xref: /linux/mm/kasan/common.c (revision 0074281bb6316108e0cff094bd4db78ab3eee236)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/slab.h>
26 #include <linux/stackdepot.h>
27 #include <linux/stacktrace.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/bug.h>
31 
32 #include "kasan.h"
33 #include "../slab.h"
34 
kasan_addr_to_slab(const void * addr)35 struct slab *kasan_addr_to_slab(const void *addr)
36 {
37 	if (virt_addr_valid(addr))
38 		return virt_to_slab(addr);
39 	return NULL;
40 }
41 
kasan_save_stack(gfp_t flags,depot_flags_t depot_flags)42 depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags)
43 {
44 	unsigned long entries[KASAN_STACK_DEPTH];
45 	unsigned int nr_entries;
46 
47 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
48 	return stack_depot_save_flags(entries, nr_entries, flags, depot_flags);
49 }
50 
kasan_set_track(struct kasan_track * track,depot_stack_handle_t stack)51 void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack)
52 {
53 #ifdef CONFIG_KASAN_EXTRA_INFO
54 	u32 cpu = raw_smp_processor_id();
55 	u64 ts_nsec = local_clock();
56 
57 	track->cpu = cpu;
58 	track->timestamp = ts_nsec >> 9;
59 #endif /* CONFIG_KASAN_EXTRA_INFO */
60 	track->pid = current->pid;
61 	track->stack = stack;
62 }
63 
kasan_save_track(struct kasan_track * track,gfp_t flags)64 void kasan_save_track(struct kasan_track *track, gfp_t flags)
65 {
66 	depot_stack_handle_t stack;
67 
68 	stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC);
69 	kasan_set_track(track, stack);
70 }
71 
72 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
kasan_enable_current(void)73 void kasan_enable_current(void)
74 {
75 	current->kasan_depth++;
76 }
77 EXPORT_SYMBOL(kasan_enable_current);
78 
kasan_disable_current(void)79 void kasan_disable_current(void)
80 {
81 	current->kasan_depth--;
82 }
83 EXPORT_SYMBOL(kasan_disable_current);
84 
85 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
86 
__kasan_unpoison_range(const void * address,size_t size)87 void __kasan_unpoison_range(const void *address, size_t size)
88 {
89 	if (is_kfence_address(address))
90 		return;
91 
92 	kasan_unpoison(address, size, false);
93 }
94 
95 #ifdef CONFIG_KASAN_STACK
96 /* Unpoison the entire stack for a task. */
kasan_unpoison_task_stack(struct task_struct * task)97 void kasan_unpoison_task_stack(struct task_struct *task)
98 {
99 	void *base = task_stack_page(task);
100 
101 	kasan_unpoison(base, THREAD_SIZE, false);
102 }
103 
104 /* Unpoison the stack for the current task beyond a watermark sp value. */
kasan_unpoison_task_stack_below(const void * watermark)105 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
106 {
107 	/*
108 	 * Calculate the task stack base address.  Avoid using 'current'
109 	 * because this function is called by early resume code which hasn't
110 	 * yet set up the percpu register (%gs).
111 	 */
112 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
113 
114 	kasan_unpoison(base, watermark - base, false);
115 }
116 #endif /* CONFIG_KASAN_STACK */
117 
__kasan_unpoison_pages(struct page * page,unsigned int order,bool init)118 bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
119 {
120 	u8 tag;
121 	unsigned long i;
122 
123 	if (unlikely(PageHighMem(page)))
124 		return false;
125 
126 	if (!kasan_sample_page_alloc(order))
127 		return false;
128 
129 	tag = kasan_random_tag();
130 	kasan_unpoison(set_tag(page_address(page), tag),
131 		       PAGE_SIZE << order, init);
132 	for (i = 0; i < (1 << order); i++)
133 		page_kasan_tag_set(page + i, tag);
134 
135 	return true;
136 }
137 
__kasan_poison_pages(struct page * page,unsigned int order,bool init)138 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
139 {
140 	if (likely(!PageHighMem(page)))
141 		kasan_poison(page_address(page), PAGE_SIZE << order,
142 			     KASAN_PAGE_FREE, init);
143 }
144 
__kasan_poison_slab(struct slab * slab)145 void __kasan_poison_slab(struct slab *slab)
146 {
147 	struct page *page = slab_page(slab);
148 	unsigned long i;
149 
150 	for (i = 0; i < compound_nr(page); i++)
151 		page_kasan_tag_reset(page + i);
152 	kasan_poison(page_address(page), page_size(page),
153 		     KASAN_SLAB_REDZONE, false);
154 }
155 
__kasan_unpoison_new_object(struct kmem_cache * cache,void * object)156 void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object)
157 {
158 	kasan_unpoison(object, cache->object_size, false);
159 }
160 
__kasan_poison_new_object(struct kmem_cache * cache,void * object)161 void __kasan_poison_new_object(struct kmem_cache *cache, void *object)
162 {
163 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
164 			KASAN_SLAB_REDZONE, false);
165 }
166 
167 /*
168  * This function assigns a tag to an object considering the following:
169  * 1. A cache might have a constructor, which might save a pointer to a slab
170  *    object somewhere (e.g. in the object itself). We preassign a tag for
171  *    each object in caches with constructors during slab creation and reuse
172  *    the same tag each time a particular object is allocated.
