xref: /linux/drivers/net/dsa/microchip/ksz8.c (revision 63467137ecc0ff6f804d53903ad87a2f0397a18b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8XXX series switch driver
4  *
5  * It supports the following switches:
6  * - KSZ8463
7  * - KSZ8863, KSZ8873 aka KSZ88X3
8  * - KSZ8895, KSZ8864 aka KSZ8895 family
9  * - KSZ8794, KSZ8795, KSZ8765 aka KSZ87XX
10  * Note that it does NOT support:
11  * - KSZ8563, KSZ8567 - see KSZ9477 driver
12  *
13  * Copyright (C) 2017 Microchip Technology Inc.
14  *	Tristram Ha <Tristram.Ha@microchip.com>
15  */
16 
17 #include <linux/bitfield.h>
18 #include <linux/delay.h>
19 #include <linux/export.h>
20 #include <linux/gpio.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <linux/micrel_phy.h>
29 #include <net/dsa.h>
30 #include <net/switchdev.h>
31 #include <linux/phylink.h>
32 
33 #include "ksz_common.h"
34 #include "ksz8_reg.h"
35 #include "ksz8.h"
36 
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)37 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
38 {
39 	ksz_rmw8(dev, addr, bits, set ? bits : 0);
40 }
41 
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)42 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
43 			 bool set)
44 {
45 	ksz_rmw8(dev, dev->dev_ops->get_port_addr(port, offset), bits,
46 		 set ? bits : 0);
47 }
48 
49 /**
50  * ksz8_ind_write8 - EEE/ACL/PME indirect register write
51  * @dev: The device structure.
52  * @table: Function & table select, register 110.
53  * @addr: Indirect access control, register 111.
54  * @data: The data to be written.
55  *
56  * This function performs an indirect register write for EEE, ACL or
57  * PME switch functionalities. Both 8-bit registers 110 and 111 are
58  * written at once with ksz_write16, using the serial multiple write
59  * functionality.
60  *
61  * Return: 0 on success, or an error code on failure.
62  */
ksz8_ind_write8(struct ksz_device * dev,u8 table,u16 addr,u8 data)63 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
64 {
65 	const u16 *regs;
66 	u16 ctrl_addr;
67 	int ret = 0;
68 
69 	regs = dev->info->regs;
70 
71 	mutex_lock(&dev->alu_mutex);
72 
73 	ctrl_addr = IND_ACC_TABLE(table) | addr;
74 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
75 	if (!ret)
76 		ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
77 
78 	mutex_unlock(&dev->alu_mutex);
79 
80 	return ret;
81 }
82 
83 /**
84  * ksz8_ind_read8 - EEE/ACL/PME indirect register read
85  * @dev: The device structure.
86  * @table: Function & table select, register 110.
87  * @addr: Indirect access control, register 111.
88  * @val: The value read.
89  *
90  * This function performs an indirect register read for EEE, ACL or
91  * PME switch functionalities. Both 8-bit registers 110 and 111 are
92  * written at once with ksz_write16, using the serial multiple write
93  * functionality.
94  *
95  * Return: 0 on success, or an error code on failure.
96  */
ksz8_ind_read8(struct ksz_device * dev,u8 table,u16 addr,u8 * val)97 static int ksz8_ind_read8(struct ksz_device *dev, u8 table, u16 addr, u8 *val)
98 {
99 	const u16 *regs;
100 	u16 ctrl_addr;
101 	int ret = 0;
102 
103 	regs = dev->info->regs;
104 
105 	mutex_lock(&dev->alu_mutex);
106 
107 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
108 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
109 	if (!ret)
110 		ret = ksz_read8(dev, regs[REG_IND_BYTE], val);
111 
112 	mutex_unlock(&dev->alu_mutex);
113 
114 	return ret;
115 }
116 
ksz8_pme_write8(struct ksz_device * dev,u32 reg,u8 value)117 int ksz8_pme_write8(struct ksz_device *dev, u32 reg, u8 value)
118 {
119 	return ksz8_ind_write8(dev, (u8)(reg >> 8), (u8)(reg), value);
120 }
121 
ksz8_pme_pread8(struct ksz_device * dev,int port,int offset,u8 * data)122 int ksz8_pme_pread8(struct ksz_device *dev, int port, int offset, u8 *data)
123 {
124 	u8 table = (u8)(offset >> 8 | (port + 1));
125 
126 	return ksz8_ind_read8(dev, table, (u8)(offset), data);
127 }
128 
ksz8_pme_pwrite8(struct ksz_device * dev,int port,int offset,u8 data)129 int ksz8_pme_pwrite8(struct ksz_device *dev, int port, int offset, u8 data)
130 {
131 	u8 table = (u8)(offset >> 8 | (port + 1));
132 
133 	return ksz8_ind_write8(dev, table, (u8)(offset), data);
134 }
135 
ksz8_reset_switch(struct ksz_device * dev)136 int ksz8_reset_switch(struct ksz_device *dev)
137 {
138 	if (ksz_is_ksz88x3(dev)) {
139 		/* reset switch */
140 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
141 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
142 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
143 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
144 	} else if (ksz_is_ksz8463(dev)) {
145 		ksz_cfg(dev, KSZ8463_REG_SW_RESET,
146 			KSZ8463_GLOBAL_SOFTWARE_RESET, true);
147 		ksz_cfg(dev, KSZ8463_REG_SW_RESET,
148 			KSZ8463_GLOBAL_SOFTWARE_RESET, false);
149 	} else {
150 		/* reset switch */
151 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
152 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
153 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
154 	}
155 
156 	return 0;
157 }
158 
ksz8863_change_mtu(struct ksz_device * dev,int frame_size)159 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
160 {
161 	u8 ctrl2 = 0;
162 
163 	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
164 		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
165 	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
166 		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
167 
168 	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
169 			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
170 }
171 
ksz8795_change_mtu(struct ksz_device * dev,int frame_size)172 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
173 {
174 	u8 ctrl1 = 0, ctrl2 = 0;
175 	int ret;
176 
177 	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
178 		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
179 	if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
180 		ctrl1 |= SW_HUGE_PACKET;
181 
182 	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
183 	if (ret)
184 		return ret;
185 
186 	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
187 }
188 
ksz8_change_mtu(struct ksz_device * dev,int port,int mtu)189 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
190 {
191 	u16 frame_size;
192 
193 	if (!dsa_is_cpu_port(dev->ds, port))
194 		return 0;
195 
196 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
197 
198 	switch (dev->chip_id) {
199 	case KSZ8795_CHIP_ID:
200 	case KSZ8794_CHIP_ID:
201 	case KSZ8765_CHIP_ID:
202 		return ksz8795_change_mtu(dev, frame_size);
203 	case KSZ8463_CHIP_ID:
204 	case KSZ88X3_CHIP_ID:
205 	case KSZ8864_CHIP_ID:
206 	case KSZ8895_CHIP_ID:
207 		return ksz8863_change_mtu(dev, frame_size);
208 	}
209 
210 	return -EOPNOTSUPP;
211 }
212 
ksz8_port_queue_split(struct ksz_device * dev,int port,int queues)213 static int ksz8_port_queue_split(struct ksz_device *dev, int port, int queues)
214 {
215 	u8 mask_4q, mask_2q;
216 	u8 reg_4q, reg_2q;
217 	u8 data_4q = 0;
218 	u8 data_2q = 0;
219 	int ret;
220 
221 	if (ksz_is_ksz88x3(dev)) {
222 		mask_4q = KSZ8873_PORT_4QUEUE_SPLIT_EN;
223 		mask_2q = KSZ8873_PORT_2QUEUE_SPLIT_EN;
224 		reg_4q = REG_PORT_CTRL_0;
225 		reg_2q = REG_PORT_CTRL_2;
226 
227 		/* KSZ8795 family switches have Weighted Fair Queueing (WFQ)
228 		 * enabled by default. Enable it for KSZ8873 family switches
229 		 * too. Default value for KSZ8873 family is strict priority,
230 		 * which should be enabled by using TC_SETUP_QDISC_ETS, not
231 		 * by default.
232 		 */
233 		ret = ksz_rmw8(dev, REG_SW_CTRL_3, WEIGHTED_FAIR_QUEUE_ENABLE,
234 			       WEIGHTED_FAIR_QUEUE_ENABLE);
235 		if (ret)
236 			return ret;
237 	} else if (ksz_is_ksz8463(dev)) {
238 		mask_4q = KSZ8873_PORT_4QUEUE_SPLIT_EN;
239 		mask_2q = KSZ8873_PORT_2QUEUE_SPLIT_EN;
240 		reg_4q = P1CR1;
241 		reg_2q = P1CR1 + 1;
242 	} else {
243 		mask_4q = KSZ8795_PORT_4QUEUE_SPLIT_EN;
244 		mask_2q = KSZ8795_PORT_2QUEUE_SPLIT_EN;
245 		reg_4q = REG_PORT_CTRL_13;
246 		reg_2q = REG_PORT_CTRL_0;
247 
248 		/* TODO: this is legacy from initial KSZ8795 driver, should be
249 		 * moved to appropriate place in the future.
