1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 
6 #ifndef SELFTEST_KVM_PROCESSOR_H
7 #define SELFTEST_KVM_PROCESSOR_H
8 
9 #include <assert.h>
10 #include <stdint.h>
11 #include <syscall.h>
12 
13 #include <asm/msr-index.h>
14 #include <asm/prctl.h>
15 
16 #include <linux/kvm_para.h>
17 #include <linux/stringify.h>
18 
19 #include "kvm_util.h"
20 #include "ucall_common.h"
21 
22 extern bool host_cpu_is_intel;
23 extern bool host_cpu_is_amd;
24 extern uint64_t guest_tsc_khz;
25 
26 #ifndef MAX_NR_CPUID_ENTRIES
27 #define MAX_NR_CPUID_ENTRIES 100
28 #endif
29 
30 #define NONCANONICAL 0xaaaaaaaaaaaaaaaaull
31 
32 /* Forced emulation prefix, used to invoke the emulator unconditionally. */
33 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34 
35 #define NMI_VECTOR		0x02
36 
37 #define X86_EFLAGS_FIXED	 (1u << 1)
38 
39 #define X86_CR4_VME		(1ul << 0)
40 #define X86_CR4_PVI		(1ul << 1)
41 #define X86_CR4_TSD		(1ul << 2)
42 #define X86_CR4_DE		(1ul << 3)
43 #define X86_CR4_PSE		(1ul << 4)
44 #define X86_CR4_PAE		(1ul << 5)
45 #define X86_CR4_MCE		(1ul << 6)
46 #define X86_CR4_PGE		(1ul << 7)
47 #define X86_CR4_PCE		(1ul << 8)
48 #define X86_CR4_OSFXSR		(1ul << 9)
49 #define X86_CR4_OSXMMEXCPT	(1ul << 10)
50 #define X86_CR4_UMIP		(1ul << 11)
51 #define X86_CR4_LA57		(1ul << 12)
52 #define X86_CR4_VMXE		(1ul << 13)
53 #define X86_CR4_SMXE		(1ul << 14)
54 #define X86_CR4_FSGSBASE	(1ul << 16)
55 #define X86_CR4_PCIDE		(1ul << 17)
56 #define X86_CR4_OSXSAVE		(1ul << 18)
57 #define X86_CR4_SMEP		(1ul << 20)
58 #define X86_CR4_SMAP		(1ul << 21)
59 #define X86_CR4_PKE		(1ul << 22)
60 
61 struct xstate_header {
62 	u64				xstate_bv;
63 	u64				xcomp_bv;
64 	u64				reserved[6];
65 } __attribute__((packed));
66 
67 struct xstate {
68 	u8				i387[512];
69 	struct xstate_header		header;
70 	u8				extended_state_area[0];
71 } __attribute__ ((packed, aligned (64)));
72 
73 #define XFEATURE_MASK_FP		BIT_ULL(0)
74 #define XFEATURE_MASK_SSE		BIT_ULL(1)
75 #define XFEATURE_MASK_YMM		BIT_ULL(2)
76 #define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
77 #define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
78 #define XFEATURE_MASK_OPMASK		BIT_ULL(5)
79 #define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
80 #define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
81 #define XFEATURE_MASK_PT		BIT_ULL(8)
82 #define XFEATURE_MASK_PKRU		BIT_ULL(9)
83 #define XFEATURE_MASK_PASID		BIT_ULL(10)
84 #define XFEATURE_MASK_CET_USER		BIT_ULL(11)
85 #define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
86 #define XFEATURE_MASK_LBR		BIT_ULL(15)
87 #define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
88 #define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
89 
90 #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
91 					 XFEATURE_MASK_ZMM_Hi256 | \
92 					 XFEATURE_MASK_Hi16_ZMM)
93 #define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
94 					 XFEATURE_MASK_XTILE_CFG)
95 
96 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
97 enum cpuid_output_regs {
98 	KVM_CPUID_EAX,
99 	KVM_CPUID_EBX,
100 	KVM_CPUID_ECX,
101 	KVM_CPUID_EDX
102 };
103 
104 /*
105  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106  * passed by value with no overhead.
107  */
108 struct kvm_x86_cpu_feature {
109 	u32	function;
110 	u16	index;
111 	u8	reg;
112 	u8	bit;
113 };
114 #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
115 ({										\
116 	struct kvm_x86_cpu_feature feature = {					\
117 		.function = fn,							\
118 		.index = idx,							\
119 		.reg = KVM_CPUID_##gpr,						\
120 		.bit = __bit,							\
121 	};									\
122 										\
123 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
124 			  (fn & 0xc0000000) == 0x40000000 ||			\
125 			  (fn & 0xc0000000) == 0x80000000 ||			\
126 			  (fn & 0xc0000000) == 0xc0000000);			\
127 	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
128 	feature;								\
129 })
130 
131 /*
132  * Basic Leafs, a.k.a. Intel defined
133  */
134 #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135 #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136 #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137 #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138 #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139 #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140 #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141 #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142 #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143 #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144 #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145 #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146 #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147 #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148 #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149 #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150 #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151 #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152 #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153 #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154 #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155 #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156 #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157 #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158 #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159 #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160 #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161 #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162 #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163 #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164 #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165 #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166 #define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167 #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168 #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169 #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170 #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171 #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172 #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173 #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174 #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175 #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176 #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177 #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178 #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179 #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180 #define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181 
182 /*
183  * Extended Leafs, a.k.a. AMD defined
184  */
185 #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186 #define	X86_FEATURE_PERFCTR_CORE	KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 23)
187 #define	X86_FEATURE_PERFCTR_NB		KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 24)
188 #define	X86_FEATURE_PERFCTR_LLC		KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 28)
189 #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
190 #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
191 #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
192 #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
193 #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
194 #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
195 #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
196 #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
197 #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
198 #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
199 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
200 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
201 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
202 #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
203 #define X86_FEATURE_IDLE_HLT		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 30)
204 #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
205 #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
206 #define	X86_FEATURE_PERFMON_V2		KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 0)
207 #define	X86_FEATURE_LBR_PMC_FREEZE	KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 2)
208 
209 /*
210  * KVM defined paravirt features.
