1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3 * Copyright (C) 2004 IBM Corporation, Rusty Russell.
4 * Copyright (C) 2009 Red Hat, Inc.
5 *
6 * Creation is done via kthreadd, so that we get a clean environment
7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
8 * etc.).
9 */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32
33
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37
38 static LIST_HEAD(kthreads_hotplug);
39 static DEFINE_MUTEX(kthreads_hotplug_lock);
40
41 struct kthread_create_info
42 {
43 /* Information passed to kthread() from kthreadd. */
44 char *full_name;
45 int (*threadfn)(void *data);
46 void *data;
47 int node;
48
49 /* Result passed back to kthread_create() from kthreadd. */
50 struct task_struct *result;
51 struct completion *done;
52
53 struct list_head list;
54 };
55
56 struct kthread {
57 unsigned long flags;
58 unsigned int cpu;
59 unsigned int node;
60 int started;
61 int result;
62 int (*threadfn)(void *);
63 void *data;
64 struct completion parked;
65 struct completion exited;
66 #ifdef CONFIG_BLK_CGROUP
67 struct cgroup_subsys_state *blkcg_css;
68 #endif
69 /* To store the full name if task comm is truncated. */
70 char *full_name;
71 struct task_struct *task;
72 struct list_head hotplug_node;
73 struct cpumask *preferred_affinity;
74 };
75
76 enum KTHREAD_BITS {
77 KTHREAD_IS_PER_CPU = 0,
78 KTHREAD_SHOULD_STOP,
79 KTHREAD_SHOULD_PARK,
80 };
81
to_kthread(struct task_struct * k)82 static inline struct kthread *to_kthread(struct task_struct *k)
83 {
84 WARN_ON(!(k->flags & PF_KTHREAD));
85 return k->worker_private;
86 }
87
88 /*
89 * Variant of to_kthread() that doesn't assume @p is a kthread.
90 *
91 * When "(p->flags & PF_KTHREAD)" is set the task is a kthread and will
92 * always remain a kthread. For kthreads p->worker_private always
93 * points to a struct kthread. For tasks that are not kthreads
94 * p->worker_private is used to point to other things.
95 *
96 * Return NULL for any task that is not a kthread.
97 */
__to_kthread(struct task_struct * p)98 static inline struct kthread *__to_kthread(struct task_struct *p)
99 {
100 void *kthread = p->worker_private;
101 if (kthread && !(p->flags & PF_KTHREAD))
102 kthread = NULL;
103 return kthread;
104 }
105
get_kthread_comm(char * buf,size_t buf_size,struct task_struct * tsk)106 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
107 {
108 struct kthread *kthread = to_kthread(tsk);
109
110 if (!kthread || !kthread->full_name) {
111 strscpy(buf, tsk->comm, buf_size);
112 return;
113 }
114
115 strscpy_pad(buf, kthread->full_name, buf_size);
116 }
117
set_kthread_struct(struct task_struct * p)118 bool set_kthread_struct(struct task_struct *p)
119 {
120 struct kthread *kthread;
121
122 if (WARN_ON_ONCE(to_kthread(p)))
123 return false;
124
125 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
126 if (!kthread)
127 return false;
128
129 init_completion(&kthread->exited);
130 init_completion(&kthread->parked);
131 INIT_LIST_HEAD(&kthread->hotplug_node);
132 p->vfork_done = &kthread->exited;
133
134 kthread->task = p;
135 kthread->node = tsk_fork_get_node(current);
136 p->worker_private = kthread;
137 return true;
138 }
139
free_kthread_struct(struct task_struct * k)140 void free_kthread_struct(struct task_struct *k)
141 {
142 struct kthread *kthread;
143
144 /*
145 * Can be NULL if kmalloc() in set_kthread_struct() failed.
146 */
147 kthread = to_kthread(k);
148 if (!kthread)
149 return;
150
151 #ifdef CONFIG_BLK_CGROUP
152 WARN_ON_ONCE(kthread->blkcg_css);
153 #endif
154 k->worker_private = NULL;
155 kfree(kthread->full_name);
156 kfree(kthread);
157 }
158
159 /**
160 * kthread_should_stop - should this kthread return now?
161 *
162 * When someone calls kthread_stop() on your kthread, it will be woken
163 * and this will return true. You should then return, and your return
164 * value will be passed through to kthread_stop().
165 */
kthread_should_stop(void)166 bool kthread_should_stop(void)
167 {
168 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
169 }
170 EXPORT_SYMBOL(kthread_should_stop);
171
__kthread_should_park(struct task_struct * k)172 static bool __kthread_should_park(struct task_struct *k)
173 {
174 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
175 }
176
177 /**
178 * kthread_should_park - should this kthread park now?
179 *
180 * When someone calls kthread_park() on your kthread, it will be woken
181 * and this will return true. You should then do the necessary
182 * cleanup and call kthread_parkme()
183 *
184 * Similar to kthread_should_stop(), but this keeps the thread alive
185 * and in a park position. kthread_unpark() "restarts" the thread and
186 * calls the thread function again.
187 */
kthread_should_park(void)188 bool kthread_should_park(void)
189 {
190 return __kthread_should_park(current);
191 }
192 EXPORT_SYMBOL_GPL(kthread_should_park);
193
kthread_should_stop_or_park(void)194 bool kthread_should_stop_or_park(void)
195 {
196 struct kthread *kthread = __to_kthread(current);
197
198 if (!kthread)
199 return false;
200
201 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
202 }
203
204 /**
205 * kthread_freezable_should_stop - should this freezable kthread return now?
206 * @was_frozen: optional out parameter, indicates whether %current was frozen
207 *
208 * kthread_should_stop() for freezable kthreads, which will enter
209 * refrigerator if necessary. This function is safe from kthread_stop() /
210 * freezer deadlock and freezable kthreads should use this function instead
211 * of calling try_to_freeze() directly.
212 */
kthread_freezable_should_stop(bool * was_frozen)213 bool kthread_freezable_should_stop(bool *was_frozen)
214 {
215 bool frozen = false;
216
217 might_sleep();
218
219 if (unlikely(freezing(current)))
220 frozen = __refrigerator(true);
221
222 if (was_frozen)
223 *was_frozen = frozen;
224
225 return kthread_should_stop();
226 }
227 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
228
229 /**
230 * kthread_func - return the function specified on kthread creation
231 * @task: kthread task in question
232 *
233 * Returns NULL if the task is not a kthread.
234 */
kthread_func(struct task_struct * task)235 void *kthread_func(struct task_struct *task)
236 {
237 struct kthread *kthread = __to_kthread(task);
238 if (kthread)
239 return kthread->threadfn;
240 return NULL;
241 }
242 EXPORT_SYMBOL_GPL(kthread_func);
243
244 /**
245 * kthread_data - return data value specified on kthread creation
246 * @task: kthread task in question
247 *
248 * Return the data value specified when kthread @task was created.
249 * The caller is responsible for ensuring the validity of @task when
250 * calling this function.
