1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43 
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46 
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65 
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88 
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92 
93 /*
94  * Helper function used to manage commit timeouts
95  */
96 
commit_timeout(unsigned long __data)97 static void commit_timeout(unsigned long __data)
98 {
99 	struct task_struct * p = (struct task_struct *) __data;
100 
101 	wake_up_process(p);
102 }
103 
104 /*
105  * kjournald: The main thread function used to manage a logging device
106  * journal.
107  *
108  * This kernel thread is responsible for two things:
109  *
110  * 1) COMMIT:  Every so often we need to commit the current state of the
111  *    filesystem to disk.  The journal thread is responsible for writing
112  *    all of the metadata buffers to disk.
113  *
114  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115  *    of the data in that part of the log has been rewritten elsewhere on
116  *    the disk.  Flushing these old buffers to reclaim space in the log is
117  *    known as checkpointing, and this thread is responsible for that job.
118  */
119 
kjournald(void * arg)120 static int kjournald(void *arg)
121 {
122 	journal_t *journal = arg;
123 	transaction_t *transaction;
124 
125 	/*
126 	 * Set up an interval timer which can be used to trigger a commit wakeup
127 	 * after the commit interval expires
128 	 */
129 	setup_timer(&journal->j_commit_timer, commit_timeout,
130 			(unsigned long)current);
131 
132 	/* Record that the journal thread is running */
133 	journal->j_task = current;
134 	wake_up(&journal->j_wait_done_commit);
135 
136 	printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
137 			journal->j_commit_interval / HZ);
138 
139 	/*
140 	 * And now, wait forever for commit wakeup events.
141 	 */
142 	spin_lock(&journal->j_state_lock);
143 
144 loop:
145 	if (journal->j_flags & JFS_UNMOUNT)
146 		goto end_loop;
147 
148 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
149 		journal->j_commit_sequence, journal->j_commit_request);
150 
151 	if (journal->j_commit_sequence != journal->j_commit_request) {
152 		jbd_debug(1, "OK, requests differ\n");
153 		spin_unlock(&journal->j_state_lock);
154 		del_timer_sync(&journal->j_commit_timer);
155 		journal_commit_transaction(journal);
156 		spin_lock(&journal->j_state_lock);
157 		goto loop;
158 	}
159 
160 	wake_up(&journal->j_wait_done_commit);
161 	if (freezing(current)) {
162 		/*
163 		 * The simpler the better. Flushing journal isn't a
164 		 * good idea, because that depends on threads that may
165 		 * be already stopped.
166 		 */
167 		jbd_debug(1, "Now suspending kjournald\n");
168 		spin_unlock(&journal->j_state_lock);
169 		try_to_freeze();
170 		spin_lock(&journal->j_state_lock);
171 	} else {
172 		/*
173 		 * We assume on resume that commits are already there,
174 		 * so we don't sleep
175 		 */
176 		DEFINE_WAIT(wait);
177 		int should_sleep = 1;
178 
179 		prepare_to_wait(&journal->j_wait_commit, &wait,
180 				TASK_INTERRUPTIBLE);
181 		if (journal->j_commit_sequence != journal->j_commit_request)
182 			should_sleep = 0;
183 		transaction = journal->j_running_transaction;
184 		if (transaction && time_after_eq(jiffies,
185 						transaction->t_expires))
186 			should_sleep = 0;
187 		if (journal->j_flags & JFS_UNMOUNT)
188 			should_sleep = 0;
189 		if (should_sleep) {
190 			spin_unlock(&journal->j_state_lock);
191 			schedule();
192 			spin_lock(&journal->j_state_lock);
193 		}
194 		finish_wait(&journal->j_wait_commit, &wait);
195 	}
196 
197 	jbd_debug(1, "kjournald wakes\n");
198 
199 	/*
200 	 * Were we woken up by a commit wakeup event?
201 	 */
202 	transaction = journal->j_running_transaction;
203 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
204 		journal->j_commit_request = transaction->t_tid;
205 		jbd_debug(1, "woke because of timeout\n");
206 	}
207 	goto loop;
208 
209 end_loop:
210 	spin_unlock(&journal->j_state_lock);
211 	del_timer_sync(&journal->j_commit_timer);
212 	journal->j_task = NULL;
213 	wake_up(&journal->j_wait_done_commit);
214 	jbd_debug(1, "Journal thread exiting.\n");
215 	return 0;
216 }
217 
journal_start_thread(journal_t * journal)218 static int journal_start_thread(journal_t *journal)
219 {
220 	struct task_struct *t;
221 
222 	t = kthread_run(kjournald, journal, "kjournald");
223 	if (IS_ERR(t))
224 		return PTR_ERR(t);
225 
226 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
227 	return 0;
228 }
229 
journal_kill_thread(journal_t * journal)230 static void journal_kill_thread(journal_t *journal)
231 {
232 	spin_lock(&journal->j_state_lock);
233 	journal->j_flags |= JFS_UNMOUNT;
234 
235 	while (journal->j_task) {
236 		wake_up(&journal->j_wait_commit);
237 		spin_unlock(&journal->j_state_lock);
238 		wait_event(journal->j_wait_done_commit,
239 				journal->j_task == NULL);
240 		spin_lock(&journal->j_state_lock);
241 	}
242 	spin_unlock(&journal->j_state_lock);
243 }
244 
245 /*
246  * journal_write_metadata_buffer: write a metadata buffer to the journal.
247  *
248  * Writes a metadata buffer to a given disk block.  The actual IO is not
249  * performed but a new buffer_head is constructed which labels the data
250  * to be written with the correct destination disk block.
251  *
252  * Any magic-number escaping which needs to be done will cause a
253  * copy-out here.  If the buffer happens to start with the
254  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
255  * magic number is only written to the log for descripter blocks.  In
256  * this case, we copy the data and replace the first word with 0, and we
257  * return a result code which indicates that this buffer needs to be
258  * marked as an escaped buffer in the corresponding log descriptor
259  * block.  The missing word can then be restored when the block is read
260  * during recovery.
261  *
262  * If the source buffer has already been modified by a new transaction
263  * since we took the last commit snapshot, we use the frozen copy of
264  * that data for IO.  If we end up using the existing buffer_head's data
265  * for the write, then we *have* to lock the buffer to prevent anyone
266  * else from using and possibly modifying it while the IO is in
267  * progress.
268  *
269  * The function returns a pointer to the buffer_heads to be used for IO.
270  *
271  * We assume that the journal has already been locked in this function.
272  *
273  * Return value:
274  *  <0: Error
275  * >=0: Finished OK
276  *
277  * On success:
278  * Bit 0 set == escape performed on the data
279  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
280  */
281 
journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct journal_head ** jh_out,unsigned int blocknr)282 int journal_write_metadata_buffer(transaction_t *transaction,
283 				  struct journal_head  *jh_in,
284 				  struct journal_head **jh_out,
285 				  unsigned int blocknr)
286 {
287 	int need_copy_out = 0;
288 	int done_copy_out = 0;
289 	int do_escape = 0;
290 	char *mapped_data;
291 	struct buffer_head *new_bh;
292 	struct journal_head *new_jh;
293 	struct page *new_page;
294 	unsigned int new_offset;
295 	struct buffer_head *bh_in = jh2bh(jh_in);
296 	journal_t *journal = transaction->t_journal;
297 
298 	/*
299 	 * The buffer really shouldn't be locked: only the current committing
300 	 * transaction is allowed to write it, so nobody else is allowed
301 	 * to do any IO.
302 	 *
303 	 * akpm: except if we're journalling data, and write() output is
304 	 * also part of a shared mapping, and another thread has
305 	 * decided to launch a writepage() against this buffer.
306 	 */
307 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
308 
309 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
310 	/* keep subsequent assertions sane */
311 	new_bh->b_state = 0;
312 	init_buffer(new_bh, NULL, NULL);
313 	atomic_set(&new_bh->b_count, 1);
314 	new_jh = journal_add_journal_head(new_bh);	/* This sleeps */
315 
316 	/*
317 	 * If a new transaction has already done a buffer copy-out, then
318 	 * we use that version of the data for the commit.
