1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
85 struct dentry *kvm_debugfs_dir;
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 			   unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 				  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100 
101 static bool largepages_enabled = true;
102 
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105 
106 struct page *fault_page;
107 pfn_t fault_pfn;
108 
kvm_is_mmio_pfn(pfn_t pfn)109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111 	if (pfn_valid(pfn)) {
112 		int reserved;
113 		struct page *tail = pfn_to_page(pfn);
114 		struct page *head = compound_trans_head(tail);
115 		reserved = PageReserved(head);
116 		if (head != tail) {
117 			/*
118 			 * "head" is not a dangling pointer
119 			 * (compound_trans_head takes care of that)
120 			 * but the hugepage may have been splitted
121 			 * from under us (and we may not hold a
122 			 * reference count on the head page so it can
123 			 * be reused before we run PageReferenced), so
124 			 * we've to check PageTail before returning
125 			 * what we just read.
126 			 */
127 			smp_rmb();
128 			if (PageTail(tail))
129 				return reserved;
130 		}
131 		return PageReserved(tail);
132 	}
133 
134 	return true;
135 }
136 
137 /*
138  * Switches to specified vcpu, until a matching vcpu_put()
139  */
vcpu_load(struct kvm_vcpu * vcpu)140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142 	int cpu;
143 
144 	mutex_lock(&vcpu->mutex);
145 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 		/* The thread running this VCPU changed. */
147 		struct pid *oldpid = vcpu->pid;
148 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 		rcu_assign_pointer(vcpu->pid, newpid);
150 		synchronize_rcu();
151 		put_pid(oldpid);
152 	}
153 	cpu = get_cpu();
154 	preempt_notifier_register(&vcpu->preempt_notifier);
155 	kvm_arch_vcpu_load(vcpu, cpu);
156 	put_cpu();
157 }
158 
vcpu_put(struct kvm_vcpu * vcpu)159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161 	preempt_disable();
162 	kvm_arch_vcpu_put(vcpu);
163 	preempt_notifier_unregister(&vcpu->preempt_notifier);
164 	preempt_enable();
165 	mutex_unlock(&vcpu->mutex);
166 }
167 
ack_flush(void * _completed)168 static void ack_flush(void *_completed)
169 {
170 }
171 
make_all_cpus_request(struct kvm * kvm,unsigned int req)172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 	int i, cpu, me;
175 	cpumask_var_t cpus;
176 	bool called = true;
177 	struct kvm_vcpu *vcpu;
178 
179 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180 
181 	me = get_cpu();
182 	kvm_for_each_vcpu(i, vcpu, kvm) {
183 		kvm_make_request(req, vcpu);
184 		cpu = vcpu->cpu;
185 
186 		/* Set ->requests bit before we read ->mode */
187 		smp_mb();
188 
189 		if (cpus != NULL && cpu != -1 && cpu != me &&
190 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 			cpumask_set_cpu(cpu, cpus);
192 	}
193 	if (unlikely(cpus == NULL))
194 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 	else if (!cpumask_empty(cpus))
196 		smp_call_function_many(cpus, ack_flush, NULL, 1);
197 	else
198 		called = false;
199 	put_cpu();
200 	free_cpumask_var(cpus);
201 	return called;
202 }
203 
kvm_flush_remote_tlbs(struct kvm * kvm)204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 	int dirty_count = kvm->tlbs_dirty;
207 
208 	smp_mb();
209 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 		++kvm->stat.remote_tlb_flush;
211 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213 
kvm_reload_remote_mmus(struct kvm * kvm)214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218 
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 	struct page *page;
222 	int r;
223 
224 	mutex_init(&vcpu->mutex);
225 	vcpu->cpu = -1;
226 	vcpu->kvm = kvm;
227 	vcpu->vcpu_id = id;
228 	vcpu->pid = NULL;
229 	init_waitqueue_head(&vcpu->wq);
230 	kvm_async_pf_vcpu_init(vcpu);
231 
232 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 	if (!page) {
234 		r = -ENOMEM;
235 		goto fail;
236 	}
237 	vcpu->run = page_address(page);
238 
239 	r = kvm_arch_vcpu_init(vcpu);
240 	if (r < 0)
241 		goto fail_free_run;
242 	return 0;
243 
244 fail_free_run:
245 	free_page((unsigned long)vcpu->run);
246 fail:
247 	return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250 
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253 	put_pid(vcpu->pid);
254 	kvm_arch_vcpu_uninit(vcpu);
255 	free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258 
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262 	return container_of(mn, struct kvm, mmu_notifier);
263 }
264 
kvm_mmu_notifier_invalidate_page(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 					     struct mm_struct *mm,
267 					     unsigned long address)
268 {
269 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 	int need_tlb_flush, idx;
271 
272 	/*
273 	 * When ->invalidate_page runs, the linux pte has been zapped
274 	 * already but the page is still allocated until
275 	 * ->invalidate_page returns. So if we increase the sequence
276 	 * here the kvm page fault will notice if the spte can't be
277 	 * established because the page is going to be freed. If
278 	 * instead the kvm page fault establishes the spte before
279 	 * ->invalidate_page runs, kvm_unmap_hva will release it
280 	 * before returning.
281 	 *
282 	 * The sequence increase only need to be seen at spin_unlock
283 	 * time, and not at spin_lock time.
284 	 *
285 	 * Increasing the sequence after the spin_unlock would be
286 	 * unsafe because the kvm page fault could then establish the
287 	 * pte after kvm_unmap_hva returned, without noticing the page
288 	 * is going to be freed.
289 	 */
290 	idx = srcu_read_lock(&kvm->srcu);
291 	spin_lock(&kvm->mmu_lock);
292 	kvm->mmu_notifier_seq++;
293 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 	spin_unlock(&kvm->mmu_lock);
295 	srcu_read_unlock(&kvm->srcu, idx);
296 
297 	/* we've to flush the tlb before the pages can be freed */
298 	if (need_tlb_flush)
299 		kvm_flush_remote_tlbs(kvm);
300 
301 }
302 
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 					struct mm_struct *mm,
305 					unsigned long address,
306 					pte_t pte)
307 {
308 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 	int idx;
310 
311 	idx = srcu_read_lock(&kvm->srcu);
312 	spin_lock(&kvm->mmu_lock);
313 	kvm->mmu_notifier_seq++;
314 	kvm_set_spte_hva(kvm, address, pte);
315 	spin_unlock(&kvm->mmu_lock);
316 	srcu_read_unlock(&kvm->srcu, idx);
317 }
318 
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 						    struct mm_struct *mm,
321 						    unsigned long start,
322 						    unsigned long end)
323 {
324 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 	int need_tlb_flush = 0, idx;
326 
327 	idx = srcu_read_lock(&kvm->srcu);
328 	spin_lock(&kvm->mmu_lock);
329 	/*
330 	 * The count increase must become visible at unlock time as no
331 	 * spte can be established without taking the mmu_lock and
332 	 * count is also read inside the mmu_lock critical section.
333 	 */
334 	kvm->mmu_notifier_count++;
335 	for (; start < end; start += PAGE_SIZE)
336 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 	need_tlb_flush |= kvm->tlbs_dirty;
338 	spin_unlock(&kvm->mmu_lock);
339 	srcu_read_unlock(&kvm->srcu, idx);
340 
341 	/* we've to flush the tlb before the pages can be freed */
342 	if (need_tlb_flush)
343 		kvm_flush_remote_tlbs(kvm);
344 }
345 
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 						  struct mm_struct *mm,
348 						  unsigned long start,
349 						  unsigned long end)
350 {
351 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 
353 	spin_lock(&kvm->mmu_lock);
354 	/*
355 	 * This sequence increase will notify the kvm page fault that
356 	 * the page that is going to be mapped in the spte could have
357 	 * been freed.
358 	 */
359 	kvm->mmu_notifier_seq++;
360 	/*
361 	 * The above sequence increase must be visible before the
362 	 * below count decrease but both values are read by the kvm
363 	 * page fault under mmu_lock spinlock so we don't need to add
364 	 * a smb_wmb() here in between the two.