211  */
212 #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
213 #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
214 #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
215 #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
216 #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
217 #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
218 #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
219 #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
220 /* Bit 8 apparently isn't used?!?! */
221 #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
222 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
223 #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
224 #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
225 #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
226 #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
227 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
228 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
229 #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
230 
231 /*
232  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
233  * value/property as opposed to a single-bit feature.  Again, pack the info
234  * into a 64-bit value to pass by value with no overhead.
235  */
236 struct kvm_x86_cpu_property {
237 	u32	function;
238 	u8	index;
239 	u8	reg;
240 	u8	lo_bit;
241 	u8	hi_bit;
242 };
243 #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
244 ({										\
245 	struct kvm_x86_cpu_property property = {				\
246 		.function = fn,							\
247 		.index = idx,							\
248 		.reg = KVM_CPUID_##gpr,						\
249 		.lo_bit = low_bit,						\
250 		.hi_bit = high_bit,						\
251 	};									\
252 										\
253 	kvm_static_assert(low_bit < high_bit);					\
254 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
255 			  (fn & 0xc0000000) == 0x40000000 ||			\
256 			  (fn & 0xc0000000) == 0x80000000 ||			\
257 			  (fn & 0xc0000000) == 0xc0000000);			\
258 	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
259 	property;								\
260 })
261 
262 #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
263 #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
264 #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
265 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
266 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
267 #define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
268 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
269 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
270 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
271 
272 #define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
273 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
274 #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
275 #define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
276 
277 #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
278 #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
279 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
280 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
281 #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
282 #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
283 #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
284 #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
285 
286 #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
287 
288 #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
289 #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
290 #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
291 #define X86_PROPERTY_GUEST_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
292 #define X86_PROPERTY_SEV_C_BIT			KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
293 #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
294 #define X86_PROPERTY_NR_PERFCTR_CORE		KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 0, 3)
295 #define X86_PROPERTY_NR_PERFCTR_NB		KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 10, 15)
296 
297 #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
298 
299 /*
300  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
301  * that indicates the feature is _not_ supported, and a property that states
302  * the length of the bit mask of unsupported features.  A feature is supported
303  * if the size of the bit mask is larger than the "unavailable" bit, and said
304  * bit is not set.  Fixed counters also bizarre enumeration, but inverted from
305  * arch events for general purpose counters.  Fixed counters are supported if a
306  * feature flag is set **OR** the total number of fixed counters is greater
307  * than index of the counter.
308  *
309  * Wrap the events for general purpose and fixed counters to simplify checking
310  * whether or not a given architectural event is supported.
311  */
312 struct kvm_x86_pmu_feature {
313 	struct kvm_x86_cpu_feature f;
314 };
315 #define	KVM_X86_PMU_FEATURE(__reg, __bit)				\
316 ({									\
317 	struct kvm_x86_pmu_feature feature = {				\
318 		.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit),		\
319 	};								\
320 									\
321 	kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX ||		\
322 			  KVM_CPUID_##__reg == KVM_CPUID_ECX);		\
323 	feature;							\
324 })
325 
326 #define X86_PMU_FEATURE_CPU_CYCLES			KVM_X86_PMU_FEATURE(EBX, 0)
327 #define X86_PMU_FEATURE_INSNS_RETIRED			KVM_X86_PMU_FEATURE(EBX, 1)
328 #define X86_PMU_FEATURE_REFERENCE_CYCLES		KVM_X86_PMU_FEATURE(EBX, 2)
329 #define X86_PMU_FEATURE_LLC_REFERENCES			KVM_X86_PMU_FEATURE(EBX, 3)
330 #define X86_PMU_FEATURE_LLC_MISSES			KVM_X86_PMU_FEATURE(EBX, 4)
331 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED		KVM_X86_PMU_FEATURE(EBX, 5)
332 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED		KVM_X86_PMU_FEATURE(EBX, 6)
333 #define X86_PMU_FEATURE_TOPDOWN_SLOTS			KVM_X86_PMU_FEATURE(EBX, 7)
334 
335 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED		KVM_X86_PMU_FEATURE(ECX, 0)
