1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM calibration section offset (in words) definitions */
42 	NVM_CALIB_SECTION = 0x2B8,
43 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44 
45 	/* NVM REGULATORY -Section offset (in words) definitions */
46 	NVM_CHANNELS_SDP = 0,
47 };
48 
49 enum ext_nvm_offsets {
50 	/* NVM HW-Section offset (in words) definitions */
51 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52 
53 	/* NVM SW-Section offset (in words) definitions */
54 	NVM_VERSION_EXT_NVM = 0,
55 	N_HW_ADDRS_FAMILY_8000 = 3,
56 
57 	/* NVM PHY_SKU-Section offset (in words) definitions */
58 	RADIO_CFG_FAMILY_EXT_NVM = 0,
59 	SKU_FAMILY_8000 = 2,
60 
61 	/* NVM REGULATORY -Section offset (in words) definitions */
62 	NVM_CHANNELS_EXTENDED = 0,
63 	NVM_LAR_OFFSET_OLD = 0x4C7,
64 	NVM_LAR_OFFSET = 0x507,
65 	NVM_LAR_ENABLED = 0x7,
66 };
67 
68 /* SKU Capabilities (actual values from NVM definition) */
69 enum nvm_sku_bits {
70 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75 };
76 
77 /*
78  * These are the channel numbers in the order that they are stored in the NVM
79  */
80 static const u16 iwl_nvm_channels[] = {
81 	/* 2.4 GHz */
82 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 	/* 5 GHz */
84 	36, 40, 44, 48, 52, 56, 60, 64,
85 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 	149, 153, 157, 161, 165
87 };
88 
89 static const u16 iwl_ext_nvm_channels[] = {
90 	/* 2.4 GHz */
91 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 	/* 5 GHz */
93 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 	149, 153, 157, 161, 165, 169, 173, 177, 181
96 };
97 
98 static const u16 iwl_uhb_nvm_channels[] = {
99 	/* 2.4 GHz */
100 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 	/* 5 GHz */
102 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 	149, 153, 157, 161, 165, 169, 173, 177, 181,
105 	/* 6-7 GHz */
106 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110 };
111 
112 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115 #define NUM_2GHZ_CHANNELS		14
116 #define NUM_5GHZ_CHANNELS		37
117 #define FIRST_2GHZ_HT_MINUS		5
118 #define LAST_2GHZ_HT_PLUS		9
119 #define N_HW_ADDR_MASK			0xF
120 
121 /* rate data (static) */
122 static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138 };
139 #define RATES_24_OFFS	0
140 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141 #define RATES_52_OFFS	4
142 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143 
144 /**
145  * enum iwl_nvm_channel_flags - channel flags in NVM
146  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148  * @NVM_CHANNEL_ACTIVE: active scanning allowed
149  * @NVM_CHANNEL_RADAR: radar detection required
150  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152  *	on same channel on 2.4 or same UNII band on 5.2
153  * @NVM_CHANNEL_UNIFORM: uniform spreading required
154  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159  */
160 enum iwl_nvm_channel_flags {
161 	NVM_CHANNEL_VALID		= BIT(0),
162 	NVM_CHANNEL_IBSS		= BIT(1),
163 	NVM_CHANNEL_ACTIVE		= BIT(3),
164 	NVM_CHANNEL_RADAR		= BIT(4),
165 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
166 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
167 	NVM_CHANNEL_UNIFORM		= BIT(7),
168 	NVM_CHANNEL_20MHZ		= BIT(8),
169 	NVM_CHANNEL_40MHZ		= BIT(9),
170 	NVM_CHANNEL_80MHZ		= BIT(10),
171 	NVM_CHANNEL_160MHZ		= BIT(11),
172 	NVM_CHANNEL_DC_HIGH		= BIT(12),
173 };
174 
175 /**
176  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
177  * domain.
178  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179  *	2.4Ghz band is allowed.
180  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181  *	5Ghz band is allowed.
182  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183  *	for this regulatory domain (valid only in 5Ghz).
184  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185  *	for this regulatory domain (valid only in 5Ghz).
186  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189  *	for this regulatory domain (valid only in 5Ghz).