251 */
kthread_data(struct task_struct * task)252 void *kthread_data(struct task_struct *task)
253 {
254 return to_kthread(task)->data;
255 }
256 EXPORT_SYMBOL_GPL(kthread_data);
257
258 /**
259 * kthread_probe_data - speculative version of kthread_data()
260 * @task: possible kthread task in question
261 *
262 * @task could be a kthread task. Return the data value specified when it
263 * was created if accessible. If @task isn't a kthread task or its data is
264 * inaccessible for any reason, %NULL is returned. This function requires
265 * that @task itself is safe to dereference.
266 */
kthread_probe_data(struct task_struct * task)267 void *kthread_probe_data(struct task_struct *task)
268 {
269 struct kthread *kthread = __to_kthread(task);
270 void *data = NULL;
271
272 if (kthread)
273 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
274 return data;
275 }
276
__kthread_parkme(struct kthread * self)277 static void __kthread_parkme(struct kthread *self)
278 {
279 for (;;) {
280 /*
281 * TASK_PARKED is a special state; we must serialize against
282 * possible pending wakeups to avoid store-store collisions on
283 * task->state.
284 *
285 * Such a collision might possibly result in the task state
286 * changin from TASK_PARKED and us failing the
287 * wait_task_inactive() in kthread_park().
288 */
289 set_special_state(TASK_PARKED);
290 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
291 break;
292
293 /*
294 * Thread is going to call schedule(), do not preempt it,
295 * or the caller of kthread_park() may spend more time in
296 * wait_task_inactive().
297 */
298 preempt_disable();
299 complete(&self->parked);
300 schedule_preempt_disabled();
301 preempt_enable();
302 }
303 __set_current_state(TASK_RUNNING);
304 }
305
kthread_parkme(void)306 void kthread_parkme(void)
307 {
308 __kthread_parkme(to_kthread(current));
309 }
310 EXPORT_SYMBOL_GPL(kthread_parkme);
311
312 /**
313 * kthread_exit - Cause the current kthread return @result to kthread_stop().
314 * @result: The integer value to return to kthread_stop().
315 *
316 * While kthread_exit can be called directly, it exists so that
317 * functions which do some additional work in non-modular code such as
318 * module_put_and_kthread_exit can be implemented.
319 *
320 * Does not return.
321 */
kthread_exit(long result)322 void __noreturn kthread_exit(long result)
323 {
324 struct kthread *kthread = to_kthread(current);
325 kthread->result = result;
326 if (!list_empty(&kthread->hotplug_node)) {
327 mutex_lock(&kthreads_hotplug_lock);
328 list_del(&kthread->hotplug_node);
329 mutex_unlock(&kthreads_hotplug_lock);
330
331 if (kthread->preferred_affinity) {
332 kfree(kthread->preferred_affinity);
333 kthread->preferred_affinity = NULL;
334 }
335 }
336 do_exit(0);
337 }
338 EXPORT_SYMBOL(kthread_exit);
339
340 /**
341 * kthread_complete_and_exit - Exit the current kthread.
342 * @comp: Completion to complete
343 * @code: The integer value to return to kthread_stop().
344 *
345 * If present, complete @comp and then return code to kthread_stop().
346 *
347 * A kernel thread whose module may be removed after the completion of
348 * @comp can use this function to exit safely.
349 *
350 * Does not return.
351 */
kthread_complete_and_exit(struct completion * comp,long code)352 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
353 {
354 if (comp)
355 complete(comp);
356
357 kthread_exit(code);
358 }
359 EXPORT_SYMBOL(kthread_complete_and_exit);
360
kthread_fetch_affinity(struct kthread * kthread,struct cpumask * cpumask)361 static void kthread_fetch_affinity(struct kthread *kthread, struct cpumask *cpumask)
362 {
363 const struct cpumask *pref;
364
365 if (kthread->preferred_affinity) {
366 pref = kthread->preferred_affinity;
367 } else {
368 if (WARN_ON_ONCE(kthread->node == NUMA_NO_NODE))
369 return;
370 pref = cpumask_of_node(kthread->node);
371 }
372
373 cpumask_and(cpumask, pref, housekeeping_cpumask(HK_TYPE_KTHREAD));
374 if (cpumask_empty(cpumask))
375 cpumask_copy(cpumask, housekeeping_cpumask(HK_TYPE_KTHREAD));
376 }
377
kthread_affine_node(void)378 static void kthread_affine_node(void)
379 {
380 struct kthread *kthread = to_kthread(current);
381 cpumask_var_t affinity;
382
383 WARN_ON_ONCE(kthread_is_per_cpu(current));
384
385 if (kthread->node == NUMA_NO_NODE) {
386 housekeeping_affine(current, HK_TYPE_KTHREAD);
387 } else {
388 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) {
389 WARN_ON_ONCE(1);
390 return;
391 }
392
393 mutex_lock(&kthreads_hotplug_lock);
394 WARN_ON_ONCE(!list_empty(&kthread->hotplug_node));
395 list_add_tail(&kthread->hotplug_node, &kthreads_hotplug);
396 /*
397 * The node cpumask is racy when read from kthread() but:
398 * - a racing CPU going down will either fail on the subsequent
399 * call to set_cpus_allowed_ptr() or be migrated to housekeepers
400 * afterwards by the scheduler.
401 * - a racing CPU going up will be handled by kthreads_online_cpu()
402 */
403 kthread_fetch_affinity(kthread, affinity);
404 set_cpus_allowed_ptr(current, affinity);
405 mutex_unlock(&kthreads_hotplug_lock);
406
407 free_cpumask_var(affinity);
408 }
409 }
410
kthread(void * _create)411 static int kthread(void *_create)
412 {
413 static const struct sched_param param = { .sched_priority = 0 };
414 /* Copy data: it's on kthread's stack */
415 struct kthread_create_info *create = _create;
416 int (*threadfn)(void *data) = create->threadfn;
417 void *data = create->data;
418 struct completion *done;
419 struct kthread *self;
420 int ret;
421
422 self = to_kthread(current);
423
424 /* Release the structure when caller killed by a fatal signal. */
425 done = xchg(&create->done, NULL);
426 if (!done) {
427 kfree(create->full_name);
428 kfree(create);
429 kthread_exit(-EINTR);
430 }
431
432 self->full_name = create->full_name;
433 self->threadfn = threadfn;
434 self->data = data;
435
436 /*
437 * The new thread inherited kthreadd's priority and CPU mask. Reset
438 * back to default in case they have been changed.
439 */
440 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m);
441
442 /* OK, tell user we're spawned, wait for stop or wakeup */
443 __set_current_state(TASK_UNINTERRUPTIBLE);
444 create->result = current;
445 /*
446 * Thread is going to call schedule(), do not preempt it,
447 * or the creator may spend more time in wait_task_inactive().
