1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine (KVM) Hypervisor
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 */
12
13 #include <kvm/iodev.h>
14
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
52
53 #include <asm/processor.h>
54 #include <asm/ioctl.h>
55 #include <linux/uaccess.h>
56
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 #include "kvm_mm.h"
60 #include "vfio.h"
61
62 #include <trace/events/ipi.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 #include <linux/kvm_dirty_ring.h>
68
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75 MODULE_LICENSE("GPL");
76
77 /* Architectures should define their poll value according to the halt latency */
78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79 module_param(halt_poll_ns, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns);
81
82 /* Default doubles per-vcpu halt_poll_ns. */
83 unsigned int halt_poll_ns_grow = 2;
84 module_param(halt_poll_ns_grow, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86
87 /* The start value to grow halt_poll_ns from */
88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89 module_param(halt_poll_ns_grow_start, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91
92 /* Default halves per-vcpu halt_poll_ns. */
93 unsigned int halt_poll_ns_shrink = 2;
94 module_param(halt_poll_ns_shrink, uint, 0644);
95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96
97 /*
98 * Allow direct access (from KVM or the CPU) without MMU notifier protection
99 * to unpinned pages.
100 */
101 static bool allow_unsafe_mappings;
102 module_param(allow_unsafe_mappings, bool, 0444);
103
104 /*
105 * Ordering of locks:
106 *
107 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
108 */
109
110 DEFINE_MUTEX(kvm_lock);
111 LIST_HEAD(vm_list);
112
113 static struct kmem_cache *kvm_vcpu_cache;
114
115 static __read_mostly struct preempt_ops kvm_preempt_ops;
116 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
117
118 static struct dentry *kvm_debugfs_dir;
119
120 static const struct file_operations stat_fops_per_vm;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
127 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 #else
129 /*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
138
kvm_no_compat_open(struct inode * inode,struct file * file)139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
145 #endif
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158 {
159 }
160
161 /*
162 * Switches to specified vcpu, until a matching vcpu_put()
163 */
vcpu_load(struct kvm_vcpu * vcpu)164 void vcpu_load(struct kvm_vcpu *vcpu)
165 {
166 int cpu = get_cpu();
167
168 __this_cpu_write(kvm_running_vcpu, vcpu);
169 preempt_notifier_register(&vcpu->preempt_notifier);
170 kvm_arch_vcpu_load(vcpu, cpu);
171 put_cpu();
172 }
173 EXPORT_SYMBOL_GPL(vcpu_load);
174
vcpu_put(struct kvm_vcpu * vcpu)175 void vcpu_put(struct kvm_vcpu *vcpu)
176 {
177 preempt_disable();
178 kvm_arch_vcpu_put(vcpu);
179 preempt_notifier_unregister(&vcpu->preempt_notifier);
180 __this_cpu_write(kvm_running_vcpu, NULL);
181 preempt_enable();
182 }
183 EXPORT_SYMBOL_GPL(vcpu_put);
184
185 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)186 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
187 {
188 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
189
190 /*
191 * We need to wait for the VCPU to reenable interrupts and get out of
192 * READING_SHADOW_PAGE_TABLES mode.
193 */
194 if (req & KVM_REQUEST_WAIT)
195 return mode != OUTSIDE_GUEST_MODE;
196
197 /*
198 * Need to kick a running VCPU, but otherwise there is nothing to do.
199 */
200 return mode == IN_GUEST_MODE;
201 }
202
ack_kick(void * _completed)203 static void ack_kick(void *_completed)
204 {
205 }
206
kvm_kick_many_cpus(struct cpumask * cpus,bool wait)207 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
208 {
209 if (cpumask_empty(cpus))
210 return false;
211
212 smp_call_function_many(cpus, ack_kick, NULL, wait);
213 return true;
214 }
215
kvm_make_vcpu_request(struct kvm_vcpu * vcpu,unsigned int req,struct cpumask * tmp,int current_cpu)216 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
217 struct cpumask *tmp, int current_cpu)
218 {
219 int cpu;
220
221 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
222 __kvm_make_request(req, vcpu);
223
224 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
225 return;
226
227 /*
228 * Note, the vCPU could get migrated to a different pCPU at any point
229 * after kvm_request_needs_ipi(), which could result in sending an IPI
230 * to the previous pCPU. But, that's OK because the purpose of the IPI
231 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
232 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
233 * after this point is also OK, as the requirement is only that KVM wait
234 * for vCPUs that were reading SPTEs _before_ any changes were
235 * finalized. See kvm_vcpu_kick() for more details on handling requests.
236 */
237 if (kvm_request_needs_ipi(vcpu, req)) {
238 cpu = READ_ONCE(vcpu->cpu);
239 if (cpu != -1 && cpu != current_cpu)
240 __cpumask_set_cpu(cpu, tmp);
241 }
242 }
243
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap)244 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
245 unsigned long *vcpu_bitmap)
246 {
247 struct kvm_vcpu *vcpu;
248 struct cpumask *cpus;
249 int i, me;
250 bool called;
251
252 me = get_cpu();
253
254 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
255 cpumask_clear(cpus);
256
257 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
258 vcpu = kvm_get_vcpu(kvm, i);
259 if (!vcpu)
260 continue;
261 kvm_make_vcpu_request(vcpu, req, cpus, me);
262 }
263
264 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
265 put_cpu();
266
267 return called;
268 }
269
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)270 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
271 {
272 struct kvm_vcpu *vcpu;
273 struct cpumask *cpus;
274 unsigned long i;
275 bool called;
276 int me;
277
278 me = get_cpu();
279
280 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
281 cpumask_clear(cpus);
282
283 kvm_for_each_vcpu(i, vcpu, kvm)
284 kvm_make_vcpu_request(vcpu, req, cpus, me);
285
286 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
287 put_cpu();
288
289 return called;
290 }
291 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
292
kvm_flush_remote_tlbs(struct kvm * kvm)293 void kvm_flush_remote_tlbs(struct kvm *kvm)
294 {
295 ++kvm->stat.generic.remote_tlb_flush_requests;
296
297 /*
298 * We want to publish modifications to the page tables before reading
299 * mode. Pairs with a memory barrier in arch-specific code.
300 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
301 * and smp_mb in walk_shadow_page_lockless_begin/end.
302 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
303 *
304 * There is already an smp_mb__after_atomic() before
305 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
306 * barrier here.
307 */
308 if (!kvm_arch_flush_remote_tlbs(kvm)
309 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
310 ++kvm->stat.generic.remote_tlb_flush;
311 }
312 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
313
kvm_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)314 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
315 {
316 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
317 return;
318
319 /*
320 * Fall back to a flushing entire TLBs if the architecture range-based
321 * TLB invalidation is unsupported or can't be performed for whatever
322 * reason.
323 */
324 kvm_flush_remote_tlbs(kvm);
325 }
326
kvm_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)327 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
328 const struct kvm_memory_slot *memslot)
329 {
330 /*
331 * All current use cases for flushing the TLBs for a specific memslot
332 * are related to dirty logging, and many do the TLB flush out of
333 * mmu_lock. The interaction between the various operations on memslot
334 * must be serialized by slots_locks to ensure the TLB flush from one
335 * operation is observed by any other operation on the same memslot.
336 */
337 lockdep_assert_held(&kvm->slots_lock);
338 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
339 }
340
kvm_flush_shadow_all(struct kvm * kvm)341 static void kvm_flush_shadow_all(struct kvm *kvm)
342 {
343 kvm_arch_flush_shadow_all(kvm);
344 kvm_arch_guest_memory_reclaimed(kvm);
345 }
346
347 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)348 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
349 gfp_t gfp_flags)
350 {
351 void *page;
352
353 gfp_flags |= mc->gfp_zero;
354
355 if (mc->kmem_cache)
356 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
357
358 page = (void *)__get_free_page(gfp_flags);
359 if (page && mc->init_value)
360 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
361 return page;
362 }
363
__kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int capacity,int min)364 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
365 {
366 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
367 void *obj;
368
369 if (mc->nobjs >= min)
370 return 0;
371
372 if (unlikely(!mc->objects)) {
373 if (WARN_ON_ONCE(!capacity))
374 return -EIO;
375
376 /*
377 * Custom init values can be used only for page allocations,
378 * and obviously conflict with __GFP_ZERO.
379 */
380 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
381 return -EIO;
382
383 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
384 if (!mc->objects)
385 return -ENOMEM;
386
387 mc->capacity = capacity;
388 }
389
390 /* It is illegal to request a different capacity across topups. */
391 if (WARN_ON_ONCE(mc->capacity != capacity))
392 return -EIO;
393
394 while (mc->nobjs < mc->capacity) {
395 obj = mmu_memory_cache_alloc_obj(mc, gfp);
396 if (!obj)
397 return mc->nobjs >= min ? 0 : -ENOMEM;
398 mc->objects[mc->nobjs++] = obj;
399 }
400 return 0;
401 }
402
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)403 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
404 {
405 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
406 }
407
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)408 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
409 {
410 return mc->nobjs;
411 }
412
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)413 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
414 {
415 while (mc->nobjs) {
416 if (mc->kmem_cache)
417 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
418 else
419 free_page((unsigned long)mc->objects[--mc->nobjs]);
420 }
421
422 kvfree(mc->objects);
423
424 mc->objects = NULL;
425 mc->capacity = 0;
426 }
427
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)428 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
429 {
430 void *p;
431
432 if (WARN_ON(!mc->nobjs))
433 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
434 else
435 p = mc->objects[--mc->nobjs];
436 BUG_ON(!p);
437 return p;
438 }
439 #endif
440
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)441 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
442 {
443 mutex_init(&vcpu->mutex);
444 vcpu->cpu = -1;
445 vcpu->kvm = kvm;
446 vcpu->vcpu_id = id;
447 vcpu->pid = NULL;
448 rwlock_init(&vcpu->pid_lock);
449 #ifndef __KVM_HAVE_ARCH_WQP
450 rcuwait_init(&vcpu->wait);
451 #endif
452 kvm_async_pf_vcpu_init(vcpu);
453
454 kvm_vcpu_set_in_spin_loop(vcpu, false);
455 kvm_vcpu_set_dy_eligible(vcpu, false);
456 vcpu->preempted = false;
457 vcpu->ready = false;
458 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
459 vcpu->last_used_slot = NULL;
460
461 /* Fill the stats id string for the vcpu */
462 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
463 task_pid_nr(current), id);
464 }
465
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)466 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
467 {
468 kvm_arch_vcpu_destroy(vcpu);
469 kvm_dirty_ring_free(&vcpu->dirty_ring);
470
471 /*
472 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
473 * the vcpu->pid pointer, and at destruction time all file descriptors
474 * are already gone.
475 */
476 put_pid(vcpu->pid);
477
478 free_page((unsigned long)vcpu->run);
479 kmem_cache_free(kvm_vcpu_cache, vcpu);
480 }
481
kvm_destroy_vcpus(struct kvm * kvm)482 void kvm_destroy_vcpus(struct kvm *kvm)
483 {
484 unsigned long i;
485 struct kvm_vcpu *vcpu;
486
487 kvm_for_each_vcpu(i, vcpu, kvm) {
488 kvm_vcpu_destroy(vcpu);
489 xa_erase(&kvm->vcpu_array, i);
490
491 /*
492 * Assert that the vCPU isn't visible in any way, to ensure KVM
493 * doesn't trigger a use-after-free if destroying vCPUs results
494 * in VM-wide request, e.g. to flush remote TLBs when tearing
495 * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires.
496 */
497 WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i));
498 }
499
500 atomic_set(&kvm->online_vcpus, 0);
501 }
502 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
503
504 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_notifier_to_kvm(struct mmu_notifier * mn)505 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
506 {
507 return container_of(mn, struct kvm, mmu_notifier);
508 }
509
510 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
511
512 typedef void (*on_lock_fn_t)(struct kvm *kvm);
513
514 struct kvm_mmu_notifier_range {
515 /*
516 * 64-bit addresses, as KVM notifiers can operate on host virtual
517 * addresses (unsigned long) and guest physical addresses (64-bit).
518 */
519 u64 start;
520 u64 end;
521 union kvm_mmu_notifier_arg arg;
522 gfn_handler_t handler;
523 on_lock_fn_t on_lock;
524 bool flush_on_ret;
525 bool may_block;
526 bool lockless;
527 };
528
529 /*
530 * The inner-most helper returns a tuple containing the return value from the
531 * arch- and action-specific handler, plus a flag indicating whether or not at
532 * least one memslot was found, i.e. if the handler found guest memory.
533 *
534 * Note, most notifiers are averse to booleans, so even though KVM tracks the
535 * return from arch code as a bool, outer helpers will cast it to an int. :-(
536 */
537 typedef struct kvm_mmu_notifier_return {
538 bool ret;
539 bool found_memslot;
540 } kvm_mn_ret_t;
541
542 /*
543 * Use a dedicated stub instead of NULL to indicate that there is no callback
544 * function/handler. The compiler technically can't guarantee that a real
545 * function will have a non-zero address, and so it will generate code to
546 * check for !NULL, whereas comparing against a stub will be elided at compile
547 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
548 */
kvm_null_fn(void)549 static void kvm_null_fn(void)
550 {
551
552 }
553 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
554
555 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
556 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
557 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
558 node; \
559 node = interval_tree_iter_next(node, start, last)) \
560
kvm_handle_hva_range(struct kvm * kvm,const struct kvm_mmu_notifier_range * range)561 static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm,
562 const struct kvm_mmu_notifier_range *range)
563 {
564 struct kvm_mmu_notifier_return r = {
565 .ret = false,
566 .found_memslot = false,
567 };
568 struct kvm_gfn_range gfn_range;
569 struct kvm_memory_slot *slot;
570 struct kvm_memslots *slots;
571 int i, idx;
572
573 if (WARN_ON_ONCE(range->end <= range->start))
574 return r;
575
576 /* A null handler is allowed if and only if on_lock() is provided. */
577 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
578 IS_KVM_NULL_FN(range->handler)))
579 return r;
580
581 /* on_lock will never be called for lockless walks */
582 if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock)))
583 return r;
584
585 idx = srcu_read_lock(&kvm->srcu);
586
587 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
588 struct interval_tree_node *node;
589
590 slots = __kvm_memslots(kvm, i);
591 kvm_for_each_memslot_in_hva_range(node, slots,
592 range->start, range->end - 1) {
593 unsigned long hva_start, hva_end;
594
595 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
596 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
597 hva_end = min_t(unsigned long, range->end,
598 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
599
600 /*
601 * To optimize for the likely case where the address
602 * range is covered by zero or one memslots, don't
603 * bother making these conditional (to avoid writes on
604 * the second or later invocation of the handler).
605 */
606 gfn_range.arg = range->arg;
607 gfn_range.may_block = range->may_block;
608 /*
609 * HVA-based notifications aren't relevant to private
610 * mappings as they don't have a userspace mapping.
611 */
612 gfn_range.attr_filter = KVM_FILTER_SHARED;
613
614 /*
615 * {gfn(page) | page intersects with [hva_start, hva_end)} =
616 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
617 */
618 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620 gfn_range.slot = slot;
621 gfn_range.lockless = range->lockless;
622
623 if (!r.found_memslot) {
624 r.found_memslot = true;
625 if (!range->lockless) {
626 KVM_MMU_LOCK(kvm);
627 if (!IS_KVM_NULL_FN(range->on_lock))
628 range->on_lock(kvm);
629
630 if (IS_KVM_NULL_FN(range->handler))
631 goto mmu_unlock;
632 }
633 }
634 r.ret |= range->handler(kvm, &gfn_range);
635 }
636 }
637
638 if (range->flush_on_ret && r.ret)
639 kvm_flush_remote_tlbs(kvm);
640
641 mmu_unlock:
642 if (r.found_memslot && !range->lockless)
643 KVM_MMU_UNLOCK(kvm);
644
645 srcu_read_unlock(&kvm->srcu, idx);
646
647 return r;
648 }
649
kvm_age_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler,bool flush_on_ret)650 static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn,
651 unsigned long start,
652 unsigned long end,
653 gfn_handler_t handler,
654 bool flush_on_ret)
655 {
656 struct kvm *kvm = mmu_notifier_to_kvm(mn);
657 const struct kvm_mmu_notifier_range range = {
658 .start = start,
659 .end = end,
660 .handler = handler,
661 .on_lock = (void *)kvm_null_fn,
662 .flush_on_ret = flush_on_ret,
663 .may_block = false,
664 .lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING),
665 };
666
667 return kvm_handle_hva_range(kvm, &range).ret;
668 }
669
kvm_age_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler)670 static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn,
671 unsigned long start,
672 unsigned long end,
673 gfn_handler_t handler)
674 {
675 return kvm_age_hva_range(mn, start, end, handler, false);
676 }
677
kvm_mmu_invalidate_begin(struct kvm * kvm)678 void kvm_mmu_invalidate_begin(struct kvm *kvm)
679 {
680 lockdep_assert_held_write(&kvm->mmu_lock);
681 /*
682 * The count increase must become visible at unlock time as no
683 * spte can be established without taking the mmu_lock and
684 * count is also read inside the mmu_lock critical section.
685 */
686 kvm->mmu_invalidate_in_progress++;
687
688 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
689 kvm->mmu_invalidate_range_start = INVALID_GPA;
690 kvm->mmu_invalidate_range_end = INVALID_GPA;
691 }
692 }
693
kvm_mmu_invalidate_range_add(struct kvm * kvm,gfn_t start,gfn_t end)694 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
695 {
696 lockdep_assert_held_write(&kvm->mmu_lock);
697
698 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
699
700 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
701 kvm->mmu_invalidate_range_start = start;
702 kvm->mmu_invalidate_range_end = end;
703 } else {
704 /*
705 * Fully tracking multiple concurrent ranges has diminishing
706 * returns. Keep things simple and just find the minimal range
707 * which includes the current and new ranges. As there won't be
708 * enough information to subtract a range after its invalidate
709 * completes, any ranges invalidated concurrently will
710 * accumulate and persist until all outstanding invalidates
711 * complete.
712 */
713 kvm->mmu_invalidate_range_start =
714 min(kvm->mmu_invalidate_range_start, start);
715 kvm->mmu_invalidate_range_end =
716 max(kvm->mmu_invalidate_range_end, end);
717 }
718 }
719
kvm_mmu_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)720 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
721 {
722 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
723 return kvm_unmap_gfn_range(kvm, range);
724 }
725
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)726 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
727 const struct mmu_notifier_range *range)
728 {
729 struct kvm *kvm = mmu_notifier_to_kvm(mn);
730 const struct kvm_mmu_notifier_range hva_range = {
731 .start = range->start,
732 .end = range->end,
733 .handler = kvm_mmu_unmap_gfn_range,
734 .on_lock = kvm_mmu_invalidate_begin,
735 .flush_on_ret = true,
736 .may_block = mmu_notifier_range_blockable(range),
737 };
738
739 trace_kvm_unmap_hva_range(range->start, range->end);
740
741 /*
742 * Prevent memslot modification between range_start() and range_end()
743 * so that conditionally locking provides the same result in both
744 * functions. Without that guarantee, the mmu_invalidate_in_progress
745 * adjustments will be imbalanced.
746 *
747 * Pairs with the decrement in range_end().
748 */
749 spin_lock(&kvm->mn_invalidate_lock);
750 kvm->mn_active_invalidate_count++;
751 spin_unlock(&kvm->mn_invalidate_lock);
752
753 /*
754 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
755 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
756 * each cache's lock. There are relatively few caches in existence at
757 * any given time, and the caches themselves can check for hva overlap,
758 * i.e. don't need to rely on memslot overlap checks for performance.
759 * Because this runs without holding mmu_lock, the pfn caches must use
760 * mn_active_invalidate_count (see above) instead of
761 * mmu_invalidate_in_progress.
762 */
763 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
764
765 /*
766 * If one or more memslots were found and thus zapped, notify arch code
767 * that guest memory has been reclaimed. This needs to be done *after*
768 * dropping mmu_lock, as x86's reclaim path is slooooow.
769 */
770 if (kvm_handle_hva_range(kvm, &hva_range).found_memslot)
771 kvm_arch_guest_memory_reclaimed(kvm);
772
773 return 0;
774 }
775
kvm_mmu_invalidate_end(struct kvm * kvm)776 void kvm_mmu_invalidate_end(struct kvm *kvm)
777 {
778 lockdep_assert_held_write(&kvm->mmu_lock);
779
780 /*
781 * This sequence increase will notify the kvm page fault that
782 * the page that is going to be mapped in the spte could have
783 * been freed.
784 */
785 kvm->mmu_invalidate_seq++;
786 smp_wmb();
787 /*
788 * The above sequence increase must be visible before the
789 * below count decrease, which is ensured by the smp_wmb above
790 * in conjunction with the smp_rmb in mmu_invalidate_retry().
791 */
792 kvm->mmu_invalidate_in_progress--;
793 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
794
795 /*
796 * Assert that at least one range was added between start() and end().
797 * Not adding a range isn't fatal, but it is a KVM bug.
798 */
799 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
800 }
801
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)802 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
803 const struct mmu_notifier_range *range)
804 {
805 struct kvm *kvm = mmu_notifier_to_kvm(mn);
806 const struct kvm_mmu_notifier_range hva_range = {
807 .start = range->start,
808 .end = range->end,
809 .handler = (void *)kvm_null_fn,
810 .on_lock = kvm_mmu_invalidate_end,
811 .flush_on_ret = false,
812 .may_block = mmu_notifier_range_blockable(range),
813 };
814 bool wake;
815
816 kvm_handle_hva_range(kvm, &hva_range);
817
818 /* Pairs with the increment in range_start(). */
819 spin_lock(&kvm->mn_invalidate_lock);
820 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
821 --kvm->mn_active_invalidate_count;
822 wake = !kvm->mn_active_invalidate_count;
823 spin_unlock(&kvm->mn_invalidate_lock);
824
825 /*
826 * There can only be one waiter, since the wait happens under
827 * slots_lock.
828 */
829 if (wake)
830 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
831 }
832
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)833 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
834 struct mm_struct *mm,
835 unsigned long start,
836 unsigned long end)
837 {
838 trace_kvm_age_hva(start, end);
839
840 return kvm_age_hva_range(mn, start, end, kvm_age_gfn,
841 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
842 }
843
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)844 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
845 struct mm_struct *mm,
846 unsigned long start,
847 unsigned long end)
848 {
849 trace_kvm_age_hva(start, end);
850
851 /*
852 * Even though we do not flush TLB, this will still adversely
853 * affect performance on pre-Haswell Intel EPT, where there is
854 * no EPT Access Bit to clear so that we have to tear down EPT
855 * tables instead. If we find this unacceptable, we can always
856 * add a parameter to kvm_age_hva so that it effectively doesn't
857 * do anything on clear_young.
858 *
859 * Also note that currently we never issue secondary TLB flushes
860 * from clear_young, leaving this job up to the regular system
861 * cadence. If we find this inaccurate, we might come up with a
862 * more sophisticated heuristic later.