190  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
191  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192  */
193 enum iwl_reg_capa_flags_v1 {
194 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
195 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
196 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
197 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
198 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
199 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
200 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
201 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
202 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
203 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
204 
205 /**
206  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207  * domain (version 2).
208  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209  *	disabled.
210  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211  *	2.4Ghz band is allowed.
212  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213  *	5Ghz band is allowed.
214  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215  *	for this regulatory domain (valid only in 5Ghz).
216  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217  *	for this regulatory domain (valid only in 5Ghz).
218  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221  *	126, 122) are disabled.
222  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223  *	for this regulatory domain (uvalid only in 5Ghz).
224  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225  */
226 enum iwl_reg_capa_flags_v2 {
227 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
228 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
229 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
230 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
231 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
232 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
233 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
234 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
235 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
236 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
237 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
238 
239 /**
240  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
241  * domain.
242  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
243  *	for this regulatory domain (valid only in 5Ghz).
244  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
245  *	for this regulatory domain (valid only in 5Ghz).
246  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
247  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
248  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
249  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
250  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
251  *	for this regulatory domain (valid only in 5GHz).
252  */
253 enum iwl_reg_capa_flags_v4 {
254 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
255 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
256 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
257 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
258 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
259 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
260 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
261 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
262 
263 /*
264 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
265 * MCC update command response.
266 */
267 #define REG_CAPA_V2_RESP_VER	6
268 
269 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
270  * MCC update command response.
271  */
272 #define REG_CAPA_V4_RESP_VER	8
273 
274 /**
275  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
276  * handling the different APIs of reg_capa_flags.
277  *
278  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
279  *	for this regulatory domain.
280  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
281  *	for this regulatory domain (valid only in 5 and 6 Ghz).
282  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
283  *	for this regulatory domain (valid only in 5 and 6 Ghz).
284  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
285  *	for this regulatory domain (valid only in 6 Ghz).
286  * @disable_11ax: 11ax is forbidden for this regulatory domain.
287  * @disable_11be: 11be is forbidden for this regulatory domain.
288  */
289 struct iwl_reg_capa {
290 	bool allow_40mhz;
291 	bool allow_80mhz;
292 	bool allow_160mhz;
293 	bool allow_320mhz;
294 	bool disable_11ax;
295 	bool disable_11be;
296 };
297 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)298 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
299 					       int chan, u32 flags)
300 {
301 #define CHECK_AND_PRINT_I(x)	\
302 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
303 
304 	if (!(flags & NVM_CHANNEL_VALID)) {
305 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
306 			      chan, flags);
307 		return;
308 	}
309 
310 	/* Note: already can print up to 101 characters, 110 is the limit! */
311 	IWL_DEBUG_DEV(dev, level,
312 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
313 		      chan, flags,
314 		      CHECK_AND_PRINT_I(VALID),
315 		      CHECK_AND_PRINT_I(IBSS),
316 		      CHECK_AND_PRINT_I(ACTIVE),
317 		      CHECK_AND_PRINT_I(RADAR),
318 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
319 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
320 		      CHECK_AND_PRINT_I(UNIFORM),
321 		      CHECK_AND_PRINT_I(20MHZ),
322 		      CHECK_AND_PRINT_I(40MHZ),
323 		      CHECK_AND_PRINT_I(80MHZ),
324 		      CHECK_AND_PRINT_I(160MHZ),
325 		      CHECK_AND_PRINT_I(DC_HIGH));
326 #undef CHECK_AND_PRINT_I
327 }
328 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_cfg * cfg)329 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
330 				 u32 nvm_flags, const struct iwl_cfg *cfg)
331 {
332 	u32 flags = IEEE80211_CHAN_NO_HT40;
333 
334 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
335 		if (ch_num <= LAST_2GHZ_HT_PLUS)
336 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
337 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
338 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
339 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
340 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
341 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 		else
343 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 	}
345 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
346 		flags |= IEEE80211_CHAN_NO_80MHZ;
347 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
348 		flags |= IEEE80211_CHAN_NO_160MHZ;
349 
350 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
351 		flags |= IEEE80211_CHAN_NO_IR;
352 
353 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
354 		flags |= IEEE80211_CHAN_NO_IR;
355 
356 	if (nvm_flags & NVM_CHANNEL_RADAR)
357 		flags |= IEEE80211_CHAN_RADAR;
358 
359 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
360 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
361 
362 	/* Set the GO concurrent flag only in case that NO_IR is set.