448 */
449 preempt_disable();
450 complete(done);
451 schedule_preempt_disabled();
452 preempt_enable();
453
454 self->started = 1;
455
456 if (!(current->flags & PF_NO_SETAFFINITY) && !self->preferred_affinity)
457 kthread_affine_node();
458
459 ret = -EINTR;
460 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
461 cgroup_kthread_ready();
462 __kthread_parkme(self);
463 ret = threadfn(data);
464 }
465 kthread_exit(ret);
466 }
467
468 /* called from kernel_clone() to get node information for about to be created task */
tsk_fork_get_node(struct task_struct * tsk)469 int tsk_fork_get_node(struct task_struct *tsk)
470 {
471 #ifdef CONFIG_NUMA
472 if (tsk == kthreadd_task)
473 return tsk->pref_node_fork;
474 #endif
475 return NUMA_NO_NODE;
476 }
477
create_kthread(struct kthread_create_info * create)478 static void create_kthread(struct kthread_create_info *create)
479 {
480 int pid;
481
482 #ifdef CONFIG_NUMA
483 current->pref_node_fork = create->node;
484 #endif
485 /* We want our own signal handler (we take no signals by default). */
486 pid = kernel_thread(kthread, create, create->full_name,
487 CLONE_FS | CLONE_FILES | SIGCHLD);
488 if (pid < 0) {
489 /* Release the structure when caller killed by a fatal signal. */
490 struct completion *done = xchg(&create->done, NULL);
491
492 kfree(create->full_name);
493 if (!done) {
494 kfree(create);
495 return;
496 }
497 create->result = ERR_PTR(pid);
498 complete(done);
499 }
500 }
501
502 static __printf(4, 0)
__kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],va_list args)503 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
504 void *data, int node,
505 const char namefmt[],
506 va_list args)
507 {
508 DECLARE_COMPLETION_ONSTACK(done);
509 struct task_struct *task;
510 struct kthread_create_info *create = kmalloc(sizeof(*create),
511 GFP_KERNEL);
512
513 if (!create)
514 return ERR_PTR(-ENOMEM);
515 create->threadfn = threadfn;
516 create->data = data;
517 create->node = node;
518 create->done = &done;
519 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
520 if (!create->full_name) {
521 task = ERR_PTR(-ENOMEM);
522 goto free_create;
523 }
524
525 spin_lock(&kthread_create_lock);
526 list_add_tail(&create->list, &kthread_create_list);
527 spin_unlock(&kthread_create_lock);
528
529 wake_up_process(kthreadd_task);
530 /*
531 * Wait for completion in killable state, for I might be chosen by
532 * the OOM killer while kthreadd is trying to allocate memory for
533 * new kernel thread.
534 */
535 if (unlikely(wait_for_completion_killable(&done))) {
536 /*
537 * If I was killed by a fatal signal before kthreadd (or new
538 * kernel thread) calls complete(), leave the cleanup of this
539 * structure to that thread.
540 */
541 if (xchg(&create->done, NULL))
542 return ERR_PTR(-EINTR);
543 /*
544 * kthreadd (or new kernel thread) will call complete()
545 * shortly.
546 */
547 wait_for_completion(&done);
548 }
549 task = create->result;
550 free_create:
551 kfree(create);
552 return task;
553 }
554
555 /**
556 * kthread_create_on_node - create a kthread.
557 * @threadfn: the function to run until signal_pending(current).
558 * @data: data ptr for @threadfn.
559 * @node: task and thread structures for the thread are allocated on this node
560 * @namefmt: printf-style name for the thread.
561 *
562 * Description: This helper function creates and names a kernel
563 * thread. The thread will be stopped: use wake_up_process() to start
564 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
565 * is affine to all CPUs.
566 *
567 * If thread is going to be bound on a particular cpu, give its node
568 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
569 * When woken, the thread will run @threadfn() with @data as its
570 * argument. @threadfn() can either return directly if it is a
571 * standalone thread for which no one will call kthread_stop(), or
572 * return when 'kthread_should_stop()' is true (which means
573 * kthread_stop() has been called). The return value should be zero
574 * or a negative error number; it will be passed to kthread_stop().
575 *
576 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
577 */
kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],...)578 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
579 void *data, int node,
580 const char namefmt[],
581 ...)
582 {
583 struct task_struct *task;
584 va_list args;
585
586 va_start(args, namefmt);
587 task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
588 va_end(args);
589
590 return task;
591 }
592 EXPORT_SYMBOL(kthread_create_on_node);
593
__kthread_bind_mask(struct task_struct * p,const struct cpumask * mask,unsigned int state)594 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
595 {
596 unsigned long flags;
597
598 if (!wait_task_inactive(p, state)) {
599 WARN_ON(1);
600 return;
601 }
602
603 /* It's safe because the task is inactive. */
604 raw_spin_lock_irqsave(&p->pi_lock, flags);
605 do_set_cpus_allowed(p, mask);
606 p->flags |= PF_NO_SETAFFINITY;
607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
608 }
609
__kthread_bind(struct task_struct * p,unsigned int cpu,unsigned int state)610 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
611 {
612 __kthread_bind_mask(p, cpumask_of(cpu), state);
613 }
614
kthread_bind_mask(struct task_struct * p,const struct cpumask * mask)615 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
616 {
617 struct kthread *kthread = to_kthread(p);
618 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
619 WARN_ON_ONCE(kthread->started);
620 }
621
622 /**
623 * kthread_bind - bind a just-created kthread to a cpu.
624 * @p: thread created by kthread_create().
625 * @cpu: cpu (might not be online, must be possible) for @k to run on.
626 *
627 * Description: This function is equivalent to set_cpus_allowed(),
628 * except that @cpu doesn't need to be online, and the thread must be
629 * stopped (i.e., just returned from kthread_create()).
630 */
kthread_bind(struct task_struct * p,unsigned int cpu)631 void kthread_bind(struct task_struct *p, unsigned int cpu)
632 {
633 struct kthread *kthread = to_kthread(p);
634 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
635 WARN_ON_ONCE(kthread->started);
636 }
637 EXPORT_SYMBOL(kthread_bind);
638
639 /**
640 * kthread_create_on_cpu - Create a cpu bound kthread
641 * @threadfn: the function to run until signal_pending(current).
642 * @data: data ptr for @threadfn.
643 * @cpu: The cpu on which the thread should be bound,
644 * @namefmt: printf-style name for the thread. Format is restricted
645 * to "name.*%u". Code fills in cpu number.
646 *
647 * Description: This helper function creates and names a kernel thread
648 */
kthread_create_on_cpu(int (* threadfn)(void * data),void * data,unsigned int cpu,const char * namefmt)649 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
650 void *data, unsigned int cpu,
651 const char *namefmt)
652 {
653 struct task_struct *p;
654
655 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
656 cpu);
657 if (IS_ERR(p))
658 return p;
659 kthread_bind(p, cpu);
660 /* CPU hotplug need to bind once again when unparking the thread. */
661 to_kthread(p)->cpu = cpu;
662 return p;
663 }
664 EXPORT_SYMBOL(kthread_create_on_cpu);
665
kthread_set_per_cpu(struct task_struct * k,int cpu)666 void kthread_set_per_cpu(struct task_struct *k, int cpu)
667 {
668 struct kthread *kthread = to_kthread(k);
669 if (!kthread)
670 return;
671
672 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
673
674 if (cpu < 0) {
675 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
676 return;
677 }
678
679 kthread->cpu = cpu;
680 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
681 }
682
kthread_is_per_cpu(struct task_struct * p)683 bool kthread_is_per_cpu(struct task_struct *p)
684 {
685 struct kthread *kthread = __to_kthread(p);
686 if (!kthread)
687 return false;
688
689 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
690 }
691
692 /**
693 * kthread_unpark - unpark a thread created by kthread_create().
