xref: /qemu/target/arm/kvm.c (revision 98721058d6d50ef218e0c26e4f67c8ef96965859)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6  * Copyright Alex Bennée 2014, Linaro
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or later.
9  * See the COPYING file in the top-level directory.
10  *
11  */
12 
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15 
16 #include <linux/kvm.h>
17 
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "system/system.h"
24 #include "system/runstate.h"
25 #include "system/kvm.h"
26 #include "system/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "system/address-spaces.h"
34 #include "gdbstub/enums.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41 #include "target/arm/gtimer.h"
42 #include "migration/blocker.h"
43 
44 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
45     KVM_CAP_INFO(DEVICE_CTRL),
46     KVM_CAP_LAST_INFO
47 };
48 
49 static bool cap_has_mp_state;
50 static bool cap_has_inject_serror_esr;
51 static bool cap_has_inject_ext_dabt;
52 
53 /**
54  * ARMHostCPUFeatures: information about the host CPU (identified
55  * by asking the host kernel)
56  */
57 typedef struct ARMHostCPUFeatures {
58     ARMISARegisters isar;
59     uint64_t features;
60     uint32_t target;
61     const char *dtb_compatible;
62 } ARMHostCPUFeatures;
63 
64 static ARMHostCPUFeatures arm_host_cpu_features;
65 
66 /**
67  * kvm_arm_vcpu_init:
68  * @cpu: ARMCPU
69  *
70  * Initialize (or reinitialize) the VCPU by invoking the
71  * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
72  * bitmask specified in the CPUState.
73  *
74  * Returns: 0 if success else < 0 error code
75  */
kvm_arm_vcpu_init(ARMCPU * cpu)76 static int kvm_arm_vcpu_init(ARMCPU *cpu)
77 {
78     struct kvm_vcpu_init init;
79 
80     init.target = cpu->kvm_target;
81     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
82 
83     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
84 }
85 
86 /**
87  * kvm_arm_vcpu_finalize:
88  * @cpu: ARMCPU
89  * @feature: feature to finalize
90  *
91  * Finalizes the configuration of the specified VCPU feature by
92  * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
93  * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
94  * KVM's API documentation.
95  *
96  * Returns: 0 if success else < 0 error code
97  */
kvm_arm_vcpu_finalize(ARMCPU * cpu,int feature)98 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
99 {
100     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
101 }
102 
kvm_arm_create_scratch_host_vcpu(int * fdarray,struct kvm_vcpu_init * init)103 bool kvm_arm_create_scratch_host_vcpu(int *fdarray,
104                                       struct kvm_vcpu_init *init)
105 {
106     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
107     int max_vm_pa_size;
108 
109     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
110     if (kvmfd < 0) {
111         goto err;
112     }
113     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
114     if (max_vm_pa_size < 0) {
115         max_vm_pa_size = 0;
116     }
117     do {
118         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
119     } while (vmfd == -1 && errno == EINTR);
120     if (vmfd < 0) {
121         goto err;
122     }
123 
124     /*
125      * The MTE capability must be enabled by the VMM before creating
126      * any VCPUs in order to allow the MTE bits of the ID_AA64PFR1
127      * register to be probed correctly, as they are masked if MTE
128      * is not enabled.
129      */
130     if (kvm_arm_mte_supported()) {
131         KVMState kvm_state;
132 
133         kvm_state.fd = kvmfd;
134         kvm_state.vmfd = vmfd;
135         kvm_vm_enable_cap(&kvm_state, KVM_CAP_ARM_MTE, 0);
136     }
137 
138     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
139     if (cpufd < 0) {
140         goto err;
141     }
142 
143     if (!init) {
144         /* Caller doesn't want the VCPU to be initialized, so skip it */
145         goto finish;
146     }
147 
148     if (init->target == -1) {
149         struct kvm_vcpu_init preferred;
150 
151         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
152         if (ret < 0) {
153             goto err;
154         }
155         init->target = preferred.target;
156     }
157     ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
158     if (ret < 0) {
159         goto err;
160     }
161 
162 finish:
163     fdarray[0] = kvmfd;
164     fdarray[1] = vmfd;
165     fdarray[2] = cpufd;
166 
167     return true;
168 
169 err:
170     if (cpufd >= 0) {
171         close(cpufd);
172     }
173     if (vmfd >= 0) {
174         close(vmfd);
175     }
176     if (kvmfd >= 0) {
177         close(kvmfd);
178     }
179 
180     return false;
181 }
182 
kvm_arm_destroy_scratch_host_vcpu(int * fdarray)183 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
184 {
185     int i;
186 
187     for (i = 2; i >= 0; i--) {
188         close(fdarray[i]);
189     }
190 }
191 
read_sys_reg32(int fd,uint32_t * pret,uint64_t id)192 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
193 {
194     uint64_t ret;
195     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
196     int err;
197 
198     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
199     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
200     if (err < 0) {
201         return -1;
202     }
203     *pret = ret;
204     return 0;
205 }
206 
read_sys_reg64(int fd,uint64_t * pret,uint64_t id)207 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
208 {
209     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
210 
211     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
212     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
213 }
214 
kvm_arm_pauth_supported(void)215 static bool kvm_arm_pauth_supported(void)
216 {
217     return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
218             kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
219 }
220 
kvm_arm_get_host_cpu_features(ARMHostCPUFeatures * ahcf)221 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
222 {
223     /* Identify the feature bits corresponding to the host CPU, and
224      * fill out the ARMHostCPUClass fields accordingly. To do this
225      * we have to create a scratch VM, create a single CPU inside it,
226      * and then query that CPU for the relevant ID registers.
227      */
228     int fdarray[3];
229     bool sve_supported;
230     bool pmu_supported = false;
231     uint64_t features = 0;
232     int err;
233 
234     /*
235      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
236      * to use the preferred target
237      */
238     struct kvm_vcpu_init init = { .target = -1, };
239 
240     /*
241      * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
242      * which is otherwise RAZ.
243      */
244     sve_supported = kvm_arm_sve_supported();
245     if (sve_supported) {
246         init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
247     }
248 
249     /*
250      * Ask for Pointer Authentication if supported, so that we get
251      * the unsanitized field values for AA64ISAR1_EL1.
252      */
253     if (kvm_arm_pauth_supported()) {
254         init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
255                              1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
256     }
257 
258     if (kvm_arm_pmu_supported()) {
259         init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
260         pmu_supported = true;
261         features |= 1ULL << ARM_FEATURE_PMU;
262     }
263 
264     if (!kvm_arm_create_scratch_host_vcpu(fdarray, &init)) {
265         return false;
266     }
267 
268     ahcf->target = init.target;
269     ahcf->dtb_compatible = "arm,arm-v8";
270 
271     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
272                          ARM64_SYS_REG(3, 0, 0, 4, 0));
273     if (unlikely(err < 0)) {
274         /*
275          * Before v4.15, the kernel only exposed a limited number of system
276          * registers, not including any of the interesting AArch64 ID regs.
277          * For the most part we could leave these fields as zero with minimal
278          * effect, since this does not affect the values seen by the guest.
279          *
280          * However, it could cause problems down the line for QEMU,
281          * so provide a minimal v8.0 default.
282          *
283          * ??? Could read MIDR and use knowledge from cpu64.c.
284          * ??? Could map a page of memory into our temp guest and
285          *     run the tiniest of hand-crafted kernels to extract
286          *     the values seen by the guest.
287          * ??? Either of these sounds like too much effort just
288          *     to work around running a modern host kernel.
289          */
290         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
291         err = 0;
292     } else {
293         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
294                               ARM64_SYS_REG(3, 0, 0, 4, 1));
295         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
296                               ARM64_SYS_REG(3, 0, 0, 4, 5));
297         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
298                               ARM64_SYS_REG(3, 0, 0, 5, 0));
299         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
300                               ARM64_SYS_REG(3, 0, 0, 5, 1));
301         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
302                               ARM64_SYS_REG(3, 0, 0, 6, 0));
303         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
304                               ARM64_SYS_REG(3, 0, 0, 6, 1));
305         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
306                               ARM64_SYS_REG(3, 0, 0, 6, 2));
307         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
308                               ARM64_SYS_REG(3, 0, 0, 7, 0));
309         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
310                               ARM64_SYS_REG(3, 0, 0, 7, 1));
311         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
312                               ARM64_SYS_REG(3, 0, 0, 7, 2));
313         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr3,
314                               ARM64_SYS_REG(3, 0, 0, 7, 3));
315 
316         /*
317          * Note that if AArch32 support is not present in the host,
318          * the AArch32 sysregs are present to be read, but will
319          * return UNKNOWN values.  This is neither better nor worse
320          * than skipping the reads and leaving 0, as we must avoid
321          * considering the values in every case.
