xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_svm.h"
35 #include "kfd_migrate.h"
36 #include "amdgpu.h"
37 #include "amdgpu_xcp.h"
38 
39 #define MQD_SIZE_ALIGNED 768
40 
41 /*
42  * kfd_locked is used to lock the kfd driver during suspend or reset
43  * once locked, kfd driver will stop any further GPU execution.
44  * create process (open) will return -EAGAIN.
45  */
46 static int kfd_locked;
47 
48 #ifdef CONFIG_DRM_AMDGPU_CIK
49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50 #endif
51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59 extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
60 
61 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62 				unsigned int chunk_size);
63 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64 
65 static int kfd_resume(struct kfd_node *kfd);
66 
kfd_device_info_set_sdma_info(struct kfd_dev * kfd)67 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
68 {
69 	uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
70 
71 	switch (sdma_version) {
72 	case IP_VERSION(4, 0, 0):/* VEGA10 */
73 	case IP_VERSION(4, 0, 1):/* VEGA12 */
74 	case IP_VERSION(4, 1, 0):/* RAVEN */
75 	case IP_VERSION(4, 1, 1):/* RAVEN */
76 	case IP_VERSION(4, 1, 2):/* RENOIR */
77 	case IP_VERSION(5, 2, 1):/* VANGOGH */
78 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
79 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
80 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
81 		kfd->device_info.num_sdma_queues_per_engine = 2;
82 		break;
83 	case IP_VERSION(4, 2, 0):/* VEGA20 */
84 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
85 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
86 	case IP_VERSION(4, 4, 2):
87 	case IP_VERSION(4, 4, 5):
88 	case IP_VERSION(4, 4, 4):
89 	case IP_VERSION(5, 0, 0):/* NAVI10 */
90 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
91 	case IP_VERSION(5, 0, 2):/* NAVI14 */
92 	case IP_VERSION(5, 0, 5):/* NAVI12 */
93 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
94 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
95 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
96 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
97 	case IP_VERSION(6, 0, 0):
98 	case IP_VERSION(6, 0, 1):
99 	case IP_VERSION(6, 0, 2):
100 	case IP_VERSION(6, 0, 3):
101 	case IP_VERSION(6, 1, 0):
102 	case IP_VERSION(6, 1, 1):
103 	case IP_VERSION(6, 1, 2):
104 	case IP_VERSION(6, 1, 3):
105 	case IP_VERSION(7, 0, 0):
106 	case IP_VERSION(7, 0, 1):
107 		kfd->device_info.num_sdma_queues_per_engine = 8;
108 		break;
109 	default:
110 		dev_warn(kfd_device,
111 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
112 			sdma_version);
113 		kfd->device_info.num_sdma_queues_per_engine = 8;
114 	}
115 
116 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
117 
118 	switch (sdma_version) {
119 	case IP_VERSION(6, 0, 0):
120 	case IP_VERSION(6, 0, 1):
121 	case IP_VERSION(6, 0, 2):
122 	case IP_VERSION(6, 0, 3):
123 	case IP_VERSION(6, 1, 0):
124 	case IP_VERSION(6, 1, 1):
125 	case IP_VERSION(6, 1, 2):
126 	case IP_VERSION(6, 1, 3):
127 	case IP_VERSION(7, 0, 0):
128 	case IP_VERSION(7, 0, 1):
129 		/* Reserve 1 for paging and 1 for gfx */
130 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
131 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
132 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
133 			   kfd->adev->sdma.num_instances *
134 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
135 		break;
136 	default:
137 		break;
138 	}
139 }
140 
kfd_device_info_set_event_interrupt_class(struct kfd_dev * kfd)141 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
142 {
143 	uint32_t gc_version = KFD_GC_VERSION(kfd);
144 
145 	switch (gc_version) {
146 	case IP_VERSION(9, 0, 1): /* VEGA10 */
147 	case IP_VERSION(9, 1, 0): /* RAVEN */
148 	case IP_VERSION(9, 2, 1): /* VEGA12 */
149 	case IP_VERSION(9, 2, 2): /* RAVEN */
150 	case IP_VERSION(9, 3, 0): /* RENOIR */
151 	case IP_VERSION(9, 4, 0): /* VEGA20 */
152 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
153 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
154 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
155 		break;
156 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
157 	case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
158 	case IP_VERSION(9, 5, 0): /* GC 9.5.0 */
159 		kfd->device_info.event_interrupt_class =
160 						&event_interrupt_class_v9_4_3;
161 		break;
162 	case IP_VERSION(10, 3, 1): /* VANGOGH */
163 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
164 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
165 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
166 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
167 	case IP_VERSION(10, 1, 4):
168 	case IP_VERSION(10, 1, 10): /* NAVI10 */
169 	case IP_VERSION(10, 1, 2): /* NAVI12 */
170 	case IP_VERSION(10, 1, 1): /* NAVI14 */
171 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
172 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
173 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
174 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
175 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
176 		break;
177 	case IP_VERSION(11, 0, 0):
178 	case IP_VERSION(11, 0, 1):
179 	case IP_VERSION(11, 0, 2):
180 	case IP_VERSION(11, 0, 3):
181 	case IP_VERSION(11, 0, 4):
182 	case IP_VERSION(11, 5, 0):
183 	case IP_VERSION(11, 5, 1):
184 	case IP_VERSION(11, 5, 2):
185 	case IP_VERSION(11, 5, 3):
186 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
187 		break;
188 	case IP_VERSION(12, 0, 0):
189 	case IP_VERSION(12, 0, 1):
190 		/* GFX12_TODO: Change to v12 version. */
191 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
192 		break;
193 	default:
194 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
195 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
196 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
197 	}
198 }
199 
kfd_device_info_init(struct kfd_dev * kfd,bool vf,uint32_t gfx_target_version)200 static void kfd_device_info_init(struct kfd_dev *kfd,
201 				 bool vf, uint32_t gfx_target_version)
202 {
203 	uint32_t gc_version = KFD_GC_VERSION(kfd);
204 	uint32_t asic_type = kfd->adev->asic_type;
205 
206 	kfd->device_info.max_pasid_bits = 16;
207 	kfd->device_info.max_no_of_hqd = 24;
208 	kfd->device_info.num_of_watch_points = 4;
209 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
210 	kfd->device_info.gfx_target_version = gfx_target_version;
211 
212 	if (KFD_IS_SOC15(kfd)) {
213 		kfd->device_info.doorbell_size = 8;
214 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
215 		kfd->device_info.supports_cwsr = true;
216 
217 		kfd_device_info_set_sdma_info(kfd);
218 
219 		kfd_device_info_set_event_interrupt_class(kfd);
220 
221 		if (gc_version < IP_VERSION(11, 0, 0)) {
222 			/* Navi2x+, Navi1x+ */
223 			if (gc_version == IP_VERSION(10, 3, 6))
224 				kfd->device_info.no_atomic_fw_version = 14;
225 			else if (gc_version == IP_VERSION(10, 3, 7))
226 				kfd->device_info.no_atomic_fw_version = 3;
227 			else if (gc_version >= IP_VERSION(10, 3, 0))
228 				kfd->device_info.no_atomic_fw_version = 92;
229 			else if (gc_version >= IP_VERSION(10, 1, 1))
230 				kfd->device_info.no_atomic_fw_version = 145;
231 
232 			/* Navi1x+ */
233 			if (gc_version >= IP_VERSION(10, 1, 1))
234 				kfd->device_info.needs_pci_atomics = true;
235 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
236 			/*
237 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
238 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
239 			 * PCIe atomics support.
