xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce) !
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 #include "amdgpu_reset.h"
39 
40 struct mm_struct;
41 
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_svm.h"
45 #include "kfd_smi_events.h"
46 #include "kfd_debug.h"
47 
48 /*
49  * List of struct kfd_process (field kfd_process).
50  * Unique/indexed by mm_struct*
51  */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 DEFINE_MUTEX(kfd_processes_mutex);
54 
55 DEFINE_SRCU(kfd_processes_srcu);
56 
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59 
60 /* Ordered, single-threaded workqueue for restoring evicted
61  * processes. Restoring multiple processes concurrently under memory
62  * pressure can lead to processes blocking each other from validating
63  * their BOs and result in a live-lock situation where processes
64  * remain evicted indefinitely.
65  */
66 static struct workqueue_struct *kfd_restore_wq;
67 
68 static struct kfd_process *find_process(const struct task_struct *thread,
69 					bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 static struct kfd_process *create_process(const struct task_struct *thread);
72 
73 static void evict_process_worker(struct work_struct *work);
74 static void restore_process_worker(struct work_struct *work);
75 
76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
77 
78 struct kfd_procfs_tree {
79 	struct kobject *kobj;
80 };
81 
82 static struct kfd_procfs_tree procfs;
83 
84 /*
85  * Structure for SDMA activity tracking
86  */
87 struct kfd_sdma_activity_handler_workarea {
88 	struct work_struct sdma_activity_work;
89 	struct kfd_process_device *pdd;
90 	uint64_t sdma_activity_counter;
91 };
92 
93 struct temp_sdma_queue_list {
94 	uint64_t __user *rptr;
95 	uint64_t sdma_val;
96 	unsigned int queue_id;
97 	struct list_head list;
98 };
99 
kfd_sdma_activity_worker(struct work_struct * work)100 static void kfd_sdma_activity_worker(struct work_struct *work)
101 {
102 	struct kfd_sdma_activity_handler_workarea *workarea;
103 	struct kfd_process_device *pdd;
104 	uint64_t val;
105 	struct mm_struct *mm;
106 	struct queue *q;
107 	struct qcm_process_device *qpd;
108 	struct device_queue_manager *dqm;
109 	int ret = 0;
110 	struct temp_sdma_queue_list sdma_q_list;
111 	struct temp_sdma_queue_list *sdma_q, *next;
112 
113 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
114 				sdma_activity_work);
115 
116 	pdd = workarea->pdd;
117 	if (!pdd)
118 		return;
119 	dqm = pdd->dev->dqm;
120 	qpd = &pdd->qpd;
121 	if (!dqm || !qpd)
122 		return;
123 	/*
124 	 * Total SDMA activity is current SDMA activity + past SDMA activity
125 	 * Past SDMA count is stored in pdd.
126 	 * To get the current activity counters for all active SDMA queues,
127 	 * we loop over all SDMA queues and get their counts from user-space.
128 	 *
129 	 * We cannot call get_user() with dqm_lock held as it can cause
130 	 * a circular lock dependency situation. To read the SDMA stats,
131 	 * we need to do the following:
132 	 *
133 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
134 	 *    with dqm_lock/dqm_unlock().
135 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
136 	 *    Save the SDMA count for each node and also add the count to the total
137 	 *    SDMA count counter.
138 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
139 	 *    from the qpd->queues_list.
140 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
141 	 *    If any node got deleted, its SDMA count would be captured in the sdma
142 	 *    past activity counter. So subtract the SDMA counter stored in step 2
143 	 *    for this node from the total SDMA count.
144 	 */
145 	INIT_LIST_HEAD(&sdma_q_list.list);
146 
147 	/*
148 	 * Create the temp list of all SDMA queues
149 	 */
150 	dqm_lock(dqm);
151 
152 	list_for_each_entry(q, &qpd->queues_list, list) {
153 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
154 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
155 			continue;
156 
157 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
158 		if (!sdma_q) {
159 			dqm_unlock(dqm);
160 			goto cleanup;
161 		}
162 
163 		INIT_LIST_HEAD(&sdma_q->list);
164 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165 		sdma_q->queue_id = q->properties.queue_id;
166 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
167 	}
168 
169 	/*
170 	 * If the temp list is empty, then no SDMA queues nodes were found in
171 	 * qpd->queues_list. Return the past activity count as the total sdma
172 	 * count
173 	 */
174 	if (list_empty(&sdma_q_list.list)) {
175 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
176 		dqm_unlock(dqm);
177 		return;
178 	}
179 
180 	dqm_unlock(dqm);
181 
182 	/*
183 	 * Get the usage count for each SDMA queue in temp_list.
184 	 */
185 	mm = get_task_mm(pdd->process->lead_thread);
186 	if (!mm)
187 		goto cleanup;
188 
189 	kthread_use_mm(mm);
190 
191 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
192 		val = 0;
193 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
194 		if (ret) {
195 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
196 				 sdma_q->queue_id);
197 		} else {
198 			sdma_q->sdma_val = val;
199 			workarea->sdma_activity_counter += val;
200 		}
201 	}
202 
203 	kthread_unuse_mm(mm);
204 	mmput(mm);
205 
206 	/*
207 	 * Do a second iteration over qpd_queues_list to check if any SDMA
208 	 * nodes got deleted while fetching SDMA counter.
209 	 */
210 	dqm_lock(dqm);
211 
212 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
213 
214 	list_for_each_entry(q, &qpd->queues_list, list) {
215 		if (list_empty(&sdma_q_list.list))
216 			break;
217 
218 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
219 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
220 			continue;
221 
222 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224 			     (sdma_q->queue_id == q->properties.queue_id)) {
225 				list_del(&sdma_q->list);
226 				kfree(sdma_q);
227 				break;
228 			}
229 		}
230 	}
231 
232 	dqm_unlock(dqm);
233 
234 	/*
235 	 * If temp list is not empty, it implies some queues got deleted
236 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
237 	 * count for each node from the total SDMA count.
238 	 */
239 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
240 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
241 		list_del(&sdma_q->list);
242 		kfree(sdma_q);
243 	}
244 
245 	return;
246 
247 cleanup:
248 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
249 		list_del(&sdma_q->list);
250 		kfree(sdma_q);
251 	}
252 }
253 
254 /**
255  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
256  * by current process. Translates acquired wave count into number of compute units
257  * that are occupied.
258  *
259  * @attr: Handle of attribute that allows reporting of wave count. The attribute
260  * handle encapsulates GPU device it is associated with, thereby allowing collection
261  * of waves in flight, etc
262  * @buffer: Handle of user provided buffer updated with wave count
263  *
264  * Return: Number of bytes written to user buffer or an error value
265  */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268 	int cu_cnt;
269 	int wave_cnt;
270 	int max_waves_per_cu;
271 	struct kfd_node *dev = NULL;
272 	struct kfd_process *proc = NULL;
273 	struct kfd_process_device *pdd = NULL;
274 	int i;
275 	struct kfd_cu_occupancy *cu_occupancy;
276 	u32 queue_format;
277 
278 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
279 	dev = pdd->dev;
280 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
281 		return -EINVAL;
282 
283 	cu_cnt = 0;
284 	proc = pdd->process;
285 	if (pdd->qpd.queue_count == 0) {
286 		pr_debug("Gpu-Id: %d has no active queues for process pid %d\n",
287 			 dev->id, (int)proc->lead_thread->pid);
288 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
289 	}
290 
291 	/* Collect wave count from device if it supports */
292 	wave_cnt = 0;
293 	max_waves_per_cu = 0;
294 
295 	cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL);
296 	if (!cu_occupancy)
297 		return -ENOMEM;
298 
299 	/*
300 	 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
301 	 * For AQL queues, because of cooperative dispatch we multiply the wave count
302 	 * by number of XCCs in the partition to get the total wave counts across all
303 	 * XCCs in the partition.