336 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED		KVM_X86_PMU_FEATURE(ECX, 1)
337 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED	KVM_X86_PMU_FEATURE(ECX, 2)
338 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED		KVM_X86_PMU_FEATURE(ECX, 3)
339 
x86_family(unsigned int eax)340 static inline unsigned int x86_family(unsigned int eax)
341 {
342 	unsigned int x86;
343 
344 	x86 = (eax >> 8) & 0xf;
345 
346 	if (x86 == 0xf)
347 		x86 += (eax >> 20) & 0xff;
348 
349 	return x86;
350 }
351 
x86_model(unsigned int eax)352 static inline unsigned int x86_model(unsigned int eax)
353 {
354 	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
355 }
356 
357 /* Page table bitfield declarations */
358 #define PTE_PRESENT_MASK        BIT_ULL(0)
359 #define PTE_WRITABLE_MASK       BIT_ULL(1)
360 #define PTE_USER_MASK           BIT_ULL(2)
361 #define PTE_ACCESSED_MASK       BIT_ULL(5)
362 #define PTE_DIRTY_MASK          BIT_ULL(6)
363 #define PTE_LARGE_MASK          BIT_ULL(7)
364 #define PTE_GLOBAL_MASK         BIT_ULL(8)
365 #define PTE_NX_MASK             BIT_ULL(63)
366 
367 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
368 
369 #define PAGE_SHIFT		12
370 #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
371 #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
372 
373 #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
374 #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
375 #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
376 
377 #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
378 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
379 
380 /* General Registers in 64-Bit Mode */
381 struct gpr64_regs {
382 	u64 rax;
383 	u64 rcx;
384 	u64 rdx;
385 	u64 rbx;
386 	u64 rsp;
387 	u64 rbp;
388 	u64 rsi;
389 	u64 rdi;
390 	u64 r8;
391 	u64 r9;
392 	u64 r10;
393 	u64 r11;
394 	u64 r12;
395 	u64 r13;
396 	u64 r14;
397 	u64 r15;
398 };
399 
400 struct desc64 {
401 	uint16_t limit0;
402 	uint16_t base0;
403 	unsigned base1:8, type:4, s:1, dpl:2, p:1;
404 	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
405 	uint32_t base3;
406 	uint32_t zero1;
407 } __attribute__((packed));
408 
409 struct desc_ptr {
410 	uint16_t size;
411 	uint64_t address;
412 } __attribute__((packed));
413 
414 struct kvm_x86_state {
415 	struct kvm_xsave *xsave;
416 	struct kvm_vcpu_events events;
417 	struct kvm_mp_state mp_state;
418 	struct kvm_regs regs;
419 	struct kvm_xcrs xcrs;
420 	struct kvm_sregs sregs;
421 	struct kvm_debugregs debugregs;
422 	union {
423 		struct kvm_nested_state nested;
424 		char nested_[16384];
425 	};
426 	struct kvm_msrs msrs;
427 };
428 
get_desc64_base(const struct desc64 * desc)429 static inline uint64_t get_desc64_base(const struct desc64 *desc)
430 {
431 	return ((uint64_t)desc->base3 << 32) |
432 		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
433 }
434 
rdtsc(void)435 static inline uint64_t rdtsc(void)
436 {
437 	uint32_t eax, edx;
438 	uint64_t tsc_val;
439 	/*
440 	 * The lfence is to wait (on Intel CPUs) until all previous
441 	 * instructions have been executed. If software requires RDTSC to be
442 	 * executed prior to execution of any subsequent instruction, it can
443 	 * execute LFENCE immediately after RDTSC
444 	 */
445 	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
446 	tsc_val = ((uint64_t)edx) << 32 | eax;
447 	return tsc_val;
448 }
449 
rdtscp(uint32_t * aux)450 static inline uint64_t rdtscp(uint32_t *aux)
451 {
452 	uint32_t eax, edx;
453 
454 	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
455 	return ((uint64_t)edx) << 32 | eax;
456 }
457 
rdmsr(uint32_t msr)458 static inline uint64_t rdmsr(uint32_t msr)
459 {
460 	uint32_t a, d;
461 
462 	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
463 
464 	return a | ((uint64_t) d << 32);
465 }
466 
wrmsr(uint32_t msr,uint64_t value)467 static inline void wrmsr(uint32_t msr, uint64_t value)
468 {
469 	uint32_t a = value;
470 	uint32_t d = value >> 32;
471 
472 	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
473 }
474 
475 
inw(uint16_t port)476 static inline uint16_t inw(uint16_t port)
477 {
478 	uint16_t tmp;
479 
480 	__asm__ __volatile__("in %%dx, %%ax"
481 		: /* output */ "=a" (tmp)
482 		: /* input */ "d" (port));
483 
484 	return tmp;
485 }
486 
get_es(void)487 static inline uint16_t get_es(void)
488 {
489 	uint16_t es;
490 
491 	__asm__ __volatile__("mov %%es, %[es]"
492 			     : /* output */ [es]"=rm"(es));
493 	return es;
494 }
495 
get_cs(void)496 static inline uint16_t get_cs(void)
497 {
498 	uint16_t cs;
499 
500 	__asm__ __volatile__("mov %%cs, %[cs]"
501 			     : /* output */ [cs]"=rm"(cs));
502 	return cs;
503 }
504 
get_ss(void)505 static inline uint16_t get_ss(void)
506 {
507 	uint16_t ss;
508 
509 	__asm__ __volatile__("mov %%ss, %[ss]"
510 			     : /* output */ [ss]"=rm"(ss));
511 	return ss;
512 }
513 
get_ds(void)514 static inline uint16_t get_ds(void)
515 {
516 	uint16_t ds;
517 
518 	__asm__ __volatile__("mov %%ds, %[ds]"
519 			     : /* output */ [ds]"=rm"(ds));
520 	return ds;
521 }
522 
get_fs(void)523 static inline uint16_t get_fs(void)
524 {
525 	uint16_t fs;
526 
527 	__asm__ __volatile__("mov %%fs, %[fs]"
528 			     : /* output */ [fs]"=rm"(fs));
529 	return fs;
530 }
531 
get_gs(void)532 static inline uint16_t get_gs(void)
533 {
534 	uint16_t gs;
535 
536 	__asm__ __volatile__("mov %%gs, %[gs]"
537 			     : /* output */ [gs]"=rm"(gs));
538 	return gs;
539 }
540 
get_tr(void)541 static inline uint16_t get_tr(void)
542 {
543 	uint16_t tr;
544 
545 	__asm__ __volatile__("str %[tr]"
546 			     : /* output */ [tr]"=rm"(tr));
547 	return tr;
548 }
549 
get_cr0(void)550 static inline uint64_t get_cr0(void)
551 {
552 	uint64_t cr0;
553 
554 	__asm__ __volatile__("mov %%cr0, %[cr0]"
555 			     : /* output */ [cr0]"=r"(cr0));
556 	return cr0;
557 }
558 
get_cr3(void)559 static inline uint64_t get_cr3(void)
560 {
