1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * Copyright Alex Bennée 2014, Linaro
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 *
11 */
12
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "system/system.h"
24 #include "system/runstate.h"
25 #include "system/kvm.h"
26 #include "system/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "cpu-sysregs.h"
30 #include "trace.h"
31 #include "internals.h"
32 #include "hw/pci/pci.h"
33 #include "exec/memattrs.h"
34 #include "system/address-spaces.h"
35 #include "gdbstub/enums.h"
36 #include "hw/boards.h"
37 #include "hw/irq.h"
38 #include "qapi/visitor.h"
39 #include "qemu/log.h"
40 #include "hw/acpi/acpi.h"
41 #include "hw/acpi/ghes.h"
42 #include "target/arm/gtimer.h"
43 #include "migration/blocker.h"
44
45 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
46 KVM_CAP_INFO(DEVICE_CTRL),
47 KVM_CAP_LAST_INFO
48 };
49
50 static bool cap_has_mp_state;
51 static bool cap_has_inject_serror_esr;
52 static bool cap_has_inject_ext_dabt;
53
54 /**
55 * ARMHostCPUFeatures: information about the host CPU (identified
56 * by asking the host kernel)
57 */
58 typedef struct ARMHostCPUFeatures {
59 ARMISARegisters isar;
60 uint64_t features;
61 uint32_t target;
62 const char *dtb_compatible;
63 } ARMHostCPUFeatures;
64
65 static ARMHostCPUFeatures arm_host_cpu_features;
66
67 /**
68 * kvm_arm_vcpu_init:
69 * @cpu: ARMCPU
70 *
71 * Initialize (or reinitialize) the VCPU by invoking the
72 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
73 * bitmask specified in the CPUState.
74 *
75 * Returns: 0 if success else < 0 error code
76 */
kvm_arm_vcpu_init(ARMCPU * cpu)77 static int kvm_arm_vcpu_init(ARMCPU *cpu)
78 {
79 struct kvm_vcpu_init init;
80
81 init.target = cpu->kvm_target;
82 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
83
84 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
85 }
86
87 /**
88 * kvm_arm_vcpu_finalize:
89 * @cpu: ARMCPU
90 * @feature: feature to finalize
91 *
92 * Finalizes the configuration of the specified VCPU feature by
93 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
94 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
95 * KVM's API documentation.
96 *
97 * Returns: 0 if success else < 0 error code
98 */
kvm_arm_vcpu_finalize(ARMCPU * cpu,int feature)99 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
100 {
101 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
102 }
103
kvm_arm_create_scratch_host_vcpu(int * fdarray,struct kvm_vcpu_init * init)104 bool kvm_arm_create_scratch_host_vcpu(int *fdarray,
105 struct kvm_vcpu_init *init)
106 {
107 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
108 int max_vm_pa_size;
109
110 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
111 if (kvmfd < 0) {
112 goto err;
113 }
114 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
115 if (max_vm_pa_size < 0) {
116 max_vm_pa_size = 0;
117 }
118 do {
119 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
120 } while (vmfd == -1 && errno == EINTR);
121 if (vmfd < 0) {
122 goto err;
123 }
124
125 /*
126 * The MTE capability must be enabled by the VMM before creating
127 * any VCPUs in order to allow the MTE bits of the ID_AA64PFR1
128 * register to be probed correctly, as they are masked if MTE
129 * is not enabled.
130 */
131 if (kvm_arm_mte_supported()) {
132 KVMState kvm_state;
133
134 kvm_state.fd = kvmfd;
135 kvm_state.vmfd = vmfd;
136 kvm_vm_enable_cap(&kvm_state, KVM_CAP_ARM_MTE, 0);
137 }
138
139 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
140 if (cpufd < 0) {
141 goto err;
142 }
143
144 if (!init) {
145 /* Caller doesn't want the VCPU to be initialized, so skip it */
146 goto finish;
147 }
148
149 if (init->target == -1) {
150 struct kvm_vcpu_init preferred;
151
152 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
153 if (ret < 0) {
154 goto err;
155 }
156 init->target = preferred.target;
157 }
158 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
159 if (ret < 0) {
160 goto err;
161 }
162
163 finish:
164 fdarray[0] = kvmfd;
165 fdarray[1] = vmfd;
166 fdarray[2] = cpufd;
167
168 return true;
169
170 err:
171 if (cpufd >= 0) {
172 close(cpufd);
173 }
174 if (vmfd >= 0) {
175 close(vmfd);
176 }
177 if (kvmfd >= 0) {
178 close(kvmfd);
179 }
180
181 return false;
182 }
183
kvm_arm_destroy_scratch_host_vcpu(int * fdarray)184 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
185 {
186 int i;
187
188 for (i = 2; i >= 0; i--) {
189 close(fdarray[i]);
190 }
191 }
192
read_sys_reg32(int fd,uint32_t * pret,uint64_t id)193 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
194 {
195 uint64_t ret;
196 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
197 int err;
198
199 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
200 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
201 if (err < 0) {
202 return -1;
203 }
204 *pret = ret;
205 return 0;
206 }
207
read_sys_reg64(int fd,uint64_t * pret,uint64_t id)208 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
209 {
210 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
211
212 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
213 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
214 }
215
kvm_arm_pauth_supported(void)216 static bool kvm_arm_pauth_supported(void)
217 {
218 return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
219 kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
220 }
221
222
idregs_sysreg_to_kvm_reg(ARMSysRegs sysreg)223 static uint64_t idregs_sysreg_to_kvm_reg(ARMSysRegs sysreg)
224 {
225 return ARM64_SYS_REG((sysreg & CP_REG_ARM64_SYSREG_OP0_MASK) >> CP_REG_ARM64_SYSREG_OP0_SHIFT,
226 (sysreg & CP_REG_ARM64_SYSREG_OP1_MASK) >> CP_REG_ARM64_SYSREG_OP1_SHIFT,
227 (sysreg & CP_REG_ARM64_SYSREG_CRN_MASK) >> CP_REG_ARM64_SYSREG_CRN_SHIFT,
228 (sysreg & CP_REG_ARM64_SYSREG_CRM_MASK) >> CP_REG_ARM64_SYSREG_CRM_SHIFT,
229 (sysreg & CP_REG_ARM64_SYSREG_OP2_MASK) >> CP_REG_ARM64_SYSREG_OP2_SHIFT);
230 }
231
232 /* read a sysreg value and store it in the idregs */
get_host_cpu_reg(int fd,ARMHostCPUFeatures * ahcf,ARMIDRegisterIdx index)233 static int get_host_cpu_reg(int fd, ARMHostCPUFeatures *ahcf, ARMIDRegisterIdx index)
234 {
235 uint64_t *reg;
236 int ret;
237
238 reg = &ahcf->isar.idregs[index];
239 ret = read_sys_reg64(fd, reg,
240 idregs_sysreg_to_kvm_reg(id_register_sysreg[index]));
241 return ret;
242 }
243
kvm_arm_get_host_cpu_features(ARMHostCPUFeatures * ahcf)244 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
245 {
246 /* Identify the feature bits corresponding to the host CPU, and
247 * fill out the ARMHostCPUClass fields accordingly. To do this
248 * we have to create a scratch VM, create a single CPU inside it,
249 * and then query that CPU for the relevant ID registers.
250 */
251 int fdarray[3];
252 bool sve_supported;
253 bool pmu_supported = false;
254 uint64_t features = 0;
255 int err;
256
257 /*
258 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
259 * to use the preferred target
260 */
261 struct kvm_vcpu_init init = { .target = -1, };
262
263 /*
264 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
265 * which is otherwise RAZ.
266 */
267 sve_supported = kvm_arm_sve_supported();
268 if (sve_supported) {
269 init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
270 }
271
272 /*
273 * Ask for Pointer Authentication if supported, so that we get
274 * the unsanitized field values for AA64ISAR1_EL1.
275 */
276 if (kvm_arm_pauth_supported()) {
277 init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
278 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
279 }
280
281 if (kvm_arm_pmu_supported()) {
282 init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
283 pmu_supported = true;
284 features |= 1ULL << ARM_FEATURE_PMU;
285 }
286
287 if (!kvm_arm_create_scratch_host_vcpu(fdarray, &init)) {
288 return false;
289 }
290
291 ahcf->target = init.target;
292 ahcf->dtb_compatible = "arm,armv8";
293 int fd = fdarray[2];
294
295 err = get_host_cpu_reg(fd, ahcf, ID_AA64PFR0_EL1_IDX);
296 if (unlikely(err < 0)) {
297 /*
298 * Before v4.15, the kernel only exposed a limited number of system
299 * registers, not including any of the interesting AArch64 ID regs.
300 * For the most part we could leave these fields as zero with minimal
301 * effect, since this does not affect the values seen by the guest.
302 *
303 * However, it could cause problems down the line for QEMU,
304 * so provide a minimal v8.0 default.
305 *
306 * ??? Could read MIDR and use knowledge from cpu64.c.
307 * ??? Could map a page of memory into our temp guest and
308 * run the tiniest of hand-crafted kernels to extract
309 * the values seen by the guest.
310 * ??? Either of these sounds like too much effort just
311 * to work around running a modern host kernel.
