1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 #include "amdgpu_reset.h"
39
40 struct mm_struct;
41
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_svm.h"
45 #include "kfd_smi_events.h"
46 #include "kfd_debug.h"
47
48 /*
49 * List of struct kfd_process (field kfd_process).
50 * Unique/indexed by mm_struct*
51 */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 DEFINE_MUTEX(kfd_processes_mutex);
54
55 DEFINE_SRCU(kfd_processes_srcu);
56
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59
60 /* Ordered, single-threaded workqueue for restoring evicted
61 * processes. Restoring multiple processes concurrently under memory
62 * pressure can lead to processes blocking each other from validating
63 * their BOs and result in a live-lock situation where processes
64 * remain evicted indefinitely.
65 */
66 static struct workqueue_struct *kfd_restore_wq;
67
68 static struct kfd_process *find_process(const struct task_struct *thread,
69 bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 static struct kfd_process *create_process(const struct task_struct *thread);
72
73 static void evict_process_worker(struct work_struct *work);
74 static void restore_process_worker(struct work_struct *work);
75
76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
77
78 struct kfd_procfs_tree {
79 struct kobject *kobj;
80 };
81
82 static struct kfd_procfs_tree procfs;
83
84 /*
85 * Structure for SDMA activity tracking
86 */
87 struct kfd_sdma_activity_handler_workarea {
88 struct work_struct sdma_activity_work;
89 struct kfd_process_device *pdd;
90 uint64_t sdma_activity_counter;
91 };
92
93 struct temp_sdma_queue_list {
94 uint64_t __user *rptr;
95 uint64_t sdma_val;
96 unsigned int queue_id;
97 struct list_head list;
98 };
99
kfd_sdma_activity_worker(struct work_struct * work)100 static void kfd_sdma_activity_worker(struct work_struct *work)
101 {
102 struct kfd_sdma_activity_handler_workarea *workarea;
103 struct kfd_process_device *pdd;
104 uint64_t val;
105 struct mm_struct *mm;
106 struct queue *q;
107 struct qcm_process_device *qpd;
108 struct device_queue_manager *dqm;
109 int ret = 0;
110 struct temp_sdma_queue_list sdma_q_list;
111 struct temp_sdma_queue_list *sdma_q, *next;
112
113 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
114 sdma_activity_work);
115
116 pdd = workarea->pdd;
117 if (!pdd)
118 return;
119 dqm = pdd->dev->dqm;
120 qpd = &pdd->qpd;
121 if (!dqm || !qpd)
122 return;
123 /*
124 * Total SDMA activity is current SDMA activity + past SDMA activity
125 * Past SDMA count is stored in pdd.
126 * To get the current activity counters for all active SDMA queues,
127 * we loop over all SDMA queues and get their counts from user-space.
128 *
129 * We cannot call get_user() with dqm_lock held as it can cause
130 * a circular lock dependency situation. To read the SDMA stats,
131 * we need to do the following:
132 *
133 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
134 * with dqm_lock/dqm_unlock().
135 * 2. Call get_user() for each node in temporary list without dqm_lock.
136 * Save the SDMA count for each node and also add the count to the total
137 * SDMA count counter.
138 * Its possible, during this step, a few SDMA queue nodes got deleted
139 * from the qpd->queues_list.
140 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
141 * If any node got deleted, its SDMA count would be captured in the sdma
142 * past activity counter. So subtract the SDMA counter stored in step 2
143 * for this node from the total SDMA count.
144 */
145 INIT_LIST_HEAD(&sdma_q_list.list);
146
147 /*
148 * Create the temp list of all SDMA queues
149 */
150 dqm_lock(dqm);
151
152 list_for_each_entry(q, &qpd->queues_list, list) {
153 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
154 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
155 continue;
156
157 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
158 if (!sdma_q) {
159 dqm_unlock(dqm);
160 goto cleanup;
161 }
162
163 INIT_LIST_HEAD(&sdma_q->list);
164 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165 sdma_q->queue_id = q->properties.queue_id;
166 list_add_tail(&sdma_q->list, &sdma_q_list.list);
167 }
168
169 /*
170 * If the temp list is empty, then no SDMA queues nodes were found in
171 * qpd->queues_list. Return the past activity count as the total sdma
172 * count
173 */
174 if (list_empty(&sdma_q_list.list)) {
175 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
176 dqm_unlock(dqm);
177 return;
178 }
179
180 dqm_unlock(dqm);
181
182 /*
183 * Get the usage count for each SDMA queue in temp_list.
184 */
185 mm = get_task_mm(pdd->process->lead_thread);
186 if (!mm)
187 goto cleanup;
188
189 kthread_use_mm(mm);
190
191 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
192 val = 0;
193 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
194 if (ret) {
195 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
196 sdma_q->queue_id);
197 } else {
198 sdma_q->sdma_val = val;
199 workarea->sdma_activity_counter += val;
200 }
201 }
202
203 kthread_unuse_mm(mm);
204 mmput(mm);
205
206 /*
207 * Do a second iteration over qpd_queues_list to check if any SDMA
208 * nodes got deleted while fetching SDMA counter.
209 */
210 dqm_lock(dqm);
211
212 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
213
214 list_for_each_entry(q, &qpd->queues_list, list) {
215 if (list_empty(&sdma_q_list.list))
216 break;
217
218 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
219 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
220 continue;
221
222 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224 (sdma_q->queue_id == q->properties.queue_id)) {
225 list_del(&sdma_q->list);
226 kfree(sdma_q);
227 break;
228 }
229 }
230 }
231
232 dqm_unlock(dqm);
233
234 /*
235 * If temp list is not empty, it implies some queues got deleted
236 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
237 * count for each node from the total SDMA count.
238 */
239 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
240 workarea->sdma_activity_counter -= sdma_q->sdma_val;
241 list_del(&sdma_q->list);
242 kfree(sdma_q);
243 }
244
245 return;
246
247 cleanup:
248 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
249 list_del(&sdma_q->list);
250 kfree(sdma_q);
251 }
252 }
253
254 /**
255 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
256 * by current process. Translates acquired wave count into number of compute units
257 * that are occupied.
258 *
259 * @attr: Handle of attribute that allows reporting of wave count. The attribute
260 * handle encapsulates GPU device it is associated with, thereby allowing collection
261 * of waves in flight, etc
262 * @buffer: Handle of user provided buffer updated with wave count
263 *
264 * Return: Number of bytes written to user buffer or an error value
265 */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268 int cu_cnt;
269 int wave_cnt;
270 int max_waves_per_cu;
271 struct kfd_node *dev = NULL;
272 struct kfd_process *proc = NULL;
273 struct kfd_process_device *pdd = NULL;
274 int i;
275 struct kfd_cu_occupancy *cu_occupancy;
276 u32 queue_format;
277
278 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
279 dev = pdd->dev;
280 if (dev->kfd2kgd->get_cu_occupancy == NULL)
281 return -EINVAL;
282
283 cu_cnt = 0;
284 proc = pdd->process;
285 if (pdd->qpd.queue_count == 0) {
286 pr_debug("Gpu-Id: %d has no active queues for process pid %d\n",
287 dev->id, (int)proc->lead_thread->pid);
288 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
289 }
290
291 /* Collect wave count from device if it supports */
292 wave_cnt = 0;
293 max_waves_per_cu = 0;
294
295 cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL);
296 if (!cu_occupancy)
297 return -ENOMEM;
298
299 /*
300 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
301 * For AQL queues, because of cooperative dispatch we multiply the wave count
302 * by number of XCCs in the partition to get the total wave counts across all
303 * XCCs in the partition.