561 	uint64_t cr3;
562 
563 	__asm__ __volatile__("mov %%cr3, %[cr3]"
564 			     : /* output */ [cr3]"=r"(cr3));
565 	return cr3;
566 }
567 
get_cr4(void)568 static inline uint64_t get_cr4(void)
569 {
570 	uint64_t cr4;
571 
572 	__asm__ __volatile__("mov %%cr4, %[cr4]"
573 			     : /* output */ [cr4]"=r"(cr4));
574 	return cr4;
575 }
576 
set_cr4(uint64_t val)577 static inline void set_cr4(uint64_t val)
578 {
579 	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
580 }
581 
set_idt(const struct desc_ptr * idt_desc)582 static inline void set_idt(const struct desc_ptr *idt_desc)
583 {
584 	__asm__ __volatile__("lidt %0"::"m"(*idt_desc));
585 }
586 
xgetbv(u32 index)587 static inline u64 xgetbv(u32 index)
588 {
589 	u32 eax, edx;
590 
591 	__asm__ __volatile__("xgetbv;"
592 		     : "=a" (eax), "=d" (edx)
593 		     : "c" (index));
594 	return eax | ((u64)edx << 32);
595 }
596 
xsetbv(u32 index,u64 value)597 static inline void xsetbv(u32 index, u64 value)
598 {
599 	u32 eax = value;
600 	u32 edx = value >> 32;
601 
602 	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
603 }
604 
wrpkru(u32 pkru)605 static inline void wrpkru(u32 pkru)
606 {
607 	/* Note, ECX and EDX are architecturally required to be '0'. */
608 	asm volatile(".byte 0x0f,0x01,0xef\n\t"
609 		     : : "a" (pkru), "c"(0), "d"(0));
610 }
611 
get_gdt(void)612 static inline struct desc_ptr get_gdt(void)
613 {
614 	struct desc_ptr gdt;
615 	__asm__ __volatile__("sgdt %[gdt]"
616 			     : /* output */ [gdt]"=m"(gdt));
617 	return gdt;
618 }
619 
get_idt(void)620 static inline struct desc_ptr get_idt(void)
621 {
622 	struct desc_ptr idt;
623 	__asm__ __volatile__("sidt %[idt]"
624 			     : /* output */ [idt]"=m"(idt));
625 	return idt;
626 }
627 
outl(uint16_t port,uint32_t value)628 static inline void outl(uint16_t port, uint32_t value)
629 {
630 	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
631 }
632 
__cpuid(uint32_t function,uint32_t index,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)633 static inline void __cpuid(uint32_t function, uint32_t index,
634 			   uint32_t *eax, uint32_t *ebx,
635 			   uint32_t *ecx, uint32_t *edx)
636 {
637 	*eax = function;
638 	*ecx = index;
639 
640 	asm volatile("cpuid"
641 	    : "=a" (*eax),
642 	      "=b" (*ebx),
643 	      "=c" (*ecx),
644 	      "=d" (*edx)
645 	    : "0" (*eax), "2" (*ecx)
646 	    : "memory");
647 }
648 
cpuid(uint32_t function,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)649 static inline void cpuid(uint32_t function,
650 			 uint32_t *eax, uint32_t *ebx,
651 			 uint32_t *ecx, uint32_t *edx)
652 {
653 	return __cpuid(function, 0, eax, ebx, ecx, edx);
654 }
655 
this_cpu_fms(void)656 static inline uint32_t this_cpu_fms(void)
657 {
658 	uint32_t eax, ebx, ecx, edx;
659 
660 	cpuid(1, &eax, &ebx, &ecx, &edx);
661 	return eax;
662 }
663 
this_cpu_family(void)664 static inline uint32_t this_cpu_family(void)
665 {
666 	return x86_family(this_cpu_fms());
667 }
668 
this_cpu_model(void)669 static inline uint32_t this_cpu_model(void)
670 {
671 	return x86_model(this_cpu_fms());
672 }
673 
this_cpu_vendor_string_is(const char * vendor)674 static inline bool this_cpu_vendor_string_is(const char *vendor)
675 {
676 	const uint32_t *chunk = (const uint32_t *)vendor;
677 	uint32_t eax, ebx, ecx, edx;
678 
679 	cpuid(0, &eax, &ebx, &ecx, &edx);
680 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
681 }
682 
this_cpu_is_intel(void)683 static inline bool this_cpu_is_intel(void)
684 {
685 	return this_cpu_vendor_string_is("GenuineIntel");
686 }
687 
688 /*
689  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
690  */
this_cpu_is_amd(void)691 static inline bool this_cpu_is_amd(void)
692 {
693 	return this_cpu_vendor_string_is("AuthenticAMD");
694 }
695 
__this_cpu_has(uint32_t function,uint32_t index,uint8_t reg,uint8_t lo,uint8_t hi)696 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
697 				      uint8_t reg, uint8_t lo, uint8_t hi)
698 {
699 	uint32_t gprs[4];
700 
701 	__cpuid(function, index,
702 		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
703 		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
704 
705 	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
706 }
707 
this_cpu_has(struct kvm_x86_cpu_feature feature)708 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
709 {
710 	return __this_cpu_has(feature.function, feature.index,
711 			      feature.reg, feature.bit, feature.bit);
712 }
713 
this_cpu_property(struct kvm_x86_cpu_property property)714 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
715 {
716 	return __this_cpu_has(property.function, property.index,
717 			      property.reg, property.lo_bit, property.hi_bit);
718 }
719 
this_cpu_has_p(struct kvm_x86_cpu_property property)720 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
721 {
722 	uint32_t max_leaf;
723 
724 	switch (property.function & 0xc0000000) {
725 	case 0:
726 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
727 		break;
728 	case 0x40000000:
729 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
730 		break;
731 	case 0x80000000:
732 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
733 		break;
734 	case 0xc0000000:
735 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
736 	}
737 	return max_leaf >= property.function;
738 }
739 
this_pmu_has(struct kvm_x86_pmu_feature feature)740 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
741 {
742 	uint32_t nr_bits;
743 
744 	if (feature.f.reg == KVM_CPUID_EBX) {
745 		nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
746 		return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
747 	}
748 
749 	GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
750 	nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
751 	return nr_bits > feature.f.bit || this_cpu_has(feature.f);
752 }
753 
this_cpu_supported_xcr0(void)754 static __always_inline uint64_t this_cpu_supported_xcr0(void)
755 {