694 * @k: thread created by kthread_create().
695 *
696 * Sets kthread_should_park() for @k to return false, wakes it, and
697 * waits for it to return. If the thread is marked percpu then its
698 * bound to the cpu again.
699 */
kthread_unpark(struct task_struct * k)700 void kthread_unpark(struct task_struct *k)
701 {
702 struct kthread *kthread = to_kthread(k);
703
704 if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))
705 return;
706 /*
707 * Newly created kthread was parked when the CPU was offline.
708 * The binding was lost and we need to set it again.
709 */
710 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
711 __kthread_bind(k, kthread->cpu, TASK_PARKED);
712
713 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
714 /*
715 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
716 */
717 wake_up_state(k, TASK_PARKED);
718 }
719 EXPORT_SYMBOL_GPL(kthread_unpark);
720
721 /**
722 * kthread_park - park a thread created by kthread_create().
723 * @k: thread created by kthread_create().
724 *
725 * Sets kthread_should_park() for @k to return true, wakes it, and
726 * waits for it to return. This can also be called after kthread_create()
727 * instead of calling wake_up_process(): the thread will park without
728 * calling threadfn().
729 *
730 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
731 * If called by the kthread itself just the park bit is set.
732 */
kthread_park(struct task_struct * k)733 int kthread_park(struct task_struct *k)
734 {
735 struct kthread *kthread = to_kthread(k);
736
737 if (WARN_ON(k->flags & PF_EXITING))
738 return -ENOSYS;
739
740 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
741 return -EBUSY;
742
743 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
744 if (k != current) {
745 wake_up_process(k);
746 /*
747 * Wait for __kthread_parkme() to complete(), this means we
748 * _will_ have TASK_PARKED and are about to call schedule().
749 */
750 wait_for_completion(&kthread->parked);
751 /*
752 * Now wait for that schedule() to complete and the task to
753 * get scheduled out.
754 */
755 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
756 }
757
758 return 0;
759 }
760 EXPORT_SYMBOL_GPL(kthread_park);
761
762 /**
763 * kthread_stop - stop a thread created by kthread_create().
764 * @k: thread created by kthread_create().
765 *
766 * Sets kthread_should_stop() for @k to return true, wakes it, and
767 * waits for it to exit. This can also be called after kthread_create()
768 * instead of calling wake_up_process(): the thread will exit without
769 * calling threadfn().
770 *
771 * If threadfn() may call kthread_exit() itself, the caller must ensure
772 * task_struct can't go away.
773 *
774 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
775 * was never called.
776 */
kthread_stop(struct task_struct * k)777 int kthread_stop(struct task_struct *k)
778 {
779 struct kthread *kthread;
780 int ret;
781
782 trace_sched_kthread_stop(k);
783
784 get_task_struct(k);
785 kthread = to_kthread(k);
786 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
787 kthread_unpark(k);
788 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
789 wake_up_process(k);
790 wait_for_completion(&kthread->exited);
791 ret = kthread->result;
792 put_task_struct(k);
793
794 trace_sched_kthread_stop_ret(ret);
795 return ret;
796 }
797 EXPORT_SYMBOL(kthread_stop);
798
799 /**
800 * kthread_stop_put - stop a thread and put its task struct
801 * @k: thread created by kthread_create().
802 *
803 * Stops a thread created by kthread_create() and put its task_struct.
804 * Only use when holding an extra task struct reference obtained by
805 * calling get_task_struct().
806 */
kthread_stop_put(struct task_struct * k)807 int kthread_stop_put(struct task_struct *k)
808 {
809 int ret;
810
811 ret = kthread_stop(k);
812 put_task_struct(k);
813 return ret;
814 }
815 EXPORT_SYMBOL(kthread_stop_put);
816
kthreadd(void * unused)817 int kthreadd(void *unused)
818 {
819 static const char comm[TASK_COMM_LEN] = "kthreadd";
820 struct task_struct *tsk = current;
821
822 /* Setup a clean context for our children to inherit. */
823 set_task_comm(tsk, comm);
824 ignore_signals(tsk);
825 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
826 set_mems_allowed(node_states[N_MEMORY]);
827
828 current->flags |= PF_NOFREEZE;
829 cgroup_init_kthreadd();
830
831 for (;;) {
832 set_current_state(TASK_INTERRUPTIBLE);
833 if (list_empty(&kthread_create_list))
834 schedule();
835 __set_current_state(TASK_RUNNING);
836
837 spin_lock(&kthread_create_lock);
838 while (!list_empty(&kthread_create_list)) {
839 struct kthread_create_info *create;
840
841 create = list_entry(kthread_create_list.next,
842 struct kthread_create_info, list);
843 list_del_init(&create->list);
844 spin_unlock(&kthread_create_lock);
845
846 create_kthread(create);
847
848 spin_lock(&kthread_create_lock);
849 }
850 spin_unlock(&kthread_create_lock);
851 }
852
853 return 0;
854 }
855
kthread_affine_preferred(struct task_struct * p,const struct cpumask * mask)856 int kthread_affine_preferred(struct task_struct *p, const struct cpumask *mask)
857 {
858 struct kthread *kthread = to_kthread(p);
859 cpumask_var_t affinity;
860 unsigned long flags;
861 int ret = 0;
862
863 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE) || kthread->started) {
864 WARN_ON(1);
865 return -EINVAL;
866 }
867
868 WARN_ON_ONCE(kthread->preferred_affinity);
869
870 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
871 return -ENOMEM;
872
873 kthread->preferred_affinity = kzalloc(sizeof(struct cpumask), GFP_KERNEL);
874 if (!kthread->preferred_affinity) {
875 ret = -ENOMEM;
876 goto out;
877 }
878
879 mutex_lock(&kthreads_hotplug_lock);
880 cpumask_copy(kthread->preferred_affinity, mask);
881 WARN_ON_ONCE(!list_empty(&kthread->hotplug_node));
882 list_add_tail(&kthread->hotplug_node, &kthreads_hotplug);
883 kthread_fetch_affinity(kthread, affinity);
884
885 /* It's safe because the task is inactive. */
886 raw_spin_lock_irqsave(&p->pi_lock, flags);
887 do_set_cpus_allowed(p, affinity);
888 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
889
890 mutex_unlock(&kthreads_hotplug_lock);
891 out:
892 free_cpumask_var(affinity);
893
894 return ret;
895 }
896
897 /*
898 * Re-affine kthreads according to their preferences
899 * and the newly online CPU. The CPU down part is handled
900 * by select_fallback_rq() which default re-affines to
901 * housekeepers from other nodes in case the preferred
902 * affinity doesn't apply anymore.
