1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
54 
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_update_format);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features);
77 EXPORT_SYMBOL(jbd2_journal_set_features);
78 EXPORT_SYMBOL(jbd2_journal_load);
79 EXPORT_SYMBOL(jbd2_journal_destroy);
80 EXPORT_SYMBOL(jbd2_journal_abort);
81 EXPORT_SYMBOL(jbd2_journal_errno);
82 EXPORT_SYMBOL(jbd2_journal_ack_err);
83 EXPORT_SYMBOL(jbd2_journal_clear_err);
84 EXPORT_SYMBOL(jbd2_log_wait_commit);
85 EXPORT_SYMBOL(jbd2_log_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_start_commit);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
88 EXPORT_SYMBOL(jbd2_journal_wipe);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
92 EXPORT_SYMBOL(jbd2_journal_force_commit);
93 EXPORT_SYMBOL(jbd2_journal_file_inode);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98 
99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
100 static void __journal_abort_soft (journal_t *journal, int errno);
101 static int jbd2_journal_create_slab(size_t slab_size);
102 
103 /*
104  * Helper function used to manage commit timeouts
105  */
106 
commit_timeout(unsigned long __data)107 static void commit_timeout(unsigned long __data)
108 {
109 	struct task_struct * p = (struct task_struct *) __data;
110 
111 	wake_up_process(p);
112 }
113 
114 /*
115  * kjournald2: The main thread function used to manage a logging device
116  * journal.
117  *
118  * This kernel thread is responsible for two things:
119  *
120  * 1) COMMIT:  Every so often we need to commit the current state of the
121  *    filesystem to disk.  The journal thread is responsible for writing
122  *    all of the metadata buffers to disk.
123  *
124  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
125  *    of the data in that part of the log has been rewritten elsewhere on
126  *    the disk.  Flushing these old buffers to reclaim space in the log is
127  *    known as checkpointing, and this thread is responsible for that job.
128  */
129 
kjournald2(void * arg)130 static int kjournald2(void *arg)
131 {
132 	journal_t *journal = arg;
133 	transaction_t *transaction;
134 
135 	/*
136 	 * Set up an interval timer which can be used to trigger a commit wakeup
137 	 * after the commit interval expires
138 	 */
139 	setup_timer(&journal->j_commit_timer, commit_timeout,
140 			(unsigned long)current);
141 
142 	/* Record that the journal thread is running */
143 	journal->j_task = current;
144 	wake_up(&journal->j_wait_done_commit);
145 
146 	/*
147 	 * And now, wait forever for commit wakeup events.
148 	 */
149 	write_lock(&journal->j_state_lock);
150 
151 loop:
152 	if (journal->j_flags & JBD2_UNMOUNT)
153 		goto end_loop;
154 
155 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
156 		journal->j_commit_sequence, journal->j_commit_request);
157 
158 	if (journal->j_commit_sequence != journal->j_commit_request) {
159 		jbd_debug(1, "OK, requests differ\n");
160 		write_unlock(&journal->j_state_lock);
161 		del_timer_sync(&journal->j_commit_timer);
162 		jbd2_journal_commit_transaction(journal);
163 		write_lock(&journal->j_state_lock);
164 		goto loop;
165 	}
166 
167 	wake_up(&journal->j_wait_done_commit);
168 	if (freezing(current)) {
169 		/*
170 		 * The simpler the better. Flushing journal isn't a
171 		 * good idea, because that depends on threads that may
172 		 * be already stopped.
173 		 */
174 		jbd_debug(1, "Now suspending kjournald2\n");
175 		write_unlock(&journal->j_state_lock);
176 		try_to_freeze();
177 		write_lock(&journal->j_state_lock);
178 	} else {
179 		/*
180 		 * We assume on resume that commits are already there,
181 		 * so we don't sleep
182 		 */
183 		DEFINE_WAIT(wait);
184 		int should_sleep = 1;
185 
186 		prepare_to_wait(&journal->j_wait_commit, &wait,
187 				TASK_INTERRUPTIBLE);
188 		if (journal->j_commit_sequence != journal->j_commit_request)
189 			should_sleep = 0;
190 		transaction = journal->j_running_transaction;
191 		if (transaction && time_after_eq(jiffies,
192 						transaction->t_expires))
193 			should_sleep = 0;
194 		if (journal->j_flags & JBD2_UNMOUNT)
195 			should_sleep = 0;
196 		if (should_sleep) {
197 			write_unlock(&journal->j_state_lock);
198 			schedule();
199 			write_lock(&journal->j_state_lock);
200 		}
201 		finish_wait(&journal->j_wait_commit, &wait);
202 	}
203 
204 	jbd_debug(1, "kjournald2 wakes\n");
205 
206 	/*
207 	 * Were we woken up by a commit wakeup event?
208 	 */
209 	transaction = journal->j_running_transaction;
210 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
211 		journal->j_commit_request = transaction->t_tid;
212 		jbd_debug(1, "woke because of timeout\n");
213 	}
214 	goto loop;
215 
216 end_loop:
217 	write_unlock(&journal->j_state_lock);
218 	del_timer_sync(&journal->j_commit_timer);
219 	journal->j_task = NULL;
220 	wake_up(&journal->j_wait_done_commit);
221 	jbd_debug(1, "Journal thread exiting.\n");
222 	return 0;
223 }
224 
jbd2_journal_start_thread(journal_t * journal)225 static int jbd2_journal_start_thread(journal_t *journal)
226 {
227 	struct task_struct *t;
228 
229 	t = kthread_run(kjournald2, journal, "jbd2/%s",
230 			journal->j_devname);
231 	if (IS_ERR(t))
232 		return PTR_ERR(t);
233 
234 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
235 	return 0;
236 }
237 
journal_kill_thread(journal_t * journal)238 static void journal_kill_thread(journal_t *journal)
239 {
240 	write_lock(&journal->j_state_lock);
241 	journal->j_flags |= JBD2_UNMOUNT;
242 
243 	while (journal->j_task) {
244 		wake_up(&journal->j_wait_commit);
245 		write_unlock(&journal->j_state_lock);
246 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
247 		write_lock(&journal->j_state_lock);
248 	}
249 	write_unlock(&journal->j_state_lock);
250 }
251 
252 /*
253  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
254  *
255  * Writes a metadata buffer to a given disk block.  The actual IO is not
256  * performed but a new buffer_head is constructed which labels the data
257  * to be written with the correct destination disk block.
258  *
259  * Any magic-number escaping which needs to be done will cause a
260  * copy-out here.  If the buffer happens to start with the
261  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262  * magic number is only written to the log for descripter blocks.  In
263  * this case, we copy the data and replace the first word with 0, and we
264  * return a result code which indicates that this buffer needs to be
265  * marked as an escaped buffer in the corresponding log descriptor
266  * block.  The missing word can then be restored when the block is read
267  * during recovery.
268  *
269  * If the source buffer has already been modified by a new transaction
270  * since we took the last commit snapshot, we use the frozen copy of
271  * that data for IO.  If we end up using the existing buffer_head's data
272  * for the write, then we *have* to lock the buffer to prevent anyone
273  * else from using and possibly modifying it while the IO is in
274  * progress.
275  *
276  * The function returns a pointer to the buffer_heads to be used for IO.
277  *
278  * We assume that the journal has already been locked in this function.
279  *
280  * Return value:
281  *  <0: Error
282  * >=0: Finished OK
283  *
284  * On success:
285  * Bit 0 set == escape performed on the data
286  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
287  */
288 
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct journal_head ** jh_out,unsigned long long blocknr)289 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
290 				  struct journal_head  *jh_in,
291 				  struct journal_head **jh_out,
292 				  unsigned long long blocknr)
293 {
294 	int need_copy_out = 0;
295 	int done_copy_out = 0;
296 	int do_escape = 0;
297 	char *mapped_data;
298 	struct buffer_head *new_bh;
299 	struct journal_head *new_jh;
300 	struct page *new_page;
301 	unsigned int new_offset;
302 	struct buffer_head *bh_in = jh2bh(jh_in);
303 	journal_t *journal = transaction->t_journal;
304 
305 	/*
306 	 * The buffer really shouldn't be locked: only the current committing
307 	 * transaction is allowed to write it, so nobody else is allowed
308 	 * to do any IO.
309 	 *
310 	 * akpm: except if we're journalling data, and write() output is
311 	 * also part of a shared mapping, and another thread has
312 	 * decided to launch a writepage() against this buffer.
313 	 */
314 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
315 
316 retry_alloc:
317 	new_bh = alloc_buffer_head(GFP_NOFS);
318 	if (!new_bh) {
319 		/*
320 		 * Failure is not an option, but __GFP_NOFAIL is going
321 		 * away; so we retry ourselves here.
322 		 */
323 		congestion_wait(BLK_RW_ASYNC, HZ/50);
324 		goto retry_alloc;
325 	}
326 
327 	/* keep subsequent assertions sane */
328 	new_bh->b_state = 0;
329 	init_buffer(new_bh, NULL, NULL);
330 	atomic_set(&new_bh->b_count, 1);
331 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
332 
333 	/*
334 	 * If a new transaction has already done a buffer copy-out, then
335 	 * we use that version of the data for the commit.
336 	 */
337 	jbd_lock_bh_state(bh_in);
338 repeat:
339 	if (jh_in->b_frozen_data) {
340 		done_copy_out = 1;
341 		new_page = virt_to_page(jh_in->b_frozen_data);
342 		new_offset = offset_in_page(jh_in->b_frozen_data);
343 	} else {
344 		new_page = jh2bh(jh_in)->b_page;
345 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
346 	}
347 
348 	mapped_data = kmap_atomic(new_page, KM_USER0);
349 	/*
350 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
351 	 * before checking for escaping, as the trigger may modify the magic
352 	 * offset.  If a copy-out happens afterwards, it will have the correct
353 	 * data in the buffer.