304 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
305 */
306 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
307 &max_waves_per_cu, ffs(dev->xcc_mask) - 1);
308
309 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
310 if (cu_occupancy[i].wave_cnt != 0 &&
311 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
312 cu_occupancy[i].doorbell_off,
313 &queue_format)) {
314 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
315 wave_cnt += cu_occupancy[i].wave_cnt;
316 else
317 wave_cnt += (NUM_XCC(dev->xcc_mask) *
318 cu_occupancy[i].wave_cnt);
319 }
320 }
321
322 /* Translate wave count to number of compute units */
323 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
324 kfree(cu_occupancy);
325 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
326 }
327
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)328 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
329 char *buffer)
330 {
331 if (strcmp(attr->name, "pasid") == 0)
332 return snprintf(buffer, PAGE_SIZE, "%d\n", 0);
333 else if (strncmp(attr->name, "vram_", 5) == 0) {
334 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
335 attr_vram);
336 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
337 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
338 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
339 attr_sdma);
340 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
341
342 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
343 kfd_sdma_activity_worker);
344
345 sdma_activity_work_handler.pdd = pdd;
346 sdma_activity_work_handler.sdma_activity_counter = 0;
347
348 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
349
350 flush_work(&sdma_activity_work_handler.sdma_activity_work);
351 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
352
353 return snprintf(buffer, PAGE_SIZE, "%llu\n",
354 (sdma_activity_work_handler.sdma_activity_counter)/
355 SDMA_ACTIVITY_DIVISOR);
356 } else {
357 pr_err("Invalid attribute");
358 return -EINVAL;
359 }
360
361 return 0;
362 }
363
kfd_procfs_kobj_release(struct kobject * kobj)364 static void kfd_procfs_kobj_release(struct kobject *kobj)
365 {
366 kfree(kobj);
367 }
368
369 static const struct sysfs_ops kfd_procfs_ops = {
370 .show = kfd_procfs_show,
371 };
372
373 static const struct kobj_type procfs_type = {
374 .release = kfd_procfs_kobj_release,
375 .sysfs_ops = &kfd_procfs_ops,
376 };
377
kfd_procfs_init(void)378 void kfd_procfs_init(void)
379 {
380 int ret = 0;
381
382 procfs.kobj = kfd_alloc_struct(procfs.kobj);
383 if (!procfs.kobj)
384 return;
385
386 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
387 &kfd_device->kobj, "proc");
388 if (ret) {
389 pr_warn("Could not create procfs proc folder");
390 /* If we fail to create the procfs, clean up */
391 kfd_procfs_shutdown();
392 }
393 }
394
kfd_procfs_shutdown(void)395 void kfd_procfs_shutdown(void)
396 {
397 if (procfs.kobj) {
398 kobject_del(procfs.kobj);
399 kobject_put(procfs.kobj);
400 procfs.kobj = NULL;
401 }
402 }
403
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)404 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
405 struct attribute *attr, char *buffer)
406 {
407 struct queue *q = container_of(kobj, struct queue, kobj);
408
409 if (!strcmp(attr->name, "size"))
410 return snprintf(buffer, PAGE_SIZE, "%llu",
411 q->properties.queue_size);
412 else if (!strcmp(attr->name, "type"))
413 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
414 else if (!strcmp(attr->name, "gpuid"))
415 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
416 else
417 pr_err("Invalid attribute");
418
419 return 0;
420 }
421
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)422 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
423 struct attribute *attr, char *buffer)
424 {
425 if (strcmp(attr->name, "evicted_ms") == 0) {
426 struct kfd_process_device *pdd = container_of(attr,
427 struct kfd_process_device,
428 attr_evict);
429 uint64_t evict_jiffies;
430
431 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
432
433 return snprintf(buffer,
434 PAGE_SIZE,
435 "%llu\n",
436 jiffies64_to_msecs(evict_jiffies));
437
438 /* Sysfs handle that gets CU occupancy is per device */
439 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
440 return kfd_get_cu_occupancy(attr, buffer);
441 } else {
442 pr_err("Invalid attribute");
443 }
444
445 return 0;
446 }
447
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)448 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
449 struct attribute *attr, char *buf)
450 {
451 struct kfd_process_device *pdd;
452
453 if (!strcmp(attr->name, "faults")) {
454 pdd = container_of(attr, struct kfd_process_device,
455 attr_faults);
456 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
457 }
458 if (!strcmp(attr->name, "page_in")) {
459 pdd = container_of(attr, struct kfd_process_device,
460 attr_page_in);
461 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
462 }
463 if (!strcmp(attr->name, "page_out")) {
464 pdd = container_of(attr, struct kfd_process_device,
465 attr_page_out);
466 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
467 }
468 return 0;
469 }
470
471 static struct attribute attr_queue_size = {
472 .name = "size",
473 .mode = KFD_SYSFS_FILE_MODE
474 };
475
476 static struct attribute attr_queue_type = {
477 .name = "type",
478 .mode = KFD_SYSFS_FILE_MODE
479 };
480
481 static struct attribute attr_queue_gpuid = {
482 .name = "gpuid",
483 .mode = KFD_SYSFS_FILE_MODE
484 };
485
486 static struct attribute *procfs_queue_attrs[] = {
487 &attr_queue_size,
488 &attr_queue_type,
489 &attr_queue_gpuid,
490 NULL
491 };
492 ATTRIBUTE_GROUPS(procfs_queue);
493
494 static const struct sysfs_ops procfs_queue_ops = {
495 .show = kfd_procfs_queue_show,
496 };
497
498 static const struct kobj_type procfs_queue_type = {
499 .sysfs_ops = &procfs_queue_ops,
500 .default_groups = procfs_queue_groups,
501 };
502
503 static const struct sysfs_ops procfs_stats_ops = {
504 .show = kfd_procfs_stats_show,
505 };
506
507 static const struct kobj_type procfs_stats_type = {
508 .sysfs_ops = &procfs_stats_ops,
509 .release = kfd_procfs_kobj_release,
510 };
511
512 static const struct sysfs_ops sysfs_counters_ops = {
513 .show = kfd_sysfs_counters_show,
514 };
515
516 static const struct kobj_type sysfs_counters_type = {
517 .sysfs_ops = &sysfs_counters_ops,
518 .release = kfd_procfs_kobj_release,
519 };
520
kfd_procfs_add_queue(struct queue * q)521 int kfd_procfs_add_queue(struct queue *q)
522 {
523 struct kfd_process *proc;
524 int ret;
525
526 if (!q || !q->process)
527 return -EINVAL;
528 proc = q->process;
529
530 /* Create proc/<pid>/queues/<queue id> folder */
531 if (!proc->kobj_queues)
532 return -EFAULT;
533 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
534 proc->kobj_queues, "%u", q->properties.queue_id);
535 if (ret < 0) {
536 pr_warn("Creating proc/<pid>/queues/%u failed",
537 q->properties.queue_id);
538 kobject_put(&q->kobj);
539 return ret;
540 }
541
542 return 0;
543 }
544
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)545 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
546 char *name)
547 {
548 int ret;
549
550 if (!kobj || !attr || !name)
551 return;
552
553 attr->name = name;
554 attr->mode = KFD_SYSFS_FILE_MODE;
555 sysfs_attr_init(attr);
556
557 ret = sysfs_create_file(kobj, attr);
558 if (ret)
559 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
560 }
561
kfd_procfs_add_sysfs_stats(struct kfd_process * p)562 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
563 {
564 int ret;
565 int i;
566 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
567
568 if (!p || !p->kobj)
569 return;
570
571 /*
572 * Create sysfs files for each GPU:
573 * - proc/<pid>/stats_<gpuid>/
574 * - proc/<pid>/stats_<gpuid>/evicted_ms
575 * - proc/<pid>/stats_<gpuid>/cu_occupancy
576 */
577 for (i = 0; i < p->n_pdds; i++) {
578 struct kfd_process_device *pdd = p->pdds[i];
579
580 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
581 "stats_%u", pdd->dev->id);
582 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