903 */
kthreads_online_cpu(unsigned int cpu)904 static int kthreads_online_cpu(unsigned int cpu)
905 {
906 cpumask_var_t affinity;
907 struct kthread *k;
908 int ret;
909
910 guard(mutex)(&kthreads_hotplug_lock);
911
912 if (list_empty(&kthreads_hotplug))
913 return 0;
914
915 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
916 return -ENOMEM;
917
918 ret = 0;
919
920 list_for_each_entry(k, &kthreads_hotplug, hotplug_node) {
921 if (WARN_ON_ONCE((k->task->flags & PF_NO_SETAFFINITY) ||
922 kthread_is_per_cpu(k->task))) {
923 ret = -EINVAL;
924 continue;
925 }
926 kthread_fetch_affinity(k, affinity);
927 set_cpus_allowed_ptr(k->task, affinity);
928 }
929
930 free_cpumask_var(affinity);
931
932 return ret;
933 }
934
kthreads_init(void)935 static int kthreads_init(void)
936 {
937 return cpuhp_setup_state(CPUHP_AP_KTHREADS_ONLINE, "kthreads:online",
938 kthreads_online_cpu, NULL);
939 }
940 early_initcall(kthreads_init);
941
__kthread_init_worker(struct kthread_worker * worker,const char * name,struct lock_class_key * key)942 void __kthread_init_worker(struct kthread_worker *worker,
943 const char *name,
944 struct lock_class_key *key)
945 {
946 memset(worker, 0, sizeof(struct kthread_worker));
947 raw_spin_lock_init(&worker->lock);
948 lockdep_set_class_and_name(&worker->lock, key, name);
949 INIT_LIST_HEAD(&worker->work_list);
950 INIT_LIST_HEAD(&worker->delayed_work_list);
951 }
952 EXPORT_SYMBOL_GPL(__kthread_init_worker);
953
954 /**
955 * kthread_worker_fn - kthread function to process kthread_worker
956 * @worker_ptr: pointer to initialized kthread_worker
957 *
958 * This function implements the main cycle of kthread worker. It processes
959 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
960 * is empty.
961 *
962 * The works are not allowed to keep any locks, disable preemption or interrupts
963 * when they finish. There is defined a safe point for freezing when one work
964 * finishes and before a new one is started.
965 *
966 * Also the works must not be handled by more than one worker at the same time,
967 * see also kthread_queue_work().
968 */
kthread_worker_fn(void * worker_ptr)969 int kthread_worker_fn(void *worker_ptr)
970 {
971 struct kthread_worker *worker = worker_ptr;
972 struct kthread_work *work;
973
974 /*
975 * FIXME: Update the check and remove the assignment when all kthread
976 * worker users are created using kthread_create_worker*() functions.
977 */
978 WARN_ON(worker->task && worker->task != current);
979 worker->task = current;
980
981 if (worker->flags & KTW_FREEZABLE)
982 set_freezable();
983
984 repeat:
985 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
986
987 if (kthread_should_stop()) {
988 __set_current_state(TASK_RUNNING);
989 raw_spin_lock_irq(&worker->lock);
990 worker->task = NULL;
991 raw_spin_unlock_irq(&worker->lock);
992 return 0;
993 }
994
995 work = NULL;
996 raw_spin_lock_irq(&worker->lock);
997 if (!list_empty(&worker->work_list)) {
998 work = list_first_entry(&worker->work_list,
999 struct kthread_work, node);
1000 list_del_init(&work->node);
1001 }
1002 worker->current_work = work;
1003 raw_spin_unlock_irq(&worker->lock);
1004
1005 if (work) {
1006 kthread_work_func_t func = work->func;
1007 __set_current_state(TASK_RUNNING);
1008 trace_sched_kthread_work_execute_start(work);
1009 work->func(work);
1010 /*
1011 * Avoid dereferencing work after this point. The trace
1012 * event only cares about the address.
1013 */
1014 trace_sched_kthread_work_execute_end(work, func);
1015 } else if (!freezing(current)) {
1016 schedule();
1017 } else {
1018 /*
1019 * Handle the case where the current remains
1020 * TASK_INTERRUPTIBLE. try_to_freeze() expects
1021 * the current to be TASK_RUNNING.
1022 */
1023 __set_current_state(TASK_RUNNING);
1024 }
1025
1026 try_to_freeze();
1027 cond_resched();
1028 goto repeat;
1029 }
1030 EXPORT_SYMBOL_GPL(kthread_worker_fn);
1031
1032 static __printf(3, 0) struct kthread_worker *
__kthread_create_worker_on_node(unsigned int flags,int node,const char namefmt[],va_list args)1033 __kthread_create_worker_on_node(unsigned int flags, int node,
1034 const char namefmt[], va_list args)
1035 {
1036 struct kthread_worker *worker;
1037 struct task_struct *task;
1038
1039 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1040 if (!worker)
1041 return ERR_PTR(-ENOMEM);
1042
1043 kthread_init_worker(worker);
1044
1045 task = __kthread_create_on_node(kthread_worker_fn, worker,
1046 node, namefmt, args);
1047 if (IS_ERR(task))
1048 goto fail_task;
1049
1050 worker->flags = flags;
1051 worker->task = task;
1052
1053 return worker;
1054
1055 fail_task:
1056 kfree(worker);
1057 return ERR_CAST(task);
1058 }
1059
1060 /**
1061 * kthread_create_worker_on_node - create a kthread worker
1062 * @flags: flags modifying the default behavior of the worker
1063 * @node: task structure for the thread is allocated on this node
1064 * @namefmt: printf-style name for the kthread worker (task).
1065 *
1066 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
1067 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
1068 * when the caller was killed by a fatal signal.
1069 */
1070 struct kthread_worker *
kthread_create_worker_on_node(unsigned int flags,int node,const char namefmt[],...)1071 kthread_create_worker_on_node(unsigned int flags, int node, const char namefmt[], ...)
1072 {
1073 struct kthread_worker *worker;
1074 va_list args;
1075
1076 va_start(args, namefmt);
1077 worker = __kthread_create_worker_on_node(flags, node, namefmt, args);
1078 va_end(args);
1079
1080 return worker;
1081 }
1082 EXPORT_SYMBOL(kthread_create_worker_on_node);
1083
1084 /**
1085 * kthread_create_worker_on_cpu - create a kthread worker and bind it
1086 * to a given CPU and the associated NUMA node.
1087 * @cpu: CPU number
1088 * @flags: flags modifying the default behavior of the worker
1089 * @namefmt: printf-style name for the thread. Format is restricted
1090 * to "name.*%u". Code fills in cpu number.
1091 *
1092 * Use a valid CPU number if you want to bind the kthread worker
1093 * to the given CPU and the associated NUMA node.
1094 *
1095 * A good practice is to add the cpu number also into the worker name.
1096 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
1097 *
1098 * CPU hotplug:
1099 * The kthread worker API is simple and generic. It just provides a way
1100 * to create, use, and destroy workers.
1101 *
1102 * It is up to the API user how to handle CPU hotplug. They have to decide
1103 * how to handle pending work items, prevent queuing new ones, and
1104 * restore the functionality when the CPU goes off and on. There are a
1105 * few catches:
1106 *
1107 * - CPU affinity gets lost when it is scheduled on an offline CPU.
1108 *
1109 * - The worker might not exist when the CPU was off when the user
1110 * created the workers.