250 		 */
251 		ret = ksz_rmw8(dev, REG_SW_CTRL_19,
252 			       SW_OUT_RATE_LIMIT_QUEUE_BASED,
253 			       SW_OUT_RATE_LIMIT_QUEUE_BASED);
254 		if (ret)
255 			return ret;
256 	}
257 
258 	if (queues == 4)
259 		data_4q = mask_4q;
260 	else if (queues == 2)
261 		data_2q = mask_2q;
262 
263 	ret = ksz_prmw8(dev, port, reg_4q, mask_4q, data_4q);
264 	if (ret)
265 		return ret;
266 
267 	return ksz_prmw8(dev, port, reg_2q, mask_2q, data_2q);
268 }
269 
ksz8_all_queues_split(struct ksz_device * dev,int queues)270 int ksz8_all_queues_split(struct ksz_device *dev, int queues)
271 {
272 	struct dsa_switch *ds = dev->ds;
273 	const struct dsa_port *dp;
274 
275 	dsa_switch_for_each_port(dp, ds) {
276 		int ret = ksz8_port_queue_split(dev, dp->index, queues);
277 
278 		if (ret)
279 			return ret;
280 	}
281 
282 	return 0;
283 }
284 
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)285 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
286 {
287 	const u32 *masks;
288 	const u16 *regs;
289 	u16 ctrl_addr;
290 	u32 data;
291 	u8 check;
292 	int loop;
293 
294 	masks = dev->info->masks;
295 	regs = dev->info->regs;
296 
297 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
298 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
299 
300 	mutex_lock(&dev->alu_mutex);
301 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
302 
303 	/* It is almost guaranteed to always read the valid bit because of
304 	 * slow SPI speed.
305 	 */
306 	for (loop = 2; loop > 0; loop--) {
307 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
308 
309 		if (check & masks[MIB_COUNTER_VALID]) {
310 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
311 			if (check & masks[MIB_COUNTER_OVERFLOW])
312 				*cnt += MIB_COUNTER_VALUE + 1;
313 			*cnt += data & MIB_COUNTER_VALUE;
314 			break;
315 		}
316 	}
317 	mutex_unlock(&dev->alu_mutex);
318 }
319 
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)320 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
321 			      u64 *dropped, u64 *cnt)
322 {
323 	const u32 *masks;
324 	const u16 *regs;
325 	u16 ctrl_addr;
326 	u32 data;
327 	u8 check;
328 	int loop;
329 
330 	masks = dev->info->masks;
331 	regs = dev->info->regs;
332 
333 	addr -= dev->info->reg_mib_cnt;
334 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
335 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
336 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
337 
338 	mutex_lock(&dev->alu_mutex);
339 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
340 
341 	/* It is almost guaranteed to always read the valid bit because of
342 	 * slow SPI speed.
343 	 */
344 	for (loop = 2; loop > 0; loop--) {
345 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
346 
347 		if (check & masks[MIB_COUNTER_VALID]) {
348 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
349 			if (addr < 2) {
350 				u64 total;
351 
352 				total = check & MIB_TOTAL_BYTES_H;
353 				total <<= 32;
354 				*cnt += total;
355 				*cnt += data;
356 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
357 					total = MIB_TOTAL_BYTES_H + 1;
358 					total <<= 32;
359 					*cnt += total;
360 				}
361 			} else {
362 				if (check & masks[MIB_COUNTER_OVERFLOW])
363 					*cnt += MIB_PACKET_DROPPED + 1;
364 				*cnt += data & MIB_PACKET_DROPPED;
365 			}
366 			break;
367 		}
368 	}
369 	mutex_unlock(&dev->alu_mutex);
370 }
371 
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)372 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
373 			      u64 *dropped, u64 *cnt)
374 {
375 	u32 *last = (u32 *)dropped;
376 	const u16 *regs;
377 	u16 ctrl_addr;
378 	u32 data;
379 	u32 cur;
380 
381 	regs = dev->info->regs;
382 
383 	addr -= dev->info->reg_mib_cnt;
384 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
385 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
386 	if (ksz_is_8895_family(dev) &&
387 	    ctrl_addr == KSZ8863_MIB_PACKET_DROPPED_RX_0)
388 		ctrl_addr = KSZ8895_MIB_PACKET_DROPPED_RX_0;
389 	ctrl_addr += port;
390 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
391 
392 	mutex_lock(&dev->alu_mutex);
393 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
394 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
395 	mutex_unlock(&dev->alu_mutex);
396 
397 	data &= MIB_PACKET_DROPPED;
398 	cur = last[addr];
399 	if (data != cur) {
400 		last[addr] = data;
401 		if (data < cur)
402 			data += MIB_PACKET_DROPPED + 1;
403 		data -= cur;
404 		*cnt += data;
405 	}
406 }
407 
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)408 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
409 		    u64 *dropped, u64 *cnt)
410 {
411 	if (is_ksz88xx(dev))
412 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
413 	else
414 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
415 }
416 
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)417 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
418 {
419 	if (is_ksz88xx(dev))
420 		return;
421 
422 	/* enable the port for flush/freeze function */
423 	if (freeze)
424 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
425 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
426 
427 	/* disable the port after freeze is done */
428 	if (!freeze)
429 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
430 }
431 
ksz8_port_init_cnt(struct ksz_device * dev,int port)432 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
433 {
434 	struct ksz_port_mib *mib = &dev->ports[port].mib;
435 	u64 *dropped;
436 
437 	/* For KSZ8795 family. */
438 	if (ksz_is_ksz87xx(dev)) {
439 		/* flush all enabled port MIB counters */
440 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
441 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
442 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
443 	}
444 
445 	mib->cnt_ptr = 0;
446 
447 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
448 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
449 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
450 					&mib->counters[mib->cnt_ptr]);
451 		++mib->cnt_ptr;
452 	}
453 
454 	/* last one in storage */
455 	dropped = &mib->counters[dev->info->mib_cnt];
456 
457 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
458 	while (mib->cnt_ptr < dev->info->mib_cnt) {
459 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
460 					dropped, &mib->counters[mib->cnt_ptr]);
461 		++mib->cnt_ptr;
462 	}
463 }
464 
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)465 static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
466 {
467 	const u16 *regs;
468 	u16 ctrl_addr;
469 	int ret;
470 
471 	regs = dev->info->regs;
472 
473 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
474 
475 	mutex_lock(&dev->alu_mutex);
476 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
477 	if (ret)
478 		goto unlock_alu;
479 
480 	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
481 unlock_alu:
482 	mutex_unlock(&dev->alu_mutex);
483 
484 	return ret;
485 }
486 
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)487 static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
488 {
489 	const u16 *regs;
490 	u16 ctrl_addr;
491 	int ret;
492 
493 	regs = dev->info->regs;
494 
495 	ctrl_addr = IND_ACC_TABLE(table) | addr;
496 
497 	mutex_lock(&dev->alu_mutex);
498 	ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
499 	if (ret)
500 		goto unlock_alu;
501 
502 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
503 unlock_alu:
504 	mutex_unlock(&dev->alu_mutex);
505 
506 	return ret;
507 }
508 
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)509 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
510 {
511 	int timeout = 100;
512 	const u32 *masks;
513 	const u16 *regs;
514 	int ret;
515 
516 	masks = dev->info->masks;
517 	regs = dev->info->regs;
518 
519 	do {
520 		ret = ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
521 		if (ret)
522 			return ret;
523 
524 		timeout--;
525 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
526 
527 	/* Entry is not ready for accessing. */
528 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY])
529 		return -ETIMEDOUT;
530 
531 	/* Entry is ready for accessing. */
532 	return ksz_read8(dev, regs[REG_IND_DATA_8], data);
533 }
534 
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u16 * entries)535 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
536 				u8 *fid, u8 *src_port, u16 *entries)
537 {
538 	u32 data_hi, data_lo;
539 	const u8 *shifts;
540 	const u32 *masks;
541 	const u16 *regs;
542 	u16 ctrl_addr;
543 	u64 buf = 0;
544 	u8 data;
545 	int cnt;
546 	int ret;
547 
548 	shifts = dev->info->shifts;
549 	masks = dev->info->masks;
550 	regs = dev->info->regs;
551 
552 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
553 
554 	mutex_lock(&dev->alu_mutex);
555 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
556 	if (ret)
557 		goto unlock_alu;
558 
559 	ret = ksz8_valid_dyn_entry(dev, &data);
560 	if (ret)
561 		goto unlock_alu;
562 
563 	if (data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY]) {
564 		*entries = 0;
565 		goto unlock_alu;
566 	}
567 
568 	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
569 	if (ret)
570 		goto unlock_alu;
571 
572 	data_hi = (u32)(buf >> 32);
573 	data_lo = (u32)buf;
574 
575 	/* Check out how many valid entry in the table. */
576 	cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
577 	cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
578 	cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
579 		shifts[DYNAMIC_MAC_ENTRIES];
580 	*entries = cnt + 1;
581 
582 	*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
583 		shifts[DYNAMIC_MAC_FID];
584 	*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
585 		shifts[DYNAMIC_MAC_SRC_PORT];
586 
587 	mac_addr[5] = (u8)data_lo;
588 	mac_addr[4] = (u8)(data_lo >> 8);
589 	mac_addr[3] = (u8)(data_lo >> 16);
590 	mac_addr[2] = (u8)(data_lo >> 24);
591 
592 	mac_addr[1] = (u8)data_hi;
593 	mac_addr[0] = (u8)(data_hi >> 8);
594 
595 unlock_alu:
596 	mutex_unlock(&dev->alu_mutex);
597 
598 	return ret;
599 }
600 
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu,bool * valid)601 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
602 				struct alu_struct *alu, bool *valid)
603 {
604 	u32 data_hi, data_lo;
605 	const u8 *shifts;
606 	const u32 *masks;
607 	u64 data;
608 	int ret;
609 
610 	shifts = dev->info->shifts;
611 	masks = dev->info->masks;
612 
613 	ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
614 	if (ret)
615 		return ret;
616 
617 	data_hi = data >> 32;
618 	data_lo = (u32)data;
619 
620 	if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
621 			 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
622 		*valid = false;
623 		return 0;
624 	}
625 
626 	alu->mac[5] = (u8)data_lo;
627 	alu->mac[4] = (u8)(data_lo >> 8);
628 	alu->mac[3] = (u8)(data_lo >> 16);
629 	alu->mac[2] = (u8)(data_lo >> 24);
630 	alu->mac[1] = (u8)data_hi;
631 	alu->mac[0] = (u8)(data_hi >> 8);
632 	alu->port_forward =
633 		(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
634 			shifts[STATIC_MAC_FWD_PORTS];
635 	alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
636 
637 	/* KSZ8795/KSZ8895 family switches have STATIC_MAC_TABLE_USE_FID and
638 	 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
639 	 * static MAC table compared to doing write.
