xref: /qemu/hw/intc/arm_gicv3_kvm.c (revision 06b40d250ecfa1633209c2e431a7a38acfd03a98)
1  /*
2   * ARM Generic Interrupt Controller using KVM in-kernel support
3   *
4   * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5   * Written by Pavel Fedin
6   * Based on vGICv2 code by Peter Maydell
7   *
8   * This program is free software; you can redistribute it and/or modify
9   * it under the terms of the GNU General Public License as published by
10   * the Free Software Foundation, either version 2 of the License, or
11   * (at your option) any later version.
12   *
13   * This program is distributed in the hope that it will be useful,
14   * but WITHOUT ANY WARRANTY; without even the implied warranty of
15   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   * GNU General Public License for more details.
17   *
18   * You should have received a copy of the GNU General Public License along
19   * with this program; if not, see <http://www.gnu.org/licenses/>.
20   */
21  
22  #include "qemu/osdep.h"
23  #include "qapi/error.h"
24  #include "hw/intc/arm_gicv3_common.h"
25  #include "qemu/error-report.h"
26  #include "qemu/module.h"
27  #include "system/kvm.h"
28  #include "system/runstate.h"
29  #include "kvm_arm.h"
30  #include "gicv3_internal.h"
31  #include "vgic_common.h"
32  #include "migration/blocker.h"
33  #include "qom/object.h"
34  #include "target/arm/cpregs.h"
35  
36  
37  #ifdef DEBUG_GICV3_KVM
38  #define DPRINTF(fmt, ...) \
39      do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
40  #else
41  #define DPRINTF(fmt, ...) \
42      do { } while (0)
43  #endif
44  
45  #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
46  typedef struct KVMARMGICv3Class KVMARMGICv3Class;
47  /* This is reusing the GICv3State typedef from ARM_GICV3_ITS_COMMON */
48  DECLARE_OBJ_CHECKERS(GICv3State, KVMARMGICv3Class,
49                       KVM_ARM_GICV3, TYPE_KVM_ARM_GICV3)
50  
51  #define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
52                               (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
53                                ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
54                                ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
55                                ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
56                                ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
57  
58  #define ICC_PMR_EL1     \
59      KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
60  #define ICC_BPR0_EL1    \
61      KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
62  #define ICC_AP0R_EL1(n) \
63      KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
64  #define ICC_AP1R_EL1(n) \
65      KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
66  #define ICC_BPR1_EL1    \
67      KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
68  #define ICC_CTLR_EL1    \
69      KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
70  #define ICC_SRE_EL1 \
71      KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
72  #define ICC_IGRPEN0_EL1 \
73      KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
74  #define ICC_IGRPEN1_EL1 \
75      KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
76  
77  struct KVMARMGICv3Class {
78      ARMGICv3CommonClass parent_class;
79      DeviceRealize parent_realize;
80      ResettablePhases parent_phases;
81  };
82  
kvm_arm_gicv3_set_irq(void * opaque,int irq,int level)83  static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
84  {
85      GICv3State *s = (GICv3State *)opaque;
86  
87      kvm_arm_gic_set_irq(s->num_irq, irq, level);
88  }
89  
90  #define KVM_VGIC_ATTR(reg, typer) \
91      ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
92  
kvm_gicd_access(GICv3State * s,int offset,uint32_t * val,bool write)93  static inline void kvm_gicd_access(GICv3State *s, int offset,
94                                     uint32_t *val, bool write)
95  {
96      kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
97                        KVM_VGIC_ATTR(offset, 0),
98                        val, write, &error_abort);
99  }
100  
kvm_gicr_access(GICv3State * s,int offset,int cpu,uint32_t * val,bool write)101  static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
102                                     uint32_t *val, bool write)
103  {
104      kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
105                        KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
106                        val, write, &error_abort);
107  }
108  
kvm_gicc_access(GICv3State * s,uint64_t reg,int cpu,uint64_t * val,bool write)109  static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
110                                     uint64_t *val, bool write)
111  {
112      kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
113                        KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
114                        val, write, &error_abort);
115  }
116  
kvm_gic_line_level_access(GICv3State * s,int irq,int cpu,uint32_t * val,bool write)117  static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
118                                               uint32_t *val, bool write)
119  {
120      kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
121                        KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
122                        (VGIC_LEVEL_INFO_LINE_LEVEL <<
123                         KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
124                        val, write, &error_abort);
125  }
126  
127  /* Loop through each distributor IRQ related register; since bits
128   * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
129   * is enabled, we skip those.