1111 *
1112 * Good practice is to implement two CPU hotplug callbacks and to
1113 * destroy/create the worker when the CPU goes down/up.
1114 *
1115 * Return:
1116 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
1117 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
1118 * when the caller was killed by a fatal signal.
1119 */
1120 struct kthread_worker *
kthread_create_worker_on_cpu(int cpu,unsigned int flags,const char namefmt[])1121 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
1122 const char namefmt[])
1123 {
1124 struct kthread_worker *worker;
1125
1126 worker = kthread_create_worker_on_node(flags, cpu_to_node(cpu), namefmt, cpu);
1127 if (!IS_ERR(worker))
1128 kthread_bind(worker->task, cpu);
1129
1130 return worker;
1131 }
1132 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
1133
1134 /*
1135 * Returns true when the work could not be queued at the moment.
1136 * It happens when it is already pending in a worker list
1137 * or when it is being cancelled.
1138 */
queuing_blocked(struct kthread_worker * worker,struct kthread_work * work)1139 static inline bool queuing_blocked(struct kthread_worker *worker,
1140 struct kthread_work *work)
1141 {
1142 lockdep_assert_held(&worker->lock);
1143
1144 return !list_empty(&work->node) || work->canceling;
1145 }
1146
kthread_insert_work_sanity_check(struct kthread_worker * worker,struct kthread_work * work)1147 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
1148 struct kthread_work *work)
1149 {
1150 lockdep_assert_held(&worker->lock);
1151 WARN_ON_ONCE(!list_empty(&work->node));
1152 /* Do not use a work with >1 worker, see kthread_queue_work() */
1153 WARN_ON_ONCE(work->worker && work->worker != worker);
1154 }
1155
1156 /* insert @work before @pos in @worker */
kthread_insert_work(struct kthread_worker * worker,struct kthread_work * work,struct list_head * pos)1157 static void kthread_insert_work(struct kthread_worker *worker,
1158 struct kthread_work *work,
1159 struct list_head *pos)
1160 {
1161 kthread_insert_work_sanity_check(worker, work);
1162
1163 trace_sched_kthread_work_queue_work(worker, work);
1164
1165 list_add_tail(&work->node, pos);
1166 work->worker = worker;
1167 if (!worker->current_work && likely(worker->task))
1168 wake_up_process(worker->task);
1169 }
1170
1171 /**
1172 * kthread_queue_work - queue a kthread_work
1173 * @worker: target kthread_worker
1174 * @work: kthread_work to queue
1175 *
1176 * Queue @work to work processor @task for async execution. @task
1177 * must have been created with kthread_create_worker(). Returns %true
1178 * if @work was successfully queued, %false if it was already pending.
1179 *
1180 * Reinitialize the work if it needs to be used by another worker.
1181 * For example, when the worker was stopped and started again.
1182 */
kthread_queue_work(struct kthread_worker * worker,struct kthread_work * work)1183 bool kthread_queue_work(struct kthread_worker *worker,
1184 struct kthread_work *work)
1185 {
1186 bool ret = false;
1187 unsigned long flags;
1188
1189 raw_spin_lock_irqsave(&worker->lock, flags);
1190 if (!queuing_blocked(worker, work)) {
1191 kthread_insert_work(worker, work, &worker->work_list);
1192 ret = true;
1193 }
1194 raw_spin_unlock_irqrestore(&worker->lock, flags);
1195 return ret;
1196 }
1197 EXPORT_SYMBOL_GPL(kthread_queue_work);
1198
1199 /**
1200 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1201 * delayed work when the timer expires.
1202 * @t: pointer to the expired timer
1203 *
1204 * The format of the function is defined by struct timer_list.
1205 * It should have been called from irqsafe timer with irq already off.
1206 */
kthread_delayed_work_timer_fn(struct timer_list * t)1207 void kthread_delayed_work_timer_fn(struct timer_list *t)
1208 {
1209 struct kthread_delayed_work *dwork = timer_container_of(dwork, t,
1210 timer);
1211 struct kthread_work *work = &dwork->work;
1212 struct kthread_worker *worker = work->worker;
1213 unsigned long flags;
1214
1215 /*
1216 * This might happen when a pending work is reinitialized.
1217 * It means that it is used a wrong way.
1218 */
1219 if (WARN_ON_ONCE(!worker))
1220 return;
1221
1222 raw_spin_lock_irqsave(&worker->lock, flags);
1223 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1224 WARN_ON_ONCE(work->worker != worker);
1225
1226 /* Move the work from worker->delayed_work_list. */
1227 WARN_ON_ONCE(list_empty(&work->node));
1228 list_del_init(&work->node);
1229 if (!work->canceling)
1230 kthread_insert_work(worker, work, &worker->work_list);
1231
1232 raw_spin_unlock_irqrestore(&worker->lock, flags);
1233 }
1234 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1235
__kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1236 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1237 struct kthread_delayed_work *dwork,
1238 unsigned long delay)
1239 {
1240 struct timer_list *timer = &dwork->timer;
1241 struct kthread_work *work = &dwork->work;
1242
1243 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1244
1245 /*
1246 * If @delay is 0, queue @dwork->work immediately. This is for
1247 * both optimization and correctness. The earliest @timer can
1248 * expire is on the closest next tick and delayed_work users depend
1249 * on that there's no such delay when @delay is 0.
1250 */
1251 if (!delay) {
1252 kthread_insert_work(worker, work, &worker->work_list);
1253 return;
1254 }
1255
1256 /* Be paranoid and try to detect possible races already now. */
1257 kthread_insert_work_sanity_check(worker, work);
1258
1259 list_add(&work->node, &worker->delayed_work_list);
1260 work->worker = worker;
1261 timer->expires = jiffies + delay;
1262 add_timer(timer);
1263 }
1264
1265 /**
1266 * kthread_queue_delayed_work - queue the associated kthread work
1267 * after a delay.
1268 * @worker: target kthread_worker
1269 * @dwork: kthread_delayed_work to queue
1270 * @delay: number of jiffies to wait before queuing
1271 *
1272 * If the work has not been pending it starts a timer that will queue
1273 * the work after the given @delay. If @delay is zero, it queues the
1274 * work immediately.
1275 *
1276 * Return: %false if the @work has already been pending. It means that
1277 * either the timer was running or the work was queued. It returns %true
1278 * otherwise.
1279 */
kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1280 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1281 struct kthread_delayed_work *dwork,
1282 unsigned long delay)
1283 {
1284 struct kthread_work *work = &dwork->work;
1285 unsigned long flags;
1286 bool ret = false;
1287
1288 raw_spin_lock_irqsave(&worker->lock, flags);
1289
1290 if (!queuing_blocked(worker, work)) {
1291 __kthread_queue_delayed_work(worker, dwork, delay);
1292 ret = true;
1293 }
1294
1295 raw_spin_unlock_irqrestore(&worker->lock, flags);
1296 return ret;
1297 }
1298 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1299
1300 struct kthread_flush_work {
1301 struct kthread_work work;
1302 struct completion done;
1303 };
1304
kthread_flush_work_fn(struct kthread_work * work)1305 static void kthread_flush_work_fn(struct kthread_work *work)
1306 {
1307 struct kthread_flush_work *fwork =
1308 container_of(work, struct kthread_flush_work, work);
1309 complete(&fwork->done);
1310 }
1311
1312 /**
1313 * kthread_flush_work - flush a kthread_work
1314 * @work: work to flush
1315 *
1316 * If @work is queued or executing, wait for it to finish execution.