319 	 */
320 	jbd_lock_bh_state(bh_in);
321 repeat:
322 	if (jh_in->b_frozen_data) {
323 		done_copy_out = 1;
324 		new_page = virt_to_page(jh_in->b_frozen_data);
325 		new_offset = offset_in_page(jh_in->b_frozen_data);
326 	} else {
327 		new_page = jh2bh(jh_in)->b_page;
328 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
329 	}
330 
331 	mapped_data = kmap_atomic(new_page, KM_USER0);
332 	/*
333 	 * Check for escaping
334 	 */
335 	if (*((__be32 *)(mapped_data + new_offset)) ==
336 				cpu_to_be32(JFS_MAGIC_NUMBER)) {
337 		need_copy_out = 1;
338 		do_escape = 1;
339 	}
340 	kunmap_atomic(mapped_data, KM_USER0);
341 
342 	/*
343 	 * Do we need to do a data copy?
344 	 */
345 	if (need_copy_out && !done_copy_out) {
346 		char *tmp;
347 
348 		jbd_unlock_bh_state(bh_in);
349 		tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
350 		jbd_lock_bh_state(bh_in);
351 		if (jh_in->b_frozen_data) {
352 			jbd_free(tmp, bh_in->b_size);
353 			goto repeat;
354 		}
355 
356 		jh_in->b_frozen_data = tmp;
357 		mapped_data = kmap_atomic(new_page, KM_USER0);
358 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
359 		kunmap_atomic(mapped_data, KM_USER0);
360 
361 		new_page = virt_to_page(tmp);
362 		new_offset = offset_in_page(tmp);
363 		done_copy_out = 1;
364 	}
365 
366 	/*
367 	 * Did we need to do an escaping?  Now we've done all the
368 	 * copying, we can finally do so.
369 	 */
370 	if (do_escape) {
371 		mapped_data = kmap_atomic(new_page, KM_USER0);
372 		*((unsigned int *)(mapped_data + new_offset)) = 0;
373 		kunmap_atomic(mapped_data, KM_USER0);
374 	}
375 
376 	set_bh_page(new_bh, new_page, new_offset);
377 	new_jh->b_transaction = NULL;
378 	new_bh->b_size = jh2bh(jh_in)->b_size;
379 	new_bh->b_bdev = transaction->t_journal->j_dev;
380 	new_bh->b_blocknr = blocknr;
381 	set_buffer_mapped(new_bh);
382 	set_buffer_dirty(new_bh);
383 
384 	*jh_out = new_jh;
385 
386 	/*
387 	 * The to-be-written buffer needs to get moved to the io queue,
388 	 * and the original buffer whose contents we are shadowing or
389 	 * copying is moved to the transaction's shadow queue.
390 	 */
391 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
392 	spin_lock(&journal->j_list_lock);
393 	__journal_file_buffer(jh_in, transaction, BJ_Shadow);
394 	spin_unlock(&journal->j_list_lock);
395 	jbd_unlock_bh_state(bh_in);
396 
397 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
398 	journal_file_buffer(new_jh, transaction, BJ_IO);
399 
400 	return do_escape | (done_copy_out << 1);
401 }
402 
403 /*
404  * Allocation code for the journal file.  Manage the space left in the
405  * journal, so that we can begin checkpointing when appropriate.
406  */
407 
408 /*
409  * __log_space_left: Return the number of free blocks left in the journal.
410  *
411  * Called with the journal already locked.
412  *
413  * Called under j_state_lock
414  */
415 
__log_space_left(journal_t * journal)416 int __log_space_left(journal_t *journal)
417 {
418 	int left = journal->j_free;
419 
420 	assert_spin_locked(&journal->j_state_lock);
421 
422 	/*
423 	 * Be pessimistic here about the number of those free blocks which
424 	 * might be required for log descriptor control blocks.
425 	 */
426 
427 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
428 
429 	left -= MIN_LOG_RESERVED_BLOCKS;
430 
431 	if (left <= 0)
432 		return 0;
433 	left -= (left >> 3);
434 	return left;
435 }
436 
437 /*
438  * Called under j_state_lock.  Returns true if a transaction commit was started.
439  */
__log_start_commit(journal_t * journal,tid_t target)440 int __log_start_commit(journal_t *journal, tid_t target)
441 {
442 	/*
443 	 * The only transaction we can possibly wait upon is the
444 	 * currently running transaction (if it exists).  Otherwise,
445 	 * the target tid must be an old one.
446 	 */
447 	if (journal->j_running_transaction &&
448 	    journal->j_running_transaction->t_tid == target) {
449 		/*
450 		 * We want a new commit: OK, mark the request and wakeup the
451 		 * commit thread.  We do _not_ do the commit ourselves.
452 		 */
453 
454 		journal->j_commit_request = target;
455 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
456 			  journal->j_commit_request,
457 			  journal->j_commit_sequence);
458 		wake_up(&journal->j_wait_commit);
459 		return 1;
460 	} else if (!tid_geq(journal->j_commit_request, target))
461 		/* This should never happen, but if it does, preserve
462 		   the evidence before kjournald goes into a loop and
463 		   increments j_commit_sequence beyond all recognition. */
464 		WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
465 		    journal->j_commit_request, journal->j_commit_sequence,
466 		    target, journal->j_running_transaction ?
467 		    journal->j_running_transaction->t_tid : 0);
468 	return 0;
469 }
470 
log_start_commit(journal_t * journal,tid_t tid)471 int log_start_commit(journal_t *journal, tid_t tid)
472 {
473 	int ret;
474 
475 	spin_lock(&journal->j_state_lock);
476 	ret = __log_start_commit(journal, tid);
477 	spin_unlock(&journal->j_state_lock);
478 	return ret;
479 }
480 
481 /*
482  * Force and wait upon a commit if the calling process is not within
483  * transaction.  This is used for forcing out undo-protected data which contains
484  * bitmaps, when the fs is running out of space.
485  *
486  * We can only force the running transaction if we don't have an active handle;
487  * otherwise, we will deadlock.
488  *
489  * Returns true if a transaction was started.
490  */
journal_force_commit_nested(journal_t * journal)491 int journal_force_commit_nested(journal_t *journal)
492 {
493 	transaction_t *transaction = NULL;
494 	tid_t tid;
495 
496 	spin_lock(&journal->j_state_lock);
497 	if (journal->j_running_transaction && !current->journal_info) {
498 		transaction = journal->j_running_transaction;
499 		__log_start_commit(journal, transaction->t_tid);
500 	} else if (journal->j_committing_transaction)
501 		transaction = journal->j_committing_transaction;
502 
503 	if (!transaction) {
504 		spin_unlock(&journal->j_state_lock);
505 		return 0;	/* Nothing to retry */
506 	}
507 
508 	tid = transaction->t_tid;
509 	spin_unlock(&journal->j_state_lock);
510 	log_wait_commit(journal, tid);
511 	return 1;
512 }
513 
514 /*
515  * Start a commit of the current running transaction (if any).  Returns true
516  * if a transaction is going to be committed (or is currently already
517  * committing), and fills its tid in at *ptid
518  */
journal_start_commit(journal_t * journal,tid_t * ptid)519 int journal_start_commit(journal_t *journal, tid_t *ptid)
520 {
521 	int ret = 0;
522 
523 	spin_lock(&journal->j_state_lock);
524 	if (journal->j_running_transaction) {
525 		tid_t tid = journal->j_running_transaction->t_tid;
526 
527 		__log_start_commit(journal, tid);
528 		/* There's a running transaction and we've just made sure
529 		 * it's commit has been scheduled. */
530 		if (ptid)
531 			*ptid = tid;
532 		ret = 1;
533 	} else if (journal->j_committing_transaction) {
534 		/*
535 		 * If ext3_write_super() recently started a commit, then we
536 		 * have to wait for completion of that transaction
537 		 */
538 		if (ptid)
539 			*ptid = journal->j_committing_transaction->t_tid;
540 		ret = 1;
541 	}
542 	spin_unlock(&journal->j_state_lock);
543 	return ret;
544 }
545 
546 /*
547  * Wait for a specified commit to complete.
548  * The caller may not hold the journal lock.