583 if (!pdd->kobj_stats)
584 return;
585
586 ret = kobject_init_and_add(pdd->kobj_stats,
587 &procfs_stats_type,
588 p->kobj,
589 stats_dir_filename);
590
591 if (ret) {
592 pr_warn("Creating KFD proc/stats_%s folder failed",
593 stats_dir_filename);
594 kobject_put(pdd->kobj_stats);
595 pdd->kobj_stats = NULL;
596 return;
597 }
598
599 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
600 "evicted_ms");
601 /* Add sysfs file to report compute unit occupancy */
602 if (pdd->dev->kfd2kgd->get_cu_occupancy)
603 kfd_sysfs_create_file(pdd->kobj_stats,
604 &pdd->attr_cu_occupancy,
605 "cu_occupancy");
606 }
607 }
608
kfd_procfs_add_sysfs_counters(struct kfd_process * p)609 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
610 {
611 int ret = 0;
612 int i;
613 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
614
615 if (!p || !p->kobj)
616 return;
617
618 /*
619 * Create sysfs files for each GPU which supports SVM
620 * - proc/<pid>/counters_<gpuid>/
621 * - proc/<pid>/counters_<gpuid>/faults
622 * - proc/<pid>/counters_<gpuid>/page_in
623 * - proc/<pid>/counters_<gpuid>/page_out
624 */
625 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
626 struct kfd_process_device *pdd = p->pdds[i];
627 struct kobject *kobj_counters;
628
629 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
630 "counters_%u", pdd->dev->id);
631 kobj_counters = kfd_alloc_struct(kobj_counters);
632 if (!kobj_counters)
633 return;
634
635 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
636 p->kobj, counters_dir_filename);
637 if (ret) {
638 pr_warn("Creating KFD proc/%s folder failed",
639 counters_dir_filename);
640 kobject_put(kobj_counters);
641 return;
642 }
643
644 pdd->kobj_counters = kobj_counters;
645 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
646 "faults");
647 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
648 "page_in");
649 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
650 "page_out");
651 }
652 }
653
kfd_procfs_add_sysfs_files(struct kfd_process * p)654 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
655 {
656 int i;
657
658 if (!p || !p->kobj)
659 return;
660
661 /*
662 * Create sysfs files for each GPU:
663 * - proc/<pid>/vram_<gpuid>
664 * - proc/<pid>/sdma_<gpuid>
665 */
666 for (i = 0; i < p->n_pdds; i++) {
667 struct kfd_process_device *pdd = p->pdds[i];
668
669 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
670 pdd->dev->id);
671 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
672 pdd->vram_filename);
673
674 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
675 pdd->dev->id);
676 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
677 pdd->sdma_filename);
678 }
679 }
680
kfd_procfs_del_queue(struct queue * q)681 void kfd_procfs_del_queue(struct queue *q)
682 {
683 if (!q)
684 return;
685
686 kobject_del(&q->kobj);
687 kobject_put(&q->kobj);
688 }
689
kfd_process_create_wq(void)690 int kfd_process_create_wq(void)
691 {
692 if (!kfd_process_wq)
693 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
694 if (!kfd_restore_wq)
695 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
696 WQ_FREEZABLE);
697
698 if (!kfd_process_wq || !kfd_restore_wq) {
699 kfd_process_destroy_wq();
700 return -ENOMEM;
701 }
702
703 return 0;
704 }
705
kfd_process_destroy_wq(void)706 void kfd_process_destroy_wq(void)
707 {
708 if (kfd_process_wq) {
709 destroy_workqueue(kfd_process_wq);
710 kfd_process_wq = NULL;
711 }
712 if (kfd_restore_wq) {
713 destroy_workqueue(kfd_restore_wq);
714 kfd_restore_wq = NULL;
715 }
716 }
717
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void ** kptr)718 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
719 struct kfd_process_device *pdd, void **kptr)
720 {
721 struct kfd_node *dev = pdd->dev;
722
723 if (kptr && *kptr) {
724 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
725 *kptr = NULL;
726 }
727
728 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
729 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
730 NULL);
731 }
732
733 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
734 * This function should be only called right after the process
735 * is created and when kfd_processes_mutex is still being held
736 * to avoid concurrency. Because of that exclusiveness, we do
737 * not need to take p->mutex.
738 */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)739 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
740 uint64_t gpu_va, uint32_t size,
741 uint32_t flags, struct kgd_mem **mem, void **kptr)
742 {
743 struct kfd_node *kdev = pdd->dev;
744 int err;
745
746 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
747 pdd->drm_priv, mem, NULL,
748 flags, false);
749 if (err)
750 goto err_alloc_mem;
751
752 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
753 pdd->drm_priv);
754 if (err)
755 goto err_map_mem;
756
757 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
758 if (err) {
759 pr_debug("Sync memory failed, wait interrupted by user signal\n");
760 goto sync_memory_failed;
761 }
762
763 if (kptr) {
764 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
765 (struct kgd_mem *)*mem, kptr, NULL);
766 if (err) {
767 pr_debug("Map GTT BO to kernel failed\n");
768 goto sync_memory_failed;
769 }
770 }
771
772 return err;
773
774 sync_memory_failed:
775 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
776
777 err_map_mem:
778 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
779 NULL);
780 err_alloc_mem:
781 *mem = NULL;
782 *kptr = NULL;
783 return err;
784 }
785
786 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
787 * process for IB usage The memory reserved is for KFD to submit
788 * IB to AMDGPU from kernel. If the memory is reserved
789 * successfully, ib_kaddr will have the CPU/kernel
790 * address. Check ib_kaddr before accessing the memory.
791 */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)792 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
793 {
794 struct qcm_process_device *qpd = &pdd->qpd;
795 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
796 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
797 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
798 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
799 struct kgd_mem *mem;
800 void *kaddr;
801 int ret;
802
803 if (qpd->ib_kaddr || !qpd->ib_base)
804 return 0;
805
806 /* ib_base is only set for dGPU */
807 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
808 &mem, &kaddr);
809 if (ret)
810 return ret;
811
812 qpd->ib_mem = mem;
813 qpd->ib_kaddr = kaddr;
814
815 return 0;
816 }
817
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)818 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
819 {
820 struct qcm_process_device *qpd = &pdd->qpd;
821
822 if (!qpd->ib_kaddr || !qpd->ib_base)
823 return;
824
825 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
826 }
827
kfd_create_process(struct task_struct * thread)828 struct kfd_process *kfd_create_process(struct task_struct *thread)
829 {
830 struct kfd_process *process;
831 int ret;
832
833 if (!(thread->mm && mmget_not_zero(thread->mm)))
834 return ERR_PTR(-EINVAL);
835
836 /* Only the pthreads threading model is supported. */
837 if (thread->group_leader->mm != thread->mm) {
838 mmput(thread->mm);
839 return ERR_PTR(-EINVAL);
840 }
841
842 /* If the process just called exec(3), it is possible that the
843 * cleanup of the kfd_process (following the release of the mm
844 * of the old process image) is still in the cleanup work queue.
845 * Make sure to drain any job before trying to recreate any
846 * resource for this process.
847 */
848 flush_workqueue(kfd_process_wq);
849
850 /*
851 * take kfd processes mutex before starting of process creation
852 * so there won't be a case where two threads of the same process
853 * create two kfd_process structures
854 */
855 mutex_lock(&kfd_processes_mutex);
856
857 if (kfd_is_locked(NULL)) {
858 pr_debug("KFD is locked! Cannot create process");
859 process = ERR_PTR(-EINVAL);
860 goto out;
861 }
862
863 /* A prior open of /dev/kfd could have already created the process.
