1 // SPDX-License-Identifier: GPL-2.0
2 #include <stdlib.h>
3 #include <string.h>
4 #include <malloc.h>
5 #include <pthread.h>
6 #include <unistd.h>
7 #include <assert.h>
8
9 #include <linux/gfp.h>
10 #include <linux/poison.h>
11 #include <linux/slab.h>
12 #include <linux/radix-tree.h>
13 #include <urcu/uatomic.h>
14
15 int nr_allocated;
16 int preempt_count;
17 int test_verbose;
18
kmem_cache_set_callback(struct kmem_cache * cachep,void (* callback)(void *))19 void kmem_cache_set_callback(struct kmem_cache *cachep, void (*callback)(void *))
20 {
21 cachep->callback = callback;
22 }
23
kmem_cache_set_private(struct kmem_cache * cachep,void * private)24 void kmem_cache_set_private(struct kmem_cache *cachep, void *private)
25 {
26 cachep->private = private;
27 }
28
kmem_cache_set_non_kernel(struct kmem_cache * cachep,unsigned int val)29 void kmem_cache_set_non_kernel(struct kmem_cache *cachep, unsigned int val)
30 {
31 cachep->non_kernel = val;
32 }
33
kmem_cache_get_alloc(struct kmem_cache * cachep)34 unsigned long kmem_cache_get_alloc(struct kmem_cache *cachep)
35 {
36 return cachep->size * cachep->nr_allocated;
37 }
38
kmem_cache_nr_allocated(struct kmem_cache * cachep)39 unsigned long kmem_cache_nr_allocated(struct kmem_cache *cachep)
40 {
41 return cachep->nr_allocated;
42 }
43
kmem_cache_nr_tallocated(struct kmem_cache * cachep)44 unsigned long kmem_cache_nr_tallocated(struct kmem_cache *cachep)
45 {
46 return cachep->nr_tallocated;
47 }
48
kmem_cache_zero_nr_tallocated(struct kmem_cache * cachep)49 void kmem_cache_zero_nr_tallocated(struct kmem_cache *cachep)
50 {
51 cachep->nr_tallocated = 0;
52 }
53
kmem_cache_alloc_lru(struct kmem_cache * cachep,struct list_lru * lru,int gfp)54 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
55 int gfp)
56 {
57 void *p;
58
59 if (cachep->exec_callback) {
60 if (cachep->callback)
61 cachep->callback(cachep->private);
62 cachep->exec_callback = false;
63 }
64
65 if (!(gfp & __GFP_DIRECT_RECLAIM)) {
66 if (!cachep->non_kernel) {
67 if (cachep->callback)
68 cachep->exec_callback = true;
69 return NULL;
70 }
71
72 cachep->non_kernel--;
73 }
74
75 pthread_mutex_lock(&cachep->lock);
76 if (cachep->nr_objs) {
77 struct radix_tree_node *node = cachep->objs;
78 cachep->nr_objs--;
79 cachep->objs = node->parent;
80 pthread_mutex_unlock(&cachep->lock);
81 node->parent = NULL;
82 p = node;
83 } else {
84 pthread_mutex_unlock(&cachep->lock);
85 if (cachep->align) {
86 if (posix_memalign(&p, cachep->align, cachep->size) < 0)
87 return NULL;
88 } else {
89 p = malloc(cachep->size);
90 }
91
92 if (cachep->ctor)
93 cachep->ctor(p);
94 else if (gfp & __GFP_ZERO)
95 memset(p, 0, cachep->size);
96 }
97
98 uatomic_inc(&cachep->nr_allocated);
99 uatomic_inc(&nr_allocated);
100 uatomic_inc(&cachep->nr_tallocated);
101 if (kmalloc_verbose)
102 printf("Allocating %p from slab\n", p);
103 return p;
104 }
105
__kmem_cache_free_locked(struct kmem_cache * cachep,void * objp)106 void __kmem_cache_free_locked(struct kmem_cache *cachep, void *objp)
107 {
108 assert(objp);
109 if (cachep->nr_objs > 10 || cachep->align) {
110 memset(objp, POISON_FREE, cachep->size);
111 free(objp);
112 } else {
113 struct radix_tree_node *node = objp;
114 cachep->nr_objs++;
115 node->parent = cachep->objs;
116 cachep->objs = node;
117 }
118 }
119
kmem_cache_free_locked(struct kmem_cache * cachep,void * objp)120 void kmem_cache_free_locked(struct kmem_cache *cachep, void *objp)
121 {
122 uatomic_dec(&nr_allocated);
123 uatomic_dec(&cachep->nr_allocated);
