie(struct kvm_s390_sie_block *scb, 5067 u64 *gprs, unsigned long gasce) 5068 { 5069 int ret; 5070 5071 guest_state_enter_irqoff(); 5072 5073 /* 5074 * The guest_state_{enter,exit}_irqoff() functions inform lockdep and 5075 * tracing that entry to the guest will enable host IRQs, and exit from 5076 * the guest will disable host IRQs. 5077 * 5078 * We must not use lockdep/tracing/RCU in this critical section, so we 5079 * use the low-level arch_local_irq_*() helpers to enable/disable IRQs. 5080 */ 5081 arch_local_irq_enable(); 5082 ret = sie64a(scb, gprs, gasce); 5083 arch_local_irq_disable(); 5084 5085 guest_state_exit_irqoff(); 5086 5087 return ret; 5088 } 5089 5090 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) __vcpu_run(struct kvm_vcpu * vcpu)5091 static int __vcpu_run(struct kvm_vcpu *vcpu) 5092 { 5093 int rc, exit_reason; 5094 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 5095 5096 /* 5097 * We try to hold kvm->srcu during most of vcpu_run (except when run- 5098 * ning the guest), so that memslots (and other stuff) are protected 5099 */ 5100 kvm_vcpu_srcu_read_lock(vcpu); 5101 5102 do { 5103 rc = vcpu_pre_run(vcpu); 5104 if (rc || guestdbg_exit_pending(vcpu)) 5105 break; 5106 5107 kvm_vcpu_srcu_read_unlock(vcpu); 5108 /* 5109 * As PF_VCPU will be used in fault handler, between 5110 * guest_timing_enter_irqoff and guest_timing_exit_irqoff 5111 * should be no uaccess. 5112 */ 5113 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5114 memcpy(sie_page->pv_grregs, 5115 vcpu->run->s.regs.gprs, 5116 sizeof(sie_page->pv_grregs)); 5117 } 5118 5119 local_irq_disable(); 5120 guest_timing_enter_irqoff(); 5121 __disable_cpu_timer_accounting(vcpu); 5122 5123 exit_reason = kvm_s390_enter_exit_sie(vcpu->arch.sie_block, 5124 vcpu->run->s.regs.gprs, 5125 vcpu->arch.gmap->asce); 5126 5127 __enable_cpu_timer_accounting(vcpu); 5128 guest_timing_exit_irqoff(); 5129 local_irq_enable(); 5130 5131 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5132 memcpy(vcpu->run->s.regs.gprs, 5133 sie_page->pv_grregs, 5134 sizeof(sie_page->pv_grregs)); 5135 /* 5136 * We're not allowed to inject interrupts on intercepts 5137 * that leave the guest state in an "in-between" state 5138 * where the next SIE entry will do a continuation. 5139 * Fence interrupts in our "internal" PSW. 5140 */ 5141 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 5142 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 5143 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5144 } 5145 } 5146 kvm_vcpu_srcu_read_lock(vcpu); 5147 5148 rc = vcpu_post_run(vcpu, exit_reason); 5149 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 5150 5151 kvm_vcpu_srcu_read_unlock(vcpu); 5152 return rc; 5153 } 5154 sync_regs_fmt2(struct kvm_vcpu * vcpu)5155 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 5156 { 5157 struct kvm_run *kvm_run = vcpu->run; 5158 struct runtime_instr_cb *riccb; 5159 struct gs_cb *gscb; 5160 5161 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 5162 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 5163 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 5164 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 5165 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 5166 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 5167 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 5168 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 5169 } 5170 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 5171 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 5172 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 5173 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 5174 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 5175 kvm_clear_async_pf_completion_queue(vcpu); 5176 } 5177 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 5178 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 5179 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 5180 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); 5181 } 5182 /* 5183 * If userspace sets the riccb (e.g. after migration) to a valid state, 5184 * we should enable RI here instead of doing the lazy enablement. 