864 * find_process will increase process kref in this case
865 */
866 process = find_process(thread, true);
867 if (process) {
868 pr_debug("Process already found\n");
869 } else {
870 process = create_process(thread);
871 if (IS_ERR(process))
872 goto out;
873
874 if (!procfs.kobj)
875 goto out;
876
877 process->kobj = kfd_alloc_struct(process->kobj);
878 if (!process->kobj) {
879 pr_warn("Creating procfs kobject failed");
880 goto out;
881 }
882 ret = kobject_init_and_add(process->kobj, &procfs_type,
883 procfs.kobj, "%d",
884 (int)process->lead_thread->pid);
885 if (ret) {
886 pr_warn("Creating procfs pid directory failed");
887 kobject_put(process->kobj);
888 goto out;
889 }
890
891 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
892 "pasid");
893
894 process->kobj_queues = kobject_create_and_add("queues",
895 process->kobj);
896 if (!process->kobj_queues)
897 pr_warn("Creating KFD proc/queues folder failed");
898
899 kfd_procfs_add_sysfs_stats(process);
900 kfd_procfs_add_sysfs_files(process);
901 kfd_procfs_add_sysfs_counters(process);
902
903 kfd_debugfs_add_process(process);
904
905 init_waitqueue_head(&process->wait_irq_drain);
906 }
907 out:
908 mutex_unlock(&kfd_processes_mutex);
909 mmput(thread->mm);
910
911 return process;
912 }
913
kfd_get_process(const struct task_struct * thread)914 struct kfd_process *kfd_get_process(const struct task_struct *thread)
915 {
916 struct kfd_process *process;
917
918 if (!thread->mm)
919 return ERR_PTR(-EINVAL);
920
921 /* Only the pthreads threading model is supported. */
922 if (thread->group_leader->mm != thread->mm)
923 return ERR_PTR(-EINVAL);
924
925 process = find_process(thread, false);
926 if (!process)
927 return ERR_PTR(-EINVAL);
928
929 return process;
930 }
931
find_process_by_mm(const struct mm_struct * mm)932 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
933 {
934 struct kfd_process *process;
935
936 hash_for_each_possible_rcu(kfd_processes_table, process,
937 kfd_processes, (uintptr_t)mm)
938 if (process->mm == mm)
939 return process;
940
941 return NULL;
942 }
943
find_process(const struct task_struct * thread,bool ref)944 static struct kfd_process *find_process(const struct task_struct *thread,
945 bool ref)
946 {
947 struct kfd_process *p;
948 int idx;
949
950 idx = srcu_read_lock(&kfd_processes_srcu);
951 p = find_process_by_mm(thread->mm);
952 if (p && ref)
953 kref_get(&p->ref);
954 srcu_read_unlock(&kfd_processes_srcu, idx);
955
956 return p;
957 }
958
kfd_unref_process(struct kfd_process * p)959 void kfd_unref_process(struct kfd_process *p)
960 {
961 kref_put(&p->ref, kfd_process_ref_release);
962 }
963
964 /* This increments the process->ref counter. */
kfd_lookup_process_by_pid(struct pid * pid)965 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
966 {
967 struct task_struct *task = NULL;
968 struct kfd_process *p = NULL;
969
970 if (!pid) {
971 task = current;
972 get_task_struct(task);
973 } else {
974 task = get_pid_task(pid, PIDTYPE_PID);
975 }
976
977 if (task) {
978 p = find_process(task, true);
979 put_task_struct(task);
980 }
981
982 return p;
983 }
984
kfd_process_device_free_bos(struct kfd_process_device * pdd)985 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
986 {
987 struct kfd_process *p = pdd->process;
988 void *mem;
989 int id;
990 int i;
991
992 /*
993 * Remove all handles from idr and release appropriate
994 * local memory object
995 */
996 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
997
998 for (i = 0; i < p->n_pdds; i++) {
999 struct kfd_process_device *peer_pdd = p->pdds[i];
1000
1001 if (!peer_pdd->drm_priv)
1002 continue;
1003 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1004 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1005 }
1006
1007 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1008 pdd->drm_priv, NULL);
1009 kfd_process_device_remove_obj_handle(pdd, id);
1010 }
1011 }
1012
1013 /*
1014 * Just kunmap and unpin signal BO here. It will be freed in
1015 * kfd_process_free_outstanding_kfd_bos()
1016 */
kfd_process_kunmap_signal_bo(struct kfd_process * p)1017 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1018 {
1019 struct kfd_process_device *pdd;
1020 struct kfd_node *kdev;
1021 void *mem;
1022
1023 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1024 if (!kdev)
1025 return;
1026
1027 mutex_lock(&p->mutex);
1028
1029 pdd = kfd_get_process_device_data(kdev, p);
1030 if (!pdd)
1031 goto out;
1032
1033 mem = kfd_process_device_translate_handle(
1034 pdd, GET_IDR_HANDLE(p->signal_handle));
1035 if (!mem)
1036 goto out;
1037
1038 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1039
1040 out:
1041 mutex_unlock(&p->mutex);
1042 }
1043
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)1044 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1045 {
1046 int i;
1047
1048 for (i = 0; i < p->n_pdds; i++)
1049 kfd_process_device_free_bos(p->pdds[i]);
1050 }
1051
kfd_process_destroy_pdds(struct kfd_process * p)1052 static void kfd_process_destroy_pdds(struct kfd_process *p)
1053 {
1054 int i;
1055
1056 for (i = 0; i < p->n_pdds; i++) {
1057 struct kfd_process_device *pdd = p->pdds[i];
1058
1059 kfd_smi_event_process(pdd, false);
1060
1061 pr_debug("Releasing pdd (topology id %d, for pid %d)\n",
1062 pdd->dev->id, p->lead_thread->pid);
1063 kfd_process_device_destroy_cwsr_dgpu(pdd);
1064 kfd_process_device_destroy_ib_mem(pdd);
1065
1066 if (pdd->drm_file)
1067 fput(pdd->drm_file);
1068
1069 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1070 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1071 get_order(KFD_CWSR_TBA_TMA_SIZE));
1072
1073 idr_destroy(&pdd->alloc_idr);
1074
1075 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1076
1077 if (pdd->dev->kfd->shared_resources.enable_mes &&
1078 pdd->proc_ctx_cpu_ptr)
1079 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1080 &pdd->proc_ctx_bo);
1081 /*
1082 * before destroying pdd, make sure to report availability
1083 * for auto suspend
1084 */
1085 if (pdd->runtime_inuse) {
1086 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1087 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1088 pdd->runtime_inuse = false;
1089 }
1090
1091 kfree(pdd);
1092 p->pdds[i] = NULL;
1093 }
1094 p->n_pdds = 0;
1095 }
1096
kfd_process_remove_sysfs(struct kfd_process * p)1097 static void kfd_process_remove_sysfs(struct kfd_process *p)
1098 {
1099 struct kfd_process_device *pdd;
1100 int i;
1101
1102 if (!p->kobj)
1103 return;
1104
1105 sysfs_remove_file(p->kobj, &p->attr_pasid);
1106 kobject_del(p->kobj_queues);
1107 kobject_put(p->kobj_queues);
1108 p->kobj_queues = NULL;
1109
1110 for (i = 0; i < p->n_pdds; i++) {
1111 pdd = p->pdds[i];
1112
1113 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1114 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1115
1116 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1117 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1118 sysfs_remove_file(pdd->kobj_stats,
1119 &pdd->attr_cu_occupancy);
1120 kobject_del(pdd->kobj_stats);
1121 kobject_put(pdd->kobj_stats);
1122 pdd->kobj_stats = NULL;
1123 }
1124
1125 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1126 pdd = p->pdds[i];
1127
1128 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1129 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1130 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1131 kobject_del(pdd->kobj_counters);
1132 kobject_put(pdd->kobj_counters);
1133 pdd->kobj_counters = NULL;
1134 }
1135
1136 kobject_del(p->kobj);
1137 kobject_put(p->kobj);
1138 p->kobj = NULL;
1139 }
1140
1141 /*
1142 * If any GPU is ongoing reset, wait for reset complete.
1143 */
kfd_process_wait_gpu_reset_complete(struct kfd_process * p)1144 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p)
1145 {
1146 int i;
1147
1148 for (i = 0; i < p->n_pdds; i++)
1149 flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq);
1150 }
1151
1152 /* No process locking is needed in this function, because the process
1153 * is not findable any more. We must assume that no other thread is
1154 * using it any more, otherwise we couldn't safely free the process
1155 * structure in the end.
1156 */
kfd_process_wq_release(struct work_struct * work)1157 static void kfd_process_wq_release(struct work_struct *work)
1158 {
1159 struct kfd_process *p = container_of(work, struct kfd_process,
1160 release_work);
1161 struct dma_fence *ef;
1162
1163 kfd_process_dequeue_from_all_devices(p);
1164 pqm_uninit(&p->pqm);
1165
1166 /*
1167 * If GPU in reset, user queues may still running, wait for reset complete.
1168 */
1169 kfd_process_wait_gpu_reset_complete(p);
1170
1171 /* Signal the eviction fence after user mode queues are
1172 * destroyed. This allows any BOs to be freed without
1173 * triggering pointless evictions or waiting for fences.