322          */
323         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
324                               ARM64_SYS_REG(3, 0, 0, 1, 0));
325         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
326                               ARM64_SYS_REG(3, 0, 0, 1, 1));
327         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
328                               ARM64_SYS_REG(3, 0, 0, 1, 2));
329         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
330                               ARM64_SYS_REG(3, 0, 0, 1, 4));
331         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
332                               ARM64_SYS_REG(3, 0, 0, 1, 5));
333         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
334                               ARM64_SYS_REG(3, 0, 0, 1, 6));
335         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
336                               ARM64_SYS_REG(3, 0, 0, 1, 7));
337         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
338                               ARM64_SYS_REG(3, 0, 0, 2, 0));
339         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
340                               ARM64_SYS_REG(3, 0, 0, 2, 1));
341         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
342                               ARM64_SYS_REG(3, 0, 0, 2, 2));
343         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
344                               ARM64_SYS_REG(3, 0, 0, 2, 3));
345         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
346                               ARM64_SYS_REG(3, 0, 0, 2, 4));
347         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
348                               ARM64_SYS_REG(3, 0, 0, 2, 5));
349         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
350                               ARM64_SYS_REG(3, 0, 0, 2, 6));
351         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
352                               ARM64_SYS_REG(3, 0, 0, 2, 7));
353 
354         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
355                               ARM64_SYS_REG(3, 0, 0, 3, 0));
356         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
357                               ARM64_SYS_REG(3, 0, 0, 3, 1));
358         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
359                               ARM64_SYS_REG(3, 0, 0, 3, 2));
360         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
361                               ARM64_SYS_REG(3, 0, 0, 3, 4));
362         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
363                               ARM64_SYS_REG(3, 0, 0, 3, 5));
364         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
365                               ARM64_SYS_REG(3, 0, 0, 3, 6));
366 
367         /*
368          * DBGDIDR is a bit complicated because the kernel doesn't
369          * provide an accessor for it in 64-bit mode, which is what this
370          * scratch VM is in, and there's no architected "64-bit sysreg
371          * which reads the same as the 32-bit register" the way there is
372          * for other ID registers. Instead we synthesize a value from the
373          * AArch64 ID_AA64DFR0, the same way the kernel code in
374          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
375          * We only do this if the CPU supports AArch32 at EL1.
376          */
377         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
378             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
379             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
380             int ctx_cmps =
381                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
382             int version = 6; /* ARMv8 debug architecture */
383             bool has_el3 =
384                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
385             uint32_t dbgdidr = 0;
386 
387             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
388             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
389             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
390             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
391             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
392             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
393             dbgdidr |= (1 << 15); /* RES1 bit */
394             ahcf->isar.dbgdidr = dbgdidr;
395         }
396 
397         if (pmu_supported) {
398             /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
399             err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
400                                   ARM64_SYS_REG(3, 3, 9, 12, 0));
401         }
402 
403         if (sve_supported) {
404             /*
405              * There is a range of kernels between kernel commit 73433762fcae
406              * and f81cb2c3ad41 which have a bug where the kernel doesn't
407              * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
408              * enabled SVE support, which resulted in an error rather than RAZ.
409              * So only read the register if we set KVM_ARM_VCPU_SVE above.
410              */
411             err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
412                                   ARM64_SYS_REG(3, 0, 0, 4, 4));
413         }
414     }
415 
416     kvm_arm_destroy_scratch_host_vcpu(fdarray);
417 
418     if (err < 0) {
419         return false;
420     }
421 
422     /*
423      * We can assume any KVM supporting CPU is at least a v8
424      * with VFPv4+Neon; this in turn implies most of the other
425      * feature bits.
426      */
427     features |= 1ULL << ARM_FEATURE_V8;
428     features |= 1ULL << ARM_FEATURE_NEON;
429     features |= 1ULL << ARM_FEATURE_AARCH64;
430     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
431 
432     ahcf->features = features;
433 
434     return true;
435 }
436 
kvm_arm_set_cpu_features_from_host(ARMCPU * cpu)437 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
438 {
439     CPUARMState *env = &cpu->env;
440 
441     if (!arm_host_cpu_features.dtb_compatible) {
442         if (!kvm_enabled() ||
443             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
444             /* We can't report this error yet, so flag that we need to
445              * in arm_cpu_realizefn().
446              */
447             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
448             cpu->host_cpu_probe_failed = true;
449             return;
450         }
451     }
452 
453     cpu->kvm_target = arm_host_cpu_features.target;
454     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
455     cpu->isar = arm_host_cpu_features.isar;
456     env->features = arm_host_cpu_features.features;
457 }
458 
kvm_no_adjvtime_get(Object * obj,Error ** errp)459 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
460 {
461     return !ARM_CPU(obj)->kvm_adjvtime;
462 }
463 
kvm_no_adjvtime_set(Object * obj,bool value,Error ** errp)464 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
465 {
466     ARM_CPU(obj)->kvm_adjvtime = !value;
467 }
468 
kvm_steal_time_get(Object * obj,Error ** errp)469 static bool kvm_steal_time_get(Object *obj, Error **errp)
470 {
471     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
472 }
473 
kvm_steal_time_set(Object * obj,bool value,Error ** errp)474 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
475 {
476     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
477 }
478 
479 /* KVM VCPU properties should be prefixed with "kvm-". */
kvm_arm_add_vcpu_properties(ARMCPU * cpu)480 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
481 {
482     CPUARMState *env = &cpu->env;
483     Object *obj = OBJECT(cpu);
484 
485     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
486         cpu->kvm_adjvtime = true;
487         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
488                                  kvm_no_adjvtime_set);
489         object_property_set_description(obj, "kvm-no-adjvtime",
490                                         "Set on to disable the adjustment of "
491                                         "the virtual counter. VM stopped time "
492                                         "will be counted.");
493     }
494 
495     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
496     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
497                              kvm_steal_time_set);
498     object_property_set_description(obj, "kvm-steal-time",
499                                     "Set off to disable KVM steal time.");
500 }
501 
kvm_arm_pmu_supported(void)502 bool kvm_arm_pmu_supported(void)
503 {
504     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
505 }
506 
kvm_arm_get_max_vm_ipa_size(MachineState * ms,bool * fixed_ipa)507 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
508 {
509     KVMState *s = KVM_STATE(ms->accelerator);
510     int ret;
511 
512     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
513     *fixed_ipa = ret <= 0;
514 
515     return ret > 0 ? ret : 40;
516 }
517 
kvm_arch_get_default_type(MachineState * ms)518 int kvm_arch_get_default_type(MachineState *ms)
519 {
520     bool fixed_ipa;
521     int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
522     return fixed_ipa ? 0 : size;
523 }
524 
kvm_arch_init(MachineState * ms,KVMState * s)525 int kvm_arch_init(MachineState *ms, KVMState *s)
526 {
527     int ret = 0;
528     /* For ARM interrupt delivery is always asynchronous,
529      * whether we are using an in-kernel VGIC or not.
530      */
531     kvm_async_interrupts_allowed = true;
532 
533     /*
534      * PSCI wakes up secondary cores, so we always need to
535      * have vCPUs waiting in kernel space
536      */
537     kvm_halt_in_kernel_allowed = true;
538 
539     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
540 
541     /* Check whether user space can specify guest syndrome value */
542     cap_has_inject_serror_esr =
543         kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
544 
545     if (ms->smp.cpus > 256 &&
546         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
547         error_report("Using more than 256 vcpus requires a host kernel "
548                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
549         ret = -EINVAL;
550     }
551 
552     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
553         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
554             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
555         } else {
556             /* Set status for supporting the external dabt injection */
557             cap_has_inject_ext_dabt = kvm_check_extension(s,
558                                     KVM_CAP_ARM_INJECT_EXT_DABT);
559         }
560     }
561 
562     if (s->kvm_eager_split_size) {
563         uint32_t sizes;
564 
565         sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
566         if (!sizes) {
567             s->kvm_eager_split_size = 0;
568             warn_report("Eager Page Split support not available");
569         } else if (!(s->kvm_eager_split_size & sizes)) {
570             error_report("Eager Page Split requested chunk size not valid");
571             ret = -EINVAL;
572         } else {
573             ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
574                                     s->kvm_eager_split_size);
575             if (ret < 0) {
576                 error_report("Enabling of Eager Page Split failed: %s",
577                              strerror(-ret));
578             }
579         }
580     }
581 
582     max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
583     hw_watchpoints = g_array_sized_new(true, true,
584                                        sizeof(HWWatchpoint), max_hw_wps);
585 
586     max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
587     hw_breakpoints = g_array_sized_new(true, true,
588                                        sizeof(HWBreakpoint), max_hw_bps);
589 
590     return ret;
591 }
592 
kvm_arch_vcpu_id(CPUState * cpu)593 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
594 {
595     return cpu->cpu_index;
596 }
597 
598 /* We track all the KVM devices which need their memory addresses
599  * passing to the kernel in a list of these structures.
600  * When board init is complete we run through the list and
601  * tell the kernel the base addresses of the memory regions.
602  * We use a MemoryListener to track mapping and unmapping of
603  * the regions during board creation, so the board models don't
604  * need to do anything special for the KVM case.
605  *
606  * Sometimes the address must be OR'ed with some other fields
607  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
608  * @kda_addr_ormask aims at storing the value of those fields.