756 	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
757 		return 0;
758 
759 	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
760 	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
761 }
762 
763 typedef u32		__attribute__((vector_size(16))) sse128_t;
764 #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
765 #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
766 #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
767 
read_sse_reg(int reg,sse128_t * data)768 static inline void read_sse_reg(int reg, sse128_t *data)
769 {
770 	switch (reg) {
771 	case 0:
772 		asm("movdqa %%xmm0, %0" : "=m"(*data));
773 		break;
774 	case 1:
775 		asm("movdqa %%xmm1, %0" : "=m"(*data));
776 		break;
777 	case 2:
778 		asm("movdqa %%xmm2, %0" : "=m"(*data));
779 		break;
780 	case 3:
781 		asm("movdqa %%xmm3, %0" : "=m"(*data));
782 		break;
783 	case 4:
784 		asm("movdqa %%xmm4, %0" : "=m"(*data));
785 		break;
786 	case 5:
787 		asm("movdqa %%xmm5, %0" : "=m"(*data));
788 		break;
789 	case 6:
790 		asm("movdqa %%xmm6, %0" : "=m"(*data));
791 		break;
792 	case 7:
793 		asm("movdqa %%xmm7, %0" : "=m"(*data));
794 		break;
795 	default:
796 		BUG();
797 	}
798 }
799 
write_sse_reg(int reg,const sse128_t * data)800 static inline void write_sse_reg(int reg, const sse128_t *data)
801 {
802 	switch (reg) {
803 	case 0:
804 		asm("movdqa %0, %%xmm0" : : "m"(*data));
805 		break;
806 	case 1:
807 		asm("movdqa %0, %%xmm1" : : "m"(*data));
808 		break;
809 	case 2:
810 		asm("movdqa %0, %%xmm2" : : "m"(*data));
811 		break;
812 	case 3:
813 		asm("movdqa %0, %%xmm3" : : "m"(*data));
814 		break;
815 	case 4:
816 		asm("movdqa %0, %%xmm4" : : "m"(*data));
817 		break;
818 	case 5:
819 		asm("movdqa %0, %%xmm5" : : "m"(*data));
820 		break;
821 	case 6:
822 		asm("movdqa %0, %%xmm6" : : "m"(*data));
823 		break;
824 	case 7:
825 		asm("movdqa %0, %%xmm7" : : "m"(*data));
826 		break;
827 	default:
828 		BUG();
829 	}
830 }
831 
cpu_relax(void)832 static inline void cpu_relax(void)
833 {
834 	asm volatile("rep; nop" ::: "memory");
835 }
836 
udelay(unsigned long usec)837 static inline void udelay(unsigned long usec)
838 {
839 	uint64_t start, now, cycles;
840 
841 	GUEST_ASSERT(guest_tsc_khz);
842 	cycles = guest_tsc_khz / 1000 * usec;
843 
844 	/*
845 	 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
846 	 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
847 	 */
848 	start = rdtsc();
849 	do {
850 		now = rdtsc();
851 	} while (now - start < cycles);
852 }
853 
854 #define ud2()			\
855 	__asm__ __volatile__(	\
856 		"ud2\n"	\
857 		)
858 
859 #define hlt()			\
860 	__asm__ __volatile__(	\
861 		"hlt\n"	\
862 		)
863 
864 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
865 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
866 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
867 
868 const struct kvm_msr_list *kvm_get_msr_index_list(void);
869 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
870 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
871 uint64_t kvm_get_feature_msr(uint64_t msr_index);
872 
vcpu_msrs_get(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)873 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
874 				 struct kvm_msrs *msrs)
875 {
876 	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
877 
878 	TEST_ASSERT(r == msrs->nmsrs,
879 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
880 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
881 }
vcpu_msrs_set(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)882 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
883 {
884 	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
885 
886 	TEST_ASSERT(r == msrs->nmsrs,
887 		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
888 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
889 }
vcpu_debugregs_get(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)890 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
891 				      struct kvm_debugregs *debugregs)
892 {
893 	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
894 }
vcpu_debugregs_set(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)895 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
896 				      struct kvm_debugregs *debugregs)
897 {
898 	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
899 }
vcpu_xsave_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)900 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
901 				  struct kvm_xsave *xsave)
902 {
903 	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
904 }
vcpu_xsave2_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)905 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
906 				   struct kvm_xsave *xsave)
907 {
908 	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
909 }
vcpu_xsave_set(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)910 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
911 				  struct kvm_xsave *xsave)
912 {
913 	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
914 }
vcpu_xcrs_get(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)915 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
916 				 struct kvm_xcrs *xcrs)
917 {
918 	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
919 }
vcpu_xcrs_set(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)920 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
921 {
922 	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
923 }
924 
925 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
926 					       uint32_t function, uint32_t index);
927 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
928 
kvm_cpu_fms(void)929 static inline uint32_t kvm_cpu_fms(void)
930 {
931 	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
932 }
933 
kvm_cpu_family(void)934 static inline uint32_t kvm_cpu_family(void)
935 {
936 	return x86_family(kvm_cpu_fms());
937 }
938 
kvm_cpu_model(void)939 static inline uint32_t kvm_cpu_model(void)