1174 */
1175 synchronize_rcu();
1176 ef = rcu_access_pointer(p->ef);
1177 if (ef)
1178 dma_fence_signal(ef);
1179
1180 kfd_process_remove_sysfs(p);
1181 kfd_debugfs_remove_process(p);
1182
1183 kfd_process_kunmap_signal_bo(p);
1184 kfd_process_free_outstanding_kfd_bos(p);
1185 svm_range_list_fini(p);
1186
1187 kfd_process_destroy_pdds(p);
1188 dma_fence_put(ef);
1189
1190 kfd_event_free_process(p);
1191
1192 mutex_destroy(&p->mutex);
1193
1194 put_task_struct(p->lead_thread);
1195
1196 kfree(p);
1197 }
1198
kfd_process_ref_release(struct kref * ref)1199 static void kfd_process_ref_release(struct kref *ref)
1200 {
1201 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1202
1203 INIT_WORK(&p->release_work, kfd_process_wq_release);
1204 queue_work(kfd_process_wq, &p->release_work);
1205 }
1206
kfd_process_alloc_notifier(struct mm_struct * mm)1207 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1208 {
1209 /* This increments p->ref counter if kfd process p exists */
1210 struct kfd_process *p = kfd_lookup_process_by_mm(mm);
1211
1212 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1213 }
1214
kfd_process_free_notifier(struct mmu_notifier * mn)1215 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1216 {
1217 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1218 }
1219
kfd_process_notifier_release_internal(struct kfd_process * p)1220 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1221 {
1222 int i;
1223
1224 cancel_delayed_work_sync(&p->eviction_work);
1225 cancel_delayed_work_sync(&p->restore_work);
1226
1227 for (i = 0; i < p->n_pdds; i++) {
1228 struct kfd_process_device *pdd = p->pdds[i];
1229
1230 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1231 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1232 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1233 }
1234
1235 /* Indicate to other users that MM is no longer valid */
1236 p->mm = NULL;
1237 kfd_dbg_trap_disable(p);
1238
1239 if (atomic_read(&p->debugged_process_count) > 0) {
1240 struct kfd_process *target;
1241 unsigned int temp;
1242 int idx = srcu_read_lock(&kfd_processes_srcu);
1243
1244 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1245 if (target->debugger_process && target->debugger_process == p) {
1246 mutex_lock_nested(&target->mutex, 1);
1247 kfd_dbg_trap_disable(target);
1248 mutex_unlock(&target->mutex);
1249 if (atomic_read(&p->debugged_process_count) == 0)
1250 break;
1251 }
1252 }
1253
1254 srcu_read_unlock(&kfd_processes_srcu, idx);
1255 }
1256
1257 mmu_notifier_put(&p->mmu_notifier);
1258 }
1259
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1260 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1261 struct mm_struct *mm)
1262 {
1263 struct kfd_process *p;
1264
1265 /*
1266 * The kfd_process structure can not be free because the
1267 * mmu_notifier srcu is read locked
1268 */
1269 p = container_of(mn, struct kfd_process, mmu_notifier);
1270 if (WARN_ON(p->mm != mm))
1271 return;
1272
1273 mutex_lock(&kfd_processes_mutex);
1274 /*
1275 * Do early return if table is empty.
1276 *
1277 * This could potentially happen if this function is called concurrently
1278 * by mmu_notifier and by kfd_cleanup_pocesses.
1279 *
1280 */
1281 if (hash_empty(kfd_processes_table)) {
1282 mutex_unlock(&kfd_processes_mutex);
1283 return;
1284 }
1285 hash_del_rcu(&p->kfd_processes);
1286 mutex_unlock(&kfd_processes_mutex);
1287 synchronize_srcu(&kfd_processes_srcu);
1288
1289 kfd_process_notifier_release_internal(p);
1290 }
1291
1292 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1293 .release = kfd_process_notifier_release,
1294 .alloc_notifier = kfd_process_alloc_notifier,
1295 .free_notifier = kfd_process_free_notifier,
1296 };
1297
1298 /*
1299 * This code handles the case when driver is being unloaded before all
1300 * mm_struct are released. We need to safely free the kfd_process and
1301 * avoid race conditions with mmu_notifier that might try to free them.
1302 *
1303 */
kfd_cleanup_processes(void)1304 void kfd_cleanup_processes(void)
1305 {
1306 struct kfd_process *p;
1307 struct hlist_node *p_temp;
1308 unsigned int temp;
1309 HLIST_HEAD(cleanup_list);
1310
1311 /*
1312 * Move all remaining kfd_process from the process table to a
1313 * temp list for processing. Once done, callback from mmu_notifier
1314 * release will not see the kfd_process in the table and do early return,
1315 * avoiding double free issues.
1316 */
1317 mutex_lock(&kfd_processes_mutex);
1318 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1319 hash_del_rcu(&p->kfd_processes);
1320 synchronize_srcu(&kfd_processes_srcu);
1321 hlist_add_head(&p->kfd_processes, &cleanup_list);
1322 }
1323 mutex_unlock(&kfd_processes_mutex);
1324
1325 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1326 kfd_process_notifier_release_internal(p);
1327
1328 /*
1329 * Ensures that all outstanding free_notifier get called, triggering
1330 * the release of the kfd_process struct.
1331 */
1332 mmu_notifier_synchronize();
1333 }
1334
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1335 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1336 {
1337 unsigned long offset;
1338 int i;
1339
1340 if (p->has_cwsr)
1341 return 0;
1342
1343 for (i = 0; i < p->n_pdds; i++) {
1344 struct kfd_node *dev = p->pdds[i]->dev;
1345 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1346
1347 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1348 continue;
1349
1350 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1351 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1352 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1353 MAP_SHARED, offset);
1354
1355 if (IS_ERR_VALUE(qpd->tba_addr)) {
1356 int err = qpd->tba_addr;
1357
1358 dev_err(dev->adev->dev,
1359 "Failure to set tba address. error %d.\n", err);
1360 qpd->tba_addr = 0;
1361 qpd->cwsr_kaddr = NULL;
1362 return err;
1363 }
1364
1365 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1366
1367 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1368
1369 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1370 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1371 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1372 }
1373
1374 p->has_cwsr = true;
1375
1376 return 0;
1377 }
1378
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1379 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1380 {
1381 struct kfd_node *dev = pdd->dev;
1382 struct qcm_process_device *qpd = &pdd->qpd;
1383 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1384 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1385 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1386 struct kgd_mem *mem;
1387 void *kaddr;
1388 int ret;
1389
1390 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1391 return 0;
1392
1393 /* cwsr_base is only set for dGPU */
1394 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1395 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1396 if (ret)
1397 return ret;
1398
1399 qpd->cwsr_mem = mem;
1400 qpd->cwsr_kaddr = kaddr;
1401 qpd->tba_addr = qpd->cwsr_base;
1402
1403 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1404
1405 kfd_process_set_trap_debug_flag(&pdd->qpd,
1406 pdd->process->debug_trap_enabled);
1407
1408 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1409 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1410 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1411
1412 return 0;
1413 }
1414
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1415 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1416 {
1417 struct kfd_node *dev = pdd->dev;
1418 struct qcm_process_device *qpd = &pdd->qpd;
1419
1420 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1421 return;
1422
1423 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1424 }
1425
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1426 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1427 uint64_t tba_addr,
1428 uint64_t tma_addr)
1429 {
1430 if (qpd->cwsr_kaddr) {
1431 /* KFD trap handler is bound, record as second-level TBA/TMA
1432 * in first-level TMA. First-level trap will jump to second.
1433 */
1434 uint64_t *tma =
1435 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1436 tma[0] = tba_addr;
1437 tma[1] = tma_addr;
1438 } else {
1439 /* No trap handler bound, bind as first-level TBA/TMA. */
1440 qpd->tba_addr = tba_addr;
1441 qpd->tma_addr = tma_addr;
1442 }
1443 }
1444
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1445 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1446 {
1447 int i;
1448
1449 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1450 * boot time retry setting. Mixing processes with different
1451 * XNACK/retry settings can hang the GPU.
1452 *
1453 * Different GPUs can have different noretry settings depending
1454 * on HW bugs or limitations. We need to find at least one
1455 * XNACK mode for this process that's compatible with all GPUs.
1456 * Fortunately GPUs with retry enabled (noretry=0) can run code
1457 * built for XNACK-off. On GFXv9 it may perform slower.
1458 *
1459 * Therefore applications built for XNACK-off can always be
1460 * supported and will be our fallback if any GPU does not
1461 * support retry.
1462 */
1463 for (i = 0; i < p->n_pdds; i++) {
1464 struct kfd_node *dev = p->pdds[i]->dev;
1465
1466 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1467 * support the SVM APIs and don't need to be considered
1468 * for the XNACK mode selection.
1469 */
1470 if (!KFD_IS_SOC15(dev))
1471 continue;
1472 /* Aldebaran can always support XNACK because it can support
1473 * per-process XNACK mode selection. But let the dev->noretry
1474 * setting still influence the default XNACK mode.
1475 */
1476 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1477 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1478 pr_debug("SRIOV platform xnack not supported\n");
1479 return false;
1480 }
1481 continue;
1482 }
1483
1484 /* GFXv10 and later GPUs do not support shader preemption
1485 * during page faults. This can lead to poor QoS for queue
1486 * management and memory-manager-related preemptions or
1487 * even deadlocks.