863 */
864 return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn);
865 }
866
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)867 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
868 struct mm_struct *mm,
869 unsigned long address)
870 {
871 trace_kvm_test_age_hva(address);
872
873 return kvm_age_hva_range_no_flush(mn, address, address + 1,
874 kvm_test_age_gfn);
875 }
876
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)877 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
878 struct mm_struct *mm)
879 {
880 struct kvm *kvm = mmu_notifier_to_kvm(mn);
881 int idx;
882
883 idx = srcu_read_lock(&kvm->srcu);
884 kvm_flush_shadow_all(kvm);
885 srcu_read_unlock(&kvm->srcu, idx);
886 }
887
888 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
889 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
890 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
891 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
892 .clear_young = kvm_mmu_notifier_clear_young,
893 .test_young = kvm_mmu_notifier_test_young,
894 .release = kvm_mmu_notifier_release,
895 };
896
kvm_init_mmu_notifier(struct kvm * kvm)897 static int kvm_init_mmu_notifier(struct kvm *kvm)
898 {
899 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
900 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
901 }
902
903 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
904
kvm_init_mmu_notifier(struct kvm * kvm)905 static int kvm_init_mmu_notifier(struct kvm *kvm)
906 {
907 return 0;
908 }
909
910 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
911
912 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)913 static int kvm_pm_notifier_call(struct notifier_block *bl,
914 unsigned long state,
915 void *unused)
916 {
917 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
918
919 return kvm_arch_pm_notifier(kvm, state);
920 }
921
kvm_init_pm_notifier(struct kvm * kvm)922 static void kvm_init_pm_notifier(struct kvm *kvm)
923 {
924 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
925 /* Suspend KVM before we suspend ftrace, RCU, etc. */
926 kvm->pm_notifier.priority = INT_MAX;
927 register_pm_notifier(&kvm->pm_notifier);
928 }
929
kvm_destroy_pm_notifier(struct kvm * kvm)930 static void kvm_destroy_pm_notifier(struct kvm *kvm)
931 {
932 unregister_pm_notifier(&kvm->pm_notifier);
933 }
934 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)935 static void kvm_init_pm_notifier(struct kvm *kvm)
936 {
937 }
938
kvm_destroy_pm_notifier(struct kvm * kvm)939 static void kvm_destroy_pm_notifier(struct kvm *kvm)
940 {
941 }
942 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
943
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)944 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
945 {
946 if (!memslot->dirty_bitmap)
947 return;
948
949 vfree(memslot->dirty_bitmap);
950 memslot->dirty_bitmap = NULL;
951 }
952
953 /* This does not remove the slot from struct kvm_memslots data structures */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)954 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
955 {
956 if (slot->flags & KVM_MEM_GUEST_MEMFD)
957 kvm_gmem_unbind(slot);
958
959 kvm_destroy_dirty_bitmap(slot);
960
961 kvm_arch_free_memslot(kvm, slot);
962
963 kfree(slot);
964 }
965
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)966 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
967 {
968 struct hlist_node *idnode;
969 struct kvm_memory_slot *memslot;
970 int bkt;
971
972 /*
973 * The same memslot objects live in both active and inactive sets,
974 * arbitrarily free using index '1' so the second invocation of this
975 * function isn't operating over a structure with dangling pointers
976 * (even though this function isn't actually touching them).
977 */
978 if (!slots->node_idx)
979 return;
980
981 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
982 kvm_free_memslot(kvm, memslot);
983 }
984
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)985 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
986 {
987 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
988 case KVM_STATS_TYPE_INSTANT:
989 return 0444;
990 case KVM_STATS_TYPE_CUMULATIVE:
991 case KVM_STATS_TYPE_PEAK:
992 default:
993 return 0644;
994 }
995 }
996
997
kvm_destroy_vm_debugfs(struct kvm * kvm)998 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
999 {
1000 int i;
1001 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1002 kvm_vcpu_stats_header.num_desc;
1003
1004 if (IS_ERR(kvm->debugfs_dentry))
1005 return;
1006
1007 debugfs_remove_recursive(kvm->debugfs_dentry);
1008
1009 if (kvm->debugfs_stat_data) {
1010 for (i = 0; i < kvm_debugfs_num_entries; i++)
1011 kfree(kvm->debugfs_stat_data[i]);
1012 kfree(kvm->debugfs_stat_data);
1013 }
1014 }
1015
kvm_create_vm_debugfs(struct kvm * kvm,const char * fdname)1016 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1017 {
1018 static DEFINE_MUTEX(kvm_debugfs_lock);
1019 struct dentry *dent;
1020 char dir_name[ITOA_MAX_LEN * 2];
1021 struct kvm_stat_data *stat_data;
1022 const struct _kvm_stats_desc *pdesc;
1023 int i, ret = -ENOMEM;
1024 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1025 kvm_vcpu_stats_header.num_desc;
1026
1027 if (!debugfs_initialized())
1028 return 0;
1029
1030 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1031 mutex_lock(&kvm_debugfs_lock);
1032 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1033 if (dent) {
1034 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1035 dput(dent);
1036 mutex_unlock(&kvm_debugfs_lock);
1037 return 0;
1038 }
1039 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1040 mutex_unlock(&kvm_debugfs_lock);
1041 if (IS_ERR(dent))
1042 return 0;
1043
1044 kvm->debugfs_dentry = dent;
1045 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1046 sizeof(*kvm->debugfs_stat_data),
1047 GFP_KERNEL_ACCOUNT);
1048 if (!kvm->debugfs_stat_data)
1049 goto out_err;
1050
1051 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1052 pdesc = &kvm_vm_stats_desc[i];
1053 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1054 if (!stat_data)
1055 goto out_err;
1056
1057 stat_data->kvm = kvm;
1058 stat_data->desc = pdesc;
1059 stat_data->kind = KVM_STAT_VM;
1060 kvm->debugfs_stat_data[i] = stat_data;
1061 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1062 kvm->debugfs_dentry, stat_data,
1063 &stat_fops_per_vm);
1064 }
1065
1066 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1067 pdesc = &kvm_vcpu_stats_desc[i];
1068 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1069 if (!stat_data)
1070 goto out_err;
1071
1072 stat_data->kvm = kvm;
1073 stat_data->desc = pdesc;
1074 stat_data->kind = KVM_STAT_VCPU;
1075 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1076 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1077 kvm->debugfs_dentry, stat_data,
1078 &stat_fops_per_vm);
1079 }
1080
1081 kvm_arch_create_vm_debugfs(kvm);
1082 return 0;
1083 out_err:
1084 kvm_destroy_vm_debugfs(kvm);
1085 return ret;
1086 }
1087
1088 /*
1089 * Called just after removing the VM from the vm_list, but before doing any
1090 * other destruction.
1091 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1092 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1093 {
1094 }
1095
1096 /*
1097 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1098 * be setup already, so we can create arch-specific debugfs entries under it.
1099 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1100 * a per-arch destroy interface is not needed.
1101 */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1102 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1103 {
1104 }
1105
kvm_create_vm(unsigned long type,const char * fdname)1106 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1107 {
1108 struct kvm *kvm = kvm_arch_alloc_vm();
1109 struct kvm_memslots *slots;
1110 int r, i, j;
1111
1112 if (!kvm)
1113 return ERR_PTR(-ENOMEM);
1114
1115 KVM_MMU_LOCK_INIT(kvm);
1116 mmgrab(current->mm);
1117 kvm->mm = current->mm;
1118 kvm_eventfd_init(kvm);
1119 mutex_init(&kvm->lock);
1120 mutex_init(&kvm->irq_lock);
1121 mutex_init(&kvm->slots_lock);
1122 mutex_init(&kvm->slots_arch_lock);
1123 spin_lock_init(&kvm->mn_invalidate_lock);
1124 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1125 xa_init(&kvm->vcpu_array);
1126 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1127 xa_init(&kvm->mem_attr_array);
1128 #endif
1129
1130 INIT_LIST_HEAD(&kvm->gpc_list);
1131 spin_lock_init(&kvm->gpc_lock);
1132
1133 INIT_LIST_HEAD(&kvm->devices);
1134 kvm->max_vcpus = KVM_MAX_VCPUS;
1135
1136 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1137
1138 /*
1139 * Force subsequent debugfs file creations to fail if the VM directory
1140 * is not created (by kvm_create_vm_debugfs()).
1141 */
1142 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1143
1144 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1145 task_pid_nr(current));
1146
1147 r = -ENOMEM;
1148 if (init_srcu_struct(&kvm->srcu))
1149 goto out_err_no_srcu;
1150 if (init_srcu_struct(&kvm->irq_srcu))
1151 goto out_err_no_irq_srcu;
1152
1153 r = kvm_init_irq_routing(kvm);
1154 if (r)
1155 goto out_err_no_irq_routing;
1156
1157 refcount_set(&kvm->users_count, 1);
1158
1159 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1160 for (j = 0; j < 2; j++) {
1161 slots = &kvm->__memslots[i][j];
1162
1163 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1164 slots->hva_tree = RB_ROOT_CACHED;
1165 slots->gfn_tree = RB_ROOT;
1166 hash_init(slots->id_hash);
1167 slots->node_idx = j;
1168
1169 /* Generations must be different for each address space. */
1170 slots->generation = i;
1171 }
1172
1173 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1174 }
1175
1176 r = -ENOMEM;
1177 for (i = 0; i < KVM_NR_BUSES; i++) {
1178 rcu_assign_pointer(kvm->buses[i],
1179 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1180 if (!kvm->buses[i])
1181 goto out_err_no_arch_destroy_vm;
1182 }
1183
1184 r = kvm_arch_init_vm(kvm, type);
1185 if (r)
1186 goto out_err_no_arch_destroy_vm;
1187
1188 r = kvm_enable_virtualization();
1189 if (r)
1190 goto out_err_no_disable;
1191
1192 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1193 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1194 #endif
1195
1196 r = kvm_init_mmu_notifier(kvm);
1197 if (r)
1198 goto out_err_no_mmu_notifier;
1199
1200 r = kvm_coalesced_mmio_init(kvm);
1201 if (r < 0)
1202 goto out_no_coalesced_mmio;
1203
1204 r = kvm_create_vm_debugfs(kvm, fdname);
1205 if (r)
1206 goto out_err_no_debugfs;
1207
1208 mutex_lock(&kvm_lock);
1209 list_add(&kvm->vm_list, &vm_list);
1210 mutex_unlock(&kvm_lock);
1211
1212 preempt_notifier_inc();
1213 kvm_init_pm_notifier(kvm);
1214
1215 return kvm;
1216
1217 out_err_no_debugfs:
1218 kvm_coalesced_mmio_free(kvm);
1219 out_no_coalesced_mmio:
1220 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1221 if (kvm->mmu_notifier.ops)
1222 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1223 #endif
1224 out_err_no_mmu_notifier:
1225 kvm_disable_virtualization();
1226 out_err_no_disable:
1227 kvm_arch_destroy_vm(kvm);
1228 out_err_no_arch_destroy_vm:
1229 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1230 for (i = 0; i < KVM_NR_BUSES; i++)
1231 kfree(kvm_get_bus(kvm, i));
1232 kvm_free_irq_routing(kvm);
1233 out_err_no_irq_routing:
1234 cleanup_srcu_struct(&kvm->irq_srcu);
1235 out_err_no_irq_srcu:
1236 cleanup_srcu_struct(&kvm->srcu);
1237 out_err_no_srcu:
1238 kvm_arch_free_vm(kvm);
1239 mmdrop(current->mm);
1240 return ERR_PTR(r);
1241 }
1242
kvm_destroy_devices(struct kvm * kvm)1243 static void kvm_destroy_devices(struct kvm *kvm)
1244 {
1245 struct kvm_device *dev, *tmp;
1246
1247 /*
1248 * We do not need to take the kvm->lock here, because nobody else
1249 * has a reference to the struct kvm at this point and therefore
1250 * cannot access the devices list anyhow.
1251 *
1252 * The device list is generally managed as an rculist, but list_del()
1253 * is used intentionally here. If a bug in KVM introduced a reader that
1254 * was not backed by a reference on the kvm struct, the hope is that
1255 * it'd consume the poisoned forward pointer instead of suffering a
1256 * use-after-free, even though this cannot be guaranteed.
1257 */
1258 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1259 list_del(&dev->vm_node);
1260 dev->ops->destroy(dev);
1261 }
1262 }
1263
kvm_destroy_vm(struct kvm * kvm)1264 static void kvm_destroy_vm(struct kvm *kvm)
1265 {
1266 int i;
1267 struct mm_struct *mm = kvm->mm;
1268
1269 kvm_destroy_pm_notifier(kvm);
1270 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1271 kvm_destroy_vm_debugfs(kvm);
1272 mutex_lock(&kvm_lock);
1273 list_del(&kvm->vm_list);
1274 mutex_unlock(&kvm_lock);
1275 kvm_arch_pre_destroy_vm(kvm);
1276
1277 kvm_free_irq_routing(kvm);
1278 for (i = 0; i < KVM_NR_BUSES; i++) {
1279 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1280
1281 if (bus)
1282 kvm_io_bus_destroy(bus);
1283 kvm->buses[i] = NULL;
1284 }
1285 kvm_coalesced_mmio_free(kvm);
1286 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1287 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1288 /*
1289 * At this point, pending calls to invalidate_range_start()
1290 * have completed but no more MMU notifiers will run, so
1291 * mn_active_invalidate_count may remain unbalanced.
1292 * No threads can be waiting in kvm_swap_active_memslots() as the
1293 * last reference on KVM has been dropped, but freeing
1294 * memslots would deadlock without this manual intervention.
1295 *
1296 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1297 * notifier between a start() and end(), then there shouldn't be any
1298 * in-progress invalidations.
1299 */
1300 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1301 if (kvm->mn_active_invalidate_count)
1302 kvm->mn_active_invalidate_count = 0;
1303 else
1304 WARN_ON(kvm->mmu_invalidate_in_progress);
1305 #else
1306 kvm_flush_shadow_all(kvm);
1307 #endif
1308 kvm_arch_destroy_vm(kvm);
1309 kvm_destroy_devices(kvm);
1310 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1311 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1312 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1313 }
1314 cleanup_srcu_struct(&kvm->irq_srcu);
1315 cleanup_srcu_struct(&kvm->srcu);
1316 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1317 xa_destroy(&kvm->mem_attr_array);
1318 #endif
1319 kvm_arch_free_vm(kvm);
1320 preempt_notifier_dec();
1321 kvm_disable_virtualization();
1322 mmdrop(mm);
1323 }
1324
kvm_get_kvm(struct kvm * kvm)1325 void kvm_get_kvm(struct kvm *kvm)
1326 {
1327 refcount_inc(&kvm->users_count);
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1330
1331 /*
1332 * Make sure the vm is not during destruction, which is a safe version of
1333 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1334 */
kvm_get_kvm_safe(struct kvm * kvm)1335 bool kvm_get_kvm_safe(struct kvm *kvm)
1336 {
1337 return refcount_inc_not_zero(&kvm->users_count);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1340
kvm_put_kvm(struct kvm * kvm)1341 void kvm_put_kvm(struct kvm *kvm)
1342 {
1343 if (refcount_dec_and_test(&kvm->users_count))
1344 kvm_destroy_vm(kvm);
1345 }
1346 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1347
1348 /*
1349 * Used to put a reference that was taken on behalf of an object associated
1350 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1351 * of the new file descriptor fails and the reference cannot be transferred to
1352 * its final owner. In such cases, the caller is still actively using @kvm and
1353 * will fail miserably if the refcount unexpectedly hits zero.
1354 */
kvm_put_kvm_no_destroy(struct kvm * kvm)1355 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1356 {
1357 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1360
kvm_vm_release(struct inode * inode,struct file * filp)1361 static int kvm_vm_release(struct inode *inode, struct file *filp)
1362 {
1363 struct kvm *kvm = filp->private_data;
1364
1365 kvm_irqfd_release(kvm);
1366
1367 kvm_put_kvm(kvm);
1368 return 0;
1369 }
1370
kvm_trylock_all_vcpus(struct kvm * kvm)1371 int kvm_trylock_all_vcpus(struct kvm *kvm)
1372 {
1373 struct kvm_vcpu *vcpu;
1374 unsigned long i, j;
1375
1376 lockdep_assert_held(&kvm->lock);
1377
1378 kvm_for_each_vcpu(i, vcpu, kvm)
1379 if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock))
1380 goto out_unlock;
1381 return 0;
1382
1383 out_unlock:
1384 kvm_for_each_vcpu(j, vcpu, kvm) {
1385 if (i == j)
1386 break;
1387 mutex_unlock(&vcpu->mutex);
1388 }
1389 return -EINTR;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_trylock_all_vcpus);
1392
kvm_lock_all_vcpus(struct kvm * kvm)1393 int kvm_lock_all_vcpus(struct kvm *kvm)
1394 {
1395 struct kvm_vcpu *vcpu;
1396 unsigned long i, j;
1397 int r;
1398
1399 lockdep_assert_held(&kvm->lock);
1400
1401 kvm_for_each_vcpu(i, vcpu, kvm) {
1402 r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock);
1403 if (r)
1404 goto out_unlock;
1405 }
1406 return 0;
1407
1408 out_unlock:
1409 kvm_for_each_vcpu(j, vcpu, kvm) {
1410 if (i == j)
1411 break;
1412 mutex_unlock(&vcpu->mutex);
1413 }
1414 return r;
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_lock_all_vcpus);
1417
kvm_unlock_all_vcpus(struct kvm * kvm)1418 void kvm_unlock_all_vcpus(struct kvm *kvm)
1419 {
1420 struct kvm_vcpu *vcpu;
1421 unsigned long i;
1422
1423 lockdep_assert_held(&kvm->lock);
1424
1425 kvm_for_each_vcpu(i, vcpu, kvm)
1426 mutex_unlock(&vcpu->mutex);
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_unlock_all_vcpus);
1429
1430 /*
1431 * Allocation size is twice as large as the actual dirty bitmap size.
1432 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1433 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1434 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1435 {
1436 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1437
1438 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1439 if (!memslot->dirty_bitmap)
1440 return -ENOMEM;
1441
1442 return 0;
1443 }
1444
kvm_get_inactive_memslots(struct kvm * kvm,int as_id)1445 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1446 {
1447 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1448 int node_idx_inactive = active->node_idx ^ 1;
1449
1450 return &kvm->__memslots[as_id][node_idx_inactive];
1451 }
1452
1453 /*
1454 * Helper to get the address space ID when one of memslot pointers may be NULL.
1455 * This also serves as a sanity that at least one of the pointers is non-NULL,
1456 * and that their address space IDs don't diverge.
1457 */
kvm_memslots_get_as_id(struct kvm_memory_slot * a,struct kvm_memory_slot * b)1458 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1459 struct kvm_memory_slot *b)
1460 {
1461 if (WARN_ON_ONCE(!a && !b))
1462 return 0;
1463
1464 if (!a)
1465 return b->as_id;
1466 if (!b)
1467 return a->as_id;
1468
1469 WARN_ON_ONCE(a->as_id != b->as_id);
1470 return a->as_id;
1471 }
1472
kvm_insert_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1473 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1474 struct kvm_memory_slot *slot)
1475 {
1476 struct rb_root *gfn_tree = &slots->gfn_tree;
1477 struct rb_node **node, *parent;
1478 int idx = slots->node_idx;
1479
1480 parent = NULL;
1481 for (node = &gfn_tree->rb_node; *node; ) {
1482 struct kvm_memory_slot *tmp;
1483
1484 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1485 parent = *node;
1486 if (slot->base_gfn < tmp->base_gfn)
1487 node = &(*node)->rb_left;
1488 else if (slot->base_gfn > tmp->base_gfn)
1489 node = &(*node)->rb_right;
1490 else
1491 BUG();
1492 }
1493
1494 rb_link_node(&slot->gfn_node[idx], parent, node);
1495 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1496 }
1497
kvm_erase_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1498 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1499 struct kvm_memory_slot *slot)
1500 {
1501 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1502 }
1503
kvm_replace_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1504 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1505 struct kvm_memory_slot *old,
1506 struct kvm_memory_slot *new)
1507 {
1508 int idx = slots->node_idx;
1509
1510 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1511
1512 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1513 &slots->gfn_tree);
1514 }
1515
1516 /*
1517 * Replace @old with @new in the inactive memslots.
1518 *
1519 * With NULL @old this simply adds @new.
1520 * With NULL @new this simply removes @old.
1521 *
1522 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1523 * appropriately.
1524 */
kvm_replace_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1525 static void kvm_replace_memslot(struct kvm *kvm,
1526 struct kvm_memory_slot *old,
1527 struct kvm_memory_slot *new)
1528 {
1529 int as_id = kvm_memslots_get_as_id(old, new);
1530 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1531 int idx = slots->node_idx;
1532
1533 if (old) {
1534 hash_del(&old->id_node[idx]);
1535 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1536
1537 if ((long)old == atomic_long_read(&slots->last_used_slot))
1538 atomic_long_set(&slots->last_used_slot, (long)new);
1539
1540 if (!new) {
1541 kvm_erase_gfn_node(slots, old);
1542 return;
1543 }
1544 }
1545
1546 /*
1547 * Initialize @new's hva range. Do this even when replacing an @old
1548 * slot, kvm_copy_memslot() deliberately does not touch node data.
1549 */
1550 new->hva_node[idx].start = new->userspace_addr;
1551 new->hva_node[idx].last = new->userspace_addr +
1552 (new->npages << PAGE_SHIFT) - 1;
1553
1554 /*
1555 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1556 * hva_node needs to be swapped with remove+insert even though hva can't
1557 * change when replacing an existing slot.
1558 */
1559 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1560 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1561
1562 /*
1563 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1564 * switch the node in the gfn tree instead of removing the old and
1565 * inserting the new as two separate operations. Replacement is a
1566 * single O(1) operation versus two O(log(n)) operations for
1567 * remove+insert.
1568 */
1569 if (old && old->base_gfn == new->base_gfn) {
1570 kvm_replace_gfn_node(slots, old, new);
1571 } else {
1572 if (old)
1573 kvm_erase_gfn_node(slots, old);
1574 kvm_insert_gfn_node(slots, new);
1575 }
1576 }
1577
1578 /*
1579 * Flags that do not access any of the extra space of struct
1580 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1581 * only allows these.
1582 */
1583 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1584 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1585
check_memory_region_flags(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1586 static int check_memory_region_flags(struct kvm *kvm,
1587 const struct kvm_userspace_memory_region2 *mem)
1588 {
1589 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1590
1591 if (kvm_arch_has_private_mem(kvm))
1592 valid_flags |= KVM_MEM_GUEST_MEMFD;
1593
1594 /* Dirty logging private memory is not currently supported. */
1595 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1596 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1597
1598 /*
1599 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1600 * read-only memslots have emulated MMIO, not page fault, semantics,
1601 * and KVM doesn't allow emulated MMIO for private memory.
1602 */
1603 if (kvm_arch_has_readonly_mem(kvm) &&
1604 !(mem->flags & KVM_MEM_GUEST_MEMFD))
1605 valid_flags |= KVM_MEM_READONLY;
1606
1607 if (mem->flags & ~valid_flags)
1608 return -EINVAL;
1609
1610 return 0;
1611 }
1612
kvm_swap_active_memslots(struct kvm * kvm,int as_id)1613 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1614 {
1615 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1616
1617 /* Grab the generation from the activate memslots. */
1618 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1619
1620 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1621 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1622
1623 /*
1624 * Do not store the new memslots while there are invalidations in
1625 * progress, otherwise the locking in invalidate_range_start and
1626 * invalidate_range_end will be unbalanced.
1627 */
1628 spin_lock(&kvm->mn_invalidate_lock);
1629 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1630 while (kvm->mn_active_invalidate_count) {
1631 set_current_state(TASK_UNINTERRUPTIBLE);
1632 spin_unlock(&kvm->mn_invalidate_lock);
1633 schedule();
1634 spin_lock(&kvm->mn_invalidate_lock);
1635 }
1636 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1637 rcu_assign_pointer(kvm->memslots[as_id], slots);
1638 spin_unlock(&kvm->mn_invalidate_lock);
1639
1640 /*
1641 * Acquired in kvm_set_memslot. Must be released before synchronize
1642 * SRCU below in order to avoid deadlock with another thread
1643 * acquiring the slots_arch_lock in an srcu critical section.