640 	 */
641 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
642 		data_hi >>= 1;
643 	alu->is_static = true;
644 	alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
645 	alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
646 		shifts[STATIC_MAC_FID];
647 
648 	*valid = true;
649 
650 	return 0;
651 }
652 
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)653 static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
654 				struct alu_struct *alu)
655 {
656 	u32 data_hi, data_lo;
657 	const u8 *shifts;
658 	const u32 *masks;
659 	u64 data;
660 
661 	shifts = dev->info->shifts;
662 	masks = dev->info->masks;
663 
664 	data_lo = ((u32)alu->mac[2] << 24) |
665 		((u32)alu->mac[3] << 16) |
666 		((u32)alu->mac[4] << 8) | alu->mac[5];
667 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
668 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
669 
670 	if (alu->is_override)
671 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
672 	if (alu->is_use_fid) {
673 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
674 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
675 	}
676 	if (alu->is_static)
677 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
678 	else
679 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
680 
681 	data = (u64)data_hi << 32 | data_lo;
682 
683 	return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
684 }
685 
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)686 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
687 			   u8 *member, u8 *valid)
688 {
689 	const u8 *shifts;
690 	const u32 *masks;
691 
692 	shifts = dev->info->shifts;
693 	masks = dev->info->masks;
694 
695 	*fid = vlan & masks[VLAN_TABLE_FID];
696 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
697 			shifts[VLAN_TABLE_MEMBERSHIP_S];
698 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
699 }
700 
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)701 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
702 			 u16 *vlan)
703 {
704 	const u8 *shifts;
705 	const u32 *masks;
706 
707 	shifts = dev->info->shifts;
708 	masks = dev->info->masks;
709 
710 	*vlan = fid;
711 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
712 	if (valid)
713 		*vlan |= masks[VLAN_TABLE_VALID];
714 }
715 
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)716 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
717 {
718 	const u8 *shifts;
719 	u64 data;
720 	int i;
721 
722 	shifts = dev->info->shifts;
723 
724 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
725 	addr *= 4;
726 	for (i = 0; i < 4; i++) {
727 		dev->vlan_cache[addr + i].table[0] = (u16)data;
728 		data >>= shifts[VLAN_TABLE];
729 	}
730 }
731 
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)732 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
733 {
734 	int index;
735 	u16 *data;
736 	u16 addr;
737 	u64 buf;
738 
739 	data = (u16 *)&buf;
740 	addr = vid / 4;
741 	index = vid & 3;
742 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
743 	*vlan = data[index];
744 }
745 
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)746 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
747 {
748 	int index;
749 	u16 *data;
750 	u16 addr;
751 	u64 buf;
752 
753 	data = (u16 *)&buf;
754 	addr = vid / 4;
755 	index = vid & 3;
756 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
757 	data[index] = vlan;
758 	dev->vlan_cache[vid].table[0] = vlan;
759 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
760 }
761 
762 /**
763  * ksz879x_get_loopback - KSZ879x specific function to get loopback
764  *                        configuration status for a specific port
765  * @dev: Pointer to the device structure
766  * @port: Port number to query
767  * @val: Pointer to store the result
768  *
769  * This function reads the SMI registers to determine whether loopback mode
770  * is enabled for a specific port.
771  *
772  * Return: 0 on success, error code on failure.
773  */
ksz879x_get_loopback(struct ksz_device * dev,u16 port,u16 * val)774 static int ksz879x_get_loopback(struct ksz_device *dev, u16 port,
775 				u16 *val)
776 {
777 	u8 stat3;
778 	int ret;
779 
780 	ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, &stat3);
781 	if (ret)
782 		return ret;
783 
784 	if (stat3 & PORT_PHY_LOOPBACK)
785 		*val |= BMCR_LOOPBACK;
786 
787 	return 0;
788 }
789 
790 /**
791  * ksz879x_set_loopback - KSZ879x specific function  to set loopback mode for
792  *			  a specific port
793  * @dev: Pointer to the device structure.
794  * @port: Port number to modify.
795  * @val: Value indicating whether to enable or disable loopback mode.
796  *
797  * This function translates loopback bit of the BMCR register into the
798  * corresponding hardware register bit value and writes it to the SMI interface.
799  *
800  * Return: 0 on success, error code on failure.
801  */
ksz879x_set_loopback(struct ksz_device * dev,u16 port,u16 val)802 static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val)
803 {
804 	u8 stat3 = 0;
805 
806 	if (val & BMCR_LOOPBACK)
807 		stat3 |= PORT_PHY_LOOPBACK;
808 
809 	return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK,
810 			 stat3);
811 }
812 
813 /**
814  * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
815  *		     Control register (Reg. 31).
816  * @dev: The KSZ device instance.
817  * @port: The port number to be read.
818  * @val: The value read from the SMI interface.
819  *
820  * This function reads the SMI interface and translates the hardware register
821  * bit values into their corresponding control settings for a MIIM PHY Control
822  * register.
823  *
824  * Return: 0 on success, error code on failure.
825  */
ksz8_r_phy_ctrl(struct ksz_device * dev,int port,u16 * val)826 static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
827 {
828 	const u16 *regs = dev->info->regs;
829 	u8 reg_val;
830 	int ret;
831 
832 	*val = 0;
833 
834 	ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], &reg_val);
835 	if (ret < 0)
836 		return ret;
837 
838 	if (reg_val & PORT_MDIX_STATUS)
839 		*val |= KSZ886X_CTRL_MDIX_STAT;
840 
841 	ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, &reg_val);
842 	if (ret < 0)
843 		return ret;
844 
845 	if (reg_val & PORT_FORCE_LINK)
846 		*val |= KSZ886X_CTRL_FORCE_LINK;
847 
848 	if (reg_val & PORT_POWER_SAVING)
849 		*val |= KSZ886X_CTRL_PWRSAVE;
850 
851 	if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
852 		*val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
853 
854 	return 0;
855 }
856 
857 /**
858  * ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY
859  *		     Basic mode control register (Reg. 0).
860  * @dev: The KSZ device instance.
861  * @port: The port number to be read.
862  * @val: The value read from the SMI interface.
863  *
864  * This function reads the SMI interface and translates the hardware register
865  * bit values into their corresponding control settings for a MIIM PHY Basic
866  * mode control register.