173  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
174  *    accessed after being freed. We preassign tags for objects in these
175  *    caches as well.
176  */
assign_tag(struct kmem_cache * cache,const void * object,bool init)177 static inline u8 assign_tag(struct kmem_cache *cache,
178 					const void *object, bool init)
179 {
180 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
181 		return 0xff;
182 
183 	/*
184 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
185 	 * set, assign a tag when the object is being allocated (init == false).
186 	 */
187 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
188 		return init ? KASAN_TAG_KERNEL : kasan_random_tag();
189 
190 	/*
191 	 * For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU,
192 	 * assign a random tag during slab creation, otherwise reuse
193 	 * the already assigned tag.
194 	 */
195 	return init ? kasan_random_tag() : get_tag(object);
196 }
197 
__kasan_init_slab_obj(struct kmem_cache * cache,const void * object)198 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
199 						const void *object)
200 {
201 	/* Initialize per-object metadata if it is present. */
202 	if (kasan_requires_meta())
203 		kasan_init_object_meta(cache, object);
204 
205 	/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
206 	object = set_tag(object, assign_tag(cache, object, true));
207 
208 	return (void *)object;
209 }
210 
211 /* Returns true when freeing the object is not safe. */
check_slab_allocation(struct kmem_cache * cache,void * object,unsigned long ip)212 static bool check_slab_allocation(struct kmem_cache *cache, void *object,
213 				  unsigned long ip)
214 {
215 	void *tagged_object = object;
216 
217 	object = kasan_reset_tag(object);
218 
219 	if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) {
220 		kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
221 		return true;
222 	}
223 
224 	if (!kasan_byte_accessible(tagged_object)) {
225 		kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
226 		return true;
227 	}
228 
229 	return false;
230 }
231 
poison_slab_object(struct kmem_cache * cache,void * object,bool init)232 static inline void poison_slab_object(struct kmem_cache *cache, void *object,
233 				      bool init)
234 {
235 	void *tagged_object = object;
236 
237 	object = kasan_reset_tag(object);
238 
239 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
240 			KASAN_SLAB_FREE, init);
241 
242 	if (kasan_stack_collection_enabled())
243 		kasan_save_free_info(cache, tagged_object);
244 }
245 
__kasan_slab_pre_free(struct kmem_cache * cache,void * object,unsigned long ip)246 bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object,
247 				unsigned long ip)
248 {
249 	if (!kasan_arch_is_ready() || is_kfence_address(object))
250 		return false;
251 	return check_slab_allocation(cache, object, ip);
252 }
253 
__kasan_slab_free(struct kmem_cache * cache,void * object,bool init,bool still_accessible)254 bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
255 		       bool still_accessible)
256 {
257 	if (!kasan_arch_is_ready() || is_kfence_address(object))
258 		return false;
259 
260 	/*
261 	 * If this point is reached with an object that must still be
262 	 * accessible under RCU, we can't poison it; in that case, also skip the
263 	 * quarantine. This should mostly only happen when CONFIG_SLUB_RCU_DEBUG
264 	 * has been disabled manually.
265 	 *
266 	 * Putting the object on the quarantine wouldn't help catch UAFs (since
267 	 * we can't poison it here), and it would mask bugs caused by
268 	 * SLAB_TYPESAFE_BY_RCU users not being careful enough about object
269 	 * reuse; so overall, putting the object into the quarantine here would
270 	 * be counterproductive.
271 	 */
272 	if (still_accessible)
273 		return false;
274 
275 	poison_slab_object(cache, object, init);
276 
277 	/*
278 	 * If the object is put into quarantine, do not let slab put the object
279 	 * onto the freelist for now. The object's metadata is kept until the
280 	 * object gets evicted from quarantine.
281 	 */
282 	if (kasan_quarantine_put(cache, object))
283 		return true;
284 
285 	/*
286 	 * Note: Keep per-object metadata to allow KASAN print stack traces for
287 	 * use-after-free-before-realloc bugs.