549  */
log_wait_commit(journal_t * journal,tid_t tid)550 int log_wait_commit(journal_t *journal, tid_t tid)
551 {
552 	int err = 0;
553 
554 #ifdef CONFIG_JBD_DEBUG
555 	spin_lock(&journal->j_state_lock);
556 	if (!tid_geq(journal->j_commit_request, tid)) {
557 		printk(KERN_EMERG
558 		       "%s: error: j_commit_request=%d, tid=%d\n",
559 		       __func__, journal->j_commit_request, tid);
560 	}
561 	spin_unlock(&journal->j_state_lock);
562 #endif
563 	spin_lock(&journal->j_state_lock);
564 	while (tid_gt(tid, journal->j_commit_sequence)) {
565 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
566 				  tid, journal->j_commit_sequence);
567 		wake_up(&journal->j_wait_commit);
568 		spin_unlock(&journal->j_state_lock);
569 		wait_event(journal->j_wait_done_commit,
570 				!tid_gt(tid, journal->j_commit_sequence));
571 		spin_lock(&journal->j_state_lock);
572 	}
573 	spin_unlock(&journal->j_state_lock);
574 
575 	if (unlikely(is_journal_aborted(journal))) {
576 		printk(KERN_EMERG "journal commit I/O error\n");
577 		err = -EIO;
578 	}
579 	return err;
580 }
581 
582 /*
583  * Return 1 if a given transaction has not yet sent barrier request
584  * connected with a transaction commit. If 0 is returned, transaction
585  * may or may not have sent the barrier. Used to avoid sending barrier
586  * twice in common cases.
587  */
journal_trans_will_send_data_barrier(journal_t * journal,tid_t tid)588 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
589 {
590 	int ret = 0;
591 	transaction_t *commit_trans;
592 
593 	if (!(journal->j_flags & JFS_BARRIER))
594 		return 0;
595 	spin_lock(&journal->j_state_lock);
596 	/* Transaction already committed? */
597 	if (tid_geq(journal->j_commit_sequence, tid))
598 		goto out;
599 	/*
600 	 * Transaction is being committed and we already proceeded to
601 	 * writing commit record?
602 	 */
603 	commit_trans = journal->j_committing_transaction;
604 	if (commit_trans && commit_trans->t_tid == tid &&
605 	    commit_trans->t_state >= T_COMMIT_RECORD)
606 		goto out;
607 	ret = 1;
608 out:
609 	spin_unlock(&journal->j_state_lock);
610 	return ret;
611 }
612 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
613 
614 /*
615  * Log buffer allocation routines:
616  */
617 
journal_next_log_block(journal_t * journal,unsigned int * retp)618 int journal_next_log_block(journal_t *journal, unsigned int *retp)
619 {
620 	unsigned int blocknr;
621 
622 	spin_lock(&journal->j_state_lock);
623 	J_ASSERT(journal->j_free > 1);
624 
625 	blocknr = journal->j_head;
626 	journal->j_head++;
627 	journal->j_free--;
628 	if (journal->j_head == journal->j_last)
629 		journal->j_head = journal->j_first;
630 	spin_unlock(&journal->j_state_lock);
631 	return journal_bmap(journal, blocknr, retp);
632 }
633 
634 /*
635  * Conversion of logical to physical block numbers for the journal
636  *
637  * On external journals the journal blocks are identity-mapped, so
638  * this is a no-op.  If needed, we can use j_blk_offset - everything is
639  * ready.
640  */
journal_bmap(journal_t * journal,unsigned int blocknr,unsigned int * retp)641 int journal_bmap(journal_t *journal, unsigned int blocknr,
642 		 unsigned int *retp)
643 {
644 	int err = 0;
645 	unsigned int ret;
646 
647 	if (journal->j_inode) {
648 		ret = bmap(journal->j_inode, blocknr);
649 		if (ret)
650 			*retp = ret;
651 		else {
652 			char b[BDEVNAME_SIZE];
653 
654 			printk(KERN_ALERT "%s: journal block not found "
655 					"at offset %u on %s\n",
656 				__func__,
657 				blocknr,
658 				bdevname(journal->j_dev, b));
659 			err = -EIO;
660 			__journal_abort_soft(journal, err);
661 		}
662 	} else {
663 		*retp = blocknr; /* +journal->j_blk_offset */
664 	}
665 	return err;
666 }
667 
668 /*
669  * We play buffer_head aliasing tricks to write data/metadata blocks to
670  * the journal without copying their contents, but for journal
671  * descriptor blocks we do need to generate bona fide buffers.
672  *
673  * After the caller of journal_get_descriptor_buffer() has finished modifying
674  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
675  * But we don't bother doing that, so there will be coherency problems with
676  * mmaps of blockdevs which hold live JBD-controlled filesystems.
677  */
journal_get_descriptor_buffer(journal_t * journal)678 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
679 {
680 	struct buffer_head *bh;
681 	unsigned int blocknr;
682 	int err;
683 
684 	err = journal_next_log_block(journal, &blocknr);
685 
686 	if (err)
687 		return NULL;
688 
689 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
690 	if (!bh)
691 		return NULL;
692 	lock_buffer(bh);
693 	memset(bh->b_data, 0, journal->j_blocksize);
694 	set_buffer_uptodate(bh);
695 	unlock_buffer(bh);
696 	BUFFER_TRACE(bh, "return this buffer");
697 	return journal_add_journal_head(bh);
698 }
699 
700 /*
701  * Management for journal control blocks: functions to create and
702  * destroy journal_t structures, and to initialise and read existing
703  * journal blocks from disk.  */
704 
705 /* First: create and setup a journal_t object in memory.  We initialise
706  * very few fields yet: that has to wait until we have created the
707  * journal structures from from scratch, or loaded them from disk. */
708 
journal_init_common(void)709 static journal_t * journal_init_common (void)
710 {
711 	journal_t *journal;
712 	int err;
713 
714 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
715 	if (!journal)
716 		goto fail;
717 
718 	init_waitqueue_head(&journal->j_wait_transaction_locked);
719 	init_waitqueue_head(&journal->j_wait_logspace);
720 	init_waitqueue_head(&journal->j_wait_done_commit);
721 	init_waitqueue_head(&journal->j_wait_checkpoint);
722 	init_waitqueue_head(&journal->j_wait_commit);
723 	init_waitqueue_head(&journal->j_wait_updates);
724 	mutex_init(&journal->j_checkpoint_mutex);
725 	spin_lock_init(&journal->j_revoke_lock);
726 	spin_lock_init(&journal->j_list_lock);
727 	spin_lock_init(&journal->j_state_lock);
728 
729 	journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
730 
731 	/* The journal is marked for error until we succeed with recovery! */
732 	journal->j_flags = JFS_ABORT;
733 
734 	/* Set up a default-sized revoke table for the new mount. */
735 	err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
736 	if (err) {
737 		kfree(journal);
738 		goto fail;
739 	}
740 	return journal;
741 fail:
742 	return NULL;
743 }
744 
745 /* journal_init_dev and journal_init_inode:
746  *
747  * Create a journal structure assigned some fixed set of disk blocks to
748  * the journal.  We don't actually touch those disk blocks yet, but we
749  * need to set up all of the mapping information to tell the journaling
750  * system where the journal blocks are.
751  *
752  */
753 
754 /**
755  *  journal_t * journal_init_dev() - creates and initialises a journal structure
756  *  @bdev: Block device on which to create the journal
757  *  @fs_dev: Device which hold journalled filesystem for this journal.
758  *  @start: Block nr Start of journal.
759  *  @len:  Length of the journal in blocks.
760  *  @blocksize: blocksize of journalling device
761  *
762  *  Returns: a newly created journal_t *
763  *
764  *  journal_init_dev creates a journal which maps a fixed contiguous
765  *  range of blocks on an arbitrary block device.
766  *
767  */
journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,int start,int len,int blocksize)768 journal_t * journal_init_dev(struct block_device *bdev,
769 			struct block_device *fs_dev,
770 			int start, int len, int blocksize)
771 {
772 	journal_t *journal = journal_init_common();
773 	struct buffer_head *bh;
774 	int n;
775 
776 	if (!journal)
777 		return NULL;
778 
779 	/* journal descriptor can store up to n blocks -bzzz */
780 	journal->j_blocksize = blocksize;
781 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
782 	journal->j_wbufsize = n;
783 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
784 	if (!journal->j_wbuf) {
785 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
786 			__func__);
787 		goto out_err;
788 	}
789 	journal->j_dev = bdev;
790 	journal->j_fs_dev = fs_dev;
791 	journal->j_blk_offset = start;
792 	journal->j_maxlen = len;
793 
794 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
795 	if (!bh) {
796 		printk(KERN_ERR
797 		       "%s: Cannot get buffer for journal superblock\n",
798 		       __func__);
799 		goto out_err;
800 	}
801 	journal->j_sb_buffer = bh;
802 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
803 
804 	return journal;
805 out_err:
806 	kfree(journal->j_wbuf);
807 	kfree(journal);
808 	return NULL;
809 }
810 
811 /**
812  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
813  *  @inode: An inode to create the journal in
814  *
815  * journal_init_inode creates a journal which maps an on-disk inode as
816  * the journal.  The inode must exist already, must support bmap() and
817  * must have all data blocks preallocated.