867  *
868  * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
869  * -------------------------------------------------------------------
870  * MIIM Bit                    | KSZ8794 Reg/Bit             | KSZ8873 Reg/Bit
871  * ----------------------------+-----------------------------+----------------
872  * Bit 15 - Soft Reset         | 0xF/4                       | Not supported
873  * Bit 14 - Loopback           | 0xD/0 (MAC), 0xF/7 (PHY)    ~ 0xD/0 (PHY)
874  * Bit 13 - Force 100          | 0xC/6                       = 0xC/6
875  * Bit 12 - AN Enable          | 0xC/7 (reverse logic)       ~ 0xC/7
876  * Bit 11 - Power Down         | 0xD/3                       = 0xD/3
877  * Bit 10 - PHY Isolate        | 0xF/5                       | Not supported
878  * Bit 9 - Restart AN          | 0xD/5                       = 0xD/5
879  * Bit 8 - Force Full-Duplex   | 0xC/5                       = 0xC/5
880  * Bit 7 - Collision Test/Res. | Not supported               | Not supported
881  * Bit 6 - Reserved            | Not supported               | Not supported
882  * Bit 5 - Hp_mdix             | 0x9/7                       ~ 0xF/7
883  * Bit 4 - Force MDI           | 0xD/1                       = 0xD/1
884  * Bit 3 - Disable MDIX        | 0xD/2                       = 0xD/2
885  * Bit 2 - Disable Far-End F.  | ????                        | 0xD/4
886  * Bit 1 - Disable Transmit    | 0xD/6                       = 0xD/6
887  * Bit 0 - Disable LED         | 0xD/7                       = 0xD/7
888  * -------------------------------------------------------------------
889  *
890  * Return: 0 on success, error code on failure.
891  */
ksz8_r_phy_bmcr(struct ksz_device * dev,u16 port,u16 * val)892 static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val)
893 {
894 	const u16 *regs = dev->info->regs;
895 	u8 restart, speed, ctrl;
896 	int ret;
897 
898 	*val = 0;
899 
900 	ret = ksz_pread8(dev, port, regs[P_NEG_RESTART_CTRL], &restart);
901 	if (ret)
902 		return ret;
903 
904 	ret = ksz_pread8(dev, port, regs[P_SPEED_STATUS], &speed);
905 	if (ret)
906 		return ret;
907 
908 	ret = ksz_pread8(dev, port, regs[P_FORCE_CTRL], &ctrl);
909 	if (ret)
910 		return ret;
911 
912 	if (ctrl & PORT_FORCE_100_MBIT)
913 		*val |= BMCR_SPEED100;
914 
915 	if (ksz_is_ksz88x3(dev)) {
916 		if (restart & KSZ8873_PORT_PHY_LOOPBACK)
917 			*val |= BMCR_LOOPBACK;
918 
919 		if ((ctrl & PORT_AUTO_NEG_ENABLE))
920 			*val |= BMCR_ANENABLE;
921 	} else {
922 		ret = ksz879x_get_loopback(dev, port, val);
923 		if (ret)
924 			return ret;
925 
926 		if (!(ctrl & PORT_AUTO_NEG_DISABLE))
927 			*val |= BMCR_ANENABLE;
928 	}
929 
930 	if (restart & PORT_POWER_DOWN)
931 		*val |= BMCR_PDOWN;
932 
933 	if (restart & PORT_AUTO_NEG_RESTART)
934 		*val |= BMCR_ANRESTART;
935 
936 	if (ctrl & PORT_FORCE_FULL_DUPLEX)
937 		*val |= BMCR_FULLDPLX;
938 
939 	if (speed & PORT_HP_MDIX)
940 		*val |= KSZ886X_BMCR_HP_MDIX;
941 
942 	if (restart & PORT_FORCE_MDIX)
943 		*val |= KSZ886X_BMCR_FORCE_MDI;
944 
945 	if (restart & PORT_AUTO_MDIX_DISABLE)
946 		*val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
947 
948 	if (restart & PORT_TX_DISABLE)
949 		*val |= KSZ886X_BMCR_DISABLE_TRANSMIT;
950 
951 	if (restart & PORT_LED_OFF)
952 		*val |= KSZ886X_BMCR_DISABLE_LED;
953 
954 	return 0;
955 }
956 
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)957 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
958 {
959 	u8 ctrl, link, val1, val2;
960 	int processed = true;
961 	const u16 *regs;
962 	u16 data = 0;
963 	u16 p = phy;
964 	int ret;
965 
966 	regs = dev->info->regs;
967 
968 	switch (reg) {
969 	case MII_BMCR:
970 		ret = ksz8_r_phy_bmcr(dev, p, &data);
971 		if (ret)
972 			return ret;
973 		break;
974 	case MII_BMSR:
975 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
976 		if (ret)
977 			return ret;
978 
979 		data = BMSR_100FULL |
980 		       BMSR_100HALF |
981 		       BMSR_10FULL |
982 		       BMSR_10HALF |
983 		       BMSR_ANEGCAPABLE;
984 		if (link & PORT_AUTO_NEG_COMPLETE)
985 			data |= BMSR_ANEGCOMPLETE;
986 		if (link & PORT_STAT_LINK_GOOD)
987 			data |= BMSR_LSTATUS;
988 		break;
989 	case MII_PHYSID1:
990 		data = KSZ8795_ID_HI;
991 		break;
992 	case MII_PHYSID2:
993 		if (ksz_is_ksz88x3(dev))
994 			data = KSZ8863_ID_LO;
995 		else
996 			data = KSZ8795_ID_LO;
997 		break;
998 	case MII_ADVERTISE:
999 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
1000 		if (ret)
1001 			return ret;
1002 
1003 		data = ADVERTISE_CSMA;
1004 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
1005 			data |= ADVERTISE_PAUSE_CAP;
1006 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
1007 			data |= ADVERTISE_100FULL;
1008 		if (ctrl & PORT_AUTO_NEG_100BTX)
1009 			data |= ADVERTISE_100HALF;
1010 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
1011 			data |= ADVERTISE_10FULL;
1012 		if (ctrl & PORT_AUTO_NEG_10BT)
1013 			data |= ADVERTISE_10HALF;
1014 		break;
1015 	case MII_LPA:
1016 		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
1017 		if (ret)
1018 			return ret;
1019 
1020 		data = LPA_SLCT;
1021 		if (link & PORT_REMOTE_SYM_PAUSE)
1022 			data |= LPA_PAUSE_CAP;
1023 		if (link & PORT_REMOTE_100BTX_FD)
1024 			data |= LPA_100FULL;
1025 		if (link & PORT_REMOTE_100BTX)
1026 			data |= LPA_100HALF;
1027 		if (link & PORT_REMOTE_10BT_FD)
1028 			data |= LPA_10FULL;
1029 		if (link & PORT_REMOTE_10BT)
1030 			data |= LPA_10HALF;
1031 		if (data & ~LPA_SLCT)
1032 			data |= LPA_LPACK;
1033 		break;
1034 	case PHY_REG_LINK_MD:
1035 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
1036 		if (ret)
1037 			return ret;
1038 
1039 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
1040 		if (ret)
1041 			return ret;
1042 
1043 		if (val1 & PORT_START_CABLE_DIAG)
1044 			data |= PHY_START_CABLE_DIAG;
1045 
1046 		if (val1 & PORT_CABLE_10M_SHORT)
1047 			data |= PHY_CABLE_10M_SHORT;
1048 
1049 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
1050 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
1051 
1052 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
1053 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
1054 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
1055 		break;
1056 	case PHY_REG_PHY_CTRL:
1057 		ret = ksz8_r_phy_ctrl(dev, p, &data);
1058 		if (ret)
1059 			return ret;
1060 
1061 		break;
1062 	default:
1063 		processed = false;
1064 		break;
1065 	}
1066 	if (processed)
1067 		*val = data;
1068 
1069 	return 0;
1070 }
1071 
1072 /**
1073  * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
1074  *		     Control register (Reg. 31).
1075  * @dev: The KSZ device instance.
1076  * @port: The port number to be configured.
1077  * @val: The register value to be written.
1078  *
1079  * This function translates control settings from a MIIM PHY Control register
1080  * into their corresponding hardware register bit values for the SMI
1081  * interface.
1082  *
1083  * Return: 0 on success, error code on failure.
1084  */
ksz8_w_phy_ctrl(struct ksz_device * dev,int port,u16 val)1085 static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
1086 {
1087 	u8 reg_val = 0;
1088 	int ret;
1089 
1090 	if (val & KSZ886X_CTRL_FORCE_LINK)
1091 		reg_val |= PORT_FORCE_LINK;
1092 
1093 	if (val & KSZ886X_CTRL_PWRSAVE)
1094 		reg_val |= PORT_POWER_SAVING;
1095 
1096 	if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
1097 		reg_val |= PORT_PHY_REMOTE_LOOPBACK;
1098 
1099 	ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
1100 			PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
1101 	return ret;
1102 }
1103 
1104 /**
1105  * ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY
1106  *		     Basic mode control register (Reg. 0).
1107  * @dev: The KSZ device instance.
1108  * @port: The port number to be configured.
1109  * @val: The register value to be written.
1110  *
1111  * This function translates control settings from a MIIM PHY Basic mode control
1112  * register into their corresponding hardware register bit values for the SMI
1113  * interface.