609  */
610 typedef struct KVMDevice {
611     struct kvm_arm_device_addr kda;
612     struct kvm_device_attr kdattr;
613     uint64_t kda_addr_ormask;
614     MemoryRegion *mr;
615     QSLIST_ENTRY(KVMDevice) entries;
616     int dev_fd;
617 } KVMDevice;
618 
619 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
620 
kvm_arm_devlistener_add(MemoryListener * listener,MemoryRegionSection * section)621 static void kvm_arm_devlistener_add(MemoryListener *listener,
622                                     MemoryRegionSection *section)
623 {
624     KVMDevice *kd;
625 
626     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
627         if (section->mr == kd->mr) {
628             kd->kda.addr = section->offset_within_address_space;
629         }
630     }
631 }
632 
kvm_arm_devlistener_del(MemoryListener * listener,MemoryRegionSection * section)633 static void kvm_arm_devlistener_del(MemoryListener *listener,
634                                     MemoryRegionSection *section)
635 {
636     KVMDevice *kd;
637 
638     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
639         if (section->mr == kd->mr) {
640             kd->kda.addr = -1;
641         }
642     }
643 }
644 
645 static MemoryListener devlistener = {
646     .name = "kvm-arm",
647     .region_add = kvm_arm_devlistener_add,
648     .region_del = kvm_arm_devlistener_del,
649     .priority = MEMORY_LISTENER_PRIORITY_MIN,
650 };
651 
kvm_arm_set_device_addr(KVMDevice * kd)652 static void kvm_arm_set_device_addr(KVMDevice *kd)
653 {
654     struct kvm_device_attr *attr = &kd->kdattr;
655     int ret;
656     uint64_t addr = kd->kda.addr;
657 
658     addr |= kd->kda_addr_ormask;
659     attr->addr = (uintptr_t)&addr;
660     ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
661 
662     if (ret < 0) {
663         fprintf(stderr, "Failed to set device address: %s\n",
664                 strerror(-ret));
665         abort();
666     }
667 }
668 
kvm_arm_machine_init_done(Notifier * notifier,void * data)669 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
670 {
671     KVMDevice *kd, *tkd;
672 
673     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
674         if (kd->kda.addr != -1) {
675             kvm_arm_set_device_addr(kd);
676         }
677         memory_region_unref(kd->mr);
678         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
679         g_free(kd);
680     }
681     memory_listener_unregister(&devlistener);
682 }
683 
684 static Notifier notify = {
685     .notify = kvm_arm_machine_init_done,
686 };
687 
kvm_arm_register_device(MemoryRegion * mr,uint64_t devid,uint64_t group,uint64_t attr,int dev_fd,uint64_t addr_ormask)688 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
689                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
690 {
691     KVMDevice *kd;
692 
693     if (!kvm_irqchip_in_kernel()) {
694         return;
695     }
696 
697     if (QSLIST_EMPTY(&kvm_devices_head)) {
698         memory_listener_register(&devlistener, &address_space_memory);
699         qemu_add_machine_init_done_notifier(&notify);
700     }
701     kd = g_new0(KVMDevice, 1);
702     kd->mr = mr;
703     kd->kda.id = devid;
704     kd->kda.addr = -1;
705     kd->kdattr.flags = 0;
706     kd->kdattr.group = group;
707     kd->kdattr.attr = attr;
708     kd->dev_fd = dev_fd;
709     kd->kda_addr_ormask = addr_ormask;
710     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
711     memory_region_ref(kd->mr);
712 }
713 
compare_u64(const void * a,const void * b)714 static int compare_u64(const void *a, const void *b)
715 {
716     if (*(uint64_t *)a > *(uint64_t *)b) {
717         return 1;
718     }
719     if (*(uint64_t *)a < *(uint64_t *)b) {
720         return -1;
721     }
722     return 0;
723 }
724 
725 /*
726  * cpreg_values are sorted in ascending order by KVM register ID
727  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
728  * the storage for a KVM register by ID with a binary search.
729  */
kvm_arm_get_cpreg_ptr(ARMCPU * cpu,uint64_t regidx)730 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
731 {
732     uint64_t *res;
733 
734     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
735                   sizeof(uint64_t), compare_u64);
736     assert(res);
737 
738     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
739 }
740 
741 /**
742  * kvm_arm_reg_syncs_via_cpreg_list:
743  * @regidx: KVM register index
744  *
745  * Return true if this KVM register should be synchronized via the
746  * cpreg list of arbitrary system registers, false if it is synchronized
747  * by hand using code in kvm_arch_get/put_registers().
748  */
kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)749 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
750 {
751     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
752     case KVM_REG_ARM_CORE:
753     case KVM_REG_ARM64_SVE:
754         return false;
755     default:
756         return true;
757     }
758 }
759 
760 /**
761  * kvm_arm_init_cpreg_list:
762  * @cpu: ARMCPU
763  *
764  * Initialize the ARMCPU cpreg list according to the kernel's
765  * definition of what CPU registers it knows about (and throw away
766  * the previous TCG-created cpreg list).
767  *
768  * Returns: 0 if success, else < 0 error code
769  */
kvm_arm_init_cpreg_list(ARMCPU * cpu)770 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
771 {
772     struct kvm_reg_list rl;
773     struct kvm_reg_list *rlp;
774     int i, ret, arraylen;
775     CPUState *cs = CPU(cpu);
776 
777     rl.n = 0;
778     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
779     if (ret != -E2BIG) {
780         return ret;
781     }
782     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
783     rlp->n = rl.n;
784     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
785     if (ret) {
786         goto out;
787     }
788     /* Sort the list we get back from the kernel, since cpreg_tuples
789      * must be in strictly ascending order.
790      */
791     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
792 
793     for (i = 0, arraylen = 0; i < rlp->n; i++) {
794         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
795             continue;
796         }
797         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
798         case KVM_REG_SIZE_U32:
799         case KVM_REG_SIZE_U64:
800             break;
801         default:
802             fprintf(stderr, "Can't handle size of register in kernel list\n");
803             ret = -EINVAL;
804             goto out;
805         }
806 
807         arraylen++;
808     }
809 
810     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
811     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
812     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
813                                          arraylen);
814     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
815                                         arraylen);
816     cpu->cpreg_array_len = arraylen;
817     cpu->cpreg_vmstate_array_len = arraylen;
818 
819     for (i = 0, arraylen = 0; i < rlp->n; i++) {
820         uint64_t regidx = rlp->reg[i];
821         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
822             continue;
823         }
824         cpu->cpreg_indexes[arraylen] = regidx;
825         arraylen++;
826     }
827     assert(cpu->cpreg_array_len == arraylen);
828 
829     if (!write_kvmstate_to_list(cpu)) {
830         /* Shouldn't happen unless kernel is inconsistent about
831          * what registers exist.
832          */
833         fprintf(stderr, "Initial read of kernel register state failed\n");
834         ret = -EINVAL;
835         goto out;
836     }
837 
838 out:
839     g_free(rlp);
840     return ret;
841 }
842 
843 /**
844  * kvm_arm_cpreg_level:
845  * @regidx: KVM register index
846  *
847  * Return the level of this coprocessor/system register.  Return value is
848  * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
849  */
kvm_arm_cpreg_level(uint64_t regidx)850 static int kvm_arm_cpreg_level(uint64_t regidx)
851 {
852     /*
853      * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
854      * If a register should be written less often, you must add it here
855      * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
856      */
857     switch (regidx) {
858     case KVM_REG_ARM_TIMER_CNT:
859     case KVM_REG_ARM_PTIMER_CNT:
860         return KVM_PUT_FULL_STATE;
861     }
862     return KVM_PUT_RUNTIME_STATE;
863 }
864 
write_kvmstate_to_list(ARMCPU * cpu)865 bool write_kvmstate_to_list(ARMCPU *cpu)
866 {
867     CPUState *cs = CPU(cpu);
868     int i;
869     bool ok = true;
870 
871     for (i = 0; i < cpu->cpreg_array_len; i++) {
872         uint64_t regidx = cpu->cpreg_indexes[i];
873         uint32_t v32;
874         int ret;
875 
876         switch (regidx & KVM_REG_SIZE_MASK) {
877         case KVM_REG_SIZE_U32:
878             ret = kvm_get_one_reg(cs, regidx, &v32);
879             if (!ret) {
880                 cpu->cpreg_values[i] = v32;
881             }
882             break;
883         case KVM_REG_SIZE_U64:
884             ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
885             break;
886         default:
887             g_assert_not_reached();
888         }
889         if (ret) {
890             ok = false;
891         }
892     }
893     return ok;
894 }
895 
write_list_to_kvmstate(ARMCPU * cpu,int level)896 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
897 {
898     CPUState *cs = CPU(cpu);
899     int i;
900     bool ok = true;
901 
902     for (i = 0; i < cpu->cpreg_array_len; i++) {
903         uint64_t regidx = cpu->cpreg_indexes[i];
904         uint32_t v32;
905         int ret;
906 
907         if (kvm_arm_cpreg_level(regidx) > level) {
908             continue;
909         }
910 
911         switch (regidx & KVM_REG_SIZE_MASK) {
912         case KVM_REG_SIZE_U32:
913             v32 = cpu->cpreg_values[i];
914             ret = kvm_set_one_reg(cs, regidx, &v32);
915             break;
916         case KVM_REG_SIZE_U64:
917             ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
918             break;
919         default:
920             g_assert_not_reached();
921         }
922         if (ret) {
923             /* We might fail for "unknown register" and also for
924              * "you tried to set a register which is constant with
925              * a different value from what it actually contains".