130   */
131  #define for_each_dist_irq_reg(_irq, _max, _field_width) \
132      for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
133  
kvm_dist_get_priority(GICv3State * s,uint32_t offset,uint8_t * bmp)134  static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
135  {
136      uint32_t reg, *field;
137      int irq;
138  
139      /* For the KVM GICv3, affinity routing is always enabled, and the first 8
140       * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
141       * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
142       * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
143       * offset.
144       */
145      field = (uint32_t *)(bmp + GIC_INTERNAL);
146      offset += (GIC_INTERNAL * 8) / 8;
147      for_each_dist_irq_reg(irq, s->num_irq, 8) {
148          kvm_gicd_access(s, offset, &reg, false);
149          *field = reg;
150          offset += 4;
151          field++;
152      }
153  }
154  
kvm_dist_put_priority(GICv3State * s,uint32_t offset,uint8_t * bmp)155  static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
156  {
157      uint32_t reg, *field;
158      int irq;
159  
160      /* For the KVM GICv3, affinity routing is always enabled, and the first 8
161       * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
162       * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
163       * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
164       * offset.
165       */
166      field = (uint32_t *)(bmp + GIC_INTERNAL);
167      offset += (GIC_INTERNAL * 8) / 8;
168      for_each_dist_irq_reg(irq, s->num_irq, 8) {
169          reg = *field;
170          kvm_gicd_access(s, offset, &reg, true);
171          offset += 4;
172          field++;
173      }
174  }
175  
kvm_dist_get_edge_trigger(GICv3State * s,uint32_t offset,uint32_t * bmp)176  static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
177                                        uint32_t *bmp)
178  {
179      uint32_t reg;
180      int irq;
181  
182      /* For the KVM GICv3, affinity routing is always enabled, and the first 2
183       * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
184       * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
185       * them. So it should increase the offset to skip GIC_INTERNAL irqs.
186       * This matches the for_each_dist_irq_reg() macro which also skips the
187       * first GIC_INTERNAL irqs.
188       */
189      offset += (GIC_INTERNAL * 2) / 8;
190      for_each_dist_irq_reg(irq, s->num_irq, 2) {
191          kvm_gicd_access(s, offset, &reg, false);
192          reg = half_unshuffle32(reg >> 1);
193          if (irq % 32 != 0) {
194              reg = (reg << 16);
195          }
196          *gic_bmp_ptr32(bmp, irq) |=  reg;
197          offset += 4;
198      }
199  }
200  
kvm_dist_put_edge_trigger(GICv3State * s,uint32_t offset,uint32_t * bmp)201  static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
202                                        uint32_t *bmp)
203  {
204      uint32_t reg;
205      int irq;
206  
207      /* For the KVM GICv3, affinity routing is always enabled, and the first 2
208       * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
209       * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
210       * them. So it should increase the offset to skip GIC_INTERNAL irqs.
211       * This matches the for_each_dist_irq_reg() macro which also skips the
212       * first GIC_INTERNAL irqs.
213       */
214      offset += (GIC_INTERNAL * 2) / 8;
215      for_each_dist_irq_reg(irq, s->num_irq, 2) {
216          reg = *gic_bmp_ptr32(bmp, irq);
217          if (irq % 32 != 0) {
218              reg = (reg & 0xffff0000) >> 16;
219          } else {
220              reg = reg & 0xffff;
221          }
222          reg = half_shuffle32(reg) << 1;
223          kvm_gicd_access(s, offset, &reg, true);
224          offset += 4;
225      }
226  }
227  
kvm_gic_get_line_level_bmp(GICv3State * s,uint32_t * bmp)228  static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
229  {
230      uint32_t reg;
231      int irq;
232  
233      for_each_dist_irq_reg(irq, s->num_irq, 1) {
234          kvm_gic_line_level_access(s, irq, 0, &reg, false);
235          *gic_bmp_ptr32(bmp, irq) = reg;
236      }
237  }
238  
kvm_gic_put_line_level_bmp(GICv3State * s,uint32_t * bmp)239  static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
240  {
241      uint32_t reg;
242      int irq;
243  
244      for_each_dist_irq_reg(irq, s->num_irq, 1) {
245          reg = *gic_bmp_ptr32(bmp, irq);
246          kvm_gic_line_level_access(s, irq, 0, &reg, true);
247      }
248  }
249  
250  /* Read a bitmap register group from the kernel VGIC. */
kvm_dist_getbmp(GICv3State * s,uint32_t offset,uint32_t * bmp)251  static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
252  {
253      uint32_t reg;
254      int irq;
255  
256      /* For the KVM GICv3, affinity routing is always enabled, and the
257       * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
258       * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
259       * functionality is replaced by the GICR registers. It doesn't need to sync
260       * them. So it should increase the offset to skip GIC_INTERNAL irqs.