354 	 */
355 	if (!done_copy_out)
356 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
357 					   jh_in->b_triggers);
358 
359 	/*
360 	 * Check for escaping
361 	 */
362 	if (*((__be32 *)(mapped_data + new_offset)) ==
363 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
364 		need_copy_out = 1;
365 		do_escape = 1;
366 	}
367 	kunmap_atomic(mapped_data, KM_USER0);
368 
369 	/*
370 	 * Do we need to do a data copy?
371 	 */
372 	if (need_copy_out && !done_copy_out) {
373 		char *tmp;
374 
375 		jbd_unlock_bh_state(bh_in);
376 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
377 		if (!tmp) {
378 			jbd2_journal_put_journal_head(new_jh);
379 			return -ENOMEM;
380 		}
381 		jbd_lock_bh_state(bh_in);
382 		if (jh_in->b_frozen_data) {
383 			jbd2_free(tmp, bh_in->b_size);
384 			goto repeat;
385 		}
386 
387 		jh_in->b_frozen_data = tmp;
388 		mapped_data = kmap_atomic(new_page, KM_USER0);
389 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
390 		kunmap_atomic(mapped_data, KM_USER0);
391 
392 		new_page = virt_to_page(tmp);
393 		new_offset = offset_in_page(tmp);
394 		done_copy_out = 1;
395 
396 		/*
397 		 * This isn't strictly necessary, as we're using frozen
398 		 * data for the escaping, but it keeps consistency with
399 		 * b_frozen_data usage.
400 		 */
401 		jh_in->b_frozen_triggers = jh_in->b_triggers;
402 	}
403 
404 	/*
405 	 * Did we need to do an escaping?  Now we've done all the
406 	 * copying, we can finally do so.
407 	 */
408 	if (do_escape) {
409 		mapped_data = kmap_atomic(new_page, KM_USER0);
410 		*((unsigned int *)(mapped_data + new_offset)) = 0;
411 		kunmap_atomic(mapped_data, KM_USER0);
412 	}
413 
414 	set_bh_page(new_bh, new_page, new_offset);
415 	new_jh->b_transaction = NULL;
416 	new_bh->b_size = jh2bh(jh_in)->b_size;
417 	new_bh->b_bdev = transaction->t_journal->j_dev;
418 	new_bh->b_blocknr = blocknr;
419 	set_buffer_mapped(new_bh);
420 	set_buffer_dirty(new_bh);
421 
422 	*jh_out = new_jh;
423 
424 	/*
425 	 * The to-be-written buffer needs to get moved to the io queue,
426 	 * and the original buffer whose contents we are shadowing or
427 	 * copying is moved to the transaction's shadow queue.
428 	 */
429 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
430 	spin_lock(&journal->j_list_lock);
431 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
432 	spin_unlock(&journal->j_list_lock);
433 	jbd_unlock_bh_state(bh_in);
434 
435 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
436 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
437 
438 	return do_escape | (done_copy_out << 1);
439 }
440 
441 /*
442  * Allocation code for the journal file.  Manage the space left in the
443  * journal, so that we can begin checkpointing when appropriate.
444  */
445 
446 /*
447  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
448  *
449  * Called with the journal already locked.
450  *
451  * Called under j_state_lock
452  */
453 
__jbd2_log_space_left(journal_t * journal)454 int __jbd2_log_space_left(journal_t *journal)
455 {
456 	int left = journal->j_free;
457 
458 	/* assert_spin_locked(&journal->j_state_lock); */
459 
460 	/*
461 	 * Be pessimistic here about the number of those free blocks which
462 	 * might be required for log descriptor control blocks.
463 	 */
464 
465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
466 
467 	left -= MIN_LOG_RESERVED_BLOCKS;
468 
469 	if (left <= 0)
470 		return 0;
471 	left -= (left >> 3);
472 	return left;
473 }
474 
475 /*
476  * Called with j_state_lock locked for writing.
477  * Returns true if a transaction commit was started.
478  */
__jbd2_log_start_commit(journal_t * journal,tid_t target)479 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
480 {
481 	/*
482 	 * The only transaction we can possibly wait upon is the
483 	 * currently running transaction (if it exists).  Otherwise,
484 	 * the target tid must be an old one.
485 	 */
486 	if (journal->j_running_transaction &&
487 	    journal->j_running_transaction->t_tid == target) {
488 		/*
489 		 * We want a new commit: OK, mark the request and wakeup the
490 		 * commit thread.  We do _not_ do the commit ourselves.
491 		 */
492 
493 		journal->j_commit_request = target;
494 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
495 			  journal->j_commit_request,
496 			  journal->j_commit_sequence);
497 		wake_up(&journal->j_wait_commit);
498 		return 1;
499 	} else if (!tid_geq(journal->j_commit_request, target))
500 		/* This should never happen, but if it does, preserve
501 		   the evidence before kjournald goes into a loop and
502 		   increments j_commit_sequence beyond all recognition. */
503 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
504 			  journal->j_commit_request,
505 			  journal->j_commit_sequence,
506 			  target, journal->j_running_transaction ?
507 			  journal->j_running_transaction->t_tid : 0);
508 	return 0;
509 }
510 
jbd2_log_start_commit(journal_t * journal,tid_t tid)511 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
512 {
513 	int ret;
514 
515 	write_lock(&journal->j_state_lock);
516 	ret = __jbd2_log_start_commit(journal, tid);
517 	write_unlock(&journal->j_state_lock);
518 	return ret;
519 }
520 
521 /*
522  * Force and wait upon a commit if the calling process is not within
523  * transaction.  This is used for forcing out undo-protected data which contains
524  * bitmaps, when the fs is running out of space.
525  *
526  * We can only force the running transaction if we don't have an active handle;
527  * otherwise, we will deadlock.
528  *
529  * Returns true if a transaction was started.
530  */
jbd2_journal_force_commit_nested(journal_t * journal)531 int jbd2_journal_force_commit_nested(journal_t *journal)
532 {
533 	transaction_t *transaction = NULL;
534 	tid_t tid;
535 	int need_to_start = 0;
536 
537 	read_lock(&journal->j_state_lock);
538 	if (journal->j_running_transaction && !current->journal_info) {
539 		transaction = journal->j_running_transaction;
540 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
541 			need_to_start = 1;
542 	} else if (journal->j_committing_transaction)
543 		transaction = journal->j_committing_transaction;
544 
545 	if (!transaction) {
546 		read_unlock(&journal->j_state_lock);
547 		return 0;	/* Nothing to retry */
548 	}
549 
550 	tid = transaction->t_tid;
551 	read_unlock(&journal->j_state_lock);
552 	if (need_to_start)
553 		jbd2_log_start_commit(journal, tid);
554 	jbd2_log_wait_commit(journal, tid);
555 	return 1;
556 }
557 
558 /*
559  * Start a commit of the current running transaction (if any).  Returns true
560  * if a transaction is going to be committed (or is currently already
561  * committing), and fills its tid in at *ptid
562  */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)563 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
564 {
565 	int ret = 0;
566 
567 	write_lock(&journal->j_state_lock);
568 	if (journal->j_running_transaction) {
569 		tid_t tid = journal->j_running_transaction->t_tid;
570 
571 		__jbd2_log_start_commit(journal, tid);
572 		/* There's a running transaction and we've just made sure
573 		 * it's commit has been scheduled. */
574 		if (ptid)
575 			*ptid = tid;
576 		ret = 1;
577 	} else if (journal->j_committing_transaction) {
578 		/*
579 		 * If ext3_write_super() recently started a commit, then we
580 		 * have to wait for completion of that transaction
581 		 */
582 		if (ptid)
583 			*ptid = journal->j_committing_transaction->t_tid;
584 		ret = 1;
585 	}
586 	write_unlock(&journal->j_state_lock);
587 	return ret;
588 }
589 
590 /*
591  * Return 1 if a given transaction has not yet sent barrier request
592  * connected with a transaction commit. If 0 is returned, transaction
593  * may or may not have sent the barrier. Used to avoid sending barrier
594  * twice in common cases.
595  */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)596 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
597 {
598 	int ret = 0;
599 	transaction_t *commit_trans;
600 
601 	if (!(journal->j_flags & JBD2_BARRIER))
602 		return 0;
603 	read_lock(&journal->j_state_lock);
604 	/* Transaction already committed? */
605 	if (tid_geq(journal->j_commit_sequence, tid))
606 		goto out;
607 	commit_trans = journal->j_committing_transaction;
608 	if (!commit_trans || commit_trans->t_tid != tid) {
609 		ret = 1;
610 		goto out;
611 	}
612 	/*
613 	 * Transaction is being committed and we already proceeded to
614 	 * submitting a flush to fs partition?
615 	 */
616 	if (journal->j_fs_dev != journal->j_dev) {
617 		if (!commit_trans->t_need_data_flush ||
618 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
619 			goto out;
620 	} else {
621 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
622 			goto out;
623 	}
624 	ret = 1;
625 out:
626 	read_unlock(&journal->j_state_lock);
627 	return ret;
628 }
629 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
630 
631 /*
632  * Wait for a specified commit to complete.
633  * The caller may not hold the journal lock.