1644 */
1645 mutex_unlock(&kvm->slots_arch_lock);
1646
1647 synchronize_srcu_expedited(&kvm->srcu);
1648
1649 /*
1650 * Increment the new memslot generation a second time, dropping the
1651 * update in-progress flag and incrementing the generation based on
1652 * the number of address spaces. This provides a unique and easily
1653 * identifiable generation number while the memslots are in flux.
1654 */
1655 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1656
1657 /*
1658 * Generations must be unique even across address spaces. We do not need
1659 * a global counter for that, instead the generation space is evenly split
1660 * across address spaces. For example, with two address spaces, address
1661 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1662 * use generations 1, 3, 5, ...
1663 */
1664 gen += kvm_arch_nr_memslot_as_ids(kvm);
1665
1666 kvm_arch_memslots_updated(kvm, gen);
1667
1668 slots->generation = gen;
1669 }
1670
kvm_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1671 static int kvm_prepare_memory_region(struct kvm *kvm,
1672 const struct kvm_memory_slot *old,
1673 struct kvm_memory_slot *new,
1674 enum kvm_mr_change change)
1675 {
1676 int r;
1677
1678 /*
1679 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1680 * will be freed on "commit". If logging is enabled in both old and
1681 * new, reuse the existing bitmap. If logging is enabled only in the
1682 * new and KVM isn't using a ring buffer, allocate and initialize a
1683 * new bitmap.
1684 */
1685 if (change != KVM_MR_DELETE) {
1686 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1687 new->dirty_bitmap = NULL;
1688 else if (old && old->dirty_bitmap)
1689 new->dirty_bitmap = old->dirty_bitmap;
1690 else if (kvm_use_dirty_bitmap(kvm)) {
1691 r = kvm_alloc_dirty_bitmap(new);
1692 if (r)
1693 return r;
1694
1695 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1696 bitmap_set(new->dirty_bitmap, 0, new->npages);
1697 }
1698 }
1699
1700 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1701
1702 /* Free the bitmap on failure if it was allocated above. */
1703 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1704 kvm_destroy_dirty_bitmap(new);
1705
1706 return r;
1707 }
1708
kvm_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1709 static void kvm_commit_memory_region(struct kvm *kvm,
1710 struct kvm_memory_slot *old,
1711 const struct kvm_memory_slot *new,
1712 enum kvm_mr_change change)
1713 {
1714 int old_flags = old ? old->flags : 0;
1715 int new_flags = new ? new->flags : 0;
1716 /*
1717 * Update the total number of memslot pages before calling the arch
1718 * hook so that architectures can consume the result directly.
1719 */
1720 if (change == KVM_MR_DELETE)
1721 kvm->nr_memslot_pages -= old->npages;
1722 else if (change == KVM_MR_CREATE)
1723 kvm->nr_memslot_pages += new->npages;
1724
1725 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1726 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1727 atomic_set(&kvm->nr_memslots_dirty_logging,
1728 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1729 }
1730
1731 kvm_arch_commit_memory_region(kvm, old, new, change);
1732
1733 switch (change) {
1734 case KVM_MR_CREATE:
1735 /* Nothing more to do. */
1736 break;
1737 case KVM_MR_DELETE:
1738 /* Free the old memslot and all its metadata. */
1739 kvm_free_memslot(kvm, old);
1740 break;
1741 case KVM_MR_MOVE:
1742 case KVM_MR_FLAGS_ONLY:
1743 /*
1744 * Free the dirty bitmap as needed; the below check encompasses
1745 * both the flags and whether a ring buffer is being used)
1746 */
1747 if (old->dirty_bitmap && !new->dirty_bitmap)
1748 kvm_destroy_dirty_bitmap(old);
1749
1750 /*
1751 * The final quirk. Free the detached, old slot, but only its
1752 * memory, not any metadata. Metadata, including arch specific
1753 * data, may be reused by @new.
1754 */
1755 kfree(old);
1756 break;
1757 default:
1758 BUG();
1759 }
1760 }
1761
1762 /*
1763 * Activate @new, which must be installed in the inactive slots by the caller,
1764 * by swapping the active slots and then propagating @new to @old once @old is
1765 * unreachable and can be safely modified.
1766 *
1767 * With NULL @old this simply adds @new to @active (while swapping the sets).
1768 * With NULL @new this simply removes @old from @active and frees it
1769 * (while also swapping the sets).
1770 */
kvm_activate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1771 static void kvm_activate_memslot(struct kvm *kvm,
1772 struct kvm_memory_slot *old,
1773 struct kvm_memory_slot *new)
1774 {
1775 int as_id = kvm_memslots_get_as_id(old, new);
1776
1777 kvm_swap_active_memslots(kvm, as_id);
1778
1779 /* Propagate the new memslot to the now inactive memslots. */
1780 kvm_replace_memslot(kvm, old, new);
1781 }
1782
kvm_copy_memslot(struct kvm_memory_slot * dest,const struct kvm_memory_slot * src)1783 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1784 const struct kvm_memory_slot *src)
1785 {
1786 dest->base_gfn = src->base_gfn;
1787 dest->npages = src->npages;
1788 dest->dirty_bitmap = src->dirty_bitmap;
1789 dest->arch = src->arch;
1790 dest->userspace_addr = src->userspace_addr;
1791 dest->flags = src->flags;
1792 dest->id = src->id;
1793 dest->as_id = src->as_id;
1794 }
1795
kvm_invalidate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1796 static void kvm_invalidate_memslot(struct kvm *kvm,
1797 struct kvm_memory_slot *old,
1798 struct kvm_memory_slot *invalid_slot)
1799 {
1800 /*
1801 * Mark the current slot INVALID. As with all memslot modifications,
1802 * this must be done on an unreachable slot to avoid modifying the
1803 * current slot in the active tree.
1804 */
1805 kvm_copy_memslot(invalid_slot, old);
1806 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1807 kvm_replace_memslot(kvm, old, invalid_slot);
1808
1809 /*
1810 * Activate the slot that is now marked INVALID, but don't propagate
1811 * the slot to the now inactive slots. The slot is either going to be
1812 * deleted or recreated as a new slot.
1813 */
1814 kvm_swap_active_memslots(kvm, old->as_id);
1815
1816 /*
1817 * From this point no new shadow pages pointing to a deleted, or moved,
1818 * memslot will be created. Validation of sp->gfn happens in:
1819 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1820 * - kvm_is_visible_gfn (mmu_check_root)
1821 */
1822 kvm_arch_flush_shadow_memslot(kvm, old);
1823 kvm_arch_guest_memory_reclaimed(kvm);
1824
1825 /* Was released by kvm_swap_active_memslots(), reacquire. */
1826 mutex_lock(&kvm->slots_arch_lock);
1827
1828 /*
1829 * Copy the arch-specific field of the newly-installed slot back to the
1830 * old slot as the arch data could have changed between releasing
1831 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1832 * above. Writers are required to retrieve memslots *after* acquiring
1833 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1834 */
1835 old->arch = invalid_slot->arch;
1836 }
1837
kvm_create_memslot(struct kvm * kvm,struct kvm_memory_slot * new)1838 static void kvm_create_memslot(struct kvm *kvm,
1839 struct kvm_memory_slot *new)
1840 {
1841 /* Add the new memslot to the inactive set and activate. */
1842 kvm_replace_memslot(kvm, NULL, new);
1843 kvm_activate_memslot(kvm, NULL, new);
1844 }
1845
kvm_delete_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1846 static void kvm_delete_memslot(struct kvm *kvm,
1847 struct kvm_memory_slot *old,
1848 struct kvm_memory_slot *invalid_slot)
1849 {
1850 /*
1851 * Remove the old memslot (in the inactive memslots) by passing NULL as
1852 * the "new" slot, and for the invalid version in the active slots.
1853 */
1854 kvm_replace_memslot(kvm, old, NULL);
1855 kvm_activate_memslot(kvm, invalid_slot, NULL);
1856 }
1857
kvm_move_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,struct kvm_memory_slot * invalid_slot)1858 static void kvm_move_memslot(struct kvm *kvm,
1859 struct kvm_memory_slot *old,
1860 struct kvm_memory_slot *new,
1861 struct kvm_memory_slot *invalid_slot)
1862 {
1863 /*
1864 * Replace the old memslot in the inactive slots, and then swap slots
1865 * and replace the current INVALID with the new as well.
1866 */
1867 kvm_replace_memslot(kvm, old, new);
1868 kvm_activate_memslot(kvm, invalid_slot, new);
1869 }
1870
kvm_update_flags_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1871 static void kvm_update_flags_memslot(struct kvm *kvm,
1872 struct kvm_memory_slot *old,
1873 struct kvm_memory_slot *new)
1874 {
1875 /*
1876 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1877 * an intermediate step. Instead, the old memslot is simply replaced
1878 * with a new, updated copy in both memslot sets.
1879 */
1880 kvm_replace_memslot(kvm, old, new);
1881 kvm_activate_memslot(kvm, old, new);
1882 }
1883
kvm_set_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1884 static int kvm_set_memslot(struct kvm *kvm,
1885 struct kvm_memory_slot *old,
1886 struct kvm_memory_slot *new,
1887 enum kvm_mr_change change)
1888 {
1889 struct kvm_memory_slot *invalid_slot;
1890 int r;
1891
1892 /*
1893 * Released in kvm_swap_active_memslots().
1894 *
1895 * Must be held from before the current memslots are copied until after
1896 * the new memslots are installed with rcu_assign_pointer, then
1897 * released before the synchronize srcu in kvm_swap_active_memslots().
1898 *
1899 * When modifying memslots outside of the slots_lock, must be held
1900 * before reading the pointer to the current memslots until after all
1901 * changes to those memslots are complete.
1902 *
1903 * These rules ensure that installing new memslots does not lose
1904 * changes made to the previous memslots.
1905 */
1906 mutex_lock(&kvm->slots_arch_lock);
1907
1908 /*
1909 * Invalidate the old slot if it's being deleted or moved. This is
1910 * done prior to actually deleting/moving the memslot to allow vCPUs to
1911 * continue running by ensuring there are no mappings or shadow pages
1912 * for the memslot when it is deleted/moved. Without pre-invalidation
1913 * (and without a lock), a window would exist between effecting the
1914 * delete/move and committing the changes in arch code where KVM or a
1915 * guest could access a non-existent memslot.
1916 *
1917 * Modifications are done on a temporary, unreachable slot. The old
1918 * slot needs to be preserved in case a later step fails and the
1919 * invalidation needs to be reverted.
1920 */
1921 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1922 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1923 if (!invalid_slot) {
1924 mutex_unlock(&kvm->slots_arch_lock);
1925 return -ENOMEM;
1926 }
1927 kvm_invalidate_memslot(kvm, old, invalid_slot);
1928 }
1929
1930 r = kvm_prepare_memory_region(kvm, old, new, change);
1931 if (r) {
1932 /*
1933 * For DELETE/MOVE, revert the above INVALID change. No
1934 * modifications required since the original slot was preserved
1935 * in the inactive slots. Changing the active memslots also
1936 * release slots_arch_lock.
1937 */
1938 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1939 kvm_activate_memslot(kvm, invalid_slot, old);
1940 kfree(invalid_slot);
1941 } else {
1942 mutex_unlock(&kvm->slots_arch_lock);
1943 }
1944 return r;
1945 }
1946
1947 /*
1948 * For DELETE and MOVE, the working slot is now active as the INVALID
1949 * version of the old slot. MOVE is particularly special as it reuses
1950 * the old slot and returns a copy of the old slot (in working_slot).
1951 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1952 * old slot is detached but otherwise preserved.
1953 */
1954 if (change == KVM_MR_CREATE)
1955 kvm_create_memslot(kvm, new);
1956 else if (change == KVM_MR_DELETE)
1957 kvm_delete_memslot(kvm, old, invalid_slot);
1958 else if (change == KVM_MR_MOVE)
1959 kvm_move_memslot(kvm, old, new, invalid_slot);
1960 else if (change == KVM_MR_FLAGS_ONLY)
1961 kvm_update_flags_memslot(kvm, old, new);
1962 else
1963 BUG();
1964
1965 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1966 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1967 kfree(invalid_slot);
1968
1969 /*
1970 * No need to refresh new->arch, changes after dropping slots_arch_lock
1971 * will directly hit the final, active memslot. Architectures are
1972 * responsible for knowing that new->arch may be stale.
1973 */
1974 kvm_commit_memory_region(kvm, old, new, change);
1975
1976 return 0;
1977 }
1978
kvm_check_memslot_overlap(struct kvm_memslots * slots,int id,gfn_t start,gfn_t end)1979 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1980 gfn_t start, gfn_t end)
1981 {
1982 struct kvm_memslot_iter iter;
1983
1984 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1985 if (iter.slot->id != id)
1986 return true;
1987 }
1988
1989 return false;
1990 }
1991
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1992 static int kvm_set_memory_region(struct kvm *kvm,
1993 const struct kvm_userspace_memory_region2 *mem)
1994 {
1995 struct kvm_memory_slot *old, *new;
1996 struct kvm_memslots *slots;
1997 enum kvm_mr_change change;
1998 unsigned long npages;
1999 gfn_t base_gfn;
2000 int as_id, id;
2001 int r;
2002
2003 lockdep_assert_held(&kvm->slots_lock);
2004
2005 r = check_memory_region_flags(kvm, mem);
2006 if (r)
2007 return r;
2008
2009 as_id = mem->slot >> 16;
2010 id = (u16)mem->slot;
2011
2012 /* General sanity checks */
2013 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2014 (mem->memory_size != (unsigned long)mem->memory_size))
2015 return -EINVAL;
2016 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2017 return -EINVAL;
2018 /* We can read the guest memory with __xxx_user() later on. */
2019 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2020 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2021 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2022 mem->memory_size))
2023 return -EINVAL;
2024 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2025 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2026 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2027 return -EINVAL;
2028 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2029 return -EINVAL;
2030 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2031 return -EINVAL;
2032
2033 /*
2034 * The size of userspace-defined memory regions is restricted in order
2035 * to play nice with dirty bitmap operations, which are indexed with an
2036 * "unsigned int". KVM's internal memory regions don't support dirty
2037 * logging, and so are exempt.
2038 */
2039 if (id < KVM_USER_MEM_SLOTS &&
2040 (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2041 return -EINVAL;
2042
2043 slots = __kvm_memslots(kvm, as_id);
2044
2045 /*
2046 * Note, the old memslot (and the pointer itself!) may be invalidated
2047 * and/or destroyed by kvm_set_memslot().
2048 */
2049 old = id_to_memslot(slots, id);
2050
2051 if (!mem->memory_size) {
2052 if (!old || !old->npages)
2053 return -EINVAL;
2054
2055 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2056 return -EIO;
2057
2058 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2059 }
2060
2061 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2062 npages = (mem->memory_size >> PAGE_SHIFT);
2063
2064 if (!old || !old->npages) {
2065 change = KVM_MR_CREATE;
2066
2067 /*
2068 * To simplify KVM internals, the total number of pages across
2069 * all memslots must fit in an unsigned long.
2070 */
2071 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2072 return -EINVAL;
2073 } else { /* Modify an existing slot. */
2074 /* Private memslots are immutable, they can only be deleted. */
2075 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2076 return -EINVAL;
2077 if ((mem->userspace_addr != old->userspace_addr) ||
2078 (npages != old->npages) ||
2079 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2080 return -EINVAL;
2081
2082 if (base_gfn != old->base_gfn)
2083 change = KVM_MR_MOVE;
2084 else if (mem->flags != old->flags)
2085 change = KVM_MR_FLAGS_ONLY;
2086 else /* Nothing to change. */
2087 return 0;
2088 }
2089
2090 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2091 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2092 return -EEXIST;
2093
2094 /* Allocate a slot that will persist in the memslot. */
2095 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2096 if (!new)
2097 return -ENOMEM;
2098
2099 new->as_id = as_id;
2100 new->id = id;
2101 new->base_gfn = base_gfn;
2102 new->npages = npages;
2103 new->flags = mem->flags;
2104 new->userspace_addr = mem->userspace_addr;
2105 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2106 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2107 if (r)
2108 goto out;
2109 }
2110
2111 r = kvm_set_memslot(kvm, old, new, change);
2112 if (r)
2113 goto out_unbind;
2114
2115 return 0;
2116
2117 out_unbind:
2118 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2119 kvm_gmem_unbind(new);
2120 out:
2121 kfree(new);
2122 return r;
2123 }
2124
kvm_set_internal_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)2125 int kvm_set_internal_memslot(struct kvm *kvm,
2126 const struct kvm_userspace_memory_region2 *mem)
2127 {
2128 if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS))
2129 return -EINVAL;
2130
2131 if (WARN_ON_ONCE(mem->flags))
2132 return -EINVAL;
2133
2134 return kvm_set_memory_region(kvm, mem);
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_set_internal_memslot);
2137
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region2 * mem)2138 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2139 struct kvm_userspace_memory_region2 *mem)
2140 {
2141 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2142 return -EINVAL;
2143
2144 guard(mutex)(&kvm->slots_lock);
2145 return kvm_set_memory_region(kvm, mem);
2146 }
2147
2148 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2149 /**
2150 * kvm_get_dirty_log - get a snapshot of dirty pages
2151 * @kvm: pointer to kvm instance
2152 * @log: slot id and address to which we copy the log
2153 * @is_dirty: set to '1' if any dirty pages were found
2154 * @memslot: set to the associated memslot, always valid on success
2155 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)2156 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2157 int *is_dirty, struct kvm_memory_slot **memslot)
2158 {
2159 struct kvm_memslots *slots;
2160 int i, as_id, id;
2161 unsigned long n;
2162 unsigned long any = 0;
2163
2164 /* Dirty ring tracking may be exclusive to dirty log tracking */
2165 if (!kvm_use_dirty_bitmap(kvm))
2166 return -ENXIO;
2167
2168 *memslot = NULL;
2169 *is_dirty = 0;
2170
2171 as_id = log->slot >> 16;
2172 id = (u16)log->slot;
2173 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2174 return -EINVAL;
2175
2176 slots = __kvm_memslots(kvm, as_id);
2177 *memslot = id_to_memslot(slots, id);
2178 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2179 return -ENOENT;
2180
2181 kvm_arch_sync_dirty_log(kvm, *memslot);
2182
2183 n = kvm_dirty_bitmap_bytes(*memslot);
2184
2185 for (i = 0; !any && i < n/sizeof(long); ++i)
2186 any = (*memslot)->dirty_bitmap[i];
2187
2188 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2189 return -EFAULT;
2190
2191 if (any)
2192 *is_dirty = 1;
2193 return 0;
2194 }
2195 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2196
2197 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2198 /**
2199 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2200 * and reenable dirty page tracking for the corresponding pages.
2201 * @kvm: pointer to kvm instance
2202 * @log: slot id and address to which we copy the log
2203 *
2204 * We need to keep it in mind that VCPU threads can write to the bitmap
2205 * concurrently. So, to avoid losing track of dirty pages we keep the
2206 * following order:
2207 *
2208 * 1. Take a snapshot of the bit and clear it if needed.
2209 * 2. Write protect the corresponding page.
2210 * 3. Copy the snapshot to the userspace.
2211 * 4. Upon return caller flushes TLB's if needed.
2212 *
2213 * Between 2 and 4, the guest may write to the page using the remaining TLB
2214 * entry. This is not a problem because the page is reported dirty using
2215 * the snapshot taken before and step 4 ensures that writes done after
2216 * exiting to userspace will be logged for the next call.
2217 *
2218 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)2219 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2220 {
2221 struct kvm_memslots *slots;
2222 struct kvm_memory_slot *memslot;
2223 int i, as_id, id;
2224 unsigned long n;
2225 unsigned long *dirty_bitmap;
2226 unsigned long *dirty_bitmap_buffer;
2227 bool flush;
2228
2229 /* Dirty ring tracking may be exclusive to dirty log tracking */
2230 if (!kvm_use_dirty_bitmap(kvm))
2231 return -ENXIO;
2232
2233 as_id = log->slot >> 16;
2234 id = (u16)log->slot;
2235 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2236 return -EINVAL;
2237
2238 slots = __kvm_memslots(kvm, as_id);
2239 memslot = id_to_memslot(slots, id);
2240 if (!memslot || !memslot->dirty_bitmap)
2241 return -ENOENT;
2242
2243 dirty_bitmap = memslot->dirty_bitmap;
2244
2245 kvm_arch_sync_dirty_log(kvm, memslot);
2246
2247 n = kvm_dirty_bitmap_bytes(memslot);
2248 flush = false;
2249 if (kvm->manual_dirty_log_protect) {
2250 /*
2251 * Unlike kvm_get_dirty_log, we always return false in *flush,
2252 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2253 * is some code duplication between this function and
2254 * kvm_get_dirty_log, but hopefully all architecture
2255 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2256 * can be eliminated.
2257 */
2258 dirty_bitmap_buffer = dirty_bitmap;
2259 } else {
2260 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2261 memset(dirty_bitmap_buffer, 0, n);
2262
2263 KVM_MMU_LOCK(kvm);
2264 for (i = 0; i < n / sizeof(long); i++) {
2265 unsigned long mask;
2266 gfn_t offset;
2267
2268 if (!dirty_bitmap[i])
2269 continue;
2270
2271 flush = true;
2272 mask = xchg(&dirty_bitmap[i], 0);
2273 dirty_bitmap_buffer[i] = mask;
2274
2275 offset = i * BITS_PER_LONG;
2276 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2277 offset, mask);
2278 }
2279 KVM_MMU_UNLOCK(kvm);
2280 }
2281
2282 if (flush)
2283 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2284
2285 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2286 return -EFAULT;
2287 return 0;
2288 }
2289
2290
2291 /**
2292 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2293 * @kvm: kvm instance
2294 * @log: slot id and address to which we copy the log
2295 *
2296 * Steps 1-4 below provide general overview of dirty page logging. See
2297 * kvm_get_dirty_log_protect() function description for additional details.
2298 *
2299 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2300 * always flush the TLB (step 4) even if previous step failed and the dirty
2301 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2302 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2303 * writes will be marked dirty for next log read.
2304 *
2305 * 1. Take a snapshot of the bit and clear it if needed.
2306 * 2. Write protect the corresponding page.
2307 * 3. Copy the snapshot to the userspace.
2308 * 4. Flush TLB's if needed.
2309 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2310 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2311 struct kvm_dirty_log *log)
2312 {
2313 int r;
2314
2315 mutex_lock(&kvm->slots_lock);
2316
2317 r = kvm_get_dirty_log_protect(kvm, log);
2318
2319 mutex_unlock(&kvm->slots_lock);
2320 return r;
2321 }
2322
2323 /**
2324 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2325 * and reenable dirty page tracking for the corresponding pages.