261       * This matches the for_each_dist_irq_reg() macro which also skips the
262       * first GIC_INTERNAL irqs.
263       */
264      offset += (GIC_INTERNAL * 1) / 8;
265      for_each_dist_irq_reg(irq, s->num_irq, 1) {
266          kvm_gicd_access(s, offset, &reg, false);
267          *gic_bmp_ptr32(bmp, irq) = reg;
268          offset += 4;
269      }
270  }
271  
kvm_dist_putbmp(GICv3State * s,uint32_t offset,uint32_t clroffset,uint32_t * bmp)272  static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
273                              uint32_t clroffset, uint32_t *bmp)
274  {
275      uint32_t reg;
276      int irq;
277  
278      /* For the KVM GICv3, affinity routing is always enabled, and the
279       * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
280       * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
281       * functionality is replaced by the GICR registers. It doesn't need to sync
282       * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
283       * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
284       * first GIC_INTERNAL irqs.
285       */
286      offset += (GIC_INTERNAL * 1) / 8;
287      if (clroffset != 0) {
288          clroffset += (GIC_INTERNAL * 1) / 8;
289      }
290  
291      for_each_dist_irq_reg(irq, s->num_irq, 1) {
292          /* If this bitmap is a set/clear register pair, first write to the
293           * clear-reg to clear all bits before using the set-reg to write
294           * the 1 bits.
295           */
296          if (clroffset != 0) {
297              reg = 0;
298              kvm_gicd_access(s, clroffset, &reg, true);
299              clroffset += 4;
300          }
301          reg = *gic_bmp_ptr32(bmp, irq);
302          kvm_gicd_access(s, offset, &reg, true);
303          offset += 4;
304      }
305  }
306  
kvm_arm_gicv3_check(GICv3State * s)307  static void kvm_arm_gicv3_check(GICv3State *s)
308  {
309      uint32_t reg;
310      uint32_t num_irq;
311  
312      /* Sanity checking s->num_irq */
313      kvm_gicd_access(s, GICD_TYPER, &reg, false);
314      num_irq = ((reg & 0x1f) + 1) * 32;
315  
316      if (num_irq < s->num_irq) {
317          error_report("Model requests %u IRQs, but kernel supports max %u",
318                       s->num_irq, num_irq);
319          abort();
320      }
321  }
322  
kvm_arm_gicv3_put(GICv3State * s)323  static void kvm_arm_gicv3_put(GICv3State *s)
324  {
325      uint32_t regl, regh, reg;
326      uint64_t reg64, redist_typer;
327      int ncpu, i;
328  
329      kvm_arm_gicv3_check(s);
330  
331      kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
332      kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
333      redist_typer = ((uint64_t)regh << 32) | regl;
334  
335      reg = s->gicd_ctlr;
336      kvm_gicd_access(s, GICD_CTLR, &reg, true);
337  
338      if (redist_typer & GICR_TYPER_PLPIS) {
339          /*
340           * Restore base addresses before LPIs are potentially enabled by
341           * GICR_CTLR write
342           */
343          for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
344              GICv3CPUState *c = &s->cpu[ncpu];
345  
346              reg64 = c->gicr_propbaser;
347              regl = (uint32_t)reg64;
348              kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
349              regh = (uint32_t)(reg64 >> 32);
350              kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
351  
352              reg64 = c->gicr_pendbaser;
353              regl = (uint32_t)reg64;
354              kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
355              regh = (uint32_t)(reg64 >> 32);
356              kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
357          }
358      }
359  
360      /* Redistributor state (one per CPU) */
361  
362      for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
363          GICv3CPUState *c = &s->cpu[ncpu];
364  
365          reg = c->gicr_ctlr;
366          kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
367  
368          reg = c->gicr_statusr[GICV3_NS];
369          kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
370  
371          reg = c->gicr_waker;
372          kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
373  
374          reg = c->gicr_igroupr0;
375          kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
376  
377          reg = ~0;
378          kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
379          reg = c->gicr_ienabler0;
380          kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
381  
382          /* Restore config before pending so we treat level/edge correctly */
383          reg = half_shuffle32(c->edge_trigger >> 16) << 1;
384          kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
385  
386          reg = c->level;
387          kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
388  
389          reg = ~0;
390          kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
391          reg = c->gicr_ipendr0;
392          kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
393  
394          reg = ~0;
395          kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
396          reg = c->gicr_iactiver0;
397          kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
398  
399          for (i = 0; i < GIC_INTERNAL; i += 4) {
400              reg = c->gicr_ipriorityr[i] |
401                  (c->gicr_ipriorityr[i + 1] << 8) |
402                  (c->gicr_ipriorityr[i + 2] << 16) |
403                  (c->gicr_ipriorityr[i + 3] << 24);
404              kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
405          }
406      }
407  
408      /* Distributor state (shared between all CPUs */
409      reg = s->gicd_statusr[GICV3_NS];
410      kvm_gicd_access(s, GICD_STATUSR, &reg, true);
411  
412      /* s->enable bitmap -> GICD_ISENABLERn */