288 	 */
289 
290 	/* Let slab put the object onto the freelist. */
291 	return false;
292 }
293 
check_page_allocation(void * ptr,unsigned long ip)294 static inline bool check_page_allocation(void *ptr, unsigned long ip)
295 {
296 	if (!kasan_arch_is_ready())
297 		return false;
298 
299 	if (ptr != page_address(virt_to_head_page(ptr))) {
300 		kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
301 		return true;
302 	}
303 
304 	if (!kasan_byte_accessible(ptr)) {
305 		kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
306 		return true;
307 	}
308 
309 	return false;
310 }
311 
__kasan_kfree_large(void * ptr,unsigned long ip)312 void __kasan_kfree_large(void *ptr, unsigned long ip)
313 {
314 	check_page_allocation(ptr, ip);
315 
316 	/* The object will be poisoned by kasan_poison_pages(). */
317 }
318 
unpoison_slab_object(struct kmem_cache * cache,void * object,gfp_t flags,bool init)319 static inline void unpoison_slab_object(struct kmem_cache *cache, void *object,
320 					gfp_t flags, bool init)
321 {
322 	/*
323 	 * Unpoison the whole object. For kmalloc() allocations,
324 	 * poison_kmalloc_redzone() will do precise poisoning.
325 	 */
326 	kasan_unpoison(object, cache->object_size, init);
327 
328 	/* Save alloc info (if possible) for non-kmalloc() allocations. */
329 	if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))
330 		kasan_save_alloc_info(cache, object, flags);
331 }
332 
__kasan_slab_alloc(struct kmem_cache * cache,void * object,gfp_t flags,bool init)333 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
334 					void *object, gfp_t flags, bool init)
335 {
336 	u8 tag;
337 	void *tagged_object;
338 
339 	if (gfpflags_allow_blocking(flags))
340 		kasan_quarantine_reduce();
341 
342 	if (unlikely(object == NULL))
343 		return NULL;
344 
345 	if (is_kfence_address(object))
346 		return (void *)object;
347 
348 	/*
349 	 * Generate and assign random tag for tag-based modes.
350 	 * Tag is ignored in set_tag() for the generic mode.
351 	 */
352 	tag = assign_tag(cache, object, false);
353 	tagged_object = set_tag(object, tag);
354 
355 	/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
356 	unpoison_slab_object(cache, tagged_object, flags, init);
357 
358 	return tagged_object;
359 }
360 
poison_kmalloc_redzone(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)361 static inline void poison_kmalloc_redzone(struct kmem_cache *cache,
362 				const void *object, size_t size, gfp_t flags)
363 {
364 	unsigned long redzone_start;
365 	unsigned long redzone_end;
366 
367 	/*
368 	 * The redzone has byte-level precision for the generic mode.
369 	 * Partially poison the last object granule to cover the unaligned
370 	 * part of the redzone.
371 	 */
372 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
373 		kasan_poison_last_granule((void *)object, size);
374 
375 	/* Poison the aligned part of the redzone. */
376 	redzone_start = round_up((unsigned long)(object + size),
377 				KASAN_GRANULE_SIZE);
378 	redzone_end = round_up((unsigned long)(object + cache->object_size),
379 				KASAN_GRANULE_SIZE);
380 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
381 			   KASAN_SLAB_REDZONE, false);
382 
383 	/*
384 	 * Save alloc info (if possible) for kmalloc() allocations.
385 	 * This also rewrites the alloc info when called from kasan_krealloc().
386 	 */
387 	if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache))
388 		kasan_save_alloc_info(cache, (void *)object, flags);
389 
390 }
391 
__kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)392 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
393 					size_t size, gfp_t flags)
394 {
395 	if (gfpflags_allow_blocking(flags))
396 		kasan_quarantine_reduce();
397 
398 	if (unlikely(object == NULL))
399 		return NULL;
400 
401 	if (is_kfence_address(object))
402 		return (void *)object;
403 
404 	/* The object has already been unpoisoned by kasan_slab_alloc(). */
405 	poison_kmalloc_redzone(cache, object, size, flags);
406 
407 	/* Keep the tag that was set by kasan_slab_alloc(). */
408 	return (void *)object;
409 }
410 EXPORT_SYMBOL(__kasan_kmalloc);
411 
poison_kmalloc_large_redzone(const void * ptr,size_t size,gfp_t flags)412 static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size,
413 						gfp_t flags)
414 {
415 	unsigned long redzone_start;
416 	unsigned long redzone_end;
417 
418 	/*
419 	 * The redzone has byte-level precision for the generic mode.
420 	 * Partially poison the last object granule to cover the unaligned
421 	 * part of the redzone.