2326 * @kvm: pointer to kvm instance
2327 * @log: slot id and address from which to fetch the bitmap of dirty pages
2328 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2329 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2330 struct kvm_clear_dirty_log *log)
2331 {
2332 struct kvm_memslots *slots;
2333 struct kvm_memory_slot *memslot;
2334 int as_id, id;
2335 gfn_t offset;
2336 unsigned long i, n;
2337 unsigned long *dirty_bitmap;
2338 unsigned long *dirty_bitmap_buffer;
2339 bool flush;
2340
2341 /* Dirty ring tracking may be exclusive to dirty log tracking */
2342 if (!kvm_use_dirty_bitmap(kvm))
2343 return -ENXIO;
2344
2345 as_id = log->slot >> 16;
2346 id = (u16)log->slot;
2347 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2348 return -EINVAL;
2349
2350 if (log->first_page & 63)
2351 return -EINVAL;
2352
2353 slots = __kvm_memslots(kvm, as_id);
2354 memslot = id_to_memslot(slots, id);
2355 if (!memslot || !memslot->dirty_bitmap)
2356 return -ENOENT;
2357
2358 dirty_bitmap = memslot->dirty_bitmap;
2359
2360 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2361
2362 if (log->first_page > memslot->npages ||
2363 log->num_pages > memslot->npages - log->first_page ||
2364 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2365 return -EINVAL;
2366
2367 kvm_arch_sync_dirty_log(kvm, memslot);
2368
2369 flush = false;
2370 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2371 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2372 return -EFAULT;
2373
2374 KVM_MMU_LOCK(kvm);
2375 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2376 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2377 i++, offset += BITS_PER_LONG) {
2378 unsigned long mask = *dirty_bitmap_buffer++;
2379 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2380 if (!mask)
2381 continue;
2382
2383 mask &= atomic_long_fetch_andnot(mask, p);
2384
2385 /*
2386 * mask contains the bits that really have been cleared. This
2387 * never includes any bits beyond the length of the memslot (if
2388 * the length is not aligned to 64 pages), therefore it is not
2389 * a problem if userspace sets them in log->dirty_bitmap.
2390 */
2391 if (mask) {
2392 flush = true;
2393 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2394 offset, mask);
2395 }
2396 }
2397 KVM_MMU_UNLOCK(kvm);
2398
2399 if (flush)
2400 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2401
2402 return 0;
2403 }
2404
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2405 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2406 struct kvm_clear_dirty_log *log)
2407 {
2408 int r;
2409
2410 mutex_lock(&kvm->slots_lock);
2411
2412 r = kvm_clear_dirty_log_protect(kvm, log);
2413
2414 mutex_unlock(&kvm->slots_lock);
2415 return r;
2416 }
2417 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2418
2419 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_supported_mem_attributes(struct kvm * kvm)2420 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2421 {
2422 if (!kvm || kvm_arch_has_private_mem(kvm))
2423 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2424
2425 return 0;
2426 }
2427
2428 /*
2429 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2430 * such that the bits in @mask match @attrs.
2431 */
kvm_range_has_memory_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long mask,unsigned long attrs)2432 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2433 unsigned long mask, unsigned long attrs)
2434 {
2435 XA_STATE(xas, &kvm->mem_attr_array, start);
2436 unsigned long index;
2437 void *entry;
2438
2439 mask &= kvm_supported_mem_attributes(kvm);
2440 if (attrs & ~mask)
2441 return false;
2442
2443 if (end == start + 1)
2444 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2445
2446 guard(rcu)();
2447 if (!attrs)
2448 return !xas_find(&xas, end - 1);
2449
2450 for (index = start; index < end; index++) {
2451 do {
2452 entry = xas_next(&xas);
2453 } while (xas_retry(&xas, entry));
2454
2455 if (xas.xa_index != index ||
2456 (xa_to_value(entry) & mask) != attrs)
2457 return false;
2458 }
2459
2460 return true;
2461 }
2462
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_mmu_notifier_range * range)2463 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2464 struct kvm_mmu_notifier_range *range)
2465 {
2466 struct kvm_gfn_range gfn_range;
2467 struct kvm_memory_slot *slot;
2468 struct kvm_memslots *slots;
2469 struct kvm_memslot_iter iter;
2470 bool found_memslot = false;
2471 bool ret = false;
2472 int i;
2473
2474 gfn_range.arg = range->arg;
2475 gfn_range.may_block = range->may_block;
2476
2477 /*
2478 * If/when KVM supports more attributes beyond private .vs shared, this
2479 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
2480 * range already has the desired private vs. shared state (it's unclear
2481 * if that is a net win). For now, KVM reaches this point if and only
2482 * if the private flag is being toggled, i.e. all mappings are in play.
2483 */
2484
2485 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2486 slots = __kvm_memslots(kvm, i);
2487
2488 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2489 slot = iter.slot;
2490 gfn_range.slot = slot;
2491
2492 gfn_range.start = max(range->start, slot->base_gfn);
2493 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2494 if (gfn_range.start >= gfn_range.end)
2495 continue;
2496
2497 if (!found_memslot) {
2498 found_memslot = true;
2499 KVM_MMU_LOCK(kvm);
2500 if (!IS_KVM_NULL_FN(range->on_lock))
2501 range->on_lock(kvm);
2502 }
2503
2504 ret |= range->handler(kvm, &gfn_range);
2505 }
2506 }
2507
2508 if (range->flush_on_ret && ret)
2509 kvm_flush_remote_tlbs(kvm);
2510
2511 if (found_memslot)
2512 KVM_MMU_UNLOCK(kvm);
2513 }
2514
kvm_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)2515 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2516 struct kvm_gfn_range *range)
2517 {
2518 /*
2519 * Unconditionally add the range to the invalidation set, regardless of
2520 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2521 * if KVM supports RWX attributes in the future and the attributes are
2522 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2523 * adding the range allows KVM to require that MMU invalidations add at
2524 * least one range between begin() and end(), e.g. allows KVM to detect
2525 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2526 * but it's not obvious that allowing new mappings while the attributes
2527 * are in flux is desirable or worth the complexity.
2528 */
2529 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2530
2531 return kvm_arch_pre_set_memory_attributes(kvm, range);
2532 }
2533
2534 /* Set @attributes for the gfn range [@start, @end). */
kvm_vm_set_mem_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long attributes)2535 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2536 unsigned long attributes)
2537 {
2538 struct kvm_mmu_notifier_range pre_set_range = {
2539 .start = start,
2540 .end = end,
2541 .arg.attributes = attributes,
2542 .handler = kvm_pre_set_memory_attributes,
2543 .on_lock = kvm_mmu_invalidate_begin,
2544 .flush_on_ret = true,
2545 .may_block = true,
2546 };
2547 struct kvm_mmu_notifier_range post_set_range = {
2548 .start = start,
2549 .end = end,
2550 .arg.attributes = attributes,
2551 .handler = kvm_arch_post_set_memory_attributes,
2552 .on_lock = kvm_mmu_invalidate_end,
2553 .may_block = true,
2554 };
2555 unsigned long i;
2556 void *entry;
2557 int r = 0;
2558
2559 entry = attributes ? xa_mk_value(attributes) : NULL;
2560
2561 trace_kvm_vm_set_mem_attributes(start, end, attributes);
2562
2563 mutex_lock(&kvm->slots_lock);
2564
2565 /* Nothing to do if the entire range has the desired attributes. */
2566 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2567 goto out_unlock;
2568
2569 /*
2570 * Reserve memory ahead of time to avoid having to deal with failures
2571 * partway through setting the new attributes.
2572 */
2573 for (i = start; i < end; i++) {
2574 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2575 if (r)
2576 goto out_unlock;
2577
2578 cond_resched();
2579 }
2580
2581 kvm_handle_gfn_range(kvm, &pre_set_range);
2582
2583 for (i = start; i < end; i++) {
2584 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2585 GFP_KERNEL_ACCOUNT));
2586 KVM_BUG_ON(r, kvm);
2587 cond_resched();
2588 }
2589
2590 kvm_handle_gfn_range(kvm, &post_set_range);
2591
2592 out_unlock:
2593 mutex_unlock(&kvm->slots_lock);
2594
2595 return r;
2596 }
kvm_vm_ioctl_set_mem_attributes(struct kvm * kvm,struct kvm_memory_attributes * attrs)2597 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2598 struct kvm_memory_attributes *attrs)
2599 {
2600 gfn_t start, end;
2601
2602 /* flags is currently not used. */
2603 if (attrs->flags)
2604 return -EINVAL;
2605 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2606 return -EINVAL;
2607 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2608 return -EINVAL;
2609 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2610 return -EINVAL;
2611
2612 start = attrs->address >> PAGE_SHIFT;
2613 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2614
2615 /*
2616 * xarray tracks data using "unsigned long", and as a result so does
2617 * KVM. For simplicity, supports generic attributes only on 64-bit
2618 * architectures.
2619 */
2620 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2621
2622 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2623 }
2624 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2625
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2626 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2627 {
2628 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2629 }
2630 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2631
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2632 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2633 {
2634 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2635 u64 gen = slots->generation;
2636 struct kvm_memory_slot *slot;
2637
2638 /*
2639 * This also protects against using a memslot from a different address space,
2640 * since different address spaces have different generation numbers.
2641 */
2642 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2643 vcpu->last_used_slot = NULL;
2644 vcpu->last_used_slot_gen = gen;
2645 }
2646
2647 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2648 if (slot)
2649 return slot;
2650
2651 /*
2652 * Fall back to searching all memslots. We purposely use
2653 * search_memslots() instead of __gfn_to_memslot() to avoid
2654 * thrashing the VM-wide last_used_slot in kvm_memslots.
2655 */
2656 slot = search_memslots(slots, gfn, false);
2657 if (slot) {
2658 vcpu->last_used_slot = slot;
2659 return slot;
2660 }
2661
2662 return NULL;
2663 }
2664
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2665 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2666 {
2667 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2668
2669 return kvm_is_visible_memslot(memslot);
2670 }
2671 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2672
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2673 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2674 {
2675 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2676
2677 return kvm_is_visible_memslot(memslot);
2678 }
2679 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2680
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2681 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2682 {
2683 struct vm_area_struct *vma;
2684 unsigned long addr, size;
2685
2686 size = PAGE_SIZE;
2687
2688 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2689 if (kvm_is_error_hva(addr))
2690 return PAGE_SIZE;
2691
2692 mmap_read_lock(current->mm);
2693 vma = find_vma(current->mm, addr);
2694 if (!vma)
2695 goto out;
2696
2697 size = vma_kernel_pagesize(vma);
2698
2699 out:
2700 mmap_read_unlock(current->mm);
2701
2702 return size;
2703 }
2704
memslot_is_readonly(const struct kvm_memory_slot * slot)2705 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2706 {
2707 return slot->flags & KVM_MEM_READONLY;
2708 }
2709
__gfn_to_hva_many(const struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2710 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2711 gfn_t *nr_pages, bool write)
2712 {
2713 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2714 return KVM_HVA_ERR_BAD;
2715
2716 if (memslot_is_readonly(slot) && write)
2717 return KVM_HVA_ERR_RO_BAD;
2718
2719 if (nr_pages)
2720 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2721
2722 return __gfn_to_hva_memslot(slot, gfn);
2723 }
2724
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2725 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2726 gfn_t *nr_pages)
2727 {
2728 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2729 }
2730
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2731 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2732 gfn_t gfn)
2733 {
2734 return gfn_to_hva_many(slot, gfn, NULL);
2735 }
2736 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2737
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2738 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2739 {
2740 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2741 }
2742 EXPORT_SYMBOL_GPL(gfn_to_hva);
2743
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2744 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2745 {
2746 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2747 }
2748 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2749
2750 /*
2751 * Return the hva of a @gfn and the R/W attribute if possible.
2752 *
2753 * @slot: the kvm_memory_slot which contains @gfn
2754 * @gfn: the gfn to be translated
2755 * @writable: used to return the read/write attribute of the @slot if the hva
2756 * is valid and @writable is not NULL
2757 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2758 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2759 gfn_t gfn, bool *writable)
2760 {
2761 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2762
2763 if (!kvm_is_error_hva(hva) && writable)
2764 *writable = !memslot_is_readonly(slot);
2765
2766 return hva;
2767 }
2768
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2769 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2770 {
2771 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2772
2773 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2774 }
2775
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2776 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2777 {
2778 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2779
2780 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2781 }
2782
kvm_is_ad_tracked_page(struct page * page)2783 static bool kvm_is_ad_tracked_page(struct page *page)
2784 {
2785 /*
2786 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2787 * touched (e.g. set dirty) except by its owner".
2788 */
2789 return !PageReserved(page);
2790 }
2791
kvm_set_page_dirty(struct page * page)2792 static void kvm_set_page_dirty(struct page *page)
2793 {
2794 if (kvm_is_ad_tracked_page(page))
2795 SetPageDirty(page);
2796 }
2797
kvm_set_page_accessed(struct page * page)2798 static void kvm_set_page_accessed(struct page *page)
2799 {
2800 if (kvm_is_ad_tracked_page(page))
2801 mark_page_accessed(page);
2802 }
2803
kvm_release_page_clean(struct page * page)2804 void kvm_release_page_clean(struct page *page)
2805 {
2806 if (!page)
2807 return;
2808
2809 kvm_set_page_accessed(page);
2810 put_page(page);
2811 }
2812 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2813
kvm_release_page_dirty(struct page * page)2814 void kvm_release_page_dirty(struct page *page)
2815 {
2816 if (!page)
2817 return;
2818
2819 kvm_set_page_dirty(page);
2820 kvm_release_page_clean(page);
2821 }
2822 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2823
kvm_resolve_pfn(struct kvm_follow_pfn * kfp,struct page * page,struct follow_pfnmap_args * map,bool writable)2824 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2825 struct follow_pfnmap_args *map, bool writable)
2826 {
2827 kvm_pfn_t pfn;
2828
2829 WARN_ON_ONCE(!!page == !!map);
2830
2831 if (kfp->map_writable)
2832 *kfp->map_writable = writable;
2833
2834 if (map)
2835 pfn = map->pfn;
2836 else
2837 pfn = page_to_pfn(page);
2838
2839 *kfp->refcounted_page = page;
2840
2841 return pfn;
2842 }
2843
2844 /*
2845 * The fast path to get the writable pfn which will be stored in @pfn,
2846 * true indicates success, otherwise false is returned.
2847 */
hva_to_pfn_fast(struct kvm_follow_pfn * kfp,kvm_pfn_t * pfn)2848 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2849 {
2850 struct page *page;
2851 bool r;
2852
2853 /*
2854 * Try the fast-only path when the caller wants to pin/get the page for
2855 * writing. If the caller only wants to read the page, KVM must go
2856 * down the full, slow path in order to avoid racing an operation that
2857 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2858 * at the old, read-only page while mm/ points at a new, writable page.
2859 */
2860 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2861 return false;
2862
2863 if (kfp->pin)
2864 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2865 else
2866 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2867
2868 if (r) {
2869 *pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2870 return true;
2871 }
2872
2873 return false;
2874 }
2875
2876 /*
2877 * The slow path to get the pfn of the specified host virtual address,
2878 * 1 indicates success, -errno is returned if error is detected.
2879 */
hva_to_pfn_slow(struct kvm_follow_pfn * kfp,kvm_pfn_t * pfn)2880 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2881 {
2882 /*
2883 * When a VCPU accesses a page that is not mapped into the secondary
2884 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2885 * make progress. We always want to honor NUMA hinting faults in that
2886 * case, because GUP usage corresponds to memory accesses from the VCPU.
2887 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2888 * mapped into the secondary MMU and gets accessed by a VCPU.
2889 *
2890 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2891 * implicitly honor NUMA hinting faults and don't need this flag.
2892 */
2893 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2894 struct page *page, *wpage;
2895 int npages;
2896
2897 if (kfp->pin)
2898 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2899 else
2900 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2901 if (npages != 1)
2902 return npages;
2903
2904 /*
2905 * Pinning is mutually exclusive with opportunistically mapping a read
2906 * fault as writable, as KVM should never pin pages when mapping memory
2907 * into the guest (pinning is only for direct accesses from KVM).
2908 */
2909 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2910 goto out;
2911
2912 /* map read fault as writable if possible */
2913 if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2914 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2915 put_page(page);
2916 page = wpage;
2917 flags |= FOLL_WRITE;
2918 }
2919
2920 out:
2921 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2922 return npages;
2923 }
2924
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2925 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2926 {
2927 if (unlikely(!(vma->vm_flags & VM_READ)))
2928 return false;
2929
2930 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2931 return false;
2932
2933 return true;
2934 }
2935
hva_to_pfn_remapped(struct vm_area_struct * vma,struct kvm_follow_pfn * kfp,kvm_pfn_t * p_pfn)2936 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2937 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2938 {
2939 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2940 bool write_fault = kfp->flags & FOLL_WRITE;
2941 int r;
2942
2943 /*
2944 * Remapped memory cannot be pinned in any meaningful sense. Bail if
2945 * the caller wants to pin the page, i.e. access the page outside of
2946 * MMU notifier protection, and unsafe umappings are disallowed.
2947 */
2948 if (kfp->pin && !allow_unsafe_mappings)
2949 return -EINVAL;
2950
2951 r = follow_pfnmap_start(&args);
2952 if (r) {
2953 /*
2954 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2955 * not call the fault handler, so do it here.
2956 */
2957 bool unlocked = false;
2958 r = fixup_user_fault(current->mm, kfp->hva,
2959 (write_fault ? FAULT_FLAG_WRITE : 0),
2960 &unlocked);
2961 if (unlocked)
2962 return -EAGAIN;
2963 if (r)
2964 return r;
2965
2966 r = follow_pfnmap_start(&args);
2967 if (r)
2968 return r;
2969 }
2970
2971 if (write_fault && !args.writable) {
2972 *p_pfn = KVM_PFN_ERR_RO_FAULT;
2973 goto out;
2974 }
2975
2976 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2977 out:
2978 follow_pfnmap_end(&args);
2979 return r;
2980 }
2981
hva_to_pfn(struct kvm_follow_pfn * kfp)2982 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2983 {
2984 struct vm_area_struct *vma;
2985 kvm_pfn_t pfn;
2986 int npages, r;
2987
2988 might_sleep();
2989
2990 if (WARN_ON_ONCE(!kfp->refcounted_page))
2991 return KVM_PFN_ERR_FAULT;
2992
2993 if (hva_to_pfn_fast(kfp, &pfn))
2994 return pfn;
2995
2996 npages = hva_to_pfn_slow(kfp, &pfn);
2997 if (npages == 1)
2998 return pfn;
2999 if (npages == -EINTR || npages == -EAGAIN)
3000 return KVM_PFN_ERR_SIGPENDING;
3001 if (npages == -EHWPOISON)
3002 return KVM_PFN_ERR_HWPOISON;
3003
3004 mmap_read_lock(current->mm);
3005 retry:
3006 vma = vma_lookup(current->mm, kfp->hva);
3007
3008 if (vma == NULL)
3009 pfn = KVM_PFN_ERR_FAULT;
3010 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3011 r = hva_to_pfn_remapped(vma, kfp, &pfn);
3012 if (r == -EAGAIN)
3013 goto retry;
3014 if (r < 0)
3015 pfn = KVM_PFN_ERR_FAULT;
3016 } else {
3017 if ((kfp->flags & FOLL_NOWAIT) &&
3018 vma_is_valid(vma, kfp->flags & FOLL_WRITE))
3019 pfn = KVM_PFN_ERR_NEEDS_IO;
3020 else
3021 pfn = KVM_PFN_ERR_FAULT;
3022 }
3023 mmap_read_unlock(current->mm);
3024 return pfn;
3025 }
3026
kvm_follow_pfn(struct kvm_follow_pfn * kfp)3027 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
3028 {
3029 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
3030 kfp->flags & FOLL_WRITE);
3031
3032 if (kfp->hva == KVM_HVA_ERR_RO_BAD)
3033 return KVM_PFN_ERR_RO_FAULT;
3034
3035 if (kvm_is_error_hva(kfp->hva))
3036 return KVM_PFN_NOSLOT;
3037
3038 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
3039 *kfp->map_writable = false;
3040 kfp->map_writable = NULL;
3041 }
3042
3043 return hva_to_pfn(kfp);
3044 }
3045
__kvm_faultin_pfn(const struct kvm_memory_slot * slot,gfn_t gfn,unsigned int foll,bool * writable,struct page ** refcounted_page)3046 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
3047 unsigned int foll, bool *writable,
3048 struct page **refcounted_page)
3049 {
3050 struct kvm_follow_pfn kfp = {
3051 .slot = slot,
3052 .gfn = gfn,
3053 .flags = foll,
3054 .map_writable = writable,
3055 .refcounted_page = refcounted_page,
3056 };
3057
3058 if (WARN_ON_ONCE(!writable || !refcounted_page))
3059 return KVM_PFN_ERR_FAULT;
3060
3061 *writable = false;
3062 *refcounted_page = NULL;
3063
3064 return kvm_follow_pfn(&kfp);
3065 }
3066 EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
3067
kvm_prefetch_pages(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)3068 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
3069 struct page **pages, int nr_pages)
3070 {
3071 unsigned long addr;
3072 gfn_t entry = 0;
3073
3074 addr = gfn_to_hva_many(slot, gfn, &entry);
3075 if (kvm_is_error_hva(addr))
3076 return -1;
3077
3078 if (entry < nr_pages)
3079 return 0;
3080
3081 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3082 }
3083 EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3084
3085 /*
3086 * Don't use this API unless you are absolutely, positively certain that KVM
3087 * needs to get a struct page, e.g. to pin the page for firmware DMA.
3088 *
3089 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3090 * its refcount.