634  */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)635 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
636 {
637 	int err = 0;
638 
639 	read_lock(&journal->j_state_lock);
640 #ifdef CONFIG_JBD2_DEBUG
641 	if (!tid_geq(journal->j_commit_request, tid)) {
642 		printk(KERN_EMERG
643 		       "%s: error: j_commit_request=%d, tid=%d\n",
644 		       __func__, journal->j_commit_request, tid);
645 	}
646 #endif
647 	while (tid_gt(tid, journal->j_commit_sequence)) {
648 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
649 				  tid, journal->j_commit_sequence);
650 		wake_up(&journal->j_wait_commit);
651 		read_unlock(&journal->j_state_lock);
652 		wait_event(journal->j_wait_done_commit,
653 				!tid_gt(tid, journal->j_commit_sequence));
654 		read_lock(&journal->j_state_lock);
655 	}
656 	read_unlock(&journal->j_state_lock);
657 
658 	if (unlikely(is_journal_aborted(journal))) {
659 		printk(KERN_EMERG "journal commit I/O error\n");
660 		err = -EIO;
661 	}
662 	return err;
663 }
664 
665 /*
666  * Log buffer allocation routines:
667  */
668 
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)669 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
670 {
671 	unsigned long blocknr;
672 
673 	write_lock(&journal->j_state_lock);
674 	J_ASSERT(journal->j_free > 1);
675 
676 	blocknr = journal->j_head;
677 	journal->j_head++;
678 	journal->j_free--;
679 	if (journal->j_head == journal->j_last)
680 		journal->j_head = journal->j_first;
681 	write_unlock(&journal->j_state_lock);
682 	return jbd2_journal_bmap(journal, blocknr, retp);
683 }
684 
685 /*
686  * Conversion of logical to physical block numbers for the journal
687  *
688  * On external journals the journal blocks are identity-mapped, so
689  * this is a no-op.  If needed, we can use j_blk_offset - everything is
690  * ready.
691  */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)692 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
693 		 unsigned long long *retp)
694 {
695 	int err = 0;
696 	unsigned long long ret;
697 
698 	if (journal->j_inode) {
699 		ret = bmap(journal->j_inode, blocknr);
700 		if (ret)
701 			*retp = ret;
702 		else {
703 			printk(KERN_ALERT "%s: journal block not found "
704 					"at offset %lu on %s\n",
705 			       __func__, blocknr, journal->j_devname);
706 			err = -EIO;
707 			__journal_abort_soft(journal, err);
708 		}
709 	} else {
710 		*retp = blocknr; /* +journal->j_blk_offset */
711 	}
712 	return err;
713 }
714 
715 /*
716  * We play buffer_head aliasing tricks to write data/metadata blocks to
717  * the journal without copying their contents, but for journal
718  * descriptor blocks we do need to generate bona fide buffers.
719  *
720  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
721  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
722  * But we don't bother doing that, so there will be coherency problems with
723  * mmaps of blockdevs which hold live JBD-controlled filesystems.
724  */
jbd2_journal_get_descriptor_buffer(journal_t * journal)725 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
726 {
727 	struct buffer_head *bh;
728 	unsigned long long blocknr;
729 	int err;
730 
731 	err = jbd2_journal_next_log_block(journal, &blocknr);
732 
733 	if (err)
734 		return NULL;
735 
736 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
737 	if (!bh)
738 		return NULL;
739 	lock_buffer(bh);
740 	memset(bh->b_data, 0, journal->j_blocksize);
741 	set_buffer_uptodate(bh);
742 	unlock_buffer(bh);
743 	BUFFER_TRACE(bh, "return this buffer");
744 	return jbd2_journal_add_journal_head(bh);
745 }
746 
747 struct jbd2_stats_proc_session {
748 	journal_t *journal;
749 	struct transaction_stats_s *stats;
750 	int start;
751 	int max;
752 };
753 
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)754 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
755 {
756 	return *pos ? NULL : SEQ_START_TOKEN;
757 }
758 
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)759 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
760 {
761 	return NULL;
762 }
763 
jbd2_seq_info_show(struct seq_file * seq,void * v)764 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
765 {
766 	struct jbd2_stats_proc_session *s = seq->private;
767 
768 	if (v != SEQ_START_TOKEN)
769 		return 0;
770 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
771 			s->stats->ts_tid,
772 			s->journal->j_max_transaction_buffers);
773 	if (s->stats->ts_tid == 0)
774 		return 0;
775 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
776 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
777 	seq_printf(seq, "  %ums running transaction\n",
778 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
779 	seq_printf(seq, "  %ums transaction was being locked\n",
780 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
781 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
782 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
783 	seq_printf(seq, "  %ums logging transaction\n",
784 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
785 	seq_printf(seq, "  %lluus average transaction commit time\n",
786 		   div_u64(s->journal->j_average_commit_time, 1000));
787 	seq_printf(seq, "  %lu handles per transaction\n",
788 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
789 	seq_printf(seq, "  %lu blocks per transaction\n",
790 	    s->stats->run.rs_blocks / s->stats->ts_tid);
791 	seq_printf(seq, "  %lu logged blocks per transaction\n",
792 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
793 	return 0;
794 }
795 
jbd2_seq_info_stop(struct seq_file * seq,void * v)796 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
797 {
798 }
799 
800 static const struct seq_operations jbd2_seq_info_ops = {
801 	.start  = jbd2_seq_info_start,
802 	.next   = jbd2_seq_info_next,
803 	.stop   = jbd2_seq_info_stop,
804 	.show   = jbd2_seq_info_show,
805 };
806 
jbd2_seq_info_open(struct inode * inode,struct file * file)807 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
808 {
809 	journal_t *journal = PDE(inode)->data;
810 	struct jbd2_stats_proc_session *s;
811 	int rc, size;
812 
813 	s = kmalloc(sizeof(*s), GFP_KERNEL);
814 	if (s == NULL)
815 		return -ENOMEM;
816 	size = sizeof(struct transaction_stats_s);
817 	s->stats = kmalloc(size, GFP_KERNEL);
818 	if (s->stats == NULL) {
819 		kfree(s);
820 		return -ENOMEM;
821 	}
822 	spin_lock(&journal->j_history_lock);
823 	memcpy(s->stats, &journal->j_stats, size);
824 	s->journal = journal;
825 	spin_unlock(&journal->j_history_lock);
826 
827 	rc = seq_open(file, &jbd2_seq_info_ops);
828 	if (rc == 0) {
829 		struct seq_file *m = file->private_data;
830 		m->private = s;
831 	} else {
832 		kfree(s->stats);
833 		kfree(s);
834 	}
835 	return rc;
836 
837 }
838 
jbd2_seq_info_release(struct inode * inode,struct file * file)839 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
840 {
841 	struct seq_file *seq = file->private_data;
842 	struct jbd2_stats_proc_session *s = seq->private;
843 	kfree(s->stats);
844 	kfree(s);
845 	return seq_release(inode, file);
846 }
847 
848 static const struct file_operations jbd2_seq_info_fops = {
849 	.owner		= THIS_MODULE,
850 	.open           = jbd2_seq_info_open,
851 	.read           = seq_read,
852 	.llseek         = seq_lseek,
853 	.release        = jbd2_seq_info_release,
854 };
855 
856 static struct proc_dir_entry *proc_jbd2_stats;
857 
jbd2_stats_proc_init(journal_t * journal)858 static void jbd2_stats_proc_init(journal_t *journal)
859 {
860 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
861 	if (journal->j_proc_entry) {
862 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
863 				 &jbd2_seq_info_fops, journal);
864 	}
865 }
866 
jbd2_stats_proc_exit(journal_t * journal)867 static void jbd2_stats_proc_exit(journal_t *journal)
868 {
869 	remove_proc_entry("info", journal->j_proc_entry);
870 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
871 }
872 
873 /*
874  * Management for journal control blocks: functions to create and
875  * destroy journal_t structures, and to initialise and read existing
876  * journal blocks from disk.  */
877 
878 /* First: create and setup a journal_t object in memory.  We initialise
879  * very few fields yet: that has to wait until we have created the
880  * journal structures from from scratch, or loaded them from disk. */
881 
journal_init_common(void)882 static journal_t * journal_init_common (void)
883 {
884 	journal_t *journal;
885 	int err;
886 
887 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
888 	if (!journal)
889 		return NULL;
890 
891 	init_waitqueue_head(&journal->j_wait_transaction_locked);
892 	init_waitqueue_head(&journal->j_wait_logspace);
893 	init_waitqueue_head(&journal->j_wait_done_commit);
894 	init_waitqueue_head(&journal->j_wait_checkpoint);
895 	init_waitqueue_head(&journal->j_wait_commit);
896 	init_waitqueue_head(&journal->j_wait_updates);
897 	mutex_init(&journal->j_barrier);
898 	mutex_init(&journal->j_checkpoint_mutex);
899 	spin_lock_init(&journal->j_revoke_lock);
900 	spin_lock_init(&journal->j_list_lock);
901 	rwlock_init(&journal->j_state_lock);
902 
903 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
904 	journal->j_min_batch_time = 0;
905 	journal->j_max_batch_time = 15000; /* 15ms */
906 
907 	/* The journal is marked for error until we succeed with recovery! */
908 	journal->j_flags = JBD2_ABORT;
909 
910 	/* Set up a default-sized revoke table for the new mount. */
911 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
912 	if (err) {
913 		kfree(journal);
914 		return NULL;
915 	}
916 
917 	spin_lock_init(&journal->j_history_lock);
918 
919 	return journal;
920 }
921 
922 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
923  *
924  * Create a journal structure assigned some fixed set of disk blocks to
925  * the journal.  We don't actually touch those disk blocks yet, but we
926  * need to set up all of the mapping information to tell the journaling
927  * system where the journal blocks are.
928  *
929  */
930 
931 /**
932  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
933  *  @bdev: Block device on which to create the journal
934  *  @fs_dev: Device which hold journalled filesystem for this journal.
935  *  @start: Block nr Start of journal.
936  *  @len:  Length of the journal in blocks.
937  *  @blocksize: blocksize of journalling device
938  *
939  *  Returns: a newly created journal_t *
940  *
941  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
942  *  range of blocks on an arbitrary block device.