304 	 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
305 	 */
306 	dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
307 			&max_waves_per_cu, ffs(dev->xcc_mask) - 1);
308 
309 	for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
310 		if (cu_occupancy[i].wave_cnt != 0 &&
311 		    kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
312 						cu_occupancy[i].doorbell_off,
313 						&queue_format)) {
314 			if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
315 				wave_cnt += cu_occupancy[i].wave_cnt;
316 			else
317 				wave_cnt += (NUM_XCC(dev->xcc_mask) *
318 						cu_occupancy[i].wave_cnt);
319 		}
320 	}
321 
322 	/* Translate wave count to number of compute units */
323 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
324 	kfree(cu_occupancy);
325 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
326 }
327 
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)328 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
329 			       char *buffer)
330 {
331 	if (strcmp(attr->name, "pasid") == 0)
332 		return snprintf(buffer, PAGE_SIZE, "%d\n", 0);
333 	else if (strncmp(attr->name, "vram_", 5) == 0) {
334 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
335 							      attr_vram);
336 		return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
337 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
338 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
339 							      attr_sdma);
340 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
341 
342 		INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
343 				  kfd_sdma_activity_worker);
344 
345 		sdma_activity_work_handler.pdd = pdd;
346 		sdma_activity_work_handler.sdma_activity_counter = 0;
347 
348 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
349 
350 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
351 		destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
352 
353 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
354 				(sdma_activity_work_handler.sdma_activity_counter)/
355 				 SDMA_ACTIVITY_DIVISOR);
356 	} else {
357 		pr_err("Invalid attribute");
358 		return -EINVAL;
359 	}
360 
361 	return 0;
362 }
363 
kfd_procfs_kobj_release(struct kobject * kobj)364 static void kfd_procfs_kobj_release(struct kobject *kobj)
365 {
366 	kfree(kobj);
367 }
368 
369 static const struct sysfs_ops kfd_procfs_ops = {
370 	.show = kfd_procfs_show,
371 };
372 
373 static const struct kobj_type procfs_type = {
374 	.release = kfd_procfs_kobj_release,
375 	.sysfs_ops = &kfd_procfs_ops,
376 };
377 
kfd_procfs_init(void)378 void kfd_procfs_init(void)
379 {
380 	int ret = 0;
381 
382 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
383 	if (!procfs.kobj)
384 		return;
385 
386 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
387 				   &kfd_device->kobj, "proc");
388 	if (ret) {
389 		pr_warn("Could not create procfs proc folder");
390 		/* If we fail to create the procfs, clean up */
391 		kfd_procfs_shutdown();
392 	}
393 }
394 
kfd_procfs_shutdown(void)395 void kfd_procfs_shutdown(void)
396 {
397 	if (procfs.kobj) {
398 		kobject_del(procfs.kobj);
399 		kobject_put(procfs.kobj);
400 		procfs.kobj = NULL;
401 	}
402 }
403 
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)404 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
405 				     struct attribute *attr, char *buffer)
406 {
407 	struct queue *q = container_of(kobj, struct queue, kobj);
408 
409 	if (!strcmp(attr->name, "size"))
410 		return snprintf(buffer, PAGE_SIZE, "%llu",
411 				q->properties.queue_size);
412 	else if (!strcmp(attr->name, "type"))
413 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
414 	else if (!strcmp(attr->name, "gpuid"))
415 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
416 	else
417 		pr_err("Invalid attribute");
418 
419 	return 0;
420 }
421 
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)422 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
423 				     struct attribute *attr, char *buffer)
424 {
425 	if (strcmp(attr->name, "evicted_ms") == 0) {
426 		struct kfd_process_device *pdd = container_of(attr,
427 				struct kfd_process_device,
428 				attr_evict);
429 		uint64_t evict_jiffies;
430 
431 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
432 
433 		return snprintf(buffer,
434 				PAGE_SIZE,
435 				"%llu\n",
436 				jiffies64_to_msecs(evict_jiffies));
437 
438 	/* Sysfs handle that gets CU occupancy is per device */
439 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
440 		return kfd_get_cu_occupancy(attr, buffer);
441 	} else {
442 		pr_err("Invalid attribute");
443 	}
444 
445 	return 0;
446 }
447 
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)448 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
449 				       struct attribute *attr, char *buf)
450 {
451 	struct kfd_process_device *pdd;
452 
453 	if (!strcmp(attr->name, "faults")) {
454 		pdd = container_of(attr, struct kfd_process_device,
455 				   attr_faults);
456 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
457 	}
458 	if (!strcmp(attr->name, "page_in")) {
459 		pdd = container_of(attr, struct kfd_process_device,
460 				   attr_page_in);
461 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
462 	}
463 	if (!strcmp(attr->name, "page_out")) {
464 		pdd = container_of(attr, struct kfd_process_device,
465 				   attr_page_out);
466 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
467 	}
468 	return 0;
469 }
470 
471 static struct attribute attr_queue_size = {
472 	.name = "size",
473 	.mode = KFD_SYSFS_FILE_MODE
474 };
475 
476 static struct attribute attr_queue_type = {
477 	.name = "type",
478 	.mode = KFD_SYSFS_FILE_MODE
479 };
480 
481 static struct attribute attr_queue_gpuid = {
482 	.name = "gpuid",
483 	.mode = KFD_SYSFS_FILE_MODE
484 };
485 
486 static struct attribute *procfs_queue_attrs[] = {
487 	&attr_queue_size,
488 	&attr_queue_type,
489 	&attr_queue_gpuid,
490 	NULL
491 };
492 ATTRIBUTE_GROUPS(procfs_queue);
493 
494 static const struct sysfs_ops procfs_queue_ops = {
495 	.show = kfd_procfs_queue_show,
496 };
497 
498 static const struct kobj_type procfs_queue_type = {
499 	.sysfs_ops = &procfs_queue_ops,
500 	.default_groups = procfs_queue_groups,
501 };
502 
503 static const struct sysfs_ops procfs_stats_ops = {
504 	.show = kfd_procfs_stats_show,
505 };
506 
507 static const struct kobj_type procfs_stats_type = {
508 	.sysfs_ops = &procfs_stats_ops,
509 	.release = kfd_procfs_kobj_release,
510 };
511 
512 static const struct sysfs_ops sysfs_counters_ops = {
513 	.show = kfd_sysfs_counters_show,
514 };
515 
516 static const struct kobj_type sysfs_counters_type = {
517 	.sysfs_ops = &sysfs_counters_ops,
518 	.release = kfd_procfs_kobj_release,
519 };
520 
kfd_procfs_add_queue(struct queue * q)521 int kfd_procfs_add_queue(struct queue *q)
522 {
523 	struct kfd_process *proc;
524 	int ret;
525 
526 	if (!q || !q->process)
527 		return -EINVAL;
528 	proc = q->process;
529 
530 	/* Create proc/<pid>/queues/<queue id> folder */
531 	if (!proc->kobj_queues)
532 		return -EFAULT;
533 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
534 			proc->kobj_queues, "%u", q->properties.queue_id);
535 	if (ret < 0) {
536 		pr_warn("Creating proc/<pid>/queues/%u failed",
537 			q->properties.queue_id);
538 		kobject_put(&q->kobj);
539 		return ret;
540 	}
541 
542 	return 0;
543 }
544 
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)545 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
546 				 char *name)
547 {
548 	int ret;
549 
550 	if (!kobj || !attr || !name)
551 		return;
552 
553 	attr->name = name;
554 	attr->mode = KFD_SYSFS_FILE_MODE;
555 	sysfs_attr_init(attr);
556 
557 	ret = sysfs_create_file(kobj, attr);
558 	if (ret)
559 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
560 }
561 
kfd_procfs_add_sysfs_stats(struct kfd_process * p)562 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
563 {
564 	int ret;
565 	int i;
566 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
567 
568 	if (!p || !p->kobj)
569 		return;
570 
571 	/*
572 	 * Create sysfs files for each GPU:
573 	 * - proc/<pid>/stats_<gpuid>/
574 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
575 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
576 	 */
577 	for (i = 0; i < p->n_pdds; i++) {
578 		struct kfd_process_device *pdd = p->pdds[i];
579 
580 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
581 				"stats_%u", pdd->dev->id);
582 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
583 		if (!pdd->kobj_stats)