240 			 */
241 			kfd->device_info.needs_pci_atomics = true;
242 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
243 		} else if (gc_version < IP_VERSION(13, 0, 0)) {
244 			kfd->device_info.needs_pci_atomics = true;
245 			kfd->device_info.no_atomic_fw_version = 2090;
246 		} else {
247 			kfd->device_info.needs_pci_atomics = true;
248 		}
249 	} else {
250 		kfd->device_info.doorbell_size = 4;
251 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
252 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
253 		kfd->device_info.num_sdma_queues_per_engine = 2;
254 
255 		if (asic_type != CHIP_KAVERI &&
256 		    asic_type != CHIP_HAWAII &&
257 		    asic_type != CHIP_TONGA)
258 			kfd->device_info.supports_cwsr = true;
259 
260 		if (asic_type != CHIP_HAWAII && !vf)
261 			kfd->device_info.needs_pci_atomics = true;
262 	}
263 }
264 
kgd2kfd_probe(struct amdgpu_device * adev,bool vf)265 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
266 {
267 	struct kfd_dev *kfd = NULL;
268 	const struct kfd2kgd_calls *f2g = NULL;
269 	uint32_t gfx_target_version = 0;
270 
271 	switch (adev->asic_type) {
272 #ifdef CONFIG_DRM_AMDGPU_CIK
273 	case CHIP_KAVERI:
274 		gfx_target_version = 70000;
275 		if (!vf)
276 			f2g = &gfx_v7_kfd2kgd;
277 		break;
278 #endif
279 	case CHIP_CARRIZO:
280 		gfx_target_version = 80001;
281 		if (!vf)
282 			f2g = &gfx_v8_kfd2kgd;
283 		break;
284 #ifdef CONFIG_DRM_AMDGPU_CIK
285 	case CHIP_HAWAII:
286 		gfx_target_version = 70001;
287 		if (!amdgpu_exp_hw_support)
288 			pr_info(
289 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
290 				);
291 		else if (!vf)
292 			f2g = &gfx_v7_kfd2kgd;
293 		break;
294 #endif
295 	case CHIP_TONGA:
296 		gfx_target_version = 80002;
297 		if (!vf)
298 			f2g = &gfx_v8_kfd2kgd;
299 		break;
300 	case CHIP_FIJI:
301 	case CHIP_POLARIS10:
302 		gfx_target_version = 80003;
303 		f2g = &gfx_v8_kfd2kgd;
304 		break;
305 	case CHIP_POLARIS11:
306 	case CHIP_POLARIS12:
307 	case CHIP_VEGAM:
308 		gfx_target_version = 80003;
309 		if (!vf)
310 			f2g = &gfx_v8_kfd2kgd;
311 		break;
312 	default:
313 		switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
314 		/* Vega 10 */
315 		case IP_VERSION(9, 0, 1):
316 			gfx_target_version = 90000;
317 			f2g = &gfx_v9_kfd2kgd;
318 			break;
319 		/* Raven */
320 		case IP_VERSION(9, 1, 0):
321 		case IP_VERSION(9, 2, 2):
322 			gfx_target_version = 90002;
323 			if (!vf)
324 				f2g = &gfx_v9_kfd2kgd;
325 			break;
326 		/* Vega12 */
327 		case IP_VERSION(9, 2, 1):
328 			gfx_target_version = 90004;
329 			if (!vf)
330 				f2g = &gfx_v9_kfd2kgd;
331 			break;
332 		/* Renoir */
333 		case IP_VERSION(9, 3, 0):
334 			gfx_target_version = 90012;
335 			if (!vf)
336 				f2g = &gfx_v9_kfd2kgd;
337 			break;
338 		/* Vega20 */
339 		case IP_VERSION(9, 4, 0):
340 			gfx_target_version = 90006;
341 			if (!vf)
342 				f2g = &gfx_v9_kfd2kgd;
343 			break;
344 		/* Arcturus */
345 		case IP_VERSION(9, 4, 1):
346 			gfx_target_version = 90008;
347 			f2g = &arcturus_kfd2kgd;
348 			break;
349 		/* Aldebaran */
350 		case IP_VERSION(9, 4, 2):
351 			gfx_target_version = 90010;
352 			f2g = &aldebaran_kfd2kgd;
353 			break;
354 		case IP_VERSION(9, 4, 3):
355 		case IP_VERSION(9, 4, 4):
356 			gfx_target_version = 90402;
357 			f2g = &gc_9_4_3_kfd2kgd;
358 			break;
359 		case IP_VERSION(9, 5, 0):
360 			gfx_target_version = 90500;
361 			f2g = &gc_9_4_3_kfd2kgd;
362 			break;
363 		/* Navi10 */
364 		case IP_VERSION(10, 1, 10):
365 			gfx_target_version = 100100;
366 			if (!vf)
367 				f2g = &gfx_v10_kfd2kgd;
368 			break;
369 		/* Navi12 */
370 		case IP_VERSION(10, 1, 2):
371 			gfx_target_version = 100101;
372 			f2g = &gfx_v10_kfd2kgd;
373 			break;
374 		/* Navi14 */
375 		case IP_VERSION(10, 1, 1):
376 			gfx_target_version = 100102;
377 			if (!vf)
378 				f2g = &gfx_v10_kfd2kgd;
379 			break;
380 		/* Cyan Skillfish */
381 		case IP_VERSION(10, 1, 3):
382 		case IP_VERSION(10, 1, 4):
383 			gfx_target_version = 100103;
384 			if (!vf)
385 				f2g = &gfx_v10_kfd2kgd;
386 			break;
387 		/* Sienna Cichlid */
388 		case IP_VERSION(10, 3, 0):
389 			gfx_target_version = 100300;
390 			f2g = &gfx_v10_3_kfd2kgd;
391 			break;
392 		/* Navy Flounder */
393 		case IP_VERSION(10, 3, 2):
394 			gfx_target_version = 100301;
395 			f2g = &gfx_v10_3_kfd2kgd;
396 			break;
397 		/* Van Gogh */
398 		case IP_VERSION(10, 3, 1):
399 			gfx_target_version = 100303;
400 			if (!vf)
401 				f2g = &gfx_v10_3_kfd2kgd;
402 			break;
403 		/* Dimgrey Cavefish */
404 		case IP_VERSION(10, 3, 4):
405 			gfx_target_version = 100302;
406 			f2g = &gfx_v10_3_kfd2kgd;
407 			break;
408 		/* Beige Goby */
409 		case IP_VERSION(10, 3, 5):
410 			gfx_target_version = 100304;
411 			f2g = &gfx_v10_3_kfd2kgd;
412 			break;
413 		/* Yellow Carp */
414 		case IP_VERSION(10, 3, 3):
415 			gfx_target_version = 100305;
416 			if (!vf)
417 				f2g = &gfx_v10_3_kfd2kgd;
418 			break;
419 		case IP_VERSION(10, 3, 6):
420 		case IP_VERSION(10, 3, 7):
421 			gfx_target_version = 100306;
422 			if (!vf)
423 				f2g = &gfx_v10_3_kfd2kgd;
424 			break;
425 		case IP_VERSION(11, 0, 0):
426 			gfx_target_version = 110000;
427 			f2g = &gfx_v11_kfd2kgd;
428 			break;
429 		case IP_VERSION(11, 0, 1):
430 		case IP_VERSION(11, 0, 4):
431 			gfx_target_version = 110003;
432 			f2g = &gfx_v11_kfd2kgd;
433 			break;
434 		case IP_VERSION(11, 0, 2):
435 			gfx_target_version = 110002;
436 			f2g = &gfx_v11_kfd2kgd;
437 			break;
438 		case IP_VERSION(11, 0, 3):
439 			/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
440 			gfx_target_version = 110001;
441 			f2g = &gfx_v11_kfd2kgd;
442 			break;
443 		case IP_VERSION(11, 5, 0):
444 			gfx_target_version = 110500;
445 			f2g = &gfx_v11_kfd2kgd;
446 			break;
447 		case IP_VERSION(11, 5, 1):
448 			gfx_target_version = 110501;
449 			f2g = &gfx_v11_kfd2kgd;
450 			break;
451 		case IP_VERSION(11, 5, 2):
452 			gfx_target_version = 110502;
453 			f2g = &gfx_v11_kfd2kgd;
454 			break;
455 		case IP_VERSION(11, 5, 3):
456 			gfx_target_version = 110503;
457 			f2g = &gfx_v11_kfd2kgd;
458 			break;
459 		case IP_VERSION(12, 0, 0):
460 			gfx_target_version = 120000;
461 			f2g = &gfx_v12_kfd2kgd;
462 			break;
463 		case IP_VERSION(12, 0, 1):
464 			gfx_target_version = 120001;
465 			f2g = &gfx_v12_kfd2kgd;
466 			break;
467 		default:
468 			break;
469 		}
470 		break;
471 	}
472 
473 	if (!f2g) {
474 		if (amdgpu_ip_version(adev, GC_HWIP, 0))
475 			dev_info(kfd_device,
476 				"GC IP %06x %s not supported in kfd\n",
477 				amdgpu_ip_version(adev, GC_HWIP, 0),
478 				vf ? "VF" : "");
479 		else
480 			dev_info(kfd_device, "%s %s not supported in kfd\n",
481 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
482 		return NULL;