940 {
941 	return x86_model(kvm_cpu_fms());
942 }
943 
944 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
945 		   struct kvm_x86_cpu_feature feature);
946 
kvm_cpu_has(struct kvm_x86_cpu_feature feature)947 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
948 {
949 	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
950 }
951 
952 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
953 			    struct kvm_x86_cpu_property property);
954 
kvm_cpu_property(struct kvm_x86_cpu_property property)955 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
956 {
957 	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
958 }
959 
kvm_cpu_has_p(struct kvm_x86_cpu_property property)960 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
961 {
962 	uint32_t max_leaf;
963 
964 	switch (property.function & 0xc0000000) {
965 	case 0:
966 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
967 		break;
968 	case 0x40000000:
969 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
970 		break;
971 	case 0x80000000:
972 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
973 		break;
974 	case 0xc0000000:
975 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
976 	}
977 	return max_leaf >= property.function;
978 }
979 
kvm_pmu_has(struct kvm_x86_pmu_feature feature)980 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
981 {
982 	uint32_t nr_bits;
983 
984 	if (feature.f.reg == KVM_CPUID_EBX) {
985 		nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
986 		return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
987 	}
988 
989 	TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
990 	nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
991 	return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
992 }
993 
kvm_cpu_supported_xcr0(void)994 static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
995 {
996 	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
997 		return 0;
998 
999 	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
1000 	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
1001 }
1002 
kvm_cpuid2_size(int nr_entries)1003 static inline size_t kvm_cpuid2_size(int nr_entries)
1004 {
1005 	return sizeof(struct kvm_cpuid2) +
1006 	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
1007 }
1008 
1009 /*
1010  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
1011  * entries sized to hold @nr_entries.  The caller is responsible for freeing
1012  * the struct.
1013  */
allocate_kvm_cpuid2(int nr_entries)1014 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1015 {
1016 	struct kvm_cpuid2 *cpuid;
1017 
1018 	cpuid = malloc(kvm_cpuid2_size(nr_entries));
1019 	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1020 
1021 	cpuid->nent = nr_entries;
1022 
1023 	return cpuid;
1024 }
1025 
1026 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1027 
vcpu_get_cpuid(struct kvm_vcpu * vcpu)1028 static inline void vcpu_get_cpuid(struct kvm_vcpu *vcpu)
1029 {
1030 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1031 }
1032 
__vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function,uint32_t index)1033 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1034 							      uint32_t function,
1035 							      uint32_t index)
1036 {
1037 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first (or equivalent)");
1038 
1039 	vcpu_get_cpuid(vcpu);
1040 
1041 	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1042 							  function, index);
1043 }
1044 
vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function)1045 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1046 							    uint32_t function)
1047 {
1048 	return __vcpu_get_cpuid_entry(vcpu, function, 0);
1049 }
1050 
__vcpu_set_cpuid(struct kvm_vcpu * vcpu)1051 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1052 {
1053 	int r;
1054 
1055 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1056 	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1057 	if (r)
1058 		return r;
1059 
1060 	/* On success, refresh the cache to pick up adjustments made by KVM. */
1061 	vcpu_get_cpuid(vcpu);
1062 	return 0;
1063 }
1064 
vcpu_set_cpuid(struct kvm_vcpu * vcpu)1065 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1066 {
1067 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1068 	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1069 
1070 	/* Refresh the cache to pick up adjustments made by KVM. */
1071 	vcpu_get_cpuid(vcpu);
1072 }
1073 
1074 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1075 			     struct kvm_x86_cpu_property property,
1076 			     uint32_t value);
1077 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1078 
1079 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1080 
vcpu_cpuid_has(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1081 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1082 				  struct kvm_x86_cpu_feature feature)
1083 {
1084 	struct kvm_cpuid_entry2 *entry;
1085 
1086 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1087 	return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1088 }
1089 
1090 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1091 				     struct kvm_x86_cpu_feature feature,
1092 				     bool set);
1093 
vcpu_set_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1094 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1095 					  struct kvm_x86_cpu_feature feature)
1096 {
1097 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1098 
1099 }
1100 
vcpu_clear_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1101 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1102 					    struct kvm_x86_cpu_feature feature)
1103 {
1104 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1105 }
1106 
1107 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1108 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1109 
1110 /*
1111  * Assert on an MSR access(es) and pretty print the MSR name when possible.