312 */
313 SET_IDREG(&ahcf->isar, ID_AA64PFR0, 0x00000011); /* EL1&0, AArch64 only */
314 err = 0;
315 } else {
316 err |= get_host_cpu_reg(fd, ahcf, ID_AA64PFR1_EL1_IDX);
317 err |= get_host_cpu_reg(fd, ahcf, ID_AA64SMFR0_EL1_IDX);
318 err |= get_host_cpu_reg(fd, ahcf, ID_AA64DFR0_EL1_IDX);
319 err |= get_host_cpu_reg(fd, ahcf, ID_AA64DFR1_EL1_IDX);
320 err |= get_host_cpu_reg(fd, ahcf, ID_AA64ISAR0_EL1_IDX);
321 err |= get_host_cpu_reg(fd, ahcf, ID_AA64ISAR1_EL1_IDX);
322 err |= get_host_cpu_reg(fd, ahcf, ID_AA64ISAR2_EL1_IDX);
323 err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR0_EL1_IDX);
324 err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR1_EL1_IDX);
325 err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR2_EL1_IDX);
326 err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR3_EL1_IDX);
327
328 /*
329 * Note that if AArch32 support is not present in the host,
330 * the AArch32 sysregs are present to be read, but will
331 * return UNKNOWN values. This is neither better nor worse
332 * than skipping the reads and leaving 0, as we must avoid
333 * considering the values in every case.
334 */
335 err |= get_host_cpu_reg(fd, ahcf, ID_PFR0_EL1_IDX);
336 err |= get_host_cpu_reg(fd, ahcf, ID_PFR1_EL1_IDX);
337 err |= get_host_cpu_reg(fd, ahcf, ID_DFR0_EL1_IDX);
338 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR0_EL1_IDX);
339 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR1_EL1_IDX);
340 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR2_EL1_IDX);
341 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR3_EL1_IDX);
342 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR0_EL1_IDX);
343 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR1_EL1_IDX);
344 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR2_EL1_IDX);
345 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR3_EL1_IDX);
346 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR4_EL1_IDX);
347 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR5_EL1_IDX);
348 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR6_EL1_IDX);
349 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR4_EL1_IDX);
350
351 err |= read_sys_reg32(fd, &ahcf->isar.mvfr0,
352 ARM64_SYS_REG(3, 0, 0, 3, 0));
353 err |= read_sys_reg32(fd, &ahcf->isar.mvfr1,
354 ARM64_SYS_REG(3, 0, 0, 3, 1));
355 err |= read_sys_reg32(fd, &ahcf->isar.mvfr2,
356 ARM64_SYS_REG(3, 0, 0, 3, 2));
357 err |= get_host_cpu_reg(fd, ahcf, ID_PFR2_EL1_IDX);
358 err |= get_host_cpu_reg(fd, ahcf, ID_DFR1_EL1_IDX);
359 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR5_EL1_IDX);
360
361 /*
362 * DBGDIDR is a bit complicated because the kernel doesn't
363 * provide an accessor for it in 64-bit mode, which is what this
364 * scratch VM is in, and there's no architected "64-bit sysreg
365 * which reads the same as the 32-bit register" the way there is
366 * for other ID registers. Instead we synthesize a value from the
367 * AArch64 ID_AA64DFR0, the same way the kernel code in
368 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
369 * We only do this if the CPU supports AArch32 at EL1.
370 */
371 if (FIELD_EX32_IDREG(&ahcf->isar, ID_AA64PFR0, EL1) >= 2) {
372 int wrps = FIELD_EX64_IDREG(&ahcf->isar, ID_AA64DFR0, WRPS);
373 int brps = FIELD_EX64_IDREG(&ahcf->isar, ID_AA64DFR0, BRPS);
374 int ctx_cmps =
375 FIELD_EX64_IDREG(&ahcf->isar, ID_AA64DFR0, CTX_CMPS);
376 int version = 6; /* ARMv8 debug architecture */
377 bool has_el3 =
378 !!FIELD_EX32_IDREG(&ahcf->isar, ID_AA64PFR0, EL3);
379 uint32_t dbgdidr = 0;
380
381 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
382 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
383 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
384 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
385 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
386 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
387 dbgdidr |= (1 << 15); /* RES1 bit */
388 ahcf->isar.dbgdidr = dbgdidr;
389 }
390
391 if (pmu_supported) {
392 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
393 err |= read_sys_reg64(fd, &ahcf->isar.reset_pmcr_el0,
394 ARM64_SYS_REG(3, 3, 9, 12, 0));
395 }
396
397 if (sve_supported) {
398 /*
399 * There is a range of kernels between kernel commit 73433762fcae
400 * and f81cb2c3ad41 which have a bug where the kernel doesn't
401 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
402 * enabled SVE support, which resulted in an error rather than RAZ.
403 * So only read the register if we set KVM_ARM_VCPU_SVE above.
404 */
405 err |= get_host_cpu_reg(fd, ahcf, ID_AA64ZFR0_EL1_IDX);
406 }
407 }
408
409 kvm_arm_destroy_scratch_host_vcpu(fdarray);
410
411 if (err < 0) {
412 return false;
413 }
414
415 /*
416 * We can assume any KVM supporting CPU is at least a v8
417 * with VFPv4+Neon; this in turn implies most of the other
418 * feature bits.
419 */
420 features |= 1ULL << ARM_FEATURE_V8;
421 features |= 1ULL << ARM_FEATURE_NEON;
422 features |= 1ULL << ARM_FEATURE_AARCH64;
423 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
424
425 ahcf->features = features;
426
427 return true;
428 }
429
kvm_arm_set_cpu_features_from_host(ARMCPU * cpu)430 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
431 {
432 CPUARMState *env = &cpu->env;
433
434 if (!arm_host_cpu_features.dtb_compatible) {
435 if (!kvm_enabled() ||
436 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
437 /* We can't report this error yet, so flag that we need to
438 * in arm_cpu_realizefn().
439 */
440 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
441 cpu->host_cpu_probe_failed = true;
442 return;
443 }
444 }
445
446 cpu->kvm_target = arm_host_cpu_features.target;
447 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
448 cpu->isar = arm_host_cpu_features.isar;
449 env->features = arm_host_cpu_features.features;
450 }
451
kvm_no_adjvtime_get(Object * obj,Error ** errp)452 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
453 {
454 return !ARM_CPU(obj)->kvm_adjvtime;
455 }
456
kvm_no_adjvtime_set(Object * obj,bool value,Error ** errp)457 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
458 {
459 ARM_CPU(obj)->kvm_adjvtime = !value;
460 }
461
kvm_steal_time_get(Object * obj,Error ** errp)462 static bool kvm_steal_time_get(Object *obj, Error **errp)
463 {
464 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
465 }
466
kvm_steal_time_set(Object * obj,bool value,Error ** errp)467 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
468 {
469 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
470 }
471
472 /* KVM VCPU properties should be prefixed with "kvm-". */
kvm_arm_add_vcpu_properties(ARMCPU * cpu)473 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
474 {
475 CPUARMState *env = &cpu->env;
476 Object *obj = OBJECT(cpu);
477
478 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
479 cpu->kvm_adjvtime = true;
480 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
481 kvm_no_adjvtime_set);
482 object_property_set_description(obj, "kvm-no-adjvtime",
483 "Set on to disable the adjustment of "
484 "the virtual counter. VM stopped time "
485 "will be counted.");
486 }
487
488 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
489 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
490 kvm_steal_time_set);
491 object_property_set_description(obj, "kvm-steal-time",
492 "Set off to disable KVM steal time.");
493 }
494
kvm_arm_pmu_supported(void)495 bool kvm_arm_pmu_supported(void)
496 {
497 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
498 }
499
kvm_arm_get_max_vm_ipa_size(MachineState * ms,bool * fixed_ipa)500 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
501 {
502 KVMState *s = KVM_STATE(ms->accelerator);
503 int ret;
504
505 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
506 *fixed_ipa = ret <= 0;
507
508 return ret > 0 ? ret : 40;
509 }
510
kvm_arch_get_default_type(MachineState * ms)511 int kvm_arch_get_default_type(MachineState *ms)
512 {
513 bool fixed_ipa;
514 int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
515 return fixed_ipa ? 0 : size;
516 }
517
kvm_arch_init(MachineState * ms,KVMState * s)518 int kvm_arch_init(MachineState *ms, KVMState *s)
519 {
520 int ret = 0;
521 /* For ARM interrupt delivery is always asynchronous,
522 * whether we are using an in-kernel VGIC or not.