483 	}
484 
485 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
486 	if (!kfd)
487 		return NULL;
488 
489 	kfd->adev = adev;
490 	kfd_device_info_init(kfd, vf, gfx_target_version);
491 	kfd->init_complete = false;
492 	kfd->kfd2kgd = f2g;
493 	atomic_set(&kfd->compute_profile, 0);
494 
495 	mutex_init(&kfd->doorbell_mutex);
496 
497 	ida_init(&kfd->doorbell_ida);
498 
499 	return kfd;
500 }
501 
kfd_cwsr_init(struct kfd_dev * kfd)502 static void kfd_cwsr_init(struct kfd_dev *kfd)
503 {
504 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
505 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
506 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
507 					     > KFD_CWSR_TMA_OFFSET);
508 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
509 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
510 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
511 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
512 					     > KFD_CWSR_TMA_OFFSET);
513 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
514 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
515 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
516 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
517 					     > KFD_CWSR_TMA_OFFSET);
518 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
519 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
520 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
521 			   KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
522 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
523 					     > KFD_CWSR_TMA_OFFSET);
524 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
525 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
526 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 5, 0)) {
527 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_5_0_hex) > PAGE_SIZE);
528 			kfd->cwsr_isa = cwsr_trap_gfx9_5_0_hex;
529 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_5_0_hex);
530 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
531 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
532 					     > KFD_CWSR_TMA_OFFSET);
533 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
534 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
535 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
536 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
537 					     > KFD_CWSR_TMA_OFFSET);
538 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
539 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
540 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
541 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
542 					     > KFD_CWSR_TMA_OFFSET);
543 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
544 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
545 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
546 			/* The gfx11 cwsr trap handler must fit inside a single
547 			   page. */
548 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
549 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
550 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
551 		} else {
552 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex)
553 					     > KFD_CWSR_TMA_OFFSET);
554 			kfd->cwsr_isa = cwsr_trap_gfx12_hex;
555 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
556 		}
557 
558 		kfd->cwsr_enabled = true;
559 	}
560 }
561 
kfd_gws_init(struct kfd_node * node)562 static int kfd_gws_init(struct kfd_node *node)
563 {
564 	int ret = 0;
565 	struct kfd_dev *kfd = node->kfd;
566 	uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
567 
568 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
569 		return 0;
570 
571 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
572 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
573 			&& kfd->mec2_fw_version >= 0x81b3) ||
574 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
575 			&& kfd->mec2_fw_version >= 0x1b3)  ||
576 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
577 			&& kfd->mec2_fw_version >= 0x30)   ||
578 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
579 			&& kfd->mec2_fw_version >= 0x28) ||
580 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
581 		 KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
582 		(KFD_GC_VERSION(node) == IP_VERSION(9, 5, 0)) ||
583 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
584 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
585 			&& kfd->mec2_fw_version >= 0x6b) ||
586 		(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
587 			&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
588 			&& mes_rev >= 68) ||
589 		(KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))))) {
590 		if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
591 			node->adev->gds.gws_size = 64;
592 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
593 				node->adev->gds.gws_size, &node->gws);
594 	}
595 
596 	return ret;
597 }
598 
kfd_smi_init(struct kfd_node * dev)599 static void kfd_smi_init(struct kfd_node *dev)
600 {
601 	INIT_LIST_HEAD(&dev->smi_clients);
602 	spin_lock_init(&dev->smi_lock);
603 }
604 
kfd_init_node(struct kfd_node * node)605 static int kfd_init_node(struct kfd_node *node)
606 {
607 	int err = -1;
608 
609 	if (kfd_interrupt_init(node)) {
610 		dev_err(kfd_device, "Error initializing interrupts\n");
611 		goto kfd_interrupt_error;
612 	}
613 
614 	node->dqm = device_queue_manager_init(node);
615 	if (!node->dqm) {
616 		dev_err(kfd_device, "Error initializing queue manager\n");
617 		goto device_queue_manager_error;
618 	}
619 
620 	if (kfd_gws_init(node)) {
621 		dev_err(kfd_device, "Could not allocate %d gws\n",
622 			node->adev->gds.gws_size);
623 		goto gws_error;
624 	}
625 
626 	if (kfd_resume(node))
627 		goto kfd_resume_error;
628 
629 	if (kfd_topology_add_device(node)) {
630 		dev_err(kfd_device, "Error adding device to topology\n");
631 		goto kfd_topology_add_device_error;
632 	}
633 
634 	kfd_smi_init(node);
635 
636 	return 0;
637 
638 kfd_topology_add_device_error:
639 kfd_resume_error:
640 gws_error:
641 	device_queue_manager_uninit(node->dqm);
642 device_queue_manager_error:
643 	kfd_interrupt_exit(node);
644 kfd_interrupt_error:
645 	if (node->gws)
646 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
647 
648 	/* Cleanup the node memory here */
649 	kfree(node);
650 	return err;
651 }
652 
kfd_cleanup_nodes(struct kfd_dev * kfd,unsigned int num_nodes)653 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
654 {
655 	struct kfd_node *knode;
656 	unsigned int i;
657 
658 	/*
659 	 * flush_work ensures that there are no outstanding
660 	 * work-queue items that will access interrupt_ring. New work items
661 	 * can't be created because we stopped interrupt handling above.