1114  *
1115  * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
1116  * -------------------------------------------------------------------
1117  * MIIM Bit                    | KSZ8794 Reg/Bit             | KSZ8873 Reg/Bit
1118  * ----------------------------+-----------------------------+----------------
1119  * Bit 15 - Soft Reset         | 0xF/4                       | Not supported
1120  * Bit 14 - Loopback           | 0xD/0 (MAC), 0xF/7 (PHY)    ~ 0xD/0 (PHY)
1121  * Bit 13 - Force 100          | 0xC/6                       = 0xC/6
1122  * Bit 12 - AN Enable          | 0xC/7 (reverse logic)       ~ 0xC/7
1123  * Bit 11 - Power Down         | 0xD/3                       = 0xD/3
1124  * Bit 10 - PHY Isolate        | 0xF/5                       | Not supported
1125  * Bit 9 - Restart AN          | 0xD/5                       = 0xD/5
1126  * Bit 8 - Force Full-Duplex   | 0xC/5                       = 0xC/5
1127  * Bit 7 - Collision Test/Res. | Not supported               | Not supported
1128  * Bit 6 - Reserved            | Not supported               | Not supported
1129  * Bit 5 - Hp_mdix             | 0x9/7                       ~ 0xF/7
1130  * Bit 4 - Force MDI           | 0xD/1                       = 0xD/1
1131  * Bit 3 - Disable MDIX        | 0xD/2                       = 0xD/2
1132  * Bit 2 - Disable Far-End F.  | ????                        | 0xD/4
1133  * Bit 1 - Disable Transmit    | 0xD/6                       = 0xD/6
1134  * Bit 0 - Disable LED         | 0xD/7                       = 0xD/7
1135  * -------------------------------------------------------------------
1136  *
1137  * Return: 0 on success, error code on failure.
1138  */
ksz8_w_phy_bmcr(struct ksz_device * dev,u16 port,u16 val)1139 static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val)
1140 {
1141 	u8 restart, speed, ctrl, restart_mask;
1142 	const u16 *regs = dev->info->regs;
1143 	int ret;
1144 
1145 	/* Do not support PHY reset function. */
1146 	if (val & BMCR_RESET)
1147 		return 0;
1148 
1149 	speed = 0;
1150 	if (val & KSZ886X_BMCR_HP_MDIX)
1151 		speed |= PORT_HP_MDIX;
1152 
1153 	ret = ksz_prmw8(dev, port, regs[P_SPEED_STATUS], PORT_HP_MDIX, speed);
1154 	if (ret)
1155 		return ret;
1156 
1157 	ctrl = 0;
1158 	if (ksz_is_ksz88x3(dev)) {
1159 		if ((val & BMCR_ANENABLE))
1160 			ctrl |= PORT_AUTO_NEG_ENABLE;
1161 	} else {
1162 		if (!(val & BMCR_ANENABLE))
1163 			ctrl |= PORT_AUTO_NEG_DISABLE;
1164 
1165 		/* Fiber port does not support auto-negotiation. */
1166 		if (dev->ports[port].fiber)
1167 			ctrl |= PORT_AUTO_NEG_DISABLE;
1168 	}
1169 
1170 	if (val & BMCR_SPEED100)
1171 		ctrl |= PORT_FORCE_100_MBIT;
1172 
1173 	if (val & BMCR_FULLDPLX)
1174 		ctrl |= PORT_FORCE_FULL_DUPLEX;
1175 
1176 	ret = ksz_prmw8(dev, port, regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT |
1177 		 /* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same
1178 		  * bits
1179 		  */
1180 		 PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, ctrl);
1181 	if (ret)
1182 		return ret;
1183 
1184 	restart = 0;
1185 	restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART |
1186 		PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX;
1187 
1188 	if (val & KSZ886X_BMCR_DISABLE_LED)
1189 		restart |= PORT_LED_OFF;
1190 
1191 	if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
1192 		restart |= PORT_TX_DISABLE;
1193 
1194 	if (val & BMCR_ANRESTART)
1195 		restart |= PORT_AUTO_NEG_RESTART;
1196 
1197 	if (val & BMCR_PDOWN)
1198 		restart |= PORT_POWER_DOWN;
1199 
1200 	if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
1201 		restart |= PORT_AUTO_MDIX_DISABLE;
1202 
1203 	if (val & KSZ886X_BMCR_FORCE_MDI)
1204 		restart |= PORT_FORCE_MDIX;
1205 
1206 	if (ksz_is_ksz88x3(dev)) {
1207 		restart_mask |= KSZ8873_PORT_PHY_LOOPBACK;
1208 
1209 		if (val & BMCR_LOOPBACK)
1210 			restart |= KSZ8873_PORT_PHY_LOOPBACK;
1211 	} else {
1212 		ret = ksz879x_set_loopback(dev, port, val);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 
1217 	return ksz_prmw8(dev, port, regs[P_NEG_RESTART_CTRL], restart_mask,
1218 			 restart);
1219 }
1220 
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)1221 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
1222 {
1223 	const u16 *regs;
1224 	u8 ctrl, data;
1225 	u16 p = phy;
1226 	int ret;
1227 
1228 	regs = dev->info->regs;
1229 
1230 	switch (reg) {
1231 	case MII_BMCR:
1232 		ret = ksz8_w_phy_bmcr(dev, p, val);
1233 		if (ret)
1234 			return ret;
1235 		break;
1236 	case MII_ADVERTISE:
1237 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
1238 		if (ret)
1239 			return ret;
1240 
1241 		data = ctrl;
1242 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
1243 			  PORT_AUTO_NEG_100BTX_FD |
1244 			  PORT_AUTO_NEG_100BTX |
1245 			  PORT_AUTO_NEG_10BT_FD |
1246 			  PORT_AUTO_NEG_10BT);
1247 		if (val & ADVERTISE_PAUSE_CAP)
1248 			data |= PORT_AUTO_NEG_SYM_PAUSE;
1249 		if (val & ADVERTISE_100FULL)
1250 			data |= PORT_AUTO_NEG_100BTX_FD;
1251 		if (val & ADVERTISE_100HALF)
1252 			data |= PORT_AUTO_NEG_100BTX;
1253 		if (val & ADVERTISE_10FULL)
1254 			data |= PORT_AUTO_NEG_10BT_FD;
1255 		if (val & ADVERTISE_10HALF)
1256 			data |= PORT_AUTO_NEG_10BT;
1257 
1258 		if (data != ctrl) {
1259 			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
1260 			if (ret)
1261 				return ret;
1262 		}
1263 		break;
1264 	case PHY_REG_LINK_MD:
1265 		if (val & PHY_START_CABLE_DIAG)
1266 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
1267 		break;
1268 
1269 	case PHY_REG_PHY_CTRL:
1270 		ret = ksz8_w_phy_ctrl(dev, p, val);
1271 		if (ret)
1272 			return ret;
1273 		break;
1274 	default:
1275 		break;
1276 	}
1277 
1278 	return 0;
1279 }
1280 
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)1281 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1282 {
1283 	int offset = P_MIRROR_CTRL;
1284 	u8 data;
1285 
1286 	if (ksz_is_ksz8463(dev))
1287 		offset = P1CR2;
1288 	ksz_pread8(dev, port, offset, &data);
1289 	data &= ~dev->port_mask;
1290 	data |= (member & dev->port_mask);
1291 	ksz_pwrite8(dev, port, offset, data);
1292 }
1293 
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)1294 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1295 {
1296 	u8 learn[DSA_MAX_PORTS];
1297 	int first, index, cnt;
1298 	const u16 *regs;
1299 	int reg = S_FLUSH_TABLE_CTRL;
1300 	int mask = SW_FLUSH_DYN_MAC_TABLE;
1301 
1302 	regs = dev->info->regs;
1303 
1304 	if ((uint)port < dev->info->port_cnt) {
1305 		first = port;
1306 		cnt = port + 1;
1307 	} else {
1308 		/* Flush all ports. */
1309 		first = 0;
1310 		cnt = dev->info->port_cnt;
1311 	}
1312 	for (index = first; index < cnt; index++) {
1313 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
1314 		if (!(learn[index] & PORT_LEARN_DISABLE))
1315 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
1316 				    learn[index] | PORT_LEARN_DISABLE);
1317 	}
1318 	if (ksz_is_ksz8463(dev)) {
1319 		reg = KSZ8463_FLUSH_TABLE_CTRL;
1320 		mask = KSZ8463_FLUSH_DYN_MAC_TABLE;
1321 	}
1322 	ksz_cfg(dev, reg, mask, true);
1323 	for (index = first; index < cnt; index++) {
1324 		if (!(learn[index] & PORT_LEARN_DISABLE))
1325 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
1326 	}
1327 }
1328 
ksz8_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)1329 int ksz8_fdb_dump(struct ksz_device *dev, int port,
1330 		  dsa_fdb_dump_cb_t *cb, void *data)
1331 {
1332 	u8 mac[ETH_ALEN];
1333 	u8 src_port, fid;
1334 	u16 entries = 0;
1335 	int ret, i;
1336 
1337 	for (i = 0; i < KSZ8_DYN_MAC_ENTRIES; i++) {
1338 		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
1339 					   &entries);
1340 		if (ret)
1341 			return ret;
1342 
1343 		if (i >= entries)
1344 			return 0;
1345 
1346 		if (port == src_port) {
1347 			ret = cb(mac, fid, false, data);
1348 			if (ret)
1349 				return ret;
1350 		}
1351 	}
1352 
1353 	return 0;
1354 }
1355 
ksz8_add_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1356 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1357 			    const unsigned char *addr, u16 vid)
1358 {
1359 	struct alu_struct alu;
1360 	int index, ret;
1361 	int empty = 0;
1362 
1363 	alu.port_forward = 0;
1364 	for (index = 0; index < dev->info->num_statics; index++) {
1365 		bool valid;
1366 
1367 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1368 		if (ret)
1369 			return ret;
1370 		if (!valid) {
1371 			/* Remember the first empty entry. */
1372 			if (!empty)
1373 				empty = index + 1;
1374 			continue;
1375 		}
1376 
1377 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1378 			break;
1379 	}
1380 
1381 	/* no available entry */
1382 	if (index == dev->info->num_statics && !empty)
1383 		return -ENOSPC;
1384 
1385 	/* add entry */
1386 	if (index == dev->info->num_statics) {
1387 		index = empty - 1;
1388 		memset(&alu, 0, sizeof(alu));
1389 		memcpy(alu.mac, addr, ETH_ALEN);
1390 		alu.is_static = true;
1391 	}
1392 	alu.port_forward |= BIT(port);
1393 	if (vid) {
1394 		alu.is_use_fid = true;
1395 
1396 		/* Need a way to map VID to FID. */
1397 		alu.fid = vid;
1398 	}
1399 
1400 	return ksz8_w_sta_mac_table(dev, index, &alu);
1401 }
1402 
ksz8_del_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1403 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1404 			    const unsigned char *addr, u16 vid)