926              */
927             ok = false;
928         }
929     }
930     return ok;
931 }
932 
kvm_arm_cpu_pre_save(ARMCPU * cpu)933 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
934 {
935     /* KVM virtual time adjustment */
936     if (cpu->kvm_vtime_dirty) {
937         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
938     }
939 }
940 
kvm_arm_cpu_post_load(ARMCPU * cpu)941 bool kvm_arm_cpu_post_load(ARMCPU *cpu)
942 {
943     if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
944         return false;
945     }
946     /* Note that it's OK for the TCG side not to know about
947      * every register in the list; KVM is authoritative if
948      * we're using it.
949      */
950     write_list_to_cpustate(cpu);
951 
952     /* KVM virtual time adjustment */
953     if (cpu->kvm_adjvtime) {
954         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
955         cpu->kvm_vtime_dirty = true;
956     }
957 
958     return true;
959 }
960 
kvm_arm_reset_vcpu(ARMCPU * cpu)961 void kvm_arm_reset_vcpu(ARMCPU *cpu)
962 {
963     int ret;
964 
965     /* Re-init VCPU so that all registers are set to
966      * their respective reset values.
967      */
968     ret = kvm_arm_vcpu_init(cpu);
969     if (ret < 0) {
970         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
971         abort();
972     }
973     if (!write_kvmstate_to_list(cpu)) {
974         fprintf(stderr, "write_kvmstate_to_list failed\n");
975         abort();
976     }
977     /*
978      * Sync the reset values also into the CPUState. This is necessary
979      * because the next thing we do will be a kvm_arch_put_registers()
980      * which will update the list values from the CPUState before copying
981      * the list values back to KVM. It's OK to ignore failure returns here
982      * for the same reason we do so in kvm_arch_get_registers().
983      */
984     write_list_to_cpustate(cpu);
985 }
986 
987 /*
988  * Update KVM's MP_STATE based on what QEMU thinks it is
989  */
kvm_arm_sync_mpstate_to_kvm(ARMCPU * cpu)990 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
991 {
992     if (cap_has_mp_state) {
993         struct kvm_mp_state mp_state = {
994             .mp_state = (cpu->power_state == PSCI_OFF) ?
995             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
996         };
997         return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
998     }
999     return 0;
1000 }
1001 
1002 /*
1003  * Sync the KVM MP_STATE into QEMU
1004  */
kvm_arm_sync_mpstate_to_qemu(ARMCPU * cpu)1005 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1006 {
1007     if (cap_has_mp_state) {
1008         struct kvm_mp_state mp_state;
1009         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1010         if (ret) {
1011             return ret;
1012         }
1013         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1014             PSCI_OFF : PSCI_ON;
1015     }
1016     return 0;
1017 }
1018 
1019 /**
1020  * kvm_arm_get_virtual_time:
1021  * @cpu: ARMCPU
1022  *
1023  * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1024  */
kvm_arm_get_virtual_time(ARMCPU * cpu)1025 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1026 {
1027     int ret;
1028 
1029     if (cpu->kvm_vtime_dirty) {
1030         return;
1031     }
1032 
1033     ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1034     if (ret) {
1035         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1036         abort();
1037     }
1038 
1039     cpu->kvm_vtime_dirty = true;
1040 }
1041 
1042 /**
1043  * kvm_arm_put_virtual_time:
1044  * @cpu: ARMCPU
1045  *
1046  * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1047  */
kvm_arm_put_virtual_time(ARMCPU * cpu)1048 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1049 {
1050     int ret;
1051 
1052     if (!cpu->kvm_vtime_dirty) {
1053         return;
1054     }
1055 
1056     ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1057     if (ret) {
1058         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1059         abort();
1060     }
1061 
1062     cpu->kvm_vtime_dirty = false;
1063 }
1064 
1065 /**
1066  * kvm_put_vcpu_events:
1067  * @cpu: ARMCPU
1068  *
1069  * Put VCPU related state to kvm.
1070  *
1071  * Returns: 0 if success else < 0 error code
1072  */
kvm_put_vcpu_events(ARMCPU * cpu)1073 static int kvm_put_vcpu_events(ARMCPU *cpu)
1074 {
1075     CPUARMState *env = &cpu->env;
1076     struct kvm_vcpu_events events;
1077     int ret;
1078 
1079     if (!kvm_has_vcpu_events()) {
1080         return 0;
1081     }
1082 
1083     memset(&events, 0, sizeof(events));
1084     events.exception.serror_pending = env->serror.pending;
1085 
1086     /* Inject SError to guest with specified syndrome if host kernel
1087      * supports it, otherwise inject SError without syndrome.
1088      */
1089     if (cap_has_inject_serror_esr) {
1090         events.exception.serror_has_esr = env->serror.has_esr;
1091         events.exception.serror_esr = env->serror.esr;
1092     }
1093 
1094     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1095     if (ret) {
1096         error_report("failed to put vcpu events");
1097     }
1098 
1099     return ret;
1100 }
1101 
1102 /**
1103  * kvm_get_vcpu_events:
1104  * @cpu: ARMCPU
1105  *
1106  * Get VCPU related state from kvm.
1107  *
1108  * Returns: 0 if success else < 0 error code
1109  */
kvm_get_vcpu_events(ARMCPU * cpu)1110 static int kvm_get_vcpu_events(ARMCPU *cpu)
1111 {
1112     CPUARMState *env = &cpu->env;
1113     struct kvm_vcpu_events events;
1114     int ret;
1115 
1116     if (!kvm_has_vcpu_events()) {
1117         return 0;
1118     }
1119 
1120     memset(&events, 0, sizeof(events));
1121     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1122     if (ret) {
1123         error_report("failed to get vcpu events");
1124         return ret;
1125     }
1126 
1127     env->serror.pending = events.exception.serror_pending;
1128     env->serror.has_esr = events.exception.serror_has_esr;
1129     env->serror.esr = events.exception.serror_esr;
1130 
1131     return 0;
1132 }
1133 
1134 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1135 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1136 
1137 /*
1138  * ESR_EL1
1139  * ISS encoding
1140  * AARCH64: DFSC,   bits [5:0]
1141  * AARCH32:
1142  *      TTBCR.EAE == 0
1143  *          FS[4]   - DFSR[10]
1144  *          FS[3:0] - DFSR[3:0]
1145  *      TTBCR.EAE == 1
1146  *          FS, bits [5:0]
1147  */
1148 #define ESR_DFSC(aarch64, lpae, v)        \
1149     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1150                : (((v) >> 6) | ((v) & 0x1F)))
1151 
1152 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1153     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1154 
1155 /**
1156  * kvm_arm_verify_ext_dabt_pending:
1157  * @cpu: ARMCPU
1158  *
1159  * Verify the fault status code wrt the Ext DABT injection
1160  *
1161  * Returns: true if the fault status code is as expected, false otherwise
1162  */
kvm_arm_verify_ext_dabt_pending(ARMCPU * cpu)1163 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1164 {
1165     CPUState *cs = CPU(cpu);
1166     uint64_t dfsr_val;
1167 
1168     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1169         CPUARMState *env = &cpu->env;
1170         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1171         int lpae = 0;
1172 
1173         if (!aarch64_mode) {
1174             uint64_t ttbcr;
1175 
1176             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1177                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1178                         && (ttbcr & TTBCR_EAE);
1179             }
1180         }
1181         /*
1182          * The verification here is based on the DFSC bits
1183          * of the ESR_EL1 reg only
1184          */
1185          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1186                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1187     }
1188     return false;
1189 }
1190 
kvm_arch_pre_run(CPUState * cs,struct kvm_run * run)1191 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1192 {
1193     ARMCPU *cpu = ARM_CPU(cs);
1194     CPUARMState *env = &cpu->env;
1195 
1196     if (unlikely(env->ext_dabt_raised)) {
1197         /*
1198          * Verifying that the ext DABT has been properly injected,
1199          * otherwise risking indefinitely re-running the faulting instruction
1200          * Covering a very narrow case for kernels 5.5..5.5.4
1201          * when injected abort was misconfigured to be
1202          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1203          */
1204         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1205             unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1206 
1207             error_report("Data abort exception with no valid ISS generated by "
1208                    "guest memory access. KVM unable to emulate faulting "
1209                    "instruction. Failed to inject an external data abort "
1210                    "into the guest.");
1211             abort();
1212        }
1213        /* Clear the status */
1214        env->ext_dabt_raised = 0;
1215     }
1216 }
1217 
kvm_arch_post_run(CPUState * cs,struct kvm_run * run)1218 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1219 {
1220     ARMCPU *cpu;
1221     uint32_t switched_level;
1222 
1223     if (kvm_irqchip_in_kernel()) {
1224         /*
1225          * We only need to sync timer states with user-space interrupt
1226          * controllers, so return early and save cycles if we don't.