584 			return;
585 
586 		ret = kobject_init_and_add(pdd->kobj_stats,
587 					   &procfs_stats_type,
588 					   p->kobj,
589 					   stats_dir_filename);
590 
591 		if (ret) {
592 			pr_warn("Creating KFD proc/stats_%s folder failed",
593 				stats_dir_filename);
594 			kobject_put(pdd->kobj_stats);
595 			pdd->kobj_stats = NULL;
596 			return;
597 		}
598 
599 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
600 				      "evicted_ms");
601 		/* Add sysfs file to report compute unit occupancy */
602 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
603 			kfd_sysfs_create_file(pdd->kobj_stats,
604 					      &pdd->attr_cu_occupancy,
605 					      "cu_occupancy");
606 	}
607 }
608 
kfd_procfs_add_sysfs_counters(struct kfd_process * p)609 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
610 {
611 	int ret = 0;
612 	int i;
613 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
614 
615 	if (!p || !p->kobj)
616 		return;
617 
618 	/*
619 	 * Create sysfs files for each GPU which supports SVM
620 	 * - proc/<pid>/counters_<gpuid>/
621 	 * - proc/<pid>/counters_<gpuid>/faults
622 	 * - proc/<pid>/counters_<gpuid>/page_in
623 	 * - proc/<pid>/counters_<gpuid>/page_out
624 	 */
625 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
626 		struct kfd_process_device *pdd = p->pdds[i];
627 		struct kobject *kobj_counters;
628 
629 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
630 			"counters_%u", pdd->dev->id);
631 		kobj_counters = kfd_alloc_struct(kobj_counters);
632 		if (!kobj_counters)
633 			return;
634 
635 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
636 					   p->kobj, counters_dir_filename);
637 		if (ret) {
638 			pr_warn("Creating KFD proc/%s folder failed",
639 				counters_dir_filename);
640 			kobject_put(kobj_counters);
641 			return;
642 		}
643 
644 		pdd->kobj_counters = kobj_counters;
645 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
646 				      "faults");
647 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
648 				      "page_in");
649 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
650 				      "page_out");
651 	}
652 }
653 
kfd_procfs_add_sysfs_files(struct kfd_process * p)654 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
655 {
656 	int i;
657 
658 	if (!p || !p->kobj)
659 		return;
660 
661 	/*
662 	 * Create sysfs files for each GPU:
663 	 * - proc/<pid>/vram_<gpuid>
664 	 * - proc/<pid>/sdma_<gpuid>
665 	 */
666 	for (i = 0; i < p->n_pdds; i++) {
667 		struct kfd_process_device *pdd = p->pdds[i];
668 
669 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
670 			 pdd->dev->id);
671 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
672 				      pdd->vram_filename);
673 
674 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
675 			 pdd->dev->id);
676 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
677 					    pdd->sdma_filename);
678 	}
679 }
680 
kfd_procfs_del_queue(struct queue * q)681 void kfd_procfs_del_queue(struct queue *q)
682 {
683 	if (!q)
684 		return;
685 
686 	kobject_del(&q->kobj);
687 	kobject_put(&q->kobj);
688 }
689 
kfd_process_create_wq(void)690 int kfd_process_create_wq(void)
691 {
692 	if (!kfd_process_wq)
693 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
694 	if (!kfd_restore_wq)
695 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
696 							 WQ_FREEZABLE);
697 
698 	if (!kfd_process_wq || !kfd_restore_wq) {
699 		kfd_process_destroy_wq();
700 		return -ENOMEM;
701 	}
702 
703 	return 0;
704 }
705 
kfd_process_destroy_wq(void)706 void kfd_process_destroy_wq(void)
707 {
708 	if (kfd_process_wq) {
709 		destroy_workqueue(kfd_process_wq);
710 		kfd_process_wq = NULL;
711 	}
712 	if (kfd_restore_wq) {
713 		destroy_workqueue(kfd_restore_wq);
714 		kfd_restore_wq = NULL;
715 	}
716 }
717 
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void ** kptr)718 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
719 			struct kfd_process_device *pdd, void **kptr)
720 {
721 	struct kfd_node *dev = pdd->dev;
722 
723 	if (kptr && *kptr) {
724 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
725 		*kptr = NULL;
726 	}
727 
728 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
729 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
730 					       NULL);
731 }
732 
733 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
734  *	This function should be only called right after the process
735  *	is created and when kfd_processes_mutex is still being held
736  *	to avoid concurrency. Because of that exclusiveness, we do
737  *	not need to take p->mutex.
738  */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)739 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
740 				   uint64_t gpu_va, uint32_t size,
741 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
742 {
743 	struct kfd_node *kdev = pdd->dev;
744 	int err;
745 
746 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
747 						 pdd->drm_priv, mem, NULL,
748 						 flags, false);
749 	if (err)
750 		goto err_alloc_mem;
751 
752 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
753 			pdd->drm_priv);
754 	if (err)
755 		goto err_map_mem;
756 
757 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
758 	if (err) {
759 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
760 		goto sync_memory_failed;
761 	}
762 
763 	if (kptr) {
764 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
765 				(struct kgd_mem *)*mem, kptr, NULL);
766 		if (err) {
767 			pr_debug("Map GTT BO to kernel failed\n");
768 			goto sync_memory_failed;
769 		}
770 	}
771 
772 	return err;
773 
774 sync_memory_failed:
775 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
776 
777 err_map_mem:
778 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
779 					       NULL);
780 err_alloc_mem:
781 	*mem = NULL;
782 	*kptr = NULL;
783 	return err;
784 }
785 
786 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
787  *	process for IB usage The memory reserved is for KFD to submit
788  *	IB to AMDGPU from kernel.  If the memory is reserved
789  *	successfully, ib_kaddr will have the CPU/kernel
790  *	address. Check ib_kaddr before accessing the memory.
791  */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)792 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
793 {
794 	struct qcm_process_device *qpd = &pdd->qpd;
795 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
796 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
797 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
798 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
799 	struct kgd_mem *mem;
800 	void *kaddr;
801 	int ret;
802 
803 	if (qpd->ib_kaddr || !qpd->ib_base)
804 		return 0;
805 
806 	/* ib_base is only set for dGPU */
807 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
808 				      &mem, &kaddr);
809 	if (ret)
810 		return ret;
811 
812 	qpd->ib_mem = mem;
813 	qpd->ib_kaddr = kaddr;
814 
815 	return 0;
816 }
817 
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)818 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
819 {
820 	struct qcm_process_device *qpd = &pdd->qpd;
821 
822 	if (!qpd->ib_kaddr || !qpd->ib_base)
823 		return;
824 
825 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
826 }
827 
kfd_create_process(struct task_struct * thread)828 struct kfd_process *kfd_create_process(struct task_struct *thread)
829 {
830 	struct kfd_process *process;
831 	int ret;
832 
833 	if (!(thread->mm && mmget_not_zero(thread->mm)))
834 		return ERR_PTR(-EINVAL);
835 
836 	/* Only the pthreads threading model is supported. */
837 	if (thread->group_leader->mm != thread->mm) {
838 		mmput(thread->mm);
839 		return ERR_PTR(-EINVAL);
840 	}
841 
842 	/* If the process just called exec(3), it is possible that the
843 	 * cleanup of the kfd_process (following the release of the mm
844 	 * of the old process image) is still in the cleanup work queue.
845 	 * Make sure to drain any job before trying to recreate any
846 	 * resource for this process.
847 	 */
848 	flush_workqueue(kfd_process_wq);
849 
850 	/*
851 	 * take kfd processes mutex before starting of process creation
852 	 * so there won't be a case where two threads of the same process
853 	 * create two kfd_process structures
854 	 */
855 	mutex_lock(&kfd_processes_mutex);
856 
857 	if (kfd_is_locked(NULL)) {
858 		pr_debug("KFD is locked! Cannot create process");
859 		process = ERR_PTR(-EINVAL);
860 		goto out;
861 	}
862 
863 	/* A prior open of /dev/kfd could have already created the process.