1405 {
1406 	struct alu_struct alu;
1407 	int index, ret;
1408 
1409 	for (index = 0; index < dev->info->num_statics; index++) {
1410 		bool valid;
1411 
1412 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1413 		if (ret)
1414 			return ret;
1415 		if (!valid)
1416 			continue;
1417 
1418 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1419 			break;
1420 	}
1421 
1422 	/* no available entry */
1423 	if (index == dev->info->num_statics)
1424 		return 0;
1425 
1426 	/* clear port */
1427 	alu.port_forward &= ~BIT(port);
1428 	if (!alu.port_forward)
1429 		alu.is_static = false;
1430 
1431 	return ksz8_w_sta_mac_table(dev, index, &alu);
1432 }
1433 
ksz8_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1434 int ksz8_mdb_add(struct ksz_device *dev, int port,
1435 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1436 {
1437 	return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1438 }
1439 
ksz8_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1440 int ksz8_mdb_del(struct ksz_device *dev, int port,
1441 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1442 {
1443 	return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1444 }
1445 
ksz8_fdb_add(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1446 int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1447 		 u16 vid, struct dsa_db db)
1448 {
1449 	return ksz8_add_sta_mac(dev, port, addr, vid);
1450 }
1451 
ksz8_fdb_del(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1452 int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1453 		 u16 vid, struct dsa_db db)
1454 {
1455 	return ksz8_del_sta_mac(dev, port, addr, vid);
1456 }
1457 
ksz8_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)1458 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1459 			     struct netlink_ext_ack *extack)
1460 {
1461 	if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
1462 		return -ENOTSUPP;
1463 
1464 	/* Discard packets with VID not enabled on the switch */
1465 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1466 
1467 	/* Discard packets with VID not enabled on the ingress port */
1468 	for (port = 0; port < dev->phy_port_cnt; ++port)
1469 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1470 			     flag);
1471 
1472 	return 0;
1473 }
1474 
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1475 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1476 {
1477 	if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)) {
1478 		int reg = REG_SW_INSERT_SRC_PVID;
1479 
1480 		if (ksz_is_ksz8463(dev))
1481 			reg = KSZ8463_REG_SW_CTRL_9;
1482 		ksz_cfg(dev, reg, 0x03 << (4 - 2 * port), state);
1483 	} else {
1484 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1485 	}
1486 }
1487 
ksz8_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1488 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1489 		       const struct switchdev_obj_port_vlan *vlan,
1490 		       struct netlink_ext_ack *extack)
1491 {
1492 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1493 	struct ksz_port *p = &dev->ports[port];
1494 	u16 data, new_pvid = 0;
1495 	u8 fid, member, valid;
1496 
1497 	if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
1498 		return -ENOTSUPP;
1499 
1500 	/* If a VLAN is added with untagged flag different from the
1501 	 * port's Remove Tag flag, we need to change the latter.
1502 	 * Ignore VID 0, which is always untagged.
1503 	 * Ignore CPU port, which will always be tagged.
1504 	 */
1505 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1506 	    port != dev->cpu_port) {
1507 		unsigned int vid;
1508 
1509 		/* Reject attempts to add a VLAN that requires the
1510 		 * Remove Tag flag to be changed, unless there are no
1511 		 * other VLANs currently configured.
1512 		 */
1513 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1514 			/* Skip the VID we are going to add or reconfigure */
1515 			if (vid == vlan->vid)
1516 				continue;
1517 
1518 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1519 				       &fid, &member, &valid);
1520 			if (valid && (member & BIT(port)))
1521 				return -EINVAL;
1522 		}
1523 
1524 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1525 		p->remove_tag = untagged;
1526 	}
1527 
1528 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1529 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1530 
1531 	/* First time to setup the VLAN entry. */
1532 	if (!valid) {
1533 		/* Need to find a way to map VID to FID. */
1534 		fid = 1;
1535 		valid = 1;
1536 	}
1537 	member |= BIT(port);
1538 
1539 	ksz8_to_vlan(dev, fid, member, valid, &data);
1540 	ksz8_w_vlan_table(dev, vlan->vid, data);
1541 
1542 	/* change PVID */
1543 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1544 		new_pvid = vlan->vid;
1545 
1546 	if (new_pvid) {
1547 		u16 vid;
1548 
1549 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1550 		vid &= ~VLAN_VID_MASK;
1551 		vid |= new_pvid;
1552 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1553 
1554 		ksz8_port_enable_pvid(dev, port, true);
1555 	}
1556 
1557 	return 0;
1558 }
1559 
ksz8_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)1560 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1561 		       const struct switchdev_obj_port_vlan *vlan)
1562 {
1563 	u16 data, pvid;
1564 	u8 fid, member, valid;
1565 
1566 	if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
1567 		return -ENOTSUPP;
1568 
1569 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1570 	pvid = pvid & 0xFFF;
1571 
1572 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1573 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1574 
1575 	member &= ~BIT(port);
1576 
1577 	/* Invalidate the entry if no more member. */
1578 	if (!member) {
1579 		fid = 0;
1580 		valid = 0;
1581 	}
1582 
1583 	ksz8_to_vlan(dev, fid, member, valid, &data);
1584 	ksz8_w_vlan_table(dev, vlan->vid, data);
1585 
1586 	if (pvid == vlan->vid)
1587 		ksz8_port_enable_pvid(dev, port, false);
1588 
1589 	return 0;
1590 }
1591 
ksz8_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1592 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1593 			 struct dsa_mall_mirror_tc_entry *mirror,
1594 			 bool ingress, struct netlink_ext_ack *extack)
1595 {
1596 	int offset = P_MIRROR_CTRL;
1597 
1598 	if (ksz_is_ksz8463(dev))
1599 		offset = P1CR2;
1600 	if (ingress) {
1601 		ksz_port_cfg(dev, port, offset, PORT_MIRROR_RX, true);
1602 		dev->mirror_rx |= BIT(port);
1603 	} else {
1604 		ksz_port_cfg(dev, port, offset, PORT_MIRROR_TX, true);
1605 		dev->mirror_tx |= BIT(port);
1606 	}
1607 
1608 	ksz_port_cfg(dev, port, offset, PORT_MIRROR_SNIFFER, false);
1609 
1610 	/* configure mirror port */
1611 	if (dev->mirror_rx || dev->mirror_tx)
1612 		ksz_port_cfg(dev, mirror->to_local_port, offset,
1613 			     PORT_MIRROR_SNIFFER, true);
1614 
1615 	return 0;
1616 }
1617 
ksz8_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)1618 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1619 			  struct dsa_mall_mirror_tc_entry *mirror)
1620 {
1621 	int offset = P_MIRROR_CTRL;
1622 	u8 data;
1623 
1624 	if (ksz_is_ksz8463(dev))
1625 		offset = P1CR2;
1626 	if (mirror->ingress) {
1627 		ksz_port_cfg(dev, port, offset, PORT_MIRROR_RX, false);
1628 		dev->mirror_rx &= ~BIT(port);
1629 	} else {
1630 		ksz_port_cfg(dev, port, offset, PORT_MIRROR_TX, false);
1631 		dev->mirror_tx &= ~BIT(port);
1632 	}
1633 
1634 	ksz_pread8(dev, port, offset, &data);
1635 
1636 	if (!dev->mirror_rx && !dev->mirror_tx)
1637 		ksz_port_cfg(dev, mirror->to_local_port, offset,
1638 			     PORT_MIRROR_SNIFFER, false);
1639 }
1640 
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1641 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1642 {
1643 	struct ksz_port *p = &dev->ports[port];
1644 
1645 	if (!ksz_is_ksz87xx(dev))
1646 		return;
1647 
1648 	if (!p->interface && dev->compat_interface) {
1649 		dev_warn(dev->dev,
1650 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1651 			 "Please update your device tree.\n",
1652 			 port);
1653 		p->interface = dev->compat_interface;
1654 	}
1655 }
1656 
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1657 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1658 {
1659 	const u16 *regs = dev->info->regs;
1660 	struct dsa_switch *ds = dev->ds;
1661 	const u32 *masks;
1662 	int offset;
1663 	u8 member;
1664 
1665 	masks = dev->info->masks;
1666 
1667 	/* enable broadcast storm limit */
1668 	offset = P_BCAST_STORM_CTRL;
1669 	if (ksz_is_ksz8463(dev))
1670 		offset = P1CR1;
1671 	ksz_port_cfg(dev, port, offset, PORT_BROADCAST_STORM, true);
1672 
1673 	ksz8_port_queue_split(dev, port, dev->info->num_tx_queues);
1674 
1675 	/* replace priority */
1676 	offset = P_802_1P_CTRL;
1677 	if (ksz_is_ksz8463(dev))
1678 		offset = P1CR2;
1679 	ksz_port_cfg(dev, port, offset,
1680 		     masks[PORT_802_1P_REMAPPING], false);
1681 
1682 	if (cpu_port)
1683 		member = dsa_user_ports(ds);
1684 	else
1685 		member = BIT(dsa_upstream_port(ds, port));
1686 
1687 	ksz8_cfg_port_member(dev, port, member);
1688 
1689 	/* Disable all WoL options by default. Otherwise
1690 	 * ksz_switch_macaddr_get/put logic will not work properly.