523 */
524 kvm_async_interrupts_allowed = true;
525
526 /*
527 * PSCI wakes up secondary cores, so we always need to
528 * have vCPUs waiting in kernel space
529 */
530 kvm_halt_in_kernel_allowed = true;
531
532 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
533
534 /* Check whether user space can specify guest syndrome value */
535 cap_has_inject_serror_esr =
536 kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
537
538 if (ms->smp.cpus > 256 &&
539 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
540 error_report("Using more than 256 vcpus requires a host kernel "
541 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
542 ret = -EINVAL;
543 }
544
545 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
546 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
547 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
548 } else {
549 /* Set status for supporting the external dabt injection */
550 cap_has_inject_ext_dabt = kvm_check_extension(s,
551 KVM_CAP_ARM_INJECT_EXT_DABT);
552 }
553 }
554
555 if (s->kvm_eager_split_size) {
556 uint32_t sizes;
557
558 sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
559 if (!sizes) {
560 s->kvm_eager_split_size = 0;
561 warn_report("Eager Page Split support not available");
562 } else if (!(s->kvm_eager_split_size & sizes)) {
563 error_report("Eager Page Split requested chunk size not valid");
564 ret = -EINVAL;
565 } else {
566 ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
567 s->kvm_eager_split_size);
568 if (ret < 0) {
569 error_report("Enabling of Eager Page Split failed: %s",
570 strerror(-ret));
571 }
572 }
573 }
574
575 max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
576 hw_watchpoints = g_array_sized_new(true, true,
577 sizeof(HWWatchpoint), max_hw_wps);
578
579 max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
580 hw_breakpoints = g_array_sized_new(true, true,
581 sizeof(HWBreakpoint), max_hw_bps);
582
583 return ret;
584 }
585
kvm_arch_vcpu_id(CPUState * cpu)586 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
587 {
588 return cpu->cpu_index;
589 }
590
591 /* We track all the KVM devices which need their memory addresses
592 * passing to the kernel in a list of these structures.
593 * When board init is complete we run through the list and
594 * tell the kernel the base addresses of the memory regions.
595 * We use a MemoryListener to track mapping and unmapping of
596 * the regions during board creation, so the board models don't
597 * need to do anything special for the KVM case.
598 *
599 * Sometimes the address must be OR'ed with some other fields
600 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
601 * @kda_addr_ormask aims at storing the value of those fields.
602 */
603 typedef struct KVMDevice {
604 struct kvm_arm_device_addr kda;
605 struct kvm_device_attr kdattr;
606 uint64_t kda_addr_ormask;
607 MemoryRegion *mr;
608 QSLIST_ENTRY(KVMDevice) entries;
609 int dev_fd;
610 } KVMDevice;
611
612 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
613
kvm_arm_devlistener_add(MemoryListener * listener,MemoryRegionSection * section)614 static void kvm_arm_devlistener_add(MemoryListener *listener,
615 MemoryRegionSection *section)
616 {
617 KVMDevice *kd;
618
619 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
620 if (section->mr == kd->mr) {
621 kd->kda.addr = section->offset_within_address_space;
622 }
623 }
624 }
625
kvm_arm_devlistener_del(MemoryListener * listener,MemoryRegionSection * section)626 static void kvm_arm_devlistener_del(MemoryListener *listener,
627 MemoryRegionSection *section)
628 {
629 KVMDevice *kd;
630
631 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
632 if (section->mr == kd->mr) {
633 kd->kda.addr = -1;
634 }
635 }
636 }
637
638 static MemoryListener devlistener = {
639 .name = "kvm-arm",
640 .region_add = kvm_arm_devlistener_add,
641 .region_del = kvm_arm_devlistener_del,
642 .priority = MEMORY_LISTENER_PRIORITY_MIN,
643 };
644
kvm_arm_set_device_addr(KVMDevice * kd)645 static void kvm_arm_set_device_addr(KVMDevice *kd)
646 {
647 struct kvm_device_attr *attr = &kd->kdattr;
648 int ret;
649 uint64_t addr = kd->kda.addr;
650
651 addr |= kd->kda_addr_ormask;
652 attr->addr = (uintptr_t)&addr;
653 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
654
655 if (ret < 0) {
656 fprintf(stderr, "Failed to set device address: %s\n",
657 strerror(-ret));
658 abort();
659 }
660 }
661
kvm_arm_machine_init_done(Notifier * notifier,void * data)662 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
663 {
664 KVMDevice *kd, *tkd;
665
666 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
667 if (kd->kda.addr != -1) {
668 kvm_arm_set_device_addr(kd);
669 }
670 memory_region_unref(kd->mr);
671 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
672 g_free(kd);
673 }
674 memory_listener_unregister(&devlistener);
675 }
676
677 static Notifier notify = {
678 .notify = kvm_arm_machine_init_done,
679 };
680
kvm_arm_register_device(MemoryRegion * mr,uint64_t devid,uint64_t group,uint64_t attr,int dev_fd,uint64_t addr_ormask)681 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
682 uint64_t attr, int dev_fd, uint64_t addr_ormask)
683 {
684 KVMDevice *kd;
685
686 if (!kvm_irqchip_in_kernel()) {
687 return;
688 }
689
690 if (QSLIST_EMPTY(&kvm_devices_head)) {
691 memory_listener_register(&devlistener, &address_space_memory);
692 qemu_add_machine_init_done_notifier(¬ify);
693 }
694 kd = g_new0(KVMDevice, 1);
695 kd->mr = mr;
696 kd->kda.id = devid;
697 kd->kda.addr = -1;
698 kd->kdattr.flags = 0;
699 kd->kdattr.group = group;
700 kd->kdattr.attr = attr;
701 kd->dev_fd = dev_fd;
702 kd->kda_addr_ormask = addr_ormask;
703 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
704 memory_region_ref(kd->mr);
705 }
706
compare_u64(const void * a,const void * b)707 static int compare_u64(const void *a, const void *b)
708 {
709 if (*(uint64_t *)a > *(uint64_t *)b) {
710 return 1;
711 }
712 if (*(uint64_t *)a < *(uint64_t *)b) {
713 return -1;
714 }
715 return 0;
716 }
717
718 /*
719 * cpreg_values are sorted in ascending order by KVM register ID
720 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
721 * the storage for a KVM register by ID with a binary search.
722 */
kvm_arm_get_cpreg_ptr(ARMCPU * cpu,uint64_t regidx)723 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
724 {
725 uint64_t *res;
726
727 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len,
728 sizeof(uint64_t), compare_u64);
729 assert(res);
730
731 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
732 }
733
734 /**
735 * kvm_arm_reg_syncs_via_cpreg_list:
736 * @regidx: KVM register index
737 *
738 * Return true if this KVM register should be synchronized via the
739 * cpreg list of arbitrary system registers, false if it is synchronized
740 * by hand using code in kvm_arch_get/put_registers().
741 */
kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)742 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
743 {
744 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
745 case KVM_REG_ARM_CORE:
746 case KVM_REG_ARM64_SVE:
747 return false;
748 default:
749 return true;
750 }
751 }
752
753 /**
754 * kvm_arm_init_cpreg_list:
755 * @cpu: ARMCPU
756 *
757 * Initialize the ARMCPU cpreg list according to the kernel's
758 * definition of what CPU registers it knows about (and throw away
759 * the previous TCG-created cpreg list).
760 *
761 * Returns: 0 if success, else < 0 error code
762 */
kvm_arm_init_cpreg_list(ARMCPU * cpu)763 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
764 {
765 struct kvm_reg_list rl;
766 struct kvm_reg_list *rlp;
767 int i, ret, arraylen;
768 CPUState *cs = CPU(cpu);
769
770 rl.n = 0;
771 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
772 if (ret != -E2BIG) {
773 return ret;
774 }
775 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
776 rlp->n = rl.n;
777 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
778 if (ret) {
779 goto out;
780 }
781 /* Sort the list we get back from the kernel, since cpreg_tuples
782 * must be in strictly ascending order.
783 */
784 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
785
786 for (i = 0, arraylen = 0; i < rlp->n; i++) {
787 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
788 continue;
789 }
790 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
791 case KVM_REG_SIZE_U32:
792 case KVM_REG_SIZE_U64:
793 break;
794 default:
795 fprintf(stderr, "Can't handle size of register in kernel list\n");
796 ret = -EINVAL;
797 goto out;
798 }
799
800 arraylen++;
801 }
802
803 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
804 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
805 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
806 arraylen);
807 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
808 arraylen);
809 cpu->cpreg_array_len = arraylen;
810 cpu->cpreg_vmstate_array_len = arraylen;
811
812 for (i = 0, arraylen = 0; i < rlp->n; i++) {
813 uint64_t regidx = rlp->reg[i];
814 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
815 continue;
816 }
817 cpu->cpreg_indexes[arraylen] = regidx;
818 arraylen++;
819 }
820 assert(cpu->cpreg_array_len == arraylen);
821
822 if (!write_kvmstate_to_list(cpu)) {
823 /* Shouldn't happen unless kernel is inconsistent about
824 * what registers exist.