864 	 * find_process will increase process kref in this case
865 	 */
866 	process = find_process(thread, true);
867 	if (process) {
868 		pr_debug("Process already found\n");
869 	} else {
870 		process = create_process(thread);
871 		if (IS_ERR(process))
872 			goto out;
873 
874 		if (!procfs.kobj)
875 			goto out;
876 
877 		process->kobj = kfd_alloc_struct(process->kobj);
878 		if (!process->kobj) {
879 			pr_warn("Creating procfs kobject failed");
880 			goto out;
881 		}
882 		ret = kobject_init_and_add(process->kobj, &procfs_type,
883 					   procfs.kobj, "%d",
884 					   (int)process->lead_thread->pid);
885 		if (ret) {
886 			pr_warn("Creating procfs pid directory failed");
887 			kobject_put(process->kobj);
888 			goto out;
889 		}
890 
891 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
892 				      "pasid");
893 
894 		process->kobj_queues = kobject_create_and_add("queues",
895 							process->kobj);
896 		if (!process->kobj_queues)
897 			pr_warn("Creating KFD proc/queues folder failed");
898 
899 		kfd_procfs_add_sysfs_stats(process);
900 		kfd_procfs_add_sysfs_files(process);
901 		kfd_procfs_add_sysfs_counters(process);
902 
903 		kfd_debugfs_add_process(process);
904 
905 		init_waitqueue_head(&process->wait_irq_drain);
906 	}
907 out:
908 	mutex_unlock(&kfd_processes_mutex);
909 	mmput(thread->mm);
910 
911 	return process;
912 }
913 
kfd_get_process(const struct task_struct * thread)914 struct kfd_process *kfd_get_process(const struct task_struct *thread)
915 {
916 	struct kfd_process *process;
917 
918 	if (!thread->mm)
919 		return ERR_PTR(-EINVAL);
920 
921 	/* Only the pthreads threading model is supported. */
922 	if (thread->group_leader->mm != thread->mm)
923 		return ERR_PTR(-EINVAL);
924 
925 	process = find_process(thread, false);
926 	if (!process)
927 		return ERR_PTR(-EINVAL);
928 
929 	return process;
930 }
931 
find_process_by_mm(const struct mm_struct * mm)932 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
933 {
934 	struct kfd_process *process;
935 
936 	hash_for_each_possible_rcu(kfd_processes_table, process,
937 					kfd_processes, (uintptr_t)mm)
938 		if (process->mm == mm)
939 			return process;
940 
941 	return NULL;
942 }
943 
find_process(const struct task_struct * thread,bool ref)944 static struct kfd_process *find_process(const struct task_struct *thread,
945 					bool ref)
946 {
947 	struct kfd_process *p;
948 	int idx;
949 
950 	idx = srcu_read_lock(&kfd_processes_srcu);
951 	p = find_process_by_mm(thread->mm);
952 	if (p && ref)
953 		kref_get(&p->ref);
954 	srcu_read_unlock(&kfd_processes_srcu, idx);
955 
956 	return p;
957 }
958 
kfd_unref_process(struct kfd_process * p)959 void kfd_unref_process(struct kfd_process *p)
960 {
961 	kref_put(&p->ref, kfd_process_ref_release);
962 }
963 
964 /* This increments the process->ref counter. */
kfd_lookup_process_by_pid(struct pid * pid)965 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
966 {
967 	struct task_struct *task = NULL;
968 	struct kfd_process *p    = NULL;
969 
970 	if (!pid) {
971 		task = current;
972 		get_task_struct(task);
973 	} else {
974 		task = get_pid_task(pid, PIDTYPE_PID);
975 	}
976 
977 	if (task) {
978 		p = find_process(task, true);
979 		put_task_struct(task);
980 	}
981 
982 	return p;
983 }
984 
kfd_process_device_free_bos(struct kfd_process_device * pdd)985 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
986 {
987 	struct kfd_process *p = pdd->process;
988 	void *mem;
989 	int id;
990 	int i;
991 
992 	/*
993 	 * Remove all handles from idr and release appropriate
994 	 * local memory object
995 	 */
996 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
997 
998 		for (i = 0; i < p->n_pdds; i++) {
999 			struct kfd_process_device *peer_pdd = p->pdds[i];
1000 
1001 			if (!peer_pdd->drm_priv)
1002 				continue;
1003 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1004 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1005 		}
1006 
1007 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1008 						       pdd->drm_priv, NULL);
1009 		kfd_process_device_remove_obj_handle(pdd, id);
1010 	}
1011 }
1012 
1013 /*
1014  * Just kunmap and unpin signal BO here. It will be freed in
1015  * kfd_process_free_outstanding_kfd_bos()
1016  */
kfd_process_kunmap_signal_bo(struct kfd_process * p)1017 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1018 {
1019 	struct kfd_process_device *pdd;
1020 	struct kfd_node *kdev;
1021 	void *mem;
1022 
1023 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1024 	if (!kdev)
1025 		return;
1026 
1027 	mutex_lock(&p->mutex);
1028 
1029 	pdd = kfd_get_process_device_data(kdev, p);
1030 	if (!pdd)
1031 		goto out;
1032 
1033 	mem = kfd_process_device_translate_handle(
1034 		pdd, GET_IDR_HANDLE(p->signal_handle));
1035 	if (!mem)
1036 		goto out;
1037 
1038 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1039 
1040 out:
1041 	mutex_unlock(&p->mutex);
1042 }
1043 
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)1044 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1045 {
1046 	int i;
1047 
1048 	for (i = 0; i < p->n_pdds; i++)
1049 		kfd_process_device_free_bos(p->pdds[i]);
1050 }
1051 
kfd_process_destroy_pdds(struct kfd_process * p)1052 static void kfd_process_destroy_pdds(struct kfd_process *p)
1053 {
1054 	int i;
1055 
1056 	for (i = 0; i < p->n_pdds; i++) {
1057 		struct kfd_process_device *pdd = p->pdds[i];
1058 
1059 		kfd_smi_event_process(pdd, false);
1060 
1061 		pr_debug("Releasing pdd (topology id %d, for pid %d)\n",
1062 			pdd->dev->id, p->lead_thread->pid);
1063 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1064 		kfd_process_device_destroy_ib_mem(pdd);
1065 
1066 		if (pdd->drm_file)
1067 			fput(pdd->drm_file);
1068 
1069 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1070 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1071 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1072 
1073 		idr_destroy(&pdd->alloc_idr);
1074 
1075 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1076 
1077 		if (pdd->dev->kfd->shared_resources.enable_mes &&
1078 			pdd->proc_ctx_cpu_ptr)
1079 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1080 						   &pdd->proc_ctx_bo);
1081 		/*
1082 		 * before destroying pdd, make sure to report availability
1083 		 * for auto suspend
1084 		 */
1085 		if (pdd->runtime_inuse) {
1086 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1087 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1088 			pdd->runtime_inuse = false;
1089 		}
1090 
1091 		kfree(pdd);
1092 		p->pdds[i] = NULL;
1093 	}
1094 	p->n_pdds = 0;
1095 }
1096 
kfd_process_remove_sysfs(struct kfd_process * p)1097 static void kfd_process_remove_sysfs(struct kfd_process *p)
1098 {
1099 	struct kfd_process_device *pdd;
1100 	int i;
1101 
1102 	if (!p->kobj)
1103 		return;
1104 
1105 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1106 	kobject_del(p->kobj_queues);
1107 	kobject_put(p->kobj_queues);
1108 	p->kobj_queues = NULL;
1109 
1110 	for (i = 0; i < p->n_pdds; i++) {
1111 		pdd = p->pdds[i];
1112 
1113 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1114 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1115 
1116 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1117 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1118 			sysfs_remove_file(pdd->kobj_stats,
1119 					  &pdd->attr_cu_occupancy);
1120 		kobject_del(pdd->kobj_stats);
1121 		kobject_put(pdd->kobj_stats);
1122 		pdd->kobj_stats = NULL;
1123 	}
1124 
1125 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1126 		pdd = p->pdds[i];
1127 
1128 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1129 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1130 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1131 		kobject_del(pdd->kobj_counters);
1132 		kobject_put(pdd->kobj_counters);
1133 		pdd->kobj_counters = NULL;
1134 	}
1135 
1136 	kobject_del(p->kobj);
1137 	kobject_put(p->kobj);
1138 	p->kobj = NULL;
1139 }
1140 
1141 /*
1142  * If any GPU is ongoing reset, wait for reset complete.
1143  */
kfd_process_wait_gpu_reset_complete(struct kfd_process * p)1144 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p)
1145 {
1146 	int i;
1147 
1148 	for (i = 0; i < p->n_pdds; i++)
1149 		flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq);
1150 }
1151 
1152 /* No process locking is needed in this function, because the process
1153  * is not findable any more. We must assume that no other thread is
1154  * using it any more, otherwise we couldn't safely free the process
1155  * structure in the end.
1156  */
kfd_process_wq_release(struct work_struct * work)1157 static void kfd_process_wq_release(struct work_struct *work)
1158 {
1159 	struct kfd_process *p = container_of(work, struct kfd_process,
1160 					     release_work);
1161 	struct dma_fence *ef;
1162 
1163 	kfd_process_dequeue_from_all_devices(p);
1164 	pqm_uninit(&p->pqm);
1165 
1166 	/*
1167 	 * If GPU in reset, user queues may still running, wait for reset complete.
1168 	 */
1169 	kfd_process_wait_gpu_reset_complete(p);
1170 
1171 	/* Signal the eviction fence after user mode queues are
1172 	 * destroyed. This allows any BOs to be freed without
1173 	 * triggering pointless evictions or waiting for fences.