365 	 */
366 	kvm->mmu_notifier_count--;
367 	spin_unlock(&kvm->mmu_lock);
368 
369 	BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371 
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 					      struct mm_struct *mm,
374 					      unsigned long address)
375 {
376 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 	int young, idx;
378 
379 	idx = srcu_read_lock(&kvm->srcu);
380 	spin_lock(&kvm->mmu_lock);
381 	young = kvm_age_hva(kvm, address);
382 	spin_unlock(&kvm->mmu_lock);
383 	srcu_read_unlock(&kvm->srcu, idx);
384 
385 	if (young)
386 		kvm_flush_remote_tlbs(kvm);
387 
388 	return young;
389 }
390 
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 				       struct mm_struct *mm,
393 				       unsigned long address)
394 {
395 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 	int young, idx;
397 
398 	idx = srcu_read_lock(&kvm->srcu);
399 	spin_lock(&kvm->mmu_lock);
400 	young = kvm_test_age_hva(kvm, address);
401 	spin_unlock(&kvm->mmu_lock);
402 	srcu_read_unlock(&kvm->srcu, idx);
403 
404 	return young;
405 }
406 
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 				     struct mm_struct *mm)
409 {
410 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 	int idx;
412 
413 	idx = srcu_read_lock(&kvm->srcu);
414 	kvm_arch_flush_shadow(kvm);
415 	srcu_read_unlock(&kvm->srcu, idx);
416 }
417 
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
420 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
421 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
422 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
423 	.test_young		= kvm_mmu_notifier_test_young,
424 	.change_pte		= kvm_mmu_notifier_change_pte,
425 	.release		= kvm_mmu_notifier_release,
426 };
427 
kvm_init_mmu_notifier(struct kvm * kvm)428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433 
434 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435 
kvm_init_mmu_notifier(struct kvm * kvm)436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 	return 0;
439 }
440 
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442 
kvm_init_memslots_id(struct kvm * kvm)443 static void kvm_init_memslots_id(struct kvm *kvm)
444 {
445 	int i;
446 	struct kvm_memslots *slots = kvm->memslots;
447 
448 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
449 		slots->id_to_index[i] = slots->memslots[i].id = i;
450 }
451 
kvm_create_vm(void)452 static struct kvm *kvm_create_vm(void)
453 {
454 	int r, i;
455 	struct kvm *kvm = kvm_arch_alloc_vm();
456 
457 	if (!kvm)
458 		return ERR_PTR(-ENOMEM);
459 
460 	r = kvm_arch_init_vm(kvm);
461 	if (r)
462 		goto out_err_nodisable;
463 
464 	r = hardware_enable_all();
465 	if (r)
466 		goto out_err_nodisable;
467 
468 #ifdef CONFIG_HAVE_KVM_IRQCHIP
469 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
470 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
471 #endif
472 
473 	r = -ENOMEM;
474 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
475 	if (!kvm->memslots)
476 		goto out_err_nosrcu;
477 	kvm_init_memslots_id(kvm);
478 	if (init_srcu_struct(&kvm->srcu))
479 		goto out_err_nosrcu;
480 	for (i = 0; i < KVM_NR_BUSES; i++) {
481 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
482 					GFP_KERNEL);
483 		if (!kvm->buses[i])
484 			goto out_err;
485 	}
486 
487 	spin_lock_init(&kvm->mmu_lock);
488 	kvm->mm = current->mm;
489 	atomic_inc(&kvm->mm->mm_count);
490 	kvm_eventfd_init(kvm);
491 	mutex_init(&kvm->lock);
492 	mutex_init(&kvm->irq_lock);
493 	mutex_init(&kvm->slots_lock);
494 	atomic_set(&kvm->users_count, 1);
495 
496 	r = kvm_init_mmu_notifier(kvm);
497 	if (r)
498 		goto out_err;
499 
500 	raw_spin_lock(&kvm_lock);
501 	list_add(&kvm->vm_list, &vm_list);
502 	raw_spin_unlock(&kvm_lock);
503 
504 	return kvm;
505 
506 out_err:
507 	cleanup_srcu_struct(&kvm->srcu);
508 out_err_nosrcu:
509 	hardware_disable_all();
510 out_err_nodisable:
511 	for (i = 0; i < KVM_NR_BUSES; i++)
512 		kfree(kvm->buses[i]);
513 	kfree(kvm->memslots);
514 	kvm_arch_free_vm(kvm);
515 	return ERR_PTR(r);
516 }
517 
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 {
520 	if (!memslot->dirty_bitmap)
521 		return;
522 
523 	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
524 		vfree(memslot->dirty_bitmap_head);
525 	else
526 		kfree(memslot->dirty_bitmap_head);
527 
528 	memslot->dirty_bitmap = NULL;
529 	memslot->dirty_bitmap_head = NULL;
530 }
531 
532 /*
533  * Free any memory in @free but not in @dont.
534  */
kvm_free_physmem_slot(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)535 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
536 				  struct kvm_memory_slot *dont)
537 {
538 	int i;
539 
540 	if (!dont || free->rmap != dont->rmap)
541 		vfree(free->rmap);
542 
543 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
544 		kvm_destroy_dirty_bitmap(free);
545 
546 
547 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
548 		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
549 			vfree(free->lpage_info[i]);
550 			free->lpage_info[i] = NULL;
551 		}
552 	}
553 
554 	free->npages = 0;
555 	free->rmap = NULL;
556 }
557 
kvm_free_physmem(struct kvm * kvm)558 void kvm_free_physmem(struct kvm *kvm)
559 {
560 	struct kvm_memslots *slots = kvm->memslots;
561 	struct kvm_memory_slot *memslot;
562 
563 	kvm_for_each_memslot(memslot, slots)
564 		kvm_free_physmem_slot(memslot, NULL);
565 
566 	kfree(kvm->memslots);
567 }
568 
kvm_destroy_vm(struct kvm * kvm)569 static void kvm_destroy_vm(struct kvm *kvm)
570 {
571 	int i;
572 	struct mm_struct *mm = kvm->mm;
573 
574 	kvm_arch_sync_events(kvm);
575 	raw_spin_lock(&kvm_lock);
576 	list_del(&kvm->vm_list);
577 	raw_spin_unlock(&kvm_lock);
578 	kvm_free_irq_routing(kvm);
579 	for (i = 0; i < KVM_NR_BUSES; i++)
580 		kvm_io_bus_destroy(kvm->buses[i]);
581 	kvm_coalesced_mmio_free(kvm);
582 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
583 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
584 #else
585 	kvm_arch_flush_shadow(kvm);
586 #endif
587 	kvm_arch_destroy_vm(kvm);
588 	kvm_free_physmem(kvm);
589 	cleanup_srcu_struct(&kvm->srcu);
590 	kvm_arch_free_vm(kvm);
591 	hardware_disable_all();
592 	mmdrop(mm);
593 }
594 
kvm_get_kvm(struct kvm * kvm)595 void kvm_get_kvm(struct kvm *kvm)
596 {
597 	atomic_inc(&kvm->users_count);
598 }
599 EXPORT_SYMBOL_GPL(kvm_get_kvm);
600 
kvm_put_kvm(struct kvm * kvm)601 void kvm_put_kvm(struct kvm *kvm)
602 {
603 	if (atomic_dec_and_test(&kvm->users_count))
604 		kvm_destroy_vm(kvm);
605 }
606 EXPORT_SYMBOL_GPL(kvm_put_kvm);
607 
608 
kvm_vm_release(struct inode * inode,struct file * filp)609 static int kvm_vm_release(struct inode *inode, struct file *filp)
610 {
611 	struct kvm *kvm = filp->private_data;
612 
613 	kvm_irqfd_release(kvm);
614 
615 	kvm_put_kvm(kvm);
616 	return 0;
617 }
618 
619 #ifndef CONFIG_S390
620 /*
621  * Allocation size is twice as large as the actual dirty bitmap size.
622  * This makes it possible to do double buffering: see x86's
623  * kvm_vm_ioctl_get_dirty_log().
624  */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
626 {
627 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
628 
629 	if (dirty_bytes > PAGE_SIZE)
630 		memslot->dirty_bitmap = vzalloc(dirty_bytes);
631 	else
632 		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
633 
634 	if (!memslot->dirty_bitmap)
635 		return -ENOMEM;
636 
637 	memslot->dirty_bitmap_head = memslot->dirty_bitmap;
638 	memslot->nr_dirty_pages = 0;
639 	return 0;
640 }
641 #endif /* !CONFIG_S390 */
642 
643 static struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn)644 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
645 {
646 	struct kvm_memory_slot *memslot;
647 
648 	kvm_for_each_memslot(memslot, slots)
649 		if (gfn >= memslot->base_gfn &&
650 		      gfn < memslot->base_gfn + memslot->npages)
651 			return memslot;
652 
653 	return NULL;
654 }
655 
cmp_memslot(const void * slot1,const void * slot2)656 static int cmp_memslot(const void *slot1, const void *slot2)
657 {
658 	struct kvm_memory_slot *s1, *s2;
659 
660 	s1 = (struct kvm_memory_slot *)slot1;
661 	s2 = (struct kvm_memory_slot *)slot2;
662 
663 	if (s1->npages < s2->npages)
664 		return 1;
665 	if (s1->npages > s2->npages)
666 		return -1;
667 
668 	return 0;
669 }
670 
671 /*
672  * Sort the memslots base on its size, so the larger slots
673  * will get better fit.
674  */
sort_memslots(struct kvm_memslots * slots)675 static void sort_memslots(struct kvm_memslots *slots)
676 {
677 	int i;
678 
679 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
680 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
681 
682 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
683 		slots->id_to_index[slots->memslots[i].id] = i;
684 }
685 
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * new)686 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
687 {
688 	if (new) {
689 		int id = new->id;
690 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
691 		unsigned long npages = old->npages;
692 
693 		*old = *new;
694 		if (new->npages != npages)
695 			sort_memslots(slots);
696 	}
697 
698 	slots->generation++;
699 }
700 
701 /*
702  * Allocate some memory and give it an address in the guest physical address
703  * space.
704  *
705  * Discontiguous memory is allowed, mostly for framebuffers.
706  *
707  * Must be called holding mmap_sem for write.
708  */
__kvm_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)709 int __kvm_set_memory_region(struct kvm *kvm,
710 			    struct kvm_userspace_memory_region *mem,
711 			    int user_alloc)
712 {
713 	int r;
714 	gfn_t base_gfn;
715 	unsigned long npages;
716 	unsigned long i;
717 	struct kvm_memory_slot *memslot;
718 	struct kvm_memory_slot old, new;
719 	struct kvm_memslots *slots, *old_memslots;
720 
721 	r = -EINVAL;
722 	/* General sanity checks */
723 	if (mem->memory_size & (PAGE_SIZE - 1))
724 		goto out;
725 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
726 		goto out;
727 	/* We can read the guest memory with __xxx_user() later on. */
728 	if (user_alloc &&
729 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
730 	     !access_ok(VERIFY_WRITE,
731 			(void __user *)(unsigned long)mem->userspace_addr,
732 			mem->memory_size)))
733 		goto out;
734 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
735 		goto out;
736 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
737 		goto out;
738 
739 	memslot = id_to_memslot(kvm->memslots, mem->slot);
740 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
741 	npages = mem->memory_size >> PAGE_SHIFT;
742 
743 	r = -EINVAL;
744 	if (npages > KVM_MEM_MAX_NR_PAGES)
745 		goto out;
746 
747 	if (!npages)
748 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
749 
750 	new = old = *memslot;
751 
752 	new.id = mem->slot;
753 	new.base_gfn = base_gfn;
754 	new.npages = npages;
755 	new.flags = mem->flags;
756 
757 	/* Disallow changing a memory slot's size. */
758 	r = -EINVAL;
759 	if (npages && old.npages && npages != old.npages)
760 		goto out_free;
761 
762 	/* Check for overlaps */
763 	r = -EEXIST;
764 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
765 		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
766 
767 		if (s == memslot || !s->npages)
768 			continue;
769 		if (!((base_gfn + npages <= s->base_gfn) ||
770 		      (base_gfn >= s->base_gfn + s->npages)))
771 			goto out_free;
772 	}
773 
774 	/* Free page dirty bitmap if unneeded */
775 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
776 		new.dirty_bitmap = NULL;
777 
778 	r = -ENOMEM;
779 
780 	/* Allocate if a slot is being created */
781 #ifndef CONFIG_S390
782 	if (npages && !new.rmap) {
783 		new.rmap = vzalloc(npages * sizeof(*new.rmap));
784 
785 		if (!new.rmap)
786 			goto out_free;
787 
788 		new.user_alloc = user_alloc;
789 		new.userspace_addr = mem->userspace_addr;
790 	}
791 	if (!npages)
792 		goto skip_lpage;
793 
794 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
795 		unsigned long ugfn;
796 		unsigned long j;
797 		int lpages;
798 		int level = i + 2;
799 
800 		/* Avoid unused variable warning if no large pages */
801 		(void)level;
802 
803 		if (new.lpage_info[i])
804 			continue;
805 
806 		lpages = 1 + ((base_gfn + npages - 1)
807 			     >> KVM_HPAGE_GFN_SHIFT(level));
808 		lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
809 
810 		new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
811 
812 		if (!new.lpage_info[i])
813 			goto out_free;
814 
815 		if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
816 			new.lpage_info[i][0].write_count = 1;
817 		if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
818 			new.lpage_info[i][lpages - 1].write_count = 1;
819 		ugfn = new.userspace_addr >> PAGE_SHIFT;
820 		/*
821 		 * If the gfn and userspace address are not aligned wrt each
822 		 * other, or if explicitly asked to, disable large page
823 		 * support for this slot
824 		 */
825 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
826 		    !largepages_enabled)
827 			for (j = 0; j < lpages; ++j)
828 				new.lpage_info[i][j].write_count = 1;
829 	}
830 
831 skip_lpage:
832 
833 	/* Allocate page dirty bitmap if needed */
834 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
835 		if (kvm_create_dirty_bitmap(&new) < 0)
836 			goto out_free;
837 		/* destroy any largepage mappings for dirty tracking */
838 	}
839 #else  /* not defined CONFIG_S390 */
840 	new.user_alloc = user_alloc;
841 	if (user_alloc)
842 		new.userspace_addr = mem->userspace_addr;
843 #endif /* not defined CONFIG_S390 */
844 
845 	if (!npages) {
846 		struct kvm_memory_slot *slot;
847 
848 		r = -ENOMEM;
849 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
850 				GFP_KERNEL);
851 		if (!slots)
852 			goto out_free;
853 		slot = id_to_memslot(slots, mem->slot);
854 		slot->flags |= KVM_MEMSLOT_INVALID;
855 
856 		update_memslots(slots, NULL);
857 
858 		old_memslots = kvm->memslots;
859 		rcu_assign_pointer(kvm->memslots, slots);
860 		synchronize_srcu_expedited(&kvm->srcu);
861 		/* From this point no new shadow pages pointing to a deleted
862 		 * memslot will be created.