1227          */
1228         return MEMTXATTRS_UNSPECIFIED;
1229     }
1230 
1231     cpu = ARM_CPU(cs);
1232 
1233     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1234     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1235         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1236 
1237         bql_lock();
1238 
1239         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1240             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1241                          !!(run->s.regs.device_irq_level &
1242                             KVM_ARM_DEV_EL1_VTIMER));
1243             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1244         }
1245 
1246         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1247             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1248                          !!(run->s.regs.device_irq_level &
1249                             KVM_ARM_DEV_EL1_PTIMER));
1250             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1251         }
1252 
1253         if (switched_level & KVM_ARM_DEV_PMU) {
1254             qemu_set_irq(cpu->pmu_interrupt,
1255                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1256             switched_level &= ~KVM_ARM_DEV_PMU;
1257         }
1258 
1259         if (switched_level) {
1260             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1261                           __func__, switched_level);
1262         }
1263 
1264         /* We also mark unknown levels as processed to not waste cycles */
1265         cpu->device_irq_level = run->s.regs.device_irq_level;
1266         bql_unlock();
1267     }
1268 
1269     return MEMTXATTRS_UNSPECIFIED;
1270 }
1271 
kvm_arm_vm_state_change(void * opaque,bool running,RunState state)1272 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1273 {
1274     ARMCPU *cpu = opaque;
1275 
1276     if (running) {
1277         if (cpu->kvm_adjvtime) {
1278             kvm_arm_put_virtual_time(cpu);
1279         }
1280     } else {
1281         if (cpu->kvm_adjvtime) {
1282             kvm_arm_get_virtual_time(cpu);
1283         }
1284     }
1285 }
1286 
1287 /**
1288  * kvm_arm_handle_dabt_nisv:
1289  * @cpu: ARMCPU
1290  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1291  *           ISV bit set to '0b0' -> no valid instruction syndrome
1292  * @fault_ipa: faulting address for the synchronous data abort
1293  *
1294  * Returns: 0 if the exception has been handled, < 0 otherwise
1295  */
kvm_arm_handle_dabt_nisv(ARMCPU * cpu,uint64_t esr_iss,uint64_t fault_ipa)1296 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1297                                     uint64_t fault_ipa)
1298 {
1299     CPUARMState *env = &cpu->env;
1300     /*
1301      * Request KVM to inject the external data abort into the guest
1302      */
1303     if (cap_has_inject_ext_dabt) {
1304         struct kvm_vcpu_events events = { };
1305         /*
1306          * The external data abort event will be handled immediately by KVM
1307          * using the address fault that triggered the exit on given VCPU.
1308          * Requesting injection of the external data abort does not rely
1309          * on any other VCPU state. Therefore, in this particular case, the VCPU
1310          * synchronization can be exceptionally skipped.
1311          */
1312         events.exception.ext_dabt_pending = 1;
1313         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1314         if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1315             env->ext_dabt_raised = 1;
1316             return 0;
1317         }
1318     } else {
1319         error_report("Data abort exception triggered by guest memory access "
1320                      "at physical address: 0x"  TARGET_FMT_lx,
1321                      (target_ulong)fault_ipa);
1322         error_printf("KVM unable to emulate faulting instruction.\n");
1323     }
1324     return -1;
1325 }
1326 
1327 /**
1328  * kvm_arm_handle_debug:
1329  * @cpu: ARMCPU
1330  * @debug_exit: debug part of the KVM exit structure
1331  *
1332  * Returns: TRUE if the debug exception was handled.
1333  *
1334  * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1335  *
1336  * To minimise translating between kernel and user-space the kernel
1337  * ABI just provides user-space with the full exception syndrome
1338  * register value to be decoded in QEMU.
1339  */
kvm_arm_handle_debug(ARMCPU * cpu,struct kvm_debug_exit_arch * debug_exit)1340 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1341                                  struct kvm_debug_exit_arch *debug_exit)
1342 {
1343     int hsr_ec = syn_get_ec(debug_exit->hsr);
1344     CPUState *cs = CPU(cpu);
1345     CPUARMState *env = &cpu->env;
1346 
1347     /* Ensure PC is synchronised */
1348     kvm_cpu_synchronize_state(cs);
1349 
1350     switch (hsr_ec) {
1351     case EC_SOFTWARESTEP:
1352         if (cs->singlestep_enabled) {
1353             return true;
1354         } else {
1355             /*
1356              * The kernel should have suppressed the guest's ability to
1357              * single step at this point so something has gone wrong.
1358              */
1359             error_report("%s: guest single-step while debugging unsupported"
1360                          " (%"PRIx64", %"PRIx32")",
1361                          __func__, env->pc, debug_exit->hsr);
1362             return false;
1363         }
1364         break;
1365     case EC_AA64_BKPT:
1366         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1367             return true;
1368         }
1369         break;
1370     case EC_BREAKPOINT:
1371         if (find_hw_breakpoint(cs, env->pc)) {
1372             return true;
1373         }
1374         break;
1375     case EC_WATCHPOINT:
1376     {
1377         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1378         if (wp) {
1379             cs->watchpoint_hit = wp;
1380             return true;
1381         }
1382         break;
1383     }
1384     default:
1385         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1386                      __func__, debug_exit->hsr, env->pc);
1387     }
1388 
1389     /* If we are not handling the debug exception it must belong to
1390      * the guest. Let's re-use the existing TCG interrupt code to set
1391      * everything up properly.
1392      */
1393     cs->exception_index = EXCP_BKPT;
1394     env->exception.syndrome = debug_exit->hsr;
1395     env->exception.vaddress = debug_exit->far;
1396     env->exception.target_el = 1;
1397     bql_lock();
1398     arm_cpu_do_interrupt(cs);
1399     bql_unlock();
1400 
1401     return false;
1402 }
1403 
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)1404 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1405 {
1406     ARMCPU *cpu = ARM_CPU(cs);
1407     int ret = 0;
1408 
1409     switch (run->exit_reason) {
1410     case KVM_EXIT_DEBUG:
1411         if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1412             ret = EXCP_DEBUG;
1413         } /* otherwise return to guest */
1414         break;
1415     case KVM_EXIT_ARM_NISV:
1416         /* External DABT with no valid iss to decode */
1417         ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1418                                        run->arm_nisv.fault_ipa);
1419         break;
1420     default:
1421         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1422                       __func__, run->exit_reason);
1423         break;
1424     }
1425     return ret;
1426 }
1427 
kvm_arch_stop_on_emulation_error(CPUState * cs)1428 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1429 {
1430     return true;
1431 }
1432 
kvm_arch_process_async_events(CPUState * cs)1433 int kvm_arch_process_async_events(CPUState *cs)
1434 {
1435     return 0;
1436 }
1437 
1438 /**
1439  * kvm_arm_hw_debug_active:
1440  * @cpu: ARMCPU
1441  *
1442  * Return: TRUE if any hardware breakpoints in use.
1443  */
kvm_arm_hw_debug_active(ARMCPU * cpu)1444 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1445 {
1446     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1447 }
1448 
1449 /**
1450  * kvm_arm_copy_hw_debug_data:
1451  * @ptr: kvm_guest_debug_arch structure
1452  *
1453  * Copy the architecture specific debug registers into the
1454  * kvm_guest_debug ioctl structure.