1317 */
kthread_flush_work(struct kthread_work * work)1318 void kthread_flush_work(struct kthread_work *work)
1319 {
1320 struct kthread_flush_work fwork = {
1321 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1322 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1323 };
1324 struct kthread_worker *worker;
1325 bool noop = false;
1326
1327 worker = work->worker;
1328 if (!worker)
1329 return;
1330
1331 raw_spin_lock_irq(&worker->lock);
1332 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1333 WARN_ON_ONCE(work->worker != worker);
1334
1335 if (!list_empty(&work->node))
1336 kthread_insert_work(worker, &fwork.work, work->node.next);
1337 else if (worker->current_work == work)
1338 kthread_insert_work(worker, &fwork.work,
1339 worker->work_list.next);
1340 else
1341 noop = true;
1342
1343 raw_spin_unlock_irq(&worker->lock);
1344
1345 if (!noop)
1346 wait_for_completion(&fwork.done);
1347 }
1348 EXPORT_SYMBOL_GPL(kthread_flush_work);
1349
1350 /*
1351 * Make sure that the timer is neither set nor running and could
1352 * not manipulate the work list_head any longer.
1353 *
1354 * The function is called under worker->lock. The lock is temporary
1355 * released but the timer can't be set again in the meantime.
1356 */
kthread_cancel_delayed_work_timer(struct kthread_work * work,unsigned long * flags)1357 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1358 unsigned long *flags)
1359 {
1360 struct kthread_delayed_work *dwork =
1361 container_of(work, struct kthread_delayed_work, work);
1362 struct kthread_worker *worker = work->worker;
1363
1364 /*
1365 * timer_delete_sync() must be called to make sure that the timer
1366 * callback is not running. The lock must be temporary released
1367 * to avoid a deadlock with the callback. In the meantime,
1368 * any queuing is blocked by setting the canceling counter.
1369 */
1370 work->canceling++;
1371 raw_spin_unlock_irqrestore(&worker->lock, *flags);
1372 timer_delete_sync(&dwork->timer);
1373 raw_spin_lock_irqsave(&worker->lock, *flags);
1374 work->canceling--;
1375 }
1376
1377 /*
1378 * This function removes the work from the worker queue.
1379 *
1380 * It is called under worker->lock. The caller must make sure that
1381 * the timer used by delayed work is not running, e.g. by calling
1382 * kthread_cancel_delayed_work_timer().
1383 *
1384 * The work might still be in use when this function finishes. See the
1385 * current_work proceed by the worker.
1386 *
1387 * Return: %true if @work was pending and successfully canceled,
1388 * %false if @work was not pending
1389 */
__kthread_cancel_work(struct kthread_work * work)1390 static bool __kthread_cancel_work(struct kthread_work *work)
1391 {
1392 /*
1393 * Try to remove the work from a worker list. It might either
1394 * be from worker->work_list or from worker->delayed_work_list.
1395 */
1396 if (!list_empty(&work->node)) {
1397 list_del_init(&work->node);
1398 return true;
1399 }
1400
1401 return false;
1402 }
1403
1404 /**
1405 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1406 * @worker: kthread worker to use
1407 * @dwork: kthread delayed work to queue
1408 * @delay: number of jiffies to wait before queuing
1409 *
1410 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1411 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1412 * @work is guaranteed to be queued immediately.
1413 *
1414 * Return: %false if @dwork was idle and queued, %true otherwise.
1415 *
1416 * A special case is when the work is being canceled in parallel.
1417 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1418 * or yet another kthread_mod_delayed_work() call. We let the other command
1419 * win and return %true here. The return value can be used for reference
1420 * counting and the number of queued works stays the same. Anyway, the caller
1421 * is supposed to synchronize these operations a reasonable way.
1422 *
1423 * This function is safe to call from any context including IRQ handler.
1424 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1425 * for details.
1426 */
kthread_mod_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1427 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1428 struct kthread_delayed_work *dwork,
1429 unsigned long delay)
1430 {
1431 struct kthread_work *work = &dwork->work;
1432 unsigned long flags;
1433 int ret;
1434
1435 raw_spin_lock_irqsave(&worker->lock, flags);
1436
1437 /* Do not bother with canceling when never queued. */
1438 if (!work->worker) {
1439 ret = false;
1440 goto fast_queue;
1441 }
1442
1443 /* Work must not be used with >1 worker, see kthread_queue_work() */
1444 WARN_ON_ONCE(work->worker != worker);
1445
1446 /*
1447 * Temporary cancel the work but do not fight with another command
1448 * that is canceling the work as well.
1449 *
1450 * It is a bit tricky because of possible races with another
1451 * mod_delayed_work() and cancel_delayed_work() callers.
1452 *
1453 * The timer must be canceled first because worker->lock is released
1454 * when doing so. But the work can be removed from the queue (list)
1455 * only when it can be queued again so that the return value can
1456 * be used for reference counting.
1457 */
1458 kthread_cancel_delayed_work_timer(work, &flags);
1459 if (work->canceling) {
1460 /* The number of works in the queue does not change. */
1461 ret = true;
1462 goto out;
1463 }
1464 ret = __kthread_cancel_work(work);
1465
1466 fast_queue:
1467 __kthread_queue_delayed_work(worker, dwork, delay);
1468 out:
1469 raw_spin_unlock_irqrestore(&worker->lock, flags);
1470 return ret;
1471 }
1472 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1473
__kthread_cancel_work_sync(struct kthread_work * work,bool is_dwork)1474 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1475 {
1476 struct kthread_worker *worker = work->worker;
1477 unsigned long flags;
1478 int ret = false;
1479
1480 if (!worker)
1481 goto out;
1482
1483 raw_spin_lock_irqsave(&worker->lock, flags);
1484 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1485 WARN_ON_ONCE(work->worker != worker);
1486
1487 if (is_dwork)
1488 kthread_cancel_delayed_work_timer(work, &flags);
1489
1490 ret = __kthread_cancel_work(work);
1491
1492 if (worker->current_work != work)
1493 goto out_fast;
1494
1495 /*
1496 * The work is in progress and we need to wait with the lock released.
1497 * In the meantime, block any queuing by setting the canceling counter.
1498 */
1499 work->canceling++;
1500 raw_spin_unlock_irqrestore(&worker->lock, flags);
1501 kthread_flush_work(work);
1502 raw_spin_lock_irqsave(&worker->lock, flags);
1503 work->canceling--;
1504
1505 out_fast:
1506 raw_spin_unlock_irqrestore(&worker->lock, flags);
1507 out:
1508 return ret;
1509 }
1510
1511 /**
1512 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1513 * @work: the kthread work to cancel
1514 *
1515 * Cancel @work and wait for its execution to finish. This function
1516 * can be used even if the work re-queues itself. On return from this
1517 * function, @work is guaranteed to be not pending or executing on any CPU.
