1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains common KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
10 */
11
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/slab.h>
26 #include <linux/stackdepot.h>
27 #include <linux/stacktrace.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/bug.h>
31
32 #include "kasan.h"
33 #include "../slab.h"
34
kasan_addr_to_slab(const void * addr)35 struct slab *kasan_addr_to_slab(const void *addr)
36 {
37 if (virt_addr_valid(addr))
38 return virt_to_slab(addr);
39 return NULL;
40 }
41
kasan_save_stack(gfp_t flags,depot_flags_t depot_flags)42 depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags)
43 {
44 unsigned long entries[KASAN_STACK_DEPTH];
45 unsigned int nr_entries;
46
47 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
48 return stack_depot_save_flags(entries, nr_entries, flags, depot_flags);
49 }
50
kasan_set_track(struct kasan_track * track,depot_stack_handle_t stack)51 void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack)
52 {
53 #ifdef CONFIG_KASAN_EXTRA_INFO
54 u32 cpu = raw_smp_processor_id();
55 u64 ts_nsec = local_clock();
56
57 track->cpu = cpu;
58 track->timestamp = ts_nsec >> 9;
59 #endif /* CONFIG_KASAN_EXTRA_INFO */
60 track->pid = current->pid;
61 track->stack = stack;
62 }
63
kasan_save_track(struct kasan_track * track,gfp_t flags)64 void kasan_save_track(struct kasan_track *track, gfp_t flags)
65 {
66 depot_stack_handle_t stack;
67
68 stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC);
69 kasan_set_track(track, stack);
70 }
71
72 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
kasan_enable_current(void)73 void kasan_enable_current(void)
74 {
75 current->kasan_depth++;
76 }
77 EXPORT_SYMBOL(kasan_enable_current);
78
kasan_disable_current(void)79 void kasan_disable_current(void)
80 {
81 current->kasan_depth--;
82 }
83 EXPORT_SYMBOL(kasan_disable_current);
84
85 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
86
__kasan_unpoison_range(const void * address,size_t size)87 void __kasan_unpoison_range(const void *address, size_t size)
88 {
89 if (is_kfence_address(address))
90 return;
91
92 kasan_unpoison(address, size, false);
93 }
94
95 #ifdef CONFIG_KASAN_STACK
96 /* Unpoison the entire stack for a task. */
kasan_unpoison_task_stack(struct task_struct * task)97 void kasan_unpoison_task_stack(struct task_struct *task)
98 {
99 void *base = task_stack_page(task);
100
101 kasan_unpoison(base, THREAD_SIZE, false);
102 }
103
104 /* Unpoison the stack for the current task beyond a watermark sp value. */
kasan_unpoison_task_stack_below(const void * watermark)105 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
106 {
107 /*
108 * Calculate the task stack base address. Avoid using 'current'
109 * because this function is called by early resume code which hasn't
110 * yet set up the percpu register (%gs).
111 */
112 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
113
114 kasan_unpoison(base, watermark - base, false);
115 }
116 #endif /* CONFIG_KASAN_STACK */
117
__kasan_unpoison_pages(struct page * page,unsigned int order,bool init)118 bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
119 {
120 u8 tag;
121 unsigned long i;
122
123 if (unlikely(PageHighMem(page)))
124 return false;
125
126 if (!kasan_sample_page_alloc(order))
127 return false;
128
129 tag = kasan_random_tag();
130 kasan_unpoison(set_tag(page_address(page), tag),
131 PAGE_SIZE << order, init);
132 for (i = 0; i < (1 << order); i++)
133 page_kasan_tag_set(page + i, tag);
134
135 return true;
136 }
137
__kasan_poison_pages(struct page * page,unsigned int order,bool init)138 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
139 {
140 if (likely(!PageHighMem(page)))
141 kasan_poison(page_address(page), PAGE_SIZE << order,
142 KASAN_PAGE_FREE, init);
143 }
144
__kasan_poison_slab(struct slab * slab)145 void __kasan_poison_slab(struct slab *slab)
146 {
147 struct page *page = slab_page(slab);
148 unsigned long i;
149
150 for (i = 0; i < compound_nr(page); i++)
151 page_kasan_tag_reset(page + i);
152 kasan_poison(page_address(page), page_size(page),
153 KASAN_SLAB_REDZONE, false);
154 }
155
__kasan_unpoison_new_object(struct kmem_cache * cache,void * object)156 void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object)
157 {
158 kasan_unpoison(object, cache->object_size, false);
159 }
160
__kasan_poison_new_object(struct kmem_cache * cache,void * object)161 void __kasan_poison_new_object(struct kmem_cache *cache, void *object)
162 {
163 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
164 KASAN_SLAB_REDZONE, false);
165 }
166
167 /*
168 * This function assigns a tag to an object considering the following:
169 * 1. A cache might have a constructor, which might save a pointer to a slab
170 * object somewhere (e.g. in the object itself). We preassign a tag for
171 * each object in caches with constructors during slab creation and reuse
172 * the same tag each time a particular object is allocated.