124 if (kmalloc_verbose)
125 printf("Freeing %p to slab\n", objp);
126 __kmem_cache_free_locked(cachep, objp);
127 }
128
kmem_cache_free(struct kmem_cache * cachep,void * objp)129 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
130 {
131 pthread_mutex_lock(&cachep->lock);
132 kmem_cache_free_locked(cachep, objp);
133 pthread_mutex_unlock(&cachep->lock);
134 }
135
kmem_cache_free_bulk(struct kmem_cache * cachep,size_t size,void ** list)136 void kmem_cache_free_bulk(struct kmem_cache *cachep, size_t size, void **list)
137 {
138 if (kmalloc_verbose)
139 pr_debug("Bulk free %p[0-%zu]\n", list, size - 1);
140
141 if (cachep->exec_callback) {
142 if (cachep->callback)
143 cachep->callback(cachep->private);
144 cachep->exec_callback = false;
145 }
146
147 pthread_mutex_lock(&cachep->lock);
148 for (int i = 0; i < size; i++)
149 kmem_cache_free_locked(cachep, list[i]);
150 pthread_mutex_unlock(&cachep->lock);
151 }
152
kmem_cache_shrink(struct kmem_cache * cachep)153 void kmem_cache_shrink(struct kmem_cache *cachep)
154 {
155 }
156
kmem_cache_alloc_bulk(struct kmem_cache * cachep,gfp_t gfp,size_t size,void ** p)157 int kmem_cache_alloc_bulk(struct kmem_cache *cachep, gfp_t gfp, size_t size,
158 void **p)
159 {
160 size_t i;
161
162 if (kmalloc_verbose)
163 pr_debug("Bulk alloc %zu\n", size);
164
165 pthread_mutex_lock(&cachep->lock);
166 if (cachep->nr_objs >= size) {
167 struct radix_tree_node *node;
168
169 for (i = 0; i < size; i++) {
170 if (!(gfp & __GFP_DIRECT_RECLAIM)) {
171 if (!cachep->non_kernel)
172 break;
173 cachep->non_kernel--;
174 }
175
176 node = cachep->objs;
177 cachep->nr_objs--;
178 cachep->objs = node->parent;
179 p[i] = node;
180 node->parent = NULL;
181 }
182 pthread_mutex_unlock(&cachep->lock);
183 } else {
184 pthread_mutex_unlock(&cachep->lock);
185 for (i = 0; i < size; i++) {
186 if (!(gfp & __GFP_DIRECT_RECLAIM)) {
187 if (!cachep->non_kernel)
188 break;
189 cachep->non_kernel--;
190 }
191
192 if (cachep->align) {
193 if (posix_memalign(&p[i], cachep->align,
194 cachep->size) < 0)
195 break;
196 } else {
197 p[i] = malloc(cachep->size);
198 if (!p[i])
199 break;
200 }
201 if (cachep->ctor)
202 cachep->ctor(p[i]);
203 else if (gfp & __GFP_ZERO)
204 memset(p[i], 0, cachep->size);
205 }
206 }
207
208 if (i < size) {
209 size = i;
210 pthread_mutex_lock(&cachep->lock);
211 for (i = 0; i < size; i++)
212 __kmem_cache_free_locked(cachep, p[i]);
213 pthread_mutex_unlock(&cachep->lock);
214 if (cachep->callback)
215 cachep->exec_callback = true;
216 return 0;
217 }
218
219 for (i = 0; i < size; i++) {
220 uatomic_inc(&nr_allocated);
221 uatomic_inc(&cachep->nr_allocated);
222 uatomic_inc(&cachep->nr_tallocated);
223 if (kmalloc_verbose)
224 printf("Allocating %p from slab\n", p[i]);
225 }
226
227 return size;
228 }
229
230 struct kmem_cache *
__kmem_cache_create_args(const char * name,unsigned int size,struct kmem_cache_args * args,unsigned int flags)231 __kmem_cache_create_args(const char *name, unsigned int size,
232 struct kmem_cache_args *args,
233 unsigned int flags)
234 {
235 struct kmem_cache *ret = malloc(sizeof(*ret));
236
237 pthread_mutex_init(&ret->lock, NULL);
238 ret->size = size;
239 ret->align = args->align;
240 ret->sheaf_capacity = args->sheaf_capacity;
241 ret->nr_objs = 0;
242 ret->nr_allocated = 0;
243 ret->nr_tallocated = 0;
244 ret->objs = NULL;
245 ret->ctor = args->ctor;
246 ret->non_kernel = 0;
247 ret->exec_callback = false;
248 ret->callback = NULL;
249 ret->private = NULL;
250
251 return ret;