863 		 *
864 		 * validation of sp->gfn happens in:
865 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
866 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
867 		 */
868 		kvm_arch_flush_shadow(kvm);
869 		kfree(old_memslots);
870 	}
871 
872 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
873 	if (r)
874 		goto out_free;
875 
876 	/* map the pages in iommu page table */
877 	if (npages) {
878 		r = kvm_iommu_map_pages(kvm, &new);
879 		if (r)
880 			goto out_free;
881 	}
882 
883 	r = -ENOMEM;
884 	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
885 			GFP_KERNEL);
886 	if (!slots)
887 		goto out_free;
888 
889 	/* actual memory is freed via old in kvm_free_physmem_slot below */
890 	if (!npages) {
891 		new.rmap = NULL;
892 		new.dirty_bitmap = NULL;
893 		for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
894 			new.lpage_info[i] = NULL;
895 	}
896 
897 	update_memslots(slots, &new);
898 	old_memslots = kvm->memslots;
899 	rcu_assign_pointer(kvm->memslots, slots);
900 	synchronize_srcu_expedited(&kvm->srcu);
901 
902 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
903 
904 	/*
905 	 * If the new memory slot is created, we need to clear all
906 	 * mmio sptes.
907 	 */
908 	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
909 		kvm_arch_flush_shadow(kvm);
910 
911 	kvm_free_physmem_slot(&old, &new);
912 	kfree(old_memslots);
913 
914 	return 0;
915 
916 out_free:
917 	kvm_free_physmem_slot(&new, &old);
918 out:
919 	return r;
920 
921 }
922 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
923 
kvm_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)924 int kvm_set_memory_region(struct kvm *kvm,
925 			  struct kvm_userspace_memory_region *mem,
926 			  int user_alloc)
927 {
928 	int r;
929 
930 	mutex_lock(&kvm->slots_lock);
931 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
932 	mutex_unlock(&kvm->slots_lock);
933 	return r;
934 }
935 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
936 
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)937 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
938 				   struct
939 				   kvm_userspace_memory_region *mem,
940 				   int user_alloc)
941 {
942 	if (mem->slot >= KVM_MEMORY_SLOTS)
943 		return -EINVAL;
944 	return kvm_set_memory_region(kvm, mem, user_alloc);
945 }
946 
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)947 int kvm_get_dirty_log(struct kvm *kvm,
948 			struct kvm_dirty_log *log, int *is_dirty)
949 {
950 	struct kvm_memory_slot *memslot;
951 	int r, i;
952 	unsigned long n;
953 	unsigned long any = 0;
954 
955 	r = -EINVAL;
956 	if (log->slot >= KVM_MEMORY_SLOTS)
957 		goto out;
958 
959 	memslot = id_to_memslot(kvm->memslots, log->slot);
960 	r = -ENOENT;
961 	if (!memslot->dirty_bitmap)
962 		goto out;
963 
964 	n = kvm_dirty_bitmap_bytes(memslot);
965 
966 	for (i = 0; !any && i < n/sizeof(long); ++i)
967 		any = memslot->dirty_bitmap[i];
968 
969 	r = -EFAULT;
970 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
971 		goto out;
972 
973 	if (any)
974 		*is_dirty = 1;
975 
976 	r = 0;
977 out:
978 	return r;
979 }
980 
kvm_disable_largepages(void)981 void kvm_disable_largepages(void)
982 {
983 	largepages_enabled = false;
984 }
985 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
986 
is_error_page(struct page * page)987 int is_error_page(struct page *page)
988 {
989 	return page == bad_page || page == hwpoison_page || page == fault_page;
990 }
991 EXPORT_SYMBOL_GPL(is_error_page);
992 
is_error_pfn(pfn_t pfn)993 int is_error_pfn(pfn_t pfn)
994 {
995 	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
996 }
997 EXPORT_SYMBOL_GPL(is_error_pfn);
998 
is_hwpoison_pfn(pfn_t pfn)999 int is_hwpoison_pfn(pfn_t pfn)
1000 {
1001 	return pfn == hwpoison_pfn;
1002 }
1003 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
1004 
is_fault_pfn(pfn_t pfn)1005 int is_fault_pfn(pfn_t pfn)
1006 {
1007 	return pfn == fault_pfn;
1008 }
1009 EXPORT_SYMBOL_GPL(is_fault_pfn);
1010 
is_noslot_pfn(pfn_t pfn)1011 int is_noslot_pfn(pfn_t pfn)
1012 {
1013 	return pfn == bad_pfn;
1014 }
1015 EXPORT_SYMBOL_GPL(is_noslot_pfn);
1016 
is_invalid_pfn(pfn_t pfn)1017 int is_invalid_pfn(pfn_t pfn)
1018 {
1019 	return pfn == hwpoison_pfn || pfn == fault_pfn;
1020 }
1021 EXPORT_SYMBOL_GPL(is_invalid_pfn);
1022 
bad_hva(void)1023 static inline unsigned long bad_hva(void)
1024 {
1025 	return PAGE_OFFSET;
1026 }
1027 
kvm_is_error_hva(unsigned long addr)1028 int kvm_is_error_hva(unsigned long addr)
1029 {
1030 	return addr == bad_hva();
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1033 
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1034 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
1035 						gfn_t gfn)
1036 {
1037 	return search_memslots(slots, gfn);
1038 }
1039 
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1040 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1041 {
1042 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1043 }
1044 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1045 
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1046 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1047 {
1048 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1049 
1050 	if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
1051 	      memslot->flags & KVM_MEMSLOT_INVALID)
1052 		return 0;
1053 
1054 	return 1;
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1057 
kvm_host_page_size(struct kvm * kvm,gfn_t gfn)1058 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1059 {
1060 	struct vm_area_struct *vma;
1061 	unsigned long addr, size;
1062 
1063 	size = PAGE_SIZE;
1064 
1065 	addr = gfn_to_hva(kvm, gfn);
1066 	if (kvm_is_error_hva(addr))
1067 		return PAGE_SIZE;
1068 
1069 	down_read(&current->mm->mmap_sem);
1070 	vma = find_vma(current->mm, addr);
1071 	if (!vma)
1072 		goto out;
1073 
1074 	size = vma_kernel_pagesize(vma);
1075 
1076 out:
1077 	up_read(&current->mm->mmap_sem);
1078 
1079 	return size;
1080 }
1081 
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1082 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1083 				     gfn_t *nr_pages)
1084 {
1085 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1086 		return bad_hva();
1087 
1088 	if (nr_pages)
1089 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1090 
1091 	return gfn_to_hva_memslot(slot, gfn);
1092 }
1093 
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1094 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1095 {
1096 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1097 }
1098 EXPORT_SYMBOL_GPL(gfn_to_hva);
1099 
get_fault_pfn(void)1100 static pfn_t get_fault_pfn(void)
1101 {
1102 	get_page(fault_page);
1103 	return fault_pfn;
1104 }
1105 
get_user_page_nowait(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int write,struct page ** page)1106 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1107 	unsigned long start, int write, struct page **page)
1108 {
1109 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1110 
1111 	if (write)
1112 		flags |= FOLL_WRITE;
1113 
1114 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1115 }
1116 
check_user_page_hwpoison(unsigned long addr)1117 static inline int check_user_page_hwpoison(unsigned long addr)
1118 {
1119 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1120 
1121 	rc = __get_user_pages(current, current->mm, addr, 1,
1122 			      flags, NULL, NULL, NULL);
1123 	return rc == -EHWPOISON;
1124 }
1125 
hva_to_pfn(struct kvm * kvm,unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1126 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1127 			bool *async, bool write_fault, bool *writable)
1128 {
1129 	struct page *page[1];
1130 	int npages = 0;
1131 	pfn_t pfn;
1132 
1133 	/* we can do it either atomically or asynchronously, not both */
1134 	BUG_ON(atomic && async);
1135 
1136 	BUG_ON(!write_fault && !writable);
1137 
1138 	if (writable)
1139 		*writable = true;
1140 
1141 	if (atomic || async)
1142 		npages = __get_user_pages_fast(addr, 1, 1, page);
1143 
1144 	if (unlikely(npages != 1) && !atomic) {
1145 		might_sleep();
1146 
1147 		if (writable)
1148 			*writable = write_fault;
1149 
1150 		if (async) {
1151 			down_read(&current->mm->mmap_sem);
1152 			npages = get_user_page_nowait(current, current->mm,
1153 						     addr, write_fault, page);
1154 			up_read(&current->mm->mmap_sem);
1155 		} else
1156 			npages = get_user_pages_fast(addr, 1, write_fault,
1157 						     page);
1158 
1159 		/* map read fault as writable if possible */
1160 		if (unlikely(!write_fault) && npages == 1) {
1161 			struct page *wpage[1];
1162 
1163 			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1164 			if (npages == 1) {
1165 				*writable = true;
1166 				put_page(page[0]);
1167 				page[0] = wpage[0];
1168 			}
1169 			npages = 1;
1170 		}
1171 	}
1172 
1173 	if (unlikely(npages != 1)) {
1174 		struct vm_area_struct *vma;
1175 
1176 		if (atomic)
1177 			return get_fault_pfn();
1178 
1179 		down_read(&current->mm->mmap_sem);
1180 		if (npages == -EHWPOISON ||
1181 			(!async && check_user_page_hwpoison(addr))) {
1182 			up_read(&current->mm->mmap_sem);
1183 			get_page(hwpoison_page);
1184 			return page_to_pfn(hwpoison_page);
1185 		}
1186 
1187 		vma = find_vma_intersection(current->mm, addr, addr+1);
1188 
1189 		if (vma == NULL)
1190 			pfn = get_fault_pfn();
1191 		else if ((vma->vm_flags & VM_PFNMAP)) {
1192 			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1193 				vma->vm_pgoff;
1194 			BUG_ON(!kvm_is_mmio_pfn(pfn));
1195 		} else {
1196 			if (async && (vma->vm_flags & VM_WRITE))
1197 				*async = true;
1198 			pfn = get_fault_pfn();
1199 		}
1200 		up_read(&current->mm->mmap_sem);
1201 	} else
1202 		pfn = page_to_pfn(page[0]);
1203 
1204 	return pfn;
1205 }
1206 
hva_to_pfn_atomic(struct kvm * kvm,unsigned long addr)1207 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1208 {
1209 	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1210 }
1211 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1212 
__gfn_to_pfn(struct kvm * kvm,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1213 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1214 			  bool write_fault, bool *writable)
1215 {
1216 	unsigned long addr;
1217 
1218 	if (async)
1219 		*async = false;
1220 
1221 	addr = gfn_to_hva(kvm, gfn);
1222 	if (kvm_is_error_hva(addr)) {
1223 		get_page(bad_page);
1224 		return page_to_pfn(bad_page);
1225 	}
1226 
1227 	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1228 }
1229 
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1230 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1231 {
1232 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1233 }
1234 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1235 
gfn_to_pfn_async(struct kvm * kvm,gfn_t gfn,bool * async,bool write_fault,bool * writable)1236 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1237 		       bool write_fault, bool *writable)
1238 {
1239 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1242 