173 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
174 * accessed after being freed. We preassign tags for objects in these
175 * caches as well.
176 */
assign_tag(struct kmem_cache * cache,const void * object,bool init)177 static inline u8 assign_tag(struct kmem_cache *cache,
178 const void *object, bool init)
179 {
180 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
181 return 0xff;
182
183 /*
184 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
185 * set, assign a tag when the object is being allocated (init == false).
186 */
187 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
188 return init ? KASAN_TAG_KERNEL : kasan_random_tag();
189
190 /*
191 * For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU,
192 * assign a random tag during slab creation, otherwise reuse
193 * the already assigned tag.
194 */
195 return init ? kasan_random_tag() : get_tag(object);
196 }
197
__kasan_init_slab_obj(struct kmem_cache * cache,const void * object)198 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
199 const void *object)
200 {
201 /* Initialize per-object metadata if it is present. */
202 if (kasan_requires_meta())
203 kasan_init_object_meta(cache, object);
204
205 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
206 object = set_tag(object, assign_tag(cache, object, true));
207
208 return (void *)object;
209 }
210
211 /* Returns true when freeing the object is not safe. */
check_slab_allocation(struct kmem_cache * cache,void * object,unsigned long ip)212 static bool check_slab_allocation(struct kmem_cache *cache, void *object,
213 unsigned long ip)
214 {
215 void *tagged_object = object;
216
217 object = kasan_reset_tag(object);
218
219 if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) {
220 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
221 return true;
222 }
223
224 if (!kasan_byte_accessible(tagged_object)) {
225 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
226 return true;
227 }
228
229 return false;
230 }
231
poison_slab_object(struct kmem_cache * cache,void * object,bool init)232 static inline void poison_slab_object(struct kmem_cache *cache, void *object,
233 bool init)
234 {
235 void *tagged_object = object;
236
237 object = kasan_reset_tag(object);
238
239 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
240 KASAN_SLAB_FREE, init);
241
242 if (kasan_stack_collection_enabled())
243 kasan_save_free_info(cache, tagged_object);
244 }
245
__kasan_slab_pre_free(struct kmem_cache * cache,void * object,unsigned long ip)246 bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object,
247 unsigned long ip)
248 {
249 if (!kasan_arch_is_ready() || is_kfence_address(object))
250 return false;
251 return check_slab_allocation(cache, object, ip);
252 }
253
__kasan_slab_free(struct kmem_cache * cache,void * object,bool init,bool still_accessible)254 bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
255 bool still_accessible)
256 {
257 if (!kasan_arch_is_ready() || is_kfence_address(object))
258 return false;
259
260 /*
261 * If this point is reached with an object that must still be
262 * accessible under RCU, we can't poison it; in that case, also skip the
263 * quarantine. This should mostly only happen when CONFIG_SLUB_RCU_DEBUG
264 * has been disabled manually.
265 *
266 * Putting the object on the quarantine wouldn't help catch UAFs (since
267 * we can't poison it here), and it would mask bugs caused by
268 * SLAB_TYPESAFE_BY_RCU users not being careful enough about object
269 * reuse; so overall, putting the object into the quarantine here would
270 * be counterproductive.
271 */
272 if (still_accessible)
273 return false;
274
275 poison_slab_object(cache, object, init);
276
277 /*
278 * If the object is put into quarantine, do not let slab put the object
279 * onto the freelist for now. The object's metadata is kept until the
280 * object gets evicted from quarantine.
281 */
282 if (kasan_quarantine_put(cache, object))
283 return true;
284
285 /*
286 * Note: Keep per-object metadata to allow KASAN print stack traces for
287 * use-after-free-before-realloc bugs.