818  */
journal_init_inode(struct inode * inode)819 journal_t * journal_init_inode (struct inode *inode)
820 {
821 	struct buffer_head *bh;
822 	journal_t *journal = journal_init_common();
823 	int err;
824 	int n;
825 	unsigned int blocknr;
826 
827 	if (!journal)
828 		return NULL;
829 
830 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
831 	journal->j_inode = inode;
832 	jbd_debug(1,
833 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
834 		  journal, inode->i_sb->s_id, inode->i_ino,
835 		  (long long) inode->i_size,
836 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
837 
838 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
839 	journal->j_blocksize = inode->i_sb->s_blocksize;
840 
841 	/* journal descriptor can store up to n blocks -bzzz */
842 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
843 	journal->j_wbufsize = n;
844 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
845 	if (!journal->j_wbuf) {
846 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
847 			__func__);
848 		goto out_err;
849 	}
850 
851 	err = journal_bmap(journal, 0, &blocknr);
852 	/* If that failed, give up */
853 	if (err) {
854 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
855 		       __func__);
856 		goto out_err;
857 	}
858 
859 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
860 	if (!bh) {
861 		printk(KERN_ERR
862 		       "%s: Cannot get buffer for journal superblock\n",
863 		       __func__);
864 		goto out_err;
865 	}
866 	journal->j_sb_buffer = bh;
867 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
868 
869 	return journal;
870 out_err:
871 	kfree(journal->j_wbuf);
872 	kfree(journal);
873 	return NULL;
874 }
875 
876 /*
877  * If the journal init or create aborts, we need to mark the journal
878  * superblock as being NULL to prevent the journal destroy from writing
879  * back a bogus superblock.
880  */
journal_fail_superblock(journal_t * journal)881 static void journal_fail_superblock (journal_t *journal)
882 {
883 	struct buffer_head *bh = journal->j_sb_buffer;
884 	brelse(bh);
885 	journal->j_sb_buffer = NULL;
886 }
887 
888 /*
889  * Given a journal_t structure, initialise the various fields for
890  * startup of a new journaling session.  We use this both when creating
891  * a journal, and after recovering an old journal to reset it for
892  * subsequent use.
893  */
894 
journal_reset(journal_t * journal)895 static int journal_reset(journal_t *journal)
896 {
897 	journal_superblock_t *sb = journal->j_superblock;
898 	unsigned int first, last;
899 
900 	first = be32_to_cpu(sb->s_first);
901 	last = be32_to_cpu(sb->s_maxlen);
902 	if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
903 		printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
904 		       first, last);
905 		journal_fail_superblock(journal);
906 		return -EINVAL;
907 	}
908 
909 	journal->j_first = first;
910 	journal->j_last = last;
911 
912 	journal->j_head = first;
913 	journal->j_tail = first;
914 	journal->j_free = last - first;
915 
916 	journal->j_tail_sequence = journal->j_transaction_sequence;
917 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
918 	journal->j_commit_request = journal->j_commit_sequence;
919 
920 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
921 
922 	/* Add the dynamic fields and write it to disk. */
923 	journal_update_superblock(journal, 1);
924 	return journal_start_thread(journal);
925 }
926 
927 /**
928  * int journal_create() - Initialise the new journal file
929  * @journal: Journal to create. This structure must have been initialised
930  *
931  * Given a journal_t structure which tells us which disk blocks we can
932  * use, create a new journal superblock and initialise all of the
933  * journal fields from scratch.
934  **/
journal_create(journal_t * journal)935 int journal_create(journal_t *journal)
936 {
937 	unsigned int blocknr;
938 	struct buffer_head *bh;
939 	journal_superblock_t *sb;
940 	int i, err;
941 
942 	if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
943 		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
944 			journal->j_maxlen);
945 		journal_fail_superblock(journal);
946 		return -EINVAL;
947 	}
948 
949 	if (journal->j_inode == NULL) {
950 		/*
951 		 * We don't know what block to start at!
952 		 */
953 		printk(KERN_EMERG
954 		       "%s: creation of journal on external device!\n",
955 		       __func__);
956 		BUG();
957 	}
958 
959 	/* Zero out the entire journal on disk.  We cannot afford to
960 	   have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
961 	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
962 	for (i = 0; i < journal->j_maxlen; i++) {
963 		err = journal_bmap(journal, i, &blocknr);
964 		if (err)
965 			return err;
966 		bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
967 		if (unlikely(!bh))
968 			return -ENOMEM;
969 		lock_buffer(bh);
970 		memset (bh->b_data, 0, journal->j_blocksize);
971 		BUFFER_TRACE(bh, "marking dirty");
972 		mark_buffer_dirty(bh);
973 		BUFFER_TRACE(bh, "marking uptodate");
974 		set_buffer_uptodate(bh);
975 		unlock_buffer(bh);
976 		__brelse(bh);
977 	}
978 
979 	sync_blockdev(journal->j_dev);
980 	jbd_debug(1, "JBD: journal cleared.\n");
981 
982 	/* OK, fill in the initial static fields in the new superblock */
983 	sb = journal->j_superblock;
984 
985 	sb->s_header.h_magic	 = cpu_to_be32(JFS_MAGIC_NUMBER);
986 	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
987 
988 	sb->s_blocksize	= cpu_to_be32(journal->j_blocksize);
989 	sb->s_maxlen	= cpu_to_be32(journal->j_maxlen);
990 	sb->s_first	= cpu_to_be32(1);
991 
992 	journal->j_transaction_sequence = 1;
993 
994 	journal->j_flags &= ~JFS_ABORT;
995 	journal->j_format_version = 2;
996 
997 	return journal_reset(journal);
998 }
999 
1000 /**
1001  * void journal_update_superblock() - Update journal sb on disk.
1002  * @journal: The journal to update.
1003  * @wait: Set to '0' if you don't want to wait for IO completion.
1004  *
1005  * Update a journal's dynamic superblock fields and write it to disk,
1006  * optionally waiting for the IO to complete.
1007  */
journal_update_superblock(journal_t * journal,int wait)1008 void journal_update_superblock(journal_t *journal, int wait)
1009 {
1010 	journal_superblock_t *sb = journal->j_superblock;
1011 	struct buffer_head *bh = journal->j_sb_buffer;
1012 
1013 	/*
1014 	 * As a special case, if the on-disk copy is already marked as needing
1015 	 * no recovery (s_start == 0) and there are no outstanding transactions
1016 	 * in the filesystem, then we can safely defer the superblock update
1017 	 * until the next commit by setting JFS_FLUSHED.  This avoids
1018 	 * attempting a write to a potential-readonly device.
1019 	 */
1020 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1021 				journal->j_transaction_sequence) {
1022 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1023 			"(start %u, seq %d, errno %d)\n",
1024 			journal->j_tail, journal->j_tail_sequence,
1025 			journal->j_errno);
1026 		goto out;
1027 	}
1028 
1029 	if (buffer_write_io_error(bh)) {
1030 		char b[BDEVNAME_SIZE];
1031 		/*
1032 		 * Oh, dear.  A previous attempt to write the journal
1033 		 * superblock failed.  This could happen because the
1034 		 * USB device was yanked out.  Or it could happen to
1035 		 * be a transient write error and maybe the block will
1036 		 * be remapped.  Nothing we can do but to retry the
1037 		 * write and hope for the best.