5185 */ 5186 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 5187 test_kvm_facility(vcpu->kvm, 64) && 5188 riccb->v && 5189 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 5190 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 5191 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 5192 } 5193 /* 5194 * If userspace sets the gscb (e.g. after migration) to non-zero, 5195 * we should enable GS here instead of doing the lazy enablement. 5196 */ 5197 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 5198 test_kvm_facility(vcpu->kvm, 133) && 5199 gscb->gssm && 5200 !vcpu->arch.gs_enabled) { 5201 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 5202 vcpu->arch.sie_block->ecb |= ECB_GS; 5203 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 5204 vcpu->arch.gs_enabled = 1; 5205 } 5206 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 5207 test_kvm_facility(vcpu->kvm, 82)) { 5208 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 5209 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 5210 } 5211 if (cpu_has_gs()) { 5212 preempt_disable(); 5213 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 5214 if (current->thread.gs_cb) { 5215 vcpu->arch.host_gscb = current->thread.gs_cb; 5216 save_gs_cb(vcpu->arch.host_gscb); 5217 } 5218 if (vcpu->arch.gs_enabled) { 5219 current->thread.gs_cb = (struct gs_cb *) 5220 &vcpu->run->s.regs.gscb; 5221 restore_gs_cb(current->thread.gs_cb); 5222 } 5223 preempt_enable(); 5224 } 5225 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 5226 } 5227 sync_regs(struct kvm_vcpu * vcpu)5228 static void sync_regs(struct kvm_vcpu *vcpu) 5229 { 5230 struct kvm_run *kvm_run = vcpu->run; 5231 5232 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 5233 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 5234 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 5235 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 5236 /* some control register changes require a tlb flush */ 5237 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5238 } 5239 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 5240 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 5241 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 5242 } 5243 save_access_regs(vcpu->arch.host_acrs); 5244 restore_access_regs(vcpu->run->s.regs.acrs); 5245 vcpu->arch.acrs_loaded = true; 5246 kvm_s390_fpu_load(vcpu->run); 5247 /* Sync fmt2 only data */ 5248 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 5249 sync_regs_fmt2(vcpu); 5250 } else { 5251 /* 5252 * In several places we have to modify our internal view to 5253 * not do things that are disallowed by the ultravisor. For 5254 * example we must not inject interrupts after specific exits 5255 * (e.g. 112 prefix page not secure). We do this by turning 5256 * off the machine check, external and I/O interrupt bits 5257 * of our PSW copy. To avoid getting validity intercepts, we 5258 * do only accept the condition code from userspace. 5259 */ 5260 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 5261 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 5262 PSW_MASK_CC; 5263 } 5264 5265 kvm_run->kvm_dirty_regs = 0; 5266 } 5267 store_regs_fmt2(struct kvm_vcpu * vcpu)5268 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 5269 { 5270 struct kvm_run *kvm_run = vcpu->run; 5271 5272 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 5273 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 5274 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 5275 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 5276 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 5277 if (cpu_has_gs()) { 5278 preempt_disable(); 5279 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 5280 if (vcpu->arch.gs_enabled) 5281 save_gs_cb(current->thread.gs_cb); 5282 current->thread.gs_cb = vcpu->arch.host_gscb; 5283 restore_gs_cb(vcpu->arch.host_gscb); 5284 if (!vcpu->arch.host_gscb) 5285 local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT); 5286 vcpu->arch.host_gscb = NULL; 5287 preempt_enable(); 5288 } 5289 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 5290 } 5291 store_regs(struct kvm_vcpu * vcpu)5292 static void store_regs(struct kvm_vcpu *vcpu) 5293 { 5294 struct kvm_run *kvm_run = vcpu->run; 5295 5296 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 5297 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 5298 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 5299 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 5300 