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1243 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1244 {
1245 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1246 }
1247 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1248 
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1249 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1250 		      bool *writable)
1251 {
1252 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1253 }
1254 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1255 
gfn_to_pfn_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn)1256 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1257 			 struct kvm_memory_slot *slot, gfn_t gfn)
1258 {
1259 	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1260 	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1261 }
1262 
gfn_to_page_many_atomic(struct kvm * kvm,gfn_t gfn,struct page ** pages,int nr_pages)1263 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1264 								  int nr_pages)
1265 {
1266 	unsigned long addr;
1267 	gfn_t entry;
1268 
1269 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1270 	if (kvm_is_error_hva(addr))
1271 		return -1;
1272 
1273 	if (entry < nr_pages)
1274 		return 0;
1275 
1276 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1277 }
1278 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1279 
gfn_to_page(struct kvm * kvm,gfn_t gfn)1280 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1281 {
1282 	pfn_t pfn;
1283 
1284 	pfn = gfn_to_pfn(kvm, gfn);
1285 	if (!kvm_is_mmio_pfn(pfn))
1286 		return pfn_to_page(pfn);
1287 
1288 	WARN_ON(kvm_is_mmio_pfn(pfn));
1289 
1290 	get_page(bad_page);
1291 	return bad_page;
1292 }
1293 
1294 EXPORT_SYMBOL_GPL(gfn_to_page);
1295 
kvm_release_page_clean(struct page * page)1296 void kvm_release_page_clean(struct page *page)
1297 {
1298 	kvm_release_pfn_clean(page_to_pfn(page));
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1301 
kvm_release_pfn_clean(pfn_t pfn)1302 void kvm_release_pfn_clean(pfn_t pfn)
1303 {
1304 	if (!kvm_is_mmio_pfn(pfn))
1305 		put_page(pfn_to_page(pfn));
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1308 
kvm_release_page_dirty(struct page * page)1309 void kvm_release_page_dirty(struct page *page)
1310 {
1311 	kvm_release_pfn_dirty(page_to_pfn(page));
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1314 
kvm_release_pfn_dirty(pfn_t pfn)1315 void kvm_release_pfn_dirty(pfn_t pfn)
1316 {
1317 	kvm_set_pfn_dirty(pfn);
1318 	kvm_release_pfn_clean(pfn);
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1321 
kvm_set_page_dirty(struct page * page)1322 void kvm_set_page_dirty(struct page *page)
1323 {
1324 	kvm_set_pfn_dirty(page_to_pfn(page));
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1327 
kvm_set_pfn_dirty(pfn_t pfn)1328 void kvm_set_pfn_dirty(pfn_t pfn)
1329 {
1330 	if (!kvm_is_mmio_pfn(pfn)) {
1331 		struct page *page = pfn_to_page(pfn);
1332 		if (!PageReserved(page))
1333 			SetPageDirty(page);
1334 	}
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1337 
kvm_set_pfn_accessed(pfn_t pfn)1338 void kvm_set_pfn_accessed(pfn_t pfn)
1339 {
1340 	if (!kvm_is_mmio_pfn(pfn))
1341 		mark_page_accessed(pfn_to_page(pfn));
1342 }
1343 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1344 
kvm_get_pfn(pfn_t pfn)1345 void kvm_get_pfn(pfn_t pfn)
1346 {
1347 	if (!kvm_is_mmio_pfn(pfn))
1348 		get_page(pfn_to_page(pfn));
1349 }
1350 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1351 
next_segment(unsigned long len,int offset)1352 static int next_segment(unsigned long len, int offset)
1353 {
1354 	if (len > PAGE_SIZE - offset)
1355 		return PAGE_SIZE - offset;
1356 	else
1357 		return len;
1358 }
1359 
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1360 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1361 			int len)
1362 {
1363 	int r;
1364 	unsigned long addr;
1365 
1366 	addr = gfn_to_hva(kvm, gfn);
1367 	if (kvm_is_error_hva(addr))
1368 		return -EFAULT;
1369 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1370 	if (r)
1371 		return -EFAULT;
1372 	return 0;
1373 }
1374 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1375 
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1376 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1377 {
1378 	gfn_t gfn = gpa >> PAGE_SHIFT;
1379 	int seg;
1380 	int offset = offset_in_page(gpa);
1381 	int ret;
1382 
1383 	while ((seg = next_segment(len, offset)) != 0) {
1384 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1385 		if (ret < 0)
1386 			return ret;
1387 		offset = 0;
1388 		len -= seg;
1389 		data += seg;
1390 		++gfn;
1391 	}
1392 	return 0;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_read_guest);
1395 
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1396 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1397 			  unsigned long len)
1398 {
1399 	int r;
1400 	unsigned long addr;
1401 	gfn_t gfn = gpa >> PAGE_SHIFT;
1402 	int offset = offset_in_page(gpa);
1403 
1404 	addr = gfn_to_hva(kvm, gfn);
1405 	if (kvm_is_error_hva(addr))
1406 		return -EFAULT;
1407 	pagefault_disable();
1408 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1409 	pagefault_enable();
1410 	if (r)
1411 		return -EFAULT;
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL(kvm_read_guest_atomic);
1415 
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)1416 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1417 			 int offset, int len)
1418 {
1419 	int r;
1420 	unsigned long addr;
1421 
1422 	addr = gfn_to_hva(kvm, gfn);
1423 	if (kvm_is_error_hva(addr))
1424 		return -EFAULT;
1425 	r = __copy_to_user((void __user *)addr + offset, data, len);
1426 	if (r)
1427 		return -EFAULT;
1428 	mark_page_dirty(kvm, gfn);
1429 	return 0;
1430 }
1431 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1432 
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)1433 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1434 		    unsigned long len)
1435 {
1436 	gfn_t gfn = gpa >> PAGE_SHIFT;
1437 	int seg;
1438 	int offset = offset_in_page(gpa);
1439 	int ret;
1440 
1441 	while ((seg = next_segment(len, offset)) != 0) {
1442 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1443 		if (ret < 0)
1444 			return ret;
1445 		offset = 0;
1446 		len -= seg;
1447 		data += seg;
1448 		++gfn;
1449 	}
1450 	return 0;
1451 }
1452 
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa)1453 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1454 			      gpa_t gpa)
1455 {
1456 	struct kvm_memslots *slots = kvm_memslots(kvm);
1457 	int offset = offset_in_page(gpa);
1458 	gfn_t gfn = gpa >> PAGE_SHIFT;
1459 
1460 	ghc->gpa = gpa;
1461 	ghc->generation = slots->generation;
1462 	ghc->memslot = __gfn_to_memslot(slots, gfn);
1463 	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1464 	if (!kvm_is_error_hva(ghc->hva))
1465 		ghc->hva += offset;
1466 	else
1467 		return -EFAULT;
1468 
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1472 
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1473 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1474 			   void *data, unsigned long len)
1475 {
1476 	struct kvm_memslots *slots = kvm_memslots(kvm);
1477 	int r;
1478 
1479 	if (slots->generation != ghc->generation)
1480 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1481 
1482 	if (kvm_is_error_hva(ghc->hva))
1483 		return -EFAULT;
1484 
1485 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1486 	if (r)
1487 		return -EFAULT;
1488 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1489 
1490 	return 0;
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1493 
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1494 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1495 			   void *data, unsigned long len)
1496 {
1497 	struct kvm_memslots *slots = kvm_memslots(kvm);
1498 	int r;
1499 
1500 	if (slots->generation != ghc->generation)
1501 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1502 
1503 	if (kvm_is_error_hva(ghc->hva))
1504 		return -EFAULT;
1505 
1506 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1507 	if (r)
1508 		return -EFAULT;
1509 
1510 	return 0;
1511 }
1512 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1513 
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)1514 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1515 {
1516 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1517 				    offset, len);
1518 }
1519 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1520 
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)1521 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1522 {
1523 	gfn_t gfn = gpa >> PAGE_SHIFT;
1524 	int seg;
1525 	int offset = offset_in_page(gpa);
1526 	int ret;
1527 
1528         while ((seg = next_segment(len, offset)) != 0) {
1529 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1530 		if (ret < 0)
1531 			return ret;
1532 		offset = 0;
1533 		len -= seg;
1534 		++gfn;
1535 	}
1536 	return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1539 
mark_page_dirty_in_slot(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn)1540 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1541 			     gfn_t gfn)
1542 {
1543 	if (memslot && memslot->dirty_bitmap) {
1544 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1545 
1546 		if (!test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
1547 			memslot->nr_dirty_pages++;
1548 	}
1549 }
1550 
mark_page_dirty(struct kvm * kvm,gfn_t gfn)1551 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1552 {
1553 	struct kvm_memory_slot *memslot;
1554 
1555 	memslot = gfn_to_memslot(kvm, gfn);
1556 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1557 }
1558 
1559 /*
1560  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1561  */
kvm_vcpu_block(struct kvm_vcpu * vcpu)1562 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1563 {
1564 	DEFINE_WAIT(wait);
1565 
1566 	for (;;) {
1567 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1568 
1569 		if (kvm_arch_vcpu_runnable(vcpu)) {
1570 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1571 			break;
1572 		}
1573 		if (kvm_cpu_has_pending_timer(vcpu))
1574 			break;
1575 		if (signal_pending(current))
1576 			break;
1577 
1578 		schedule();
1579 	}
1580 
1581 	finish_wait(&vcpu->wq, &wait);
1582 }
1583 
kvm_resched(struct kvm_vcpu * vcpu)1584 void kvm_resched(struct kvm_vcpu *vcpu)
1585 {
1586 	if (!need_resched())
1587 		return;
1588 	cond_resched();
1589 }
1590 EXPORT_SYMBOL_GPL(kvm_resched);
1591 
kvm_vcpu_on_spin(struct kvm_vcpu * me)1592 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1593 {
1594 	struct kvm *kvm = me->kvm;
1595 	struct kvm_vcpu *vcpu;
1596 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1597 	int yielded = 0;
1598 	int pass;
1599 	int i;
1600 
1601 	/*
1602 	 * We boost the priority of a VCPU that is runnable but not
1603 	 * currently running, because it got preempted by something
1604 	 * else and called schedule in __vcpu_run.  Hopefully that
1605 	 * VCPU is holding the lock that we need and will release it.