662 	 */
663 	flush_workqueue(kfd->ih_wq);
664 	destroy_workqueue(kfd->ih_wq);
665 
666 	for (i = 0; i < num_nodes; i++) {
667 		knode = kfd->nodes[i];
668 		device_queue_manager_uninit(knode->dqm);
669 		kfd_interrupt_exit(knode);
670 		kfd_topology_remove_device(knode);
671 		if (knode->gws)
672 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
673 		kfree(knode);
674 		kfd->nodes[i] = NULL;
675 	}
676 }
677 
kfd_setup_interrupt_bitmap(struct kfd_node * node,unsigned int kfd_node_idx)678 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
679 				       unsigned int kfd_node_idx)
680 {
681 	struct amdgpu_device *adev = node->adev;
682 	uint32_t xcc_mask = node->xcc_mask;
683 	uint32_t xcc, mapped_xcc;
684 	/*
685 	 * Interrupt bitmap is setup for processing interrupts from
686 	 * different XCDs and AIDs.
687 	 * Interrupt bitmap is defined as follows:
688 	 * 1. Bits 0-15 - correspond to the NodeId field.
689 	 *    Each bit corresponds to NodeId number. For example, if
690 	 *    a KFD node has interrupt bitmap set to 0x7, then this
691 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
692 	 *    in the IH cookie.
693 	 * 2. Bits 16-31 - unused.
694 	 *
695 	 * Please note that the kfd_node_idx argument passed to this
696 	 * function is not related to NodeId field received in the
697 	 * IH cookie.
698 	 *
699 	 * In CPX mode, a KFD node will process an interrupt if:
700 	 * - the Node Id matches the corresponding bit set in
701 	 *   Bits 0-15.
702 	 * - AND VMID reported in the interrupt lies within the
703 	 *   VMID range of the node.
704 	 */
705 	for_each_inst(xcc, xcc_mask) {
706 		mapped_xcc = GET_INST(GC, xcc);
707 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
708 	}
709 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
710 							node->interrupt_bitmap);
711 }
712 
kgd2kfd_device_init(struct kfd_dev * kfd,const struct kgd2kfd_shared_resources * gpu_resources)713 bool kgd2kfd_device_init(struct kfd_dev *kfd,
714 			 const struct kgd2kfd_shared_resources *gpu_resources)
715 {
716 	unsigned int size, map_process_packet_size, i;
717 	struct kfd_node *node;
718 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
719 	unsigned int max_proc_per_quantum;
720 	int partition_mode;
721 	int xcp_idx;
722 
723 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
724 			KGD_ENGINE_MEC1);
725 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
726 			KGD_ENGINE_MEC2);
727 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
728 			KGD_ENGINE_SDMA1);
729 	kfd->shared_resources = *gpu_resources;
730 
731 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
732 
733 	if (kfd->num_nodes == 0) {
734 		dev_err(kfd_device,
735 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
736 			kfd->adev->gfx.num_xcc_per_xcp);
737 		goto out;
738 	}
739 
740 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
741 	 * 32 and 64-bit requests are possible and must be
742 	 * supported.
743 	 */
744 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
745 	if (!kfd->pci_atomic_requested &&
746 	    kfd->device_info.needs_pci_atomics &&
747 	    (!kfd->device_info.no_atomic_fw_version ||
748 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
749 		dev_info(kfd_device,
750 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
751 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
752 			 kfd->mec_fw_version,
753 			 kfd->device_info.no_atomic_fw_version);
754 		return false;
755 	}
756 
757 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
758 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
759 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
760 
761 	/* For multi-partition capable GPUs, we need special handling for VMIDs
762 	 * depending on partition mode.
763 	 * In CPX mode, the VMID range needs to be shared between XCDs.
764 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
765 	 * divide them equally, we change starting VMID to 4 and not use
766 	 * VMID 3.
767 	 * If the VMID range changes for multi-partition capable GPUs, then
768 	 * this code MUST be revisited.
769 	 */
770 	if (kfd->adev->xcp_mgr) {
771 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
772 								 AMDGPU_XCP_FL_LOCKED);
773 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
774 		    kfd->num_nodes != 1) {
775 			vmid_num_kfd /= 2;
776 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
777 		}
778 	}
779 
780 	/* Verify module parameters regarding mapped process number*/
781 	if (hws_max_conc_proc >= 0)
782 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
783 	else
784 		max_proc_per_quantum = vmid_num_kfd;
785 
786 	/* calculate max size of mqds needed for queues */
787 	size = max_num_of_queues_per_device *
788 			kfd->device_info.mqd_size_aligned;
789 
790 	/*
791 	 * calculate max size of runlist packet.
792 	 * There can be only 2 packets at once
793 	 */
794 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
795 				sizeof(struct pm4_mes_map_process_aldebaran) :
796 				sizeof(struct pm4_mes_map_process);
797 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
798 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
799 		+ sizeof(struct pm4_mes_runlist)) * 2;
800 
801 	/* Add size of HIQ & DIQ */
802 	size += KFD_KERNEL_QUEUE_SIZE * 2;
803 
804 	/* add another 512KB for all other allocations on gart (HPD, fences) */
805 	size += 512 * 1024;
806 
807 	if (amdgpu_amdkfd_alloc_gtt_mem(
808 			kfd->adev, size, &kfd->gtt_mem,
809 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
810 			false)) {
811 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
812 		goto alloc_gtt_mem_failure;
813 	}
814 
815 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
816 
817 	/* Initialize GTT sa with 512 byte chunk size */
818 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
819 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
820 		goto kfd_gtt_sa_init_error;
821 	}
822 
823 	if (kfd_doorbell_init(kfd)) {
824 		dev_err(kfd_device,
825 			"Error initializing doorbell aperture\n");
826 		goto kfd_doorbell_error;
827 	}
828 
829 	if (amdgpu_use_xgmi_p2p)
830 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
831 
832 	/*
833 	 * For multi-partition capable GPUs, the KFD abstracts all partitions
834 	 * within a socket as xGMI connected in the topology so assign a unique
835 	 * hive id per device based on the pci device location if device is in
836 	 * PCIe mode.