1455  */
kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch * ptr)1456 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1457 {
1458     int i;
1459     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1460 
1461     for (i = 0; i < max_hw_wps; i++) {
1462         HWWatchpoint *wp = get_hw_wp(i);
1463         ptr->dbg_wcr[i] = wp->wcr;
1464         ptr->dbg_wvr[i] = wp->wvr;
1465     }
1466     for (i = 0; i < max_hw_bps; i++) {
1467         HWBreakpoint *bp = get_hw_bp(i);
1468         ptr->dbg_bcr[i] = bp->bcr;
1469         ptr->dbg_bvr[i] = bp->bvr;
1470     }
1471 }
1472 
kvm_arch_update_guest_debug(CPUState * cs,struct kvm_guest_debug * dbg)1473 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1474 {
1475     if (kvm_sw_breakpoints_active(cs)) {
1476         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1477     }
1478     if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1479         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1480         kvm_arm_copy_hw_debug_data(&dbg->arch);
1481     }
1482 }
1483 
kvm_arch_init_irq_routing(KVMState * s)1484 void kvm_arch_init_irq_routing(KVMState *s)
1485 {
1486 }
1487 
kvm_arch_irqchip_create(KVMState * s)1488 int kvm_arch_irqchip_create(KVMState *s)
1489 {
1490     if (kvm_kernel_irqchip_split()) {
1491         error_report("-machine kernel_irqchip=split is not supported on ARM.");
1492         exit(1);
1493     }
1494 
1495     /* If we can create the VGIC using the newer device control API, we
1496      * let the device do this when it initializes itself, otherwise we
1497      * fall back to the old API */
1498     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1499 }
1500 
kvm_arm_vgic_probe(void)1501 int kvm_arm_vgic_probe(void)
1502 {
1503     int val = 0;
1504 
1505     if (kvm_create_device(kvm_state,
1506                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1507         val |= KVM_ARM_VGIC_V3;
1508     }
1509     if (kvm_create_device(kvm_state,
1510                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1511         val |= KVM_ARM_VGIC_V2;
1512     }
1513     return val;
1514 }
1515 
kvm_arm_set_irq(int cpu,int irqtype,int irq,int level)1516 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1517 {
1518     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1519     int cpu_idx1 = cpu % 256;
1520     int cpu_idx2 = cpu / 256;
1521 
1522     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1523                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1524 
1525     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1526 }
1527 
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)1528 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1529                              uint64_t address, uint32_t data, PCIDevice *dev)
1530 {
1531     AddressSpace *as = pci_device_iommu_address_space(dev);
1532     hwaddr xlat, len, doorbell_gpa;
1533     MemoryRegionSection mrs;
1534     MemoryRegion *mr;
1535 
1536     if (as == &address_space_memory) {
1537         return 0;
1538     }
1539 
1540     /* MSI doorbell address is translated by an IOMMU */
1541 
1542     RCU_READ_LOCK_GUARD();
1543 
1544     mr = address_space_translate(as, address, &xlat, &len, true,
1545                                  MEMTXATTRS_UNSPECIFIED);
1546 
1547     if (!mr) {
1548         return 1;
1549     }
1550 
1551     mrs = memory_region_find(mr, xlat, 1);
1552 
1553     if (!mrs.mr) {
1554         return 1;
1555     }
1556 
1557     doorbell_gpa = mrs.offset_within_address_space;
1558     memory_region_unref(mrs.mr);
1559 
1560     route->u.msi.address_lo = doorbell_gpa;
1561     route->u.msi.address_hi = doorbell_gpa >> 32;
1562 
1563     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1564 
1565     return 0;
1566 }
1567 
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)1568 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1569                                 int vector, PCIDevice *dev)
1570 {
1571     return 0;
1572 }
1573 
kvm_arch_release_virq_post(int virq)1574 int kvm_arch_release_virq_post(int virq)
1575 {
1576     return 0;
1577 }
1578 
kvm_arch_msi_data_to_gsi(uint32_t data)1579 int kvm_arch_msi_data_to_gsi(uint32_t data)
1580 {
1581     return (data - 32) & 0xffff;
1582 }
1583 
kvm_arch_get_eager_split_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1584 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1585                                           const char *name, void *opaque,
1586                                           Error **errp)
1587 {
1588     KVMState *s = KVM_STATE(obj);
1589     uint64_t value = s->kvm_eager_split_size;
1590 
1591     visit_type_size(v, name, &value, errp);
1592 }
1593 
kvm_arch_set_eager_split_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1594 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1595                                           const char *name, void *opaque,
1596                                           Error **errp)
1597 {
1598     KVMState *s = KVM_STATE(obj);
1599     uint64_t value;
1600 
1601     if (s->fd != -1) {
1602         error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1603         return;
1604     }
1605 
1606     if (!visit_type_size(v, name, &value, errp)) {
1607         return;
1608     }
1609 
1610     if (value && !is_power_of_2(value)) {
1611         error_setg(errp, "early-split-size must be a power of two");
1612         return;
1613     }
1614 
1615     s->kvm_eager_split_size = value;
1616 }
1617 
kvm_arch_accel_class_init(ObjectClass * oc)1618 void kvm_arch_accel_class_init(ObjectClass *oc)
1619 {
1620     object_class_property_add(oc, "eager-split-size", "size",
1621                               kvm_arch_get_eager_split_size,
1622                               kvm_arch_set_eager_split_size, NULL, NULL);
1623 
1624     object_class_property_set_description(oc, "eager-split-size",
1625         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1626 }
1627 
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)1628 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1629 {
1630     switch (type) {
1631     case GDB_BREAKPOINT_HW:
1632         return insert_hw_breakpoint(addr);
1633         break;
1634     case GDB_WATCHPOINT_READ:
1635     case GDB_WATCHPOINT_WRITE:
1636     case GDB_WATCHPOINT_ACCESS:
1637         return insert_hw_watchpoint(addr, len, type);
1638     default:
1639         return -ENOSYS;
1640     }
1641 }
1642 
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)1643 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1644 {
1645     switch (type) {
1646     case GDB_BREAKPOINT_HW:
1647         return delete_hw_breakpoint(addr);
1648     case GDB_WATCHPOINT_READ:
1649     case GDB_WATCHPOINT_WRITE:
1650     case GDB_WATCHPOINT_ACCESS:
1651         return delete_hw_watchpoint(addr, len, type);
1652     default:
1653         return -ENOSYS;
1654     }
1655 }
1656 
kvm_arch_remove_all_hw_breakpoints(void)1657 void kvm_arch_remove_all_hw_breakpoints(void)
1658 {
1659     if (cur_hw_wps > 0) {
1660         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1661     }
1662     if (cur_hw_bps > 0) {
1663         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1664     }
1665 }
1666 
kvm_arm_set_device_attr(ARMCPU * cpu,struct kvm_device_attr * attr,const char * name)1667 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1668                                     const char *name)
1669 {
1670     int err;
1671 
1672     err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1673     if (err != 0) {
1674         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1675         return false;
1676     }
1677 
1678     err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1679     if (err != 0) {
1680         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1681         return false;
1682     }
1683 
1684     return true;
1685 }
1686 
kvm_arm_pmu_init(ARMCPU * cpu)1687 void kvm_arm_pmu_init(ARMCPU *cpu)
1688 {
1689     struct kvm_device_attr attr = {
1690         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1691         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1692     };
1693 
1694     if (!cpu->has_pmu) {
1695         return;
1696     }
1697     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1698         error_report("failed to init PMU");
1699         abort();
1700     }
1701 }
1702 
kvm_arm_pmu_set_irq(ARMCPU * cpu,int irq)1703 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1704 {
1705     struct kvm_device_attr attr = {
1706         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1707         .addr = (intptr_t)&irq,
1708         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1709     };
1710 
1711     if (!cpu->has_pmu) {
1712         return;
1713     }
1714     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1715         error_report("failed to set irq for PMU");
1716         abort();
1717     }
1718 }
1719 
kvm_arm_pvtime_init(ARMCPU * cpu,uint64_t ipa)1720 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1721 {
1722     struct kvm_device_attr attr = {
1723         .group = KVM_ARM_VCPU_PVTIME_CTRL,
1724         .attr = KVM_ARM_VCPU_PVTIME_IPA,
1725         .addr = (uint64_t)&ipa,
1726     };
1727 
1728     if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1729         return;
1730     }
1731     if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1732         error_report("failed to init PVTIME IPA");
1733         abort();
1734     }
1735 }
1736 
kvm_arm_steal_time_finalize(ARMCPU * cpu,Error ** errp)1737 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1738 {
1739     bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1740 
1741     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1742         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1743             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1744         } else {
1745             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1746         }
1747     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1748         if (!has_steal_time) {
1749             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1750                              "on this host");
1751             return;
1752         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1753             /*
1754              * DEN0057A chapter 2 says "This specification only covers
1755              * systems in which the Execution state of the hypervisor
1756              * as well as EL1 of virtual machines is AArch64.". And,
1757              * to ensure that, the smc/hvc calls are only specified as
1758              * smc64/hvc64.
1759              */
1760             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1761                              "for AArch32 guests");
1762             return;
1763         }
1764     }
1765 }
1766 
kvm_arm_aarch32_supported(void)1767 bool kvm_arm_aarch32_supported(void)
1768 {
1769     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1770 }
1771 
kvm_arm_sve_supported(void)1772 bool kvm_arm_sve_supported(void)
1773 {
1774     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1775 }
1776 
kvm_arm_mte_supported(void)1777 bool kvm_arm_mte_supported(void)
1778 {
1779     return kvm_check_extension(kvm_state, KVM_CAP_ARM_MTE);
1780 }
1781 
1782 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1783 
kvm_arm_sve_get_vls(ARMCPU * cpu)1784 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1785 {
1786     /* Only call this function if kvm_arm_sve_supported() returns true. */
1787     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1788     static bool probed;
1789     uint32_t vq = 0;
1790     int i;
1791 
1792     /*
1793      * KVM ensures all host CPUs support the same set of vector lengths.
1794      * So we only need to create the scratch VCPUs once and then cache
1795      * the results.