1518 *
1519 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1520 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1521 *
1522 * The caller must ensure that the worker on which @work was last
1523 * queued can't be destroyed before this function returns.
1524 *
1525 * Return: %true if @work was pending, %false otherwise.
1526 */
kthread_cancel_work_sync(struct kthread_work * work)1527 bool kthread_cancel_work_sync(struct kthread_work *work)
1528 {
1529 return __kthread_cancel_work_sync(work, false);
1530 }
1531 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1532
1533 /**
1534 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1535 * wait for it to finish.
1536 * @dwork: the kthread delayed work to cancel
1537 *
1538 * This is kthread_cancel_work_sync() for delayed works.
1539 *
1540 * Return: %true if @dwork was pending, %false otherwise.
1541 */
kthread_cancel_delayed_work_sync(struct kthread_delayed_work * dwork)1542 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1543 {
1544 return __kthread_cancel_work_sync(&dwork->work, true);
1545 }
1546 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1547
1548 /**
1549 * kthread_flush_worker - flush all current works on a kthread_worker
1550 * @worker: worker to flush
1551 *
1552 * Wait until all currently executing or pending works on @worker are
1553 * finished.
1554 */
kthread_flush_worker(struct kthread_worker * worker)1555 void kthread_flush_worker(struct kthread_worker *worker)
1556 {
1557 struct kthread_flush_work fwork = {
1558 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1559 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1560 };
1561
1562 kthread_queue_work(worker, &fwork.work);
1563 wait_for_completion(&fwork.done);
1564 }
1565 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1566
1567 /**
1568 * kthread_destroy_worker - destroy a kthread worker
1569 * @worker: worker to be destroyed
1570 *
1571 * Flush and destroy @worker. The simple flush is enough because the kthread
1572 * worker API is used only in trivial scenarios. There are no multi-step state
1573 * machines needed.
1574 *
1575 * Note that this function is not responsible for handling delayed work, so
1576 * caller should be responsible for queuing or canceling all delayed work items
1577 * before invoke this function.
1578 */
kthread_destroy_worker(struct kthread_worker * worker)1579 void kthread_destroy_worker(struct kthread_worker *worker)
1580 {
1581 struct task_struct *task;
1582
1583 task = worker->task;
1584 if (WARN_ON(!task))
1585 return;
1586
1587 kthread_flush_worker(worker);
1588 kthread_stop(task);
1589 WARN_ON(!list_empty(&worker->delayed_work_list));
1590 WARN_ON(!list_empty(&worker->work_list));
1591 kfree(worker);
1592 }
1593 EXPORT_SYMBOL(kthread_destroy_worker);
1594
1595 /**
1596 * kthread_use_mm - make the calling kthread operate on an address space
1597 * @mm: address space to operate on
1598 */
kthread_use_mm(struct mm_struct * mm)1599 void kthread_use_mm(struct mm_struct *mm)
1600 {
1601 struct mm_struct *active_mm;
1602 struct task_struct *tsk = current;
1603
1604 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1605 WARN_ON_ONCE(tsk->mm);
1606
1607 /*
1608 * It is possible for mm to be the same as tsk->active_mm, but
1609 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1610 * because these references are not equivalent.
1611 */
1612 mmgrab(mm);
1613
1614 task_lock(tsk);
1615 /* Hold off tlb flush IPIs while switching mm's */
1616 local_irq_disable();
1617 active_mm = tsk->active_mm;
1618 tsk->active_mm = mm;
1619 tsk->mm = mm;
1620 membarrier_update_current_mm(mm);
1621 switch_mm_irqs_off(active_mm, mm, tsk);
1622 local_irq_enable();
1623 task_unlock(tsk);
1624 #ifdef finish_arch_post_lock_switch
1625 finish_arch_post_lock_switch();
1626 #endif
1627
1628 /*
1629 * When a kthread starts operating on an address space, the loop
1630 * in membarrier_{private,global}_expedited() may not observe
1631 * that tsk->mm, and not issue an IPI. Membarrier requires a
1632 * memory barrier after storing to tsk->mm, before accessing
1633 * user-space memory. A full memory barrier for membarrier
1634 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1635 * mmdrop_lazy_tlb().
1636 */
1637 mmdrop_lazy_tlb(active_mm);
1638 }
1639 EXPORT_SYMBOL_GPL(kthread_use_mm);
1640
1641 /**
1642 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1643 * @mm: address space to operate on
1644 */
kthread_unuse_mm(struct mm_struct * mm)1645 void kthread_unuse_mm(struct mm_struct *mm)
1646 {
1647 struct task_struct *tsk = current;
1648
1649 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1650 WARN_ON_ONCE(!tsk->mm);
1651
1652 task_lock(tsk);
1653 /*
1654 * When a kthread stops operating on an address space, the loop
1655 * in membarrier_{private,global}_expedited() may not observe
1656 * that tsk->mm, and not issue an IPI. Membarrier requires a
1657 * memory barrier after accessing user-space memory, before
1658 * clearing tsk->mm.
1659 */
1660 smp_mb__after_spinlock();
1661 local_irq_disable();
1662 tsk->mm = NULL;
1663 membarrier_update_current_mm(NULL);
1664 mmgrab_lazy_tlb(mm);
1665 /* active_mm is still 'mm' */
1666 enter_lazy_tlb(mm, tsk);
1667 local_irq_enable();
1668 task_unlock(tsk);
1669
1670 mmdrop(mm);
1671 }
1672 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1673
1674 #ifdef CONFIG_BLK_CGROUP
1675 /**
1676 * kthread_associate_blkcg - associate blkcg to current kthread
1677 * @css: the cgroup info
1678 *
1679 * Current thread must be a kthread. The thread is running jobs on behalf of
1680 * other threads. In some cases, we expect the jobs attach cgroup info of
1681 * original threads instead of that of current thread. This function stores
1682 * original thread's cgroup info in current kthread context for later
1683 * retrieval.
1684 */
kthread_associate_blkcg(struct cgroup_subsys_state * css)1685 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1686 {
1687 struct kthread *kthread;
1688
1689 if (!(current->flags & PF_KTHREAD))
1690 return;
1691 kthread = to_kthread(current);
1692 if (!kthread)
1693 return;
1694
1695 if (kthread->blkcg_css) {
1696 css_put(kthread->blkcg_css);
1697 kthread->blkcg_css = NULL;
1698 }
1699 if (css) {
1700 css_get(css);
1701 kthread->blkcg_css = css;
1702 }
1703 }
1704 EXPORT_SYMBOL(kthread_associate_blkcg);
1705
1706 /**
1707 * kthread_blkcg - get associated blkcg css of current kthread
1708 *
1709 * Current thread must be a kthread.
1710 */
kthread_blkcg(void)1711 struct cgroup_subsys_state *kthread_blkcg(void)
1712 {
1713 struct kthread *kthread;
1714
1715 if (current->flags & PF_KTHREAD) {
1716 kthread = to_kthread(current);
1717 if (kthread)
1718 return kthread->blkcg_css;
1719 }
1720 return NULL;
1721 }
1722 #endif
1723