288 */
289
290 /* Let slab put the object onto the freelist. */
291 return false;
292 }
293
check_page_allocation(void * ptr,unsigned long ip)294 static inline bool check_page_allocation(void *ptr, unsigned long ip)
295 {
296 if (!kasan_arch_is_ready())
297 return false;
298
299 if (ptr != page_address(virt_to_head_page(ptr))) {
300 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
301 return true;
302 }
303
304 if (!kasan_byte_accessible(ptr)) {
305 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
306 return true;
307 }
308
309 return false;
310 }
311
__kasan_kfree_large(void * ptr,unsigned long ip)312 void __kasan_kfree_large(void *ptr, unsigned long ip)
313 {
314 check_page_allocation(ptr, ip);
315
316 /* The object will be poisoned by kasan_poison_pages(). */
317 }
318
unpoison_slab_object(struct kmem_cache * cache,void * object,gfp_t flags,bool init)319 static inline void unpoison_slab_object(struct kmem_cache *cache, void *object,
320 gfp_t flags, bool init)
321 {
322 /*
323 * Unpoison the whole object. For kmalloc() allocations,
324 * poison_kmalloc_redzone() will do precise poisoning.
325 */
326 kasan_unpoison(object, cache->object_size, init);
327
328 /* Save alloc info (if possible) for non-kmalloc() allocations. */
329 if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))
330 kasan_save_alloc_info(cache, object, flags);
331 }
332
__kasan_slab_alloc(struct kmem_cache * cache,void * object,gfp_t flags,bool init)333 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
334 void *object, gfp_t flags, bool init)
335 {
336 u8 tag;
337 void *tagged_object;
338
339 if (gfpflags_allow_blocking(flags))
340 kasan_quarantine_reduce();
341
342 if (unlikely(object == NULL))
343 return NULL;
344
345 if (is_kfence_address(object))
346 return (void *)object;
347
348 /*
349 * Generate and assign random tag for tag-based modes.
350 * Tag is ignored in set_tag() for the generic mode.
351 */
352 tag = assign_tag(cache, object, false);
353 tagged_object = set_tag(object, tag);
354
355 /* Unpoison the object and save alloc info for non-kmalloc() allocations. */
356 unpoison_slab_object(cache, tagged_object, flags, init);
357
358 return tagged_object;
359 }
360
poison_kmalloc_redzone(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)361 static inline void poison_kmalloc_redzone(struct kmem_cache *cache,
362 const void *object, size_t size, gfp_t flags)
363 {
364 unsigned long redzone_start;
365 unsigned long redzone_end;
366
367 /*
368 * The redzone has byte-level precision for the generic mode.
369 * Partially poison the last object granule to cover the unaligned
370 * part of the redzone.
371 */
372 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
373 kasan_poison_last_granule((void *)object, size);
374
375 /* Poison the aligned part of the redzone. */
376 redzone_start = round_up((unsigned long)(object + size),
377 KASAN_GRANULE_SIZE);
378 redzone_end = round_up((unsigned long)(object + cache->object_size),
379 KASAN_GRANULE_SIZE);
380 kasan_poison((void *)redzone_start, redzone_end - redzone_start,
381 KASAN_SLAB_REDZONE, false);
382
383 /*
384 * Save alloc info (if possible) for kmalloc() allocations.
385 * This also rewrites the alloc info when called from kasan_krealloc().
386 */
387 if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache))
388 kasan_save_alloc_info(cache, (void *)object, flags);
389
390 }
391
__kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)392 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
393 size_t size, gfp_t flags)
394 {
395 if (gfpflags_allow_blocking(flags))
396 kasan_quarantine_reduce();
397
398 if (unlikely(object == NULL))
399 return NULL;
400
401 if (is_kfence_address(object))
402 return (void *)object;
403
404 /* The object has already been unpoisoned by kasan_slab_alloc(). */
405 poison_kmalloc_redzone(cache, object, size, flags);
406
407 /* Keep the tag that was set by kasan_slab_alloc(). */
408 return (void *)object;
409 }
410 EXPORT_SYMBOL(__kasan_kmalloc);
411
poison_kmalloc_large_redzone(const void * ptr,size_t size,gfp_t flags)412 static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size,
413 gfp_t flags)
414 {
415 unsigned long redzone_start;
416 unsigned long redzone_end;
417
418 /*
419 * The redzone has byte-level precision for the generic mode.
420 * Partially poison the last object granule to cover the unaligned
421 * part of the redzone.