1796      */
1797     if (!probed) {
1798         struct kvm_vcpu_init init = {
1799             .target = -1,
1800             .features[0] = (1 << KVM_ARM_VCPU_SVE),
1801         };
1802         struct kvm_one_reg reg = {
1803             .id = KVM_REG_ARM64_SVE_VLS,
1804             .addr = (uint64_t)&vls[0],
1805         };
1806         int fdarray[3], ret;
1807 
1808         probed = true;
1809 
1810         if (!kvm_arm_create_scratch_host_vcpu(fdarray, &init)) {
1811             error_report("failed to create scratch VCPU with SVE enabled");
1812             abort();
1813         }
1814         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1815         kvm_arm_destroy_scratch_host_vcpu(fdarray);
1816         if (ret) {
1817             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1818                          strerror(errno));
1819             abort();
1820         }
1821 
1822         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1823             if (vls[i]) {
1824                 vq = 64 - clz64(vls[i]) + i * 64;
1825                 break;
1826             }
1827         }
1828         if (vq > ARM_MAX_VQ) {
1829             warn_report("KVM supports vector lengths larger than "
1830                         "QEMU can enable");
1831             vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1832         }
1833     }
1834 
1835     return vls[0];
1836 }
1837 
kvm_arm_sve_set_vls(ARMCPU * cpu)1838 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1839 {
1840     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1841 
1842     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1843 
1844     return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1845 }
1846 
1847 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
1848 
kvm_arch_pre_create_vcpu(CPUState * cpu,Error ** errp)1849 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
1850 {
1851     return 0;
1852 }
1853 
kvm_arch_init_vcpu(CPUState * cs)1854 int kvm_arch_init_vcpu(CPUState *cs)
1855 {
1856     int ret;
1857     uint64_t mpidr;
1858     ARMCPU *cpu = ARM_CPU(cs);
1859     CPUARMState *env = &cpu->env;
1860     uint64_t psciver;
1861 
1862     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
1863         error_report("KVM is not supported for this guest CPU type");
1864         return -EINVAL;
1865     }
1866 
1867     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1868 
1869     /* Determine init features for this CPU */
1870     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1871     if (cs->start_powered_off) {
1872         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1873     }
1874     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1875         cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1876         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1877     }
1878     if (!arm_feature(env, ARM_FEATURE_AARCH64)) {
1879         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1880     }
1881     if (cpu->has_pmu) {
1882         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1883     }
1884     if (cpu_isar_feature(aa64_sve, cpu)) {
1885         assert(kvm_arm_sve_supported());
1886         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1887     }
1888     if (cpu_isar_feature(aa64_pauth, cpu)) {
1889         cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1890                                       1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1891     }
1892 
1893     /* Do KVM_ARM_VCPU_INIT ioctl */
1894     ret = kvm_arm_vcpu_init(cpu);
1895     if (ret) {
1896         return ret;
1897     }
1898 
1899     if (cpu_isar_feature(aa64_sve, cpu)) {
1900         ret = kvm_arm_sve_set_vls(cpu);
1901         if (ret) {
1902             return ret;
1903         }
1904         ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1905         if (ret) {
1906             return ret;
1907         }
1908     }
1909 
1910     /*
1911      * KVM reports the exact PSCI version it is implementing via a
1912      * special sysreg. If it is present, use its contents to determine
1913      * what to report to the guest in the dtb (it is the PSCI version,
1914      * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1915      * returns).
1916      */
1917     if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1918         cpu->psci_version = psciver;
1919     }
1920 
1921     /*
1922      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1923      * Currently KVM has its own idea about MPIDR assignment, so we
1924      * override our defaults with what we get from KVM.
1925      */
1926     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1927     if (ret) {
1928         return ret;
1929     }
1930     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1931 
1932     return kvm_arm_init_cpreg_list(cpu);
1933 }
1934 
kvm_arch_destroy_vcpu(CPUState * cs)1935 int kvm_arch_destroy_vcpu(CPUState *cs)
1936 {
1937     return 0;
1938 }
1939 
1940 /* Callers must hold the iothread mutex lock */
kvm_inject_arm_sea(CPUState * c)1941 static void kvm_inject_arm_sea(CPUState *c)
1942 {
1943     ARMCPU *cpu = ARM_CPU(c);
1944     CPUARMState *env = &cpu->env;
1945     uint32_t esr;
1946     bool same_el;
1947 
1948     c->exception_index = EXCP_DATA_ABORT;
1949     env->exception.target_el = 1;
1950 
1951     /*
1952      * Set the DFSC to synchronous external abort and set FnV to not valid,
1953      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1954      */
1955     same_el = arm_current_el(env) == env->exception.target_el;
1956     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1957 
1958     env->exception.syndrome = esr;
1959 
1960     arm_cpu_do_interrupt(c);
1961 }
1962 
1963 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1964                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1965 
1966 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1967                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1968 
1969 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1970                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1971 
kvm_arch_put_fpsimd(CPUState * cs)1972 static int kvm_arch_put_fpsimd(CPUState *cs)
1973 {
1974     CPUARMState *env = &ARM_CPU(cs)->env;
1975     int i, ret;
1976 
1977     for (i = 0; i < 32; i++) {
1978         uint64_t *q = aa64_vfp_qreg(env, i);
1979 #if HOST_BIG_ENDIAN
1980         uint64_t fp_val[2] = { q[1], q[0] };
1981         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
1982                                                         fp_val);
1983 #else
1984         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
1985 #endif
1986         if (ret) {
1987             return ret;
1988         }
1989     }
1990 
1991     return 0;
1992 }
1993 
1994 /*
1995  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1996  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1997  * code the slice index to zero for now as it's unlikely we'll need more than
1998  * one slice for quite some time.
1999  */
kvm_arch_put_sve(CPUState * cs)2000 static int kvm_arch_put_sve(CPUState *cs)
2001 {
2002     ARMCPU *cpu = ARM_CPU(cs);
2003     CPUARMState *env = &cpu->env;
2004     uint64_t tmp[ARM_MAX_VQ * 2];
2005     uint64_t *r;
2006     int n, ret;
2007 
2008     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2009         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2010         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2011         if (ret) {
2012             return ret;
2013         }
2014     }
2015 
2016     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2017         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2018                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2019         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2020         if (ret) {
2021             return ret;
2022         }
2023     }
2024 
2025     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2026                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2027     ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2028     if (ret) {
2029         return ret;
2030     }
2031 
2032     return 0;
2033 }
2034 
kvm_arch_put_registers(CPUState * cs,int level,Error ** errp)2035 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
2036 {
2037     uint64_t val;
2038     uint32_t fpr;
2039     int i, ret;
2040     unsigned int el;
2041 
2042     ARMCPU *cpu = ARM_CPU(cs);
2043     CPUARMState *env = &cpu->env;
2044 
2045     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2046      * AArch64 registers before pushing them out to 64-bit KVM.
2047      */
2048     if (!is_a64(env)) {
2049         aarch64_sync_32_to_64(env);
2050     }
2051 
2052     for (i = 0; i < 31; i++) {
2053         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2054                               &env->xregs[i]);
2055         if (ret) {
2056             return ret;
2057         }
2058     }
2059 
2060     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2061      * QEMU side we keep the current SP in xregs[31] as well.
2062      */
2063     aarch64_save_sp(env, 1);
2064 
2065     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2066     if (ret) {
2067         return ret;
2068     }
2069 
2070     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2071     if (ret) {
2072         return ret;
2073     }
2074 
2075     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2076     if (is_a64(env)) {
2077         val = pstate_read(env);
2078     } else {
2079         val = cpsr_read(env);
2080     }
2081     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2082     if (ret) {
2083         return ret;
2084     }
2085 
2086     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2087     if (ret) {
2088         return ret;
2089     }
2090 
2091     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2092     if (ret) {
2093         return ret;
2094     }
2095 
2096     /* Saved Program State Registers
2097      *
2098      * Before we restore from the banked_spsr[] array we need to
2099      * ensure that any modifications to env->spsr are correctly
2100      * reflected in the banks.
2101      */
2102     el = arm_current_el(env);
2103     if (el > 0 && !is_a64(env)) {
2104         i = bank_number(env->uncached_cpsr & CPSR_M);
2105         env->banked_spsr[i] = env->spsr;
2106     }
2107 
2108     /* KVM 0-4 map to QEMU banks 1-5 */
2109     for (i = 0; i < KVM_NR_SPSR; i++) {
2110         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2111                               &env->banked_spsr[i + 1]);
2112         if (ret) {
2113             return ret;
2114         }
2115     }
2116 
2117     if (cpu_isar_feature(aa64_sve, cpu)) {
2118         ret = kvm_arch_put_sve(cs);
2119     } else {
2120         ret = kvm_arch_put_fpsimd(cs);
2121     }
2122     if (ret) {
2123         return ret;
2124     }
2125 
2126     fpr = vfp_get_fpsr(env);
2127     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2128     if (ret) {
2129         return ret;
2130     }
2131 
2132     fpr = vfp_get_fpcr(env);
2133     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2134     if (ret) {
2135         return ret;
2136     }
2137 
2138     write_cpustate_to_list(cpu, true);
2139 
2140     if (!write_list_to_kvmstate(cpu, level)) {
2141         return -EINVAL;
2142     }
2143 
2144    /*
2145     * Setting VCPU events should be triggered after syncing the registers
2146     * to avoid overwriting potential changes made by KVM upon calling
2147     * KVM_SET_VCPU_EVENTS ioctl
2148     */
2149     ret = kvm_put_vcpu_events(cpu);
2150     if (ret) {
2151         return ret;
2152     }
2153 
2154     return kvm_arm_sync_mpstate_to_kvm(cpu);
2155 }
2156 
kvm_arch_get_fpsimd(CPUState * cs)2157 static int kvm_arch_get_fpsimd(CPUState *cs)
2158 {
2159     CPUARMState *env = &ARM_CPU(cs)->env;
2160     int i, ret;
2161 
2162     for (i = 0; i < 32; i++) {
2163         uint64_t *q = aa64_vfp_qreg(env, i);
2164         ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2165         if (ret) {
2166             return ret;
2167         } else {
2168 #if HOST_BIG_ENDIAN
2169             uint64_t t;
2170             t = q[0], q[0] = q[1], q[1] = t;
2171 #endif
2172         }
2173     }
2174 
2175     return 0;
2176 }
2177 
2178 /*
2179  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2180  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2181  * code the slice index to zero for now as it's unlikely we'll need more than
2182  * one slice for quite some time.