1112  * Note, the caller provides the stringified name so that the name of macro is
1113  * printed, not the value the macro resolves to (due to macro expansion).
1114  */
1115 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1116 do {										\
1117 	if (__builtin_constant_p(msr)) {					\
1118 		TEST_ASSERT(cond, fmt, str, args);				\
1119 	} else if (!(cond)) {							\
1120 		char buf[16];							\
1121 										\
1122 		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1123 		TEST_ASSERT(cond, fmt, buf, args);				\
1124 	}									\
1125 } while (0)
1126 
1127 /*
1128  * Returns true if KVM should return the last written value when reading an MSR
1129  * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1130  * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1131  * out MSRs that are not durable _and_ that a selftest wants to write.
1132  */
is_durable_msr(uint32_t msr)1133 static inline bool is_durable_msr(uint32_t msr)
1134 {
1135 	return msr != MSR_IA32_TSC;
1136 }
1137 
1138 #define vcpu_set_msr(vcpu, msr, val)							\
1139 do {											\
1140 	uint64_t r, v = val;								\
1141 											\
1142 	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1143 			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1144 	if (!is_durable_msr(msr))							\
1145 		break;									\
1146 	r = vcpu_get_msr(vcpu, msr);							\
1147 	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1148 } while (0)
1149 
1150 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1151 void kvm_init_vm_address_properties(struct kvm_vm *vm);
1152 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1153 
1154 struct ex_regs {
1155 	uint64_t rax, rcx, rdx, rbx;
1156 	uint64_t rbp, rsi, rdi;
1157 	uint64_t r8, r9, r10, r11;
1158 	uint64_t r12, r13, r14, r15;
1159 	uint64_t vector;
1160 	uint64_t error_code;
1161 	uint64_t rip;
1162 	uint64_t cs;
1163 	uint64_t rflags;
1164 };
1165 
1166 struct idt_entry {
1167 	uint16_t offset0;
1168 	uint16_t selector;
1169 	uint16_t ist : 3;
1170 	uint16_t : 5;
1171 	uint16_t type : 4;
1172 	uint16_t : 1;
1173 	uint16_t dpl : 2;
1174 	uint16_t p : 1;
1175 	uint16_t offset1;
1176 	uint32_t offset2; uint32_t reserved;
1177 };
1178 
1179 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1180 			void (*handler)(struct ex_regs *));
1181 
1182 /* If a toddler were to say "abracadabra". */
1183 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1184 
1185 /*
1186  * KVM selftest exception fixup uses registers to coordinate with the exception
1187  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1188  * per-CPU data.  Using only registers avoids having to map memory into the
1189  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1190  * for recursive faults when accessing memory in the handler.  The downside to
1191  * using registers is that it restricts what registers can be used by the actual
1192  * instruction.  But, selftests are 64-bit only, making register* pressure a
1193  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1194  * by the callee, and except for r11 are not implicit parameters to any
1195  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1196  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1197  * is higher priority than testing non-faulting SYSCALL/SYSRET.
1198  *
1199  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1200  * is guaranteed to be non-zero on fault.
1201  *
1202  * REGISTER INPUTS:
1203  * r9  = MAGIC
1204  * r10 = RIP
1205  * r11 = new RIP on fault
1206  *
1207  * REGISTER OUTPUTS:
1208  * r9  = exception vector (non-zero)
1209  * r10 = error code
1210  */
1211 #define __KVM_ASM_SAFE(insn, fep)				\
1212 	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1213 	"lea 1f(%%rip), %%r10\n\t"				\
1214 	"lea 2f(%%rip), %%r11\n\t"				\
1215 	fep "1: " insn "\n\t"					\
1216 	"xor %%r9, %%r9\n\t"					\
1217 	"2:\n\t"						\
1218 	"mov  %%r9b, %[vector]\n\t"				\
1219 	"mov  %%r10, %[error_code]\n\t"
1220 
1221 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1222 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1223 
1224 #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1225 #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1226 
1227 #define kvm_asm_safe(insn, inputs...)					\
1228 ({									\
1229 	uint64_t ign_error_code;					\
1230 	uint8_t vector;							\
1231 									\
1232 	asm volatile(KVM_ASM_SAFE(insn)					\
1233 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1234 		     : inputs						\
1235 		     : KVM_ASM_SAFE_CLOBBERS);				\
1236 	vector;								\
1237 })
1238 
1239 #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1240 ({									\
1241 	uint8_t vector;							\
1242 									\
1243 	asm volatile(KVM_ASM_SAFE(insn)					\
1244 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1245 		     : inputs						\
1246 		     : KVM_ASM_SAFE_CLOBBERS);				\
1247 	vector;								\
1248 })
1249 
1250 #define kvm_asm_safe_fep(insn, inputs...)				\
1251 ({									\
1252 	uint64_t ign_error_code;					\
1253 	uint8_t vector;							\
1254 									\
1255 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1256 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1257 		     : inputs						\
1258 		     : KVM_ASM_SAFE_CLOBBERS);				\
1259 	vector;								\
1260 })
1261 
1262 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...)		\
1263 ({									\
1264 	uint8_t vector;							\
1265 									\
1266 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1267 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1268 		     : inputs						\
1269 		     : KVM_ASM_SAFE_CLOBBERS);				\
1270 	vector;								\
1271 })
1272 
1273 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1274 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val)	\
1275 {									\
1276 	uint64_t error_code;						\
1277 	uint8_t vector;							\
1278 	uint32_t a, d;							\
1279 									\
1280 	asm volatile(KVM_ASM_SAFE##_FEP(#insn)				\
1281 		     : "=a"(a), "=d"(d),				\
1282 		       KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1283 		     : "c"(idx)						\
1284 		     : KVM_ASM_SAFE_CLOBBERS);				\
1285 									\
1286 	*val = (uint64_t)a | ((uint64_t)d << 32);			\
1287 	return vector;							\
1288 }
1289 
1290 /*
1291  * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1292  * use ECX as in input index, and EDX:EAX as a 64-bit output.