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 5301 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 5302 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 5303 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 5304 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 5305 save_access_regs(vcpu->run->s.regs.acrs); 5306 restore_access_regs(vcpu->arch.host_acrs); 5307 vcpu->arch.acrs_loaded = false; 5308 kvm_s390_fpu_store(vcpu->run); 5309 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 5310 store_regs_fmt2(vcpu); 5311 } 5312 kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)5313 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 5314 { 5315 struct kvm_run *kvm_run = vcpu->run; 5316 DECLARE_KERNEL_FPU_ONSTACK32(fpu); 5317 int rc; 5318 5319 /* 5320 * Running a VM while dumping always has the potential to 5321 * produce inconsistent dump data. But for PV vcpus a SIE 5322 * entry while dumping could also lead to a fatal validity 5323 * intercept which we absolutely want to avoid. 5324 */ 5325 if (vcpu->kvm->arch.pv.dumping) 5326 return -EINVAL; 5327 5328 if (!vcpu->wants_to_run) 5329 return -EINTR; 5330 5331 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 5332 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 5333 return -EINVAL; 5334 5335 vcpu_load(vcpu); 5336 5337 if (guestdbg_exit_pending(vcpu)) { 5338 kvm_s390_prepare_debug_exit(vcpu); 5339 rc = 0; 5340 goto out; 5341 } 5342 5343 kvm_sigset_activate(vcpu); 5344 5345 /* 5346 * no need to check the return value of vcpu_start as it can only have 5347 * an error for protvirt, but protvirt means user cpu state 5348 */ 5349 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 5350 kvm_s390_vcpu_start(vcpu); 5351 } else if (is_vcpu_stopped(vcpu)) { 5352 pr_err_ratelimited("can't run stopped vcpu %d\n", 5353 vcpu->vcpu_id); 5354 rc = -EINVAL; 5355 goto out; 5356 } 5357 5358 kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR); 5359 sync_regs(vcpu); 5360 enable_cpu_timer_accounting(vcpu); 5361 5362 might_fault(); 5363 rc = __vcpu_run(vcpu); 5364 5365 if (signal_pending(current) && !rc) { 5366 kvm_run->exit_reason = KVM_EXIT_INTR; 5367 rc = -EINTR; 5368 } 5369 5370 if (guestdbg_exit_pending(vcpu) && !rc) { 5371 kvm_s390_prepare_debug_exit(vcpu); 5372 rc = 0; 5373 } 5374 5375 if (rc == -EREMOTE) { 5376 /* userspace support is needed, kvm_run has been prepared */ 5377 rc = 0; 5378 } 5379 5380 disable_cpu_timer_accounting(vcpu); 5381 store_regs(vcpu); 5382 kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR); 5383 5384 kvm_sigset_deactivate(vcpu); 5385 5386 vcpu->stat.exit_userspace++; 5387 out: 5388 vcpu_put(vcpu); 5389 return rc; 5390 } 5391 5392 /* 5393 * store status at address 5394 * we use have two special cases: 5395 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 5396 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 5397 */ kvm_s390_store_status_unloaded(struct kvm_vcpu * vcpu,unsigned long gpa)5398 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 5399 { 5400 unsigned char archmode = 1; 5401 freg_t fprs[NUM_FPRS]; 5402 unsigned int px; 5403 u64 clkcomp, cputm; 5404 int rc; 5405 5406 px = kvm_s390_get_prefix(vcpu); 5407 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 5408 if (write_guest_abs(vcpu, 163, &archmode, 1)) 5409 return -EFAULT; 5410 gpa = 0; 5411 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 5412 if (write_guest_real(vcpu, 163, &archmode, 1)) 5413 return -EFAULT; 5414 gpa = px; 5415 } else 5416 gpa -= __LC_FPREGS_SAVE_AREA; 5417 5418 /* manually convert vector registers if necessary */ 5419 if (cpu_has_vx()) { 5420 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 5421 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5422 fprs, 128); 5423 } else { 5424 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5425 vcpu->run->s.regs.fprs, 128); 5426 } 5427 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 5428 vcpu->run->s.regs.gprs, 128); 5429 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 5430 &vcpu->arch.sie_block->gpsw, 16); 5431 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 5432 &px, 4); 5433 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 5434 &vcpu->run->s.regs.fpc, 4); 5435 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 5436 &vcpu->arch.sie_block->todpr, 4); 5437 cputm = kvm_s390_get_cpu_timer(vcpu); 