2183  */
kvm_arch_get_sve(CPUState * cs)2184 static int kvm_arch_get_sve(CPUState *cs)
2185 {
2186     ARMCPU *cpu = ARM_CPU(cs);
2187     CPUARMState *env = &cpu->env;
2188     uint64_t *r;
2189     int n, ret;
2190 
2191     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2192         r = &env->vfp.zregs[n].d[0];
2193         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2194         if (ret) {
2195             return ret;
2196         }
2197         sve_bswap64(r, r, cpu->sve_max_vq * 2);
2198     }
2199 
2200     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2201         r = &env->vfp.pregs[n].p[0];
2202         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2203         if (ret) {
2204             return ret;
2205         }
2206         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2207     }
2208 
2209     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2210     ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2211     if (ret) {
2212         return ret;
2213     }
2214     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2215 
2216     return 0;
2217 }
2218 
kvm_arch_get_registers(CPUState * cs,Error ** errp)2219 int kvm_arch_get_registers(CPUState *cs, Error **errp)
2220 {
2221     uint64_t val;
2222     unsigned int el;
2223     uint32_t fpr;
2224     int i, ret;
2225 
2226     ARMCPU *cpu = ARM_CPU(cs);
2227     CPUARMState *env = &cpu->env;
2228 
2229     for (i = 0; i < 31; i++) {
2230         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2231                               &env->xregs[i]);
2232         if (ret) {
2233             return ret;
2234         }
2235     }
2236 
2237     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2238     if (ret) {
2239         return ret;
2240     }
2241 
2242     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2243     if (ret) {
2244         return ret;
2245     }
2246 
2247     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2248     if (ret) {
2249         return ret;
2250     }
2251 
2252     env->aarch64 = ((val & PSTATE_nRW) == 0);
2253     if (is_a64(env)) {
2254         pstate_write(env, val);
2255     } else {
2256         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2257     }
2258 
2259     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2260      * QEMU side we keep the current SP in xregs[31] as well.
2261      */
2262     aarch64_restore_sp(env, 1);
2263 
2264     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2265     if (ret) {
2266         return ret;
2267     }
2268 
2269     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2270      * incoming AArch64 regs received from 64-bit KVM.
2271      * We must perform this after all of the registers have been acquired from
2272      * the kernel.
2273      */
2274     if (!is_a64(env)) {
2275         aarch64_sync_64_to_32(env);
2276     }
2277 
2278     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2279     if (ret) {
2280         return ret;
2281     }
2282 
2283     /* Fetch the SPSR registers
2284      *
2285      * KVM SPSRs 0-4 map to QEMU banks 1-5
2286      */
2287     for (i = 0; i < KVM_NR_SPSR; i++) {
2288         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2289                               &env->banked_spsr[i + 1]);
2290         if (ret) {
2291             return ret;
2292         }
2293     }
2294 
2295     el = arm_current_el(env);
2296     if (el > 0 && !is_a64(env)) {
2297         i = bank_number(env->uncached_cpsr & CPSR_M);
2298         env->spsr = env->banked_spsr[i];
2299     }
2300 
2301     if (cpu_isar_feature(aa64_sve, cpu)) {
2302         ret = kvm_arch_get_sve(cs);
2303     } else {
2304         ret = kvm_arch_get_fpsimd(cs);
2305     }
2306     if (ret) {
2307         return ret;
2308     }
2309 
2310     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2311     if (ret) {
2312         return ret;
2313     }
2314     vfp_set_fpsr(env, fpr);
2315 
2316     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2317     if (ret) {
2318         return ret;
2319     }
2320     vfp_set_fpcr(env, fpr);
2321 
2322     ret = kvm_get_vcpu_events(cpu);
2323     if (ret) {
2324         return ret;
2325     }
2326 
2327     if (!write_kvmstate_to_list(cpu)) {
2328         return -EINVAL;
2329     }
2330     /* Note that it's OK to have registers which aren't in CPUState,
2331      * so we can ignore a failure return here.
2332      */
2333     write_list_to_cpustate(cpu);
2334 
2335     ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2336 
2337     /* TODO: other registers */
2338     return ret;
2339 }
2340 
kvm_arch_on_sigbus_vcpu(CPUState * c,int code,void * addr)2341 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2342 {
2343     ram_addr_t ram_addr;
2344     hwaddr paddr;
2345 
2346     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2347 
2348     if (acpi_ghes_present() && addr) {
2349         ram_addr = qemu_ram_addr_from_host(addr);
2350         if (ram_addr != RAM_ADDR_INVALID &&
2351             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2352             kvm_hwpoison_page_add(ram_addr);
2353             /*
2354              * If this is a BUS_MCEERR_AR, we know we have been called
2355              * synchronously from the vCPU thread, so we can easily
2356              * synchronize the state and inject an error.
2357              *
2358              * TODO: we currently don't tell the guest at all about
2359              * BUS_MCEERR_AO. In that case we might either be being
2360              * called synchronously from the vCPU thread, or a bit
2361              * later from the main thread, so doing the injection of
2362              * the error would be more complicated.
2363              */
2364             if (code == BUS_MCEERR_AR) {
2365                 kvm_cpu_synchronize_state(c);
2366                 if (!acpi_ghes_memory_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2367                     kvm_inject_arm_sea(c);
2368                 } else {
2369                     error_report("failed to record the error");
2370                     abort();
2371                 }
2372             }
2373             return;
2374         }
2375         if (code == BUS_MCEERR_AO) {
2376             error_report("Hardware memory error at addr %p for memory used by "
2377                 "QEMU itself instead of guest system!", addr);
2378         }
2379     }
2380 
2381     if (code == BUS_MCEERR_AR) {
2382         error_report("Hardware memory error!");
2383         exit(1);
2384     }
2385 }
2386 
2387 /* C6.6.29 BRK instruction */
2388 static const uint32_t brk_insn = 0xd4200000;
2389 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2390 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2391 {
2392     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2393         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2394         return -EINVAL;
2395     }
2396     return 0;
2397 }
2398 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2399 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2400 {
2401     static uint32_t brk;
2402 
2403     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2404         brk != brk_insn ||
2405         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2406         return -EINVAL;
2407     }
2408     return 0;
2409 }
2410 
kvm_arm_enable_mte(Object * cpuobj,Error ** errp)2411 void kvm_arm_enable_mte(Object *cpuobj, Error **errp)
2412 {
2413     static bool tried_to_enable;
2414     static bool succeeded_to_enable;
2415     Error *mte_migration_blocker = NULL;
2416     ARMCPU *cpu = ARM_CPU(cpuobj);
2417     int ret;
2418 
2419     if (!tried_to_enable) {
2420         /*
2421          * MTE on KVM is enabled on a per-VM basis (and retrying doesn't make
2422          * sense), and we only want a single migration blocker as well.
2423          */
2424         tried_to_enable = true;
2425 
2426         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_ARM_MTE, 0);
2427         if (ret) {
2428             error_setg_errno(errp, -ret, "Failed to enable KVM_CAP_ARM_MTE");
2429             return;
2430         }
2431 
2432         /* TODO: Add migration support with MTE enabled */
2433         error_setg(&mte_migration_blocker,
2434                    "Live migration disabled due to MTE enabled");
2435         if (migrate_add_blocker(&mte_migration_blocker, errp)) {
2436             error_free(mte_migration_blocker);
2437             return;
2438         }
2439 
2440         succeeded_to_enable = true;
2441     }
2442 
2443     if (succeeded_to_enable) {
2444         cpu->kvm_mte = true;
2445     }
2446 }
2447 
arm_cpu_kvm_set_irq(void * arm_cpu,int irq,int level)2448 void arm_cpu_kvm_set_irq(void *arm_cpu, int irq, int level)
2449 {
2450     ARMCPU *cpu = arm_cpu;
2451     CPUARMState *env = &cpu->env;
2452     CPUState *cs = CPU(cpu);
2453     uint32_t linestate_bit;
2454     int irq_id;
2455 
2456     switch (irq) {
2457     case ARM_CPU_IRQ:
2458         irq_id = KVM_ARM_IRQ_CPU_IRQ;
2459         linestate_bit = CPU_INTERRUPT_HARD;
2460         break;
2461     case ARM_CPU_FIQ:
2462         irq_id = KVM_ARM_IRQ_CPU_FIQ;
2463         linestate_bit = CPU_INTERRUPT_FIQ;
2464         break;
2465     default:
2466         g_assert_not_reached();
2467     }
2468 
2469     if (level) {
2470         env->irq_line_state |= linestate_bit;
2471     } else {
2472         env->irq_line_state &= ~linestate_bit;
2473     }
2474     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
2475 }
2476