1488 */
1489 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1490 return false;
1491
1492 if (dev->kfd->noretry)
1493 return false;
1494 }
1495
1496 return true;
1497 }
1498
kfd_process_set_trap_debug_flag(struct qcm_process_device * qpd,bool enabled)1499 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1500 bool enabled)
1501 {
1502 if (qpd->cwsr_kaddr) {
1503 uint64_t *tma =
1504 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1505 tma[2] = enabled;
1506 }
1507 }
1508
1509 /*
1510 * On return the kfd_process is fully operational and will be freed when the
1511 * mm is released
1512 */
create_process(const struct task_struct * thread)1513 static struct kfd_process *create_process(const struct task_struct *thread)
1514 {
1515 struct kfd_process *process;
1516 struct mmu_notifier *mn;
1517 int err = -ENOMEM;
1518
1519 process = kzalloc(sizeof(*process), GFP_KERNEL);
1520 if (!process)
1521 goto err_alloc_process;
1522
1523 kref_init(&process->ref);
1524 mutex_init(&process->mutex);
1525 process->mm = thread->mm;
1526 process->lead_thread = thread->group_leader;
1527 process->n_pdds = 0;
1528 process->queues_paused = false;
1529 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1530 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1531 process->last_restore_timestamp = get_jiffies_64();
1532 err = kfd_event_init_process(process);
1533 if (err)
1534 goto err_event_init;
1535 process->is_32bit_user_mode = in_compat_syscall();
1536 process->debug_trap_enabled = false;
1537 process->debugger_process = NULL;
1538 process->exception_enable_mask = 0;
1539 atomic_set(&process->debugged_process_count, 0);
1540 sema_init(&process->runtime_enable_sema, 0);
1541
1542 err = pqm_init(&process->pqm, process);
1543 if (err != 0)
1544 goto err_process_pqm_init;
1545
1546 /* init process apertures*/
1547 err = kfd_init_apertures(process);
1548 if (err != 0)
1549 goto err_init_apertures;
1550
1551 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1552 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1553
1554 err = svm_range_list_init(process);
1555 if (err)
1556 goto err_init_svm_range_list;
1557
1558 /* alloc_notifier needs to find the process in the hash table */
1559 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1560 (uintptr_t)process->mm);
1561
1562 /* Avoid free_notifier to start kfd_process_wq_release if
1563 * mmu_notifier_get failed because of pending signal.
1564 */
1565 kref_get(&process->ref);
1566
1567 /* MMU notifier registration must be the last call that can fail
1568 * because after this point we cannot unwind the process creation.
1569 * After this point, mmu_notifier_put will trigger the cleanup by
1570 * dropping the last process reference in the free_notifier.
1571 */
1572 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1573 if (IS_ERR(mn)) {
1574 err = PTR_ERR(mn);
1575 goto err_register_notifier;
1576 }
1577 BUG_ON(mn != &process->mmu_notifier);
1578
1579 kfd_unref_process(process);
1580 get_task_struct(process->lead_thread);
1581
1582 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1583
1584 return process;
1585
1586 err_register_notifier:
1587 hash_del_rcu(&process->kfd_processes);
1588 svm_range_list_fini(process);
1589 err_init_svm_range_list:
1590 kfd_process_free_outstanding_kfd_bos(process);
1591 kfd_process_destroy_pdds(process);
1592 err_init_apertures:
1593 pqm_uninit(&process->pqm);
1594 err_process_pqm_init:
1595 kfd_event_free_process(process);
1596 err_event_init:
1597 mutex_destroy(&process->mutex);
1598 kfree(process);
1599 err_alloc_process:
1600 return ERR_PTR(err);
1601 }
1602
kfd_get_process_device_data(struct kfd_node * dev,struct kfd_process * p)1603 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1604 struct kfd_process *p)
1605 {
1606 int i;
1607
1608 for (i = 0; i < p->n_pdds; i++)
1609 if (p->pdds[i]->dev == dev)
1610 return p->pdds[i];
1611
1612 return NULL;
1613 }
1614
kfd_create_process_device_data(struct kfd_node * dev,struct kfd_process * p)1615 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1616 struct kfd_process *p)
1617 {
1618 struct kfd_process_device *pdd = NULL;
1619
1620 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1621 return NULL;
1622 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1623 if (!pdd)
1624 return NULL;
1625
1626 pdd->dev = dev;
1627 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1628 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1629 pdd->qpd.dqm = dev->dqm;
1630 pdd->qpd.pqm = &p->pqm;
1631 pdd->qpd.evicted = 0;
1632 pdd->qpd.mapped_gws_queue = false;
1633 pdd->process = p;
1634 pdd->bound = PDD_UNBOUND;
1635 pdd->already_dequeued = false;
1636 pdd->runtime_inuse = false;
1637 atomic64_set(&pdd->vram_usage, 0);
1638 pdd->sdma_past_activity_counter = 0;
1639 pdd->user_gpu_id = dev->id;
1640 atomic64_set(&pdd->evict_duration_counter, 0);
1641
1642 p->pdds[p->n_pdds++] = pdd;
1643 if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1644 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1645 pdd->dev->adev,
1646 false,
1647 0);
1648
1649 /* Init idr used for memory handle translation */
1650 idr_init(&pdd->alloc_idr);
1651
1652 return pdd;
1653 }
1654
1655 /**
1656 * kfd_process_device_init_vm - Initialize a VM for a process-device
1657 *
1658 * @pdd: The process-device
1659 * @drm_file: Optional pointer to a DRM file descriptor
1660 *
1661 * If @drm_file is specified, it will be used to acquire the VM from
1662 * that file descriptor. If successful, the @pdd takes ownership of
1663 * the file descriptor.
1664 *
1665 * If @drm_file is NULL, a new VM is created.
1666 *
1667 * Returns 0 on success, -errno on failure.
1668 */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1669 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1670 struct file *drm_file)
1671 {
1672 struct amdgpu_fpriv *drv_priv;
1673 struct amdgpu_vm *avm;
1674 struct kfd_process *p;
1675 struct dma_fence *ef;
1676 struct kfd_node *dev;
1677 int ret;
1678
1679 if (!drm_file)
1680 return -EINVAL;
1681
1682 if (pdd->drm_priv)
1683 return -EBUSY;
1684
1685 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1686 if (ret)
1687 return ret;
1688 avm = &drv_priv->vm;
1689
1690 p = pdd->process;
1691 dev = pdd->dev;
1692
1693 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1694 &p->kgd_process_info,
1695 p->ef ? NULL : &ef);
1696 if (ret) {
1697 dev_err(dev->adev->dev, "Failed to create process VM object\n");
1698 return ret;
1699 }
1700
1701 if (!p->ef)
1702 RCU_INIT_POINTER(p->ef, ef);
1703
1704 pdd->drm_priv = drm_file->private_data;
1705
1706 ret = kfd_process_device_reserve_ib_mem(pdd);
1707 if (ret)
1708 goto err_reserve_ib_mem;
1709 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1710 if (ret)
1711 goto err_init_cwsr;
1712
1713 if (unlikely(!avm->pasid)) {
1714 dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated",
1715 avm);
1716 ret = -EINVAL;
1717 goto err_get_pasid;
1718 }
1719
1720 pdd->pasid = avm->pasid;
1721 pdd->drm_file = drm_file;
1722
1723 kfd_smi_event_process(pdd, true);
1724
1725 return 0;
1726
1727 err_get_pasid:
1728 kfd_process_device_destroy_cwsr_dgpu(pdd);
1729 err_init_cwsr:
1730 kfd_process_device_destroy_ib_mem(pdd);
1731 err_reserve_ib_mem:
1732 pdd->drm_priv = NULL;
1733 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1734
1735 return ret;
1736 }
1737
1738 /*
1739 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1740 * to the device.
1741 * Unbinding occurs when the process dies or the device is removed.
1742 *
1743 * Assumes that the process lock is held.
1744 */
kfd_bind_process_to_device(struct kfd_node * dev,struct kfd_process * p)1745 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1746 struct kfd_process *p)
1747 {
1748 struct kfd_process_device *pdd;
1749 int err;
1750
1751 pdd = kfd_get_process_device_data(dev, p);
1752 if (!pdd) {
1753 dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1754 return ERR_PTR(-ENOMEM);
1755 }
1756
1757 if (!pdd->drm_priv)
1758 return ERR_PTR(-ENODEV);
1759
1760 /*
1761 * signal runtime-pm system to auto resume and prevent
1762 * further runtime suspend once device pdd is created until
1763 * pdd is destroyed.