1174 	 */
1175 	synchronize_rcu();
1176 	ef = rcu_access_pointer(p->ef);
1177 	if (ef)
1178 		dma_fence_signal(ef);
1179 
1180 	kfd_process_remove_sysfs(p);
1181 	kfd_debugfs_remove_process(p);
1182 
1183 	kfd_process_kunmap_signal_bo(p);
1184 	kfd_process_free_outstanding_kfd_bos(p);
1185 	svm_range_list_fini(p);
1186 
1187 	kfd_process_destroy_pdds(p);
1188 	dma_fence_put(ef);
1189 
1190 	kfd_event_free_process(p);
1191 
1192 	mutex_destroy(&p->mutex);
1193 
1194 	put_task_struct(p->lead_thread);
1195 
1196 	kfree(p);
1197 }
1198 
kfd_process_ref_release(struct kref * ref)1199 static void kfd_process_ref_release(struct kref *ref)
1200 {
1201 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1202 
1203 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1204 	queue_work(kfd_process_wq, &p->release_work);
1205 }
1206 
kfd_process_alloc_notifier(struct mm_struct * mm)1207 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1208 {
1209 	/* This increments p->ref counter if kfd process p exists */
1210 	struct kfd_process *p = kfd_lookup_process_by_mm(mm);
1211 
1212 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1213 }
1214 
kfd_process_free_notifier(struct mmu_notifier * mn)1215 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1216 {
1217 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1218 }
1219 
kfd_process_notifier_release_internal(struct kfd_process * p)1220 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1221 {
1222 	int i;
1223 
1224 	cancel_delayed_work_sync(&p->eviction_work);
1225 	cancel_delayed_work_sync(&p->restore_work);
1226 
1227 	for (i = 0; i < p->n_pdds; i++) {
1228 		struct kfd_process_device *pdd = p->pdds[i];
1229 
1230 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1231 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1232 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1233 	}
1234 
1235 	/* Indicate to other users that MM is no longer valid */
1236 	p->mm = NULL;
1237 	kfd_dbg_trap_disable(p);
1238 
1239 	if (atomic_read(&p->debugged_process_count) > 0) {
1240 		struct kfd_process *target;
1241 		unsigned int temp;
1242 		int idx = srcu_read_lock(&kfd_processes_srcu);
1243 
1244 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1245 			if (target->debugger_process && target->debugger_process == p) {
1246 				mutex_lock_nested(&target->mutex, 1);
1247 				kfd_dbg_trap_disable(target);
1248 				mutex_unlock(&target->mutex);
1249 				if (atomic_read(&p->debugged_process_count) == 0)
1250 					break;
1251 			}
1252 		}
1253 
1254 		srcu_read_unlock(&kfd_processes_srcu, idx);
1255 	}
1256 
1257 	mmu_notifier_put(&p->mmu_notifier);
1258 }
1259 
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1260 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1261 					struct mm_struct *mm)
1262 {
1263 	struct kfd_process *p;
1264 
1265 	/*
1266 	 * The kfd_process structure can not be free because the
1267 	 * mmu_notifier srcu is read locked
1268 	 */
1269 	p = container_of(mn, struct kfd_process, mmu_notifier);
1270 	if (WARN_ON(p->mm != mm))
1271 		return;
1272 
1273 	mutex_lock(&kfd_processes_mutex);
1274 	/*
1275 	 * Do early return if table is empty.
1276 	 *
1277 	 * This could potentially happen if this function is called concurrently
1278 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1279 	 *
1280 	 */
1281 	if (hash_empty(kfd_processes_table)) {
1282 		mutex_unlock(&kfd_processes_mutex);
1283 		return;
1284 	}
1285 	hash_del_rcu(&p->kfd_processes);
1286 	mutex_unlock(&kfd_processes_mutex);
1287 	synchronize_srcu(&kfd_processes_srcu);
1288 
1289 	kfd_process_notifier_release_internal(p);
1290 }
1291 
1292 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1293 	.release = kfd_process_notifier_release,
1294 	.alloc_notifier = kfd_process_alloc_notifier,
1295 	.free_notifier = kfd_process_free_notifier,
1296 };
1297 
1298 /*
1299  * This code handles the case when driver is being unloaded before all
1300  * mm_struct are released.  We need to safely free the kfd_process and
1301  * avoid race conditions with mmu_notifier that might try to free them.
1302  *
1303  */
kfd_cleanup_processes(void)1304 void kfd_cleanup_processes(void)
1305 {
1306 	struct kfd_process *p;
1307 	struct hlist_node *p_temp;
1308 	unsigned int temp;
1309 	HLIST_HEAD(cleanup_list);
1310 
1311 	/*
1312 	 * Move all remaining kfd_process from the process table to a
1313 	 * temp list for processing.   Once done, callback from mmu_notifier
1314 	 * release will not see the kfd_process in the table and do early return,
1315 	 * avoiding double free issues.
1316 	 */
1317 	mutex_lock(&kfd_processes_mutex);
1318 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1319 		hash_del_rcu(&p->kfd_processes);
1320 		synchronize_srcu(&kfd_processes_srcu);
1321 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1322 	}
1323 	mutex_unlock(&kfd_processes_mutex);
1324 
1325 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1326 		kfd_process_notifier_release_internal(p);
1327 
1328 	/*
1329 	 * Ensures that all outstanding free_notifier get called, triggering
1330 	 * the release of the kfd_process struct.
1331 	 */
1332 	mmu_notifier_synchronize();
1333 }
1334 
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1335 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1336 {
1337 	unsigned long  offset;
1338 	int i;
1339 
1340 	if (p->has_cwsr)
1341 		return 0;
1342 
1343 	for (i = 0; i < p->n_pdds; i++) {
1344 		struct kfd_node *dev = p->pdds[i]->dev;
1345 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1346 
1347 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1348 			continue;
1349 
1350 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1351 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1352 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1353 			MAP_SHARED, offset);
1354 
1355 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1356 			int err = qpd->tba_addr;
1357 
1358 			dev_err(dev->adev->dev,
1359 				"Failure to set tba address. error %d.\n", err);
1360 			qpd->tba_addr = 0;
1361 			qpd->cwsr_kaddr = NULL;
1362 			return err;
1363 		}
1364 
1365 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1366 
1367 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1368 
1369 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1370 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1371 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1372 	}
1373 
1374 	p->has_cwsr = true;
1375 
1376 	return 0;
1377 }
1378 
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1379 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1380 {
1381 	struct kfd_node *dev = pdd->dev;
1382 	struct qcm_process_device *qpd = &pdd->qpd;
1383 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1384 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1385 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1386 	struct kgd_mem *mem;
1387 	void *kaddr;
1388 	int ret;
1389 
1390 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1391 		return 0;
1392 
1393 	/* cwsr_base is only set for dGPU */
1394 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1395 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1396 	if (ret)
1397 		return ret;
1398 
1399 	qpd->cwsr_mem = mem;
1400 	qpd->cwsr_kaddr = kaddr;
1401 	qpd->tba_addr = qpd->cwsr_base;
1402 
1403 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1404 
1405 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1406 					pdd->process->debug_trap_enabled);
1407 
1408 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1409 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1410 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1411 
1412 	return 0;
1413 }
1414 
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1415 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1416 {
1417 	struct kfd_node *dev = pdd->dev;
1418 	struct qcm_process_device *qpd = &pdd->qpd;
1419 
1420 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1421 		return;
1422 
1423 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1424 }
1425 
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1426 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1427 				  uint64_t tba_addr,
1428 				  uint64_t tma_addr)
1429 {
1430 	if (qpd->cwsr_kaddr) {
1431 		/* KFD trap handler is bound, record as second-level TBA/TMA
1432 		 * in first-level TMA. First-level trap will jump to second.
1433 		 */
1434 		uint64_t *tma =
1435 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1436 		tma[0] = tba_addr;
1437 		tma[1] = tma_addr;
1438 	} else {
1439 		/* No trap handler bound, bind as first-level TBA/TMA. */
1440 		qpd->tba_addr = tba_addr;
1441 		qpd->tma_addr = tma_addr;
1442 	}
1443 }
1444 
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1445 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1446 {
1447 	int i;
1448 
1449 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1450 	 * boot time retry setting. Mixing processes with different
1451 	 * XNACK/retry settings can hang the GPU.
1452 	 *
1453 	 * Different GPUs can have different noretry settings depending
1454 	 * on HW bugs or limitations. We need to find at least one
1455 	 * XNACK mode for this process that's compatible with all GPUs.
1456 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1457 	 * built for XNACK-off. On GFXv9 it may perform slower.
1458 	 *
1459 	 * Therefore applications built for XNACK-off can always be
1460 	 * supported and will be our fallback if any GPU does not
1461 	 * support retry.
1462 	 */
1463 	for (i = 0; i < p->n_pdds; i++) {
1464 		struct kfd_node *dev = p->pdds[i]->dev;
1465 
1466 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1467 		 * support the SVM APIs and don't need to be considered
1468 		 * for the XNACK mode selection.
1469 		 */
1470 		if (!KFD_IS_SOC15(dev))
1471 			continue;
1472 		/* Aldebaran can always support XNACK because it can support
1473 		 * per-process XNACK mode selection. But let the dev->noretry
1474 		 * setting still influence the default XNACK mode.
1475 		 */
1476 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1477 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1478 				pr_debug("SRIOV platform xnack not supported\n");
1479 				return false;
1480 			}
1481 			continue;
1482 		}
1483 
1484 		/* GFXv10 and later GPUs do not support shader preemption
1485 		 * during page faults. This can lead to poor QoS for queue
1486 		 * management and memory-manager-related preemptions or
1487 		 * even deadlocks.