5438 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 5439 &cputm, 8); 5440 clkcomp = vcpu->arch.sie_block->ckc >> 8; 5441 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 5442 &clkcomp, 8); 5443 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 5444 &vcpu->run->s.regs.acrs, 64); 5445 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 5446 &vcpu->arch.sie_block->gcr, 128); 5447 return rc ? -EFAULT : 0; 5448 } 5449 kvm_s390_vcpu_store_status(struct kvm_vcpu * vcpu,unsigned long addr)5450 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 5451 { 5452 /* 5453 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 5454 * switch in the run ioctl. Let's update our copies before we save 5455 * it into the save area 5456 */ 5457 kvm_s390_fpu_store(vcpu->run); 5458 save_access_regs(vcpu->run->s.regs.acrs); 5459 5460 return kvm_s390_store_status_unloaded(vcpu, addr); 5461 } 5462 __disable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5463 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5464 { 5465 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 5466 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 5467 } 5468 __disable_ibs_on_all_vcpus(struct kvm * kvm)5469 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 5470 { 5471 unsigned long i; 5472 struct kvm_vcpu *vcpu; 5473 5474 kvm_for_each_vcpu(i, vcpu, kvm) { 5475 __disable_ibs_on_vcpu(vcpu); 5476 } 5477 } 5478 __enable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5479 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5480 { 5481 if (!sclp.has_ibs) 5482 return; 5483 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 5484 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 5485 } 5486 kvm_s390_vcpu_start(struct kvm_vcpu * vcpu)5487 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 5488 { 5489 int i, online_vcpus, r = 0, started_vcpus = 0; 5490 5491 if (!is_vcpu_stopped(vcpu)) 5492 return 0; 5493 5494 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 5495 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5496 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5497 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5498 5499 /* Let's tell the UV that we want to change into the operating state */ 5500 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5501 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 5502 if (r) { 5503 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5504 return r; 5505 } 5506 } 5507 5508 for (i = 0; i < online_vcpus; i++) { 5509 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) 5510 started_vcpus++; 5511 } 5512 5513 if (started_vcpus == 0) { 5514 /* we're the only active VCPU -> speed it up */ 5515 __enable_ibs_on_vcpu(vcpu); 5516 } else if (started_vcpus == 1) { 5517 /* 5518 * As we are starting a second VCPU, we have to disable 5519 * the IBS facility on all VCPUs to remove potentially 5520 * outstanding ENABLE requests. 5521 */ 5522 __disable_ibs_on_all_vcpus(vcpu->kvm); 5523 } 5524 5525 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 5526 /* 5527 * The real PSW might have changed due to a RESTART interpreted by the 5528 * ultravisor. We block all interrupts and let the next sie exit 5529 * refresh our view. 5530 */ 5531 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5532 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5533 /* 5534 * Another VCPU might have used IBS while we were offline. 5535 * Let's play safe and flush the VCPU at startup. 5536 */ 5537 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5538 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5539 return 0; 5540 } 5541 kvm_s390_vcpu_stop(struct kvm_vcpu * vcpu)5542 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 5543 { 5544 int i, online_vcpus, r = 0, started_vcpus = 0; 5545 struct kvm_vcpu *started_vcpu = NULL; 5546 5547 if (is_vcpu_stopped(vcpu)) 5548 return 0; 5549 5550 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 5551 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5552 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5553 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5554 5555 /* Let's tell the UV that we want to change into the stopped state */ 5556 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5557 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 5558 if (r) { 5559 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5560 return r; 5561 } 5562 } 5563 5564 /* 5565 * Set the VCPU to STOPPED and THEN clear the interrupt flag, 5566 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders 5567 * have been fully processed. This will ensure that the VCPU 5568 * is kept BUSY if another VCPU is inquiring with SIGP SENSE. 