825 */
826 fprintf(stderr, "Initial read of kernel register state failed\n");
827 ret = -EINVAL;
828 goto out;
829 }
830
831 out:
832 g_free(rlp);
833 return ret;
834 }
835
836 /**
837 * kvm_arm_cpreg_level:
838 * @regidx: KVM register index
839 *
840 * Return the level of this coprocessor/system register. Return value is
841 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
842 */
kvm_arm_cpreg_level(uint64_t regidx)843 static int kvm_arm_cpreg_level(uint64_t regidx)
844 {
845 /*
846 * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
847 * If a register should be written less often, you must add it here
848 * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
849 */
850 switch (regidx) {
851 case KVM_REG_ARM_TIMER_CNT:
852 case KVM_REG_ARM_PTIMER_CNT:
853 return KVM_PUT_FULL_STATE;
854 }
855 return KVM_PUT_RUNTIME_STATE;
856 }
857
write_kvmstate_to_list(ARMCPU * cpu)858 bool write_kvmstate_to_list(ARMCPU *cpu)
859 {
860 CPUState *cs = CPU(cpu);
861 int i;
862 bool ok = true;
863
864 for (i = 0; i < cpu->cpreg_array_len; i++) {
865 uint64_t regidx = cpu->cpreg_indexes[i];
866 uint32_t v32;
867 int ret;
868
869 switch (regidx & KVM_REG_SIZE_MASK) {
870 case KVM_REG_SIZE_U32:
871 ret = kvm_get_one_reg(cs, regidx, &v32);
872 if (!ret) {
873 cpu->cpreg_values[i] = v32;
874 }
875 break;
876 case KVM_REG_SIZE_U64:
877 ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
878 break;
879 default:
880 g_assert_not_reached();
881 }
882 if (ret) {
883 ok = false;
884 }
885 }
886 return ok;
887 }
888
write_list_to_kvmstate(ARMCPU * cpu,int level)889 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
890 {
891 CPUState *cs = CPU(cpu);
892 int i;
893 bool ok = true;
894
895 for (i = 0; i < cpu->cpreg_array_len; i++) {
896 uint64_t regidx = cpu->cpreg_indexes[i];
897 uint32_t v32;
898 int ret;
899
900 if (kvm_arm_cpreg_level(regidx) > level) {
901 continue;
902 }
903
904 switch (regidx & KVM_REG_SIZE_MASK) {
905 case KVM_REG_SIZE_U32:
906 v32 = cpu->cpreg_values[i];
907 ret = kvm_set_one_reg(cs, regidx, &v32);
908 break;
909 case KVM_REG_SIZE_U64:
910 ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
911 break;
912 default:
913 g_assert_not_reached();
914 }
915 if (ret) {
916 /* We might fail for "unknown register" and also for
917 * "you tried to set a register which is constant with
918 * a different value from what it actually contains".
919 */
920 ok = false;
921 }
922 }
923 return ok;
924 }
925
kvm_arm_cpu_pre_save(ARMCPU * cpu)926 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
927 {
928 /* KVM virtual time adjustment */
929 if (cpu->kvm_vtime_dirty) {
930 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
931 }
932 }
933
kvm_arm_cpu_post_load(ARMCPU * cpu)934 bool kvm_arm_cpu_post_load(ARMCPU *cpu)
935 {
936 if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
937 return false;
938 }
939 /* Note that it's OK for the TCG side not to know about
940 * every register in the list; KVM is authoritative if
941 * we're using it.
942 */
943 write_list_to_cpustate(cpu);
944
945 /* KVM virtual time adjustment */
946 if (cpu->kvm_adjvtime) {
947 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
948 cpu->kvm_vtime_dirty = true;
949 }
950
951 return true;
952 }
953
kvm_arm_reset_vcpu(ARMCPU * cpu)954 void kvm_arm_reset_vcpu(ARMCPU *cpu)
955 {
956 int ret;
957
958 /* Re-init VCPU so that all registers are set to
959 * their respective reset values.
960 */
961 ret = kvm_arm_vcpu_init(cpu);
962 if (ret < 0) {
963 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
964 abort();
965 }
966 if (!write_kvmstate_to_list(cpu)) {
967 fprintf(stderr, "write_kvmstate_to_list failed\n");
968 abort();
969 }
970 /*
971 * Sync the reset values also into the CPUState. This is necessary
972 * because the next thing we do will be a kvm_arch_put_registers()
973 * which will update the list values from the CPUState before copying
974 * the list values back to KVM. It's OK to ignore failure returns here
975 * for the same reason we do so in kvm_arch_get_registers().
976 */
977 write_list_to_cpustate(cpu);
978 }
979
980 /*
981 * Update KVM's MP_STATE based on what QEMU thinks it is
982 */
kvm_arm_sync_mpstate_to_kvm(ARMCPU * cpu)983 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
984 {
985 if (cap_has_mp_state) {
986 struct kvm_mp_state mp_state = {
987 .mp_state = (cpu->power_state == PSCI_OFF) ?
988 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
989 };
990 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
991 }
992 return 0;
993 }
994
995 /*
996 * Sync the KVM MP_STATE into QEMU
997 */
kvm_arm_sync_mpstate_to_qemu(ARMCPU * cpu)998 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
999 {
1000 if (cap_has_mp_state) {
1001 struct kvm_mp_state mp_state;
1002 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1003 if (ret) {
1004 return ret;
1005 }
1006 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1007 PSCI_OFF : PSCI_ON;
1008 }
1009 return 0;
1010 }
1011
1012 /**
1013 * kvm_arm_get_virtual_time:
1014 * @cpu: ARMCPU
1015 *
1016 * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1017 */
kvm_arm_get_virtual_time(ARMCPU * cpu)1018 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1019 {
1020 int ret;
1021
1022 if (cpu->kvm_vtime_dirty) {
1023 return;
1024 }
1025
1026 ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1027 if (ret) {
1028 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1029 abort();
1030 }
1031
1032 cpu->kvm_vtime_dirty = true;
1033 }
1034
1035 /**
1036 * kvm_arm_put_virtual_time:
1037 * @cpu: ARMCPU
1038 *
1039 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1040 */
kvm_arm_put_virtual_time(ARMCPU * cpu)1041 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1042 {
1043 int ret;
1044
1045 if (!cpu->kvm_vtime_dirty) {
1046 return;
1047 }
1048
1049 ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1050 if (ret) {
1051 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1052 abort();
1053 }
1054
1055 cpu->kvm_vtime_dirty = false;
1056 }
1057
1058 /**
1059 * kvm_put_vcpu_events:
1060 * @cpu: ARMCPU
1061 *
1062 * Put VCPU related state to kvm.
1063 *
1064 * Returns: 0 if success else < 0 error code
1065 */
kvm_put_vcpu_events(ARMCPU * cpu)1066 static int kvm_put_vcpu_events(ARMCPU *cpu)
1067 {
1068 CPUARMState *env = &cpu->env;
1069 struct kvm_vcpu_events events;
1070 int ret;
1071
1072 if (!kvm_has_vcpu_events()) {
1073 return 0;
1074 }
1075
1076 memset(&events, 0, sizeof(events));
1077 events.exception.serror_pending = env->serror.pending;
1078
1079 /* Inject SError to guest with specified syndrome if host kernel
1080 * supports it, otherwise inject SError without syndrome.
1081 */
1082 if (cap_has_inject_serror_esr) {
1083 events.exception.serror_has_esr = env->serror.has_esr;
1084 events.exception.serror_esr = env->serror.esr;
1085 }
1086
1087 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1088 if (ret) {
1089 error_report("failed to put vcpu events");
1090 }
1091
1092 return ret;
1093 }
1094
1095 /**
1096 * kvm_get_vcpu_events:
1097 * @cpu: ARMCPU
1098 *
1099 * Get VCPU related state from kvm.
1100 *
1101 * Returns: 0 if success else < 0 error code
1102 */
kvm_get_vcpu_events(ARMCPU * cpu)1103 static int kvm_get_vcpu_events(ARMCPU *cpu)
1104 {
1105 CPUARMState *env = &cpu->env;
1106 struct kvm_vcpu_events events;
1107 int ret;
1108
1109 if (!kvm_has_vcpu_events()) {
1110 return 0;
1111 }
1112
1113 memset(&events, 0, sizeof(events));
1114 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1115 if (ret) {
1116 error_report("failed to get vcpu events");
1117 return ret;
1118 }
1119
1120 env->serror.pending = events.exception.serror_pending;
1121 env->serror.has_esr = events.exception.serror_has_esr;
1122 env->serror.esr = events.exception.serror_esr;
1123
1124 return 0;
1125 }
1126
1127 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1128 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1129
1130 /*
1131 * ESR_EL1
1132 * ISS encoding
1133 * AARCH64: DFSC, bits [5:0]
1134 * AARCH32:
1135 * TTBCR.EAE == 0
1136 * FS[4] - DFSR[10]
1137 * FS[3:0] - DFSR[3:0]
1138 * TTBCR.EAE == 1
1139 * FS, bits [5:0]
1140 */
1141 #define ESR_DFSC(aarch64, lpae, v) \
1142 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1143 : (((v) >> 6) | ((v) & 0x1F)))
1144
1145 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1146 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1147
1148 /**
1149 * kvm_arm_verify_ext_dabt_pending:
1150 * @cpu: ARMCPU
1151 *
1152 * Verify the fault status code wrt the Ext DABT injection
1153 *
1154 * Returns: true if the fault status code is as expected, false otherwise
1155 */
kvm_arm_verify_ext_dabt_pending(ARMCPU * cpu)1156 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1157 {
1158 CPUState *cs = CPU(cpu);
1159 uint64_t dfsr_val;
1160
1161 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1162 CPUARMState *env = &cpu->env;
1163 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1164 int lpae = 0;
1165
1166 if (!aarch64_mode) {
1167 uint64_t ttbcr;
1168
1169 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1170 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1171 && (ttbcr & TTBCR_EAE);
1172 }
1173 }
1174 /*
1175 * The verification here is based on the DFSC bits
1176 * of the ESR_EL1 reg only
1177 */
1178 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1179 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1180 }
1181 return false;
1182 }
1183
kvm_arch_pre_run(CPUState * cs,struct kvm_run * run)1184 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1185 {
1186 ARMCPU *cpu = ARM_CPU(cs);
1187 CPUARMState *env = &cpu->env;
1188
1189 if (unlikely(env->ext_dabt_raised)) {
1190 /*
1191 * Verifying that the ext DABT has been properly injected,
1192 * otherwise risking indefinitely re-running the faulting instruction
1193 * Covering a very narrow case for kernels 5.5..5.5.4
1194 * when injected abort was misconfigured to be
1195 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1196 */
1197 if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1198 unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1199
1200 error_report("Data abort exception with no valid ISS generated by "
1201 "guest memory access. KVM unable to emulate faulting "
1202 "instruction. Failed to inject an external data abort "
1203 "into the guest.");
1204 abort();
1205 }
1206 /* Clear the status */
1207 env->ext_dabt_raised = 0;
1208 }
1209 }
1210
kvm_arch_post_run(CPUState * cs,struct kvm_run * run)1211 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1212 {
1213 ARMCPU *cpu;
1214 uint32_t switched_level;
1215
1216 if (kvm_irqchip_in_kernel()) {
1217 /*
1218 * We only need to sync timer states with user-space interrupt
1219 * controllers, so return early and save cycles if we don't.