3091 */
__gfn_to_page(struct kvm * kvm,gfn_t gfn,bool write)3092 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3093 {
3094 struct page *refcounted_page = NULL;
3095 struct kvm_follow_pfn kfp = {
3096 .slot = gfn_to_memslot(kvm, gfn),
3097 .gfn = gfn,
3098 .flags = write ? FOLL_WRITE : 0,
3099 .refcounted_page = &refcounted_page,
3100 };
3101
3102 (void)kvm_follow_pfn(&kfp);
3103 return refcounted_page;
3104 }
3105 EXPORT_SYMBOL_GPL(__gfn_to_page);
3106
__kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,bool writable)3107 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3108 bool writable)
3109 {
3110 struct kvm_follow_pfn kfp = {
3111 .slot = gfn_to_memslot(vcpu->kvm, gfn),
3112 .gfn = gfn,
3113 .flags = writable ? FOLL_WRITE : 0,
3114 .refcounted_page = &map->pinned_page,
3115 .pin = true,
3116 };
3117
3118 map->pinned_page = NULL;
3119 map->page = NULL;
3120 map->hva = NULL;
3121 map->gfn = gfn;
3122 map->writable = writable;
3123
3124 map->pfn = kvm_follow_pfn(&kfp);
3125 if (is_error_noslot_pfn(map->pfn))
3126 return -EINVAL;
3127
3128 if (pfn_valid(map->pfn)) {
3129 map->page = pfn_to_page(map->pfn);
3130 map->hva = kmap(map->page);
3131 #ifdef CONFIG_HAS_IOMEM
3132 } else {
3133 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3134 #endif
3135 }
3136
3137 return map->hva ? 0 : -EFAULT;
3138 }
3139 EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3140
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map)3141 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3142 {
3143 if (!map->hva)
3144 return;
3145
3146 if (map->page)
3147 kunmap(map->page);
3148 #ifdef CONFIG_HAS_IOMEM
3149 else
3150 memunmap(map->hva);
3151 #endif
3152
3153 if (map->writable)
3154 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3155
3156 if (map->pinned_page) {
3157 if (map->writable)
3158 kvm_set_page_dirty(map->pinned_page);
3159 kvm_set_page_accessed(map->pinned_page);
3160 unpin_user_page(map->pinned_page);
3161 }
3162
3163 map->hva = NULL;
3164 map->page = NULL;
3165 map->pinned_page = NULL;
3166 }
3167 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3168
next_segment(unsigned long len,int offset)3169 static int next_segment(unsigned long len, int offset)
3170 {
3171 if (len > PAGE_SIZE - offset)
3172 return PAGE_SIZE - offset;
3173 else
3174 return len;
3175 }
3176
3177 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)3178 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3179 void *data, int offset, int len)
3180 {
3181 int r;
3182 unsigned long addr;
3183
3184 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3185 return -EFAULT;
3186
3187 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3188 if (kvm_is_error_hva(addr))
3189 return -EFAULT;
3190 r = __copy_from_user(data, (void __user *)addr + offset, len);
3191 if (r)
3192 return -EFAULT;
3193 return 0;
3194 }
3195
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)3196 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3197 int len)
3198 {
3199 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3200
3201 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3202 }
3203 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3204
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)3205 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3206 int offset, int len)
3207 {
3208 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3209
3210 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3211 }
3212 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3213
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)3214 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3215 {
3216 gfn_t gfn = gpa >> PAGE_SHIFT;
3217 int seg;
3218 int offset = offset_in_page(gpa);
3219 int ret;
3220
3221 while ((seg = next_segment(len, offset)) != 0) {
3222 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3223 if (ret < 0)
3224 return ret;
3225 offset = 0;
3226 len -= seg;
3227 data += seg;
3228 ++gfn;
3229 }
3230 return 0;
3231 }
3232 EXPORT_SYMBOL_GPL(kvm_read_guest);
3233
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3234 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3235 {
3236 gfn_t gfn = gpa >> PAGE_SHIFT;
3237 int seg;
3238 int offset = offset_in_page(gpa);
3239 int ret;
3240
3241 while ((seg = next_segment(len, offset)) != 0) {
3242 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3243 if (ret < 0)
3244 return ret;
3245 offset = 0;
3246 len -= seg;
3247 data += seg;
3248 ++gfn;
3249 }
3250 return 0;
3251 }
3252 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3253
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)3254 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3255 void *data, int offset, unsigned long len)
3256 {
3257 int r;
3258 unsigned long addr;
3259
3260 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3261 return -EFAULT;
3262
3263 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3264 if (kvm_is_error_hva(addr))
3265 return -EFAULT;
3266 pagefault_disable();
3267 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3268 pagefault_enable();
3269 if (r)
3270 return -EFAULT;
3271 return 0;
3272 }
3273
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3274 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3275 void *data, unsigned long len)
3276 {
3277 gfn_t gfn = gpa >> PAGE_SHIFT;
3278 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3279 int offset = offset_in_page(gpa);
3280
3281 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3282 }
3283 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3284
3285 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)3286 static int __kvm_write_guest_page(struct kvm *kvm,
3287 struct kvm_memory_slot *memslot, gfn_t gfn,
3288 const void *data, int offset, int len)
3289 {
3290 int r;
3291 unsigned long addr;
3292
3293 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3294 return -EFAULT;
3295
3296 addr = gfn_to_hva_memslot(memslot, gfn);
3297 if (kvm_is_error_hva(addr))
3298 return -EFAULT;
3299 r = __copy_to_user((void __user *)addr + offset, data, len);
3300 if (r)
3301 return -EFAULT;
3302 mark_page_dirty_in_slot(kvm, memslot, gfn);
3303 return 0;
3304 }
3305
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)3306 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3307 const void *data, int offset, int len)
3308 {
3309 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3310
3311 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3312 }
3313 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3314
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3315 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3316 const void *data, int offset, int len)
3317 {
3318 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3319
3320 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3321 }
3322 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3323
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3324 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3325 unsigned long len)
3326 {
3327 gfn_t gfn = gpa >> PAGE_SHIFT;
3328 int seg;
3329 int offset = offset_in_page(gpa);
3330 int ret;
3331
3332 while ((seg = next_segment(len, offset)) != 0) {
3333 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3334 if (ret < 0)
3335 return ret;
3336 offset = 0;
3337 len -= seg;
3338 data += seg;
3339 ++gfn;
3340 }
3341 return 0;
3342 }
3343 EXPORT_SYMBOL_GPL(kvm_write_guest);
3344
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3345 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3346 unsigned long len)
3347 {
3348 gfn_t gfn = gpa >> PAGE_SHIFT;
3349 int seg;
3350 int offset = offset_in_page(gpa);
3351 int ret;
3352
3353 while ((seg = next_segment(len, offset)) != 0) {
3354 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3355 if (ret < 0)
3356 return ret;
3357 offset = 0;
3358 len -= seg;
3359 data += seg;
3360 ++gfn;
3361 }
3362 return 0;
3363 }
3364 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3365
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3366 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3367 struct gfn_to_hva_cache *ghc,
3368 gpa_t gpa, unsigned long len)
3369 {
3370 int offset = offset_in_page(gpa);
3371 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3372 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3373 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3374 gfn_t nr_pages_avail;
3375
3376 /* Update ghc->generation before performing any error checks. */
3377 ghc->generation = slots->generation;
3378
3379 if (start_gfn > end_gfn) {
3380 ghc->hva = KVM_HVA_ERR_BAD;
3381 return -EINVAL;
3382 }
3383
3384 /*
3385 * If the requested region crosses two memslots, we still
3386 * verify that the entire region is valid here.
3387 */
3388 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3389 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3390 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3391 &nr_pages_avail);
3392 if (kvm_is_error_hva(ghc->hva))
3393 return -EFAULT;
3394 }
3395
3396 /* Use the slow path for cross page reads and writes. */
3397 if (nr_pages_needed == 1)
3398 ghc->hva += offset;
3399 else
3400 ghc->memslot = NULL;
3401
3402 ghc->gpa = gpa;
3403 ghc->len = len;
3404 return 0;
3405 }
3406
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3407 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3408 gpa_t gpa, unsigned long len)
3409 {
3410 struct kvm_memslots *slots = kvm_memslots(kvm);
3411 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3412 }
3413 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3414
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3415 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3416 void *data, unsigned int offset,
3417 unsigned long len)
3418 {
3419 struct kvm_memslots *slots = kvm_memslots(kvm);
3420 int r;
3421 gpa_t gpa = ghc->gpa + offset;
3422
3423 if (WARN_ON_ONCE(len + offset > ghc->len))
3424 return -EINVAL;
3425
3426 if (slots->generation != ghc->generation) {
3427 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3428 return -EFAULT;
3429 }
3430
3431 if (kvm_is_error_hva(ghc->hva))
3432 return -EFAULT;
3433
3434 if (unlikely(!ghc->memslot))
3435 return kvm_write_guest(kvm, gpa, data, len);
3436
3437 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3438 if (r)
3439 return -EFAULT;
3440 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3441
3442 return 0;
3443 }
3444 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3445
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3446 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3447 void *data, unsigned long len)
3448 {
3449 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3450 }
3451 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3452
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3453 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3454 void *data, unsigned int offset,
3455 unsigned long len)
3456 {
3457 struct kvm_memslots *slots = kvm_memslots(kvm);
3458 int r;
3459 gpa_t gpa = ghc->gpa + offset;
3460
3461 if (WARN_ON_ONCE(len + offset > ghc->len))
3462 return -EINVAL;
3463
3464 if (slots->generation != ghc->generation) {
3465 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3466 return -EFAULT;
3467 }
3468
3469 if (kvm_is_error_hva(ghc->hva))
3470 return -EFAULT;
3471
3472 if (unlikely(!ghc->memslot))
3473 return kvm_read_guest(kvm, gpa, data, len);
3474
3475 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3476 if (r)
3477 return -EFAULT;
3478
3479 return 0;
3480 }
3481 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3482
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3483 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3484 void *data, unsigned long len)
3485 {
3486 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3487 }
3488 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3489
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3490 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3491 {
3492 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3493 gfn_t gfn = gpa >> PAGE_SHIFT;
3494 int seg;
3495 int offset = offset_in_page(gpa);
3496 int ret;
3497
3498 while ((seg = next_segment(len, offset)) != 0) {
3499 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3500 if (ret < 0)
3501 return ret;
3502 offset = 0;
3503 len -= seg;
3504 ++gfn;
3505 }
3506 return 0;
3507 }
3508 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3509
mark_page_dirty_in_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot,gfn_t gfn)3510 void mark_page_dirty_in_slot(struct kvm *kvm,
3511 const struct kvm_memory_slot *memslot,
3512 gfn_t gfn)
3513 {
3514 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3515
3516 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3517 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3518 return;
3519
3520 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3521 #endif
3522
3523 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3524 unsigned long rel_gfn = gfn - memslot->base_gfn;
3525 u32 slot = (memslot->as_id << 16) | memslot->id;
3526
3527 if (kvm->dirty_ring_size && vcpu)
3528 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3529 else if (memslot->dirty_bitmap)
3530 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3531 }
3532 }
3533 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3534
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3535 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3536 {
3537 struct kvm_memory_slot *memslot;
3538
3539 memslot = gfn_to_memslot(kvm, gfn);
3540 mark_page_dirty_in_slot(kvm, memslot, gfn);
3541 }
3542 EXPORT_SYMBOL_GPL(mark_page_dirty);
3543
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3544 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3545 {
3546 struct kvm_memory_slot *memslot;
3547
3548 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3549 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3550 }
3551 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3552
kvm_sigset_activate(struct kvm_vcpu * vcpu)3553 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3554 {
3555 if (!vcpu->sigset_active)
3556 return;
3557
3558 /*
3559 * This does a lockless modification of ->real_blocked, which is fine
3560 * because, only current can change ->real_blocked and all readers of
3561 * ->real_blocked don't care as long ->real_blocked is always a subset
3562 * of ->blocked.
3563 */
3564 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3565 }
3566
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3567 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3568 {
3569 if (!vcpu->sigset_active)
3570 return;
3571
3572 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3573 sigemptyset(¤t->real_blocked);
3574 }
3575
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3576 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3577 {
3578 unsigned int old, val, grow, grow_start;
3579
3580 old = val = vcpu->halt_poll_ns;
3581 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3582 grow = READ_ONCE(halt_poll_ns_grow);
3583 if (!grow)
3584 goto out;
3585
3586 val *= grow;
3587 if (val < grow_start)
3588 val = grow_start;
3589
3590 vcpu->halt_poll_ns = val;
3591 out:
3592 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3593 }
3594
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3595 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3596 {
3597 unsigned int old, val, shrink, grow_start;
3598
3599 old = val = vcpu->halt_poll_ns;
3600 shrink = READ_ONCE(halt_poll_ns_shrink);
3601 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3602 if (shrink == 0)
3603 val = 0;
3604 else
3605 val /= shrink;
3606
3607 if (val < grow_start)
3608 val = 0;
3609
3610 vcpu->halt_poll_ns = val;
3611 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3612 }
3613
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3614 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3615 {
3616 int ret = -EINTR;
3617 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3618
3619 if (kvm_arch_vcpu_runnable(vcpu))
3620 goto out;
3621 if (kvm_cpu_has_pending_timer(vcpu))
3622 goto out;
3623 if (signal_pending(current))
3624 goto out;
3625 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3626 goto out;
3627
3628 ret = 0;
3629 out:
3630 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3631 return ret;
3632 }
3633
3634 /*
3635 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3636 * pending. This is mostly used when halting a vCPU, but may also be used
3637 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3638 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3639 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3640 {
3641 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3642 bool waited = false;
3643
3644 vcpu->stat.generic.blocking = 1;
3645
3646 preempt_disable();
3647 kvm_arch_vcpu_blocking(vcpu);
3648 prepare_to_rcuwait(wait);
3649 preempt_enable();
3650
3651 for (;;) {
3652 set_current_state(TASK_INTERRUPTIBLE);
3653
3654 if (kvm_vcpu_check_block(vcpu) < 0)
3655 break;
3656
3657 waited = true;
3658 schedule();
3659 }
3660
3661 preempt_disable();
3662 finish_rcuwait(wait);
3663 kvm_arch_vcpu_unblocking(vcpu);
3664 preempt_enable();
3665
3666 vcpu->stat.generic.blocking = 0;
3667
3668 return waited;
3669 }
3670
update_halt_poll_stats(struct kvm_vcpu * vcpu,ktime_t start,ktime_t end,bool success)3671 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3672 ktime_t end, bool success)
3673 {
3674 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3675 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3676
3677 ++vcpu->stat.generic.halt_attempted_poll;
3678
3679 if (success) {
3680 ++vcpu->stat.generic.halt_successful_poll;
3681
3682 if (!vcpu_valid_wakeup(vcpu))
3683 ++vcpu->stat.generic.halt_poll_invalid;
3684
3685 stats->halt_poll_success_ns += poll_ns;
3686 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3687 } else {
3688 stats->halt_poll_fail_ns += poll_ns;
3689 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3690 }
3691 }
3692
kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu * vcpu)3693 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3694 {
3695 struct kvm *kvm = vcpu->kvm;
3696
3697 if (kvm->override_halt_poll_ns) {
3698 /*
3699 * Ensure kvm->max_halt_poll_ns is not read before
3700 * kvm->override_halt_poll_ns.
3701 *
3702 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3703 */
3704 smp_rmb();
3705 return READ_ONCE(kvm->max_halt_poll_ns);
3706 }
3707
3708 return READ_ONCE(halt_poll_ns);
3709 }
3710
3711 /*
3712 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3713 * polling is enabled, busy wait for a short time before blocking to avoid the
3714 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3715 * is halted.
3716 */
kvm_vcpu_halt(struct kvm_vcpu * vcpu)3717 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3718 {
3719 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3720 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3721 ktime_t start, cur, poll_end;
3722 bool waited = false;
3723 bool do_halt_poll;
3724 u64 halt_ns;
3725
3726 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3727 vcpu->halt_poll_ns = max_halt_poll_ns;
3728
3729 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3730
3731 start = cur = poll_end = ktime_get();
3732 if (do_halt_poll) {
3733 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3734
3735 do {
3736 if (kvm_vcpu_check_block(vcpu) < 0)
3737 goto out;
3738 cpu_relax();
3739 poll_end = cur = ktime_get();
3740 } while (kvm_vcpu_can_poll(cur, stop));
3741 }
3742
3743 waited = kvm_vcpu_block(vcpu);
3744
3745 cur = ktime_get();
3746 if (waited) {
3747 vcpu->stat.generic.halt_wait_ns +=
3748 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3749 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3750 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3751 }
3752 out:
3753 /* The total time the vCPU was "halted", including polling time. */
3754 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3755
3756 /*
3757 * Note, halt-polling is considered successful so long as the vCPU was
3758 * never actually scheduled out, i.e. even if the wake event arrived
3759 * after of the halt-polling loop itself, but before the full wait.
3760 */
3761 if (do_halt_poll)
3762 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3763
3764 if (halt_poll_allowed) {
3765 /* Recompute the max halt poll time in case it changed. */
3766 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3767
3768 if (!vcpu_valid_wakeup(vcpu)) {
3769 shrink_halt_poll_ns(vcpu);
3770 } else if (max_halt_poll_ns) {
3771 if (halt_ns <= vcpu->halt_poll_ns)
3772 ;
3773 /* we had a long block, shrink polling */
3774 else if (vcpu->halt_poll_ns &&
3775 halt_ns > max_halt_poll_ns)
3776 shrink_halt_poll_ns(vcpu);
3777 /* we had a short halt and our poll time is too small */
3778 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3779 halt_ns < max_halt_poll_ns)
3780 grow_halt_poll_ns(vcpu);
3781 } else {
3782 vcpu->halt_poll_ns = 0;
3783 }
3784 }
3785
3786 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3787 }
3788 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3789
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3790 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3791 {
3792 if (__kvm_vcpu_wake_up(vcpu)) {
3793 WRITE_ONCE(vcpu->ready, true);
3794 ++vcpu->stat.generic.halt_wakeup;
3795 return true;
3796 }
3797
3798 return false;
3799 }
3800 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3801
3802 #ifndef CONFIG_S390
3803 /*
3804 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3805 */
__kvm_vcpu_kick(struct kvm_vcpu * vcpu,bool wait)3806 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait)
3807 {
3808 int me, cpu;
3809
3810 if (kvm_vcpu_wake_up(vcpu))
3811 return;
3812
3813 me = get_cpu();
3814 /*
3815 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3816 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3817 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3818 * within the vCPU thread itself.
3819 */
3820 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3821 if (vcpu->mode == IN_GUEST_MODE)
3822 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3823 goto out;
3824 }
3825
3826 /*
3827 * Note, the vCPU could get migrated to a different pCPU at any point
3828 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3829 * IPI to the previous pCPU. But, that's ok because the purpose of the
3830 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3831 * vCPU also requires it to leave IN_GUEST_MODE.
3832 */
3833 if (kvm_arch_vcpu_should_kick(vcpu)) {
3834 cpu = READ_ONCE(vcpu->cpu);
3835 if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) {
3836 /*
3837 * Use a reschedule IPI to kick the vCPU if the caller
3838 * doesn't need to wait for a response, as KVM allows
3839 * kicking vCPUs while IRQs are disabled, but using the
3840 * SMP function call framework with IRQs disabled can
3841 * deadlock due to taking cross-CPU locks.
3842 */
3843 if (wait)
3844 smp_call_function_single(cpu, ack_kick, NULL, wait);
3845 else
3846 smp_send_reschedule(cpu);
3847 }
3848 }
3849 out:
3850 put_cpu();
3851 }
3852 EXPORT_SYMBOL_GPL(__kvm_vcpu_kick);
3853 #endif /* !CONFIG_S390 */
3854
kvm_vcpu_yield_to(struct kvm_vcpu * target)3855 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3856 {
3857 struct task_struct *task = NULL;
3858 int ret;
3859
3860 if (!read_trylock(&target->pid_lock))
3861 return 0;
3862
3863 if (target->pid)
3864 task = get_pid_task(target->pid, PIDTYPE_PID);
3865
3866 read_unlock(&target->pid_lock);
3867
3868 if (!task)
3869 return 0;
3870 ret = yield_to(task, 1);
3871 put_task_struct(task);
3872
3873 return ret;
3874 }
3875 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3876
3877 /*
3878 * Helper that checks whether a VCPU is eligible for directed yield.
3879 * Most eligible candidate to yield is decided by following heuristics:
3880 *
3881 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3882 * (preempted lock holder), indicated by @in_spin_loop.
3883 * Set at the beginning and cleared at the end of interception/PLE handler.
3884 *
3885 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3886 * chance last time (mostly it has become eligible now since we have probably
3887 * yielded to lockholder in last iteration. This is done by toggling
3888 * @dy_eligible each time a VCPU checked for eligibility.)
3889 *
3890 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3891 * to preempted lock-holder could result in wrong VCPU selection and CPU
3892 * burning. Giving priority for a potential lock-holder increases lock
3893 * progress.
3894 *
3895 * Since algorithm is based on heuristics, accessing another VCPU data without
3896 * locking does not harm. It may result in trying to yield to same VCPU, fail
3897 * and continue with next VCPU and so on.
3898 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3899 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3900 {
3901 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3902 bool eligible;
3903
3904 eligible = !vcpu->spin_loop.in_spin_loop ||
3905 vcpu->spin_loop.dy_eligible;
3906
3907 if (vcpu->spin_loop.in_spin_loop)
3908 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3909
3910 return eligible;
3911 #else
3912 return true;
3913 #endif
3914 }
3915
3916 /*
3917 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3918 * a vcpu_load/vcpu_put pair. However, for most architectures
3919 * kvm_arch_vcpu_runnable does not require vcpu_load.
3920 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3921 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3922 {
3923 return kvm_arch_vcpu_runnable(vcpu);
3924 }
3925
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3926 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3927 {
3928 if (kvm_arch_dy_runnable(vcpu))
3929 return true;
3930
3931 #ifdef CONFIG_KVM_ASYNC_PF
3932 if (!list_empty_careful(&vcpu->async_pf.done))
3933 return true;
3934 #endif
3935
3936 return false;
3937 }
3938
3939 /*
3940 * By default, simply query the target vCPU's current mode when checking if a
3941 * vCPU was preempted in kernel mode. All architectures except x86 (or more
3942 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3943 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3944 * directly for cross-vCPU checks is functionally correct and accurate.
3945 */
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)3946 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3947 {
3948 return kvm_arch_vcpu_in_kernel(vcpu);
3949 }
3950
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3951 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3952 {
3953 return false;
3954 }
3955
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3956 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3957 {
3958 int nr_vcpus, start, i, idx, yielded;
3959 struct kvm *kvm = me->kvm;
3960 struct kvm_vcpu *vcpu;
3961 int try = 3;
3962
3963 nr_vcpus = atomic_read(&kvm->online_vcpus);
3964 if (nr_vcpus < 2)
3965 return;
3966
3967 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3968 smp_rmb();
3969
3970 kvm_vcpu_set_in_spin_loop(me, true);
3971
3972 /*
3973 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3974 * waiting for a resource to become available. Attempt to yield to a
3975 * vCPU that is runnable, but not currently running, e.g. because the
3976 * vCPU was preempted by a higher priority task. With luck, the vCPU
3977 * that was preempted is holding a lock or some other resource that the
3978 * current vCPU is waiting to acquire, and yielding to the other vCPU
3979 * will allow it to make forward progress and release the lock (or kick
3980 * the spinning vCPU, etc).
3981 *
3982 * Since KVM has no insight into what exactly the guest is doing,
3983 * approximate a round-robin selection by iterating over all vCPUs,
3984 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu,
3985 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3986 *
3987 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3988 * they may all try to yield to the same vCPU(s). But as above, this
3989 * is all best effort due to KVM's lack of visibility into the guest.
3990 */
3991 start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3992 for (i = 0; i < nr_vcpus; i++) {
3993 idx = (start + i) % nr_vcpus;
3994 if (idx == me->vcpu_idx)
3995 continue;
3996
3997 vcpu = xa_load(&kvm->vcpu_array, idx);
3998 if (!READ_ONCE(vcpu->ready))
3999 continue;
4000 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4001 continue;
4002
4003 /*
4004 * Treat the target vCPU as being in-kernel if it has a pending
4005 * interrupt, as the vCPU trying to yield may be spinning
4006 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
4007 * for the purposes of directed yield.
4008 */
4009 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4010 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4011 !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4012 continue;
4013
4014 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4015 continue;
4016
4017 yielded = kvm_vcpu_yield_to(vcpu);
4018 if (yielded > 0) {
4019 WRITE_ONCE(kvm->last_boosted_vcpu, i);
4020 break;
4021 } else if (yielded < 0 && !--try) {
4022 break;
4023 }
4024 }
4025 kvm_vcpu_set_in_spin_loop(me, false);
4026
4027 /* Ensure vcpu is not eligible during next spinloop */
4028 kvm_vcpu_set_dy_eligible(me, false);
4029 }
4030 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4031
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)4032 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4033 {
4034 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4035 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4036 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4037 kvm->dirty_ring_size / PAGE_SIZE);
4038 #else
4039 return false;
4040 #endif
4041 }
4042
kvm_vcpu_fault(struct vm_fault * vmf)4043 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4044 {
4045 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4046 struct page *page;
4047
4048 if (vmf->pgoff == 0)
4049 page = virt_to_page(vcpu->run);
4050 #ifdef CONFIG_X86
4051 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4052 page = virt_to_page(vcpu->arch.pio_data);
4053 #endif
4054 #ifdef CONFIG_KVM_MMIO
4055 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4056 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4057 #endif
4058 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4059 page = kvm_dirty_ring_get_page(
4060 &vcpu->dirty_ring,
4061 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4062 else
4063 return kvm_arch_vcpu_fault(vcpu, vmf);
4064 get_page(page);
4065 vmf->page = page;
4066 return 0;
4067 }
4068
4069 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4070 .fault = kvm_vcpu_fault,
4071 };
4072
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)4073 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4074 {
4075 struct kvm_vcpu *vcpu = file->private_data;
4076 unsigned long pages = vma_pages(vma);
4077
4078 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4079 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4080 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4081 return -EINVAL;
4082
4083 vma->vm_ops = &kvm_vcpu_vm_ops;
4084 return 0;
4085 }
4086
kvm_vcpu_release(struct inode * inode,struct file * filp)4087 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4088 {
4089 struct kvm_vcpu *vcpu = filp->private_data;
4090
4091 kvm_put_kvm(vcpu->kvm);
4092 return 0;
4093 }
4094
4095 static struct file_operations kvm_vcpu_fops = {
4096 .release = kvm_vcpu_release,
4097 .unlocked_ioctl = kvm_vcpu_ioctl,
4098 .mmap = kvm_vcpu_mmap,
4099 .llseek = noop_llseek,
4100 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4101 };
4102
4103 /*
4104 * Allocates an inode for the vcpu.