1488 		 */
1489 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1490 			return false;
1491 
1492 		if (dev->kfd->noretry)
1493 			return false;
1494 	}
1495 
1496 	return true;
1497 }
1498 
kfd_process_set_trap_debug_flag(struct qcm_process_device * qpd,bool enabled)1499 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1500 				     bool enabled)
1501 {
1502 	if (qpd->cwsr_kaddr) {
1503 		uint64_t *tma =
1504 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1505 		tma[2] = enabled;
1506 	}
1507 }
1508 
1509 /*
1510  * On return the kfd_process is fully operational and will be freed when the
1511  * mm is released
1512  */
create_process(const struct task_struct * thread)1513 static struct kfd_process *create_process(const struct task_struct *thread)
1514 {
1515 	struct kfd_process *process;
1516 	struct mmu_notifier *mn;
1517 	int err = -ENOMEM;
1518 
1519 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1520 	if (!process)
1521 		goto err_alloc_process;
1522 
1523 	kref_init(&process->ref);
1524 	mutex_init(&process->mutex);
1525 	process->mm = thread->mm;
1526 	process->lead_thread = thread->group_leader;
1527 	process->n_pdds = 0;
1528 	process->queues_paused = false;
1529 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1530 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1531 	process->last_restore_timestamp = get_jiffies_64();
1532 	err = kfd_event_init_process(process);
1533 	if (err)
1534 		goto err_event_init;
1535 	process->is_32bit_user_mode = in_compat_syscall();
1536 	process->debug_trap_enabled = false;
1537 	process->debugger_process = NULL;
1538 	process->exception_enable_mask = 0;
1539 	atomic_set(&process->debugged_process_count, 0);
1540 	sema_init(&process->runtime_enable_sema, 0);
1541 
1542 	err = pqm_init(&process->pqm, process);
1543 	if (err != 0)
1544 		goto err_process_pqm_init;
1545 
1546 	/* init process apertures*/
1547 	err = kfd_init_apertures(process);
1548 	if (err != 0)
1549 		goto err_init_apertures;
1550 
1551 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1552 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1553 
1554 	err = svm_range_list_init(process);
1555 	if (err)
1556 		goto err_init_svm_range_list;
1557 
1558 	/* alloc_notifier needs to find the process in the hash table */
1559 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1560 			(uintptr_t)process->mm);
1561 
1562 	/* Avoid free_notifier to start kfd_process_wq_release if
1563 	 * mmu_notifier_get failed because of pending signal.
1564 	 */
1565 	kref_get(&process->ref);
1566 
1567 	/* MMU notifier registration must be the last call that can fail
1568 	 * because after this point we cannot unwind the process creation.
1569 	 * After this point, mmu_notifier_put will trigger the cleanup by
1570 	 * dropping the last process reference in the free_notifier.
1571 	 */
1572 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1573 	if (IS_ERR(mn)) {
1574 		err = PTR_ERR(mn);
1575 		goto err_register_notifier;
1576 	}
1577 	BUG_ON(mn != &process->mmu_notifier);
1578 
1579 	kfd_unref_process(process);
1580 	get_task_struct(process->lead_thread);
1581 
1582 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1583 
1584 	return process;
1585 
1586 err_register_notifier:
1587 	hash_del_rcu(&process->kfd_processes);
1588 	svm_range_list_fini(process);
1589 err_init_svm_range_list:
1590 	kfd_process_free_outstanding_kfd_bos(process);
1591 	kfd_process_destroy_pdds(process);
1592 err_init_apertures:
1593 	pqm_uninit(&process->pqm);
1594 err_process_pqm_init:
1595 	kfd_event_free_process(process);
1596 err_event_init:
1597 	mutex_destroy(&process->mutex);
1598 	kfree(process);
1599 err_alloc_process:
1600 	return ERR_PTR(err);
1601 }
1602 
kfd_get_process_device_data(struct kfd_node * dev,struct kfd_process * p)1603 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1604 							struct kfd_process *p)
1605 {
1606 	int i;
1607 
1608 	for (i = 0; i < p->n_pdds; i++)
1609 		if (p->pdds[i]->dev == dev)
1610 			return p->pdds[i];
1611 
1612 	return NULL;
1613 }
1614 
kfd_create_process_device_data(struct kfd_node * dev,struct kfd_process * p)1615 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1616 							struct kfd_process *p)
1617 {
1618 	struct kfd_process_device *pdd = NULL;
1619 
1620 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1621 		return NULL;
1622 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1623 	if (!pdd)
1624 		return NULL;
1625 
1626 	pdd->dev = dev;
1627 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1628 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1629 	pdd->qpd.dqm = dev->dqm;
1630 	pdd->qpd.pqm = &p->pqm;
1631 	pdd->qpd.evicted = 0;
1632 	pdd->qpd.mapped_gws_queue = false;
1633 	pdd->process = p;
1634 	pdd->bound = PDD_UNBOUND;
1635 	pdd->already_dequeued = false;
1636 	pdd->runtime_inuse = false;
1637 	atomic64_set(&pdd->vram_usage, 0);
1638 	pdd->sdma_past_activity_counter = 0;
1639 	pdd->user_gpu_id = dev->id;
1640 	atomic64_set(&pdd->evict_duration_counter, 0);
1641 
1642 	p->pdds[p->n_pdds++] = pdd;
1643 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1644 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1645 							pdd->dev->adev,
1646 							false,
1647 							0);
1648 
1649 	/* Init idr used for memory handle translation */
1650 	idr_init(&pdd->alloc_idr);
1651 
1652 	return pdd;
1653 }
1654 
1655 /**
1656  * kfd_process_device_init_vm - Initialize a VM for a process-device
1657  *
1658  * @pdd: The process-device
1659  * @drm_file: Optional pointer to a DRM file descriptor
1660  *
1661  * If @drm_file is specified, it will be used to acquire the VM from
1662  * that file descriptor. If successful, the @pdd takes ownership of
1663  * the file descriptor.
1664  *
1665  * If @drm_file is NULL, a new VM is created.
1666  *
1667  * Returns 0 on success, -errno on failure.
1668  */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1669 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1670 			       struct file *drm_file)
1671 {
1672 	struct amdgpu_fpriv *drv_priv;
1673 	struct amdgpu_vm *avm;
1674 	struct kfd_process *p;
1675 	struct dma_fence *ef;
1676 	struct kfd_node *dev;
1677 	int ret;
1678 
1679 	if (!drm_file)
1680 		return -EINVAL;
1681 
1682 	if (pdd->drm_priv)
1683 		return -EBUSY;
1684 
1685 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1686 	if (ret)
1687 		return ret;
1688 	avm = &drv_priv->vm;
1689 
1690 	p = pdd->process;
1691 	dev = pdd->dev;
1692 
1693 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1694 						     &p->kgd_process_info,
1695 						     p->ef ? NULL : &ef);
1696 	if (ret) {
1697 		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1698 		return ret;
1699 	}
1700 
1701 	if (!p->ef)
1702 		RCU_INIT_POINTER(p->ef, ef);
1703 
1704 	pdd->drm_priv = drm_file->private_data;
1705 
1706 	ret = kfd_process_device_reserve_ib_mem(pdd);
1707 	if (ret)
1708 		goto err_reserve_ib_mem;
1709 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1710 	if (ret)
1711 		goto err_init_cwsr;
1712 
1713 	if (unlikely(!avm->pasid)) {
1714 		dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated",
1715 				 avm);
1716 		ret = -EINVAL;
1717 		goto err_get_pasid;
1718 	}
1719 
1720 	pdd->pasid = avm->pasid;
1721 	pdd->drm_file = drm_file;
1722 
1723 	kfd_smi_event_process(pdd, true);
1724 
1725 	return 0;
1726 
1727 err_get_pasid:
1728 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1729 err_init_cwsr:
1730 	kfd_process_device_destroy_ib_mem(pdd);
1731 err_reserve_ib_mem:
1732 	pdd->drm_priv = NULL;
1733 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1734 
1735 	return ret;
1736 }
1737 
1738 /*
1739  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1740  * to the device.
1741  * Unbinding occurs when the process dies or the device is removed.
1742  *
1743  * Assumes that the process lock is held.
1744  */
kfd_bind_process_to_device(struct kfd_node * dev,struct kfd_process * p)1745 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1746 							struct kfd_process *p)
1747 {
1748 	struct kfd_process_device *pdd;
1749 	int err;
1750 
1751 	pdd = kfd_get_process_device_data(dev, p);
1752 	if (!pdd) {
1753 		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1754 		return ERR_PTR(-ENOMEM);
1755 	}
1756 
1757 	if (!pdd->drm_priv)
1758 		return ERR_PTR(-ENODEV);
1759 
1760 	/*
1761 	 * signal runtime-pm system to auto resume and prevent
1762 	 * further runtime suspend once device pdd is created until
1763 	 * pdd is destroyed.