943  *
944  */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)945 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
946 			struct block_device *fs_dev,
947 			unsigned long long start, int len, int blocksize)
948 {
949 	journal_t *journal = journal_init_common();
950 	struct buffer_head *bh;
951 	char *p;
952 	int n;
953 
954 	if (!journal)
955 		return NULL;
956 
957 	/* journal descriptor can store up to n blocks -bzzz */
958 	journal->j_blocksize = blocksize;
959 	journal->j_dev = bdev;
960 	journal->j_fs_dev = fs_dev;
961 	journal->j_blk_offset = start;
962 	journal->j_maxlen = len;
963 	bdevname(journal->j_dev, journal->j_devname);
964 	p = journal->j_devname;
965 	while ((p = strchr(p, '/')))
966 		*p = '!';
967 	jbd2_stats_proc_init(journal);
968 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
969 	journal->j_wbufsize = n;
970 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
971 	if (!journal->j_wbuf) {
972 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
973 			__func__);
974 		goto out_err;
975 	}
976 
977 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
978 	if (!bh) {
979 		printk(KERN_ERR
980 		       "%s: Cannot get buffer for journal superblock\n",
981 		       __func__);
982 		goto out_err;
983 	}
984 	journal->j_sb_buffer = bh;
985 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
986 
987 	return journal;
988 out_err:
989 	kfree(journal->j_wbuf);
990 	jbd2_stats_proc_exit(journal);
991 	kfree(journal);
992 	return NULL;
993 }
994 
995 /**
996  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
997  *  @inode: An inode to create the journal in
998  *
999  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1000  * the journal.  The inode must exist already, must support bmap() and
1001  * must have all data blocks preallocated.
1002  */
jbd2_journal_init_inode(struct inode * inode)1003 journal_t * jbd2_journal_init_inode (struct inode *inode)
1004 {
1005 	struct buffer_head *bh;
1006 	journal_t *journal = journal_init_common();
1007 	char *p;
1008 	int err;
1009 	int n;
1010 	unsigned long long blocknr;
1011 
1012 	if (!journal)
1013 		return NULL;
1014 
1015 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1016 	journal->j_inode = inode;
1017 	bdevname(journal->j_dev, journal->j_devname);
1018 	p = journal->j_devname;
1019 	while ((p = strchr(p, '/')))
1020 		*p = '!';
1021 	p = journal->j_devname + strlen(journal->j_devname);
1022 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1023 	jbd_debug(1,
1024 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1025 		  journal, inode->i_sb->s_id, inode->i_ino,
1026 		  (long long) inode->i_size,
1027 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1028 
1029 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1030 	journal->j_blocksize = inode->i_sb->s_blocksize;
1031 	jbd2_stats_proc_init(journal);
1032 
1033 	/* journal descriptor can store up to n blocks -bzzz */
1034 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1035 	journal->j_wbufsize = n;
1036 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1037 	if (!journal->j_wbuf) {
1038 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1039 			__func__);
1040 		goto out_err;
1041 	}
1042 
1043 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1044 	/* If that failed, give up */
1045 	if (err) {
1046 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1047 		       __func__);
1048 		goto out_err;
1049 	}
1050 
1051 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1052 	if (!bh) {
1053 		printk(KERN_ERR
1054 		       "%s: Cannot get buffer for journal superblock\n",
1055 		       __func__);
1056 		goto out_err;
1057 	}
1058 	journal->j_sb_buffer = bh;
1059 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1060 
1061 	return journal;
1062 out_err:
1063 	kfree(journal->j_wbuf);
1064 	jbd2_stats_proc_exit(journal);
1065 	kfree(journal);
1066 	return NULL;
1067 }
1068 
1069 /*
1070  * If the journal init or create aborts, we need to mark the journal
1071  * superblock as being NULL to prevent the journal destroy from writing
1072  * back a bogus superblock.
1073  */
journal_fail_superblock(journal_t * journal)1074 static void journal_fail_superblock (journal_t *journal)
1075 {
1076 	struct buffer_head *bh = journal->j_sb_buffer;
1077 	brelse(bh);
1078 	journal->j_sb_buffer = NULL;
1079 }
1080 
1081 /*
1082  * Given a journal_t structure, initialise the various fields for
1083  * startup of a new journaling session.  We use this both when creating
1084  * a journal, and after recovering an old journal to reset it for
1085  * subsequent use.
1086  */
1087 
journal_reset(journal_t * journal)1088 static int journal_reset(journal_t *journal)
1089 {
1090 	journal_superblock_t *sb = journal->j_superblock;
1091 	unsigned long long first, last;
1092 
1093 	first = be32_to_cpu(sb->s_first);
1094 	last = be32_to_cpu(sb->s_maxlen);
1095 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1096 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1097 		       first, last);
1098 		journal_fail_superblock(journal);
1099 		return -EINVAL;
1100 	}
1101 
1102 	journal->j_first = first;
1103 	journal->j_last = last;
1104 
1105 	journal->j_head = first;
1106 	journal->j_tail = first;
1107 	journal->j_free = last - first;
1108 
1109 	journal->j_tail_sequence = journal->j_transaction_sequence;
1110 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1111 	journal->j_commit_request = journal->j_commit_sequence;
1112 
1113 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1114 
1115 	/* Add the dynamic fields and write it to disk. */
1116 	jbd2_journal_update_superblock(journal, 1);
1117 	return jbd2_journal_start_thread(journal);
1118 }
1119 
1120 /**
1121  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1122  * @journal: The journal to update.
1123  * @wait: Set to '0' if you don't want to wait for IO completion.
1124  *
1125  * Update a journal's dynamic superblock fields and write it to disk,
1126  * optionally waiting for the IO to complete.
1127  */
jbd2_journal_update_superblock(journal_t * journal,int wait)1128 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1129 {
1130 	journal_superblock_t *sb = journal->j_superblock;
1131 	struct buffer_head *bh = journal->j_sb_buffer;
1132 
1133 	/*
1134 	 * As a special case, if the on-disk copy is already marked as needing
1135 	 * no recovery (s_start == 0) and there are no outstanding transactions
1136 	 * in the filesystem, then we can safely defer the superblock update
1137 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1138 	 * attempting a write to a potential-readonly device.
1139 	 */
1140 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1141 				journal->j_transaction_sequence) {
1142 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1143 			"(start %ld, seq %d, errno %d)\n",
1144 			journal->j_tail, journal->j_tail_sequence,
1145 			journal->j_errno);
1146 		goto out;
1147 	}
1148 
1149 	if (buffer_write_io_error(bh)) {
1150 		/*
1151 		 * Oh, dear.  A previous attempt to write the journal
1152 		 * superblock failed.  This could happen because the
1153 		 * USB device was yanked out.  Or it could happen to
1154 		 * be a transient write error and maybe the block will
1155 		 * be remapped.  Nothing we can do but to retry the
1156 		 * write and hope for the best.
1157 		 */
1158 		printk(KERN_ERR "JBD2: previous I/O error detected "
1159 		       "for journal superblock update for %s.\n",
1160 		       journal->j_devname);
1161 		clear_buffer_write_io_error(bh);
1162 		set_buffer_uptodate(bh);
1163 	}
1164 
1165 	read_lock(&journal->j_state_lock);
1166 	jbd_debug(1, "JBD2: updating superblock (start %ld, seq %d, errno %d)\n",
1167 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1168 
1169 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1170 	sb->s_start    = cpu_to_be32(journal->j_tail);
1171 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1172 	read_unlock(&journal->j_state_lock);
1173 
1174 	BUFFER_TRACE(bh, "marking dirty");
1175 	mark_buffer_dirty(bh);
1176 	if (wait) {
1177 		sync_dirty_buffer(bh);
1178 		if (buffer_write_io_error(bh)) {
1179 			printk(KERN_ERR "JBD2: I/O error detected "
1180 			       "when updating journal superblock for %s.\n",
1181 			       journal->j_devname);
1182 			clear_buffer_write_io_error(bh);
1183 			set_buffer_uptodate(bh);
1184 		}
1185 	} else
1186 		write_dirty_buffer(bh, WRITE);
1187 
1188 out:
1189 	/* If we have just flushed the log (by marking s_start==0), then
1190 	 * any future commit will have to be careful to update the
1191 	 * superblock again to re-record the true start of the log. */
1192 
1193 	write_lock(&journal->j_state_lock);
1194 	if (sb->s_start)
1195 		journal->j_flags &= ~JBD2_FLUSHED;
1196 	else
1197 		journal->j_flags |= JBD2_FLUSHED;
1198 	write_unlock(&journal->j_state_lock);
1199 }
1200 
1201 /*
1202  * Read the superblock for a given journal, performing initial
1203  * validation of the format.
1204  */
1205 
journal_get_superblock(journal_t * journal)1206 static int journal_get_superblock(journal_t *journal)
1207 {
1208 	struct buffer_head *bh;
1209 	journal_superblock_t *sb;
1210 	int err = -EIO;
1211 
1212 	bh = journal->j_sb_buffer;
1213 
1214 	J_ASSERT(bh != NULL);
1215 	if (!buffer_uptodate(bh)) {
1216 		ll_rw_block(READ, 1, &bh);
1217 		wait_on_buffer(bh);
1218 		if (!buffer_uptodate(bh)) {
1219 			printk(KERN_ERR
1220 				"JBD2: IO error reading journal superblock\n");
1221 			goto out;
1222 		}
1223 	}
1224 
1225 	sb = journal->j_superblock;
1226 
1227 	err = -EINVAL;
1228 
1229 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1230 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1231 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1232 		goto out;
1233 	}
1234 
1235 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1236 	case JBD2_SUPERBLOCK_V1:
1237 		journal->j_format_version = 1;
1238 		break;
1239 	case JBD2_SUPERBLOCK_V2:
1240 		journal->j_format_version = 2;
1241 		break;
1242 	default:
1243 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1244 		goto out;
1245 	}
1246 
1247 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1248 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1249 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1250 		printk(KERN_WARNING "JBD2: journal file too short\n");
1251 		goto out;
1252 	}
1253 
1254 	if (be32_to_cpu(sb->s_first) == 0 ||
1255 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1256 		printk(KERN_WARNING
1257 			"JBD2: Invalid start block of journal: %u\n",
1258 			be32_to_cpu(sb->s_first));
1259 		goto out;
1260 	}
1261 
1262 	return 0;
1263 
1264 out:
1265 	journal_fail_superblock(journal);
1266 	return err;
1267 }
1268 
1269 /*
1270  * Load the on-disk journal superblock and read the key fields into the
1271  * journal_t.