837 	 */
838 	if (!kfd->hive_id && kfd->num_nodes > 1)
839 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
840 
841 	kfd->noretry = kfd->adev->gmc.noretry;
842 
843 	kfd_cwsr_init(kfd);
844 
845 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
846 				kfd->num_nodes);
847 
848 	/* Allocate the KFD nodes */
849 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
850 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
851 		if (!node)
852 			goto node_alloc_error;
853 
854 		node->node_id = i;
855 		node->adev = kfd->adev;
856 		node->kfd = kfd;
857 		node->kfd2kgd = kfd->kfd2kgd;
858 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
859 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
860 		/* TODO : Check if error handling is needed */
861 		if (node->xcp) {
862 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
863 						    &node->xcc_mask);
864 			++xcp_idx;
865 		} else {
866 			node->xcc_mask =
867 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
868 		}
869 
870 		if (node->xcp) {
871 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
872 				node->node_id, node->xcp->mem_id,
873 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
874 		}
875 
876 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
877 		    kfd->num_nodes != 1) {
878 			/* For multi-partition capable GPUs and CPX mode, first
879 			 * XCD gets VMID range 4-9 and second XCD gets VMID
880 			 * range 10-15.
881 			 */
882 
883 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
884 						first_vmid_kfd :
885 						first_vmid_kfd+vmid_num_kfd;
886 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
887 						last_vmid_kfd-vmid_num_kfd :
888 						last_vmid_kfd;
889 			node->compute_vmid_bitmap =
890 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
891 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
892 		} else {
893 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
894 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
895 			node->compute_vmid_bitmap =
896 				gpu_resources->compute_vmid_bitmap;
897 		}
898 		node->max_proc_per_quantum = max_proc_per_quantum;
899 		atomic_set(&node->sram_ecc_flag, 0);
900 
901 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
902 					&node->local_mem_info, node->xcp);
903 
904 		if (kfd->adev->xcp_mgr)
905 			kfd_setup_interrupt_bitmap(node, i);
906 
907 		/* Initialize the KFD node */
908 		if (kfd_init_node(node)) {
909 			dev_err(kfd_device, "Error initializing KFD node\n");
910 			goto node_init_error;
911 		}
912 
913 		spin_lock_init(&node->watch_points_lock);
914 
915 		kfd->nodes[i] = node;
916 	}
917 
918 	svm_range_set_max_pages(kfd->adev);
919 
920 	kfd->init_complete = true;
921 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
922 		 kfd->adev->pdev->device);
923 
924 	pr_debug("Starting kfd with the following scheduling policy %d\n",
925 		node->dqm->sched_policy);
926 
927 	goto out;
928 
929 node_init_error:
930 node_alloc_error:
931 	kfd_cleanup_nodes(kfd, i);
932 	kfd_doorbell_fini(kfd);
933 kfd_doorbell_error:
934 	kfd_gtt_sa_fini(kfd);
935 kfd_gtt_sa_init_error:
936 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
937 alloc_gtt_mem_failure:
938 	dev_err(kfd_device,
939 		"device %x:%x NOT added due to errors\n",
940 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
941 out:
942 	return kfd->init_complete;
943 }
944 
kgd2kfd_device_exit(struct kfd_dev * kfd)945 void kgd2kfd_device_exit(struct kfd_dev *kfd)
946 {
947 	if (kfd->init_complete) {
948 		/* Cleanup KFD nodes */
949 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
950 		/* Cleanup common/shared resources */
951 		kfd_doorbell_fini(kfd);
952 		ida_destroy(&kfd->doorbell_ida);
953 		kfd_gtt_sa_fini(kfd);
954 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
955 	}
956 
957 	kfree(kfd);
958 }
959 
kgd2kfd_pre_reset(struct kfd_dev * kfd,struct amdgpu_reset_context * reset_context)960 int kgd2kfd_pre_reset(struct kfd_dev *kfd,
961 		      struct amdgpu_reset_context *reset_context)
962 {
963 	struct kfd_node *node;
964 	int i;
965 
966 	if (!kfd->init_complete)
967 		return 0;
968 
969 	for (i = 0; i < kfd->num_nodes; i++) {
970 		node = kfd->nodes[i];
971 		kfd_smi_event_update_gpu_reset(node, false, reset_context);
972 	}
973 
974 	kgd2kfd_suspend(kfd, true);
975 
976 	for (i = 0; i < kfd->num_nodes; i++)
977 		kfd_signal_reset_event(kfd->nodes[i]);
978 
979 	return 0;
980 }
981 
982 /*
983  * Fix me. KFD won't be able to resume existing process for now.
984  * We will keep all existing process in a evicted state and
985  * wait the process to be terminated.
986  */
987 
kgd2kfd_post_reset(struct kfd_dev * kfd)988 int kgd2kfd_post_reset(struct kfd_dev *kfd)
989 {
990 	int ret;
991 	struct kfd_node *node;
992 	int i;
993 
994 	if (!kfd->init_complete)
995 		return 0;
996 
997 	for (i = 0; i < kfd->num_nodes; i++) {
998 		ret = kfd_resume(kfd->nodes[i]);
999 		if (ret)
1000 			return ret;
1001 	}
1002 
1003 	mutex_lock(&kfd_processes_mutex);
1004 	--kfd_locked;
1005 	mutex_unlock(&kfd_processes_mutex);
1006 
1007 	for (i = 0; i < kfd->num_nodes; i++) {
1008 		node = kfd->nodes[i];
1009 		atomic_set(&node->sram_ecc_flag, 0);
1010 		kfd_smi_event_update_gpu_reset(node, true, NULL);
1011 	}
1012 
1013 	return 0;
1014 }
1015 
kfd_is_locked(struct kfd_dev * kfd)1016 bool kfd_is_locked(struct kfd_dev *kfd)
1017 {
1018 	uint8_t id  = 0;
1019 	struct kfd_node *dev;
1020 
1021 	lockdep_assert_held(&kfd_processes_mutex);
1022 
1023 	/* check reset/suspend lock */
1024 	if (kfd_locked > 0)
1025 		return true;
1026 
1027 	if (kfd)
1028 		return kfd->kfd_dev_lock > 0;
1029 
1030 	/* check lock on all cgroup accessible devices */
1031 	while (kfd_topology_enum_kfd_devices(id++, &dev) == 0) {
1032 		if (!dev || kfd_devcgroup_check_permission(dev))
1033 			continue;
1034 
1035 		if (dev->kfd->kfd_dev_lock > 0)
1036 			return true;
1037 	}
1038 
1039 	return false;
1040 }
1041 
kgd2kfd_suspend(struct kfd_dev * kfd,bool suspend_proc)1042 void kgd2kfd_suspend(struct kfd_dev *kfd, bool suspend_proc)
1043 {
1044 	struct kfd_node *node;
1045 	int i;
1046 
1047 	if (!kfd->init_complete)
1048 		return;
1049 
1050 	if (suspend_proc)
1051 		kgd2kfd_suspend_process(kfd);
1052 
1053 	for (i = 0; i < kfd->num_nodes; i++) {
1054 		node = kfd->nodes[i];
1055 		node->dqm->ops.stop(node->dqm);
1056 	}
1057 }
1058 
kgd2kfd_resume(struct kfd_dev * kfd,bool resume_proc)1059 int kgd2kfd_resume(struct kfd_dev *kfd, bool resume_proc)
1060 {
1061 	int ret, i;
1062 
1063 	if (!kfd->init_complete)
1064 		return 0;
1065 
1066 	for (i = 0; i < kfd->num_nodes; i++) {
1067 		ret = kfd_resume(kfd->nodes[i]);
1068 		if (ret)
1069 			return ret;
1070 	}
1071 
1072 	if (resume_proc)
1073 		ret = kgd2kfd_resume_process(kfd);
1074 
1075 	return ret;
1076 }
1077 