1764 	 */
1765 	if (!pdd->runtime_inuse) {
1766 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1767 		if (err < 0) {
1768 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1769 			return ERR_PTR(err);
1770 		}
1771 	}
1772 
1773 	/*
1774 	 * make sure that runtime_usage counter is incremented just once
1775 	 * per pdd
1776 	 */
1777 	pdd->runtime_inuse = true;
1778 
1779 	return pdd;
1780 }
1781 
1782 /* Create specific handle mapped to mem from process local memory idr
1783  * Assumes that the process lock is held.
1784  */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1785 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1786 					void *mem)
1787 {
1788 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1789 }
1790 
1791 /* Translate specific handle from process local memory idr
1792  * Assumes that the process lock is held.
1793  */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1794 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1795 					int handle)
1796 {
1797 	if (handle < 0)
1798 		return NULL;
1799 
1800 	return idr_find(&pdd->alloc_idr, handle);
1801 }
1802 
1803 /* Remove specific handle from process local memory idr
1804  * Assumes that the process lock is held.
1805  */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1806 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1807 					int handle)
1808 {
1809 	if (handle >= 0)
1810 		idr_remove(&pdd->alloc_idr, handle);
1811 }
1812 
kfd_lookup_process_device_by_pasid(u32 pasid)1813 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid)
1814 {
1815 	struct kfd_process_device *ret_p = NULL;
1816 	struct kfd_process *p;
1817 	unsigned int temp;
1818 	int i;
1819 
1820 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1821 		for (i = 0; i < p->n_pdds; i++) {
1822 			if (p->pdds[i]->pasid == pasid) {
1823 				ret_p = p->pdds[i];
1824 				break;
1825 			}
1826 		}
1827 		if (ret_p)
1828 			break;
1829 	}
1830 	return ret_p;
1831 }
1832 
1833 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid,struct kfd_process_device ** pdd)1834 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid,
1835 						struct kfd_process_device **pdd)
1836 {
1837 	struct kfd_process_device *ret_p;
1838 
1839 	int idx = srcu_read_lock(&kfd_processes_srcu);
1840 
1841 	ret_p = kfd_lookup_process_device_by_pasid(pasid);
1842 	if (ret_p) {
1843 		if (pdd)
1844 			*pdd = ret_p;
1845 		kref_get(&ret_p->process->ref);
1846 
1847 		srcu_read_unlock(&kfd_processes_srcu, idx);
1848 		return ret_p->process;
1849 	}
1850 
1851 	srcu_read_unlock(&kfd_processes_srcu, idx);
1852 
1853 	if (pdd)
1854 		*pdd = NULL;
1855 
1856 	return NULL;
1857 }
1858 
1859 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1860 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1861 {
1862 	struct kfd_process *p;
1863 
1864 	int idx = srcu_read_lock(&kfd_processes_srcu);
1865 
1866 	p = find_process_by_mm(mm);
1867 	if (p)
1868 		kref_get(&p->ref);
1869 
1870 	srcu_read_unlock(&kfd_processes_srcu, idx);
1871 
1872 	return p;
1873 }
1874 
1875 /* kfd_process_evict_queues - Evict all user queues of a process
1876  *
1877  * Eviction is reference-counted per process-device. This means multiple
1878  * evictions from different sources can be nested safely.
1879  */
kfd_process_evict_queues(struct kfd_process * p,uint32_t trigger)1880 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1881 {
1882 	int r = 0;
1883 	int i;
1884 	unsigned int n_evicted = 0;
1885 
1886 	for (i = 0; i < p->n_pdds; i++) {
1887 		struct kfd_process_device *pdd = p->pdds[i];
1888 		struct device *dev = pdd->dev->adev->dev;
1889 
1890 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1891 					     trigger);
1892 
1893 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1894 							    &pdd->qpd);
1895 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1896 		 * we would like to set all the queues to be in evicted state to prevent
1897 		 * them been add back since they actually not be saved right now.
1898 		 */
1899 		if (r && r != -EIO) {
1900 			dev_err(dev, "Failed to evict process queues\n");
1901 			goto fail;
1902 		}
1903 		n_evicted++;
1904 
1905 		pdd->dev->dqm->is_hws_hang = false;
1906 	}
1907 
1908 	return r;
1909 
1910 fail:
1911 	/* To keep state consistent, roll back partial eviction by
1912 	 * restoring queues
1913 	 */
1914 	for (i = 0; i < p->n_pdds; i++) {
1915 		struct kfd_process_device *pdd = p->pdds[i];
1916 
1917 		if (n_evicted == 0)
1918 			break;
1919 
1920 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1921 
1922 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1923 							      &pdd->qpd))
1924 			dev_err(pdd->dev->adev->dev,
1925 				"Failed to restore queues\n");
1926 
1927 		n_evicted--;
1928 	}
1929 
1930 	return r;
1931 }
1932 
1933 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)1934 int kfd_process_restore_queues(struct kfd_process *p)
1935 {
1936 	int r, ret = 0;
1937 	int i;
1938 
1939 	for (i = 0; i < p->n_pdds; i++) {
1940 		struct kfd_process_device *pdd = p->pdds[i];
1941 		struct device *dev = pdd->dev->adev->dev;
1942 
1943 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1944 
1945 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1946 							      &pdd->qpd);
1947 		if (r) {
1948 			dev_err(dev, "Failed to restore process queues\n");
1949 			if (!ret)
1950 				ret = r;
1951 		}
1952 	}
1953 
1954 	return ret;
1955 }
1956 
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)1957 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1958 {
1959 	int i;
1960 
1961 	for (i = 0; i < p->n_pdds; i++)
1962 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1963 			return i;
1964 	return -EINVAL;
1965 }
1966 
1967 int
kfd_process_gpuid_from_node(struct kfd_process * p,struct kfd_node * node,uint32_t * gpuid,uint32_t * gpuidx)1968 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1969 			    uint32_t *gpuid, uint32_t *gpuidx)
1970 {
1971 	int i;
1972 
1973 	for (i = 0; i < p->n_pdds; i++)
1974 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1975 			*gpuid = p->pdds[i]->user_gpu_id;
1976 			*gpuidx = i;
1977 			return 0;
1978 		}
1979 	return -EINVAL;
1980 }
1981 
signal_eviction_fence(struct kfd_process * p)1982 static int signal_eviction_fence(struct kfd_process *p)
1983 {
1984 	struct dma_fence *ef;
1985 	int ret;
1986 
1987 	rcu_read_lock();
1988 	ef = dma_fence_get_rcu_safe(&p->ef);
1989 	rcu_read_unlock();
1990 	if (!ef)
1991 		return -EINVAL;
1992 
1993 	ret = dma_fence_signal(ef);
1994 	dma_fence_put(ef);
1995 
1996 	return ret;
1997 }
1998 
evict_process_worker(struct work_struct * work)1999 static void evict_process_worker(struct work_struct *work)
2000 {
2001 	int ret;
2002 	struct kfd_process *p;
2003 	struct delayed_work *dwork;
2004 
2005 	dwork = to_delayed_work(work);
2006 
2007 	/* Process termination destroys this worker thread. So during the
2008 	 * lifetime of this thread, kfd_process p will be valid
2009 	 */
2010 	p = container_of(dwork, struct kfd_process, eviction_work);
2011 
2012 	pr_debug("Started evicting process pid %d\n", p->lead_thread->pid);
2013 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
2014 	if (!ret) {
2015 		/* If another thread already signaled the eviction fence,
2016 		 * they are responsible stopping the queues and scheduling
2017 		 * the restore work.
2018 		 */
2019 		if (signal_eviction_fence(p) ||
2020 		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
2021 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2022 			kfd_process_restore_queues(p);
2023 
2024 		pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid);
2025 	} else
2026 		pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid);
2027 }
2028 
restore_process_helper(struct kfd_process * p)2029 static int restore_process_helper(struct kfd_process *p)
2030 {
2031 	int ret = 0;
2032 
2033 	/* VMs may not have been acquired yet during debugging. */
2034 	if (p->kgd_process_info) {
2035 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2036 			p->kgd_process_info, &p->ef);
2037 		if (ret)
2038 			return ret;
2039 	}
2040 
2041 	ret = kfd_process_restore_queues(p);
2042 	if (!ret)
2043 		pr_debug("Finished restoring process pid %d\n",
2044 			p->lead_thread->pid);
2045 	else
2046 		pr_err("Failed to restore queues of process pid %d\n",
2047 		      p->lead_thread->pid);
2048 
2049 	return ret;
2050 }
2051 
restore_process_worker(struct work_struct * work)2052 static void restore_process_worker(struct work_struct *work)
2053 {
2054 	struct delayed_work *dwork;
2055 	struct kfd_process *p;
2056 	int ret = 0;
2057 
2058 	dwork = to_delayed_work(work);
2059 
2060 	/* Process termination destroys this worker thread. So during the
2061 	 * lifetime of this thread, kfd_process p will be valid
2062 	 */
2063 	p = container_of(dwork, struct kfd_process, restore_work);
2064 	pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid);
2065 
2066 	/* Setting last_restore_timestamp before successful restoration.