1764 */
1765 if (!pdd->runtime_inuse) {
1766 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1767 if (err < 0) {
1768 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1769 return ERR_PTR(err);
1770 }
1771 }
1772
1773 /*
1774 * make sure that runtime_usage counter is incremented just once
1775 * per pdd
1776 */
1777 pdd->runtime_inuse = true;
1778
1779 return pdd;
1780 }
1781
1782 /* Create specific handle mapped to mem from process local memory idr
1783 * Assumes that the process lock is held.
1784 */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1785 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1786 void *mem)
1787 {
1788 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1789 }
1790
1791 /* Translate specific handle from process local memory idr
1792 * Assumes that the process lock is held.
1793 */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1794 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1795 int handle)
1796 {
1797 if (handle < 0)
1798 return NULL;
1799
1800 return idr_find(&pdd->alloc_idr, handle);
1801 }
1802
1803 /* Remove specific handle from process local memory idr
1804 * Assumes that the process lock is held.
1805 */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1806 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1807 int handle)
1808 {
1809 if (handle >= 0)
1810 idr_remove(&pdd->alloc_idr, handle);
1811 }
1812
kfd_lookup_process_device_by_pasid(u32 pasid)1813 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid)
1814 {
1815 struct kfd_process_device *ret_p = NULL;
1816 struct kfd_process *p;
1817 unsigned int temp;
1818 int i;
1819
1820 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1821 for (i = 0; i < p->n_pdds; i++) {
1822 if (p->pdds[i]->pasid == pasid) {
1823 ret_p = p->pdds[i];
1824 break;
1825 }
1826 }
1827 if (ret_p)
1828 break;
1829 }
1830 return ret_p;
1831 }
1832
1833 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid,struct kfd_process_device ** pdd)1834 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid,
1835 struct kfd_process_device **pdd)
1836 {
1837 struct kfd_process_device *ret_p;
1838
1839 int idx = srcu_read_lock(&kfd_processes_srcu);
1840
1841 ret_p = kfd_lookup_process_device_by_pasid(pasid);
1842 if (ret_p) {
1843 if (pdd)
1844 *pdd = ret_p;
1845 kref_get(&ret_p->process->ref);
1846
1847 srcu_read_unlock(&kfd_processes_srcu, idx);
1848 return ret_p->process;
1849 }
1850
1851 srcu_read_unlock(&kfd_processes_srcu, idx);
1852
1853 if (pdd)
1854 *pdd = NULL;
1855
1856 return NULL;
1857 }
1858
1859 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1860 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1861 {
1862 struct kfd_process *p;
1863
1864 int idx = srcu_read_lock(&kfd_processes_srcu);
1865
1866 p = find_process_by_mm(mm);
1867 if (p)
1868 kref_get(&p->ref);
1869
1870 srcu_read_unlock(&kfd_processes_srcu, idx);
1871
1872 return p;
1873 }
1874
1875 /* kfd_process_evict_queues - Evict all user queues of a process
1876 *
1877 * Eviction is reference-counted per process-device. This means multiple
1878 * evictions from different sources can be nested safely.
1879 */
kfd_process_evict_queues(struct kfd_process * p,uint32_t trigger)1880 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1881 {
1882 int r = 0;
1883 int i;
1884 unsigned int n_evicted = 0;
1885
1886 for (i = 0; i < p->n_pdds; i++) {
1887 struct kfd_process_device *pdd = p->pdds[i];
1888 struct device *dev = pdd->dev->adev->dev;
1889
1890 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1891 trigger);
1892
1893 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1894 &pdd->qpd);
1895 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1896 * we would like to set all the queues to be in evicted state to prevent
1897 * them been add back since they actually not be saved right now.
1898 */
1899 if (r && r != -EIO) {
1900 dev_err(dev, "Failed to evict process queues\n");
1901 goto fail;
1902 }
1903 n_evicted++;
1904
1905 pdd->dev->dqm->is_hws_hang = false;
1906 }
1907
1908 return r;
1909
1910 fail:
1911 /* To keep state consistent, roll back partial eviction by
1912 * restoring queues
1913 */
1914 for (i = 0; i < p->n_pdds; i++) {
1915 struct kfd_process_device *pdd = p->pdds[i];
1916
1917 if (n_evicted == 0)
1918 break;
1919
1920 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1921
1922 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1923 &pdd->qpd))
1924 dev_err(pdd->dev->adev->dev,
1925 "Failed to restore queues\n");
1926
1927 n_evicted--;
1928 }
1929
1930 return r;
1931 }
1932
1933 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)1934 int kfd_process_restore_queues(struct kfd_process *p)
1935 {
1936 int r, ret = 0;
1937 int i;
1938
1939 for (i = 0; i < p->n_pdds; i++) {
1940 struct kfd_process_device *pdd = p->pdds[i];
1941 struct device *dev = pdd->dev->adev->dev;
1942
1943 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1944
1945 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1946 &pdd->qpd);
1947 if (r) {
1948 dev_err(dev, "Failed to restore process queues\n");
1949 if (!ret)
1950 ret = r;
1951 }
1952 }
1953
1954 return ret;
1955 }
1956
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)1957 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1958 {
1959 int i;
1960
1961 for (i = 0; i < p->n_pdds; i++)
1962 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1963 return i;
1964 return -EINVAL;
1965 }
1966
1967 int
kfd_process_gpuid_from_node(struct kfd_process * p,struct kfd_node * node,uint32_t * gpuid,uint32_t * gpuidx)1968 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1969 uint32_t *gpuid, uint32_t *gpuidx)
1970 {
1971 int i;
1972
1973 for (i = 0; i < p->n_pdds; i++)
1974 if (p->pdds[i] && p->pdds[i]->dev == node) {
1975 *gpuid = p->pdds[i]->user_gpu_id;
1976 *gpuidx = i;
1977 return 0;
1978 }
1979 return -EINVAL;
1980 }
1981
signal_eviction_fence(struct kfd_process * p)1982 static int signal_eviction_fence(struct kfd_process *p)
1983 {
1984 struct dma_fence *ef;
1985 int ret;
1986
1987 rcu_read_lock();
1988 ef = dma_fence_get_rcu_safe(&p->ef);
1989 rcu_read_unlock();
1990 if (!ef)
1991 return -EINVAL;
1992
1993 ret = dma_fence_signal(ef);
1994 dma_fence_put(ef);
1995
1996 return ret;
1997 }
1998
evict_process_worker(struct work_struct * work)1999 static void evict_process_worker(struct work_struct *work)
2000 {
2001 int ret;
2002 struct kfd_process *p;
2003 struct delayed_work *dwork;
2004
2005 dwork = to_delayed_work(work);
2006
2007 /* Process termination destroys this worker thread. So during the
2008 * lifetime of this thread, kfd_process p will be valid
2009 */
2010 p = container_of(dwork, struct kfd_process, eviction_work);
2011
2012 pr_debug("Started evicting process pid %d\n", p->lead_thread->pid);
2013 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
2014 if (!ret) {
2015 /* If another thread already signaled the eviction fence,
2016 * they are responsible stopping the queues and scheduling
2017 * the restore work.
2018 */
2019 if (signal_eviction_fence(p) ||
2020 mod_delayed_work(kfd_restore_wq, &p->restore_work,
2021 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2022 kfd_process_restore_queues(p);
2023
2024 pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid);
2025 } else
2026 pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid);
2027 }
2028
restore_process_helper(struct kfd_process * p)2029 static int restore_process_helper(struct kfd_process *p)
2030 {
2031 int ret = 0;
2032
2033 /* VMs may not have been acquired yet during debugging. */
2034 if (p->kgd_process_info) {
2035 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2036 p->kgd_process_info, &p->ef);
2037 if (ret)
2038 return ret;
2039 }
2040
2041 ret = kfd_process_restore_queues(p);
2042 if (!ret)
2043 pr_debug("Finished restoring process pid %d\n",
2044 p->lead_thread->pid);
2045 else
2046 pr_err("Failed to restore queues of process pid %d\n",
2047 p->lead_thread->pid);
2048
2049 return ret;
2050 }
2051
restore_process_worker(struct work_struct * work)2052 static void restore_process_worker(struct work_struct *work)
2053 {
2054 struct delayed_work *dwork;
2055 struct kfd_process *p;
2056 int ret = 0;
2057
2058 dwork = to_delayed_work(work);
2059
2060 /* Process termination destroys this worker thread. So during the
2061 * lifetime of this thread, kfd_process p will be valid
2062 */
2063 p = container_of(dwork, struct kfd_process, restore_work);
2064 pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid);
2065
2066 /* Setting last_restore_timestamp before successful restoration.