363 	 * Otherwise it is meaningless
364 	 */
365 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
366 	    (flags & IEEE80211_CHAN_NO_IR))
367 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
368 
369 	return flags;
370 }
371 
iwl_nl80211_band_from_channel_idx(int ch_idx)372 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
373 {
374 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
375 		return NL80211_BAND_6GHZ;
376 	}
377 
378 	if (ch_idx >= NUM_2GHZ_CHANNELS)
379 		return NL80211_BAND_5GHZ;
380 	return NL80211_BAND_2GHZ;
381 }
382 
iwl_init_channel_map(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)383 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
384 				struct iwl_nvm_data *data,
385 				const void * const nvm_ch_flags,
386 				u32 sbands_flags, bool v4)
387 {
388 	int ch_idx;
389 	int n_channels = 0;
390 	struct ieee80211_channel *channel;
391 	u32 ch_flags;
392 	int num_of_ch;
393 	const u16 *nvm_chan;
394 
395 	if (cfg->uhb_supported) {
396 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
397 		nvm_chan = iwl_uhb_nvm_channels;
398 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
399 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
400 		nvm_chan = iwl_ext_nvm_channels;
401 	} else {
402 		num_of_ch = IWL_NVM_NUM_CHANNELS;
403 		nvm_chan = iwl_nvm_channels;
404 	}
405 
406 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
407 		enum nl80211_band band =
408 			iwl_nl80211_band_from_channel_idx(ch_idx);
409 
410 		if (v4)
411 			ch_flags =
412 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
413 		else
414 			ch_flags =
415 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
416 
417 		if (band == NL80211_BAND_5GHZ &&
418 		    !data->sku_cap_band_52ghz_enable)
419 			continue;
420 
421 		/* workaround to disable wide channels in 5GHz */
422 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
423 		    band == NL80211_BAND_5GHZ) {
424 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
425 				     NVM_CHANNEL_80MHZ |
426 				     NVM_CHANNEL_160MHZ);
427 		}
428 
429 		if (ch_flags & NVM_CHANNEL_160MHZ)
430 			data->vht160_supported = true;
431 
432 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
433 		    !(ch_flags & NVM_CHANNEL_VALID)) {
434 			/*
435 			 * Channels might become valid later if lar is
436 			 * supported, hence we still want to add them to
437 			 * the list of supported channels to cfg80211.
438 			 */
439 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 						    nvm_chan[ch_idx], ch_flags);
441 			continue;
442 		}
443 
444 		channel = &data->channels[n_channels];
445 		n_channels++;
446 
447 		channel->hw_value = nvm_chan[ch_idx];
448 		channel->band = band;
449 		channel->center_freq =
450 			ieee80211_channel_to_frequency(
451 				channel->hw_value, channel->band);
452 
453 		/* Initialize regulatory-based run-time data */
454 
455 		/*
456 		 * Default value - highest tx power value.  max_power
457 		 * is not used in mvm, and is used for backwards compatibility
458 		 */
459 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
460 
461 		/* don't put limitations in case we're using LAR */
462 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
463 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
464 							       ch_idx, band,
465 							       ch_flags, cfg);
466 		else
467 			channel->flags = 0;
468 
469 		/* TODO: Don't put limitations on UHB devices as we still don't
470 		 * have NVM for them
471 		 */
472 		if (cfg->uhb_supported)
473 			channel->flags = 0;
474 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
475 					    channel->hw_value, ch_flags);
476 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
477 				 channel->hw_value, channel->max_power);
478 	}
479 
480 	return n_channels;
481 }
482 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)483 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
484 				  struct iwl_nvm_data *data,
485 				  struct ieee80211_sta_vht_cap *vht_cap,
486 				  u8 tx_chains, u8 rx_chains)
487 {
488 	const struct iwl_cfg *cfg = trans->cfg;
489 	int num_rx_ants = num_of_ant(rx_chains);
490 	int num_tx_ants = num_of_ant(tx_chains);
491 
492 	vht_cap->vht_supported = true;
493 
494 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
495 		       IEEE80211_VHT_CAP_RXSTBC_1 |
496 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
497 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
498 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
499 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
500 
501 	if (!trans->cfg->ht_params->stbc)
502 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
503 
504 	if (data->vht160_supported)
505 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
506 				IEEE80211_VHT_CAP_SHORT_GI_160;
507 
508 	if (cfg->vht_mu_mimo_supported)
509 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
510 
511 	if (cfg->ht_params->ldpc)
512 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
513 
514 	if (data->sku_cap_mimo_disabled) {
515 		num_rx_ants = 1;
516 		num_tx_ants = 1;
517 	}
518 
519 	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
521 	else