413      kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
414  
415      /* s->group bitmap -> GICD_IGROUPRn */
416      kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
417  
418      /* Restore targets before pending to ensure the pending state is set on
419       * the appropriate CPU interfaces in the kernel
420       */
421  
422      /* s->gicd_irouter[irq] -> GICD_IROUTERn
423       * We can't use kvm_dist_put() here because the registers are 64-bit
424       */
425      for (i = GIC_INTERNAL; i < s->num_irq; i++) {
426          uint32_t offset;
427  
428          offset = GICD_IROUTER + (sizeof(uint32_t) * i);
429          reg = (uint32_t)s->gicd_irouter[i];
430          kvm_gicd_access(s, offset, &reg, true);
431  
432          offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
433          reg = (uint32_t)(s->gicd_irouter[i] >> 32);
434          kvm_gicd_access(s, offset, &reg, true);
435      }
436  
437      /* s->trigger bitmap -> GICD_ICFGRn
438       * (restore configuration registers before pending IRQs so we treat
439       * level/edge correctly)
440       */
441      kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
442  
443      /* s->level bitmap ->  line_level */
444      kvm_gic_put_line_level_bmp(s, s->level);
445  
446      /* s->pending bitmap -> GICD_ISPENDRn */
447      kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
448  
449      /* s->active bitmap -> GICD_ISACTIVERn */
450      kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
451  
452      /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
453      kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
454  
455      /* CPU Interface state (one per CPU) */
456  
457      for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
458          GICv3CPUState *c = &s->cpu[ncpu];
459          int num_pri_bits;
460  
461          kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
462          kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
463                          &c->icc_ctlr_el1[GICV3_NS], true);
464          kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
465                          &c->icc_igrpen[GICV3_G0], true);
466          kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
467                          &c->icc_igrpen[GICV3_G1NS], true);
468          kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
469          kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
470          kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
471  
472          num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
473                          ICC_CTLR_EL1_PRIBITS_MASK) >>
474                          ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
475  
476          switch (num_pri_bits) {
477          case 7:
478              reg64 = c->icc_apr[GICV3_G0][3];
479              kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
480              reg64 = c->icc_apr[GICV3_G0][2];
481              kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
482              /* fall through */
483          case 6:
484              reg64 = c->icc_apr[GICV3_G0][1];
485              kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
486              /* fall through */
487          default:
488              reg64 = c->icc_apr[GICV3_G0][0];
489              kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
490          }
491  
492          switch (num_pri_bits) {
493          case 7:
494              reg64 = c->icc_apr[GICV3_G1NS][3];
495              kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
496              reg64 = c->icc_apr[GICV3_G1NS][2];
497              kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
498              /* fall through */
499          case 6:
500              reg64 = c->icc_apr[GICV3_G1NS][1];
501              kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
502              /* fall through */
503          default:
504              reg64 = c->icc_apr[GICV3_G1NS][0];
505              kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
506          }
507      }
508  }
509  
kvm_arm_gicv3_get(GICv3State * s)510  static void kvm_arm_gicv3_get(GICv3State *s)
511  {
512      uint32_t regl, regh, reg;
513      uint64_t reg64, redist_typer;
514      int ncpu, i;
515  
516      kvm_arm_gicv3_check(s);
517  
518      kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
519      kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
520      redist_typer = ((uint64_t)regh << 32) | regl;
521  
522      kvm_gicd_access(s, GICD_CTLR, &reg, false);
523      s->gicd_ctlr = reg;
524  
525      /* Redistributor state (one per CPU) */
526  
527      for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
528          GICv3CPUState *c = &s->cpu[ncpu];
529  
530          kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
531          c->gicr_ctlr = reg;
532  
533          kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
534          c->gicr_statusr[GICV3_NS] = reg;
535  
536          kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
537          c->gicr_waker = reg;
538  
539          kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
540          c->gicr_igroupr0 = reg;
541          kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
542          c->gicr_ienabler0 = reg;
543          kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
544          c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
545          kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
546          c->level = reg;
547          kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
548          c->gicr_ipendr0 = reg;
549          kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
550          c->gicr_iactiver0 = reg;
551  
552          for (i = 0; i < GIC_INTERNAL; i += 4) {