4105 */
create_vcpu_fd(struct kvm_vcpu * vcpu)4106 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4107 {
4108 char name[8 + 1 + ITOA_MAX_LEN + 1];
4109
4110 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4111 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4112 }
4113
4114 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
vcpu_get_pid(void * data,u64 * val)4115 static int vcpu_get_pid(void *data, u64 *val)
4116 {
4117 struct kvm_vcpu *vcpu = data;
4118
4119 read_lock(&vcpu->pid_lock);
4120 *val = pid_nr(vcpu->pid);
4121 read_unlock(&vcpu->pid_lock);
4122 return 0;
4123 }
4124
4125 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4126
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)4127 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4128 {
4129 struct dentry *debugfs_dentry;
4130 char dir_name[ITOA_MAX_LEN * 2];
4131
4132 if (!debugfs_initialized())
4133 return;
4134
4135 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4136 debugfs_dentry = debugfs_create_dir(dir_name,
4137 vcpu->kvm->debugfs_dentry);
4138 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4139 &vcpu_get_pid_fops);
4140
4141 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4142 }
4143 #endif
4144
4145 /*
4146 * Creates some virtual cpus. Good luck creating more than one.
4147 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,unsigned long id)4148 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4149 {
4150 int r;
4151 struct kvm_vcpu *vcpu;
4152 struct page *page;
4153
4154 /*
4155 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4156 * too-large values instead of silently truncating.
4157 *
4158 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4159 * changing the storage type (at the very least, IDs should be tracked
4160 * as unsigned ints).
4161 */
4162 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4163 if (id >= KVM_MAX_VCPU_IDS)
4164 return -EINVAL;
4165
4166 mutex_lock(&kvm->lock);
4167 if (kvm->created_vcpus >= kvm->max_vcpus) {
4168 mutex_unlock(&kvm->lock);
4169 return -EINVAL;
4170 }
4171
4172 r = kvm_arch_vcpu_precreate(kvm, id);
4173 if (r) {
4174 mutex_unlock(&kvm->lock);
4175 return r;
4176 }
4177
4178 kvm->created_vcpus++;
4179 mutex_unlock(&kvm->lock);
4180
4181 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4182 if (!vcpu) {
4183 r = -ENOMEM;
4184 goto vcpu_decrement;
4185 }
4186
4187 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4188 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4189 if (!page) {
4190 r = -ENOMEM;
4191 goto vcpu_free;
4192 }
4193 vcpu->run = page_address(page);
4194
4195 kvm_vcpu_init(vcpu, kvm, id);
4196
4197 r = kvm_arch_vcpu_create(vcpu);
4198 if (r)
4199 goto vcpu_free_run_page;
4200
4201 if (kvm->dirty_ring_size) {
4202 r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring,
4203 id, kvm->dirty_ring_size);
4204 if (r)
4205 goto arch_vcpu_destroy;
4206 }
4207
4208 mutex_lock(&kvm->lock);
4209
4210 if (kvm_get_vcpu_by_id(kvm, id)) {
4211 r = -EEXIST;
4212 goto unlock_vcpu_destroy;
4213 }
4214
4215 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4216 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
4217 WARN_ON_ONCE(r == -EBUSY);
4218 if (r)
4219 goto unlock_vcpu_destroy;
4220
4221 /*
4222 * Now it's all set up, let userspace reach it. Grab the vCPU's mutex
4223 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully
4224 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked
4225 * into a NULL-pointer dereference because KVM thinks the _current_
4226 * vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep
4227 * knows it's taken *inside* kvm->lock.
4228 */
4229 mutex_lock(&vcpu->mutex);
4230 kvm_get_kvm(kvm);
4231 r = create_vcpu_fd(vcpu);
4232 if (r < 0)
4233 goto kvm_put_xa_erase;
4234
4235 /*
4236 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4237 * pointer before kvm->online_vcpu's incremented value.
4238 */
4239 smp_wmb();
4240 atomic_inc(&kvm->online_vcpus);
4241 mutex_unlock(&vcpu->mutex);
4242
4243 mutex_unlock(&kvm->lock);
4244 kvm_arch_vcpu_postcreate(vcpu);
4245 kvm_create_vcpu_debugfs(vcpu);
4246 return r;
4247
4248 kvm_put_xa_erase:
4249 mutex_unlock(&vcpu->mutex);
4250 kvm_put_kvm_no_destroy(kvm);
4251 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
4252 unlock_vcpu_destroy:
4253 mutex_unlock(&kvm->lock);
4254 kvm_dirty_ring_free(&vcpu->dirty_ring);
4255 arch_vcpu_destroy:
4256 kvm_arch_vcpu_destroy(vcpu);
4257 vcpu_free_run_page:
4258 free_page((unsigned long)vcpu->run);
4259 vcpu_free:
4260 kmem_cache_free(kvm_vcpu_cache, vcpu);
4261 vcpu_decrement:
4262 mutex_lock(&kvm->lock);
4263 kvm->created_vcpus--;
4264 mutex_unlock(&kvm->lock);
4265 return r;
4266 }
4267
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)4268 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4269 {
4270 if (sigset) {
4271 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4272 vcpu->sigset_active = 1;
4273 vcpu->sigset = *sigset;
4274 } else
4275 vcpu->sigset_active = 0;
4276 return 0;
4277 }
4278
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4279 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4280 size_t size, loff_t *offset)
4281 {
4282 struct kvm_vcpu *vcpu = file->private_data;
4283
4284 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4285 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4286 sizeof(vcpu->stat), user_buffer, size, offset);
4287 }
4288
kvm_vcpu_stats_release(struct inode * inode,struct file * file)4289 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4290 {
4291 struct kvm_vcpu *vcpu = file->private_data;
4292
4293 kvm_put_kvm(vcpu->kvm);
4294 return 0;
4295 }
4296
4297 static const struct file_operations kvm_vcpu_stats_fops = {
4298 .owner = THIS_MODULE,
4299 .read = kvm_vcpu_stats_read,
4300 .release = kvm_vcpu_stats_release,
4301 .llseek = noop_llseek,
4302 };
4303
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)4304 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4305 {
4306 int fd;
4307 struct file *file;
4308 char name[15 + ITOA_MAX_LEN + 1];
4309
4310 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4311
4312 fd = get_unused_fd_flags(O_CLOEXEC);
4313 if (fd < 0)
4314 return fd;
4315
4316 file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu,
4317 O_RDONLY, FMODE_PREAD);
4318 if (IS_ERR(file)) {
4319 put_unused_fd(fd);
4320 return PTR_ERR(file);
4321 }
4322
4323 kvm_get_kvm(vcpu->kvm);
4324 fd_install(fd, file);
4325
4326 return fd;
4327 }
4328
4329 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
kvm_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4330 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4331 struct kvm_pre_fault_memory *range)
4332 {
4333 int idx;
4334 long r;
4335 u64 full_size;
4336
4337 if (range->flags)
4338 return -EINVAL;
4339
4340 if (!PAGE_ALIGNED(range->gpa) ||
4341 !PAGE_ALIGNED(range->size) ||
4342 range->gpa + range->size <= range->gpa)
4343 return -EINVAL;
4344
4345 vcpu_load(vcpu);
4346 idx = srcu_read_lock(&vcpu->kvm->srcu);
4347
4348 full_size = range->size;
4349 do {
4350 if (signal_pending(current)) {
4351 r = -EINTR;
4352 break;
4353 }
4354
4355 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4356 if (WARN_ON_ONCE(r == 0 || r == -EIO))
4357 break;
4358
4359 if (r < 0)
4360 break;
4361
4362 range->size -= r;
4363 range->gpa += r;
4364 cond_resched();
4365 } while (range->size);
4366
4367 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4368 vcpu_put(vcpu);
4369
4370 /* Return success if at least one page was mapped successfully. */
4371 return full_size == range->size ? r : 0;
4372 }
4373 #endif
4374
kvm_wait_for_vcpu_online(struct kvm_vcpu * vcpu)4375 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu)
4376 {
4377 struct kvm *kvm = vcpu->kvm;
4378
4379 /*
4380 * In practice, this happy path will always be taken, as a well-behaved
4381 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns.
4382 */
4383 if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus)))
4384 return 0;
4385
4386 /*
4387 * Acquire and release the vCPU's mutex to wait for vCPU creation to
4388 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU
4389 * is fully online).
4390 */
4391 if (mutex_lock_killable(&vcpu->mutex))
4392 return -EINTR;
4393
4394 mutex_unlock(&vcpu->mutex);
4395
4396 if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx)))
4397 return -EIO;
4398
4399 return 0;
4400 }
4401
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4402 static long kvm_vcpu_ioctl(struct file *filp,
4403 unsigned int ioctl, unsigned long arg)
4404 {
4405 struct kvm_vcpu *vcpu = filp->private_data;
4406 void __user *argp = (void __user *)arg;
4407 int r;
4408 struct kvm_fpu *fpu = NULL;
4409 struct kvm_sregs *kvm_sregs = NULL;
4410
4411 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4412 return -EIO;
4413
4414 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4415 return -EINVAL;
4416
4417 /*
4418 * Wait for the vCPU to be online before handling the ioctl(), as KVM
4419 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference
4420 * a NULL pointer if userspace invokes an ioctl() before KVM is ready.
4421 */
4422 r = kvm_wait_for_vcpu_online(vcpu);
4423 if (r)
4424 return r;
4425
4426 /*
4427 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4428 * execution; mutex_lock() would break them.
4429 */
4430 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4431 if (r != -ENOIOCTLCMD)
4432 return r;
4433
4434 if (mutex_lock_killable(&vcpu->mutex))
4435 return -EINTR;
4436 switch (ioctl) {
4437 case KVM_RUN: {
4438 struct pid *oldpid;
4439 r = -EINVAL;
4440 if (arg)
4441 goto out;
4442
4443 /*
4444 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4445 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4446 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4447 * directly to this vCPU
4448 */
4449 oldpid = vcpu->pid;
4450 if (unlikely(oldpid != task_pid(current))) {
4451 /* The thread running this VCPU changed. */
4452 struct pid *newpid;
4453
4454 r = kvm_arch_vcpu_run_pid_change(vcpu);
4455 if (r)
4456 break;
4457
4458 newpid = get_task_pid(current, PIDTYPE_PID);
4459 write_lock(&vcpu->pid_lock);
4460 vcpu->pid = newpid;
4461 write_unlock(&vcpu->pid_lock);
4462
4463 put_pid(oldpid);
4464 }
4465 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4466 r = kvm_arch_vcpu_ioctl_run(vcpu);
4467 vcpu->wants_to_run = false;
4468
4469 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4470 break;
4471 }
4472 case KVM_GET_REGS: {
4473 struct kvm_regs *kvm_regs;
4474
4475 r = -ENOMEM;
4476 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4477 if (!kvm_regs)
4478 goto out;
4479 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4480 if (r)
4481 goto out_free1;
4482 r = -EFAULT;
4483 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4484 goto out_free1;
4485 r = 0;
4486 out_free1:
4487 kfree(kvm_regs);
4488 break;
4489 }
4490 case KVM_SET_REGS: {
4491 struct kvm_regs *kvm_regs;
4492
4493 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4494 if (IS_ERR(kvm_regs)) {
4495 r = PTR_ERR(kvm_regs);
4496 goto out;
4497 }
4498 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4499 kfree(kvm_regs);
4500 break;
4501 }
4502 case KVM_GET_SREGS: {
4503 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4504 r = -ENOMEM;
4505 if (!kvm_sregs)
4506 goto out;
4507 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4508 if (r)
4509 goto out;
4510 r = -EFAULT;
4511 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4512 goto out;
4513 r = 0;
4514 break;
4515 }
4516 case KVM_SET_SREGS: {
4517 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4518 if (IS_ERR(kvm_sregs)) {
4519 r = PTR_ERR(kvm_sregs);
4520 kvm_sregs = NULL;
4521 goto out;
4522 }
4523 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4524 break;
4525 }
4526 case KVM_GET_MP_STATE: {
4527 struct kvm_mp_state mp_state;
4528
4529 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4530 if (r)
4531 goto out;
4532 r = -EFAULT;
4533 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4534 goto out;
4535 r = 0;
4536 break;
4537 }
4538 case KVM_SET_MP_STATE: {
4539 struct kvm_mp_state mp_state;
4540
4541 r = -EFAULT;
4542 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4543 goto out;
4544 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4545 break;
4546 }
4547 case KVM_TRANSLATE: {
4548 struct kvm_translation tr;
4549
4550 r = -EFAULT;
4551 if (copy_from_user(&tr, argp, sizeof(tr)))
4552 goto out;
4553 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4554 if (r)
4555 goto out;
4556 r = -EFAULT;
4557 if (copy_to_user(argp, &tr, sizeof(tr)))
4558 goto out;
4559 r = 0;
4560 break;
4561 }
4562 case KVM_SET_GUEST_DEBUG: {
4563 struct kvm_guest_debug dbg;
4564
4565 r = -EFAULT;
4566 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4567 goto out;
4568 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4569 break;
4570 }
4571 case KVM_SET_SIGNAL_MASK: {
4572 struct kvm_signal_mask __user *sigmask_arg = argp;
4573 struct kvm_signal_mask kvm_sigmask;
4574 sigset_t sigset, *p;
4575
4576 p = NULL;
4577 if (argp) {
4578 r = -EFAULT;
4579 if (copy_from_user(&kvm_sigmask, argp,
4580 sizeof(kvm_sigmask)))
4581 goto out;
4582 r = -EINVAL;
4583 if (kvm_sigmask.len != sizeof(sigset))
4584 goto out;
4585 r = -EFAULT;
4586 if (copy_from_user(&sigset, sigmask_arg->sigset,
4587 sizeof(sigset)))
4588 goto out;
4589 p = &sigset;
4590 }
4591 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4592 break;
4593 }
4594 case KVM_GET_FPU: {
4595 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4596 r = -ENOMEM;
4597 if (!fpu)
4598 goto out;
4599 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4600 if (r)
4601 goto out;
4602 r = -EFAULT;
4603 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4604 goto out;
4605 r = 0;
4606 break;
4607 }
4608 case KVM_SET_FPU: {
4609 fpu = memdup_user(argp, sizeof(*fpu));
4610 if (IS_ERR(fpu)) {
4611 r = PTR_ERR(fpu);
4612 fpu = NULL;
4613 goto out;
4614 }
4615 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4616 break;
4617 }
4618 case KVM_GET_STATS_FD: {
4619 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4620 break;
4621 }
4622 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4623 case KVM_PRE_FAULT_MEMORY: {
4624 struct kvm_pre_fault_memory range;
4625
4626 r = -EFAULT;
4627 if (copy_from_user(&range, argp, sizeof(range)))
4628 break;
4629 r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4630 /* Pass back leftover range. */
4631 if (copy_to_user(argp, &range, sizeof(range)))
4632 r = -EFAULT;
4633 break;
4634 }
4635 #endif
4636 default:
4637 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4638 }
4639 out:
4640 mutex_unlock(&vcpu->mutex);
4641 kfree(fpu);
4642 kfree(kvm_sregs);
4643 return r;
4644 }
4645
4646 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4647 static long kvm_vcpu_compat_ioctl(struct file *filp,
4648 unsigned int ioctl, unsigned long arg)
4649 {
4650 struct kvm_vcpu *vcpu = filp->private_data;
4651 void __user *argp = compat_ptr(arg);
4652 int r;
4653
4654 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4655 return -EIO;
4656
4657 switch (ioctl) {
4658 case KVM_SET_SIGNAL_MASK: {
4659 struct kvm_signal_mask __user *sigmask_arg = argp;
4660 struct kvm_signal_mask kvm_sigmask;
4661 sigset_t sigset;
4662
4663 if (argp) {
4664 r = -EFAULT;
4665 if (copy_from_user(&kvm_sigmask, argp,
4666 sizeof(kvm_sigmask)))
4667 goto out;
4668 r = -EINVAL;
4669 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4670 goto out;
4671 r = -EFAULT;
4672 if (get_compat_sigset(&sigset,
4673 (compat_sigset_t __user *)sigmask_arg->sigset))
4674 goto out;
4675 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4676 } else
4677 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4678 break;
4679 }
4680 default:
4681 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4682 }
4683
4684 out:
4685 return r;
4686 }
4687 #endif
4688
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4689 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4690 {
4691 struct kvm_device *dev = filp->private_data;
4692
4693 if (dev->ops->mmap)
4694 return dev->ops->mmap(dev, vma);
4695
4696 return -ENODEV;
4697 }
4698
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4699 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4700 int (*accessor)(struct kvm_device *dev,
4701 struct kvm_device_attr *attr),
4702 unsigned long arg)
4703 {
4704 struct kvm_device_attr attr;
4705
4706 if (!accessor)
4707 return -EPERM;
4708
4709 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4710 return -EFAULT;
4711
4712 return accessor(dev, &attr);
4713 }
4714
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4715 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4716 unsigned long arg)
4717 {
4718 struct kvm_device *dev = filp->private_data;
4719
4720 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4721 return -EIO;
4722
4723 switch (ioctl) {
4724 case KVM_SET_DEVICE_ATTR:
4725 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4726 case KVM_GET_DEVICE_ATTR:
4727 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4728 case KVM_HAS_DEVICE_ATTR:
4729 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4730 default:
4731 if (dev->ops->ioctl)
4732 return dev->ops->ioctl(dev, ioctl, arg);
4733
4734 return -ENOTTY;
4735 }
4736 }
4737
kvm_device_release(struct inode * inode,struct file * filp)4738 static int kvm_device_release(struct inode *inode, struct file *filp)
4739 {
4740 struct kvm_device *dev = filp->private_data;
4741 struct kvm *kvm = dev->kvm;
4742
4743 if (dev->ops->release) {
4744 mutex_lock(&kvm->lock);
4745 list_del_rcu(&dev->vm_node);
4746 synchronize_rcu();
4747 dev->ops->release(dev);
4748 mutex_unlock(&kvm->lock);
4749 }
4750
4751 kvm_put_kvm(kvm);
4752 return 0;
4753 }
4754
4755 static struct file_operations kvm_device_fops = {
4756 .unlocked_ioctl = kvm_device_ioctl,
4757 .release = kvm_device_release,
4758 KVM_COMPAT(kvm_device_ioctl),
4759 .mmap = kvm_device_mmap,
4760 };
4761
kvm_device_from_filp(struct file * filp)4762 struct kvm_device *kvm_device_from_filp(struct file *filp)
4763 {
4764 if (filp->f_op != &kvm_device_fops)
4765 return NULL;
4766
4767 return filp->private_data;
4768 }
4769
4770 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4771 #ifdef CONFIG_KVM_MPIC
4772 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4773 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4774 #endif
4775 };
4776
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4777 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4778 {
4779 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4780 return -ENOSPC;
4781
4782 if (kvm_device_ops_table[type] != NULL)
4783 return -EEXIST;
4784
4785 kvm_device_ops_table[type] = ops;
4786 return 0;
4787 }
4788
kvm_unregister_device_ops(u32 type)4789 void kvm_unregister_device_ops(u32 type)
4790 {
4791 if (kvm_device_ops_table[type] != NULL)
4792 kvm_device_ops_table[type] = NULL;
4793 }
4794
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4795 static int kvm_ioctl_create_device(struct kvm *kvm,
4796 struct kvm_create_device *cd)
4797 {
4798 const struct kvm_device_ops *ops;
4799 struct kvm_device *dev;
4800 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4801 int type;
4802 int ret;
4803
4804 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4805 return -ENODEV;
4806
4807 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4808 ops = kvm_device_ops_table[type];
4809 if (ops == NULL)
4810 return -ENODEV;
4811
4812 if (test)
4813 return 0;
4814
4815 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4816 if (!dev)
4817 return -ENOMEM;
4818
4819 dev->ops = ops;
4820 dev->kvm = kvm;
4821
4822 mutex_lock(&kvm->lock);
4823 ret = ops->create(dev, type);
4824 if (ret < 0) {
4825 mutex_unlock(&kvm->lock);
4826 kfree(dev);
4827 return ret;
4828 }
4829 list_add_rcu(&dev->vm_node, &kvm->devices);
4830 mutex_unlock(&kvm->lock);
4831
4832 if (ops->init)
4833 ops->init(dev);
4834
4835 kvm_get_kvm(kvm);
4836 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4837 if (ret < 0) {
4838 kvm_put_kvm_no_destroy(kvm);
4839 mutex_lock(&kvm->lock);
4840 list_del_rcu(&dev->vm_node);
4841 synchronize_rcu();
4842 if (ops->release)
4843 ops->release(dev);
4844 mutex_unlock(&kvm->lock);
4845 if (ops->destroy)
4846 ops->destroy(dev);
4847 return ret;
4848 }
4849
4850 cd->fd = ret;
4851 return 0;
4852 }
4853
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4854 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4855 {
4856 switch (arg) {
4857 case KVM_CAP_USER_MEMORY:
4858 case KVM_CAP_USER_MEMORY2:
4859 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4860 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4861 case KVM_CAP_INTERNAL_ERROR_DATA:
4862 #ifdef CONFIG_HAVE_KVM_MSI
4863 case KVM_CAP_SIGNAL_MSI:
4864 #endif
4865 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4866 case KVM_CAP_IRQFD:
4867 #endif
4868 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4869 case KVM_CAP_CHECK_EXTENSION_VM:
4870 case KVM_CAP_ENABLE_CAP_VM:
4871 case KVM_CAP_HALT_POLL:
4872 return 1;
4873 #ifdef CONFIG_KVM_MMIO
4874 case KVM_CAP_COALESCED_MMIO:
4875 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4876 case KVM_CAP_COALESCED_PIO:
4877 return 1;
4878 #endif
4879 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4880 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4881 return KVM_DIRTY_LOG_MANUAL_CAPS;
4882 #endif
4883 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4884 case KVM_CAP_IRQ_ROUTING:
4885 return KVM_MAX_IRQ_ROUTES;
4886 #endif
4887 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4888 case KVM_CAP_MULTI_ADDRESS_SPACE:
4889 if (kvm)
4890 return kvm_arch_nr_memslot_as_ids(kvm);
4891 return KVM_MAX_NR_ADDRESS_SPACES;
4892 #endif
4893 case KVM_CAP_NR_MEMSLOTS:
4894 return KVM_USER_MEM_SLOTS;
4895 case KVM_CAP_DIRTY_LOG_RING:
4896 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4897 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4898 #else
4899 return 0;
4900 #endif
4901 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4902 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4903 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4904 #else
4905 return 0;
4906 #endif
4907 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4908 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4909 #endif
4910 case KVM_CAP_BINARY_STATS_FD:
4911 case KVM_CAP_SYSTEM_EVENT_DATA:
4912 case KVM_CAP_DEVICE_CTRL:
4913 return 1;
4914 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4915 case KVM_CAP_MEMORY_ATTRIBUTES:
4916 return kvm_supported_mem_attributes(kvm);
4917 #endif
4918 #ifdef CONFIG_KVM_PRIVATE_MEM
4919 case KVM_CAP_GUEST_MEMFD:
4920 return !kvm || kvm_arch_has_private_mem(kvm);
4921 #endif
4922 default:
4923 break;
4924 }
4925 return kvm_vm_ioctl_check_extension(kvm, arg);
4926 }
4927
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4928 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4929 {
4930 int r;
4931
4932 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4933 return -EINVAL;
4934
4935 /* the size should be power of 2 */
4936 if (!size || (size & (size - 1)))
4937 return -EINVAL;
4938
4939 /* Should be bigger to keep the reserved entries, or a page */
4940 if (size < kvm_dirty_ring_get_rsvd_entries(kvm) *
4941 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4942 return -EINVAL;
4943
4944 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4945 sizeof(struct kvm_dirty_gfn))
4946 return -E2BIG;
4947
4948 /* We only allow it to set once */
4949 if (kvm->dirty_ring_size)
4950 return -EINVAL;
4951
4952 mutex_lock(&kvm->lock);
4953
4954 if (kvm->created_vcpus) {
4955 /* We don't allow to change this value after vcpu created */
4956 r = -EINVAL;
4957 } else {
4958 kvm->dirty_ring_size = size;
4959 r = 0;
4960 }
4961
4962 mutex_unlock(&kvm->lock);
4963 return r;
4964 }
4965
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4966 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4967 {
4968 unsigned long i;
4969 struct kvm_vcpu *vcpu;
4970 int cleared = 0, r;
4971
4972 if (!kvm->dirty_ring_size)
4973 return -EINVAL;
4974
4975 mutex_lock(&kvm->slots_lock);
4976
4977 kvm_for_each_vcpu(i, vcpu, kvm) {
4978 r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared);
4979 if (r)
4980 break;
4981 }
4982
4983 mutex_unlock(&kvm->slots_lock);
4984
4985 if (cleared)
4986 kvm_flush_remote_tlbs(kvm);
4987
4988 return cleared;
4989 }
4990
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4991 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4992 struct kvm_enable_cap *cap)
4993 {
4994 return -EINVAL;
4995 }
4996
kvm_are_all_memslots_empty(struct kvm * kvm)4997 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4998 {
4999 int i;
5000
5001 lockdep_assert_held(&kvm->slots_lock);
5002
5003 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5004 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5005 return false;
5006 }
5007
5008 return true;
5009 }
5010 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
5011
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)5012 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5013 struct kvm_enable_cap *cap)
5014 {
5015 switch (cap->cap) {
5016 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5017 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5018 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5019
5020 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5021 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5022
5023 if (cap->flags || (cap->args[0] & ~allowed_options))
5024 return -EINVAL;
5025 kvm->manual_dirty_log_protect = cap->args[0];
5026 return 0;
5027 }
5028 #endif
5029 case KVM_CAP_HALT_POLL: {
5030 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5031 return -EINVAL;
5032
5033 kvm->max_halt_poll_ns = cap->args[0];
5034
5035 /*
5036 * Ensure kvm->override_halt_poll_ns does not become visible
5037 * before kvm->max_halt_poll_ns.