1691 	 * CPU port 4 has no WoL functionality.
1692 	 */
1693 	if (ksz_is_ksz87xx(dev) && !cpu_port)
1694 		ksz8_pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 0);
1695 }
1696 
ksz88x3_config_rmii_clk(struct ksz_device * dev)1697 static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
1698 {
1699 	struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
1700 	bool rmii_clk_internal;
1701 
1702 	if (!ksz_is_ksz88x3(dev))
1703 		return;
1704 
1705 	rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
1706 						  "microchip,rmii-clk-internal");
1707 
1708 	ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
1709 		KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
1710 }
1711 
ksz8_config_cpu_port(struct dsa_switch * ds)1712 void ksz8_config_cpu_port(struct dsa_switch *ds)
1713 {
1714 	struct ksz_device *dev = ds->priv;
1715 	struct ksz_port *p;
1716 	const u32 *masks;
1717 	const u16 *regs;
1718 	u8 remote;
1719 	u8 fiber_ports = 0;
1720 	int i;
1721 
1722 	masks = dev->info->masks;
1723 	regs = dev->info->regs;
1724 
1725 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1726 
1727 	ksz8_port_setup(dev, dev->cpu_port, true);
1728 
1729 	ksz8795_cpu_interface_select(dev, dev->cpu_port);
1730 	ksz88x3_config_rmii_clk(dev);
1731 
1732 	for (i = 0; i < dev->phy_port_cnt; i++) {
1733 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1734 	}
1735 	for (i = 0; i < dev->phy_port_cnt; i++) {
1736 		p = &dev->ports[i];
1737 
1738 		/* For KSZ8795 family. */
1739 		if (ksz_is_ksz87xx(dev)) {
1740 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1741 			if (remote & KSZ8_PORT_FIBER_MODE)
1742 				p->fiber = 1;
1743 		}
1744 		if (p->fiber)
1745 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1746 				     PORT_FORCE_FLOW_CTRL, true);
1747 		else
1748 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1749 				     PORT_FORCE_FLOW_CTRL, false);
1750 		if (p->fiber)
1751 			fiber_ports |= (1 << i);
1752 	}
1753 	if (ksz_is_ksz8463(dev)) {
1754 		/* Setup fiber ports. */
1755 		if (fiber_ports) {
1756 			fiber_ports &= 3;
1757 			regmap_update_bits(ksz_regmap_16(dev),
1758 					   KSZ8463_REG_CFG_CTRL,
1759 					   fiber_ports << PORT_COPPER_MODE_S,
1760 					   0);
1761 			regmap_update_bits(ksz_regmap_16(dev),
1762 					   KSZ8463_REG_DSP_CTRL_6,
1763 					   COPPER_RECEIVE_ADJUSTMENT, 0);
1764 		}
1765 
1766 		/* Turn off PTP function as the switch's proprietary way of
1767 		 * handling timestamp is not supported in current Linux PTP
1768 		 * stack implementation.
1769 		 */
1770 		regmap_update_bits(ksz_regmap_16(dev),
1771 				   KSZ8463_PTP_MSG_CONF1,
1772 				   PTP_ENABLE, 0);
1773 		regmap_update_bits(ksz_regmap_16(dev),
1774 				   KSZ8463_PTP_CLK_CTRL,
1775 				   PTP_CLK_ENABLE, 0);
1776 	}
1777 }
1778 
1779 /**
1780  * ksz8_phy_port_link_up - Configures ports with integrated PHYs
1781  * @dev: The KSZ device instance.
1782  * @port: The port number to configure.
1783  * @duplex: The desired duplex mode.
1784  * @tx_pause: If true, enables transmit pause.
1785  * @rx_pause: If true, enables receive pause.
1786  *
1787  * Description:
1788  * The function configures flow control settings for a given port based on the
1789  * desired settings and current duplex mode.
1790  *
1791  * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
1792  * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
1793  * determines how flow control is handled on the port:
1794  *    "1 = will always enable full-duplex flow control on the port, regardless
1795  *         of AN result.
1796  *     0 = full-duplex flow control is enabled based on AN result."
1797  *
1798  * This means that the flow control behavior depends on the state of this bit:
1799  * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
1800  *   force flow control on the port.
1801  * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
1802  *   flow control based on the AN results.
1803  *
1804  * However, there is a potential limitation in this configuration. It is
1805  * currently not possible to force disable flow control on a port if we still
1806  * advertise pause support. While such a configuration is not currently
1807  * supported by Linux, and may not make practical sense, it's important to be
1808  * aware of this limitation when working with the KSZ8873 and similar devices.
1809  */
ksz8_phy_port_link_up(struct ksz_device * dev,int port,int duplex,bool tx_pause,bool rx_pause)1810 static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
1811 				  bool tx_pause, bool rx_pause)
1812 {
1813 	const u16 *regs = dev->info->regs;
1814 	u8 sctrl = 0;
1815 
1816 	/* The KSZ8795 switch differs from the KSZ8873 by supporting
1817 	 * asymmetric pause control. However, since a single bit is used to
1818 	 * control both RX and TX pause, we can't enforce asymmetric pause
1819 	 * control - both TX and RX pause will be either enabled or disabled
1820 	 * together.
1821 	 *
1822 	 * If auto-negotiation is enabled, we usually allow the flow control to
1823 	 * be determined by the auto-negotiation process based on the
1824 	 * capabilities of both link partners. However, for KSZ8873, the
1825 	 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
1826 	 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
1827 	 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
1828 	 * properly cleared.
1829 	 *
1830 	 * In the absence of pause auto-negotiation, we will enforce symmetric
1831 	 * pause control for both variants of switches - KSZ8873 and KSZ8795.
1832 	 *
1833 	 * Autoneg Pause Autoneg      rx,tx	PORT_FORCE_FLOW_CTRL
1834 	 * 1		1		x	0
1835 	 * 0		1		x	0 (flow control probably disabled)
1836 	 * x		0		1	1 (flow control force enabled)
1837 	 * 1		0		0	0 (flow control still depends on
1838 	 *					   aneg result due to hardware)
1839 	 * 0		0		0	0 (flow control probably disabled)
1840 	 */
1841 	if (dev->ports[port].manual_flow && tx_pause)
1842 		sctrl |= PORT_FORCE_FLOW_CTRL;
1843 
1844 	ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
1845 }
1846 
1847 /**
1848  * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
1849  * @dev: The KSZ device instance.
1850  * @speed: The desired link speed.
1851  * @duplex: The desired duplex mode.
1852  * @tx_pause: If true, enables transmit pause.
1853  * @rx_pause: If true, enables receive pause.
1854  *
1855  * Description:
1856  * The function configures flow control and speed settings for the CPU
1857  * port of the switch based on the desired settings, current duplex mode, and
1858  * speed.
1859  */
ksz8_cpu_port_link_up(struct ksz_device * dev,int speed,int duplex,bool tx_pause,bool rx_pause)1860 static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
1861 				  bool tx_pause, bool rx_pause)
1862 {
1863 	const u16 *regs = dev->info->regs;
1864 	u8 ctrl = 0;
1865 
1866 	/* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
1867 	 * at least on KSZ8873. They can have different values depending on your
1868 	 * board setup.