1272  */
1273 
load_superblock(journal_t * journal)1274 static int load_superblock(journal_t *journal)
1275 {
1276 	int err;
1277 	journal_superblock_t *sb;
1278 
1279 	err = journal_get_superblock(journal);
1280 	if (err)
1281 		return err;
1282 
1283 	sb = journal->j_superblock;
1284 
1285 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1286 	journal->j_tail = be32_to_cpu(sb->s_start);
1287 	journal->j_first = be32_to_cpu(sb->s_first);
1288 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1289 	journal->j_errno = be32_to_cpu(sb->s_errno);
1290 
1291 	return 0;
1292 }
1293 
1294 
1295 /**
1296  * int jbd2_journal_load() - Read journal from disk.
1297  * @journal: Journal to act on.
1298  *
1299  * Given a journal_t structure which tells us which disk blocks contain
1300  * a journal, read the journal from disk to initialise the in-memory
1301  * structures.
1302  */
jbd2_journal_load(journal_t * journal)1303 int jbd2_journal_load(journal_t *journal)
1304 {
1305 	int err;
1306 	journal_superblock_t *sb;
1307 
1308 	err = load_superblock(journal);
1309 	if (err)
1310 		return err;
1311 
1312 	sb = journal->j_superblock;
1313 	/* If this is a V2 superblock, then we have to check the
1314 	 * features flags on it. */
1315 
1316 	if (journal->j_format_version >= 2) {
1317 		if ((sb->s_feature_ro_compat &
1318 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1319 		    (sb->s_feature_incompat &
1320 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1321 			printk(KERN_WARNING
1322 				"JBD2: Unrecognised features on journal\n");
1323 			return -EINVAL;
1324 		}
1325 	}
1326 
1327 	/*
1328 	 * Create a slab for this blocksize
1329 	 */
1330 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1331 	if (err)
1332 		return err;
1333 
1334 	/* Let the recovery code check whether it needs to recover any
1335 	 * data from the journal. */
1336 	if (jbd2_journal_recover(journal))
1337 		goto recovery_error;
1338 
1339 	if (journal->j_failed_commit) {
1340 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1341 		       "is corrupt.\n", journal->j_failed_commit,
1342 		       journal->j_devname);
1343 		return -EIO;
1344 	}
1345 
1346 	/* OK, we've finished with the dynamic journal bits:
1347 	 * reinitialise the dynamic contents of the superblock in memory
1348 	 * and reset them on disk. */
1349 	if (journal_reset(journal))
1350 		goto recovery_error;
1351 
1352 	journal->j_flags &= ~JBD2_ABORT;
1353 	journal->j_flags |= JBD2_LOADED;
1354 	return 0;
1355 
1356 recovery_error:
1357 	printk(KERN_WARNING "JBD2: recovery failed\n");
1358 	return -EIO;
1359 }
1360 
1361 /**
1362  * void jbd2_journal_destroy() - Release a journal_t structure.
1363  * @journal: Journal to act on.
1364  *
1365  * Release a journal_t structure once it is no longer in use by the
1366  * journaled object.
1367  * Return <0 if we couldn't clean up the journal.
1368  */
jbd2_journal_destroy(journal_t * journal)1369 int jbd2_journal_destroy(journal_t *journal)
1370 {
1371 	int err = 0;
1372 
1373 	/* Wait for the commit thread to wake up and die. */
1374 	journal_kill_thread(journal);
1375 
1376 	/* Force a final log commit */
1377 	if (journal->j_running_transaction)
1378 		jbd2_journal_commit_transaction(journal);
1379 
1380 	/* Force any old transactions to disk */
1381 
1382 	/* Totally anal locking here... */
1383 	spin_lock(&journal->j_list_lock);
1384 	while (journal->j_checkpoint_transactions != NULL) {
1385 		spin_unlock(&journal->j_list_lock);
1386 		mutex_lock(&journal->j_checkpoint_mutex);
1387 		jbd2_log_do_checkpoint(journal);
1388 		mutex_unlock(&journal->j_checkpoint_mutex);
1389 		spin_lock(&journal->j_list_lock);
1390 	}
1391 
1392 	J_ASSERT(journal->j_running_transaction == NULL);
1393 	J_ASSERT(journal->j_committing_transaction == NULL);
1394 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1395 	spin_unlock(&journal->j_list_lock);
1396 
1397 	if (journal->j_sb_buffer) {
1398 		if (!is_journal_aborted(journal)) {
1399 			/* We can now mark the journal as empty. */
1400 			journal->j_tail = 0;
1401 			journal->j_tail_sequence =
1402 				++journal->j_transaction_sequence;
1403 			jbd2_journal_update_superblock(journal, 1);
1404 		} else {
1405 			err = -EIO;
1406 		}
1407 		brelse(journal->j_sb_buffer);
1408 	}
1409 
1410 	if (journal->j_proc_entry)
1411 		jbd2_stats_proc_exit(journal);
1412 	if (journal->j_inode)
1413 		iput(journal->j_inode);
1414 	if (journal->j_revoke)
1415 		jbd2_journal_destroy_revoke(journal);
1416 	kfree(journal->j_wbuf);
1417 	kfree(journal);
1418 
1419 	return err;
1420 }
1421 
1422 
1423 /**
1424  *int jbd2_journal_check_used_features () - Check if features specified are used.
1425  * @journal: Journal to check.
1426  * @compat: bitmask of compatible features
1427  * @ro: bitmask of features that force read-only mount
1428  * @incompat: bitmask of incompatible features
1429  *
1430  * Check whether the journal uses all of a given set of
1431  * features.  Return true (non-zero) if it does.
1432  **/
1433 
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1434 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1435 				 unsigned long ro, unsigned long incompat)
1436 {
1437 	journal_superblock_t *sb;
1438 
1439 	if (!compat && !ro && !incompat)
1440 		return 1;
1441 	/* Load journal superblock if it is not loaded yet. */
1442 	if (journal->j_format_version == 0 &&
1443 	    journal_get_superblock(journal) != 0)
1444 		return 0;
1445 	if (journal->j_format_version == 1)
1446 		return 0;
1447 
1448 	sb = journal->j_superblock;
1449 
1450 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1451 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1452 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1453 		return 1;
1454 
1455 	return 0;
1456 }
1457 
1458 /**
1459  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1460  * @journal: Journal to check.
1461  * @compat: bitmask of compatible features
1462  * @ro: bitmask of features that force read-only mount
1463  * @incompat: bitmask of incompatible features
1464  *
1465  * Check whether the journaling code supports the use of
1466  * all of a given set of features on this journal.  Return true
1467  * (non-zero) if it can. */
1468 
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1469 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1470 				      unsigned long ro, unsigned long incompat)
1471 {
1472 	if (!compat && !ro && !incompat)
1473 		return 1;
1474 
1475 	/* We can support any known requested features iff the
1476 	 * superblock is in version 2.  Otherwise we fail to support any
1477 	 * extended sb features. */
1478 
1479 	if (journal->j_format_version != 2)
1480 		return 0;
1481 
1482 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1483 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1484 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1485 		return 1;
1486 
1487 	return 0;
1488 }
1489 
1490 /**
1491  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1492  * @journal: Journal to act on.
1493  * @compat: bitmask of compatible features
1494  * @ro: bitmask of features that force read-only mount
1495  * @incompat: bitmask of incompatible features
1496  *
1497  * Mark a given journal feature as present on the
1498  * superblock.  Returns true if the requested features could be set.
1499  *
1500  */
1501 
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1502 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1503 			  unsigned long ro, unsigned long incompat)
1504 {
1505 	journal_superblock_t *sb;
1506 
1507 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1508 		return 1;
1509 
1510 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1511 		return 0;
1512 
1513 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1514 		  compat, ro, incompat);
1515 
1516 	sb = journal->j_superblock;
1517 
1518 	sb->s_feature_compat    |= cpu_to_be32(compat);
1519 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1520 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1521 
1522 	return 1;
1523 }
1524 
1525 /*
1526  * jbd2_journal_clear_features () - Clear a given journal feature in the
1527  * 				    superblock
1528  * @journal: Journal to act on.
1529  * @compat: bitmask of compatible features
1530  * @ro: bitmask of features that force read-only mount
1531  * @incompat: bitmask of incompatible features
1532  *
1533  * Clear a given journal feature as present on the
1534  * superblock.
1535  */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1536 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1537 				unsigned long ro, unsigned long incompat)
1538 {
1539 	journal_superblock_t *sb;
1540 
1541 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1542 		  compat, ro, incompat);
1543 
1544 	sb = journal->j_superblock;
1545 
1546 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1547 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1548 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1549 }
1550 EXPORT_SYMBOL(jbd2_journal_clear_features);
1551 
1552 /**
1553  * int jbd2_journal_update_format () - Update on-disk journal structure.
1554  * @journal: Journal to act on.
1555  *
1556  * Given an initialised but unloaded journal struct, poke about in the
1557  * on-disk structure to update it to the most recent supported version.