2067 * Otherwise this would have to be set by KGD (restore_process_bos)
2068 * before KFD BOs are unreserved. If not, the process can be evicted
2069 * again before the timestamp is set.
2070 * If restore fails, the timestamp will be set again in the next
2071 * attempt. This would mean that the minimum GPU quanta would be
2072 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2073 * functions)
2074 */
2075
2076 p->last_restore_timestamp = get_jiffies_64();
2077
2078 ret = restore_process_helper(p);
2079 if (ret) {
2080 pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n",
2081 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS);
2082 if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2083 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2084 kfd_process_restore_queues(p);
2085 }
2086 }
2087
kfd_suspend_all_processes(void)2088 void kfd_suspend_all_processes(void)
2089 {
2090 struct kfd_process *p;
2091 unsigned int temp;
2092 int idx = srcu_read_lock(&kfd_processes_srcu);
2093
2094 WARN(debug_evictions, "Evicting all processes");
2095 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2096 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2097 pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid);
2098 signal_eviction_fence(p);
2099 }
2100 srcu_read_unlock(&kfd_processes_srcu, idx);
2101 }
2102
kfd_resume_all_processes(void)2103 int kfd_resume_all_processes(void)
2104 {
2105 struct kfd_process *p;
2106 unsigned int temp;
2107 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2108
2109 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2110 if (restore_process_helper(p)) {
2111 pr_err("Restore process pid %d failed during resume\n",
2112 p->lead_thread->pid);
2113 ret = -EFAULT;
2114 }
2115 }
2116 srcu_read_unlock(&kfd_processes_srcu, idx);
2117 return ret;
2118 }
2119
kfd_reserved_mem_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)2120 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2121 struct vm_area_struct *vma)
2122 {
2123 struct kfd_process_device *pdd;
2124 struct qcm_process_device *qpd;
2125
2126 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2127 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2128 return -EINVAL;
2129 }
2130
2131 pdd = kfd_get_process_device_data(dev, process);
2132 if (!pdd)
2133 return -EINVAL;
2134 qpd = &pdd->qpd;
2135
2136 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2137 get_order(KFD_CWSR_TBA_TMA_SIZE));
2138 if (!qpd->cwsr_kaddr) {
2139 dev_err(dev->adev->dev,
2140 "Error allocating per process CWSR buffer.\n");
2141 return -ENOMEM;
2142 }
2143
2144 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2145 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2146 /* Mapping pages to user process */
2147 return remap_pfn_range(vma, vma->vm_start,
2148 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2149 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2150 }
2151
2152 /* assumes caller holds process lock. */
kfd_process_drain_interrupts(struct kfd_process_device * pdd)2153 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2154 {
2155 uint32_t irq_drain_fence[8];
2156 uint8_t node_id = 0;
2157 int r = 0;
2158
2159 if (!KFD_IS_SOC15(pdd->dev))
2160 return 0;
2161
2162 pdd->process->irq_drain_is_open = true;
2163
2164 memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2165 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2166 KFD_IRQ_FENCE_CLIENTID;
2167 irq_drain_fence[3] = pdd->pasid;
2168
2169 /*
2170 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3]
2171 */
2172 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2173 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) ||
2174 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0)) {
2175 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2176 irq_drain_fence[3] |= node_id << 16;
2177 }
2178
2179 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2180 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2181 irq_drain_fence)) {
2182 pdd->process->irq_drain_is_open = false;
2183 return 0;
2184 }
2185
2186 r = wait_event_interruptible(pdd->process->wait_irq_drain,
2187 !READ_ONCE(pdd->process->irq_drain_is_open));
2188 if (r)
2189 pdd->process->irq_drain_is_open = false;
2190
2191 return r;
2192 }
2193
kfd_process_close_interrupt_drain(unsigned int pasid)2194 void kfd_process_close_interrupt_drain(unsigned int pasid)
2195 {
2196 struct kfd_process *p;
2197
2198 p = kfd_lookup_process_by_pasid(pasid, NULL);
2199
2200 if (!p)
2201 return;
2202
2203 WRITE_ONCE(p->irq_drain_is_open, false);
2204 wake_up_all(&p->wait_irq_drain);
2205 kfd_unref_process(p);
2206 }
2207
2208 struct send_exception_work_handler_workarea {
2209 struct work_struct work;
2210 struct kfd_process *p;
2211 unsigned int queue_id;
2212 uint64_t error_reason;
2213 };
2214
send_exception_work_handler(struct work_struct * work)2215 static void send_exception_work_handler(struct work_struct *work)
2216 {
2217 struct send_exception_work_handler_workarea *workarea;
2218 struct kfd_process *p;
2219 struct queue *q;
2220 struct mm_struct *mm;
2221 struct kfd_context_save_area_header __user *csa_header;
2222 uint64_t __user *err_payload_ptr;
2223 uint64_t cur_err;
2224 uint32_t ev_id;
2225
2226 workarea = container_of(work,
2227 struct send_exception_work_handler_workarea,
2228 work);
2229 p = workarea->p;
2230
2231 mm = get_task_mm(p->lead_thread);
2232
2233 if (!mm)
2234 return;
2235
2236 kthread_use_mm(mm);
2237
2238 q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2239
2240 if (!q)
2241 goto out;
2242
2243 csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2244
2245 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2246 get_user(cur_err, err_payload_ptr);
2247 cur_err |= workarea->error_reason;
2248 put_user(cur_err, err_payload_ptr);
2249 get_user(ev_id, &csa_header->err_event_id);
2250
2251 kfd_set_event(p, ev_id);
2252
2253 out:
2254 kthread_unuse_mm(mm);
2255 mmput(mm);
2256 }
2257
kfd_send_exception_to_runtime(struct kfd_process * p,unsigned int queue_id,uint64_t error_reason)2258 int kfd_send_exception_to_runtime(struct kfd_process *p,
2259 unsigned int queue_id,
2260 uint64_t error_reason)
2261 {
2262 struct send_exception_work_handler_workarea worker;
2263
2264 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2265
2266 worker.p = p;
2267 worker.queue_id = queue_id;
2268 worker.error_reason = error_reason;
2269
2270 schedule_work(&worker.work);
2271 flush_work(&worker.work);
2272 destroy_work_on_stack(&worker.work);
2273
2274 return 0;
2275 }
2276
kfd_process_device_data_by_id(struct kfd_process * p,uint32_t gpu_id)2277 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2278 {
2279 int i;
2280
2281 if (gpu_id) {
2282 for (i = 0; i < p->n_pdds; i++) {
2283 struct kfd_process_device *pdd = p->pdds[i];
2284
2285 if (pdd->user_gpu_id == gpu_id)
2286 return pdd;
2287 }
2288 }
2289 return NULL;
2290 }
2291
kfd_process_get_user_gpu_id(struct kfd_process * p,uint32_t actual_gpu_id)2292 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2293 {
2294 int i;
2295
2296 if (!actual_gpu_id)
2297 return 0;
2298
2299 for (i = 0; i < p->n_pdds; i++) {
2300 struct kfd_process_device *pdd = p->pdds[i];
2301
2302 if (pdd->dev->id == actual_gpu_id)
2303 return pdd->user_gpu_id;
2304 }
2305 return -EINVAL;
2306 }
2307
2308 #if defined(CONFIG_DEBUG_FS)
2309
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)2310 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2311 {
2312 struct kfd_process *p;
2313 unsigned int temp;
2314 int r = 0;
2315
2316 int idx = srcu_read_lock(&kfd_processes_srcu);
2317
2318 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2319 seq_printf(m, "Process %d PASID %d:\n",
2320 p->lead_thread->tgid, p->lead_thread->pid);
2321
2322 mutex_lock(&p->mutex);
2323 r = pqm_debugfs_mqds(m, &p->pqm);
2324 mutex_unlock(&p->mutex);
2325
2326 if (r)
2327 break;
2328 }
2329
2330 srcu_read_unlock(&kfd_processes_srcu, idx);
2331
2332 return r;
2333 }
2334
2335 #endif
2336