422 	 */
423 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
424 		kasan_poison_last_granule(ptr, size);
425 
426 	/* Poison the aligned part of the redzone. */
427 	redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE);
428 	redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
429 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
430 		     KASAN_PAGE_REDZONE, false);
431 }
432 
__kasan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)433 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
434 						gfp_t flags)
435 {
436 	if (gfpflags_allow_blocking(flags))
437 		kasan_quarantine_reduce();
438 
439 	if (unlikely(ptr == NULL))
440 		return NULL;
441 
442 	/* The object has already been unpoisoned by kasan_unpoison_pages(). */
443 	poison_kmalloc_large_redzone(ptr, size, flags);
444 
445 	/* Keep the tag that was set by alloc_pages(). */
446 	return (void *)ptr;
447 }
448 
__kasan_krealloc(const void * object,size_t size,gfp_t flags)449 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
450 {
451 	struct slab *slab;
452 
453 	if (gfpflags_allow_blocking(flags))
454 		kasan_quarantine_reduce();
455 
456 	if (unlikely(object == ZERO_SIZE_PTR))
457 		return (void *)object;
458 
459 	if (is_kfence_address(object))
460 		return (void *)object;
461 
462 	/*
463 	 * Unpoison the object's data.
464 	 * Part of it might already have been unpoisoned, but it's unknown
465 	 * how big that part is.
466 	 */
467 	kasan_unpoison(object, size, false);
468 
469 	slab = virt_to_slab(object);
470 
471 	/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
472 	if (unlikely(!slab))
473 		poison_kmalloc_large_redzone(object, size, flags);
474 	else
475 		poison_kmalloc_redzone(slab->slab_cache, object, size, flags);
476 
477 	return (void *)object;
478 }
479 
__kasan_mempool_poison_pages(struct page * page,unsigned int order,unsigned long ip)480 bool __kasan_mempool_poison_pages(struct page *page, unsigned int order,
481 				  unsigned long ip)
482 {
483 	unsigned long *ptr;
484 
485 	if (unlikely(PageHighMem(page)))
486 		return true;
487 
488 	/* Bail out if allocation was excluded due to sampling. */
489 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
490 	    page_kasan_tag(page) == KASAN_TAG_KERNEL)
491 		return true;
492 
493 	ptr = page_address(page);
494 
495 	if (check_page_allocation(ptr, ip))
496 		return false;
497 
498 	kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false);
499 
500 	return true;
501 }
502 
__kasan_mempool_unpoison_pages(struct page * page,unsigned int order,unsigned long ip)503 void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order,
504 				    unsigned long ip)
505 {
506 	__kasan_unpoison_pages(page, order, false);
507 }
508 
__kasan_mempool_poison_object(void * ptr,unsigned long ip)509 bool __kasan_mempool_poison_object(void *ptr, unsigned long ip)
510 {
511 	struct folio *folio = virt_to_folio(ptr);
512 	struct slab *slab;
513 
514 	/*
515 	 * This function can be called for large kmalloc allocation that get
516 	 * their memory from page_alloc. Thus, the folio might not be a slab.
517 	 */
518 	if (unlikely(!folio_test_slab(folio))) {
519 		if (check_page_allocation(ptr, ip))
520 			return false;
521 		kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
522 		return true;
523 	}
524 
525 	if (is_kfence_address(ptr) || !kasan_arch_is_ready())
526 		return true;
527 
528 	slab = folio_slab(folio);
529 
530 	if (check_slab_allocation(slab->slab_cache, ptr, ip))
531 		return false;
532 
533 	poison_slab_object(slab->slab_cache, ptr, false);
534 	return true;
535 }
536 
__kasan_mempool_unpoison_object(void * ptr,size_t size,unsigned long ip)537 void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip)
538 {
539 	struct slab *slab;
540 	gfp_t flags = 0; /* Might be executing under a lock. */
541 
542 	slab = virt_to_slab(ptr);
543 
544 	/*
545 	 * This function can be called for large kmalloc allocation that get
546 	 * their memory from page_alloc.
547 	 */
548 	if (unlikely(!slab)) {
549 		kasan_unpoison(ptr, size, false);
550 		poison_kmalloc_large_redzone(ptr, size, flags);
551 		return;
552 	}
553 
554 	if (is_kfence_address(ptr))
555 		return;
556 
557 	/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
558 	unpoison_slab_object(slab->slab_cache, ptr, flags, false);
559 
560 	/* Poison the redzone and save alloc info for kmalloc() allocations. */
561 	if (is_kmalloc_cache(slab->slab_cache))
562 		poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags);
563 }
564 
__kasan_check_byte(const void * address,unsigned long ip)565 bool __kasan_check_byte(const void *address, unsigned long ip)
566 {
567 	if (!kasan_byte_accessible(address)) {
568 		kasan_report(address, 1, false, ip);
569 		return false;
570 	}
571 	return true;
572 }
573