522 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
523 
524 	switch (iwlwifi_mod_params.amsdu_size) {
525 	case IWL_AMSDU_DEF:
526 		if (trans->trans_cfg->mq_rx_supported)
527 			vht_cap->cap |=
528 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
529 		else
530 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
531 		break;
532 	case IWL_AMSDU_2K:
533 		if (trans->trans_cfg->mq_rx_supported)
534 			vht_cap->cap |=
535 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
536 		else
537 			WARN(1, "RB size of 2K is not supported by this device\n");
538 		break;
539 	case IWL_AMSDU_4K:
540 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
541 		break;
542 	case IWL_AMSDU_8K:
543 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
544 		break;
545 	case IWL_AMSDU_12K:
546 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
547 		break;
548 	default:
549 		break;
550 	}
551 
552 	vht_cap->vht_mcs.rx_mcs_map =
553 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
554 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
555 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
556 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
557 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
558 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
559 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
560 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
561 
562 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
563 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
564 		/* this works because NOT_SUPPORTED == 3 */
565 		vht_cap->vht_mcs.rx_mcs_map |=
566 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
567 	}
568 
569 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
570 
571 	vht_cap->vht_mcs.tx_highest |=
572 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
573 }
574 
575 static const u8 iwl_vendor_caps[] = {
576 	0xdd,			/* vendor element */
577 	0x06,			/* length */
578 	0x00, 0x17, 0x35,	/* Intel OUI */
579 	0x08,			/* type (Intel Capabilities) */
580 	/* followed by 16 bits of capabilities */
581 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
582 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
583 	0x00
584 };
585 
586 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
587 	{
588 		.types_mask = BIT(NL80211_IFTYPE_STATION),
589 		.he_cap = {
590 			.has_he = true,
591 			.he_cap_elem = {
592 				.mac_cap_info[0] =
593 					IEEE80211_HE_MAC_CAP0_HTC_HE,
594 				.mac_cap_info[1] =
595 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
596 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
597 				.mac_cap_info[2] =
598 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
599 				.mac_cap_info[3] =
600 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
601 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
602 				.mac_cap_info[4] =
603 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
604 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
605 				.mac_cap_info[5] =
606 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
607 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
608 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
609 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
610 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
611 				.phy_cap_info[1] =
612 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
613 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
614 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
615 				.phy_cap_info[2] =
616 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
617 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
618 				.phy_cap_info[3] =
619 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
620 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
621 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
622 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
623 				.phy_cap_info[4] =
624 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
625 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
626 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
627 				.phy_cap_info[6] =
628 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
629 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
630 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
631 				.phy_cap_info[7] =
632 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
633 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
634 				.phy_cap_info[8] =
635 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
636 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
637 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
638 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
639 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
640 				.phy_cap_info[9] =
641 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
642 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
643 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
644 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
645 				.phy_cap_info[10] =
646 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
647 			},
648 			/*
649 			 * Set default Tx/Rx HE MCS NSS Support field.