1220 */
1221 return MEMTXATTRS_UNSPECIFIED;
1222 }
1223
1224 cpu = ARM_CPU(cs);
1225
1226 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1227 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1228 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1229
1230 bql_lock();
1231
1232 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1233 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1234 !!(run->s.regs.device_irq_level &
1235 KVM_ARM_DEV_EL1_VTIMER));
1236 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1237 }
1238
1239 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1240 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1241 !!(run->s.regs.device_irq_level &
1242 KVM_ARM_DEV_EL1_PTIMER));
1243 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1244 }
1245
1246 if (switched_level & KVM_ARM_DEV_PMU) {
1247 qemu_set_irq(cpu->pmu_interrupt,
1248 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1249 switched_level &= ~KVM_ARM_DEV_PMU;
1250 }
1251
1252 if (switched_level) {
1253 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1254 __func__, switched_level);
1255 }
1256
1257 /* We also mark unknown levels as processed to not waste cycles */
1258 cpu->device_irq_level = run->s.regs.device_irq_level;
1259 bql_unlock();
1260 }
1261
1262 return MEMTXATTRS_UNSPECIFIED;
1263 }
1264
kvm_arm_vm_state_change(void * opaque,bool running,RunState state)1265 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1266 {
1267 ARMCPU *cpu = opaque;
1268
1269 if (running) {
1270 if (cpu->kvm_adjvtime) {
1271 kvm_arm_put_virtual_time(cpu);
1272 }
1273 } else {
1274 if (cpu->kvm_adjvtime) {
1275 kvm_arm_get_virtual_time(cpu);
1276 }
1277 }
1278 }
1279
1280 /**
1281 * kvm_arm_handle_dabt_nisv:
1282 * @cpu: ARMCPU
1283 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1284 * ISV bit set to '0b0' -> no valid instruction syndrome
1285 * @fault_ipa: faulting address for the synchronous data abort
1286 *
1287 * Returns: 0 if the exception has been handled, < 0 otherwise
1288 */
kvm_arm_handle_dabt_nisv(ARMCPU * cpu,uint64_t esr_iss,uint64_t fault_ipa)1289 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1290 uint64_t fault_ipa)
1291 {
1292 CPUARMState *env = &cpu->env;
1293 /*
1294 * Request KVM to inject the external data abort into the guest
1295 */
1296 if (cap_has_inject_ext_dabt) {
1297 struct kvm_vcpu_events events = { };
1298 /*
1299 * The external data abort event will be handled immediately by KVM
1300 * using the address fault that triggered the exit on given VCPU.
1301 * Requesting injection of the external data abort does not rely
1302 * on any other VCPU state. Therefore, in this particular case, the VCPU
1303 * synchronization can be exceptionally skipped.
1304 */
1305 events.exception.ext_dabt_pending = 1;
1306 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1307 if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1308 env->ext_dabt_raised = 1;
1309 return 0;
1310 }
1311 } else {
1312 error_report("Data abort exception triggered by guest memory access "
1313 "at physical address: 0x" TARGET_FMT_lx,
1314 (target_ulong)fault_ipa);
1315 error_printf("KVM unable to emulate faulting instruction.\n");
1316 }
1317 return -1;
1318 }
1319
1320 /**
1321 * kvm_arm_handle_debug:
1322 * @cpu: ARMCPU
1323 * @debug_exit: debug part of the KVM exit structure
1324 *
1325 * Returns: TRUE if the debug exception was handled.
1326 *
1327 * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1328 *
1329 * To minimise translating between kernel and user-space the kernel
1330 * ABI just provides user-space with the full exception syndrome
1331 * register value to be decoded in QEMU.
1332 */
kvm_arm_handle_debug(ARMCPU * cpu,struct kvm_debug_exit_arch * debug_exit)1333 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1334 struct kvm_debug_exit_arch *debug_exit)
1335 {
1336 int hsr_ec = syn_get_ec(debug_exit->hsr);
1337 CPUState *cs = CPU(cpu);
1338 CPUARMState *env = &cpu->env;
1339
1340 /* Ensure PC is synchronised */
1341 kvm_cpu_synchronize_state(cs);
1342
1343 switch (hsr_ec) {
1344 case EC_SOFTWARESTEP:
1345 if (cs->singlestep_enabled) {
1346 return true;
1347 } else {
1348 /*
1349 * The kernel should have suppressed the guest's ability to
1350 * single step at this point so something has gone wrong.
1351 */
1352 error_report("%s: guest single-step while debugging unsupported"
1353 " (%"PRIx64", %"PRIx32")",
1354 __func__, env->pc, debug_exit->hsr);
1355 return false;
1356 }
1357 break;
1358 case EC_AA64_BKPT:
1359 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1360 return true;
1361 }
1362 break;
1363 case EC_BREAKPOINT:
1364 if (find_hw_breakpoint(cs, env->pc)) {
1365 return true;
1366 }
1367 break;
1368 case EC_WATCHPOINT:
1369 {
1370 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1371 if (wp) {
1372 cs->watchpoint_hit = wp;
1373 return true;
1374 }
1375 break;
1376 }
1377 default:
1378 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1379 __func__, debug_exit->hsr, env->pc);
1380 }
1381
1382 /* If we are not handling the debug exception it must belong to
1383 * the guest. Let's re-use the existing TCG interrupt code to set
1384 * everything up properly.
1385 */
1386 cs->exception_index = EXCP_BKPT;
1387 env->exception.syndrome = debug_exit->hsr;
1388 env->exception.vaddress = debug_exit->far;
1389 env->exception.target_el = 1;
1390 bql_lock();
1391 arm_cpu_do_interrupt(cs);
1392 bql_unlock();
1393
1394 return false;
1395 }
1396
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)1397 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1398 {
1399 ARMCPU *cpu = ARM_CPU(cs);
1400 int ret = 0;
1401
1402 switch (run->exit_reason) {
1403 case KVM_EXIT_DEBUG:
1404 if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1405 ret = EXCP_DEBUG;
1406 } /* otherwise return to guest */
1407 break;
1408 case KVM_EXIT_ARM_NISV:
1409 /* External DABT with no valid iss to decode */
1410 ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1411 run->arm_nisv.fault_ipa);
1412 break;
1413 default:
1414 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1415 __func__, run->exit_reason);
1416 break;
1417 }
1418 return ret;
1419 }
1420
kvm_arch_stop_on_emulation_error(CPUState * cs)1421 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1422 {
1423 return true;
1424 }
1425
kvm_arch_process_async_events(CPUState * cs)1426 int kvm_arch_process_async_events(CPUState *cs)
1427 {
1428 return 0;
1429 }
1430
1431 /**
1432 * kvm_arm_hw_debug_active:
1433 * @cpu: ARMCPU
1434 *
1435 * Return: TRUE if any hardware breakpoints in use.
1436 */
kvm_arm_hw_debug_active(ARMCPU * cpu)1437 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1438 {
1439 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1440 }
1441
1442 /**
1443 * kvm_arm_copy_hw_debug_data:
1444 * @ptr: kvm_guest_debug_arch structure
1445 *
1446 * Copy the architecture specific debug registers into the
1447 * kvm_guest_debug ioctl structure.