1038 		 */
1039 		printk(KERN_ERR "JBD: previous I/O error detected "
1040 		       "for journal superblock update for %s.\n",
1041 		       journal_dev_name(journal, b));
1042 		clear_buffer_write_io_error(bh);
1043 		set_buffer_uptodate(bh);
1044 	}
1045 
1046 	spin_lock(&journal->j_state_lock);
1047 	jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1048 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1049 
1050 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1051 	sb->s_start    = cpu_to_be32(journal->j_tail);
1052 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1053 	spin_unlock(&journal->j_state_lock);
1054 
1055 	BUFFER_TRACE(bh, "marking dirty");
1056 	mark_buffer_dirty(bh);
1057 	if (wait) {
1058 		sync_dirty_buffer(bh);
1059 		if (buffer_write_io_error(bh)) {
1060 			char b[BDEVNAME_SIZE];
1061 			printk(KERN_ERR "JBD: I/O error detected "
1062 			       "when updating journal superblock for %s.\n",
1063 			       journal_dev_name(journal, b));
1064 			clear_buffer_write_io_error(bh);
1065 			set_buffer_uptodate(bh);
1066 		}
1067 	} else
1068 		write_dirty_buffer(bh, WRITE);
1069 
1070 	trace_jbd_update_superblock_end(journal, wait);
1071 out:
1072 	/* If we have just flushed the log (by marking s_start==0), then
1073 	 * any future commit will have to be careful to update the
1074 	 * superblock again to re-record the true start of the log. */
1075 
1076 	spin_lock(&journal->j_state_lock);
1077 	if (sb->s_start)
1078 		journal->j_flags &= ~JFS_FLUSHED;
1079 	else
1080 		journal->j_flags |= JFS_FLUSHED;
1081 	spin_unlock(&journal->j_state_lock);
1082 }
1083 
1084 /*
1085  * Read the superblock for a given journal, performing initial
1086  * validation of the format.
1087  */
1088 
journal_get_superblock(journal_t * journal)1089 static int journal_get_superblock(journal_t *journal)
1090 {
1091 	struct buffer_head *bh;
1092 	journal_superblock_t *sb;
1093 	int err = -EIO;
1094 
1095 	bh = journal->j_sb_buffer;
1096 
1097 	J_ASSERT(bh != NULL);
1098 	if (!buffer_uptodate(bh)) {
1099 		ll_rw_block(READ, 1, &bh);
1100 		wait_on_buffer(bh);
1101 		if (!buffer_uptodate(bh)) {
1102 			printk (KERN_ERR
1103 				"JBD: IO error reading journal superblock\n");
1104 			goto out;
1105 		}
1106 	}
1107 
1108 	sb = journal->j_superblock;
1109 
1110 	err = -EINVAL;
1111 
1112 	if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1113 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1114 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1115 		goto out;
1116 	}
1117 
1118 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1119 	case JFS_SUPERBLOCK_V1:
1120 		journal->j_format_version = 1;
1121 		break;
1122 	case JFS_SUPERBLOCK_V2:
1123 		journal->j_format_version = 2;
1124 		break;
1125 	default:
1126 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1127 		goto out;
1128 	}
1129 
1130 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1131 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1132 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1133 		printk (KERN_WARNING "JBD: journal file too short\n");
1134 		goto out;
1135 	}
1136 
1137 	if (be32_to_cpu(sb->s_first) == 0 ||
1138 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1139 		printk(KERN_WARNING
1140 			"JBD: Invalid start block of journal: %u\n",
1141 			be32_to_cpu(sb->s_first));
1142 		goto out;
1143 	}
1144 
1145 	return 0;
1146 
1147 out:
1148 	journal_fail_superblock(journal);
1149 	return err;
1150 }
1151 
1152 /*
1153  * Load the on-disk journal superblock and read the key fields into the
1154  * journal_t.
1155  */
1156 
load_superblock(journal_t * journal)1157 static int load_superblock(journal_t *journal)
1158 {
1159 	int err;
1160 	journal_superblock_t *sb;
1161 
1162 	err = journal_get_superblock(journal);
1163 	if (err)
1164 		return err;
1165 
1166 	sb = journal->j_superblock;
1167 
1168 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1169 	journal->j_tail = be32_to_cpu(sb->s_start);
1170 	journal->j_first = be32_to_cpu(sb->s_first);
1171 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1172 	journal->j_errno = be32_to_cpu(sb->s_errno);
1173 
1174 	return 0;
1175 }
1176 
1177 
1178 /**
1179  * int journal_load() - Read journal from disk.
1180  * @journal: Journal to act on.
1181  *
1182  * Given a journal_t structure which tells us which disk blocks contain
1183  * a journal, read the journal from disk to initialise the in-memory
1184  * structures.
1185  */
journal_load(journal_t * journal)1186 int journal_load(journal_t *journal)
1187 {
1188 	int err;
1189 	journal_superblock_t *sb;
1190 
1191 	err = load_superblock(journal);
1192 	if (err)
1193 		return err;
1194 
1195 	sb = journal->j_superblock;
1196 	/* If this is a V2 superblock, then we have to check the
1197 	 * features flags on it. */
1198 
1199 	if (journal->j_format_version >= 2) {
1200 		if ((sb->s_feature_ro_compat &
1201 		     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1202 		    (sb->s_feature_incompat &
1203 		     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1204 			printk (KERN_WARNING
1205 				"JBD: Unrecognised features on journal\n");
1206 			return -EINVAL;
1207 		}
1208 	}
1209 
1210 	/* Let the recovery code check whether it needs to recover any
1211 	 * data from the journal. */
1212 	if (journal_recover(journal))
1213 		goto recovery_error;
1214 
1215 	/* OK, we've finished with the dynamic journal bits:
1216 	 * reinitialise the dynamic contents of the superblock in memory
1217 	 * and reset them on disk. */
1218 	if (journal_reset(journal))
1219 		goto recovery_error;
1220 
1221 	journal->j_flags &= ~JFS_ABORT;
1222 	journal->j_flags |= JFS_LOADED;
1223 	return 0;
1224 
1225 recovery_error:
1226 	printk (KERN_WARNING "JBD: recovery failed\n");
1227 	return -EIO;
1228 }
1229 
1230 /**
1231  * void journal_destroy() - Release a journal_t structure.
1232  * @journal: Journal to act on.
1233  *
1234  * Release a journal_t structure once it is no longer in use by the
1235  * journaled object.
1236  * Return <0 if we couldn't clean up the journal.
1237  */
journal_destroy(journal_t * journal)1238 int journal_destroy(journal_t *journal)
1239 {
1240 	int err = 0;
1241 
1242 
1243 	/* Wait for the commit thread to wake up and die. */
1244 	journal_kill_thread(journal);
1245 
1246 	/* Force a final log commit */
1247 	if (journal->j_running_transaction)
1248 		journal_commit_transaction(journal);
1249 
1250 	/* Force any old transactions to disk */
1251 
1252 	/* Totally anal locking here... */
1253 	spin_lock(&journal->j_list_lock);
1254 	while (journal->j_checkpoint_transactions != NULL) {
1255 		spin_unlock(&journal->j_list_lock);
1256 		log_do_checkpoint(journal);
1257 		spin_lock(&journal->j_list_lock);
1258 	}
1259 
1260 	J_ASSERT(journal->j_running_transaction == NULL);
1261 	J_ASSERT(journal->j_committing_transaction == NULL);
1262 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1263 	spin_unlock(&journal->j_list_lock);
1264 
1265 	if (journal->j_sb_buffer) {
1266 		if (!is_journal_aborted(journal)) {
1267 			/* We can now mark the journal as empty. */
1268 			journal->j_tail = 0;
1269 			journal->j_tail_sequence =
1270 				++journal->j_transaction_sequence;
1271 			journal_update_superblock(journal, 1);
1272 		} else {
1273 			err = -EIO;
1274 		}
1275 		brelse(journal->j_sb_buffer);
1276 	}
1277 
1278 	if (journal->j_inode)
1279 		iput(journal->j_inode);
1280 	if (journal->j_revoke)
1281 		journal_destroy_revoke(journal);
1282 	kfree(journal->j_wbuf);
1283 	kfree(journal);
1284 
1285 	return err;
1286 }
1287 
1288 
1289 /**
1290  *int journal_check_used_features () - Check if features specified are used.
1291  * @journal: Journal to check.
1292  * @compat: bitmask of compatible features
1293  * @ro: bitmask of features that force read-only mount
1294  * @incompat: bitmask of incompatible features
1295  *
1296  * Check whether the journal uses all of a given set of
1297  * features.  Return true (non-zero) if it does.
1298  **/
1299 
journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1300 int journal_check_used_features (journal_t *journal, unsigned long compat,
1301 				 unsigned long ro, unsigned long incompat)
1302 {
1303 	journal_superblock_t *sb;
1304 
1305 	if (!compat && !ro && !incompat)
1306 		return 1;
1307 	if (journal->j_format_version == 1)
1308 		return 0;
1309 
1310 	sb = journal->j_superblock;
1311 
1312 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1313 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1314 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1315 		return 1;
1316 
1317 	return 0;
1318 }
1319 
1320 /**
1321  * int journal_check_available_features() - Check feature set in journalling layer
1322  * @journal: Journal to check.