252 }
253
254 struct slab_sheaf *
kmem_cache_prefill_sheaf(struct kmem_cache * s,gfp_t gfp,unsigned int size)255 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
256 {
257 struct slab_sheaf *sheaf;
258 unsigned int capacity;
259
260 if (s->exec_callback) {
261 if (s->callback)
262 s->callback(s->private);
263 s->exec_callback = false;
264 }
265
266 capacity = max(size, s->sheaf_capacity);
267
268 sheaf = calloc(1, sizeof(*sheaf) + sizeof(void *) * capacity);
269 if (!sheaf)
270 return NULL;
271
272 sheaf->cache = s;
273 sheaf->capacity = capacity;
274 sheaf->size = kmem_cache_alloc_bulk(s, gfp, size, sheaf->objects);
275 if (!sheaf->size) {
276 free(sheaf);
277 return NULL;
278 }
279
280 return sheaf;
281 }
282
kmem_cache_refill_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf ** sheafp,unsigned int size)283 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
284 struct slab_sheaf **sheafp, unsigned int size)
285 {
286 struct slab_sheaf *sheaf = *sheafp;
287 int refill;
288
289 if (sheaf->size >= size)
290 return 0;
291
292 if (size > sheaf->capacity) {
293 sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
294 if (!sheaf)
295 return -ENOMEM;
296
297 kmem_cache_return_sheaf(s, gfp, *sheafp);
298 *sheafp = sheaf;
299 return 0;
300 }
301
302 refill = kmem_cache_alloc_bulk(s, gfp, size - sheaf->size,
303 &sheaf->objects[sheaf->size]);
304 if (!refill)
305 return -ENOMEM;
306
307 sheaf->size += refill;
308 return 0;
309 }
310
kmem_cache_return_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)311 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
312 struct slab_sheaf *sheaf)
313 {
314 if (sheaf->size)
315 kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
316
317 free(sheaf);
318 }
319
320 void *
kmem_cache_alloc_from_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)321 kmem_cache_alloc_from_sheaf(struct kmem_cache *s, gfp_t gfp,
322 struct slab_sheaf *sheaf)
323 {
324 void *obj;
325
326 if (sheaf->size == 0) {
327 printf("Nothing left in sheaf!\n");
328 return NULL;
329 }
330
331 obj = sheaf->objects[--sheaf->size];
332 sheaf->objects[sheaf->size] = NULL;
333
334 return obj;
335 }
336
337 /*
338 * Test the test infrastructure for kem_cache_alloc/free and bulk counterparts.
339 */
test_kmem_cache_bulk(void)340 void test_kmem_cache_bulk(void)
341 {
342 int i;
343 void *list[12];
344 static struct kmem_cache *test_cache, *test_cache2;
345
346 /*
347 * Testing the bulk allocators without aligned kmem_cache to force the
348 * bulk alloc/free to reuse
349 */
350 test_cache = kmem_cache_create("test_cache", 256, 0, SLAB_PANIC, NULL);
351
352 for (i = 0; i < 5; i++)
353 list[i] = kmem_cache_alloc(test_cache, __GFP_DIRECT_RECLAIM);
354
355 for (i = 0; i < 5; i++)
356 kmem_cache_free(test_cache, list[i]);
357 assert(test_cache->nr_objs == 5);
358
359 kmem_cache_alloc_bulk(test_cache, __GFP_DIRECT_RECLAIM, 5, list);
360 kmem_cache_free_bulk(test_cache, 5, list);
361
362 for (i = 0; i < 12 ; i++)
363 list[i] = kmem_cache_alloc(test_cache, __GFP_DIRECT_RECLAIM);
364
365 for (i = 0; i < 12; i++)
366 kmem_cache_free(test_cache, list[i]);
367
368 /* The last free will not be kept around */
369 assert(test_cache->nr_objs == 11);
370
371 /* Aligned caches will immediately free */
372 test_cache2 = kmem_cache_create("test_cache2", 128, 128, SLAB_PANIC, NULL);
373
374 kmem_cache_alloc_bulk(test_cache2, __GFP_DIRECT_RECLAIM, 10, list);
375 kmem_cache_free_bulk(test_cache2, 10, list);
376 assert(!test_cache2->nr_objs);
377
378
379 }
380