5569 */ 5570 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 5571 kvm_s390_clear_stop_irq(vcpu); 5572 5573 __disable_ibs_on_vcpu(vcpu); 5574 5575 for (i = 0; i < online_vcpus; i++) { 5576 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); 5577 5578 if (!is_vcpu_stopped(tmp)) { 5579 started_vcpus++; 5580 started_vcpu = tmp; 5581 } 5582 } 5583 5584 if (started_vcpus == 1) { 5585 /* 5586 * As we only have one VCPU left, we want to enable the 5587 * IBS facility for that VCPU to speed it up. 5588 */ 5589 __enable_ibs_on_vcpu(started_vcpu); 5590 } 5591 5592 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5593 return 0; 5594 } 5595 kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5596 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5597 struct kvm_enable_cap *cap) 5598 { 5599 int r; 5600 5601 if (cap->flags) 5602 return -EINVAL; 5603 5604 switch (cap->cap) { 5605 case KVM_CAP_S390_CSS_SUPPORT: 5606 if (!vcpu->kvm->arch.css_support) { 5607 vcpu->kvm->arch.css_support = 1; 5608 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 5609 trace_kvm_s390_enable_css(vcpu->kvm); 5610 } 5611 r = 0; 5612 break; 5613 default: 5614 r = -EINVAL; 5615 break; 5616 } 5617 return r; 5618 } 5619 kvm_s390_vcpu_sida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5620 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, 5621 struct kvm_s390_mem_op *mop) 5622 { 5623 void __user *uaddr = (void __user *)mop->buf; 5624 void *sida_addr; 5625 int r = 0; 5626 5627 if (mop->flags || !mop->size) 5628 return -EINVAL; 5629 if (mop->size + mop->sida_offset < mop->size) 5630 return -EINVAL; 5631 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 5632 return -E2BIG; 5633 if (!kvm_s390_pv_cpu_is_protected(vcpu)) 5634 return -EINVAL; 5635 5636 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; 5637 5638 switch (mop->op) { 5639 case KVM_S390_MEMOP_SIDA_READ: 5640 if (copy_to_user(uaddr, sida_addr, mop->size)) 5641 r = -EFAULT; 5642 5643 break; 5644 case KVM_S390_MEMOP_SIDA_WRITE: 5645 if (copy_from_user(sida_addr, uaddr, mop->size)) 5646 r = -EFAULT; 5647 break; 5648 } 5649 return r; 5650 } 5651 kvm_s390_vcpu_mem_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5652 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, 5653 struct kvm_s390_mem_op *mop) 5654 { 5655 void __user *uaddr = (void __user *)mop->buf; 5656 enum gacc_mode acc_mode; 5657 void *tmpbuf = NULL; 5658 int r; 5659 5660 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | 5661 KVM_S390_MEMOP_F_CHECK_ONLY | 5662 KVM_S390_MEMOP_F_SKEY_PROTECTION); 5663 if (r) 5664 return r; 5665 if (mop->ar >= NUM_ACRS) 5666 return -EINVAL; 5667 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5668 return -EINVAL; 5669 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 5670 tmpbuf = vmalloc(mop->size); 5671 if (!tmpbuf) 5672 return -ENOMEM; 5673 } 5674 5675 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; 5676 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 5677 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, 5678 acc_mode, mop->key); 5679 goto out_inject; 5680 } 5681 if (acc_mode == GACC_FETCH) { 5682 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5683 mop->size, mop->key); 5684 if (r) 5685 goto out_inject; 5686 if (copy_to_user(uaddr, tmpbuf, mop->size)) { 5687 r = -EFAULT; 5688 goto out_free; 5689 } 5690 } else { 5691 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 5692 r = -EFAULT; 5693 goto out_free; 5694 } 5695 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5696 mop->size, mop->key); 5697 } 5698 5699 out_inject: 5700 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 5701 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 5702 5703 out_free: 5704 vfree(tmpbuf); 5705 return r; 5706 } 5707 kvm_s390_vcpu_memsida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5708 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, 5709 struct kvm_s390_mem_op *mop) 5710 { 5711 int r, srcu_idx; 5712 5713 