1448 */
kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch * ptr)1449 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1450 {
1451 int i;
1452 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1453
1454 for (i = 0; i < max_hw_wps; i++) {
1455 HWWatchpoint *wp = get_hw_wp(i);
1456 ptr->dbg_wcr[i] = wp->wcr;
1457 ptr->dbg_wvr[i] = wp->wvr;
1458 }
1459 for (i = 0; i < max_hw_bps; i++) {
1460 HWBreakpoint *bp = get_hw_bp(i);
1461 ptr->dbg_bcr[i] = bp->bcr;
1462 ptr->dbg_bvr[i] = bp->bvr;
1463 }
1464 }
1465
kvm_arch_update_guest_debug(CPUState * cs,struct kvm_guest_debug * dbg)1466 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1467 {
1468 if (kvm_sw_breakpoints_active(cs)) {
1469 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1470 }
1471 if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1472 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1473 kvm_arm_copy_hw_debug_data(&dbg->arch);
1474 }
1475 }
1476
kvm_arch_init_irq_routing(KVMState * s)1477 void kvm_arch_init_irq_routing(KVMState *s)
1478 {
1479 }
1480
kvm_arch_irqchip_create(KVMState * s)1481 int kvm_arch_irqchip_create(KVMState *s)
1482 {
1483 if (kvm_kernel_irqchip_split()) {
1484 error_report("-machine kernel_irqchip=split is not supported on ARM.");
1485 exit(1);
1486 }
1487
1488 /* If we can create the VGIC using the newer device control API, we
1489 * let the device do this when it initializes itself, otherwise we
1490 * fall back to the old API */
1491 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1492 }
1493
kvm_arm_vgic_probe(void)1494 int kvm_arm_vgic_probe(void)
1495 {
1496 int val = 0;
1497
1498 if (kvm_create_device(kvm_state,
1499 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1500 val |= KVM_ARM_VGIC_V3;
1501 }
1502 if (kvm_create_device(kvm_state,
1503 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1504 val |= KVM_ARM_VGIC_V2;
1505 }
1506 return val;
1507 }
1508
kvm_arm_set_irq(int cpu,int irqtype,int irq,int level)1509 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1510 {
1511 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1512 int cpu_idx1 = cpu % 256;
1513 int cpu_idx2 = cpu / 256;
1514
1515 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1516 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1517
1518 return kvm_set_irq(kvm_state, kvm_irq, !!level);
1519 }
1520
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)1521 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1522 uint64_t address, uint32_t data, PCIDevice *dev)
1523 {
1524 AddressSpace *as = pci_device_iommu_address_space(dev);
1525 hwaddr xlat, len, doorbell_gpa;
1526 MemoryRegionSection mrs;
1527 MemoryRegion *mr;
1528
1529 if (as == &address_space_memory) {
1530 return 0;
1531 }
1532
1533 /* MSI doorbell address is translated by an IOMMU */
1534
1535 RCU_READ_LOCK_GUARD();
1536
1537 mr = address_space_translate(as, address, &xlat, &len, true,
1538 MEMTXATTRS_UNSPECIFIED);
1539
1540 if (!mr) {
1541 return 1;
1542 }
1543
1544 mrs = memory_region_find(mr, xlat, 1);
1545
1546 if (!mrs.mr) {
1547 return 1;
1548 }
1549
1550 doorbell_gpa = mrs.offset_within_address_space;
1551 memory_region_unref(mrs.mr);
1552
1553 route->u.msi.address_lo = doorbell_gpa;
1554 route->u.msi.address_hi = doorbell_gpa >> 32;
1555
1556 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1557
1558 return 0;
1559 }
1560
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)1561 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1562 int vector, PCIDevice *dev)
1563 {
1564 return 0;
1565 }
1566
kvm_arch_release_virq_post(int virq)1567 int kvm_arch_release_virq_post(int virq)
1568 {
1569 return 0;
1570 }
1571
kvm_arch_msi_data_to_gsi(uint32_t data)1572 int kvm_arch_msi_data_to_gsi(uint32_t data)
1573 {
1574 return (data - 32) & 0xffff;
1575 }
1576
kvm_arch_get_eager_split_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1577 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1578 const char *name, void *opaque,
1579 Error **errp)
1580 {
1581 KVMState *s = KVM_STATE(obj);
1582 uint64_t value = s->kvm_eager_split_size;
1583
1584 visit_type_size(v, name, &value, errp);
1585 }
1586
kvm_arch_set_eager_split_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1587 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1588 const char *name, void *opaque,
1589 Error **errp)
1590 {
1591 KVMState *s = KVM_STATE(obj);
1592 uint64_t value;
1593
1594 if (s->fd != -1) {
1595 error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1596 return;
1597 }
1598
1599 if (!visit_type_size(v, name, &value, errp)) {
1600 return;
1601 }
1602
1603 if (value && !is_power_of_2(value)) {
1604 error_setg(errp, "early-split-size must be a power of two");
1605 return;
1606 }
1607
1608 s->kvm_eager_split_size = value;
1609 }
1610
kvm_arch_accel_class_init(ObjectClass * oc)1611 void kvm_arch_accel_class_init(ObjectClass *oc)
1612 {
1613 object_class_property_add(oc, "eager-split-size", "size",
1614 kvm_arch_get_eager_split_size,
1615 kvm_arch_set_eager_split_size, NULL, NULL);
1616
1617 object_class_property_set_description(oc, "eager-split-size",
1618 "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1619 }
1620
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)1621 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1622 {
1623 switch (type) {
1624 case GDB_BREAKPOINT_HW:
1625 return insert_hw_breakpoint(addr);
1626 break;
1627 case GDB_WATCHPOINT_READ:
1628 case GDB_WATCHPOINT_WRITE:
1629 case GDB_WATCHPOINT_ACCESS:
1630 return insert_hw_watchpoint(addr, len, type);
1631 default:
1632 return -ENOSYS;
1633 }
1634 }
1635
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)1636 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1637 {
1638 switch (type) {
1639 case GDB_BREAKPOINT_HW:
1640 return delete_hw_breakpoint(addr);
1641 case GDB_WATCHPOINT_READ:
1642 case GDB_WATCHPOINT_WRITE:
1643 case GDB_WATCHPOINT_ACCESS:
1644 return delete_hw_watchpoint(addr, len, type);
1645 default:
1646 return -ENOSYS;
1647 }
1648 }
1649
kvm_arch_remove_all_hw_breakpoints(void)1650 void kvm_arch_remove_all_hw_breakpoints(void)
1651 {
1652 if (cur_hw_wps > 0) {
1653 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1654 }
1655 if (cur_hw_bps > 0) {
1656 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1657 }
1658 }
1659
kvm_arm_set_device_attr(ARMCPU * cpu,struct kvm_device_attr * attr,const char * name)1660 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1661 const char *name)
1662 {
1663 int err;
1664
1665 err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1666 if (err != 0) {
1667 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1668 return false;
1669 }
1670
1671 err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1672 if (err != 0) {
1673 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1674 return false;
1675 }
1676
1677 return true;
1678 }
1679
kvm_arm_pmu_init(ARMCPU * cpu)1680 void kvm_arm_pmu_init(ARMCPU *cpu)
1681 {
1682 struct kvm_device_attr attr = {
1683 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1684 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1685 };
1686
1687 if (!cpu->has_pmu) {
1688 return;
1689 }
1690 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1691 error_report("failed to init PMU");
1692 abort();
1693 }
1694 }
1695
kvm_arm_pmu_set_irq(ARMCPU * cpu,int irq)1696 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1697 {
1698 struct kvm_device_attr attr = {
1699 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1700 .addr = (intptr_t)&irq,
1701 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1702 };
1703
1704 if (!cpu->has_pmu) {
1705 return;
1706 }
1707 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1708 error_report("failed to set irq for PMU");
1709 abort();
1710 }
1711 }
1712
kvm_arm_pvtime_init(ARMCPU * cpu,uint64_t ipa)1713 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1714 {
1715 struct kvm_device_attr attr = {
1716 .group = KVM_ARM_VCPU_PVTIME_CTRL,
1717 .attr = KVM_ARM_VCPU_PVTIME_IPA,
1718 .addr = (uint64_t)&ipa,
1719 };
1720
1721 if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1722 return;
1723 }
1724 if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1725 error_report("failed to init PVTIME IPA");
1726 abort();
1727 }
1728 }
1729
kvm_arm_steal_time_finalize(ARMCPU * cpu,Error ** errp)1730 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1731 {
1732 bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1733
1734 if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1735 if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1736 cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1737 } else {
1738 cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1739 }
1740 } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1741 if (!has_steal_time) {
1742 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1743 "on this host");
1744 return;
1745 } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1746 /*
1747 * DEN0057A chapter 2 says "This specification only covers
1748 * systems in which the Execution state of the hypervisor
1749 * as well as EL1 of virtual machines is AArch64.". And,
1750 * to ensure that, the smc/hvc calls are only specified as
1751 * smc64/hvc64.
1752 */
1753 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1754 "for AArch32 guests");
1755 return;
1756 }
1757 }
1758 }
1759
kvm_arm_aarch32_supported(void)1760 bool kvm_arm_aarch32_supported(void)
1761 {
1762 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1763 }
1764
kvm_arm_sve_supported(void)1765 bool kvm_arm_sve_supported(void)
1766 {
1767 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1768 }
1769
kvm_arm_mte_supported(void)1770 bool kvm_arm_mte_supported(void)
1771 {
1772 return kvm_check_extension(kvm_state, KVM_CAP_ARM_MTE);
1773 }
1774
1775 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1776
kvm_arm_sve_get_vls(ARMCPU * cpu)1777 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1778 {
1779 /* Only call this function if kvm_arm_sve_supported() returns true. */
1780 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1781 static bool probed;
1782 uint32_t vq = 0;
1783 int i;
1784
1785 /*
1786 * KVM ensures all host CPUs support the same set of vector lengths.
1787 * So we only need to create the scratch VCPUs once and then cache
1788 * the results.