kgd2kfd_suspend_process(struct kfd_dev * kfd)1078 void kgd2kfd_suspend_process(struct kfd_dev *kfd)
1079 {
1080 	if (!kfd->init_complete)
1081 		return;
1082 
1083 	mutex_lock(&kfd_processes_mutex);
1084 	/* For first KFD device suspend all the KFD processes */
1085 	if (++kfd_locked == 1)
1086 		kfd_suspend_all_processes();
1087 	mutex_unlock(&kfd_processes_mutex);
1088 }
1089 
kgd2kfd_resume_process(struct kfd_dev * kfd)1090 int kgd2kfd_resume_process(struct kfd_dev *kfd)
1091 {
1092 	int ret = 0;
1093 
1094 	if (!kfd->init_complete)
1095 		return 0;
1096 
1097 	mutex_lock(&kfd_processes_mutex);
1098 	if (--kfd_locked == 0)
1099 		ret = kfd_resume_all_processes();
1100 	WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
1101 	mutex_unlock(&kfd_processes_mutex);
1102 
1103 	return ret;
1104 }
1105 
kfd_resume(struct kfd_node * node)1106 static int kfd_resume(struct kfd_node *node)
1107 {
1108 	int err = 0;
1109 
1110 	err = node->dqm->ops.start(node->dqm);
1111 	if (err)
1112 		dev_err(kfd_device,
1113 			"Error starting queue manager for device %x:%x\n",
1114 			node->adev->pdev->vendor, node->adev->pdev->device);
1115 
1116 	return err;
1117 }
1118 
1119 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)1120 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1121 {
1122 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1123 	bool is_patched = false;
1124 	unsigned long flags;
1125 	struct kfd_node *node;
1126 
1127 	if (!kfd->init_complete)
1128 		return;
1129 
1130 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1131 		dev_err_once(kfd_device, "Ring entry too small\n");
1132 		return;
1133 	}
1134 
1135 	for (i = 0; i < kfd->num_nodes; i++) {
1136 		node = kfd->nodes[i];
1137 		spin_lock_irqsave(&node->interrupt_lock, flags);
1138 
1139 		if (node->interrupts_active
1140 		    && interrupt_is_wanted(node, ih_ring_entry,
1141 			    	patched_ihre, &is_patched)
1142 		    && enqueue_ih_ring_entry(node,
1143 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1144 			queue_work(node->kfd->ih_wq, &node->interrupt_work);
1145 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1146 			return;
1147 		}
1148 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1149 	}
1150 
1151 }
1152 
kgd2kfd_quiesce_mm(struct mm_struct * mm,uint32_t trigger)1153 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1154 {
1155 	struct kfd_process *p;
1156 	int r;
1157 
1158 	/* Because we are called from arbitrary context (workqueue) as opposed
1159 	 * to process context, kfd_process could attempt to exit while we are
1160 	 * running so the lookup function increments the process ref count.
1161 	 */
1162 	p = kfd_lookup_process_by_mm(mm);
1163 	if (!p)
1164 		return -ESRCH;
1165 
1166 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1167 	r = kfd_process_evict_queues(p, trigger);
1168 
1169 	kfd_unref_process(p);
1170 	return r;
1171 }
1172 
kgd2kfd_resume_mm(struct mm_struct * mm)1173 int kgd2kfd_resume_mm(struct mm_struct *mm)
1174 {
1175 	struct kfd_process *p;
1176 	int r;
1177 
1178 	/* Because we are called from arbitrary context (workqueue) as opposed
1179 	 * to process context, kfd_process could attempt to exit while we are
1180 	 * running so the lookup function increments the process ref count.
1181 	 */
1182 	p = kfd_lookup_process_by_mm(mm);
1183 	if (!p)
1184 		return -ESRCH;
1185 
1186 	r = kfd_process_restore_queues(p);
1187 
1188 	kfd_unref_process(p);
1189 	return r;
1190 }
1191 
1192 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1193  *   prepare for safe eviction of KFD BOs that belong to the specified
1194  *   process.
1195  *
1196  * @mm: mm_struct that identifies the specified KFD process
1197  * @fence: eviction fence attached to KFD process BOs
1198  *
1199  */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)1200 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1201 					       struct dma_fence *fence)
1202 {
1203 	struct kfd_process *p;
1204 	unsigned long active_time;
1205 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1206 
1207 	if (!fence)
1208 		return -EINVAL;
1209 
1210 	if (dma_fence_is_signaled(fence))
1211 		return 0;
1212 
1213 	p = kfd_lookup_process_by_mm(mm);
1214 	if (!p)
1215 		return -ENODEV;
1216 
1217 	if (fence->seqno == p->last_eviction_seqno)
1218 		goto out;
1219 
1220 	p->last_eviction_seqno = fence->seqno;
1221 
1222 	/* Avoid KFD process starvation. Wait for at least
1223 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1224 	 */
1225 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1226 	if (delay_jiffies > active_time)
1227 		delay_jiffies -= active_time;
1228 	else
1229 		delay_jiffies = 0;
1230 
1231 	/* During process initialization eviction_work.dwork is initialized
1232 	 * to kfd_evict_bo_worker
1233 	 */
1234 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1235 	     p->lead_thread->pid, delay_jiffies);
1236 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1237 out:
1238 	kfd_unref_process(p);
1239 	return 0;
1240 }
1241 
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)1242 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1243 				unsigned int chunk_size)
1244 {
1245 	if (WARN_ON(buf_size < chunk_size))
1246 		return -EINVAL;
1247 	if (WARN_ON(buf_size == 0))
1248 		return -EINVAL;
1249 	if (WARN_ON(chunk_size == 0))
1250 		return -EINVAL;
1251 
1252 	kfd->gtt_sa_chunk_size = chunk_size;
1253 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1254 
1255 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1256 					   GFP_KERNEL);
1257 	if (!kfd->gtt_sa_bitmap)
1258 		return -ENOMEM;
1259 
1260 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1261 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1262 
1263 	mutex_init(&kfd->gtt_sa_lock);
1264 
1265 	return 0;
1266 }
1267 
kfd_gtt_sa_fini(struct kfd_dev * kfd)1268 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1269 {
1270 	mutex_destroy(&kfd->gtt_sa_lock);
1271 	bitmap_free(kfd->gtt_sa_bitmap);
1272 }
1273 
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)1274 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1275 						unsigned int bit_num,
1276 						unsigned int chunk_size)
1277 {
1278 	return start_addr + bit_num * chunk_size;
1279 }
1280 
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)1281 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1282 						unsigned int bit_num,
1283 						unsigned int chunk_size)
1284 {
1285 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1286 }
1287 
kfd_gtt_sa_allocate(struct kfd_node * node,unsigned int size,struct kfd_mem_obj ** mem_obj)1288 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1289 			struct kfd_mem_obj **mem_obj)
1290 {
1291 	unsigned int found, start_search, cur_size;
1292 	struct kfd_dev *kfd = node->kfd;
1293 
1294 	if (size == 0)
1295 		return -EINVAL;
1296 