1323  * @compat: bitmask of compatible features
1324  * @ro: bitmask of features that force read-only mount
1325  * @incompat: bitmask of incompatible features
1326  *
1327  * Check whether the journaling code supports the use of
1328  * all of a given set of features on this journal.  Return true
1329  * (non-zero) if it can. */
1330 
journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1331 int journal_check_available_features (journal_t *journal, unsigned long compat,
1332 				      unsigned long ro, unsigned long incompat)
1333 {
1334 	if (!compat && !ro && !incompat)
1335 		return 1;
1336 
1337 	/* We can support any known requested features iff the
1338 	 * superblock is in version 2.  Otherwise we fail to support any
1339 	 * extended sb features. */
1340 
1341 	if (journal->j_format_version != 2)
1342 		return 0;
1343 
1344 	if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1345 	    (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1346 	    (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1347 		return 1;
1348 
1349 	return 0;
1350 }
1351 
1352 /**
1353  * int journal_set_features () - Mark a given journal feature in the superblock
1354  * @journal: Journal to act on.
1355  * @compat: bitmask of compatible features
1356  * @ro: bitmask of features that force read-only mount
1357  * @incompat: bitmask of incompatible features
1358  *
1359  * Mark a given journal feature as present on the
1360  * superblock.  Returns true if the requested features could be set.
1361  *
1362  */
1363 
journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1364 int journal_set_features (journal_t *journal, unsigned long compat,
1365 			  unsigned long ro, unsigned long incompat)
1366 {
1367 	journal_superblock_t *sb;
1368 
1369 	if (journal_check_used_features(journal, compat, ro, incompat))
1370 		return 1;
1371 
1372 	if (!journal_check_available_features(journal, compat, ro, incompat))
1373 		return 0;
1374 
1375 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1376 		  compat, ro, incompat);
1377 
1378 	sb = journal->j_superblock;
1379 
1380 	sb->s_feature_compat    |= cpu_to_be32(compat);
1381 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1382 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1383 
1384 	return 1;
1385 }
1386 
1387 
1388 /**
1389  * int journal_update_format () - Update on-disk journal structure.
1390  * @journal: Journal to act on.
1391  *
1392  * Given an initialised but unloaded journal struct, poke about in the
1393  * on-disk structure to update it to the most recent supported version.
1394  */
journal_update_format(journal_t * journal)1395 int journal_update_format (journal_t *journal)
1396 {
1397 	journal_superblock_t *sb;
1398 	int err;
1399 
1400 	err = journal_get_superblock(journal);
1401 	if (err)
1402 		return err;
1403 
1404 	sb = journal->j_superblock;
1405 
1406 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1407 	case JFS_SUPERBLOCK_V2:
1408 		return 0;
1409 	case JFS_SUPERBLOCK_V1:
1410 		return journal_convert_superblock_v1(journal, sb);
1411 	default:
1412 		break;
1413 	}
1414 	return -EINVAL;
1415 }
1416 
journal_convert_superblock_v1(journal_t * journal,journal_superblock_t * sb)1417 static int journal_convert_superblock_v1(journal_t *journal,
1418 					 journal_superblock_t *sb)
1419 {
1420 	int offset, blocksize;
1421 	struct buffer_head *bh;
1422 
1423 	printk(KERN_WARNING
1424 		"JBD: Converting superblock from version 1 to 2.\n");
1425 
1426 	/* Pre-initialise new fields to zero */
1427 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1428 	blocksize = be32_to_cpu(sb->s_blocksize);
1429 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1430 
1431 	sb->s_nr_users = cpu_to_be32(1);
1432 	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1433 	journal->j_format_version = 2;
1434 
1435 	bh = journal->j_sb_buffer;
1436 	BUFFER_TRACE(bh, "marking dirty");
1437 	mark_buffer_dirty(bh);
1438 	sync_dirty_buffer(bh);
1439 	return 0;
1440 }
1441 
1442 
1443 /**
1444  * int journal_flush () - Flush journal
1445  * @journal: Journal to act on.
1446  *
1447  * Flush all data for a given journal to disk and empty the journal.
1448  * Filesystems can use this when remounting readonly to ensure that
1449  * recovery does not need to happen on remount.
1450  */
1451 
journal_flush(journal_t * journal)1452 int journal_flush(journal_t *journal)
1453 {
1454 	int err = 0;
1455 	transaction_t *transaction = NULL;
1456 	unsigned int old_tail;
1457 
1458 	spin_lock(&journal->j_state_lock);
1459 
1460 	/* Force everything buffered to the log... */
1461 	if (journal->j_running_transaction) {
1462 		transaction = journal->j_running_transaction;
1463 		__log_start_commit(journal, transaction->t_tid);
1464 	} else if (journal->j_committing_transaction)
1465 		transaction = journal->j_committing_transaction;
1466 
1467 	/* Wait for the log commit to complete... */
1468 	if (transaction) {
1469 		tid_t tid = transaction->t_tid;
1470 
1471 		spin_unlock(&journal->j_state_lock);
1472 		log_wait_commit(journal, tid);
1473 	} else {
1474 		spin_unlock(&journal->j_state_lock);
1475 	}
1476 
1477 	/* ...and flush everything in the log out to disk. */
1478 	spin_lock(&journal->j_list_lock);
1479 	while (!err && journal->j_checkpoint_transactions != NULL) {
1480 		spin_unlock(&journal->j_list_lock);
1481 		mutex_lock(&journal->j_checkpoint_mutex);
1482 		err = log_do_checkpoint(journal);
1483 		mutex_unlock(&journal->j_checkpoint_mutex);
1484 		spin_lock(&journal->j_list_lock);
1485 	}
1486 	spin_unlock(&journal->j_list_lock);
1487 
1488 	if (is_journal_aborted(journal))
1489 		return -EIO;
1490 
1491 	cleanup_journal_tail(journal);
1492 
1493 	/* Finally, mark the journal as really needing no recovery.
1494 	 * This sets s_start==0 in the underlying superblock, which is
1495 	 * the magic code for a fully-recovered superblock.  Any future
1496 	 * commits of data to the journal will restore the current
1497 	 * s_start value. */
1498 	spin_lock(&journal->j_state_lock);
1499 	old_tail = journal->j_tail;
1500 	journal->j_tail = 0;
1501 	spin_unlock(&journal->j_state_lock);
1502 	journal_update_superblock(journal, 1);
1503 	spin_lock(&journal->j_state_lock);
1504 	journal->j_tail = old_tail;
1505 
1506 	J_ASSERT(!journal->j_running_transaction);
1507 	J_ASSERT(!journal->j_committing_transaction);
1508 	J_ASSERT(!journal->j_checkpoint_transactions);
1509 	J_ASSERT(journal->j_head == journal->j_tail);
1510 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1511 	spin_unlock(&journal->j_state_lock);
1512 	return 0;
1513 }
1514 
1515 /**
1516  * int journal_wipe() - Wipe journal contents
1517  * @journal: Journal to act on.
1518  * @write: flag (see below)
1519  *
1520  * Wipe out all of the contents of a journal, safely.  This will produce
1521  * a warning if the journal contains any valid recovery information.
1522  * Must be called between journal_init_*() and journal_load().
1523  *
1524  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1525  * we merely suppress recovery.
1526  */
1527 
journal_wipe(journal_t * journal,int write)1528 int journal_wipe(journal_t *journal, int write)
1529 {
1530 	int err = 0;
1531 
1532 	J_ASSERT (!(journal->j_flags & JFS_LOADED));
1533 
1534 	err = load_superblock(journal);
1535 	if (err)
1536 		return err;
1537 
1538 	if (!journal->j_tail)
1539 		goto no_recovery;
1540 
1541 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1542 		write ? "Clearing" : "Ignoring");
1543 
1544 	err = journal_skip_recovery(journal);
1545 	if (write)
1546 		journal_update_superblock(journal, 1);
1547 
1548  no_recovery:
1549 	return err;
1550 }
1551 
1552 /*
1553  * journal_dev_name: format a character string to describe on what
1554  * device this journal is present.
1555  */
1556 
journal_dev_name(journal_t * journal,char * buffer)1557 static const char *journal_dev_name(journal_t *journal, char *buffer)
1558 {
1559 	struct block_device *bdev;
1560 
1561 	if (journal->j_inode)
1562 		bdev = journal->j_inode->i_sb->s_bdev;
1563 	else
1564 		bdev = journal->j_dev;
1565 
1566 	return bdevname(bdev, buffer);
1567 }
1568 
1569 /*
1570  * Journal abort has very specific semantics, which we describe
1571  * for journal abort.