1789 */
1790 if (!probed) {
1791 struct kvm_vcpu_init init = {
1792 .target = -1,
1793 .features[0] = (1 << KVM_ARM_VCPU_SVE),
1794 };
1795 struct kvm_one_reg reg = {
1796 .id = KVM_REG_ARM64_SVE_VLS,
1797 .addr = (uint64_t)&vls[0],
1798 };
1799 int fdarray[3], ret;
1800
1801 probed = true;
1802
1803 if (!kvm_arm_create_scratch_host_vcpu(fdarray, &init)) {
1804 error_report("failed to create scratch VCPU with SVE enabled");
1805 abort();
1806 }
1807 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®);
1808 kvm_arm_destroy_scratch_host_vcpu(fdarray);
1809 if (ret) {
1810 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1811 strerror(errno));
1812 abort();
1813 }
1814
1815 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1816 if (vls[i]) {
1817 vq = 64 - clz64(vls[i]) + i * 64;
1818 break;
1819 }
1820 }
1821 if (vq > ARM_MAX_VQ) {
1822 warn_report("KVM supports vector lengths larger than "
1823 "QEMU can enable");
1824 vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1825 }
1826 }
1827
1828 return vls[0];
1829 }
1830
kvm_arm_sve_set_vls(ARMCPU * cpu)1831 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1832 {
1833 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1834
1835 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1836
1837 return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1838 }
1839
1840 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
1841
kvm_arch_pre_create_vcpu(CPUState * cpu,Error ** errp)1842 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
1843 {
1844 return 0;
1845 }
1846
kvm_arch_init_vcpu(CPUState * cs)1847 int kvm_arch_init_vcpu(CPUState *cs)
1848 {
1849 int ret;
1850 uint64_t mpidr;
1851 ARMCPU *cpu = ARM_CPU(cs);
1852 CPUARMState *env = &cpu->env;
1853 uint64_t psciver;
1854
1855 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
1856 error_report("KVM is not supported for this guest CPU type");
1857 return -EINVAL;
1858 }
1859
1860 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1861
1862 /* Determine init features for this CPU */
1863 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1864 if (cs->start_powered_off) {
1865 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1866 }
1867 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1868 cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1869 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1870 }
1871 if (!arm_feature(env, ARM_FEATURE_AARCH64)) {
1872 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1873 }
1874 if (cpu->has_pmu) {
1875 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1876 }
1877 if (cpu_isar_feature(aa64_sve, cpu)) {
1878 assert(kvm_arm_sve_supported());
1879 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1880 }
1881 if (cpu_isar_feature(aa64_pauth, cpu)) {
1882 cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1883 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1884 }
1885
1886 /* Do KVM_ARM_VCPU_INIT ioctl */
1887 ret = kvm_arm_vcpu_init(cpu);
1888 if (ret) {
1889 return ret;
1890 }
1891
1892 if (cpu_isar_feature(aa64_sve, cpu)) {
1893 ret = kvm_arm_sve_set_vls(cpu);
1894 if (ret) {
1895 return ret;
1896 }
1897 ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1898 if (ret) {
1899 return ret;
1900 }
1901 }
1902
1903 /*
1904 * KVM reports the exact PSCI version it is implementing via a
1905 * special sysreg. If it is present, use its contents to determine
1906 * what to report to the guest in the dtb (it is the PSCI version,
1907 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1908 * returns).
1909 */
1910 if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1911 cpu->psci_version = psciver;
1912 }
1913
1914 /*
1915 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1916 * Currently KVM has its own idea about MPIDR assignment, so we
1917 * override our defaults with what we get from KVM.
1918 */
1919 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1920 if (ret) {
1921 return ret;
1922 }
1923 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1924
1925 return kvm_arm_init_cpreg_list(cpu);
1926 }
1927
kvm_arch_destroy_vcpu(CPUState * cs)1928 int kvm_arch_destroy_vcpu(CPUState *cs)
1929 {
1930 return 0;
1931 }
1932
1933 /* Callers must hold the iothread mutex lock */
kvm_inject_arm_sea(CPUState * c)1934 static void kvm_inject_arm_sea(CPUState *c)
1935 {
1936 ARMCPU *cpu = ARM_CPU(c);
1937 CPUARMState *env = &cpu->env;
1938 uint32_t esr;
1939 bool same_el;
1940
1941 c->exception_index = EXCP_DATA_ABORT;
1942 env->exception.target_el = 1;
1943
1944 /*
1945 * Set the DFSC to synchronous external abort and set FnV to not valid,
1946 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1947 */
1948 same_el = arm_current_el(env) == env->exception.target_el;
1949 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1950
1951 env->exception.syndrome = esr;
1952
1953 arm_cpu_do_interrupt(c);
1954 }
1955
1956 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1957 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1958
1959 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1960 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1961
1962 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1963 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1964
kvm_arch_put_fpsimd(CPUState * cs)1965 static int kvm_arch_put_fpsimd(CPUState *cs)
1966 {
1967 CPUARMState *env = &ARM_CPU(cs)->env;
1968 int i, ret;
1969
1970 for (i = 0; i < 32; i++) {
1971 uint64_t *q = aa64_vfp_qreg(env, i);
1972 #if HOST_BIG_ENDIAN
1973 uint64_t fp_val[2] = { q[1], q[0] };
1974 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
1975 fp_val);
1976 #else
1977 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
1978 #endif
1979 if (ret) {
1980 return ret;
1981 }
1982 }
1983
1984 return 0;
1985 }
1986
1987 /*
1988 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1989 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1990 * code the slice index to zero for now as it's unlikely we'll need more than
1991 * one slice for quite some time.
1992 */
kvm_arch_put_sve(CPUState * cs)1993 static int kvm_arch_put_sve(CPUState *cs)
1994 {
1995 ARMCPU *cpu = ARM_CPU(cs);
1996 CPUARMState *env = &cpu->env;
1997 uint64_t tmp[ARM_MAX_VQ * 2];
1998 uint64_t *r;
1999 int n, ret;
2000
2001 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2002 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2003 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2004 if (ret) {
2005 return ret;
2006 }
2007 }
2008
2009 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2010 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2011 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2012 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2013 if (ret) {
2014 return ret;
2015 }
2016 }
2017
2018 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2019 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2020 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2021 if (ret) {
2022 return ret;
2023 }
2024
2025 return 0;
2026 }
2027
kvm_arch_put_registers(CPUState * cs,int level,Error ** errp)2028 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
2029 {
2030 uint64_t val;
2031 uint32_t fpr;
2032 int i, ret;
2033 unsigned int el;
2034
2035 ARMCPU *cpu = ARM_CPU(cs);
2036 CPUARMState *env = &cpu->env;
2037
2038 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2039 * AArch64 registers before pushing them out to 64-bit KVM.
2040 */
2041 if (!is_a64(env)) {
2042 aarch64_sync_32_to_64(env);
2043 }
2044
2045 for (i = 0; i < 31; i++) {
2046 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2047 &env->xregs[i]);
2048 if (ret) {
2049 return ret;
2050 }
2051 }
2052
2053 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2054 * QEMU side we keep the current SP in xregs[31] as well.
2055 */
2056 aarch64_save_sp(env, 1);
2057
2058 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2059 if (ret) {
2060 return ret;
2061 }
2062
2063 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2064 if (ret) {
2065 return ret;
2066 }
2067
2068 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2069 if (is_a64(env)) {
2070 val = pstate_read(env);
2071 } else {
2072 val = cpsr_read(env);
2073 }
2074 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2075 if (ret) {
2076 return ret;
2077 }
2078
2079 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2080 if (ret) {
2081 return ret;
2082 }
2083
2084 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2085 if (ret) {
2086 return ret;
2087 }
2088
2089 /* Saved Program State Registers
2090 *
2091 * Before we restore from the banked_spsr[] array we need to
2092 * ensure that any modifications to env->spsr are correctly
2093 * reflected in the banks.
2094 */
2095 el = arm_current_el(env);
2096 if (el > 0 && !is_a64(env)) {
2097 i = bank_number(env->uncached_cpsr & CPSR_M);
2098 env->banked_spsr[i] = env->spsr;
2099 }
2100
2101 /* KVM 0-4 map to QEMU banks 1-5 */
2102 for (i = 0; i < KVM_NR_SPSR; i++) {
2103 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2104 &env->banked_spsr[i + 1]);
2105 if (ret) {
2106 return ret;
2107 }
2108 }
2109
2110 if (cpu_isar_feature(aa64_sve, cpu)) {
2111 ret = kvm_arch_put_sve(cs);
2112 } else {
2113 ret = kvm_arch_put_fpsimd(cs);
2114 }
2115 if (ret) {
2116 return ret;
2117 }
2118
2119 fpr = vfp_get_fpsr(env);
2120 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2121 if (ret) {
2122 return ret;
2123 }
2124
2125 fpr = vfp_get_fpcr(env);
2126 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2127 if (ret) {
2128 return ret;
2129 }
2130
2131 write_cpustate_to_list(cpu, true);
2132
2133 if (!write_list_to_kvmstate(cpu, level)) {
2134 return -EINVAL;
2135 }
2136
2137 /*
2138 * Setting VCPU events should be triggered after syncing the registers
2139 * to avoid overwriting potential changes made by KVM upon calling
2140 * KVM_SET_VCPU_EVENTS ioctl
2141 */
2142 ret = kvm_put_vcpu_events(cpu);
2143 if (ret) {
2144 return ret;
2145 }
2146
2147 return kvm_arm_sync_mpstate_to_kvm(cpu);
2148 }
2149
kvm_arch_get_fpsimd(CPUState * cs)2150 static int kvm_arch_get_fpsimd(CPUState *cs)
2151 {
2152 CPUARMState *env = &ARM_CPU(cs)->env;
2153 int i, ret;
2154
2155 for (i = 0; i < 32; i++) {
2156 uint64_t *q = aa64_vfp_qreg(env, i);
2157 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2158 if (ret) {
2159 return ret;
2160 } else {
2161 #if HOST_BIG_ENDIAN
2162 uint64_t t;
2163 t = q[0], q[0] = q[1], q[1] = t;
2164 #endif
2165 }
2166 }
2167
2168 return 0;
2169 }
2170
2171 /*
2172 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2173 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2174 * code the slice index to zero for now as it's unlikely we'll need more than
2175 * one slice for quite some time.