650 			 * Indicate support for up to 2 spatial streams and all
651 			 * MCS, without any special cases
652 			 */
653 			.he_mcs_nss_supp = {
654 				.rx_mcs_80 = cpu_to_le16(0xfffa),
655 				.tx_mcs_80 = cpu_to_le16(0xfffa),
656 				.rx_mcs_160 = cpu_to_le16(0xfffa),
657 				.tx_mcs_160 = cpu_to_le16(0xfffa),
658 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
659 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
660 			},
661 			/*
662 			 * Set default PPE thresholds, with PPET16 set to 0,
663 			 * PPET8 set to 7
664 			 */
665 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
666 		},
667 		.eht_cap = {
668 			.has_eht = true,
669 			.eht_cap_elem = {
670 				.mac_cap_info[0] =
671 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
672 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
673 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
674 					IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
675 				.phy_cap_info[0] =
676 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
677 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
678 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
679 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
680 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
681 				.phy_cap_info[1] =
682 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
683 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
684 				.phy_cap_info[3] =
685 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
686 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
687 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
688 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
689 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
690 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
691 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
692 
693 				.phy_cap_info[4] =
694 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
695 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
696 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
697 				.phy_cap_info[5] =
698 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
699 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
700 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
701 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
702 				.phy_cap_info[6] =
703 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
704 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
705 				.phy_cap_info[8] =
706 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
707 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
708 			},
709 
710 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
711 			 * Rx - note we don't set the only_20mhz, but due to this
712 			 * being a union, it gets set correctly anyway.
713 			 */
714 			.eht_mcs_nss_supp = {
715 				.bw._80 = {
716 					.rx_tx_mcs9_max_nss = 0x22,
717 					.rx_tx_mcs11_max_nss = 0x22,
718 					.rx_tx_mcs13_max_nss = 0x22,
719 				},
720 				.bw._160 = {
721 					.rx_tx_mcs9_max_nss = 0x22,
722 					.rx_tx_mcs11_max_nss = 0x22,
723 					.rx_tx_mcs13_max_nss = 0x22,
724 				},
725 				.bw._320 = {
726 					.rx_tx_mcs9_max_nss = 0x22,
727 					.rx_tx_mcs11_max_nss = 0x22,
728 					.rx_tx_mcs13_max_nss = 0x22,
729 				},
730 			},
731 
732 			/*
733 			 * PPE thresholds for NSS = 2, and RU index bitmap set
734 			 * to 0xc.
735 			 */
736 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
737 		},
738 	},
739 	{
740 		.types_mask = BIT(NL80211_IFTYPE_AP),
741 		.he_cap = {
742 			.has_he = true,
743 			.he_cap_elem = {
744 				.mac_cap_info[0] =
745 					IEEE80211_HE_MAC_CAP0_HTC_HE,
746 				.mac_cap_info[1] =
747 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
748 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
749 				.mac_cap_info[3] =
750 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
751 				.phy_cap_info[1] =
752 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
753 				.phy_cap_info[2] =
754 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
755 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
756 				.phy_cap_info[3] =
757 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
758 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
759 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
760 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
761 				.phy_cap_info[6] =
762 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
763 				.phy_cap_info[7] =
764 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
765 				.phy_cap_info[8] =
766 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
767 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
768 				.phy_cap_info[9] =
769 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
770 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
771 			},
772 			/*
773 			 * Set default Tx/Rx HE MCS NSS Support field.
774 			 * Indicate support for up to 2 spatial streams and all
775 			 * MCS, without any special cases
776 			 */
777 			.he_mcs_nss_supp = {
778 				.rx_mcs_80 = cpu_to_le16(0xfffa),
779 				.tx_mcs_80 = cpu_to_le16(0xfffa),
780 				.rx_mcs_160 = cpu_to_le16(0xfffa),
781 				.tx_mcs_160 = cpu_to_le16(0xfffa),
782 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
783 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
784 			},
785 			/*
786 			 * Set default PPE thresholds, with PPET16 set to 0,
787 			 * PPET8 set to 7
788 			 */
789 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
790 		},
791 		.eht_cap = {
792 			.has_eht = true,
793 			.eht_cap_elem = {
794 				.mac_cap_info[0] =
795 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
796 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
797 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
798 				.phy_cap_info[0] =
799 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
800 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
801 				.phy_cap_info[5] =
802 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
803 			},
804 
805 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
806 			 * Rx - note we don't set the only_20mhz, but due to this
807 			 * being a union, it gets set correctly anyway.