1572  *
1573  * Two internal function, which provide abort to te jbd layer
1574  * itself are here.
1575  */
1576 
1577 /*
1578  * Quick version for internal journal use (doesn't lock the journal).
1579  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1580  * and don't attempt to make any other journal updates.
1581  */
__journal_abort_hard(journal_t * journal)1582 static void __journal_abort_hard(journal_t *journal)
1583 {
1584 	transaction_t *transaction;
1585 	char b[BDEVNAME_SIZE];
1586 
1587 	if (journal->j_flags & JFS_ABORT)
1588 		return;
1589 
1590 	printk(KERN_ERR "Aborting journal on device %s.\n",
1591 		journal_dev_name(journal, b));
1592 
1593 	spin_lock(&journal->j_state_lock);
1594 	journal->j_flags |= JFS_ABORT;
1595 	transaction = journal->j_running_transaction;
1596 	if (transaction)
1597 		__log_start_commit(journal, transaction->t_tid);
1598 	spin_unlock(&journal->j_state_lock);
1599 }
1600 
1601 /* Soft abort: record the abort error status in the journal superblock,
1602  * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)1603 static void __journal_abort_soft (journal_t *journal, int errno)
1604 {
1605 	if (journal->j_flags & JFS_ABORT)
1606 		return;
1607 
1608 	if (!journal->j_errno)
1609 		journal->j_errno = errno;
1610 
1611 	__journal_abort_hard(journal);
1612 
1613 	if (errno)
1614 		journal_update_superblock(journal, 1);
1615 }
1616 
1617 /**
1618  * void journal_abort () - Shutdown the journal immediately.
1619  * @journal: the journal to shutdown.
1620  * @errno:   an error number to record in the journal indicating
1621  *           the reason for the shutdown.
1622  *
1623  * Perform a complete, immediate shutdown of the ENTIRE
1624  * journal (not of a single transaction).  This operation cannot be
1625  * undone without closing and reopening the journal.
1626  *
1627  * The journal_abort function is intended to support higher level error
1628  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1629  * mode.
1630  *
1631  * Journal abort has very specific semantics.  Any existing dirty,
1632  * unjournaled buffers in the main filesystem will still be written to
1633  * disk by bdflush, but the journaling mechanism will be suspended
1634  * immediately and no further transaction commits will be honoured.
1635  *
1636  * Any dirty, journaled buffers will be written back to disk without
1637  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1638  * filesystem, but we _do_ attempt to leave as much data as possible
1639  * behind for fsck to use for cleanup.
1640  *
1641  * Any attempt to get a new transaction handle on a journal which is in
1642  * ABORT state will just result in an -EROFS error return.  A
1643  * journal_stop on an existing handle will return -EIO if we have
1644  * entered abort state during the update.
1645  *
1646  * Recursive transactions are not disturbed by journal abort until the
1647  * final journal_stop, which will receive the -EIO error.
1648  *
1649  * Finally, the journal_abort call allows the caller to supply an errno
1650  * which will be recorded (if possible) in the journal superblock.  This
1651  * allows a client to record failure conditions in the middle of a
1652  * transaction without having to complete the transaction to record the
1653  * failure to disk.  ext3_error, for example, now uses this
1654  * functionality.
1655  *
1656  * Errors which originate from within the journaling layer will NOT
1657  * supply an errno; a null errno implies that absolutely no further
1658  * writes are done to the journal (unless there are any already in
1659  * progress).
1660  *
1661  */
1662 
journal_abort(journal_t * journal,int errno)1663 void journal_abort(journal_t *journal, int errno)
1664 {
1665 	__journal_abort_soft(journal, errno);
1666 }
1667 
1668 /**
1669  * int journal_errno () - returns the journal's error state.
1670  * @journal: journal to examine.
1671  *
1672  * This is the errno numbet set with journal_abort(), the last
1673  * time the journal was mounted - if the journal was stopped
1674  * without calling abort this will be 0.
1675  *
1676  * If the journal has been aborted on this mount time -EROFS will
1677  * be returned.
1678  */
journal_errno(journal_t * journal)1679 int journal_errno(journal_t *journal)
1680 {
1681 	int err;
1682 
1683 	spin_lock(&journal->j_state_lock);
1684 	if (journal->j_flags & JFS_ABORT)
1685 		err = -EROFS;
1686 	else
1687 		err = journal->j_errno;
1688 	spin_unlock(&journal->j_state_lock);
1689 	return err;
1690 }
1691 
1692 /**
1693  * int journal_clear_err () - clears the journal's error state
1694  * @journal: journal to act on.
1695  *
1696  * An error must be cleared or Acked to take a FS out of readonly
1697  * mode.
1698  */
journal_clear_err(journal_t * journal)1699 int journal_clear_err(journal_t *journal)
1700 {
1701 	int err = 0;
1702 
1703 	spin_lock(&journal->j_state_lock);
1704 	if (journal->j_flags & JFS_ABORT)
1705 		err = -EROFS;
1706 	else
1707 		journal->j_errno = 0;
1708 	spin_unlock(&journal->j_state_lock);
1709 	return err;
1710 }
1711 
1712 /**
1713  * void journal_ack_err() - Ack journal err.
1714  * @journal: journal to act on.
1715  *
1716  * An error must be cleared or Acked to take a FS out of readonly
1717  * mode.
1718  */
journal_ack_err(journal_t * journal)1719 void journal_ack_err(journal_t *journal)
1720 {
1721 	spin_lock(&journal->j_state_lock);
1722 	if (journal->j_errno)
1723 		journal->j_flags |= JFS_ACK_ERR;
1724 	spin_unlock(&journal->j_state_lock);
1725 }
1726 
journal_blocks_per_page(struct inode * inode)1727 int journal_blocks_per_page(struct inode *inode)
1728 {
1729 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1730 }
1731 
1732 /*
1733  * Journal_head storage management
1734  */
1735 static struct kmem_cache *journal_head_cache;
1736 #ifdef CONFIG_JBD_DEBUG
1737 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1738 #endif
1739 
journal_init_journal_head_cache(void)1740 static int journal_init_journal_head_cache(void)
1741 {
1742 	int retval;
1743 
1744 	J_ASSERT(journal_head_cache == NULL);
1745 	journal_head_cache = kmem_cache_create("journal_head",
1746 				sizeof(struct journal_head),
1747 				0,		/* offset */
1748 				SLAB_TEMPORARY,	/* flags */
1749 				NULL);		/* ctor */
1750 	retval = 0;
1751 	if (!journal_head_cache) {
1752 		retval = -ENOMEM;
1753 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1754 	}
1755 	return retval;
1756 }
1757 
journal_destroy_journal_head_cache(void)1758 static void journal_destroy_journal_head_cache(void)
1759 {
1760 	if (journal_head_cache) {
1761 		kmem_cache_destroy(journal_head_cache);
1762 		journal_head_cache = NULL;
1763 	}
1764 }
1765 
1766 /*
1767  * journal_head splicing and dicing
1768  */
journal_alloc_journal_head(void)1769 static struct journal_head *journal_alloc_journal_head(void)
1770 {
1771 	struct journal_head *ret;
1772 
1773 #ifdef CONFIG_JBD_DEBUG
1774 	atomic_inc(&nr_journal_heads);
1775 #endif
1776 	ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1777 	if (ret == NULL) {
1778 		jbd_debug(1, "out of memory for journal_head\n");
1779 		printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1780 				   __func__);
1781 
1782 		while (ret == NULL) {
1783 			yield();
1784 			ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1785 		}
1786 	}
1787 	return ret;
1788 }
1789 
journal_free_journal_head(struct journal_head * jh)1790 static void journal_free_journal_head(struct journal_head *jh)
1791 {
1792 #ifdef CONFIG_JBD_DEBUG
1793 	atomic_dec(&nr_journal_heads);
1794 	memset(jh, JBD_POISON_FREE, sizeof(*jh));
1795 #endif
1796 	kmem_cache_free(journal_head_cache, jh);
1797 }
1798 
1799 /*
1800  * A journal_head is attached to a buffer_head whenever JBD has an
1801  * interest in the buffer.
1802  *
1803  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1804  * is set.  This bit is tested in core kernel code where we need to take
1805  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1806  * there.