1297 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1298 		return -ENOMEM;
1299 
1300 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1301 	if (!(*mem_obj))
1302 		return -ENOMEM;
1303 
1304 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1305 
1306 	start_search = 0;
1307 
1308 	mutex_lock(&kfd->gtt_sa_lock);
1309 
1310 kfd_gtt_restart_search:
1311 	/* Find the first chunk that is free */
1312 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1313 					kfd->gtt_sa_num_of_chunks,
1314 					start_search);
1315 
1316 	pr_debug("Found = %d\n", found);
1317 
1318 	/* If there wasn't any free chunk, bail out */
1319 	if (found == kfd->gtt_sa_num_of_chunks)
1320 		goto kfd_gtt_no_free_chunk;
1321 
1322 	/* Update fields of mem_obj */
1323 	(*mem_obj)->range_start = found;
1324 	(*mem_obj)->range_end = found;
1325 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1326 					kfd->gtt_start_gpu_addr,
1327 					found,
1328 					kfd->gtt_sa_chunk_size);
1329 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1330 					kfd->gtt_start_cpu_ptr,
1331 					found,
1332 					kfd->gtt_sa_chunk_size);
1333 
1334 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1335 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1336 
1337 	/* If we need only one chunk, mark it as allocated and get out */
1338 	if (size <= kfd->gtt_sa_chunk_size) {
1339 		pr_debug("Single bit\n");
1340 		__set_bit(found, kfd->gtt_sa_bitmap);
1341 		goto kfd_gtt_out;
1342 	}
1343 
1344 	/* Otherwise, try to see if we have enough contiguous chunks */
1345 	cur_size = size - kfd->gtt_sa_chunk_size;
1346 	do {
1347 		(*mem_obj)->range_end =
1348 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1349 					kfd->gtt_sa_num_of_chunks, ++found);
1350 		/*
1351 		 * If next free chunk is not contiguous than we need to
1352 		 * restart our search from the last free chunk we found (which
1353 		 * wasn't contiguous to the previous ones
1354 		 */
1355 		if ((*mem_obj)->range_end != found) {
1356 			start_search = found;
1357 			goto kfd_gtt_restart_search;
1358 		}
1359 
1360 		/*
1361 		 * If we reached end of buffer, bail out with error
1362 		 */
1363 		if (found == kfd->gtt_sa_num_of_chunks)
1364 			goto kfd_gtt_no_free_chunk;
1365 
1366 		/* Check if we don't need another chunk */
1367 		if (cur_size <= kfd->gtt_sa_chunk_size)
1368 			cur_size = 0;
1369 		else
1370 			cur_size -= kfd->gtt_sa_chunk_size;
1371 
1372 	} while (cur_size > 0);
1373 
1374 	pr_debug("range_start = %d, range_end = %d\n",
1375 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1376 
1377 	/* Mark the chunks as allocated */
1378 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1379 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1380 
1381 kfd_gtt_out:
1382 	mutex_unlock(&kfd->gtt_sa_lock);
1383 	return 0;
1384 
1385 kfd_gtt_no_free_chunk:
1386 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1387 	mutex_unlock(&kfd->gtt_sa_lock);
1388 	kfree(*mem_obj);
1389 	return -ENOMEM;
1390 }
1391 
kfd_gtt_sa_free(struct kfd_node * node,struct kfd_mem_obj * mem_obj)1392 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1393 {
1394 	struct kfd_dev *kfd = node->kfd;
1395 
1396 	/* Act like kfree when trying to free a NULL object */
1397 	if (!mem_obj)
1398 		return 0;
1399 
1400 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1401 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1402 
1403 	mutex_lock(&kfd->gtt_sa_lock);
1404 
1405 	/* Mark the chunks as free */
1406 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1407 		     mem_obj->range_end - mem_obj->range_start + 1);
1408 
1409 	mutex_unlock(&kfd->gtt_sa_lock);
1410 
1411 	kfree(mem_obj);
1412 	return 0;
1413 }
1414 
kgd2kfd_set_sram_ecc_flag(struct kfd_dev * kfd)1415 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1416 {
1417 	/*
1418 	 * TODO: Currently update SRAM ECC flag for first node.
1419 	 * This needs to be updated later when we can
1420 	 * identify SRAM ECC error on other nodes also.
1421 	 */
1422 	if (kfd)
1423 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1424 }
1425 
kfd_inc_compute_active(struct kfd_node * node)1426 void kfd_inc_compute_active(struct kfd_node *node)
1427 {
1428 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1429 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1430 }
1431 
kfd_dec_compute_active(struct kfd_node * node)1432 void kfd_dec_compute_active(struct kfd_node *node)
1433 {
1434 	int count = atomic_dec_return(&node->kfd->compute_profile);
1435 
1436 	if (count == 0)
1437 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1438 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1439 }
1440 
kfd_compute_active(struct kfd_node * node)1441 static bool kfd_compute_active(struct kfd_node *node)
1442 {
1443 	if (atomic_read(&node->kfd->compute_profile))
1444 		return true;
1445 	return false;
1446 }
1447 
kgd2kfd_smi_event_throttle(struct kfd_dev * kfd,uint64_t throttle_bitmask)1448 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1449 {
1450 	/*
1451 	 * TODO: For now, raise the throttling event only on first node.
1452 	 * This will need to change after we are able to determine
1453 	 * which node raised the throttling event.
1454 	 */
1455 	if (kfd && kfd->init_complete)
1456 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1457 							throttle_bitmask);
1458 }
1459 
1460 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1461  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1462  * When the device has more than two engines, we reserve two for PCIe to enable
1463  * full-duplex and the rest are used as XGMI.
1464  */
kfd_get_num_sdma_engines(struct kfd_node * node)1465 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1466 {
1467 	/* If XGMI is not supported, all SDMA engines are PCIe */
1468 	if (!node->adev->gmc.xgmi.supported)
1469 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1470 
1471 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1472 }
1473 
kfd_get_num_xgmi_sdma_engines(struct kfd_node * node)1474 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1475 {
1476 	/* After reserved for PCIe, the rest of engines are XGMI */
1477 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1478 		kfd_get_num_sdma_engines(node);
1479 }
1480 
kgd2kfd_check_and_lock_kfd(struct kfd_dev * kfd)1481 int kgd2kfd_check_and_lock_kfd(struct kfd_dev *kfd)
1482 {
1483 	struct kfd_process *p;
1484 	int r = 0, temp, idx;
1485 
1486 	mutex_lock(&kfd_processes_mutex);
1487 
1488 	if (hash_empty(kfd_processes_table) && !kfd_is_locked(kfd))
1489 		goto out;
1490 
1491 	/* fail under system reset/resume or kfd device is partition switching. */
1492 	if (kfd_is_locked(kfd)) {
1493 		r = -EBUSY;
1494 		goto out;
1495 	}
1496 
1497 	/*
1498 	 * ensure all running processes are cgroup excluded from device before mode switch.