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5714 5715 switch (mop->op) { 5716 case KVM_S390_MEMOP_LOGICAL_READ: 5717 case KVM_S390_MEMOP_LOGICAL_WRITE: 5718 r = kvm_s390_vcpu_mem_op(vcpu, mop); 5719 break; 5720 case KVM_S390_MEMOP_SIDA_READ: 5721 case KVM_S390_MEMOP_SIDA_WRITE: 5722 /* we are locked against sida going away by the vcpu->mutex */ 5723 r = kvm_s390_vcpu_sida_op(vcpu, mop); 5724 break; 5725 default: 5726 r = -EINVAL; 5727 } 5728 5729 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 5730 return r; 5731 } 5732 kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5733 long kvm_arch_vcpu_async_ioctl(struct file *filp, 5734 unsigned int ioctl, unsigned long arg) 5735 { 5736 struct kvm_vcpu *vcpu = filp->private_data; 5737 void __user *argp = (void __user *)arg; 5738 int rc; 5739 5740 switch (ioctl) { 5741 case KVM_S390_IRQ: { 5742 struct kvm_s390_irq s390irq; 5743 5744 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 5745 return -EFAULT; 5746 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5747 break; 5748 } 5749 case KVM_S390_INTERRUPT: { 5750 struct kvm_s390_interrupt s390int; 5751 struct kvm_s390_irq s390irq = {}; 5752 5753 if (copy_from_user(&s390int, argp, sizeof(s390int))) 5754 return -EFAULT; 5755 if (s390int_to_s390irq(&s390int, &s390irq)) 5756 return -EINVAL; 5757 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5758 break; 5759 } 5760 default: 5761 rc = -ENOIOCTLCMD; 5762 break; 5763 } 5764 5765 /* 5766 * To simplify single stepping of userspace-emulated instructions, 5767 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see 5768 * should_handle_per_ifetch()). However, if userspace emulation injects 5769 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens 5770 * after (and not before) the interrupt delivery. 5771 */ 5772 if (!rc) 5773 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; 5774 5775 return rc; 5776 } 5777 kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu * vcpu,struct kvm_pv_cmd * cmd)5778 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, 5779 struct kvm_pv_cmd *cmd) 5780 { 5781 struct kvm_s390_pv_dmp dmp; 5782 void *data; 5783 int ret; 5784 5785 /* Dump initialization is a prerequisite */ 5786 if (!vcpu->kvm->arch.pv.dumping) 5787 return -EINVAL; 5788 5789 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) 5790 return -EFAULT; 5791 5792 /* We only handle this subcmd right now */ 5793 if (dmp.subcmd != KVM_PV_DUMP_CPU) 5794 return -EINVAL; 5795 5796 /* CPU dump length is the same as create cpu storage donation. */ 5797 if (dmp.buff_len != uv_info.guest_cpu_stor_len) 5798 return -EINVAL; 5799 5800 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); 5801 if (!data) 5802 return -ENOMEM; 5803 5804 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); 5805 5806 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", 5807 vcpu->vcpu_id, cmd->rc, cmd->rrc); 5808 5809 if (ret) 5810 ret = -EINVAL; 5811 5812 /* On success copy over the dump data */ 5813 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) 5814 ret = -EFAULT; 5815 5816 kvfree(data); 5817 return ret; 5818 } 5819 kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5820 long kvm_arch_vcpu_ioctl(struct file *filp, 5821 unsigned int ioctl, unsigned long arg) 5822 { 5823 struct kvm_vcpu *vcpu = filp->private_data; 5824 void __user *argp = (void __user *)arg; 5825 int idx; 5826 long r; 5827 u16 rc, rrc; 5828 5829 vcpu_load(vcpu); 5830 5831 switch (ioctl) { 5832 case KVM_S390_STORE_STATUS: 5833 idx = srcu_read_lock(&vcpu->kvm->srcu); 5834 r = kvm_s390_store_status_unloaded(vcpu, arg); 5835 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5836 break; 5837 case KVM_S390_SET_INITIAL_PSW: { 5838 psw_t psw; 5839 5840 r = -EFAULT; 5841 if (copy_from_user(&psw, argp, sizeof(psw))) 5842 break; 5843 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 5844 break; 5845 } 5846 case KVM_S390_CLEAR_RESET: 5847 r = 0; 5848 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 5849 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5850 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5851 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 5852 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 5853 rc, rrc); 5854 } 5855 break; 5856 case KVM_S390_INITIAL_RESET: 5857 r = 0; 5858 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 5859 