5038 *
5039 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5040 */
5041 smp_wmb();
5042 kvm->override_halt_poll_ns = true;
5043
5044 return 0;
5045 }
5046 case KVM_CAP_DIRTY_LOG_RING:
5047 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5048 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5049 return -EINVAL;
5050
5051 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5052 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5053 int r = -EINVAL;
5054
5055 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5056 !kvm->dirty_ring_size || cap->flags)
5057 return r;
5058
5059 mutex_lock(&kvm->slots_lock);
5060
5061 /*
5062 * For simplicity, allow enabling ring+bitmap if and only if
5063 * there are no memslots, e.g. to ensure all memslots allocate
5064 * a bitmap after the capability is enabled.
5065 */
5066 if (kvm_are_all_memslots_empty(kvm)) {
5067 kvm->dirty_ring_with_bitmap = true;
5068 r = 0;
5069 }
5070
5071 mutex_unlock(&kvm->slots_lock);
5072
5073 return r;
5074 }
5075 default:
5076 return kvm_vm_ioctl_enable_cap(kvm, cap);
5077 }
5078 }
5079
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)5080 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5081 size_t size, loff_t *offset)
5082 {
5083 struct kvm *kvm = file->private_data;
5084
5085 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5086 &kvm_vm_stats_desc[0], &kvm->stat,
5087 sizeof(kvm->stat), user_buffer, size, offset);
5088 }
5089
kvm_vm_stats_release(struct inode * inode,struct file * file)5090 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5091 {
5092 struct kvm *kvm = file->private_data;
5093
5094 kvm_put_kvm(kvm);
5095 return 0;
5096 }
5097
5098 static const struct file_operations kvm_vm_stats_fops = {
5099 .owner = THIS_MODULE,
5100 .read = kvm_vm_stats_read,
5101 .release = kvm_vm_stats_release,
5102 .llseek = noop_llseek,
5103 };
5104
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)5105 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5106 {
5107 int fd;
5108 struct file *file;
5109
5110 fd = get_unused_fd_flags(O_CLOEXEC);
5111 if (fd < 0)
5112 return fd;
5113
5114 file = anon_inode_getfile_fmode("kvm-vm-stats",
5115 &kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD);
5116 if (IS_ERR(file)) {
5117 put_unused_fd(fd);
5118 return PTR_ERR(file);
5119 }
5120
5121 kvm_get_kvm(kvm);
5122 fd_install(fd, file);
5123
5124 return fd;
5125 }
5126
5127 #define SANITY_CHECK_MEM_REGION_FIELD(field) \
5128 do { \
5129 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5130 offsetof(struct kvm_userspace_memory_region2, field)); \
5131 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5132 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5133 } while (0)
5134
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5135 static long kvm_vm_ioctl(struct file *filp,
5136 unsigned int ioctl, unsigned long arg)
5137 {
5138 struct kvm *kvm = filp->private_data;
5139 void __user *argp = (void __user *)arg;
5140 int r;
5141
5142 if (kvm->mm != current->mm || kvm->vm_dead)
5143 return -EIO;
5144 switch (ioctl) {
5145 case KVM_CREATE_VCPU:
5146 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5147 break;
5148 case KVM_ENABLE_CAP: {
5149 struct kvm_enable_cap cap;
5150
5151 r = -EFAULT;
5152 if (copy_from_user(&cap, argp, sizeof(cap)))
5153 goto out;
5154 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5155 break;
5156 }
5157 case KVM_SET_USER_MEMORY_REGION2:
5158 case KVM_SET_USER_MEMORY_REGION: {
5159 struct kvm_userspace_memory_region2 mem;
5160 unsigned long size;
5161
5162 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5163 /*
5164 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5165 * accessed, but avoid leaking kernel memory in case of a bug.
5166 */
5167 memset(&mem, 0, sizeof(mem));
5168 size = sizeof(struct kvm_userspace_memory_region);
5169 } else {
5170 size = sizeof(struct kvm_userspace_memory_region2);
5171 }
5172
5173 /* Ensure the common parts of the two structs are identical. */
5174 SANITY_CHECK_MEM_REGION_FIELD(slot);
5175 SANITY_CHECK_MEM_REGION_FIELD(flags);
5176 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5177 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5178 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5179
5180 r = -EFAULT;
5181 if (copy_from_user(&mem, argp, size))
5182 goto out;
5183
5184 r = -EINVAL;
5185 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5186 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5187 goto out;
5188
5189 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5190 break;
5191 }
5192 case KVM_GET_DIRTY_LOG: {
5193 struct kvm_dirty_log log;
5194
5195 r = -EFAULT;
5196 if (copy_from_user(&log, argp, sizeof(log)))
5197 goto out;
5198 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5199 break;
5200 }
5201 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5202 case KVM_CLEAR_DIRTY_LOG: {
5203 struct kvm_clear_dirty_log log;
5204
5205 r = -EFAULT;
5206 if (copy_from_user(&log, argp, sizeof(log)))
5207 goto out;
5208 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5209 break;
5210 }
5211 #endif
5212 #ifdef CONFIG_KVM_MMIO
5213 case KVM_REGISTER_COALESCED_MMIO: {
5214 struct kvm_coalesced_mmio_zone zone;
5215
5216 r = -EFAULT;
5217 if (copy_from_user(&zone, argp, sizeof(zone)))
5218 goto out;
5219 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5220 break;
5221 }
5222 case KVM_UNREGISTER_COALESCED_MMIO: {
5223 struct kvm_coalesced_mmio_zone zone;
5224
5225 r = -EFAULT;
5226 if (copy_from_user(&zone, argp, sizeof(zone)))
5227 goto out;
5228 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5229 break;
5230 }
5231 #endif
5232 case KVM_IRQFD: {
5233 struct kvm_irqfd data;
5234
5235 r = -EFAULT;
5236 if (copy_from_user(&data, argp, sizeof(data)))
5237 goto out;
5238 r = kvm_irqfd(kvm, &data);
5239 break;
5240 }
5241 case KVM_IOEVENTFD: {
5242 struct kvm_ioeventfd data;
5243
5244 r = -EFAULT;
5245 if (copy_from_user(&data, argp, sizeof(data)))
5246 goto out;
5247 r = kvm_ioeventfd(kvm, &data);
5248 break;
5249 }
5250 #ifdef CONFIG_HAVE_KVM_MSI
5251 case KVM_SIGNAL_MSI: {
5252 struct kvm_msi msi;
5253
5254 r = -EFAULT;
5255 if (copy_from_user(&msi, argp, sizeof(msi)))
5256 goto out;
5257 r = kvm_send_userspace_msi(kvm, &msi);
5258 break;
5259 }
5260 #endif
5261 #ifdef __KVM_HAVE_IRQ_LINE
5262 case KVM_IRQ_LINE_STATUS:
5263 case KVM_IRQ_LINE: {
5264 struct kvm_irq_level irq_event;
5265
5266 r = -EFAULT;
5267 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5268 goto out;
5269
5270 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5271 ioctl == KVM_IRQ_LINE_STATUS);
5272 if (r)
5273 goto out;
5274
5275 r = -EFAULT;
5276 if (ioctl == KVM_IRQ_LINE_STATUS) {
5277 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5278 goto out;
5279 }
5280
5281 r = 0;
5282 break;
5283 }
5284 #endif
5285 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5286 case KVM_SET_GSI_ROUTING: {
5287 struct kvm_irq_routing routing;
5288 struct kvm_irq_routing __user *urouting;
5289 struct kvm_irq_routing_entry *entries = NULL;
5290
5291 r = -EFAULT;
5292 if (copy_from_user(&routing, argp, sizeof(routing)))
5293 goto out;
5294 r = -EINVAL;
5295 if (!kvm_arch_can_set_irq_routing(kvm))
5296 goto out;
5297 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5298 goto out;
5299 if (routing.flags)
5300 goto out;
5301 if (routing.nr) {
5302 urouting = argp;
5303 entries = vmemdup_array_user(urouting->entries,
5304 routing.nr, sizeof(*entries));
5305 if (IS_ERR(entries)) {
5306 r = PTR_ERR(entries);
5307 goto out;
5308 }
5309 }
5310 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5311 routing.flags);
5312 kvfree(entries);
5313 break;
5314 }
5315 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5316 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5317 case KVM_SET_MEMORY_ATTRIBUTES: {
5318 struct kvm_memory_attributes attrs;
5319
5320 r = -EFAULT;
5321 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5322 goto out;
5323
5324 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5325 break;
5326 }
5327 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5328 case KVM_CREATE_DEVICE: {
5329 struct kvm_create_device cd;
5330
5331 r = -EFAULT;
5332 if (copy_from_user(&cd, argp, sizeof(cd)))
5333 goto out;
5334
5335 r = kvm_ioctl_create_device(kvm, &cd);
5336 if (r)
5337 goto out;
5338
5339 r = -EFAULT;
5340 if (copy_to_user(argp, &cd, sizeof(cd)))
5341 goto out;
5342
5343 r = 0;
5344 break;
5345 }
5346 case KVM_CHECK_EXTENSION:
5347 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5348 break;
5349 case KVM_RESET_DIRTY_RINGS:
5350 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5351 break;
5352 case KVM_GET_STATS_FD:
5353 r = kvm_vm_ioctl_get_stats_fd(kvm);
5354 break;
5355 #ifdef CONFIG_KVM_PRIVATE_MEM
5356 case KVM_CREATE_GUEST_MEMFD: {
5357 struct kvm_create_guest_memfd guest_memfd;
5358
5359 r = -EFAULT;
5360 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5361 goto out;
5362
5363 r = kvm_gmem_create(kvm, &guest_memfd);
5364 break;
5365 }
5366 #endif
5367 default:
5368 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5369 }
5370 out:
5371 return r;
5372 }
5373
5374 #ifdef CONFIG_KVM_COMPAT
5375 struct compat_kvm_dirty_log {
5376 __u32 slot;
5377 __u32 padding1;
5378 union {
5379 compat_uptr_t dirty_bitmap; /* one bit per page */
5380 __u64 padding2;
5381 };
5382 };
5383
5384 struct compat_kvm_clear_dirty_log {
5385 __u32 slot;
5386 __u32 num_pages;
5387 __u64 first_page;
5388 union {
5389 compat_uptr_t dirty_bitmap; /* one bit per page */
5390 __u64 padding2;
5391 };
5392 };
5393
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5394 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5395 unsigned long arg)
5396 {
5397 return -ENOTTY;
5398 }
5399
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5400 static long kvm_vm_compat_ioctl(struct file *filp,
5401 unsigned int ioctl, unsigned long arg)
5402 {
5403 struct kvm *kvm = filp->private_data;
5404 int r;
5405
5406 if (kvm->mm != current->mm || kvm->vm_dead)
5407 return -EIO;
5408
5409 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5410 if (r != -ENOTTY)
5411 return r;
5412
5413 switch (ioctl) {
5414 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5415 case KVM_CLEAR_DIRTY_LOG: {
5416 struct compat_kvm_clear_dirty_log compat_log;
5417 struct kvm_clear_dirty_log log;
5418
5419 if (copy_from_user(&compat_log, (void __user *)arg,
5420 sizeof(compat_log)))
5421 return -EFAULT;
5422 log.slot = compat_log.slot;
5423 log.num_pages = compat_log.num_pages;
5424 log.first_page = compat_log.first_page;
5425 log.padding2 = compat_log.padding2;
5426 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5427
5428 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5429 break;
5430 }
5431 #endif
5432 case KVM_GET_DIRTY_LOG: {
5433 struct compat_kvm_dirty_log compat_log;
5434 struct kvm_dirty_log log;
5435
5436 if (copy_from_user(&compat_log, (void __user *)arg,
5437 sizeof(compat_log)))
5438 return -EFAULT;
5439 log.slot = compat_log.slot;
5440 log.padding1 = compat_log.padding1;
5441 log.padding2 = compat_log.padding2;
5442 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5443
5444 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5445 break;
5446 }
5447 default:
5448 r = kvm_vm_ioctl(filp, ioctl, arg);
5449 }
5450 return r;
5451 }
5452 #endif
5453
5454 static struct file_operations kvm_vm_fops = {
5455 .release = kvm_vm_release,
5456 .unlocked_ioctl = kvm_vm_ioctl,
5457 .llseek = noop_llseek,
5458 KVM_COMPAT(kvm_vm_compat_ioctl),
5459 };
5460
file_is_kvm(struct file * file)5461 bool file_is_kvm(struct file *file)
5462 {
5463 return file && file->f_op == &kvm_vm_fops;
5464 }
5465 EXPORT_SYMBOL_GPL(file_is_kvm);
5466
kvm_dev_ioctl_create_vm(unsigned long type)5467 static int kvm_dev_ioctl_create_vm(unsigned long type)
5468 {
5469 char fdname[ITOA_MAX_LEN + 1];
5470 int r, fd;
5471 struct kvm *kvm;
5472 struct file *file;
5473
5474 fd = get_unused_fd_flags(O_CLOEXEC);
5475 if (fd < 0)
5476 return fd;
5477
5478 snprintf(fdname, sizeof(fdname), "%d", fd);
5479
5480 kvm = kvm_create_vm(type, fdname);
5481 if (IS_ERR(kvm)) {
5482 r = PTR_ERR(kvm);
5483 goto put_fd;
5484 }
5485
5486 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5487 if (IS_ERR(file)) {
5488 r = PTR_ERR(file);
5489 goto put_kvm;
5490 }
5491
5492 /*
5493 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5494 * already set, with ->release() being kvm_vm_release(). In error
5495 * cases it will be called by the final fput(file) and will take
5496 * care of doing kvm_put_kvm(kvm).
5497 */
5498 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5499
5500 fd_install(fd, file);
5501 return fd;
5502
5503 put_kvm:
5504 kvm_put_kvm(kvm);
5505 put_fd:
5506 put_unused_fd(fd);
5507 return r;
5508 }
5509
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5510 static long kvm_dev_ioctl(struct file *filp,
5511 unsigned int ioctl, unsigned long arg)
5512 {
5513 int r = -EINVAL;
5514
5515 switch (ioctl) {
5516 case KVM_GET_API_VERSION:
5517 if (arg)
5518 goto out;
5519 r = KVM_API_VERSION;
5520 break;
5521 case KVM_CREATE_VM:
5522 r = kvm_dev_ioctl_create_vm(arg);
5523 break;
5524 case KVM_CHECK_EXTENSION:
5525 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5526 break;
5527 case KVM_GET_VCPU_MMAP_SIZE:
5528 if (arg)
5529 goto out;
5530 r = PAGE_SIZE; /* struct kvm_run */
5531 #ifdef CONFIG_X86
5532 r += PAGE_SIZE; /* pio data page */
5533 #endif
5534 #ifdef CONFIG_KVM_MMIO
5535 r += PAGE_SIZE; /* coalesced mmio ring page */
5536 #endif
5537 break;
5538 default:
5539 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5540 }
5541 out:
5542 return r;
5543 }
5544
5545 static struct file_operations kvm_chardev_ops = {
5546 .unlocked_ioctl = kvm_dev_ioctl,
5547 .llseek = noop_llseek,
5548 KVM_COMPAT(kvm_dev_ioctl),
5549 };
5550
5551 static struct miscdevice kvm_dev = {
5552 KVM_MINOR,
5553 "kvm",
5554 &kvm_chardev_ops,
5555 };
5556
5557 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5558 bool enable_virt_at_load = true;
5559 module_param(enable_virt_at_load, bool, 0444);
5560 EXPORT_SYMBOL_GPL(enable_virt_at_load);
5561
5562 __visible bool kvm_rebooting;
5563 EXPORT_SYMBOL_GPL(kvm_rebooting);
5564
5565 static DEFINE_PER_CPU(bool, virtualization_enabled);
5566 static DEFINE_MUTEX(kvm_usage_lock);
5567 static int kvm_usage_count;
5568
kvm_arch_enable_virtualization(void)5569 __weak void kvm_arch_enable_virtualization(void)
5570 {
5571
5572 }
5573
kvm_arch_disable_virtualization(void)5574 __weak void kvm_arch_disable_virtualization(void)
5575 {
5576
5577 }
5578
kvm_enable_virtualization_cpu(void)5579 static int kvm_enable_virtualization_cpu(void)
5580 {
5581 if (__this_cpu_read(virtualization_enabled))
5582 return 0;
5583
5584 if (kvm_arch_enable_virtualization_cpu()) {
5585 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5586 raw_smp_processor_id());
5587 return -EIO;
5588 }
5589
5590 __this_cpu_write(virtualization_enabled, true);
5591 return 0;
5592 }
5593
kvm_online_cpu(unsigned int cpu)5594 static int kvm_online_cpu(unsigned int cpu)
5595 {
5596 /*
5597 * Abort the CPU online process if hardware virtualization cannot
5598 * be enabled. Otherwise running VMs would encounter unrecoverable
5599 * errors when scheduled to this CPU.
5600 */
5601 return kvm_enable_virtualization_cpu();
5602 }
5603
kvm_disable_virtualization_cpu(void * ign)5604 static void kvm_disable_virtualization_cpu(void *ign)
5605 {
5606 if (!__this_cpu_read(virtualization_enabled))
5607 return;
5608
5609 kvm_arch_disable_virtualization_cpu();
5610
5611 __this_cpu_write(virtualization_enabled, false);
5612 }
5613
kvm_offline_cpu(unsigned int cpu)5614 static int kvm_offline_cpu(unsigned int cpu)
5615 {
5616 kvm_disable_virtualization_cpu(NULL);
5617 return 0;
5618 }
5619
kvm_shutdown(void)5620 static void kvm_shutdown(void)
5621 {
5622 /*
5623 * Disable hardware virtualization and set kvm_rebooting to indicate
5624 * that KVM has asynchronously disabled hardware virtualization, i.e.
5625 * that relevant errors and exceptions aren't entirely unexpected.
5626 * Some flavors of hardware virtualization need to be disabled before
5627 * transferring control to firmware (to perform shutdown/reboot), e.g.
5628 * on x86, virtualization can block INIT interrupts, which are used by
5629 * firmware to pull APs back under firmware control. Note, this path
5630 * is used for both shutdown and reboot scenarios, i.e. neither name is
5631 * 100% comprehensive.
5632 */
5633 pr_info("kvm: exiting hardware virtualization\n");
5634 kvm_rebooting = true;
5635 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5636 }
5637
kvm_suspend(void)5638 static int kvm_suspend(void)
5639 {
5640 /*
5641 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5642 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5643 * count is stable. Assert that kvm_usage_lock is not held to ensure
5644 * the system isn't suspended while KVM is enabling hardware. Hardware
5645 * enabling can be preempted, but the task cannot be frozen until it has
5646 * dropped all locks (userspace tasks are frozen via a fake signal).
5647 */
5648 lockdep_assert_not_held(&kvm_usage_lock);
5649 lockdep_assert_irqs_disabled();
5650
5651 kvm_disable_virtualization_cpu(NULL);
5652 return 0;
5653 }
5654
kvm_resume(void)5655 static void kvm_resume(void)
5656 {
5657 lockdep_assert_not_held(&kvm_usage_lock);
5658 lockdep_assert_irqs_disabled();
5659
5660 WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5661 }
5662
5663 static struct syscore_ops kvm_syscore_ops = {
5664 .suspend = kvm_suspend,
5665 .resume = kvm_resume,
5666 .shutdown = kvm_shutdown,
5667 };
5668
kvm_enable_virtualization(void)5669 int kvm_enable_virtualization(void)
5670 {
5671 int r;
5672
5673 guard(mutex)(&kvm_usage_lock);
5674
5675 if (kvm_usage_count++)
5676 return 0;
5677
5678 kvm_arch_enable_virtualization();
5679
5680 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5681 kvm_online_cpu, kvm_offline_cpu);
5682 if (r)
5683 goto err_cpuhp;
5684
5685 register_syscore_ops(&kvm_syscore_ops);
5686
5687 /*
5688 * Undo virtualization enabling and bail if the system is going down.
5689 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5690 * possible for an in-flight operation to enable virtualization after
5691 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5692 * invoked. Note, this relies on system_state being set _before_
5693 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5694 * or this CPU observes the impending shutdown. Which is why KVM uses
5695 * a syscore ops hook instead of registering a dedicated reboot
5696 * notifier (the latter runs before system_state is updated).