1606 	 * We approximate round-robin by starting at the last boosted VCPU.
1607 	 */
1608 	for (pass = 0; pass < 2 && !yielded; pass++) {
1609 		kvm_for_each_vcpu(i, vcpu, kvm) {
1610 			struct task_struct *task = NULL;
1611 			struct pid *pid;
1612 			if (!pass && i < last_boosted_vcpu) {
1613 				i = last_boosted_vcpu;
1614 				continue;
1615 			} else if (pass && i > last_boosted_vcpu)
1616 				break;
1617 			if (vcpu == me)
1618 				continue;
1619 			if (waitqueue_active(&vcpu->wq))
1620 				continue;
1621 			rcu_read_lock();
1622 			pid = rcu_dereference(vcpu->pid);
1623 			if (pid)
1624 				task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1625 			rcu_read_unlock();
1626 			if (!task)
1627 				continue;
1628 			if (task->flags & PF_VCPU) {
1629 				put_task_struct(task);
1630 				continue;
1631 			}
1632 			if (yield_to(task, 1)) {
1633 				put_task_struct(task);
1634 				kvm->last_boosted_vcpu = i;
1635 				yielded = 1;
1636 				break;
1637 			}
1638 			put_task_struct(task);
1639 		}
1640 	}
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1643 
kvm_vcpu_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1644 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1645 {
1646 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1647 	struct page *page;
1648 
1649 	if (vmf->pgoff == 0)
1650 		page = virt_to_page(vcpu->run);
1651 #ifdef CONFIG_X86
1652 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1653 		page = virt_to_page(vcpu->arch.pio_data);
1654 #endif
1655 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1656 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1657 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1658 #endif
1659 	else
1660 		return VM_FAULT_SIGBUS;
1661 	get_page(page);
1662 	vmf->page = page;
1663 	return 0;
1664 }
1665 
1666 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1667 	.fault = kvm_vcpu_fault,
1668 };
1669 
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)1670 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1671 {
1672 	vma->vm_ops = &kvm_vcpu_vm_ops;
1673 	return 0;
1674 }
1675 
kvm_vcpu_release(struct inode * inode,struct file * filp)1676 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1677 {
1678 	struct kvm_vcpu *vcpu = filp->private_data;
1679 
1680 	kvm_put_kvm(vcpu->kvm);
1681 	return 0;
1682 }
1683 
1684 static struct file_operations kvm_vcpu_fops = {
1685 	.release        = kvm_vcpu_release,
1686 	.unlocked_ioctl = kvm_vcpu_ioctl,
1687 #ifdef CONFIG_COMPAT
1688 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1689 #endif
1690 	.mmap           = kvm_vcpu_mmap,
1691 	.llseek		= noop_llseek,
1692 };
1693 
1694 /*
1695  * Allocates an inode for the vcpu.
1696  */
create_vcpu_fd(struct kvm_vcpu * vcpu)1697 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1698 {
1699 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1700 }
1701 
1702 /*
1703  * Creates some virtual cpus.  Good luck creating more than one.
1704  */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)1705 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1706 {
1707 	int r;
1708 	struct kvm_vcpu *vcpu, *v;
1709 
1710 	vcpu = kvm_arch_vcpu_create(kvm, id);
1711 	if (IS_ERR(vcpu))
1712 		return PTR_ERR(vcpu);
1713 
1714 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1715 
1716 	r = kvm_arch_vcpu_setup(vcpu);
1717 	if (r)
1718 		goto vcpu_destroy;
1719 
1720 	mutex_lock(&kvm->lock);
1721 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1722 		r = -EINVAL;
1723 		goto unlock_vcpu_destroy;
1724 	}
1725 
1726 	kvm_for_each_vcpu(r, v, kvm)
1727 		if (v->vcpu_id == id) {
1728 			r = -EEXIST;
1729 			goto unlock_vcpu_destroy;
1730 		}
1731 
1732 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1733 
1734 	/* Now it's all set up, let userspace reach it */
1735 	kvm_get_kvm(kvm);
1736 	r = create_vcpu_fd(vcpu);
1737 	if (r < 0) {
1738 		kvm_put_kvm(kvm);
1739 		goto unlock_vcpu_destroy;
1740 	}
1741 
1742 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1743 	smp_wmb();
1744 	atomic_inc(&kvm->online_vcpus);
1745 
1746 	mutex_unlock(&kvm->lock);
1747 	return r;
1748 
1749 unlock_vcpu_destroy:
1750 	mutex_unlock(&kvm->lock);
1751 vcpu_destroy:
1752 	kvm_arch_vcpu_destroy(vcpu);
1753 	return r;
1754 }
1755 
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)1756 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1757 {
1758 	if (sigset) {
1759 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1760 		vcpu->sigset_active = 1;
1761 		vcpu->sigset = *sigset;
1762 	} else
1763 		vcpu->sigset_active = 0;
1764 	return 0;
1765 }
1766 
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1767 static long kvm_vcpu_ioctl(struct file *filp,
1768 			   unsigned int ioctl, unsigned long arg)
1769 {
1770 	struct kvm_vcpu *vcpu = filp->private_data;
1771 	void __user *argp = (void __user *)arg;
1772 	int r;
1773 	struct kvm_fpu *fpu = NULL;
1774 	struct kvm_sregs *kvm_sregs = NULL;
1775 
1776 	if (vcpu->kvm->mm != current->mm)
1777 		return -EIO;
1778 
1779 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1780 	/*
1781 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1782 	 * so vcpu_load() would break it.