808 			 */
809 			.eht_mcs_nss_supp = {
810 				.bw._80 = {
811 					.rx_tx_mcs9_max_nss = 0x22,
812 					.rx_tx_mcs11_max_nss = 0x22,
813 					.rx_tx_mcs13_max_nss = 0x22,
814 				},
815 				.bw._160 = {
816 					.rx_tx_mcs9_max_nss = 0x22,
817 					.rx_tx_mcs11_max_nss = 0x22,
818 					.rx_tx_mcs13_max_nss = 0x22,
819 				},
820 				.bw._320 = {
821 					.rx_tx_mcs9_max_nss = 0x22,
822 					.rx_tx_mcs11_max_nss = 0x22,
823 					.rx_tx_mcs13_max_nss = 0x22,
824 				},
825 			},
826 
827 			/*
828 			 * PPE thresholds for NSS = 2, and RU index bitmap set
829 			 * to 0xc.
830 			 */
831 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
832 		},
833 	},
834 };
835 
iwl_init_he_6ghz_capa(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)836 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
837 				  struct iwl_nvm_data *data,
838 				  struct ieee80211_supported_band *sband,
839 				  u8 tx_chains, u8 rx_chains)
840 {
841 	struct ieee80211_sta_ht_cap ht_cap;
842 	struct ieee80211_sta_vht_cap vht_cap = {};
843 	struct ieee80211_sband_iftype_data *iftype_data;
844 	u16 he_6ghz_capa = 0;
845 	u32 exp;
846 	int i;
847 
848 	if (sband->band != NL80211_BAND_6GHZ)
849 		return;
850 
851 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
852 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
853 			     tx_chains, rx_chains);
854 	WARN_ON(!ht_cap.ht_supported);
855 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
856 	WARN_ON(!vht_cap.vht_supported);
857 
858 	he_6ghz_capa |=
859 		u16_encode_bits(ht_cap.ampdu_density,
860 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
861 	exp = u32_get_bits(vht_cap.cap,
862 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
863 	he_6ghz_capa |=
864 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
865 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
866 	he_6ghz_capa |=
867 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
868 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
869 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
870 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
871 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
872 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
873 
874 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
875 
876 	/* we know it's writable - we set it before ourselves */
877 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
878 	for (i = 0; i < sband->n_iftype_data; i++)
879 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
880 }
881 
882 static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,struct ieee80211_sband_iftype_data * iftype_data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)883 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
884 			 struct iwl_nvm_data *data,
885 			 struct ieee80211_supported_band *sband,
886 			 struct ieee80211_sband_iftype_data *iftype_data,
887 			 u8 tx_chains, u8 rx_chains,
888 			 const struct iwl_fw *fw)
889 {
890 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
891 	bool no_320;
892 
893 	no_320 = !trans->trans_cfg->integrated &&
894 		 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB;
895 
896 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
897 		iftype_data->eht_cap.has_eht = false;
898 
899 	/* Advertise an A-MPDU exponent extension based on
900 	 * operating band
901 	 */
902 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
903 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
904 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
905 	else if (sband->band != NL80211_BAND_2GHZ)
906 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
907 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
908 	else
909 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
910 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
911 
912 	switch (sband->band) {
913 	case NL80211_BAND_2GHZ:
914 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
915 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
916 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
917 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
918 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
919 		break;
920 	case NL80211_BAND_6GHZ:
921 		if (!no_320) {
922 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
923 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
924 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
925 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
926 		}
927 		fallthrough;
928 	case NL80211_BAND_5GHZ:
929 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
930 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
931 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
932 		break;
933 	default:
934 		WARN_ON(1);
935 		break;
936 	}
937 
938 	if ((tx_chains & rx_chains) == ANT_AB) {
939 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
940 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
941 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
942 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
943 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
944 		if (!is_ap) {
945 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
946 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
947 
948 			if (iftype_data->eht_cap.has_eht) {
949 				/*
950 				 * Set the number of sounding dimensions for each
951 				 * bandwidth to 1 to indicate the maximal supported
952 				 * value of TXVECTOR parameter NUM_STS of 2
953 				 */
954 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
955 
956 				/*
957 				 * Set the MAX NC to 1 to indicate sounding feedback of
958 				 * 2 supported by the beamfomee.