553              kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
554              c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
555              c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
556              c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
557              c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
558          }
559      }
560  
561      if (redist_typer & GICR_TYPER_PLPIS) {
562          for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
563              GICv3CPUState *c = &s->cpu[ncpu];
564  
565              kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
566              kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
567              c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
568  
569              kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
570              kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
571              c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
572          }
573      }
574  
575      /* Distributor state (shared between all CPUs */
576  
577      kvm_gicd_access(s, GICD_STATUSR, &reg, false);
578      s->gicd_statusr[GICV3_NS] = reg;
579  
580      /* GICD_IGROUPRn -> s->group bitmap */
581      kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
582  
583      /* GICD_ISENABLERn -> s->enabled bitmap */
584      kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
585  
586      /* Line level of irq */
587      kvm_gic_get_line_level_bmp(s, s->level);
588      /* GICD_ISPENDRn -> s->pending bitmap */
589      kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
590  
591      /* GICD_ISACTIVERn -> s->active bitmap */
592      kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
593  
594      /* GICD_ICFGRn -> s->trigger bitmap */
595      kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
596  
597      /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
598      kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
599  
600      /* GICD_IROUTERn -> s->gicd_irouter[irq] */
601      for (i = GIC_INTERNAL; i < s->num_irq; i++) {
602          uint32_t offset;
603  
604          offset = GICD_IROUTER + (sizeof(uint32_t) * i);
605          kvm_gicd_access(s, offset, &regl, false);
606          offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
607          kvm_gicd_access(s, offset, &regh, false);
608          s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
609      }
610  
611      /*****************************************************************
612       * CPU Interface(s) State
613       */
614  
615      for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
616          GICv3CPUState *c = &s->cpu[ncpu];
617          int num_pri_bits;
618  
619          kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
620          kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
621                          &c->icc_ctlr_el1[GICV3_NS], false);
622          kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
623                          &c->icc_igrpen[GICV3_G0], false);
624          kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
625                          &c->icc_igrpen[GICV3_G1NS], false);
626          kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
627          kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
628          kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
629          num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
630                          ICC_CTLR_EL1_PRIBITS_MASK) >>
631                          ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
632  
633          switch (num_pri_bits) {
634          case 7:
635              kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
636              c->icc_apr[GICV3_G0][3] = reg64;
637              kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
638              c->icc_apr[GICV3_G0][2] = reg64;
639              /* fall through */
640          case 6:
641              kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
642              c->icc_apr[GICV3_G0][1] = reg64;
643              /* fall through */
644          default:
645              kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
646              c->icc_apr[GICV3_G0][0] = reg64;
647          }
648  
649          switch (num_pri_bits) {
650          case 7:
651              kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
652              c->icc_apr[GICV3_G1NS][3] = reg64;
653              kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
654              c->icc_apr[GICV3_G1NS][2] = reg64;
655              /* fall through */
656          case 6:
657              kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
658              c->icc_apr[GICV3_G1NS][1] = reg64;
659              /* fall through */
660          default:
661              kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
662              c->icc_apr[GICV3_G1NS][0] = reg64;
663          }
664      }
665  }
666  
arm_gicv3_icc_reset(CPUARMState * env,const ARMCPRegInfo * ri)667  static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
668  {
669      GICv3State *s;
670      GICv3CPUState *c;
671  
672      c = (GICv3CPUState *)env->gicv3state;
673      s = c->gic;
674  
675      c->icc_pmr_el1 = 0;
676      /*
677       * Architecturally the reset value of the ICC_BPR registers
678       * is UNKNOWN. We set them all to 0 here; when the kernel
679       * uses these values to program the ICH_VMCR_EL2 fields that
680       * determine the guest-visible ICC_BPR register values, the
681       * hardware's "writing a value less than the minimum sets
682       * the field to the minimum value" behaviour will result in
683       * them effectively resetting to the correct minimum value
684       * for the host GIC.