2176 */
kvm_arch_get_sve(CPUState * cs)2177 static int kvm_arch_get_sve(CPUState *cs)
2178 {
2179 ARMCPU *cpu = ARM_CPU(cs);
2180 CPUARMState *env = &cpu->env;
2181 uint64_t *r;
2182 int n, ret;
2183
2184 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2185 r = &env->vfp.zregs[n].d[0];
2186 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2187 if (ret) {
2188 return ret;
2189 }
2190 sve_bswap64(r, r, cpu->sve_max_vq * 2);
2191 }
2192
2193 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2194 r = &env->vfp.pregs[n].p[0];
2195 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2196 if (ret) {
2197 return ret;
2198 }
2199 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2200 }
2201
2202 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2203 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2204 if (ret) {
2205 return ret;
2206 }
2207 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2208
2209 return 0;
2210 }
2211
kvm_arch_get_registers(CPUState * cs,Error ** errp)2212 int kvm_arch_get_registers(CPUState *cs, Error **errp)
2213 {
2214 uint64_t val;
2215 unsigned int el;
2216 uint32_t fpr;
2217 int i, ret;
2218
2219 ARMCPU *cpu = ARM_CPU(cs);
2220 CPUARMState *env = &cpu->env;
2221
2222 for (i = 0; i < 31; i++) {
2223 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2224 &env->xregs[i]);
2225 if (ret) {
2226 return ret;
2227 }
2228 }
2229
2230 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2231 if (ret) {
2232 return ret;
2233 }
2234
2235 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2236 if (ret) {
2237 return ret;
2238 }
2239
2240 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2241 if (ret) {
2242 return ret;
2243 }
2244
2245 env->aarch64 = ((val & PSTATE_nRW) == 0);
2246 if (is_a64(env)) {
2247 pstate_write(env, val);
2248 } else {
2249 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2250 }
2251
2252 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2253 * QEMU side we keep the current SP in xregs[31] as well.
2254 */
2255 aarch64_restore_sp(env, 1);
2256
2257 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2258 if (ret) {
2259 return ret;
2260 }
2261
2262 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2263 * incoming AArch64 regs received from 64-bit KVM.
2264 * We must perform this after all of the registers have been acquired from
2265 * the kernel.
2266 */
2267 if (!is_a64(env)) {
2268 aarch64_sync_64_to_32(env);
2269 }
2270
2271 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2272 if (ret) {
2273 return ret;
2274 }
2275
2276 /* Fetch the SPSR registers
2277 *
2278 * KVM SPSRs 0-4 map to QEMU banks 1-5
2279 */
2280 for (i = 0; i < KVM_NR_SPSR; i++) {
2281 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2282 &env->banked_spsr[i + 1]);
2283 if (ret) {
2284 return ret;
2285 }
2286 }
2287
2288 el = arm_current_el(env);
2289 if (el > 0 && !is_a64(env)) {
2290 i = bank_number(env->uncached_cpsr & CPSR_M);
2291 env->spsr = env->banked_spsr[i];
2292 }
2293
2294 if (cpu_isar_feature(aa64_sve, cpu)) {
2295 ret = kvm_arch_get_sve(cs);
2296 } else {
2297 ret = kvm_arch_get_fpsimd(cs);
2298 }
2299 if (ret) {
2300 return ret;
2301 }
2302
2303 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2304 if (ret) {
2305 return ret;
2306 }
2307 vfp_set_fpsr(env, fpr);
2308
2309 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2310 if (ret) {
2311 return ret;
2312 }
2313 vfp_set_fpcr(env, fpr);
2314
2315 ret = kvm_get_vcpu_events(cpu);
2316 if (ret) {
2317 return ret;
2318 }
2319
2320 if (!write_kvmstate_to_list(cpu)) {
2321 return -EINVAL;
2322 }
2323 /* Note that it's OK to have registers which aren't in CPUState,
2324 * so we can ignore a failure return here.
2325 */
2326 write_list_to_cpustate(cpu);
2327
2328 ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2329
2330 /* TODO: other registers */
2331 return ret;
2332 }
2333
kvm_arch_on_sigbus_vcpu(CPUState * c,int code,void * addr)2334 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2335 {
2336 ram_addr_t ram_addr;
2337 hwaddr paddr;
2338
2339 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2340
2341 if (acpi_ghes_present() && addr) {
2342 ram_addr = qemu_ram_addr_from_host(addr);
2343 if (ram_addr != RAM_ADDR_INVALID &&
2344 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2345 kvm_hwpoison_page_add(ram_addr);
2346 /*
2347 * If this is a BUS_MCEERR_AR, we know we have been called
2348 * synchronously from the vCPU thread, so we can easily
2349 * synchronize the state and inject an error.
2350 *
2351 * TODO: we currently don't tell the guest at all about
2352 * BUS_MCEERR_AO. In that case we might either be being
2353 * called synchronously from the vCPU thread, or a bit
2354 * later from the main thread, so doing the injection of
2355 * the error would be more complicated.
2356 */
2357 if (code == BUS_MCEERR_AR) {
2358 kvm_cpu_synchronize_state(c);
2359 if (!acpi_ghes_memory_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2360 kvm_inject_arm_sea(c);
2361 } else {
2362 error_report("failed to record the error");
2363 abort();
2364 }
2365 }
2366 return;
2367 }
2368 if (code == BUS_MCEERR_AO) {
2369 error_report("Hardware memory error at addr %p for memory used by "
2370 "QEMU itself instead of guest system!", addr);
2371 }
2372 }
2373
2374 if (code == BUS_MCEERR_AR) {
2375 error_report("Hardware memory error!");
2376 exit(1);
2377 }
2378 }
2379
2380 /* C6.6.29 BRK instruction */
2381 static const uint32_t brk_insn = 0xd4200000;
2382
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2383 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2384 {
2385 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2386 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2387 return -EINVAL;
2388 }
2389 return 0;
2390 }
2391
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2392 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2393 {
2394 static uint32_t brk;
2395
2396 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2397 brk != brk_insn ||
2398 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2399 return -EINVAL;
2400 }
2401 return 0;
2402 }
2403
kvm_arm_enable_mte(Object * cpuobj,Error ** errp)2404 void kvm_arm_enable_mte(Object *cpuobj, Error **errp)
2405 {
2406 static bool tried_to_enable;
2407 static bool succeeded_to_enable;
2408 Error *mte_migration_blocker = NULL;
2409 ARMCPU *cpu = ARM_CPU(cpuobj);
2410 int ret;
2411
2412 if (!tried_to_enable) {
2413 /*
2414 * MTE on KVM is enabled on a per-VM basis (and retrying doesn't make
2415 * sense), and we only want a single migration blocker as well.
2416 */
2417 tried_to_enable = true;
2418
2419 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_ARM_MTE, 0);
2420 if (ret) {
2421 error_setg_errno(errp, -ret, "Failed to enable KVM_CAP_ARM_MTE");
2422 return;
2423 }
2424
2425 /* TODO: Add migration support with MTE enabled */
2426 error_setg(&mte_migration_blocker,
2427 "Live migration disabled due to MTE enabled");
2428 if (migrate_add_blocker(&mte_migration_blocker, errp)) {
2429 error_free(mte_migration_blocker);
2430 return;
2431 }
2432
2433 succeeded_to_enable = true;
2434 }
2435
2436 if (succeeded_to_enable) {
2437 cpu->kvm_mte = true;
2438 }
2439 }
2440
arm_cpu_kvm_set_irq(void * arm_cpu,int irq,int level)2441 void arm_cpu_kvm_set_irq(void *arm_cpu, int irq, int level)
2442 {
2443 ARMCPU *cpu = arm_cpu;
2444 CPUARMState *env = &cpu->env;
2445 CPUState *cs = CPU(cpu);
2446 uint32_t linestate_bit;
2447 int irq_id;
2448
2449 switch (irq) {
2450 case ARM_CPU_IRQ:
2451 irq_id = KVM_ARM_IRQ_CPU_IRQ;
2452 linestate_bit = CPU_INTERRUPT_HARD;
2453 break;
2454 case ARM_CPU_FIQ:
2455 irq_id = KVM_ARM_IRQ_CPU_FIQ;
2456 linestate_bit = CPU_INTERRUPT_FIQ;
2457 break;
2458 default:
2459 g_assert_not_reached();
2460 }
2461
2462 if (level) {
2463 env->irq_line_state |= linestate_bit;
2464 } else {
2465 env->irq_line_state &= ~linestate_bit;
2466 }
2467 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
2468 }
2469