1293  */
1294 #define BUILD_READ_U64_SAFE_HELPERS(insn)				\
1295 	BUILD_READ_U64_SAFE_HELPER(insn, , )				\
1296 	BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1297 
1298 BUILD_READ_U64_SAFE_HELPERS(rdmsr)
BUILD_READ_U64_SAFE_HELPERS(rdpmc)1299 BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1300 BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1301 
1302 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1303 {
1304 	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1305 }
1306 
xsetbv_safe(uint32_t index,uint64_t value)1307 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1308 {
1309 	u32 eax = value;
1310 	u32 edx = value >> 32;
1311 
1312 	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1313 }
1314 
1315 bool kvm_is_tdp_enabled(void);
1316 
kvm_is_pmu_enabled(void)1317 static inline bool kvm_is_pmu_enabled(void)
1318 {
1319 	return get_kvm_param_bool("enable_pmu");
1320 }
1321 
kvm_is_forced_emulation_enabled(void)1322 static inline bool kvm_is_forced_emulation_enabled(void)
1323 {
1324 	return !!get_kvm_param_integer("force_emulation_prefix");
1325 }
1326 
1327 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1328 				    int *level);
1329 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1330 
1331 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1332 		       uint64_t a3);
1333 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1334 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1335 
__kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1336 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1337 						     uint64_t size, uint64_t flags)
1338 {
1339 	return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1340 }
1341 
kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1342 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1343 					       uint64_t flags)
1344 {
1345 	uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1346 
1347 	GUEST_ASSERT(!ret);
1348 }
1349 
1350 /*
1351  * Execute HLT in an STI interrupt shadow to ensure that a pending IRQ that's
1352  * intended to be a wake event arrives *after* HLT is executed.  Modern CPUs,
1353  * except for a few oddballs that KVM is unlikely to run on, block IRQs for one
1354  * instruction after STI, *if* RFLAGS.IF=0 before STI.  Note, Intel CPUs may
1355  * block other events beyond regular IRQs, e.g. may block NMIs and SMIs too.
1356  */
safe_halt(void)1357 static inline void safe_halt(void)
1358 {
1359 	asm volatile("sti; hlt");
1360 }
1361 
1362 /*
1363  * Enable interrupts and ensure that interrupts are evaluated upon return from
1364  * this function, i.e. execute a nop to consume the STi interrupt shadow.
1365  */
sti_nop(void)1366 static inline void sti_nop(void)
1367 {
1368 	asm volatile ("sti; nop");
1369 }
1370 
1371 /*
1372  * Enable interrupts for one instruction (nop), to allow the CPU to process all
1373  * interrupts that are already pending.
1374  */
sti_nop_cli(void)1375 static inline void sti_nop_cli(void)
1376 {
1377 	asm volatile ("sti; nop; cli");
1378 }
1379 
sti(void)1380 static inline void sti(void)
1381 {
1382 	asm volatile("sti");
1383 }
1384 
cli(void)1385 static inline void cli(void)
1386 {
1387 	asm volatile ("cli");
1388 }
1389 
1390 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1391 
1392 #define vm_xsave_require_permission(xfeature)	\
1393 	__vm_xsave_require_permission(xfeature, #xfeature)
1394 
1395 enum pg_level {
1396 	PG_LEVEL_NONE,
1397 	PG_LEVEL_4K,
1398 	PG_LEVEL_2M,
1399 	PG_LEVEL_1G,
1400 	PG_LEVEL_512G,
1401 	PG_LEVEL_NUM
1402 };
1403 
1404 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1405 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1406 
1407 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1408 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1409 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1410 
1411 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1412 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1413 		    uint64_t nr_bytes, int level);
1414 
1415 /*
1416  * Basic CPU control in CR0
1417  */
1418 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1419 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1420 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1421 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1422 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1423 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1424 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1425 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1426 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1427 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1428 #define X86_CR0_PG          (1UL<<31) /* Paging */
1429 
1430 #define PFERR_PRESENT_BIT 0
1431 #define PFERR_WRITE_BIT 1
1432 #define PFERR_USER_BIT 2
1433 #define PFERR_RSVD_BIT 3
1434 #define PFERR_FETCH_BIT 4
1435 #define PFERR_PK_BIT 5
1436 #define PFERR_SGX_BIT 15
1437 #define PFERR_GUEST_FINAL_BIT 32
1438 #define PFERR_GUEST_PAGE_BIT 33
1439 #define PFERR_IMPLICIT_ACCESS_BIT 48
1440 
1441 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1442 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1443 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1444 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1445 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1446 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1447 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1448 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1449 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1450 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1451 
1452 bool sys_clocksource_is_based_on_tsc(void);
1453 
1454 #endif /* SELFTEST_KVM_PROCESSOR_H */
1455