1783 	 */
1784 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1785 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1786 #endif
1787 
1788 
1789 	vcpu_load(vcpu);
1790 	switch (ioctl) {
1791 	case KVM_RUN:
1792 		r = -EINVAL;
1793 		if (arg)
1794 			goto out;
1795 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1796 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1797 		break;
1798 	case KVM_GET_REGS: {
1799 		struct kvm_regs *kvm_regs;
1800 
1801 		r = -ENOMEM;
1802 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1803 		if (!kvm_regs)
1804 			goto out;
1805 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1806 		if (r)
1807 			goto out_free1;
1808 		r = -EFAULT;
1809 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1810 			goto out_free1;
1811 		r = 0;
1812 out_free1:
1813 		kfree(kvm_regs);
1814 		break;
1815 	}
1816 	case KVM_SET_REGS: {
1817 		struct kvm_regs *kvm_regs;
1818 
1819 		r = -ENOMEM;
1820 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1821 		if (IS_ERR(kvm_regs)) {
1822 			r = PTR_ERR(kvm_regs);
1823 			goto out;
1824 		}
1825 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1826 		if (r)
1827 			goto out_free2;
1828 		r = 0;
1829 out_free2:
1830 		kfree(kvm_regs);
1831 		break;
1832 	}
1833 	case KVM_GET_SREGS: {
1834 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1835 		r = -ENOMEM;
1836 		if (!kvm_sregs)
1837 			goto out;
1838 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1839 		if (r)
1840 			goto out;
1841 		r = -EFAULT;
1842 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1843 			goto out;
1844 		r = 0;
1845 		break;
1846 	}
1847 	case KVM_SET_SREGS: {
1848 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1849 		if (IS_ERR(kvm_sregs)) {
1850 			r = PTR_ERR(kvm_sregs);
1851 			goto out;
1852 		}
1853 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1854 		if (r)
1855 			goto out;
1856 		r = 0;
1857 		break;
1858 	}
1859 	case KVM_GET_MP_STATE: {
1860 		struct kvm_mp_state mp_state;
1861 
1862 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1863 		if (r)
1864 			goto out;
1865 		r = -EFAULT;
1866 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1867 			goto out;
1868 		r = 0;
1869 		break;
1870 	}
1871 	case KVM_SET_MP_STATE: {
1872 		struct kvm_mp_state mp_state;
1873 
1874 		r = -EFAULT;
1875 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1876 			goto out;
1877 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1878 		if (r)
1879 			goto out;
1880 		r = 0;
1881 		break;
1882 	}
1883 	case KVM_TRANSLATE: {
1884 		struct kvm_translation tr;
1885 
1886 		r = -EFAULT;
1887 		if (copy_from_user(&tr, argp, sizeof tr))
1888 			goto out;
1889 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1890 		if (r)
1891 			goto out;
1892 		r = -EFAULT;
1893 		if (copy_to_user(argp, &tr, sizeof tr))
1894 			goto out;
1895 		r = 0;
1896 		break;
1897 	}
1898 	case KVM_SET_GUEST_DEBUG: {
1899 		struct kvm_guest_debug dbg;
1900 
1901 		r = -EFAULT;
1902 		if (copy_from_user(&dbg, argp, sizeof dbg))
1903 			goto out;
1904 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1905 		if (r)
1906 			goto out;
1907 		r = 0;
1908 		break;
1909 	}
1910 	case KVM_SET_SIGNAL_MASK: {
1911 		struct kvm_signal_mask __user *sigmask_arg = argp;
1912 		struct kvm_signal_mask kvm_sigmask;
1913 		sigset_t sigset, *p;
1914 
1915 		p = NULL;
1916 		if (argp) {
1917 			r = -EFAULT;
1918 			if (copy_from_user(&kvm_sigmask, argp,
1919 					   sizeof kvm_sigmask))
1920 				goto out;
1921 			r = -EINVAL;
1922 			if (kvm_sigmask.len != sizeof sigset)
1923 				goto out;
1924 			r = -EFAULT;
1925 			if (copy_from_user(&sigset, sigmask_arg->sigset,
1926 					   sizeof sigset))
1927 				goto out;
1928 			p = &sigset;
1929 		}
1930 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1931 		break;
1932 	}
1933 	case KVM_GET_FPU: {
1934 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1935 		r = -ENOMEM;
1936 		if (!fpu)
1937 			goto out;
1938 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1939 		if (r)
1940 			goto out;
1941 		r = -EFAULT;
1942 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1943 			goto out;
1944 		r = 0;
1945 		break;
1946 	}
1947 	case KVM_SET_FPU: {
1948 		fpu = memdup_user(argp, sizeof(*fpu));
1949 		if (IS_ERR(fpu)) {
1950 			r = PTR_ERR(fpu);
1951 			goto out;
1952 		}
1953 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1954 		if (r)
1955 			goto out;
1956 		r = 0;
1957 		break;
1958 	}
1959 	default:
1960 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1961 	}
1962 out:
1963 	vcpu_put(vcpu);
1964 	kfree(fpu);
1965 	kfree(kvm_sregs);
1966 	return r;
1967 }
1968 
1969 #ifdef CONFIG_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1970 static long kvm_vcpu_compat_ioctl(struct file *filp,
1971 				  unsigned int ioctl, unsigned long arg)
1972 {
1973 	struct kvm_vcpu *vcpu = filp->private_data;
1974 	void __user *argp = compat_ptr(arg);
1975 	int r;
1976 
1977 	if (vcpu->kvm->mm != current->mm)
1978 		return -EIO;
1979 
1980 	switch (ioctl) {
1981 	case KVM_SET_SIGNAL_MASK: {
1982 		struct kvm_signal_mask __user *sigmask_arg = argp;
1983 		struct kvm_signal_mask kvm_sigmask;
1984 		compat_sigset_t csigset;
1985 		sigset_t sigset;
1986 
1987 		if (argp) {
1988 			r = -EFAULT;
1989 			if (copy_from_user(&kvm_sigmask, argp,
1990 					   sizeof kvm_sigmask))
1991 				goto out;
1992 			r = -EINVAL;
1993 			if (kvm_sigmask.len != sizeof csigset)
1994 				goto out;
1995 			r = -EFAULT;
1996 			if (copy_from_user(&csigset, sigmask_arg->sigset,
1997 					   sizeof csigset))
1998 				goto out;
1999 		}
2000 		sigset_from_compat(&sigset, &csigset);
2001 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2002 		break;
2003 	}
2004 	default:
2005 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2006 	}
2007 
2008 out:
2009 	return r;
2010 }
2011 #endif
2012 
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2013 static long kvm_vm_ioctl(struct file *filp,
2014 			   unsigned int ioctl, unsigned long arg)
2015 {
2016 	struct kvm *kvm = filp->private_data;
2017 	void __user *argp = (void __user *)arg;
2018 	int r;
2019 
2020 	if (kvm->mm != current->mm)
2021 		return -EIO;
2022 	switch (ioctl) {
2023 	case KVM_CREATE_VCPU:
2024 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2025 		if (r < 0)
2026 			goto out;
2027 		break;
2028 	case KVM_SET_USER_MEMORY_REGION: {
2029 		struct kvm_userspace_memory_region kvm_userspace_mem;
2030 
2031 		r = -EFAULT;
2032 		if (copy_from_user(&kvm_userspace_mem, argp,
2033 						sizeof kvm_userspace_mem))
2034 			goto out;
2035 
2036 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2037 		if (r)
2038 			goto out;
2039 		break;
2040 	}
2041 	case KVM_GET_DIRTY_LOG: {
2042 		struct kvm_dirty_log log;
2043 
2044 		r = -EFAULT;
2045 		if (copy_from_user(&log, argp, sizeof log))
2046 			goto out;
2047 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2048 		if (r)
2049 			goto out;
2050 		break;
2051 	}
2052 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2053 	case KVM_REGISTER_COALESCED_MMIO: {
2054 		struct kvm_coalesced_mmio_zone zone;
2055 		r = -EFAULT;
2056 		if (copy_from_user(&zone, argp, sizeof zone))
2057 			goto out;
2058 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2059 		if (r)
2060 			goto out;
2061 		r = 0;
2062 		break;
2063 	}
2064 	case KVM_UNREGISTER_COALESCED_MMIO: {
2065 		struct kvm_coalesced_mmio_zone zone;
2066 		r = -EFAULT;
2067 		if (copy_from_user(&zone, argp, sizeof zone))
2068 			goto out;
2069 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2070 		if (r)
2071 			goto out;
2072 		r = 0;
2073 		break;
2074 	}
2075 #endif
2076 	case KVM_IRQFD: {
2077 		struct kvm_irqfd data;
2078 
2079 		r = -EFAULT;
2080 		if (copy_from_user(&data, argp, sizeof data))
2081 			goto out;
2082 		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2083 		break;
2084 	}
2085 	case KVM_IOEVENTFD: {
2086 		struct kvm_ioeventfd data;
2087 
2088 		r = -EFAULT;
2089 		if (copy_from_user(&data, argp, sizeof data))
2090 			goto out;
2091 		r = kvm_ioeventfd(kvm, &data);
2092 		break;
2093 	}
2094 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2095 	case KVM_SET_BOOT_CPU_ID:
2096 		r = 0;
2097 		mutex_lock(&kvm->lock);
2098 		if (atomic_read(&kvm->online_vcpus) != 0)
2099 			r = -EBUSY;
2100 		else
2101 			kvm->bsp_vcpu_id = arg;
2102 		mutex_unlock(&kvm->lock);
2103 		break;
2104 #endif
2105 	default:
2106 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2107 		if (r == -ENOTTY)
2108 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2109 	}
2110 out:
2111 	return r;
2112 }
2113 
2114 #ifdef CONFIG_COMPAT
2115 struct compat_kvm_dirty_log {
2116 	__u32 slot;
2117 	__u32 padding1;
2118 	union {
2119 		compat_uptr_t dirty_bitmap; /* one bit per page */
2120 		__u64 padding2;
2121 	};
2122 };
2123 
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2124 static long kvm_vm_compat_ioctl(struct file *filp,
2125 			   unsigned int ioctl, unsigned long arg)
2126 {
2127 	struct kvm *kvm = filp->private_data;
2128 	int r;
2129 
2130 	if (kvm->mm != current->mm)
2131 		return -EIO;
2132 	switch (ioctl) {
2133 	case KVM_GET_DIRTY_LOG: {
2134 		struct compat_kvm_dirty_log compat_log;
2135 		struct kvm_dirty_log log;
2136 
2137 		r = -EFAULT;
2138 		if (copy_from_user(&compat_log, (void __user *)arg,
2139 				   sizeof(compat_log)))
2140 			goto out;
2141 		log.slot	 = compat_log.slot;
2142 		log.padding1	 = compat_log.padding1;
2143 		log.padding2	 = compat_log.padding2;
2144 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2145 
2146 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2147 		if (r)
2148 			goto out;
2149 		break;
2150 	}
2151 	default:
2152 		r = kvm_vm_ioctl(filp, ioctl, arg);
2153 	}
2154 