1869 	 */
1870 	if (tx_pause || rx_pause)
1871 		ctrl |= SW_FLOW_CTRL;
1872 
1873 	if (duplex == DUPLEX_HALF)
1874 		ctrl |= SW_HALF_DUPLEX;
1875 
1876 	/* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
1877 	 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
1878 	 */
1879 	if (speed == SPEED_10)
1880 		ctrl |= SW_10_MBIT;
1881 
1882 	ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
1883 		 SW_10_MBIT, ctrl);
1884 }
1885 
ksz8_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)1886 void ksz8_phylink_mac_link_up(struct phylink_config *config,
1887 			      struct phy_device *phydev, unsigned int mode,
1888 			      phy_interface_t interface, int speed, int duplex,
1889 			      bool tx_pause, bool rx_pause)
1890 {
1891 	struct dsa_port *dp = dsa_phylink_to_port(config);
1892 	struct ksz_device *dev = dp->ds->priv;
1893 	int port = dp->index;
1894 
1895 	/* If the port is the CPU port, apply special handling. Only the CPU
1896 	 * port is configured via global registers.
1897 	 */
1898 	if (dev->cpu_port == port)
1899 		ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1900 	else if (dev->info->internal_phy[port])
1901 		ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1902 }
1903 
ksz8_handle_global_errata(struct dsa_switch * ds)1904 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1905 {
1906 	struct ksz_device *dev = ds->priv;
1907 	int ret = 0;
1908 
1909 	/* KSZ87xx Errata DS80000687C.
1910 	 * Module 2: Link drops with some EEE link partners.
1911 	 *   An issue with the EEE next page exchange between the
1912 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1913 	 *   the link dropping.
1914 	 */
1915 	if (dev->info->ksz87xx_eee_link_erratum)
1916 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1917 
1918 	return ret;
1919 }
1920 
ksz8_enable_stp_addr(struct ksz_device * dev)1921 int ksz8_enable_stp_addr(struct ksz_device *dev)
1922 {
1923 	struct alu_struct alu;
1924 
1925 	/* Setup STP address for STP operation. */
1926 	memset(&alu, 0, sizeof(alu));
1927 	ether_addr_copy(alu.mac, eth_stp_addr);
1928 	alu.is_static = true;
1929 	alu.is_override = true;
1930 	alu.port_forward = dev->info->cpu_ports;
1931 
1932 	return ksz8_w_sta_mac_table(dev, 0, &alu);
1933 }
1934 
ksz8_setup(struct dsa_switch * ds)1935 int ksz8_setup(struct dsa_switch *ds)
1936 {
1937 	struct ksz_device *dev = ds->priv;
1938 	const u16 *regs = dev->info->regs;
1939 	int i, ret = 0;
1940 
1941 	ds->mtu_enforcement_ingress = true;
1942 
1943 	/* We rely on software untagging on the CPU port, so that we
1944 	 * can support both tagged and untagged VLANs
1945 	 */
1946 	ds->untag_bridge_pvid = true;
1947 
1948 	/* VLAN filtering is partly controlled by the global VLAN
1949 	 * Enable flag
1950 	 */
1951 	ds->vlan_filtering_is_global = true;
1952 
1953 	/* Enable automatic fast aging when link changed detected. */
1954 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1955 
1956 	/* Enable aggressive back off algorithm in half duplex mode. */
1957 	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1958 	if (ret)
1959 		return ret;
1960 
1961 	/*
1962 	 * Make sure unicast VLAN boundary is set as default and
1963 	 * enable no excessive collision drop.
1964 	 */
1965 	ret = ksz_rmw8(dev, REG_SW_CTRL_2,
1966 		       UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1967 		       UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1968 	if (ret)
1969 		return ret;
1970 
1971 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1972 
1973 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1974 
1975 	if (!ksz_is_ksz88x3(dev) && !ksz_is_ksz8463(dev))
1976 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1977 
1978 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1979 		ksz8_r_vlan_entries(dev, i);
1980 
1981 	/* Make sure PME (WoL) is not enabled. If requested, it will
1982 	 * be enabled by ksz_wol_pre_shutdown(). Otherwise, some PMICs
1983 	 * do not like PME events changes before shutdown. PME only
1984 	 * available on KSZ87xx family.
1985 	 */
1986 	if (ksz_is_ksz87xx(dev)) {
1987 		ret = ksz8_pme_write8(dev, regs[REG_SW_PME_CTRL], 0);
1988 		if (!ret)
1989 			ret = ksz_rmw8(dev, REG_INT_ENABLE, INT_PME, 0);
1990 	}
1991 
1992 	if (!ret)
1993 		return ksz8_handle_global_errata(ds);
1994 	else
1995 		return ret;
1996 }
1997 
ksz8_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)1998 void ksz8_get_caps(struct ksz_device *dev, int port,
1999 		   struct phylink_config *config)
2000 {
2001 	config->mac_capabilities = MAC_10 | MAC_100;
2002 
2003 	/* Silicon Errata Sheet (DS80000830A):
2004 	 * "Port 1 does not respond to received flow control PAUSE frames"
2005 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
2006 	 * switches.
2007 	 */
2008 	if (!ksz_is_ksz88x3(dev) || port)
2009 		config->mac_capabilities |= MAC_SYM_PAUSE;
2010 
2011 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
2012 	if (!ksz_is_ksz88x3(dev))
2013 		config->mac_capabilities |= MAC_ASYM_PAUSE;
2014 }
2015 
ksz8_get_port_addr(int port,int offset)2016 u32 ksz8_get_port_addr(int port, int offset)
2017 {
2018 	return PORT_CTRL_ADDR(port, offset);
2019 }
2020 
ksz8463_get_port_addr(int port,int offset)2021 u32 ksz8463_get_port_addr(int port, int offset)
2022 {
2023 	return offset + 0x18 * port;
2024 }
2025 
ksz8463_get_phy_addr(u16 phy,u16 reg,u16 offset)2026 static u16 ksz8463_get_phy_addr(u16 phy, u16 reg, u16 offset)
2027 {
2028 	return offset + reg * 2 + phy * (P2MBCR - P1MBCR);
2029 }
2030 
ksz8463_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)2031 int ksz8463_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
2032 {
2033 	u16 sw_reg = 0;
2034 	u16 data = 0;
2035 	int ret;
2036 
2037 	if (phy > 1)
2038 		return -ENOSPC;
2039 	switch (reg) {
2040 	case MII_PHYSID1:
2041 		sw_reg = ksz8463_get_phy_addr(phy, 0, PHY1IHR);
2042 		break;
2043 	case MII_PHYSID2:
2044 		sw_reg = ksz8463_get_phy_addr(phy, 0, PHY1ILR);
2045 		break;
2046 	case MII_BMCR:
2047 	case MII_BMSR:
2048 	case MII_ADVERTISE:
2049 	case MII_LPA:
2050 		sw_reg = ksz8463_get_phy_addr(phy, reg, P1MBCR);
2051 		break;
2052 	case MII_TPISTATUS:
2053 		/* This register holds the PHY interrupt status for simulated
2054 		 * Micrel KSZ PHY.
2055 		 */
2056 		data = 0x0505;
2057 		break;
2058 	default:
2059 		break;
2060 	}
2061 	if (sw_reg) {
2062 		ret = ksz_read16(dev, sw_reg, &data);
2063 		if (ret)
2064 			return ret;
2065 	}
2066 	*val = data;
2067 
2068 	return 0;
2069 }
2070 
ksz8463_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)2071 int ksz8463_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
2072 {
2073 	u16 sw_reg = 0;
2074 	int ret;
2075 
2076 	if (phy > 1)
2077 		return -ENOSPC;
2078 
2079 	/* No write to fiber port. */
2080 	if (dev->ports[phy].fiber)
2081 		return 0;
2082 	switch (reg) {
2083 	case MII_BMCR:
2084 	case MII_ADVERTISE:
2085 		sw_reg = ksz8463_get_phy_addr(phy, reg, P1MBCR);
2086 		break;
2087 	default:
2088 		break;
2089 	}
2090 	if (sw_reg) {
2091 		ret = ksz_write16(dev, sw_reg, val);
2092 		if (ret)
2093 			return ret;
2094 	}
2095 
2096 	return 0;
2097 }
2098 
ksz8_switch_init(struct ksz_device * dev)2099 int ksz8_switch_init(struct ksz_device *dev)
2100 {
2101 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
2102 	dev->phy_port_cnt = dev->info->port_cnt - 1;
2103 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
2104 
2105 	return 0;
2106 }
2107 
ksz8_switch_exit(struct ksz_device * dev)2108 void ksz8_switch_exit(struct ksz_device *dev)
2109 {
2110 	ksz8_reset_switch(dev);
2111 }
2112 
2113 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
2114 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
2115 MODULE_LICENSE("GPL");
2116