1558  */
jbd2_journal_update_format(journal_t * journal)1559 int jbd2_journal_update_format (journal_t *journal)
1560 {
1561 	journal_superblock_t *sb;
1562 	int err;
1563 
1564 	err = journal_get_superblock(journal);
1565 	if (err)
1566 		return err;
1567 
1568 	sb = journal->j_superblock;
1569 
1570 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1571 	case JBD2_SUPERBLOCK_V2:
1572 		return 0;
1573 	case JBD2_SUPERBLOCK_V1:
1574 		return journal_convert_superblock_v1(journal, sb);
1575 	default:
1576 		break;
1577 	}
1578 	return -EINVAL;
1579 }
1580 
journal_convert_superblock_v1(journal_t * journal,journal_superblock_t * sb)1581 static int journal_convert_superblock_v1(journal_t *journal,
1582 					 journal_superblock_t *sb)
1583 {
1584 	int offset, blocksize;
1585 	struct buffer_head *bh;
1586 
1587 	printk(KERN_WARNING
1588 		"JBD2: Converting superblock from version 1 to 2.\n");
1589 
1590 	/* Pre-initialise new fields to zero */
1591 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1592 	blocksize = be32_to_cpu(sb->s_blocksize);
1593 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1594 
1595 	sb->s_nr_users = cpu_to_be32(1);
1596 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1597 	journal->j_format_version = 2;
1598 
1599 	bh = journal->j_sb_buffer;
1600 	BUFFER_TRACE(bh, "marking dirty");
1601 	mark_buffer_dirty(bh);
1602 	sync_dirty_buffer(bh);
1603 	return 0;
1604 }
1605 
1606 
1607 /**
1608  * int jbd2_journal_flush () - Flush journal
1609  * @journal: Journal to act on.
1610  *
1611  * Flush all data for a given journal to disk and empty the journal.
1612  * Filesystems can use this when remounting readonly to ensure that
1613  * recovery does not need to happen on remount.
1614  */
1615 
jbd2_journal_flush(journal_t * journal)1616 int jbd2_journal_flush(journal_t *journal)
1617 {
1618 	int err = 0;
1619 	transaction_t *transaction = NULL;
1620 	unsigned long old_tail;
1621 
1622 	write_lock(&journal->j_state_lock);
1623 
1624 	/* Force everything buffered to the log... */
1625 	if (journal->j_running_transaction) {
1626 		transaction = journal->j_running_transaction;
1627 		__jbd2_log_start_commit(journal, transaction->t_tid);
1628 	} else if (journal->j_committing_transaction)
1629 		transaction = journal->j_committing_transaction;
1630 
1631 	/* Wait for the log commit to complete... */
1632 	if (transaction) {
1633 		tid_t tid = transaction->t_tid;
1634 
1635 		write_unlock(&journal->j_state_lock);
1636 		jbd2_log_wait_commit(journal, tid);
1637 	} else {
1638 		write_unlock(&journal->j_state_lock);
1639 	}
1640 
1641 	/* ...and flush everything in the log out to disk. */
1642 	spin_lock(&journal->j_list_lock);
1643 	while (!err && journal->j_checkpoint_transactions != NULL) {
1644 		spin_unlock(&journal->j_list_lock);
1645 		mutex_lock(&journal->j_checkpoint_mutex);
1646 		err = jbd2_log_do_checkpoint(journal);
1647 		mutex_unlock(&journal->j_checkpoint_mutex);
1648 		spin_lock(&journal->j_list_lock);
1649 	}
1650 	spin_unlock(&journal->j_list_lock);
1651 
1652 	if (is_journal_aborted(journal))
1653 		return -EIO;
1654 
1655 	jbd2_cleanup_journal_tail(journal);
1656 
1657 	/* Finally, mark the journal as really needing no recovery.
1658 	 * This sets s_start==0 in the underlying superblock, which is
1659 	 * the magic code for a fully-recovered superblock.  Any future
1660 	 * commits of data to the journal will restore the current
1661 	 * s_start value. */
1662 	write_lock(&journal->j_state_lock);
1663 	old_tail = journal->j_tail;
1664 	journal->j_tail = 0;
1665 	write_unlock(&journal->j_state_lock);
1666 	jbd2_journal_update_superblock(journal, 1);
1667 	write_lock(&journal->j_state_lock);
1668 	journal->j_tail = old_tail;
1669 
1670 	J_ASSERT(!journal->j_running_transaction);
1671 	J_ASSERT(!journal->j_committing_transaction);
1672 	J_ASSERT(!journal->j_checkpoint_transactions);
1673 	J_ASSERT(journal->j_head == journal->j_tail);
1674 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1675 	write_unlock(&journal->j_state_lock);
1676 	return 0;
1677 }
1678 
1679 /**
1680  * int jbd2_journal_wipe() - Wipe journal contents
1681  * @journal: Journal to act on.
1682  * @write: flag (see below)
1683  *
1684  * Wipe out all of the contents of a journal, safely.  This will produce
1685  * a warning if the journal contains any valid recovery information.
1686  * Must be called between journal_init_*() and jbd2_journal_load().
1687  *
1688  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1689  * we merely suppress recovery.
1690  */
1691 
jbd2_journal_wipe(journal_t * journal,int write)1692 int jbd2_journal_wipe(journal_t *journal, int write)
1693 {
1694 	int err = 0;
1695 
1696 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1697 
1698 	err = load_superblock(journal);
1699 	if (err)
1700 		return err;
1701 
1702 	if (!journal->j_tail)
1703 		goto no_recovery;
1704 
1705 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1706 		write ? "Clearing" : "Ignoring");
1707 
1708 	err = jbd2_journal_skip_recovery(journal);
1709 	if (write)
1710 		jbd2_journal_update_superblock(journal, 1);
1711 
1712  no_recovery:
1713 	return err;
1714 }
1715 
1716 /*
1717  * Journal abort has very specific semantics, which we describe
1718  * for journal abort.
1719  *
1720  * Two internal functions, which provide abort to the jbd layer
1721  * itself are here.
1722  */
1723 
1724 /*
1725  * Quick version for internal journal use (doesn't lock the journal).
1726  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1727  * and don't attempt to make any other journal updates.
1728  */
__jbd2_journal_abort_hard(journal_t * journal)1729 void __jbd2_journal_abort_hard(journal_t *journal)
1730 {
1731 	transaction_t *transaction;
1732 
1733 	if (journal->j_flags & JBD2_ABORT)
1734 		return;
1735 
1736 	printk(KERN_ERR "Aborting journal on device %s.\n",
1737 	       journal->j_devname);
1738 
1739 	write_lock(&journal->j_state_lock);
1740 	journal->j_flags |= JBD2_ABORT;
1741 	transaction = journal->j_running_transaction;
1742 	if (transaction)
1743 		__jbd2_log_start_commit(journal, transaction->t_tid);
1744 	write_unlock(&journal->j_state_lock);
1745 }
1746 
1747 /* Soft abort: record the abort error status in the journal superblock,
1748  * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)1749 static void __journal_abort_soft (journal_t *journal, int errno)
1750 {
1751 	if (journal->j_flags & JBD2_ABORT)
1752 		return;
1753 
1754 	if (!journal->j_errno)
1755 		journal->j_errno = errno;
1756 
1757 	__jbd2_journal_abort_hard(journal);
1758 
1759 	if (errno)
1760 		jbd2_journal_update_superblock(journal, 1);
1761 }
1762 
1763 /**
1764  * void jbd2_journal_abort () - Shutdown the journal immediately.
1765  * @journal: the journal to shutdown.
1766  * @errno:   an error number to record in the journal indicating
1767  *           the reason for the shutdown.
1768  *
1769  * Perform a complete, immediate shutdown of the ENTIRE
1770  * journal (not of a single transaction).  This operation cannot be
1771  * undone without closing and reopening the journal.
1772  *
1773  * The jbd2_journal_abort function is intended to support higher level error
1774  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1775  * mode.
1776  *
1777  * Journal abort has very specific semantics.  Any existing dirty,
1778  * unjournaled buffers in the main filesystem will still be written to
1779  * disk by bdflush, but the journaling mechanism will be suspended
1780  * immediately and no further transaction commits will be honoured.
1781  *
1782  * Any dirty, journaled buffers will be written back to disk without
1783  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1784  * filesystem, but we _do_ attempt to leave as much data as possible
1785  * behind for fsck to use for cleanup.
1786  *
1787  * Any attempt to get a new transaction handle on a journal which is in
1788  * ABORT state will just result in an -EROFS error return.  A
1789  * jbd2_journal_stop on an existing handle will return -EIO if we have
1790  * entered abort state during the update.
1791  *
1792  * Recursive transactions are not disturbed by journal abort until the
1793  * final jbd2_journal_stop, which will receive the -EIO error.
1794  *
1795  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1796  * which will be recorded (if possible) in the journal superblock.  This
1797  * allows a client to record failure conditions in the middle of a
1798  * transaction without having to complete the transaction to record the
1799  * failure to disk.  ext3_error, for example, now uses this
1800  * functionality.
1801  *
1802  * Errors which originate from within the journaling layer will NOT
1803  * supply an errno; a null errno implies that absolutely no further
1804  * writes are done to the journal (unless there are any already in
1805  * progress).
1806  *
1807  */
1808 
jbd2_journal_abort(journal_t * journal,int errno)1809 void jbd2_journal_abort(journal_t *journal, int errno)
1810 {
1811 	__journal_abort_soft(journal, errno);
1812 }
1813 
1814 /**
1815  * int jbd2_journal_errno () - returns the journal's error state.
1816  * @journal: journal to examine.
1817  *
1818  * This is the errno number set with jbd2_journal_abort(), the last
1819  * time the journal was mounted - if the journal was stopped
1820  * without calling abort this will be 0.