2155 out:
2156 	return r;
2157 }
2158 #endif
2159 
kvm_vm_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2160 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2161 {
2162 	struct page *page[1];
2163 	unsigned long addr;
2164 	int npages;
2165 	gfn_t gfn = vmf->pgoff;
2166 	struct kvm *kvm = vma->vm_file->private_data;
2167 
2168 	addr = gfn_to_hva(kvm, gfn);
2169 	if (kvm_is_error_hva(addr))
2170 		return VM_FAULT_SIGBUS;
2171 
2172 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2173 				NULL);
2174 	if (unlikely(npages != 1))
2175 		return VM_FAULT_SIGBUS;
2176 
2177 	vmf->page = page[0];
2178 	return 0;
2179 }
2180 
2181 static const struct vm_operations_struct kvm_vm_vm_ops = {
2182 	.fault = kvm_vm_fault,
2183 };
2184 
kvm_vm_mmap(struct file * file,struct vm_area_struct * vma)2185 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2186 {
2187 	vma->vm_ops = &kvm_vm_vm_ops;
2188 	return 0;
2189 }
2190 
2191 static struct file_operations kvm_vm_fops = {
2192 	.release        = kvm_vm_release,
2193 	.unlocked_ioctl = kvm_vm_ioctl,
2194 #ifdef CONFIG_COMPAT
2195 	.compat_ioctl   = kvm_vm_compat_ioctl,
2196 #endif
2197 	.mmap           = kvm_vm_mmap,
2198 	.llseek		= noop_llseek,
2199 };
2200 
kvm_dev_ioctl_create_vm(void)2201 static int kvm_dev_ioctl_create_vm(void)
2202 {
2203 	int r;
2204 	struct kvm *kvm;
2205 
2206 	kvm = kvm_create_vm();
2207 	if (IS_ERR(kvm))
2208 		return PTR_ERR(kvm);
2209 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2210 	r = kvm_coalesced_mmio_init(kvm);
2211 	if (r < 0) {
2212 		kvm_put_kvm(kvm);
2213 		return r;
2214 	}
2215 #endif
2216 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2217 	if (r < 0)
2218 		kvm_put_kvm(kvm);
2219 
2220 	return r;
2221 }
2222 
kvm_dev_ioctl_check_extension_generic(long arg)2223 static long kvm_dev_ioctl_check_extension_generic(long arg)
2224 {
2225 	switch (arg) {
2226 	case KVM_CAP_USER_MEMORY:
2227 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2228 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2229 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2230 	case KVM_CAP_SET_BOOT_CPU_ID:
2231 #endif
2232 	case KVM_CAP_INTERNAL_ERROR_DATA:
2233 		return 1;
2234 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2235 	case KVM_CAP_IRQ_ROUTING:
2236 		return KVM_MAX_IRQ_ROUTES;
2237 #endif
2238 	default:
2239 		break;
2240 	}
2241 	return kvm_dev_ioctl_check_extension(arg);
2242 }
2243 
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2244 static long kvm_dev_ioctl(struct file *filp,
2245 			  unsigned int ioctl, unsigned long arg)
2246 {
2247 	long r = -EINVAL;
2248 
2249 	switch (ioctl) {
2250 	case KVM_GET_API_VERSION:
2251 		r = -EINVAL;
2252 		if (arg)
2253 			goto out;
2254 		r = KVM_API_VERSION;
2255 		break;
2256 	case KVM_CREATE_VM:
2257 		r = -EINVAL;
2258 		if (arg)
2259 			goto out;
2260 		r = kvm_dev_ioctl_create_vm();
2261 		break;
2262 	case KVM_CHECK_EXTENSION:
2263 		r = kvm_dev_ioctl_check_extension_generic(arg);
2264 		break;
2265 	case KVM_GET_VCPU_MMAP_SIZE:
2266 		r = -EINVAL;
2267 		if (arg)
2268 			goto out;
2269 		r = PAGE_SIZE;     /* struct kvm_run */
2270 #ifdef CONFIG_X86
2271 		r += PAGE_SIZE;    /* pio data page */
2272 #endif
2273 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2274 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2275 #endif
2276 		break;
2277 	case KVM_TRACE_ENABLE:
2278 	case KVM_TRACE_PAUSE:
2279 	case KVM_TRACE_DISABLE:
2280 		r = -EOPNOTSUPP;
2281 		break;
2282 	default:
2283 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2284 	}
2285 out:
2286 	return r;
2287 }
2288 
2289 static struct file_operations kvm_chardev_ops = {
2290 	.unlocked_ioctl = kvm_dev_ioctl,
2291 	.compat_ioctl   = kvm_dev_ioctl,
2292 	.llseek		= noop_llseek,
2293 };
2294 
2295 static struct miscdevice kvm_dev = {
2296 	KVM_MINOR,
2297 	"kvm",
2298 	&kvm_chardev_ops,
2299 };
2300 
hardware_enable_nolock(void * junk)2301 static void hardware_enable_nolock(void *junk)
2302 {
2303 	int cpu = raw_smp_processor_id();
2304 	int r;
2305 
2306 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2307 		return;
2308 
2309 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2310 
2311 	r = kvm_arch_hardware_enable(NULL);
2312 
2313 	if (r) {
2314 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2315 		atomic_inc(&hardware_enable_failed);
2316 		printk(KERN_INFO "kvm: enabling virtualization on "
2317 				 "CPU%d failed\n", cpu);
2318 	}
2319 }
2320 
hardware_enable(void * junk)2321 static void hardware_enable(void *junk)
2322 {
2323 	raw_spin_lock(&kvm_lock);
2324 	hardware_enable_nolock(junk);
2325 	raw_spin_unlock(&kvm_lock);
2326 }
2327 
hardware_disable_nolock(void * junk)2328 static void hardware_disable_nolock(void *junk)
2329 {
2330 	int cpu = raw_smp_processor_id();
2331 
2332 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2333 		return;
2334 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2335 	kvm_arch_hardware_disable(NULL);
2336 }
2337 
hardware_disable(void * junk)2338 static void hardware_disable(void *junk)
2339 {
2340 	raw_spin_lock(&kvm_lock);
2341 	hardware_disable_nolock(junk);
2342 	raw_spin_unlock(&kvm_lock);
2343 }
2344 
hardware_disable_all_nolock(void)2345 static void hardware_disable_all_nolock(void)
2346 {
2347 	BUG_ON(!kvm_usage_count);
2348 
2349 	kvm_usage_count--;
2350 	if (!kvm_usage_count)
2351 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2352 }
2353 
hardware_disable_all(void)2354 static void hardware_disable_all(void)
2355 {
2356 	raw_spin_lock(&kvm_lock);
2357 	hardware_disable_all_nolock();
2358 	raw_spin_unlock(&kvm_lock);
2359 }
2360 
hardware_enable_all(void)2361 static int hardware_enable_all(void)
2362 {
2363 	int r = 0;
2364 
2365 	raw_spin_lock(&kvm_lock);
2366 
2367 	kvm_usage_count++;
2368 	if (kvm_usage_count == 1) {
2369 		atomic_set(&hardware_enable_failed, 0);
2370 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2371 
2372 		if (atomic_read(&hardware_enable_failed)) {
2373 			hardware_disable_all_nolock();
2374 			r = -EBUSY;
2375 		}
2376 	}
2377 
2378 	raw_spin_unlock(&kvm_lock);
2379 
2380 	return r;
2381 }
2382 
kvm_cpu_hotplug(struct notifier_block * notifier,unsigned long val,void * v)2383 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2384 			   void *v)
2385 {
2386 	int cpu = (long)v;
2387 
2388 	if (!kvm_usage_count)
2389 		return NOTIFY_OK;
2390 
2391 	val &= ~CPU_TASKS_FROZEN;
2392 	switch (val) {
2393 	case CPU_DYING:
2394 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2395 		       cpu);
2396 		hardware_disable(NULL);
2397 		break;
2398 	case CPU_STARTING:
2399 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2400 		       cpu);
2401 		hardware_enable(NULL);
2402 		break;
2403 	}
2404 	return NOTIFY_OK;
2405 }
2406 
2407 
kvm_spurious_fault(void)2408 asmlinkage void kvm_spurious_fault(void)
2409 {
2410 	/* Fault while not rebooting.  We want the trace. */
2411 	BUG();
2412 }
2413 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2414 
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)2415 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2416 		      void *v)
2417 {
2418 	/*
2419 	 * Some (well, at least mine) BIOSes hang on reboot if
2420 	 * in vmx root mode.
2421 	 *
2422 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2423 	 */
2424 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2425 	kvm_rebooting = true;
2426 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2427 	return NOTIFY_OK;
2428 }
2429 
2430 static struct notifier_block kvm_reboot_notifier = {
2431 	.notifier_call = kvm_reboot,
2432 	.priority = 0,
2433 };
2434 
kvm_io_bus_destroy(struct kvm_io_bus * bus)2435 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2436 {
2437 	int i;
2438 
2439 	for (i = 0; i < bus->dev_count; i++) {
2440 		struct kvm_io_device *pos = bus->range[i].dev;
2441 
2442 		kvm_iodevice_destructor(pos);
2443 	}
2444 	kfree(bus);
2445 }
2446 
kvm_io_bus_sort_cmp(const void * p1,const void * p2)2447 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2448 {
2449 	const struct kvm_io_range *r1 = p1;
2450 	const struct kvm_io_range *r2 = p2;
2451 
2452 	if (r1->addr < r2->addr)
2453 		return -1;
2454 	if (r1->addr + r1->len > r2->addr + r2->len)
2455 		return 1;
2456 	return 0;
2457 }
2458 
kvm_io_bus_insert_dev(struct kvm_io_bus * bus,struct kvm_io_device * dev,gpa_t addr,int len)2459 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2460 			  gpa_t addr, int len)
2461 {
2462 	if (bus->dev_count == NR_IOBUS_DEVS)
2463 		return -ENOSPC;
2464 
2465 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2466 		.addr = addr,
2467 		.len = len,
2468 		.dev = dev,
2469 	};
2470 
2471 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2472 		kvm_io_bus_sort_cmp, NULL);
2473 
2474 	return 0;
2475 }
2476 
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)2477 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2478 			     gpa_t addr, int len)
2479 {
2480 	struct kvm_io_range *range, key;
2481 	int off;
2482 
2483 	key = (struct kvm_io_range) {
2484 		.addr = addr,
2485 		.len = len,
2486 	};
2487 
2488 	range = bsearch(&key, bus->range, bus->dev_count,
2489 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2490 	if (range == NULL)
2491 		return -ENOENT;
2492 
2493 	off = range - bus->range;
2494 
2495 	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2496 		off--;
2497 
2498 	return off;
2499 }
2500 
2501 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)2502 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2503 		     int len, const void *val)
2504 {
2505 	int idx;
2506 	struct kvm_io_bus *bus;
2507 	struct kvm_io_range range;
2508 
2509 	range = (struct kvm_io_range) {
2510 		.addr = addr,
2511 		.len = len,