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5860 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5861 UVC_CMD_CPU_RESET_INITIAL, 5862 &rc, &rrc); 5863 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 5864 rc, rrc); 5865 } 5866 break; 5867 case KVM_S390_NORMAL_RESET: 5868 r = 0; 5869 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 5870 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5871 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5872 UVC_CMD_CPU_RESET, &rc, &rrc); 5873 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 5874 rc, rrc); 5875 } 5876 break; 5877 case KVM_SET_ONE_REG: 5878 case KVM_GET_ONE_REG: { 5879 struct kvm_one_reg reg; 5880 r = -EINVAL; 5881 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5882 break; 5883 r = -EFAULT; 5884 if (copy_from_user(®, argp, sizeof(reg))) 5885 break; 5886 if (ioctl == KVM_SET_ONE_REG) 5887 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 5888 else 5889 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 5890 break; 5891 } 5892 #ifdef CONFIG_KVM_S390_UCONTROL 5893 case KVM_S390_UCAS_MAP: { 5894 struct kvm_s390_ucas_mapping ucasmap; 5895 5896 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5897 r = -EFAULT; 5898 break; 5899 } 5900 5901 if (!kvm_is_ucontrol(vcpu->kvm)) { 5902 r = -EINVAL; 5903 break; 5904 } 5905 5906 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 5907 ucasmap.vcpu_addr, ucasmap.length); 5908 break; 5909 } 5910 case KVM_S390_UCAS_UNMAP: { 5911 struct kvm_s390_ucas_mapping ucasmap; 5912 5913 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5914 r = -EFAULT; 5915 break; 5916 } 5917 5918 if (!kvm_is_ucontrol(vcpu->kvm)) { 5919 r = -EINVAL; 5920 break; 5921 } 5922 5923 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 5924 ucasmap.length); 5925 break; 5926 } 5927 #endif 5928 case KVM_S390_VCPU_FAULT: { 5929 idx = srcu_read_lock(&vcpu->kvm->srcu); 5930 r = vcpu_dat_fault_handler(vcpu, arg, 0); 5931 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5932 break; 5933 } 5934 case KVM_ENABLE_CAP: 5935 { 5936 struct kvm_enable_cap cap; 5937 r = -EFAULT; 5938 if (copy_from_user(&cap, argp, sizeof(cap))) 5939 break; 5940 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5941 break; 5942 } 5943 case KVM_S390_MEM_OP: { 5944 struct kvm_s390_mem_op mem_op; 5945 5946 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 5947 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); 5948 else 5949 r = -EFAULT; 5950 break; 5951 } 5952 case KVM_S390_SET_IRQ_STATE: { 5953 struct kvm_s390_irq_state irq_state; 5954 5955 r = -EFAULT; 5956 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5957 break; 5958 if (irq_state.len > VCPU_IRQS_MAX_BUF || 5959 irq_state.len == 0 || 5960 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 5961 r = -EINVAL; 5962 break; 5963 } 5964 /* do not use irq_state.flags, it will break old QEMUs */ 5965 r = kvm_s390_set_irq_state(vcpu, 5966 (void __user *) irq_state.buf, 5967 irq_state.len); 5968 break; 5969 } 5970 case KVM_S390_GET_IRQ_STATE: { 5971 struct kvm_s390_irq_state irq_state; 5972 5973 r = -EFAULT; 5974 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5975 break; 5976 if (irq_state.len == 0) { 5977 r = -EINVAL; 5978 break; 5979 } 5980 /* do not use irq_state.flags, it will break old QEMUs */ 5981 r = kvm_s390_get_irq_state(vcpu, 5982 (__u8 __user *) irq_state.buf, 5983 irq_state.len); 5984 break; 5985 } 5986 case KVM_S390_PV_CPU_COMMAND: { 5987 struct kvm_pv_cmd cmd; 5988 5989 r = -EINVAL; 5990 if (!is_prot_virt_host()) 5991 break; 5992 5993 r = -EFAULT; 5994 if (copy_from_user(&cmd, argp, sizeof(cmd))) 5995 break; 5996 5997 r = -EINVAL; 5998 if (cmd.flags) 5999 break; 6000 6001 /* We only handle this cmd right now */ 6002 if (cmd.cmd != KVM_PV_DUMP) 6003 break; 6004 6005 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); 6006 6007 /* Always copy over UV rc / rrc data */ 6008 if (copy_to_user((__u8 __user *)argp, &cmd.rc, 6009 sizeof(cmd.rc) + sizeof(cmd.rrc))) 6010 r = -EFAULT; 6011 break; 6012 } 6013 default: 6014 r = -ENOTTY; 6015 } 6016 6017 vcpu_put(vcpu); 6018 return r; 6019 } 6020 kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6021 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6022 { 6023 #ifdef CONFIG_KVM_S390_UCONTROL 6024 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 6025 && (kvm_is_ucontrol(vcpu->kvm))) { 6026 vmf->page = virt_to_page(vcpu->arch.sie_block); 6027 get_page(vmf->page); 6028 return 0; 6029 } 6030 #endif 6031 return VM_FAULT_SIGBUS; 6032 } 6033 kvm_arch_irqchip_in_kernel(struct kvm * kvm)6034 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 6035 { 6036 return true; 6037 } 6038 6039 /* Section: memory related */ kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)6040 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6041 const struct kvm_memory_slot *old, 6042 struct kvm_memory_slot *new, 6043 enum kvm_mr_change change) 6044 { 6045 gpa_t size; 6046 6047 if (kvm_is_ucontrol(kvm) && new->id < KVM_USER_MEM_SLOTS) 6048 return -EINVAL; 6049 6050 /* When we are protected, we should not change the memory slots */ 6051 if (kvm_s390_pv_get_handle(kvm)) 6052 return -EINVAL; 6053 6054 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { 6055 /* 6056 * A few sanity checks. We can have memory slots which have to be 6057 * located/ended at a segment boundary (1MB). The memory in userland is 6058 * ok to be fragmented into various different vmas. It is okay to mmap() 6059 * and munmap() stuff in this slot after doing this call at any time 6060 */ 6061 6062 if (new->userspace_addr & 0xffffful) 6063 return -EINVAL; 6064 6065 size = new->npages * PAGE_SIZE; 6066 if (size & 0xffffful) 6067 return -EINVAL; 6068 6069 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) 6070 return -EINVAL; 6071 } 6072 6073 if (!kvm->arch.migration_mode) 6074 return 0; 6075 6076 /* 6077 * Turn off migration mode when: 6078 * - userspace creates a new memslot with dirty logging off, 6079 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and 6080 * dirty logging is turned off. 6081 * Migration mode expects dirty page logging being enabled to store 6082 * its dirty bitmap. 6083 */ 6084 if (change != KVM_MR_DELETE && 6085 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 6086 WARN(kvm_s390_vm_stop_migration(kvm), 6087 "Failed to stop migration mode"); 6088 6089 return 0; 6090 } 6091 kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)6092 void kvm_arch_commit_memory_region(struct kvm *kvm, 6093 struct kvm_memory_slot *old, 6094 const struct kvm_memory_slot *new, 6095 enum kvm_mr_change change) 6096 { 6097 int rc = 0; 6098 6099 if (kvm_is_ucontrol(kvm)) 6100 return; 6101 6102 switch (change) { 6103 case KVM_MR_DELETE: 6104 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 6105 old->npages * PAGE_SIZE); 6106 break; 6107 case KVM_MR_MOVE: 6108 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 6109 old->npages * PAGE_SIZE); 6110 if (rc) 6111 break; 6112 fallthrough; 6113 case KVM_MR_CREATE: 6114 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, 6115 new->base_gfn * PAGE_SIZE, 6116 new->npages * PAGE_SIZE); 6117 break; 6118 case KVM_MR_FLAGS_ONLY: 6119 break; 6120 default: 6121 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 6122 } 6123 if (rc) 6124 pr_warn("failed to commit memory region\n"); 6125 return; 6126 } 6127 nonhyp_mask(int i)6128 static inline unsigned long nonhyp_mask(int i) 6129 { 6130 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 6131 6132 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 6133 } 6134 kvm_s390_init(void)6135 static int __init kvm_s390_init(void) 6136 { 6137 int i, r; 6138 6139 if (!sclp.has_sief2) { 6140 pr_info("SIE is not available\n"); 6141 return -ENODEV; 6142 } 6143 6144 if (nested && hpage) { 6145 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 6146 return -EINVAL; 6147 } 6148 6149 for (i = 0; i < 16; i++) 6150 kvm_s390_fac_base[i] |= 6151 stfle_fac_list[i] & nonhyp_mask(i); 6152 6153 r = __kvm_s390_init(); 6154 if (r) 6155 return r; 6156 6157 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 6158 if (r) { 6159 __kvm_s390_exit(); 6160 return r; 6161 } 6162 return 0; 6163 } 6164 kvm_s390_exit(void)6165 static void __exit kvm_s390_exit(void) 6166 { 6167 kvm_exit(); 6168 6169 __kvm_s390_exit(); 6170 } 6171 6172 module_init(kvm_s390_init); 6173 module_exit(kvm_s390_exit); 6174 6175 /* 6176 * Enable autoloading of the kvm module. 6177 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 6178 * since x86 takes a different approach. 6179 */ 6180 #include <linux/miscdevice.h> 6181 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6182 MODULE_ALIAS("devname:kvm"); 6183