2067 	 * Otherwise this would have to be set by KGD (restore_process_bos)
2068 	 * before KFD BOs are unreserved. If not, the process can be evicted
2069 	 * again before the timestamp is set.
2070 	 * If restore fails, the timestamp will be set again in the next
2071 	 * attempt. This would mean that the minimum GPU quanta would be
2072 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2073 	 * functions)
2074 	 */
2075 
2076 	p->last_restore_timestamp = get_jiffies_64();
2077 
2078 	ret = restore_process_helper(p);
2079 	if (ret) {
2080 		pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n",
2081 			 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS);
2082 		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2083 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2084 			kfd_process_restore_queues(p);
2085 	}
2086 }
2087 
kfd_suspend_all_processes(void)2088 void kfd_suspend_all_processes(void)
2089 {
2090 	struct kfd_process *p;
2091 	unsigned int temp;
2092 	int idx = srcu_read_lock(&kfd_processes_srcu);
2093 
2094 	WARN(debug_evictions, "Evicting all processes");
2095 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2096 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2097 			pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid);
2098 		signal_eviction_fence(p);
2099 	}
2100 	srcu_read_unlock(&kfd_processes_srcu, idx);
2101 }
2102 
kfd_resume_all_processes(void)2103 int kfd_resume_all_processes(void)
2104 {
2105 	struct kfd_process *p;
2106 	unsigned int temp;
2107 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2108 
2109 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2110 		if (restore_process_helper(p)) {
2111 			pr_err("Restore process pid %d failed during resume\n",
2112 			      p->lead_thread->pid);
2113 			ret = -EFAULT;
2114 		}
2115 	}
2116 	srcu_read_unlock(&kfd_processes_srcu, idx);
2117 	return ret;
2118 }
2119 
kfd_reserved_mem_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)2120 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2121 			  struct vm_area_struct *vma)
2122 {
2123 	struct kfd_process_device *pdd;
2124 	struct qcm_process_device *qpd;
2125 
2126 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2127 		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2128 		return -EINVAL;
2129 	}
2130 
2131 	pdd = kfd_get_process_device_data(dev, process);
2132 	if (!pdd)
2133 		return -EINVAL;
2134 	qpd = &pdd->qpd;
2135 
2136 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2137 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2138 	if (!qpd->cwsr_kaddr) {
2139 		dev_err(dev->adev->dev,
2140 			"Error allocating per process CWSR buffer.\n");
2141 		return -ENOMEM;
2142 	}
2143 
2144 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2145 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2146 	/* Mapping pages to user process */
2147 	return remap_pfn_range(vma, vma->vm_start,
2148 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2149 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2150 }
2151 
2152 /* assumes caller holds process lock. */
kfd_process_drain_interrupts(struct kfd_process_device * pdd)2153 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2154 {
2155 	uint32_t irq_drain_fence[8];
2156 	uint8_t node_id = 0;
2157 	int r = 0;
2158 
2159 	if (!KFD_IS_SOC15(pdd->dev))
2160 		return 0;
2161 
2162 	pdd->process->irq_drain_is_open = true;
2163 
2164 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2165 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2166 							KFD_IRQ_FENCE_CLIENTID;
2167 	irq_drain_fence[3] = pdd->pasid;
2168 
2169 	/*
2170 	 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3]
2171 	 */
2172 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2173 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) ||
2174 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0)) {
2175 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2176 		irq_drain_fence[3] |= node_id << 16;
2177 	}
2178 
2179 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2180 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2181 						     irq_drain_fence)) {
2182 		pdd->process->irq_drain_is_open = false;
2183 		return 0;
2184 	}
2185 
2186 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2187 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2188 	if (r)
2189 		pdd->process->irq_drain_is_open = false;
2190 
2191 	return r;
2192 }
2193 
kfd_process_close_interrupt_drain(unsigned int pasid)2194 void kfd_process_close_interrupt_drain(unsigned int pasid)
2195 {
2196 	struct kfd_process *p;
2197 
2198 	p = kfd_lookup_process_by_pasid(pasid, NULL);
2199 
2200 	if (!p)
2201 		return;
2202 
2203 	WRITE_ONCE(p->irq_drain_is_open, false);
2204 	wake_up_all(&p->wait_irq_drain);
2205 	kfd_unref_process(p);
2206 }
2207 
2208 struct send_exception_work_handler_workarea {
2209 	struct work_struct work;
2210 	struct kfd_process *p;
2211 	unsigned int queue_id;
2212 	uint64_t error_reason;
2213 };
2214 
send_exception_work_handler(struct work_struct * work)2215 static void send_exception_work_handler(struct work_struct *work)
2216 {
2217 	struct send_exception_work_handler_workarea *workarea;
2218 	struct kfd_process *p;
2219 	struct queue *q;
2220 	struct mm_struct *mm;
2221 	struct kfd_context_save_area_header __user *csa_header;
2222 	uint64_t __user *err_payload_ptr;
2223 	uint64_t cur_err;
2224 	uint32_t ev_id;
2225 
2226 	workarea = container_of(work,
2227 				struct send_exception_work_handler_workarea,
2228 				work);
2229 	p = workarea->p;
2230 
2231 	mm = get_task_mm(p->lead_thread);
2232 
2233 	if (!mm)
2234 		return;
2235 
2236 	kthread_use_mm(mm);
2237 
2238 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2239 
2240 	if (!q)
2241 		goto out;
2242 
2243 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2244 
2245 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2246 	get_user(cur_err, err_payload_ptr);
2247 	cur_err |= workarea->error_reason;
2248 	put_user(cur_err, err_payload_ptr);
2249 	get_user(ev_id, &csa_header->err_event_id);
2250 
2251 	kfd_set_event(p, ev_id);
2252 
2253 out:
2254 	kthread_unuse_mm(mm);
2255 	mmput(mm);
2256 }
2257 
kfd_send_exception_to_runtime(struct kfd_process * p,unsigned int queue_id,uint64_t error_reason)2258 int kfd_send_exception_to_runtime(struct kfd_process *p,
2259 			unsigned int queue_id,
2260 			uint64_t error_reason)
2261 {
2262 	struct send_exception_work_handler_workarea worker;
2263 
2264 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2265 
2266 	worker.p = p;
2267 	worker.queue_id = queue_id;
2268 	worker.error_reason = error_reason;
2269 
2270 	schedule_work(&worker.work);
2271 	flush_work(&worker.work);
2272 	destroy_work_on_stack(&worker.work);
2273 
2274 	return 0;
2275 }
2276 
kfd_process_device_data_by_id(struct kfd_process * p,uint32_t gpu_id)2277 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2278 {
2279 	int i;
2280 
2281 	if (gpu_id) {
2282 		for (i = 0; i < p->n_pdds; i++) {
2283 			struct kfd_process_device *pdd = p->pdds[i];
2284 
2285 			if (pdd->user_gpu_id == gpu_id)
2286 				return pdd;
2287 		}
2288 	}
2289 	return NULL;
2290 }
2291 
kfd_process_get_user_gpu_id(struct kfd_process * p,uint32_t actual_gpu_id)2292 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2293 {
2294 	int i;
2295 
2296 	if (!actual_gpu_id)
2297 		return 0;
2298 
2299 	for (i = 0; i < p->n_pdds; i++) {
2300 		struct kfd_process_device *pdd = p->pdds[i];
2301 
2302 		if (pdd->dev->id == actual_gpu_id)
2303 			return pdd->user_gpu_id;
2304 	}
2305 	return -EINVAL;
2306 }
2307 
2308 #if defined(CONFIG_DEBUG_FS)
2309 
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)2310 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2311 {
2312 	struct kfd_process *p;
2313 	unsigned int temp;
2314 	int r = 0;
2315 
2316 	int idx = srcu_read_lock(&kfd_processes_srcu);
2317 
2318 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2319 		seq_printf(m, "Process %d PASID %d:\n",
2320 			   p->lead_thread->tgid, p->lead_thread->pid);
2321 
2322 		mutex_lock(&p->mutex);
2323 		r = pqm_debugfs_mqds(m, &p->pqm);
2324 		mutex_unlock(&p->mutex);
2325 
2326 		if (r)
2327 			break;
2328 	}
2329 
2330 	srcu_read_unlock(&kfd_processes_srcu, idx);
2331 
2332 	return r;
2333 }
2334 
2335 #endif
2336