1499 	 * i.e. no pdd was created on the process socket.
1500 	 */
1501 	idx = srcu_read_lock(&kfd_processes_srcu);
1502 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1503 		int i;
1504 
1505 		for (i = 0; i < p->n_pdds; i++) {
1506 			if (p->pdds[i]->dev->kfd != kfd)
1507 				continue;
1508 
1509 			r = -EBUSY;
1510 			goto proc_check_unlock;
1511 		}
1512 	}
1513 
1514 proc_check_unlock:
1515 	srcu_read_unlock(&kfd_processes_srcu, idx);
1516 out:
1517 	if (!r)
1518 		++kfd->kfd_dev_lock;
1519 	mutex_unlock(&kfd_processes_mutex);
1520 
1521 	return r;
1522 }
1523 
kgd2kfd_unlock_kfd(struct kfd_dev * kfd)1524 void kgd2kfd_unlock_kfd(struct kfd_dev *kfd)
1525 {
1526 	mutex_lock(&kfd_processes_mutex);
1527 	--kfd->kfd_dev_lock;
1528 	mutex_unlock(&kfd_processes_mutex);
1529 }
1530 
kgd2kfd_start_sched(struct kfd_dev * kfd,uint32_t node_id)1531 int kgd2kfd_start_sched(struct kfd_dev *kfd, uint32_t node_id)
1532 {
1533 	struct kfd_node *node;
1534 	int ret;
1535 
1536 	if (!kfd->init_complete)
1537 		return 0;
1538 
1539 	if (node_id >= kfd->num_nodes) {
1540 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1541 			 node_id, kfd->num_nodes - 1);
1542 		return -EINVAL;
1543 	}
1544 	node = kfd->nodes[node_id];
1545 
1546 	ret = node->dqm->ops.unhalt(node->dqm);
1547 	if (ret)
1548 		dev_err(kfd_device, "Error in starting scheduler\n");
1549 
1550 	return ret;
1551 }
1552 
kgd2kfd_stop_sched(struct kfd_dev * kfd,uint32_t node_id)1553 int kgd2kfd_stop_sched(struct kfd_dev *kfd, uint32_t node_id)
1554 {
1555 	struct kfd_node *node;
1556 
1557 	if (!kfd->init_complete)
1558 		return 0;
1559 
1560 	if (node_id >= kfd->num_nodes) {
1561 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1562 			 node_id, kfd->num_nodes - 1);
1563 		return -EINVAL;
1564 	}
1565 
1566 	node = kfd->nodes[node_id];
1567 	return node->dqm->ops.halt(node->dqm);
1568 }
1569 
kgd2kfd_compute_active(struct kfd_dev * kfd,uint32_t node_id)1570 bool kgd2kfd_compute_active(struct kfd_dev *kfd, uint32_t node_id)
1571 {
1572 	struct kfd_node *node;
1573 
1574 	if (!kfd->init_complete)
1575 		return false;
1576 
1577 	if (node_id >= kfd->num_nodes) {
1578 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1579 			 node_id, kfd->num_nodes - 1);
1580 		return false;
1581 	}
1582 
1583 	node = kfd->nodes[node_id];
1584 
1585 	return kfd_compute_active(node);
1586 }
1587 
1588 /**
1589  * kgd2kfd_vmfault_fast_path() - KFD vm page fault interrupt handling fast path for gmc v9
1590  * @adev: amdgpu device
1591  * @entry: vm fault interrupt vector
1592  * @retry_fault: if this is retry fault
1593  *
1594  * retry fault -
1595  *    with CAM enabled, adev primary ring
1596  *                           |  gmc_v9_0_process_interrupt()
1597  *                      adev soft_ring
1598  *                           |  gmc_v9_0_process_interrupt() worker failed to recover page fault
1599  *                      KFD node ih_fifo
1600  *                           |  KFD interrupt_wq worker
1601  *                      kfd_signal_vm_fault_event
1602  *
1603  *    without CAM,      adev primary ring1
1604  *                           |  gmc_v9_0_process_interrupt worker failed to recvoer page fault
1605  *                      KFD node ih_fifo
1606  *                           |  KFD interrupt_wq worker
1607  *                      kfd_signal_vm_fault_event
1608  *
1609  * no-retry fault -
1610  *                      adev primary ring
1611  *                           |  gmc_v9_0_process_interrupt()
1612  *                      KFD node ih_fifo
1613  *                           |  KFD interrupt_wq worker
1614  *                      kfd_signal_vm_fault_event
1615  *
1616  * fast path - After kfd_signal_vm_fault_event, gmc_v9_0_process_interrupt drop the page fault
1617  *            of same process, don't copy interrupt to KFD node ih_fifo.
1618  *            With gdb debugger enabled, need convert the retry fault to no-retry fault for
1619  *            debugger, cannot use the fast path.
1620  *
1621  * Return:
1622  *   true - use the fast path to handle this fault
1623  *   false - use normal path to handle it
1624  */
kgd2kfd_vmfault_fast_path(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry,bool retry_fault)1625 bool kgd2kfd_vmfault_fast_path(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry,
1626 			       bool retry_fault)
1627 {
1628 	struct kfd_process *p;
1629 	u32 cam_index;
1630 
1631 	if (entry->ih == &adev->irq.ih_soft || entry->ih == &adev->irq.ih1) {
1632 		p = kfd_lookup_process_by_pasid(entry->pasid, NULL);
1633 		if (!p)
1634 			return true;
1635 
1636 		if (p->gpu_page_fault && !p->debug_trap_enabled) {
1637 			if (retry_fault && adev->irq.retry_cam_enabled) {
1638 				cam_index = entry->src_data[2] & 0x3ff;
1639 				WDOORBELL32(adev->irq.retry_cam_doorbell_index, cam_index);
1640 			}
1641 
1642 			kfd_unref_process(p);
1643 			return true;
1644 		}
1645 
1646 		/*
1647 		 * This is the first page fault, set flag and then signal user space
1648 		 */
1649 		p->gpu_page_fault = true;
1650 		kfd_unref_process(p);
1651 	}
1652 	return false;
1653 }
1654 
1655 #if defined(CONFIG_DEBUG_FS)
1656 
1657 /* This function will send a package to HIQ to hang the HWS
1658  * which will trigger a GPU reset and bring the HWS back to normal state
1659  */
kfd_debugfs_hang_hws(struct kfd_node * dev)1660 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1661 {
1662 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1663 		pr_err("HWS is not enabled");
1664 		return -EINVAL;
1665 	}
1666 
1667 	if (dev->kfd->shared_resources.enable_mes) {
1668 		dev_err(dev->adev->dev, "Inducing MES hang is not supported\n");
1669 		return -EINVAL;
1670 	}
1671 
1672 	return dqm_debugfs_hang_hws(dev->dqm);
1673 }
1674 
1675 #endif
1676