1821  *
1822  * If the journal has been aborted on this mount time -EROFS will
1823  * be returned.
1824  */
jbd2_journal_errno(journal_t * journal)1825 int jbd2_journal_errno(journal_t *journal)
1826 {
1827 	int err;
1828 
1829 	read_lock(&journal->j_state_lock);
1830 	if (journal->j_flags & JBD2_ABORT)
1831 		err = -EROFS;
1832 	else
1833 		err = journal->j_errno;
1834 	read_unlock(&journal->j_state_lock);
1835 	return err;
1836 }
1837 
1838 /**
1839  * int jbd2_journal_clear_err () - clears the journal's error state
1840  * @journal: journal to act on.
1841  *
1842  * An error must be cleared or acked to take a FS out of readonly
1843  * mode.
1844  */
jbd2_journal_clear_err(journal_t * journal)1845 int jbd2_journal_clear_err(journal_t *journal)
1846 {
1847 	int err = 0;
1848 
1849 	write_lock(&journal->j_state_lock);
1850 	if (journal->j_flags & JBD2_ABORT)
1851 		err = -EROFS;
1852 	else
1853 		journal->j_errno = 0;
1854 	write_unlock(&journal->j_state_lock);
1855 	return err;
1856 }
1857 
1858 /**
1859  * void jbd2_journal_ack_err() - Ack journal err.
1860  * @journal: journal to act on.
1861  *
1862  * An error must be cleared or acked to take a FS out of readonly
1863  * mode.
1864  */
jbd2_journal_ack_err(journal_t * journal)1865 void jbd2_journal_ack_err(journal_t *journal)
1866 {
1867 	write_lock(&journal->j_state_lock);
1868 	if (journal->j_errno)
1869 		journal->j_flags |= JBD2_ACK_ERR;
1870 	write_unlock(&journal->j_state_lock);
1871 }
1872 
jbd2_journal_blocks_per_page(struct inode * inode)1873 int jbd2_journal_blocks_per_page(struct inode *inode)
1874 {
1875 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1876 }
1877 
1878 /*
1879  * helper functions to deal with 32 or 64bit block numbers.
1880  */
journal_tag_bytes(journal_t * journal)1881 size_t journal_tag_bytes(journal_t *journal)
1882 {
1883 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1884 		return JBD2_TAG_SIZE64;
1885 	else
1886 		return JBD2_TAG_SIZE32;
1887 }
1888 
1889 /*
1890  * JBD memory management
1891  *
1892  * These functions are used to allocate block-sized chunks of memory
1893  * used for making copies of buffer_head data.  Very often it will be
1894  * page-sized chunks of data, but sometimes it will be in
1895  * sub-page-size chunks.  (For example, 16k pages on Power systems
1896  * with a 4k block file system.)  For blocks smaller than a page, we
1897  * use a SLAB allocator.  There are slab caches for each block size,
1898  * which are allocated at mount time, if necessary, and we only free
1899  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1900  * this reason we don't need to a mutex to protect access to
1901  * jbd2_slab[] allocating or releasing memory; only in
1902  * jbd2_journal_create_slab().
1903  */
1904 #define JBD2_MAX_SLABS 8
1905 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1906 
1907 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1908 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1909 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1910 };
1911 
1912 
jbd2_journal_destroy_slabs(void)1913 static void jbd2_journal_destroy_slabs(void)
1914 {
1915 	int i;
1916 
1917 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
1918 		if (jbd2_slab[i])
1919 			kmem_cache_destroy(jbd2_slab[i]);
1920 		jbd2_slab[i] = NULL;
1921 	}
1922 }
1923 
jbd2_journal_create_slab(size_t size)1924 static int jbd2_journal_create_slab(size_t size)
1925 {
1926 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
1927 	int i = order_base_2(size) - 10;
1928 	size_t slab_size;
1929 
1930 	if (size == PAGE_SIZE)
1931 		return 0;
1932 
1933 	if (i >= JBD2_MAX_SLABS)
1934 		return -EINVAL;
1935 
1936 	if (unlikely(i < 0))
1937 		i = 0;
1938 	mutex_lock(&jbd2_slab_create_mutex);
1939 	if (jbd2_slab[i]) {
1940 		mutex_unlock(&jbd2_slab_create_mutex);
1941 		return 0;	/* Already created */
1942 	}
1943 
1944 	slab_size = 1 << (i+10);
1945 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1946 					 slab_size, 0, NULL);
1947 	mutex_unlock(&jbd2_slab_create_mutex);
1948 	if (!jbd2_slab[i]) {
1949 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1950 		return -ENOMEM;
1951 	}
1952 	return 0;
1953 }
1954 
get_slab(size_t size)1955 static struct kmem_cache *get_slab(size_t size)
1956 {
1957 	int i = order_base_2(size) - 10;
1958 
1959 	BUG_ON(i >= JBD2_MAX_SLABS);
1960 	if (unlikely(i < 0))
1961 		i = 0;
1962 	BUG_ON(jbd2_slab[i] == NULL);
1963 	return jbd2_slab[i];
1964 }
1965 
jbd2_alloc(size_t size,gfp_t flags)1966 void *jbd2_alloc(size_t size, gfp_t flags)
1967 {
1968 	void *ptr;
1969 
1970 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
1971 
1972 	flags |= __GFP_REPEAT;
1973 	if (size == PAGE_SIZE)
1974 		ptr = (void *)__get_free_pages(flags, 0);
1975 	else if (size > PAGE_SIZE) {
1976 		int order = get_order(size);
1977 
1978 		if (order < 3)
1979 			ptr = (void *)__get_free_pages(flags, order);
1980 		else
1981 			ptr = vmalloc(size);
1982 	} else
1983 		ptr = kmem_cache_alloc(get_slab(size), flags);
1984 
1985 	/* Check alignment; SLUB has gotten this wrong in the past,
1986 	 * and this can lead to user data corruption! */
1987 	BUG_ON(((unsigned long) ptr) & (size-1));
1988 
1989 	return ptr;
1990 }
1991 
jbd2_free(void * ptr,size_t size)1992 void jbd2_free(void *ptr, size_t size)
1993 {
1994 	if (size == PAGE_SIZE) {
1995 		free_pages((unsigned long)ptr, 0);
1996 		return;
1997 	}
1998 	if (size > PAGE_SIZE) {
1999 		int order = get_order(size);
2000 
2001 		if (order < 3)
2002 			free_pages((unsigned long)ptr, order);
2003 		else
2004 			vfree(ptr);
2005 		return;
2006 	}
2007 	kmem_cache_free(get_slab(size), ptr);
2008 };
2009 
2010 /*
2011  * Journal_head storage management
2012  */
2013 static struct kmem_cache *jbd2_journal_head_cache;
2014 #ifdef CONFIG_JBD2_DEBUG
2015 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2016 #endif
2017 
journal_init_jbd2_journal_head_cache(void)2018 static int journal_init_jbd2_journal_head_cache(void)
2019 {
2020 	int retval;
2021 
2022 	J_ASSERT(jbd2_journal_head_cache == NULL);
2023 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2024 				sizeof(struct journal_head),
2025 				0,		/* offset */
2026 				SLAB_TEMPORARY,	/* flags */
2027 				NULL);		/* ctor */
2028 	retval = 0;
2029 	if (!jbd2_journal_head_cache) {
2030 		retval = -ENOMEM;
2031 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2032 	}
2033 	return retval;
2034 }
2035 
jbd2_journal_destroy_jbd2_journal_head_cache(void)2036 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
2037 {
2038 	if (jbd2_journal_head_cache) {
2039 		kmem_cache_destroy(jbd2_journal_head_cache);
2040 		jbd2_journal_head_cache = NULL;
2041 	}
2042 }
2043 
2044 /*
2045  * journal_head splicing and dicing
2046  */
journal_alloc_journal_head(void)2047 static struct journal_head *journal_alloc_journal_head(void)
2048 {
2049 	struct journal_head *ret;
2050 
2051 #ifdef CONFIG_JBD2_DEBUG
2052 	atomic_inc(&nr_journal_heads);
2053 #endif
2054 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2055 	if (!ret) {
2056 		jbd_debug(1, "out of memory for journal_head\n");
2057 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2058 		while (!ret) {
2059 			yield();
2060 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2061 		}
2062 	}
2063 	return ret;
2064 }
2065 
journal_free_journal_head(struct journal_head * jh)2066 static void journal_free_journal_head(struct journal_head *jh)
2067 {
2068 #ifdef CONFIG_JBD2_DEBUG
2069 	atomic_dec(&nr_journal_heads);
2070 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2071 #endif
2072 	kmem_cache_free(jbd2_journal_head_cache, jh);
2073 }
2074 
2075 /*
2076  * A journal_head is attached to a buffer_head whenever JBD has an
2077  * interest in the buffer.
2078  *
2079  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2080  * is set.  This bit is tested in core kernel code where we need to take
2081  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2082  * there.
2083  *
2084  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2085  *
2086  * When a buffer has its BH_JBD bit set it is immune from being released by
2087  * core kernel code, mainly via ->b_count.
2088  *
2089  * A journal_head is detached from its buffer_head when the journal_head's
2090  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2091  * transaction (b_cp_transaction) hold their references to b_jcount.
2092  *
2093  * Various places in the kernel want to attach a journal_head to a buffer_head
2094  * _before_ attaching the journal_head to a transaction.  To protect the
2095  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2096  * journal_head's b_jcount refcount by one.  The caller must call
2097  * jbd2_journal_put_journal_head() to undo this.
2098  *
2099  * So the typical usage would be:
2100  *
2101  *	(Attach a journal_head if needed.  Increments b_jcount)
2102  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2103  *	...