1807  *
1808  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1809  *
1810  * When a buffer has its BH_JBD bit set it is immune from being released by
1811  * core kernel code, mainly via ->b_count.
1812  *
1813  * A journal_head is detached from its buffer_head when the journal_head's
1814  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1815  * transaction (b_cp_transaction) hold their references to b_jcount.
1816  *
1817  * Various places in the kernel want to attach a journal_head to a buffer_head
1818  * _before_ attaching the journal_head to a transaction.  To protect the
1819  * journal_head in this situation, journal_add_journal_head elevates the
1820  * journal_head's b_jcount refcount by one.  The caller must call
1821  * journal_put_journal_head() to undo this.
1822  *
1823  * So the typical usage would be:
1824  *
1825  *	(Attach a journal_head if needed.  Increments b_jcount)
1826  *	struct journal_head *jh = journal_add_journal_head(bh);
1827  *	...
1828  *      (Get another reference for transaction)
1829  *      journal_grab_journal_head(bh);
1830  *      jh->b_transaction = xxx;
1831  *      (Put original reference)
1832  *      journal_put_journal_head(jh);
1833  */
1834 
1835 /*
1836  * Give a buffer_head a journal_head.
1837  *
1838  * May sleep.
1839  */
journal_add_journal_head(struct buffer_head * bh)1840 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1841 {
1842 	struct journal_head *jh;
1843 	struct journal_head *new_jh = NULL;
1844 
1845 repeat:
1846 	if (!buffer_jbd(bh)) {
1847 		new_jh = journal_alloc_journal_head();
1848 		memset(new_jh, 0, sizeof(*new_jh));
1849 	}
1850 
1851 	jbd_lock_bh_journal_head(bh);
1852 	if (buffer_jbd(bh)) {
1853 		jh = bh2jh(bh);
1854 	} else {
1855 		J_ASSERT_BH(bh,
1856 			(atomic_read(&bh->b_count) > 0) ||
1857 			(bh->b_page && bh->b_page->mapping));
1858 
1859 		if (!new_jh) {
1860 			jbd_unlock_bh_journal_head(bh);
1861 			goto repeat;
1862 		}
1863 
1864 		jh = new_jh;
1865 		new_jh = NULL;		/* We consumed it */
1866 		set_buffer_jbd(bh);
1867 		bh->b_private = jh;
1868 		jh->b_bh = bh;
1869 		get_bh(bh);
1870 		BUFFER_TRACE(bh, "added journal_head");
1871 	}
1872 	jh->b_jcount++;
1873 	jbd_unlock_bh_journal_head(bh);
1874 	if (new_jh)
1875 		journal_free_journal_head(new_jh);
1876 	return bh->b_private;
1877 }
1878 
1879 /*
1880  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1881  * having a journal_head, return NULL
1882  */
journal_grab_journal_head(struct buffer_head * bh)1883 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1884 {
1885 	struct journal_head *jh = NULL;
1886 
1887 	jbd_lock_bh_journal_head(bh);
1888 	if (buffer_jbd(bh)) {
1889 		jh = bh2jh(bh);
1890 		jh->b_jcount++;
1891 	}
1892 	jbd_unlock_bh_journal_head(bh);
1893 	return jh;
1894 }
1895 
__journal_remove_journal_head(struct buffer_head * bh)1896 static void __journal_remove_journal_head(struct buffer_head *bh)
1897 {
1898 	struct journal_head *jh = bh2jh(bh);
1899 
1900 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1901 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
1902 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1903 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1904 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1905 	J_ASSERT_BH(bh, buffer_jbd(bh));
1906 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
1907 	BUFFER_TRACE(bh, "remove journal_head");
1908 	if (jh->b_frozen_data) {
1909 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
1910 		jbd_free(jh->b_frozen_data, bh->b_size);
1911 	}
1912 	if (jh->b_committed_data) {
1913 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
1914 		jbd_free(jh->b_committed_data, bh->b_size);
1915 	}
1916 	bh->b_private = NULL;
1917 	jh->b_bh = NULL;	/* debug, really */
1918 	clear_buffer_jbd(bh);
1919 	journal_free_journal_head(jh);
1920 }
1921 
1922 /*
1923  * Drop a reference on the passed journal_head.  If it fell to zero then
1924  * release the journal_head from the buffer_head.
1925  */
journal_put_journal_head(struct journal_head * jh)1926 void journal_put_journal_head(struct journal_head *jh)
1927 {
1928 	struct buffer_head *bh = jh2bh(jh);
1929 
1930 	jbd_lock_bh_journal_head(bh);
1931 	J_ASSERT_JH(jh, jh->b_jcount > 0);
1932 	--jh->b_jcount;
1933 	if (!jh->b_jcount) {
1934 		__journal_remove_journal_head(bh);
1935 		jbd_unlock_bh_journal_head(bh);
1936 		__brelse(bh);
1937 	} else
1938 		jbd_unlock_bh_journal_head(bh);
1939 }
1940 
1941 /*
1942  * debugfs tunables
1943  */
1944 #ifdef CONFIG_JBD_DEBUG
1945 
1946 u8 journal_enable_debug __read_mostly;
1947 EXPORT_SYMBOL(journal_enable_debug);
1948 
1949 static struct dentry *jbd_debugfs_dir;
1950 static struct dentry *jbd_debug;
1951 
jbd_create_debugfs_entry(void)1952 static void __init jbd_create_debugfs_entry(void)
1953 {
1954 	jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1955 	if (jbd_debugfs_dir)
1956 		jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
1957 					       jbd_debugfs_dir,
1958 					       &journal_enable_debug);
1959 }
1960 
jbd_remove_debugfs_entry(void)1961 static void __exit jbd_remove_debugfs_entry(void)
1962 {
1963 	debugfs_remove(jbd_debug);
1964 	debugfs_remove(jbd_debugfs_dir);
1965 }
1966 
1967 #else
1968 
jbd_create_debugfs_entry(void)1969 static inline void jbd_create_debugfs_entry(void)
1970 {
1971 }
1972 
jbd_remove_debugfs_entry(void)1973 static inline void jbd_remove_debugfs_entry(void)
1974 {
1975 }
1976 
1977 #endif
1978 
1979 struct kmem_cache *jbd_handle_cache;
1980 
journal_init_handle_cache(void)1981 static int __init journal_init_handle_cache(void)
1982 {
1983 	jbd_handle_cache = kmem_cache_create("journal_handle",
1984 				sizeof(handle_t),
1985 				0,		/* offset */
1986 				SLAB_TEMPORARY,	/* flags */
1987 				NULL);		/* ctor */
1988 	if (jbd_handle_cache == NULL) {
1989 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
1990 		return -ENOMEM;
1991 	}
1992 	return 0;
1993 }
1994 
journal_destroy_handle_cache(void)1995 static void journal_destroy_handle_cache(void)
1996 {
1997 	if (jbd_handle_cache)
1998 		kmem_cache_destroy(jbd_handle_cache);
1999 }
2000 
2001 /*
2002  * Module startup and shutdown
2003  */
2004 
journal_init_caches(void)2005 static int __init journal_init_caches(void)
2006 {
2007 	int ret;
2008 
2009 	ret = journal_init_revoke_caches();
2010 	if (ret == 0)
2011 		ret = journal_init_journal_head_cache();
2012 	if (ret == 0)
2013 		ret = journal_init_handle_cache();
2014 	return ret;
2015 }
2016 
journal_destroy_caches(void)2017 static void journal_destroy_caches(void)
2018 {
2019 	journal_destroy_revoke_caches();
2020 	journal_destroy_journal_head_cache();
2021 	journal_destroy_handle_cache();
2022 }
2023 
journal_init(void)2024 static int __init journal_init(void)
2025 {
2026 	int ret;
2027 
2028 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2029 
2030 	ret = journal_init_caches();
2031 	if (ret != 0)
2032 		journal_destroy_caches();
2033 	jbd_create_debugfs_entry();
2034 	return ret;
2035 }
2036 
journal_exit(void)2037 static void __exit journal_exit(void)
2038 {
2039 #ifdef CONFIG_JBD_DEBUG
2040 	int n = atomic_read(&nr_journal_heads);
2041 	if (n)
2042 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2043 #endif
2044 	jbd_remove_debugfs_entry();
2045 	journal_destroy_caches();
2046 }
2047 
2048 MODULE_LICENSE("GPL");
2049 module_init(journal_init);
2050 module_exit(journal_exit);
2051 
2052