5697 */
5698 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5699 system_state == SYSTEM_RESTART) {
5700 r = -EBUSY;
5701 goto err_rebooting;
5702 }
5703
5704 return 0;
5705
5706 err_rebooting:
5707 unregister_syscore_ops(&kvm_syscore_ops);
5708 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5709 err_cpuhp:
5710 kvm_arch_disable_virtualization();
5711 --kvm_usage_count;
5712 return r;
5713 }
5714 EXPORT_SYMBOL_GPL(kvm_enable_virtualization);
5715
kvm_disable_virtualization(void)5716 void kvm_disable_virtualization(void)
5717 {
5718 guard(mutex)(&kvm_usage_lock);
5719
5720 if (--kvm_usage_count)
5721 return;
5722
5723 unregister_syscore_ops(&kvm_syscore_ops);
5724 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5725 kvm_arch_disable_virtualization();
5726 }
5727 EXPORT_SYMBOL_GPL(kvm_disable_virtualization);
5728
kvm_init_virtualization(void)5729 static int kvm_init_virtualization(void)
5730 {
5731 if (enable_virt_at_load)
5732 return kvm_enable_virtualization();
5733
5734 return 0;
5735 }
5736
kvm_uninit_virtualization(void)5737 static void kvm_uninit_virtualization(void)
5738 {
5739 if (enable_virt_at_load)
5740 kvm_disable_virtualization();
5741 }
5742 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
kvm_init_virtualization(void)5743 static int kvm_init_virtualization(void)
5744 {
5745 return 0;
5746 }
5747
kvm_uninit_virtualization(void)5748 static void kvm_uninit_virtualization(void)
5749 {
5750
5751 }
5752 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5753
kvm_iodevice_destructor(struct kvm_io_device * dev)5754 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5755 {
5756 if (dev->ops->destructor)
5757 dev->ops->destructor(dev);
5758 }
5759
kvm_io_bus_destroy(struct kvm_io_bus * bus)5760 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5761 {
5762 int i;
5763
5764 for (i = 0; i < bus->dev_count; i++) {
5765 struct kvm_io_device *pos = bus->range[i].dev;
5766
5767 kvm_iodevice_destructor(pos);
5768 }
5769 kfree(bus);
5770 }
5771
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)5772 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5773 const struct kvm_io_range *r2)
5774 {
5775 gpa_t addr1 = r1->addr;
5776 gpa_t addr2 = r2->addr;
5777
5778 if (addr1 < addr2)
5779 return -1;
5780
5781 /* If r2->len == 0, match the exact address. If r2->len != 0,
5782 * accept any overlapping write. Any order is acceptable for
5783 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5784 * we process all of them.
5785 */
5786 if (r2->len) {
5787 addr1 += r1->len;
5788 addr2 += r2->len;
5789 }
5790
5791 if (addr1 > addr2)
5792 return 1;
5793
5794 return 0;
5795 }
5796
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5797 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5798 {
5799 return kvm_io_bus_cmp(p1, p2);
5800 }
5801
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5802 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5803 gpa_t addr, int len)
5804 {
5805 struct kvm_io_range *range, key;
5806 int off;
5807
5808 key = (struct kvm_io_range) {
5809 .addr = addr,
5810 .len = len,
5811 };
5812
5813 range = bsearch(&key, bus->range, bus->dev_count,
5814 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5815 if (range == NULL)
5816 return -ENOENT;
5817
5818 off = range - bus->range;
5819
5820 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5821 off--;
5822
5823 return off;
5824 }
5825
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5826 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5827 struct kvm_io_range *range, const void *val)
5828 {
5829 int idx;
5830
5831 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5832 if (idx < 0)
5833 return -EOPNOTSUPP;
5834
5835 while (idx < bus->dev_count &&
5836 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5837 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5838 range->len, val))
5839 return idx;
5840 idx++;
5841 }
5842
5843 return -EOPNOTSUPP;
5844 }
5845
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5846 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5847 int len, const void *val)
5848 {
5849 struct kvm_io_bus *bus;
5850 struct kvm_io_range range;
5851 int r;
5852
5853 range = (struct kvm_io_range) {
5854 .addr = addr,
5855 .len = len,
5856 };
5857
5858 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5859 if (!bus)
5860 return -ENOMEM;
5861 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5862 return r < 0 ? r : 0;
5863 }
5864 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5865
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5866 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5867 gpa_t addr, int len, const void *val, long cookie)
5868 {
5869 struct kvm_io_bus *bus;
5870 struct kvm_io_range range;
5871
5872 range = (struct kvm_io_range) {
5873 .addr = addr,
5874 .len = len,
5875 };
5876
5877 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5878 if (!bus)
5879 return -ENOMEM;
5880
5881 /* First try the device referenced by cookie. */
5882 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5883 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5884 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5885 val))
5886 return cookie;
5887
5888 /*
5889 * cookie contained garbage; fall back to search and return the
5890 * correct cookie value.
5891 */
5892 return __kvm_io_bus_write(vcpu, bus, &range, val);
5893 }
5894
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5895 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5896 struct kvm_io_range *range, void *val)
5897 {
5898 int idx;
5899
5900 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5901 if (idx < 0)
5902 return -EOPNOTSUPP;
5903
5904 while (idx < bus->dev_count &&
5905 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5906 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5907 range->len, val))
5908 return idx;
5909 idx++;
5910 }
5911
5912 return -EOPNOTSUPP;
5913 }
5914
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5915 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5916 int len, void *val)
5917 {
5918 struct kvm_io_bus *bus;
5919 struct kvm_io_range range;
5920 int r;
5921
5922 range = (struct kvm_io_range) {
5923 .addr = addr,
5924 .len = len,
5925 };
5926
5927 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5928 if (!bus)
5929 return -ENOMEM;
5930 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5931 return r < 0 ? r : 0;
5932 }
5933 EXPORT_SYMBOL_GPL(kvm_io_bus_read);
5934
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5935 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5936 int len, struct kvm_io_device *dev)
5937 {
5938 int i;
5939 struct kvm_io_bus *new_bus, *bus;
5940 struct kvm_io_range range;
5941
5942 lockdep_assert_held(&kvm->slots_lock);
5943
5944 bus = kvm_get_bus(kvm, bus_idx);
5945 if (!bus)
5946 return -ENOMEM;
5947
5948 /* exclude ioeventfd which is limited by maximum fd */
5949 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5950 return -ENOSPC;
5951
5952 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5953 GFP_KERNEL_ACCOUNT);
5954 if (!new_bus)
5955 return -ENOMEM;
5956
5957 range = (struct kvm_io_range) {
5958 .addr = addr,
5959 .len = len,
5960 .dev = dev,
5961 };
5962
5963 for (i = 0; i < bus->dev_count; i++)
5964 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5965 break;
5966
5967 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5968 new_bus->dev_count++;
5969 new_bus->range[i] = range;
5970 memcpy(new_bus->range + i + 1, bus->range + i,
5971 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5972 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5973 synchronize_srcu_expedited(&kvm->srcu);
5974 kfree(bus);
5975
5976 return 0;
5977 }
5978
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5979 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5980 struct kvm_io_device *dev)
5981 {
5982 int i;
5983 struct kvm_io_bus *new_bus, *bus;
5984
5985 lockdep_assert_held(&kvm->slots_lock);
5986
5987 bus = kvm_get_bus(kvm, bus_idx);
5988 if (!bus)
5989 return 0;
5990
5991 for (i = 0; i < bus->dev_count; i++) {
5992 if (bus->range[i].dev == dev) {
5993 break;
5994 }
5995 }
5996
5997 if (i == bus->dev_count)
5998 return 0;
5999
6000 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
6001 GFP_KERNEL_ACCOUNT);
6002 if (new_bus) {
6003 memcpy(new_bus, bus, struct_size(bus, range, i));
6004 new_bus->dev_count--;
6005 memcpy(new_bus->range + i, bus->range + i + 1,
6006 flex_array_size(new_bus, range, new_bus->dev_count - i));
6007 }
6008
6009 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6010 synchronize_srcu_expedited(&kvm->srcu);
6011
6012 /*
6013 * If NULL bus is installed, destroy the old bus, including all the
6014 * attached devices. Otherwise, destroy the caller's device only.
6015 */
6016 if (!new_bus) {
6017 pr_err("kvm: failed to shrink bus, removing it completely\n");
6018 kvm_io_bus_destroy(bus);
6019 return -ENOMEM;
6020 }
6021
6022 kvm_iodevice_destructor(dev);
6023 kfree(bus);
6024 return 0;
6025 }
6026
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)6027 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6028 gpa_t addr)
6029 {
6030 struct kvm_io_bus *bus;
6031 int dev_idx, srcu_idx;
6032 struct kvm_io_device *iodev = NULL;
6033
6034 srcu_idx = srcu_read_lock(&kvm->srcu);
6035
6036 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6037 if (!bus)
6038 goto out_unlock;
6039
6040 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6041 if (dev_idx < 0)
6042 goto out_unlock;
6043
6044 iodev = bus->range[dev_idx].dev;
6045
6046 out_unlock:
6047 srcu_read_unlock(&kvm->srcu, srcu_idx);
6048
6049 return iodev;
6050 }
6051 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6052
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)6053 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6054 int (*get)(void *, u64 *), int (*set)(void *, u64),
6055 const char *fmt)
6056 {
6057 int ret;
6058 struct kvm_stat_data *stat_data = inode->i_private;
6059
6060 /*
6061 * The debugfs files are a reference to the kvm struct which
6062 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6063 * avoids the race between open and the removal of the debugfs directory.
6064 */
6065 if (!kvm_get_kvm_safe(stat_data->kvm))
6066 return -ENOENT;
6067
6068 ret = simple_attr_open(inode, file, get,
6069 kvm_stats_debugfs_mode(stat_data->desc) & 0222
6070 ? set : NULL, fmt);
6071 if (ret)
6072 kvm_put_kvm(stat_data->kvm);
6073
6074 return ret;
6075 }
6076
kvm_debugfs_release(struct inode * inode,struct file * file)6077 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6078 {
6079 struct kvm_stat_data *stat_data = inode->i_private;
6080
6081 simple_attr_release(inode, file);
6082 kvm_put_kvm(stat_data->kvm);
6083
6084 return 0;
6085 }
6086
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)6087 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6088 {
6089 *val = *(u64 *)((void *)(&kvm->stat) + offset);
6090
6091 return 0;
6092 }
6093
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)6094 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6095 {
6096 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6097
6098 return 0;
6099 }
6100
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)6101 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6102 {
6103 unsigned long i;
6104 struct kvm_vcpu *vcpu;
6105
6106 *val = 0;
6107
6108 kvm_for_each_vcpu(i, vcpu, kvm)
6109 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6110
6111 return 0;
6112 }
6113
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)6114 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6115 {
6116 unsigned long i;
6117 struct kvm_vcpu *vcpu;
6118
6119 kvm_for_each_vcpu(i, vcpu, kvm)
6120 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6121
6122 return 0;
6123 }
6124
kvm_stat_data_get(void * data,u64 * val)6125 static int kvm_stat_data_get(void *data, u64 *val)
6126 {
6127 int r = -EFAULT;
6128 struct kvm_stat_data *stat_data = data;
6129
6130 switch (stat_data->kind) {
6131 case KVM_STAT_VM:
6132 r = kvm_get_stat_per_vm(stat_data->kvm,
6133 stat_data->desc->desc.offset, val);
6134 break;
6135 case KVM_STAT_VCPU:
6136 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6137 stat_data->desc->desc.offset, val);
6138 break;
6139 }
6140
6141 return r;
6142 }
6143
kvm_stat_data_clear(void * data,u64 val)6144 static int kvm_stat_data_clear(void *data, u64 val)
6145 {
6146 int r = -EFAULT;
6147 struct kvm_stat_data *stat_data = data;
6148
6149 if (val)
6150 return -EINVAL;
6151
6152 switch (stat_data->kind) {
6153 case KVM_STAT_VM:
6154 r = kvm_clear_stat_per_vm(stat_data->kvm,
6155 stat_data->desc->desc.offset);
6156 break;
6157 case KVM_STAT_VCPU:
6158 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6159 stat_data->desc->desc.offset);
6160 break;
6161 }
6162
6163 return r;
6164 }
6165
kvm_stat_data_open(struct inode * inode,struct file * file)6166 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6167 {
6168 __simple_attr_check_format("%llu\n", 0ull);
6169 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6170 kvm_stat_data_clear, "%llu\n");
6171 }
6172
6173 static const struct file_operations stat_fops_per_vm = {
6174 .owner = THIS_MODULE,
6175 .open = kvm_stat_data_open,
6176 .release = kvm_debugfs_release,
6177 .read = simple_attr_read,
6178 .write = simple_attr_write,
6179 };
6180
vm_stat_get(void * _offset,u64 * val)6181 static int vm_stat_get(void *_offset, u64 *val)
6182 {
6183 unsigned offset = (long)_offset;
6184 struct kvm *kvm;
6185 u64 tmp_val;
6186
6187 *val = 0;
6188 mutex_lock(&kvm_lock);
6189 list_for_each_entry(kvm, &vm_list, vm_list) {
6190 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6191 *val += tmp_val;
6192 }
6193 mutex_unlock(&kvm_lock);
6194 return 0;
6195 }
6196
vm_stat_clear(void * _offset,u64 val)6197 static int vm_stat_clear(void *_offset, u64 val)
6198 {
6199 unsigned offset = (long)_offset;
6200 struct kvm *kvm;
6201
6202 if (val)
6203 return -EINVAL;
6204
6205 mutex_lock(&kvm_lock);
6206 list_for_each_entry(kvm, &vm_list, vm_list) {
6207 kvm_clear_stat_per_vm(kvm, offset);
6208 }
6209 mutex_unlock(&kvm_lock);
6210
6211 return 0;
6212 }
6213
6214 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6215 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6216
vcpu_stat_get(void * _offset,u64 * val)6217 static int vcpu_stat_get(void *_offset, u64 *val)
6218 {
6219 unsigned offset = (long)_offset;
6220 struct kvm *kvm;
6221 u64 tmp_val;
6222
6223 *val = 0;
6224 mutex_lock(&kvm_lock);
6225 list_for_each_entry(kvm, &vm_list, vm_list) {
6226 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6227 *val += tmp_val;
6228 }
6229 mutex_unlock(&kvm_lock);
6230 return 0;
6231 }
6232
vcpu_stat_clear(void * _offset,u64 val)6233 static int vcpu_stat_clear(void *_offset, u64 val)
6234 {
6235 unsigned offset = (long)_offset;
6236 struct kvm *kvm;
6237
6238 if (val)
6239 return -EINVAL;
6240
6241 mutex_lock(&kvm_lock);
6242 list_for_each_entry(kvm, &vm_list, vm_list) {
6243 kvm_clear_stat_per_vcpu(kvm, offset);
6244 }
6245 mutex_unlock(&kvm_lock);
6246
6247 return 0;
6248 }
6249
6250 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6251 "%llu\n");
6252 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6253
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)6254 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6255 {
6256 struct kobj_uevent_env *env;
6257 unsigned long long created, active;
6258
6259 if (!kvm_dev.this_device || !kvm)
6260 return;
6261
6262 mutex_lock(&kvm_lock);
6263 if (type == KVM_EVENT_CREATE_VM) {
6264 kvm_createvm_count++;
6265 kvm_active_vms++;
6266 } else if (type == KVM_EVENT_DESTROY_VM) {
6267 kvm_active_vms--;
6268 }
6269 created = kvm_createvm_count;
6270 active = kvm_active_vms;
6271 mutex_unlock(&kvm_lock);
6272
6273 env = kzalloc(sizeof(*env), GFP_KERNEL);
6274 if (!env)
6275 return;
6276
6277 add_uevent_var(env, "CREATED=%llu", created);
6278 add_uevent_var(env, "COUNT=%llu", active);
6279
6280 if (type == KVM_EVENT_CREATE_VM) {
6281 add_uevent_var(env, "EVENT=create");
6282 kvm->userspace_pid = task_pid_nr(current);
6283 } else if (type == KVM_EVENT_DESTROY_VM) {
6284 add_uevent_var(env, "EVENT=destroy");
6285 }
6286 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6287
6288 if (!IS_ERR(kvm->debugfs_dentry)) {
6289 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6290
6291 if (p) {
6292 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6293 if (!IS_ERR(tmp))
6294 add_uevent_var(env, "STATS_PATH=%s", tmp);
6295 kfree(p);
6296 }
6297 }
6298 /* no need for checks, since we are adding at most only 5 keys */
6299 env->envp[env->envp_idx++] = NULL;
6300 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6301 kfree(env);
6302 }
6303
kvm_init_debug(void)6304 static void kvm_init_debug(void)
6305 {
6306 const struct file_operations *fops;
6307 const struct _kvm_stats_desc *pdesc;
6308 int i;
6309
6310 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6311
6312 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6313 pdesc = &kvm_vm_stats_desc[i];
6314 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6315 fops = &vm_stat_fops;
6316 else
6317 fops = &vm_stat_readonly_fops;
6318 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6319 kvm_debugfs_dir,
6320 (void *)(long)pdesc->desc.offset, fops);
6321 }
6322
6323 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6324 pdesc = &kvm_vcpu_stats_desc[i];
6325 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6326 fops = &vcpu_stat_fops;
6327 else
6328 fops = &vcpu_stat_readonly_fops;
6329 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6330 kvm_debugfs_dir,
6331 (void *)(long)pdesc->desc.offset, fops);
6332 }
6333 }
6334
6335 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)6336 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6337 {
6338 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6339 }
6340
kvm_sched_in(struct preempt_notifier * pn,int cpu)6341 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6342 {
6343 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6344
6345 WRITE_ONCE(vcpu->preempted, false);
6346 WRITE_ONCE(vcpu->ready, false);
6347
6348 __this_cpu_write(kvm_running_vcpu, vcpu);
6349 kvm_arch_vcpu_load(vcpu, cpu);
6350
6351 WRITE_ONCE(vcpu->scheduled_out, false);
6352 }
6353
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)6354 static void kvm_sched_out(struct preempt_notifier *pn,
6355 struct task_struct *next)
6356 {
6357 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6358
6359 WRITE_ONCE(vcpu->scheduled_out, true);
6360
6361 if (task_is_runnable(current) && vcpu->wants_to_run) {
6362 WRITE_ONCE(vcpu->preempted, true);
6363 WRITE_ONCE(vcpu->ready, true);
6364 }
6365 kvm_arch_vcpu_put(vcpu);
6366 __this_cpu_write(kvm_running_vcpu, NULL);
6367 }
6368
6369 /**
6370 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6371 *
6372 * We can disable preemption locally around accessing the per-CPU variable,
6373 * and use the resolved vcpu pointer after enabling preemption again,
6374 * because even if the current thread is migrated to another CPU, reading
6375 * the per-CPU value later will give us the same value as we update the
6376 * per-CPU variable in the preempt notifier handlers.
6377 */
kvm_get_running_vcpu(void)6378 struct kvm_vcpu *kvm_get_running_vcpu(void)
6379 {
6380 struct kvm_vcpu *vcpu;
6381
6382 preempt_disable();
6383 vcpu = __this_cpu_read(kvm_running_vcpu);
6384 preempt_enable();
6385
6386 return vcpu;
6387 }
6388 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6389
6390 /**
6391 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6392 */
kvm_get_running_vcpus(void)6393 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6394 {
6395 return &kvm_running_vcpu;
6396 }
6397
6398 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)6399 static unsigned int kvm_guest_state(void)
6400 {
6401 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6402 unsigned int state;
6403
6404 if (!kvm_arch_pmi_in_guest(vcpu))
6405 return 0;
6406
6407 state = PERF_GUEST_ACTIVE;
6408 if (!kvm_arch_vcpu_in_kernel(vcpu))
6409 state |= PERF_GUEST_USER;
6410
6411 return state;
6412 }
6413
kvm_guest_get_ip(void)6414 static unsigned long kvm_guest_get_ip(void)
6415 {
6416 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6417
6418 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6419 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6420 return 0;
6421
6422 return kvm_arch_vcpu_get_ip(vcpu);
6423 }
6424
6425 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6426 .state = kvm_guest_state,
6427 .get_ip = kvm_guest_get_ip,
6428 .handle_intel_pt_intr = NULL,
6429 };
6430
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))6431 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6432 {
6433 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6434 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6435 }
kvm_unregister_perf_callbacks(void)6436 void kvm_unregister_perf_callbacks(void)
6437 {
6438 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6439 }
6440 #endif
6441
kvm_init(unsigned vcpu_size,unsigned vcpu_align,struct module * module)6442 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6443 {
6444 int r;
6445 int cpu;
6446
6447 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6448 if (!vcpu_align)
6449 vcpu_align = __alignof__(struct kvm_vcpu);
6450 kvm_vcpu_cache =
6451 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6452 SLAB_ACCOUNT,
6453 offsetof(struct kvm_vcpu, arch),
6454 offsetofend(struct kvm_vcpu, stats_id)
6455 - offsetof(struct kvm_vcpu, arch),
6456 NULL);
6457 if (!kvm_vcpu_cache)
6458 return -ENOMEM;
6459
6460 for_each_possible_cpu(cpu) {
6461 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6462 GFP_KERNEL, cpu_to_node(cpu))) {
6463 r = -ENOMEM;
6464 goto err_cpu_kick_mask;
6465 }
6466 }
6467
6468 r = kvm_irqfd_init();
6469 if (r)
6470 goto err_irqfd;
6471
6472 r = kvm_async_pf_init();
6473 if (r)
6474 goto err_async_pf;
6475
6476 kvm_chardev_ops.owner = module;
6477 kvm_vm_fops.owner = module;
6478 kvm_vcpu_fops.owner = module;
6479 kvm_device_fops.owner = module;
6480
6481 kvm_preempt_ops.sched_in = kvm_sched_in;
6482 kvm_preempt_ops.sched_out = kvm_sched_out;
6483
6484 kvm_init_debug();
6485
6486 r = kvm_vfio_ops_init();
6487 if (WARN_ON_ONCE(r))
6488 goto err_vfio;
6489
6490 kvm_gmem_init(module);
6491
6492 r = kvm_init_virtualization();
6493 if (r)
6494 goto err_virt;
6495
6496 /*
6497 * Registration _must_ be the very last thing done, as this exposes
6498 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6499 */
6500 r = misc_register(&kvm_dev);
6501 if (r) {
6502 pr_err("kvm: misc device register failed\n");
6503 goto err_register;
6504 }
6505
6506 return 0;
6507
6508 err_register:
6509 kvm_uninit_virtualization();
6510 err_virt:
6511 kvm_vfio_ops_exit();
6512 err_vfio:
6513 kvm_async_pf_deinit();
6514 err_async_pf:
6515 kvm_irqfd_exit();
6516 err_irqfd:
6517 err_cpu_kick_mask:
6518 for_each_possible_cpu(cpu)
6519 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6520 kmem_cache_destroy(kvm_vcpu_cache);
6521 return r;
6522 }
6523 EXPORT_SYMBOL_GPL(kvm_init);
6524
kvm_exit(void)6525 void kvm_exit(void)
6526 {
6527 int cpu;
6528
6529 /*
6530 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6531 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6532 * to KVM while the module is being stopped.
6533 */
6534 misc_deregister(&kvm_dev);
6535
6536 kvm_uninit_virtualization();
6537
6538 debugfs_remove_recursive(kvm_debugfs_dir);
6539 for_each_possible_cpu(cpu)
6540 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6541 kmem_cache_destroy(kvm_vcpu_cache);
6542 kvm_vfio_ops_exit();
6543 kvm_async_pf_deinit();
6544 kvm_irqfd_exit();
6545 }
6546 EXPORT_SYMBOL_GPL(kvm_exit);
6547