2104  *      (Get another reference for transaction)
2105  *	jbd2_journal_grab_journal_head(bh);
2106  *	jh->b_transaction = xxx;
2107  *	(Put original reference)
2108  *	jbd2_journal_put_journal_head(jh);
2109  */
2110 
2111 /*
2112  * Give a buffer_head a journal_head.
2113  *
2114  * May sleep.
2115  */
jbd2_journal_add_journal_head(struct buffer_head * bh)2116 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2117 {
2118 	struct journal_head *jh;
2119 	struct journal_head *new_jh = NULL;
2120 
2121 repeat:
2122 	if (!buffer_jbd(bh)) {
2123 		new_jh = journal_alloc_journal_head();
2124 		memset(new_jh, 0, sizeof(*new_jh));
2125 	}
2126 
2127 	jbd_lock_bh_journal_head(bh);
2128 	if (buffer_jbd(bh)) {
2129 		jh = bh2jh(bh);
2130 	} else {
2131 		J_ASSERT_BH(bh,
2132 			(atomic_read(&bh->b_count) > 0) ||
2133 			(bh->b_page && bh->b_page->mapping));
2134 
2135 		if (!new_jh) {
2136 			jbd_unlock_bh_journal_head(bh);
2137 			goto repeat;
2138 		}
2139 
2140 		jh = new_jh;
2141 		new_jh = NULL;		/* We consumed it */
2142 		set_buffer_jbd(bh);
2143 		bh->b_private = jh;
2144 		jh->b_bh = bh;
2145 		get_bh(bh);
2146 		BUFFER_TRACE(bh, "added journal_head");
2147 	}
2148 	jh->b_jcount++;
2149 	jbd_unlock_bh_journal_head(bh);
2150 	if (new_jh)
2151 		journal_free_journal_head(new_jh);
2152 	return bh->b_private;
2153 }
2154 
2155 /*
2156  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2157  * having a journal_head, return NULL
2158  */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2159 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2160 {
2161 	struct journal_head *jh = NULL;
2162 
2163 	jbd_lock_bh_journal_head(bh);
2164 	if (buffer_jbd(bh)) {
2165 		jh = bh2jh(bh);
2166 		jh->b_jcount++;
2167 	}
2168 	jbd_unlock_bh_journal_head(bh);
2169 	return jh;
2170 }
2171 
__journal_remove_journal_head(struct buffer_head * bh)2172 static void __journal_remove_journal_head(struct buffer_head *bh)
2173 {
2174 	struct journal_head *jh = bh2jh(bh);
2175 
2176 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2177 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2178 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2179 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2180 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2181 	J_ASSERT_BH(bh, buffer_jbd(bh));
2182 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2183 	BUFFER_TRACE(bh, "remove journal_head");
2184 	if (jh->b_frozen_data) {
2185 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2186 		jbd2_free(jh->b_frozen_data, bh->b_size);
2187 	}
2188 	if (jh->b_committed_data) {
2189 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2190 		jbd2_free(jh->b_committed_data, bh->b_size);
2191 	}
2192 	bh->b_private = NULL;
2193 	jh->b_bh = NULL;	/* debug, really */
2194 	clear_buffer_jbd(bh);
2195 	journal_free_journal_head(jh);
2196 }
2197 
2198 /*
2199  * Drop a reference on the passed journal_head.  If it fell to zero then
2200  * release the journal_head from the buffer_head.
2201  */
jbd2_journal_put_journal_head(struct journal_head * jh)2202 void jbd2_journal_put_journal_head(struct journal_head *jh)
2203 {
2204 	struct buffer_head *bh = jh2bh(jh);
2205 
2206 	jbd_lock_bh_journal_head(bh);
2207 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2208 	--jh->b_jcount;
2209 	if (!jh->b_jcount) {
2210 		__journal_remove_journal_head(bh);
2211 		jbd_unlock_bh_journal_head(bh);
2212 		__brelse(bh);
2213 	} else
2214 		jbd_unlock_bh_journal_head(bh);
2215 }
2216 
2217 /*
2218  * Initialize jbd inode head
2219  */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2220 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2221 {
2222 	jinode->i_transaction = NULL;
2223 	jinode->i_next_transaction = NULL;
2224 	jinode->i_vfs_inode = inode;
2225 	jinode->i_flags = 0;
2226 	INIT_LIST_HEAD(&jinode->i_list);
2227 }
2228 
2229 /*
2230  * Function to be called before we start removing inode from memory (i.e.,
2231  * clear_inode() is a fine place to be called from). It removes inode from
2232  * transaction's lists.
2233  */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2234 void jbd2_journal_release_jbd_inode(journal_t *journal,
2235 				    struct jbd2_inode *jinode)
2236 {
2237 	if (!journal)
2238 		return;
2239 restart:
2240 	spin_lock(&journal->j_list_lock);
2241 	/* Is commit writing out inode - we have to wait */
2242 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2243 		wait_queue_head_t *wq;
2244 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2245 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2246 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2247 		spin_unlock(&journal->j_list_lock);
2248 		schedule();
2249 		finish_wait(wq, &wait.wait);
2250 		goto restart;
2251 	}
2252 
2253 	if (jinode->i_transaction) {
2254 		list_del(&jinode->i_list);
2255 		jinode->i_transaction = NULL;
2256 	}
2257 	spin_unlock(&journal->j_list_lock);
2258 }
2259 
2260 /*
2261  * debugfs tunables
2262  */
2263 #ifdef CONFIG_JBD2_DEBUG
2264 u8 jbd2_journal_enable_debug __read_mostly;
2265 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2266 
2267 #define JBD2_DEBUG_NAME "jbd2-debug"
2268 
2269 static struct dentry *jbd2_debugfs_dir;
2270 static struct dentry *jbd2_debug;
2271 
jbd2_create_debugfs_entry(void)2272 static void __init jbd2_create_debugfs_entry(void)
2273 {
2274 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2275 	if (jbd2_debugfs_dir)
2276 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2277 					       S_IRUGO | S_IWUSR,
2278 					       jbd2_debugfs_dir,
2279 					       &jbd2_journal_enable_debug);
2280 }
2281 
jbd2_remove_debugfs_entry(void)2282 static void __exit jbd2_remove_debugfs_entry(void)
2283 {
2284 	debugfs_remove(jbd2_debug);
2285 	debugfs_remove(jbd2_debugfs_dir);
2286 }
2287 
2288 #else
2289 
jbd2_create_debugfs_entry(void)2290 static void __init jbd2_create_debugfs_entry(void)
2291 {
2292 }
2293 
jbd2_remove_debugfs_entry(void)2294 static void __exit jbd2_remove_debugfs_entry(void)
2295 {
2296 }
2297 
2298 #endif
2299 
2300 #ifdef CONFIG_PROC_FS
2301 
2302 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2303 
jbd2_create_jbd_stats_proc_entry(void)2304 static void __init jbd2_create_jbd_stats_proc_entry(void)
2305 {
2306 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2307 }
2308 
jbd2_remove_jbd_stats_proc_entry(void)2309 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2310 {
2311 	if (proc_jbd2_stats)
2312 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2313 }
2314 
2315 #else
2316 
2317 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2318 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2319 
2320 #endif
2321 
2322 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2323 
journal_init_handle_cache(void)2324 static int __init journal_init_handle_cache(void)
2325 {
2326 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2327 	if (jbd2_handle_cache == NULL) {
2328 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2329 		return -ENOMEM;
2330 	}
2331 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2332 	if (jbd2_inode_cache == NULL) {
2333 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2334 		kmem_cache_destroy(jbd2_handle_cache);
2335 		return -ENOMEM;
2336 	}
2337 	return 0;
2338 }
2339 
jbd2_journal_destroy_handle_cache(void)2340 static void jbd2_journal_destroy_handle_cache(void)
2341 {
2342 	if (jbd2_handle_cache)
2343 		kmem_cache_destroy(jbd2_handle_cache);
2344 	if (jbd2_inode_cache)
2345 		kmem_cache_destroy(jbd2_inode_cache);
2346 
2347 }
2348 
2349 /*
2350  * Module startup and shutdown
2351  */
2352 
journal_init_caches(void)2353 static int __init journal_init_caches(void)
2354 {
2355 	int ret;
2356 
2357 	ret = jbd2_journal_init_revoke_caches();
2358 	if (ret == 0)
2359 		ret = journal_init_jbd2_journal_head_cache();
2360 	if (ret == 0)
2361 		ret = journal_init_handle_cache();
2362 	return ret;
2363 }
2364 
jbd2_journal_destroy_caches(void)2365 static void jbd2_journal_destroy_caches(void)
2366 {
2367 	jbd2_journal_destroy_revoke_caches();
2368 	jbd2_journal_destroy_jbd2_journal_head_cache();
2369 	jbd2_journal_destroy_handle_cache();
2370 	jbd2_journal_destroy_slabs();
2371 }
2372 
journal_init(void)2373 static int __init journal_init(void)
2374 {
2375 	int ret;
2376 
2377 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2378 
2379 	ret = journal_init_caches();
2380 	if (ret == 0) {
2381 		jbd2_create_debugfs_entry();
2382 		jbd2_create_jbd_stats_proc_entry();
2383 	} else {
2384 		jbd2_journal_destroy_caches();
2385 	}
2386 	return ret;
2387 }
2388 
journal_exit(void)2389 static void __exit journal_exit(void)
2390 {
2391 #ifdef CONFIG_JBD2_DEBUG
2392 	int n = atomic_read(&nr_journal_heads);
2393 	if (n)
2394 		printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2395 #endif
2396 	jbd2_remove_debugfs_entry();
2397 	jbd2_remove_jbd_stats_proc_entry();
2398 	jbd2_journal_destroy_caches();
2399 }
2400 
2401 MODULE_LICENSE("GPL");
2402 module_init(journal_init);
2403 module_exit(journal_exit);
2404 
2405