685       */
686      c->icc_bpr[GICV3_G0] = 0;
687      c->icc_bpr[GICV3_G1] = 0;
688      c->icc_bpr[GICV3_G1NS] = 0;
689  
690      c->icc_sre_el1 = 0x7;
691      memset(c->icc_apr, 0, sizeof(c->icc_apr));
692      memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
693  
694      if (s->migration_blocker) {
695          return;
696      }
697  
698      /* Initialize to actual HW supported configuration */
699      kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
700                        KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer),
701                        &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
702  
703      c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
704  }
705  
kvm_arm_gicv3_reset_hold(Object * obj,ResetType type)706  static void kvm_arm_gicv3_reset_hold(Object *obj, ResetType type)
707  {
708      GICv3State *s = ARM_GICV3_COMMON(obj);
709      KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
710  
711      DPRINTF("Reset\n");
712  
713      if (kgc->parent_phases.hold) {
714          kgc->parent_phases.hold(obj, type);
715      }
716  
717      if (s->migration_blocker) {
718          DPRINTF("Cannot put kernel gic state, no kernel interface\n");
719          return;
720      }
721  
722      kvm_arm_gicv3_put(s);
723  }
724  
725  /*
726   * CPU interface registers of GIC needs to be reset on CPU reset.
727   * For the calling arm_gicv3_icc_reset() on CPU reset, we register
728   * below ARMCPRegInfo. As we reset the whole cpu interface under single
729   * register reset, we define only one register of CPU interface instead
730   * of defining all the registers.
731   */
732  static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
733      { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
734        .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
735        /*
736         * If ARM_CP_NOP is used, resetfn is not called,
737         * So ARM_CP_NO_RAW is appropriate type.
738         */
739        .type = ARM_CP_NO_RAW,
740        .access = PL1_RW,
741        .readfn = arm_cp_read_zero,
742        .writefn = arm_cp_write_ignore,
743        /*
744         * We hang the whole cpu interface reset routine off here
745         * rather than parcelling it out into one little function
746         * per register
747         */
748        .resetfn = arm_gicv3_icc_reset,
749      },
750  };
751  
752  /**
753   * vm_change_state_handler - VM change state callback aiming at flushing
754   * RDIST pending tables into guest RAM
755   *
756   * The tables get flushed to guest RAM whenever the VM gets stopped.