2512 	};
2513 
2514 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2515 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2516 	if (idx < 0)
2517 		return -EOPNOTSUPP;
2518 
2519 	while (idx < bus->dev_count &&
2520 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2521 		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2522 			return 0;
2523 		idx++;
2524 	}
2525 
2526 	return -EOPNOTSUPP;
2527 }
2528 
2529 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)2530 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2531 		    int len, void *val)
2532 {
2533 	int idx;
2534 	struct kvm_io_bus *bus;
2535 	struct kvm_io_range range;
2536 
2537 	range = (struct kvm_io_range) {
2538 		.addr = addr,
2539 		.len = len,
2540 	};
2541 
2542 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2543 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2544 	if (idx < 0)
2545 		return -EOPNOTSUPP;
2546 
2547 	while (idx < bus->dev_count &&
2548 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2549 		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2550 			return 0;
2551 		idx++;
2552 	}
2553 
2554 	return -EOPNOTSUPP;
2555 }
2556 
2557 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)2558 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2559 			    int len, struct kvm_io_device *dev)
2560 {
2561 	struct kvm_io_bus *new_bus, *bus;
2562 
2563 	bus = kvm->buses[bus_idx];
2564 	if (bus->dev_count > NR_IOBUS_DEVS-1)
2565 		return -ENOSPC;
2566 
2567 	new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
2568 	if (!new_bus)
2569 		return -ENOMEM;
2570 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2571 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2572 	synchronize_srcu_expedited(&kvm->srcu);
2573 	kfree(bus);
2574 
2575 	return 0;
2576 }
2577 
2578 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)2579 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2580 			      struct kvm_io_device *dev)
2581 {
2582 	int i, r;
2583 	struct kvm_io_bus *new_bus, *bus;
2584 
2585 	bus = kvm->buses[bus_idx];
2586 
2587 	new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL);
2588 	if (!new_bus)
2589 		return -ENOMEM;
2590 
2591 	r = -ENOENT;
2592 	for (i = 0; i < new_bus->dev_count; i++)
2593 		if (new_bus->range[i].dev == dev) {
2594 			r = 0;
2595 			new_bus->dev_count--;
2596 			new_bus->range[i] = new_bus->range[new_bus->dev_count];
2597 			sort(new_bus->range, new_bus->dev_count,
2598 			     sizeof(struct kvm_io_range),
2599 			     kvm_io_bus_sort_cmp, NULL);
2600 			break;
2601 		}
2602 
2603 	if (r) {
2604 		kfree(new_bus);
2605 		return r;
2606 	}
2607 
2608 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2609 	synchronize_srcu_expedited(&kvm->srcu);
2610 	kfree(bus);
2611 	return r;
2612 }
2613 
2614 static struct notifier_block kvm_cpu_notifier = {
2615 	.notifier_call = kvm_cpu_hotplug,
2616 };
2617 
vm_stat_get(void * _offset,u64 * val)2618 static int vm_stat_get(void *_offset, u64 *val)
2619 {
2620 	unsigned offset = (long)_offset;
2621 	struct kvm *kvm;
2622 
2623 	*val = 0;
2624 	raw_spin_lock(&kvm_lock);
2625 	list_for_each_entry(kvm, &vm_list, vm_list)
2626 		*val += *(u32 *)((void *)kvm + offset);
2627 	raw_spin_unlock(&kvm_lock);
2628 	return 0;
2629 }
2630 
2631 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2632 
vcpu_stat_get(void * _offset,u64 * val)2633 static int vcpu_stat_get(void *_offset, u64 *val)
2634 {
2635 	unsigned offset = (long)_offset;
2636 	struct kvm *kvm;
2637 	struct kvm_vcpu *vcpu;
2638 	int i;
2639 
2640 	*val = 0;
2641 	raw_spin_lock(&kvm_lock);
2642 	list_for_each_entry(kvm, &vm_list, vm_list)
2643 		kvm_for_each_vcpu(i, vcpu, kvm)
2644 			*val += *(u32 *)((void *)vcpu + offset);
2645 
2646 	raw_spin_unlock(&kvm_lock);
2647 	return 0;
2648 }
2649 
2650 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2651 
2652 static const struct file_operations *stat_fops[] = {
2653 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2654 	[KVM_STAT_VM]   = &vm_stat_fops,
2655 };
2656 
kvm_init_debug(void)2657 static int kvm_init_debug(void)
2658 {
2659 	int r = -EFAULT;
2660 	struct kvm_stats_debugfs_item *p;
2661 
2662 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2663 	if (kvm_debugfs_dir == NULL)
2664 		goto out;
2665 
2666 	for (p = debugfs_entries; p->name; ++p) {
2667 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2668 						(void *)(long)p->offset,
2669 						stat_fops[p->kind]);
2670 		if (p->dentry == NULL)
2671 			goto out_dir;
2672 	}
2673 
2674 	return 0;
2675 
2676 out_dir:
2677 	debugfs_remove_recursive(kvm_debugfs_dir);
2678 out:
2679 	return r;
2680 }
2681 
kvm_exit_debug(void)2682 static void kvm_exit_debug(void)
2683 {
2684 	struct kvm_stats_debugfs_item *p;
2685 
2686 	for (p = debugfs_entries; p->name; ++p)
2687 		debugfs_remove(p->dentry);
2688 	debugfs_remove(kvm_debugfs_dir);
2689 }
2690 
kvm_suspend(void)2691 static int kvm_suspend(void)
2692 {
2693 	if (kvm_usage_count)
2694 		hardware_disable_nolock(NULL);
2695 	return 0;
2696 }
2697 
kvm_resume(void)2698 static void kvm_resume(void)
2699 {
2700 	if (kvm_usage_count) {
2701 		WARN_ON(raw_spin_is_locked(&kvm_lock));
2702 		hardware_enable_nolock(NULL);
2703 	}
2704 }
2705 
2706 static struct syscore_ops kvm_syscore_ops = {
2707 	.suspend = kvm_suspend,
2708 	.resume = kvm_resume,
2709 };
2710 
2711 struct page *bad_page;
2712 pfn_t bad_pfn;
2713 
2714 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)2715 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2716 {
2717 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2718 }
2719 
kvm_sched_in(struct preempt_notifier * pn,int cpu)2720 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2721 {
2722 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2723 
2724 	kvm_arch_vcpu_load(vcpu, cpu);
2725 }
2726 
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)2727 static void kvm_sched_out(struct preempt_notifier *pn,
2728 			  struct task_struct *next)
2729 {
2730 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2731 
2732 	kvm_arch_vcpu_put(vcpu);
2733 }
2734 
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)2735 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2736 		  struct module *module)
2737 {
2738 	int r;
2739 	int cpu;
2740 
2741 	r = kvm_arch_init(opaque);
2742 	if (r)
2743 		goto out_fail;
2744 
2745 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2746 
2747 	if (bad_page == NULL) {
2748 		r = -ENOMEM;
2749 		goto out;
2750 	}
2751 
2752 	bad_pfn = page_to_pfn(bad_page);
2753 
2754 	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2755 
2756 	if (hwpoison_page == NULL) {
2757 		r = -ENOMEM;
2758 		goto out_free_0;
2759 	}
2760 
2761 	hwpoison_pfn = page_to_pfn(hwpoison_page);
2762 
2763 	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2764 
2765 	if (fault_page == NULL) {
2766 		r = -ENOMEM;
2767 		goto out_free_0;
2768 	}
2769 
2770 	fault_pfn = page_to_pfn(fault_page);
2771 
2772 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2773 		r = -ENOMEM;
2774 		goto out_free_0;
2775 	}
2776 
2777 	r = kvm_arch_hardware_setup();
2778 	if (r < 0)
2779 		goto out_free_0a;
2780 
2781 	for_each_online_cpu(cpu) {
2782 		smp_call_function_single(cpu,
2783 				kvm_arch_check_processor_compat,
2784 				&r, 1);
2785 		if (r < 0)
2786 			goto out_free_1;
2787 	}
2788 
2789 	r = register_cpu_notifier(&kvm_cpu_notifier);
2790 	if (r)
2791 		goto out_free_2;
2792 	register_reboot_notifier(&kvm_reboot_notifier);
2793 
2794 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2795 	if (!vcpu_align)
2796 		vcpu_align = __alignof__(struct kvm_vcpu);
2797 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2798 					   0, NULL);
2799 	if (!kvm_vcpu_cache) {
2800 		r = -ENOMEM;
2801 		goto out_free_3;
2802 	}
2803 
2804 	r = kvm_async_pf_init();
2805 	if (r)
2806 		goto out_free;
2807 
2808 	kvm_chardev_ops.owner = module;
2809 	kvm_vm_fops.owner = module;
2810 	kvm_vcpu_fops.owner = module;
2811 
2812 	r = misc_register(&kvm_dev);
2813 	if (r) {
2814 		printk(KERN_ERR "kvm: misc device register failed\n");
2815 		goto out_unreg;
2816 	}
2817 
2818 	register_syscore_ops(&kvm_syscore_ops);
2819 
2820 	kvm_preempt_ops.sched_in = kvm_sched_in;
2821 	kvm_preempt_ops.sched_out = kvm_sched_out;
2822 
2823 	r = kvm_init_debug();
2824 	if (r) {
2825 		printk(KERN_ERR "kvm: create debugfs files failed\n");
2826 		goto out_undebugfs;
2827 	}
2828 
2829 	return 0;
2830 
2831 out_undebugfs:
2832 	unregister_syscore_ops(&kvm_syscore_ops);
2833 out_unreg:
2834 	kvm_async_pf_deinit();
2835 out_free:
2836 	kmem_cache_destroy(kvm_vcpu_cache);
2837 out_free_3:
2838 	unregister_reboot_notifier(&kvm_reboot_notifier);
2839 	unregister_cpu_notifier(&kvm_cpu_notifier);
2840 out_free_2:
2841 out_free_1:
2842 	kvm_arch_hardware_unsetup();
2843 out_free_0a:
2844 	free_cpumask_var(cpus_hardware_enabled);
2845 out_free_0:
2846 	if (fault_page)
2847 		__free_page(fault_page);
2848 	if (hwpoison_page)
2849 		__free_page(hwpoison_page);
2850 	__free_page(bad_page);
2851 out:
2852 	kvm_arch_exit();
2853 out_fail:
2854 	return r;
2855 }
2856 EXPORT_SYMBOL_GPL(kvm_init);
2857 
kvm_exit(void)2858 void kvm_exit(void)
2859 {
2860 	kvm_exit_debug();
2861 	misc_deregister(&kvm_dev);
2862 	kmem_cache_destroy(kvm_vcpu_cache);
2863 	kvm_async_pf_deinit();
2864 	unregister_syscore_ops(&kvm_syscore_ops);
2865 	unregister_reboot_notifier(&kvm_reboot_notifier);
2866 	unregister_cpu_notifier(&kvm_cpu_notifier);
2867 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2868 	kvm_arch_hardware_unsetup();
2869 	kvm_arch_exit();
2870 	free_cpumask_var(cpus_hardware_enabled);
2871 	__free_page(hwpoison_page);
2872 	__free_page(bad_page);
2873 }
2874 EXPORT_SYMBOL_GPL(kvm_exit);
2875