422 */
423 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
424 kasan_poison_last_granule(ptr, size);
425
426 /* Poison the aligned part of the redzone. */
427 redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE);
428 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
429 kasan_poison((void *)redzone_start, redzone_end - redzone_start,
430 KASAN_PAGE_REDZONE, false);
431 }
432
__kasan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)433 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
434 gfp_t flags)
435 {
436 if (gfpflags_allow_blocking(flags))
437 kasan_quarantine_reduce();
438
439 if (unlikely(ptr == NULL))
440 return NULL;
441
442 /* The object has already been unpoisoned by kasan_unpoison_pages(). */
443 poison_kmalloc_large_redzone(ptr, size, flags);
444
445 /* Keep the tag that was set by alloc_pages(). */
446 return (void *)ptr;
447 }
448
__kasan_krealloc(const void * object,size_t size,gfp_t flags)449 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
450 {
451 struct slab *slab;
452
453 if (gfpflags_allow_blocking(flags))
454 kasan_quarantine_reduce();
455
456 if (unlikely(object == ZERO_SIZE_PTR))
457 return (void *)object;
458
459 if (is_kfence_address(object))
460 return (void *)object;
461
462 /*
463 * Unpoison the object's data.
464 * Part of it might already have been unpoisoned, but it's unknown
465 * how big that part is.
466 */
467 kasan_unpoison(object, size, false);
468
469 slab = virt_to_slab(object);
470
471 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */
472 if (unlikely(!slab))
473 poison_kmalloc_large_redzone(object, size, flags);
474 else
475 poison_kmalloc_redzone(slab->slab_cache, object, size, flags);
476
477 return (void *)object;
478 }
479
__kasan_mempool_poison_pages(struct page * page,unsigned int order,unsigned long ip)480 bool __kasan_mempool_poison_pages(struct page *page, unsigned int order,
481 unsigned long ip)
482 {
483 unsigned long *ptr;
484
485 if (unlikely(PageHighMem(page)))
486 return true;
487
488 /* Bail out if allocation was excluded due to sampling. */
489 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
490 page_kasan_tag(page) == KASAN_TAG_KERNEL)
491 return true;
492
493 ptr = page_address(page);
494
495 if (check_page_allocation(ptr, ip))
496 return false;
497
498 kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false);
499
500 return true;
501 }
502
__kasan_mempool_unpoison_pages(struct page * page,unsigned int order,unsigned long ip)503 void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order,
504 unsigned long ip)
505 {
506 __kasan_unpoison_pages(page, order, false);
507 }
508
__kasan_mempool_poison_object(void * ptr,unsigned long ip)509 bool __kasan_mempool_poison_object(void *ptr, unsigned long ip)
510 {
511 struct folio *folio = virt_to_folio(ptr);
512 struct slab *slab;
513
514 /*
515 * This function can be called for large kmalloc allocation that get
516 * their memory from page_alloc. Thus, the folio might not be a slab.
517 */
518 if (unlikely(!folio_test_slab(folio))) {
519 if (check_page_allocation(ptr, ip))
520 return false;
521 kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
522 return true;
523 }
524
525 if (is_kfence_address(ptr) || !kasan_arch_is_ready())
526 return true;
527
528 slab = folio_slab(folio);
529
530 if (check_slab_allocation(slab->slab_cache, ptr, ip))
531 return false;
532
533 poison_slab_object(slab->slab_cache, ptr, false);
534 return true;
535 }
536
__kasan_mempool_unpoison_object(void * ptr,size_t size,unsigned long ip)537 void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip)
538 {
539 struct slab *slab;
540 gfp_t flags = 0; /* Might be executing under a lock. */
541
542 slab = virt_to_slab(ptr);
543
544 /*
545 * This function can be called for large kmalloc allocation that get
546 * their memory from page_alloc.
547 */
548 if (unlikely(!slab)) {
549 kasan_unpoison(ptr, size, false);
550 poison_kmalloc_large_redzone(ptr, size, flags);
551 return;
552 }
553
554 if (is_kfence_address(ptr))
555 return;
556
557 /* Unpoison the object and save alloc info for non-kmalloc() allocations. */
558 unpoison_slab_object(slab->slab_cache, ptr, flags, false);
559
560 /* Poison the redzone and save alloc info for kmalloc() allocations. */
561 if (is_kmalloc_cache(slab->slab_cache))
562 poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags);
563 }
564
__kasan_check_byte(const void * address,unsigned long ip)565 bool __kasan_check_byte(const void *address, unsigned long ip)
566 {
567 if (!kasan_byte_accessible(address)) {
568 kasan_report(address, 1, false, ip);
569 return false;
570 }
571 return true;
572 }
573