757   */
vm_change_state_handler(void * opaque,bool running,RunState state)758  static void vm_change_state_handler(void *opaque, bool running,
759                                      RunState state)
760  {
761      GICv3State *s = (GICv3State *)opaque;
762      Error *err = NULL;
763      int ret;
764  
765      if (running) {
766          return;
767      }
768  
769      ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
770                             KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
771                             NULL, true, &err);
772      if (err) {
773          error_report_err(err);
774      }
775      if (ret < 0 && ret != -EFAULT) {
776          abort();
777      }
778  }
779  
780  
kvm_arm_gicv3_realize(DeviceState * dev,Error ** errp)781  static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
782  {
783      GICv3State *s = KVM_ARM_GICV3(dev);
784      KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
785      bool multiple_redist_region_allowed;
786      Error *local_err = NULL;
787      int i;
788  
789      DPRINTF("kvm_arm_gicv3_realize\n");
790  
791      kgc->parent_realize(dev, &local_err);
792      if (local_err) {
793          error_propagate(errp, local_err);
794          return;
795      }
796  
797      if (s->revision != 3) {
798          error_setg(errp, "unsupported GIC revision %d for in-kernel GIC",
799                     s->revision);
800      }
801  
802      if (s->security_extn) {
803          error_setg(errp, "the in-kernel VGICv3 does not implement the "
804                     "security extensions");
805          return;
806      }
807  
808      if (s->nmi_support) {
809          error_setg(errp, "NMI is not supported with the in-kernel GIC");
810          return;
811      }
812  
813      gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
814  
815      for (i = 0; i < s->num_cpu; i++) {
816          ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
817  
818          define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
819      }
820  
821      /* Try to create the device via the device control API */
822      s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
823      if (s->dev_fd < 0) {
824          error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
825          return;
826      }
827  
828      multiple_redist_region_allowed =
829          kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
830                                KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
831  
832      if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
833          error_setg(errp, "Multiple VGICv3 redistributor regions are not "
834                     "supported by this host kernel");
835          error_append_hint(errp, "A maximum of %d VCPUs can be used",
836                            s->redist_region_count[0]);
837          return;
838      }
839  
840      kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
841                        0, &s->num_irq, true, &error_abort);
842  
843      /* Tell the kernel to complete VGIC initialization now */
844      kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
845                        KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
846  
847      kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
848                              KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
849  
850      if (!multiple_redist_region_allowed) {
851          kvm_arm_register_device(&s->redist_regions[0].iomem, -1,
852                                  KVM_DEV_ARM_VGIC_GRP_ADDR,
853                                  KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
854      } else {
855          /* we register regions in reverse order as "devices" are inserted at
856           * the head of a QSLIST and the list is then popped from the head
857           * onwards by kvm_arm_machine_init_done()
858           */
859          for (i = s->nb_redist_regions - 1; i >= 0; i--) {
860              /* Address mask made of the rdist region index and count */
861              uint64_t addr_ormask =
862                          i | ((uint64_t)s->redist_region_count[i] << 52);
863  
864              kvm_arm_register_device(&s->redist_regions[i].iomem, -1,
865                                      KVM_DEV_ARM_VGIC_GRP_ADDR,
866                                      KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
867                                      s->dev_fd, addr_ormask);
868          }
869      }
870  
871      if (kvm_has_gsi_routing()) {
872          /* set up irq routing */
873          for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
874              kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
875          }
876  
877          kvm_gsi_routing_allowed = true;
878  
879          kvm_irqchip_commit_routes(kvm_state);
880      }
881  
882      if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
883                                 GICD_CTLR)) {
884          error_setg(&s->migration_blocker, "This operating system kernel does "
885                                            "not support vGICv3 migration");
886          if (migrate_add_blocker(&s->migration_blocker, errp) < 0) {
887              return;
888          }
889      }
890      if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
891                                KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
892          qemu_add_vm_change_state_handler(vm_change_state_handler, s);
893      }
894  }
895  
kvm_arm_gicv3_class_init(ObjectClass * klass,const void * data)896  static void kvm_arm_gicv3_class_init(ObjectClass *klass, const void *data)
897  {
898      DeviceClass *dc = DEVICE_CLASS(klass);
899      ResettableClass *rc = RESETTABLE_CLASS(klass);
900      ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
901      KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
902  
903      agcc->pre_save = kvm_arm_gicv3_get;
904      agcc->post_load = kvm_arm_gicv3_put;
905      device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
906                                      &kgc->parent_realize);
907      resettable_class_set_parent_phases(rc, NULL, kvm_arm_gicv3_reset_hold, NULL,
908                                         &kgc->parent_phases);
909  }
910  
911  static const TypeInfo kvm_arm_gicv3_info = {
912      .name = TYPE_KVM_ARM_GICV3,
913      .parent = TYPE_ARM_GICV3_COMMON,
914      .instance_size = sizeof(GICv3State),
915      .class_init = kvm_arm_gicv3_class_init,
916      .class_size = sizeof(KVMARMGICv3Class),
917  };
918  
kvm_arm_gicv3_register_types(void)919  static void kvm_arm_gicv3_register_types(void)
920  {
921      type_register_static(&kvm_arm_gicv3_info);
922  }
923  
924  type_init(kvm_arm_gicv3_register_types)
925