959 				 */
960 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
961 			}
962 		}
963 	} else {
964 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
965 			&iftype_data->he_cap.he_mcs_nss_supp;
966 
967 		if (iftype_data->eht_cap.has_eht) {
968 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
969 				&iftype_data->eht_cap.eht_mcs_nss_supp;
970 
971 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
972 		}
973 
974 		if (!is_ap) {
975 			/* If not 2x2, we need to indicate 1x1 in the
976 			 * Midamble RX Max NSTS - but not for AP mode
977 			 */
978 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
979 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
980 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
981 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
982 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
983 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
984 		}
985 
986 		he_mcs_nss_supp->rx_mcs_80 |=
987 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
988 		he_mcs_nss_supp->tx_mcs_80 |=
989 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
990 		he_mcs_nss_supp->rx_mcs_160 |=
991 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
992 		he_mcs_nss_supp->tx_mcs_160 |=
993 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
994 		he_mcs_nss_supp->rx_mcs_80p80 |=
995 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
996 		he_mcs_nss_supp->tx_mcs_80p80 |=
997 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
998 	}
999 
1000 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1001 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1002 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1003 
1004 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1005 	case IWL_CFG_RF_TYPE_GF:
1006 	case IWL_CFG_RF_TYPE_MR:
1007 	case IWL_CFG_RF_TYPE_MS:
1008 	case IWL_CFG_RF_TYPE_FM:
1009 	case IWL_CFG_RF_TYPE_WH:
1010 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1011 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1012 		if (!is_ap)
1013 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1014 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1015 		break;
1016 	}
1017 
1018 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1019 	    iftype_data->eht_cap.has_eht) {
1020 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1021 			~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1022 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1023 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1024 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1025 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1026 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1027 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1028 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1029 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1030 			  IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1031 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1032 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1033 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1034 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1035 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1036 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1037 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1038 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1039 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1040 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1041 	}
1042 
1043 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1044 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1045 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1046 
1047 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1048 	    !is_ap) {
1049 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1050 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1051 	}
1052 
1053 	if (!trans->cfg->ht_params->stbc) {
1054 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1055 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1056 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1057 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1058 	}
1059 }
1060 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1061 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1062 				 struct iwl_nvm_data *data,
1063 				 struct ieee80211_supported_band *sband,
1064 				 u8 tx_chains, u8 rx_chains,
1065 				 const struct iwl_fw *fw)
1066 {
1067 	struct ieee80211_sband_iftype_data *iftype_data;
1068 	int i;
1069 
1070 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1071 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1072 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1073 
1074 	switch (sband->band) {
1075 	case NL80211_BAND_2GHZ:
1076 		iftype_data = data->iftd.low;
1077 		break;
1078 	case NL80211_BAND_5GHZ:
1079 		iftype_data = data->iftd.high;
1080 		break;
1081 	case NL80211_BAND_6GHZ:
1082 		iftype_data = data->iftd.uhb;
1083 		break;
1084 	default:
1085 		WARN_ON(1);
1086 		return;
1087 	}
1088 
1089 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1090 
1091 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1092 					 ARRAY_SIZE(iwl_he_eht_capa));
1093 
1094 	for (i = 0; i < sband->n_iftype_data; i++)
1095 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1096 					 tx_chains, rx_chains, fw);
1097 
1098 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1099 }
1100 
iwl_reinit_cab(struct iwl_trans * trans,struct iwl_nvm_data * data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1101 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1102 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1103 {
1104 	struct ieee80211_supported_band *sband;
1105 
1106 	sband = &data->bands[NL80211_BAND_2GHZ];
1107 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1108 			     tx_chains, rx_chains);
1109 
1110 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1111 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1112 				     fw);
1113 
1114 	sband = &data->bands[NL80211_BAND_5GHZ];
1115 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1116 			     tx_chains, rx_chains);
1117 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1118 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1119 				      tx_chains, rx_chains);
1120 
1121 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1122 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1123 				     fw);
1124 
1125 	sband = &data->bands[NL80211_BAND_6GHZ];
1126 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1127 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1128 				     fw);
1129 }
1130 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1131 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4,const struct iwl_fw * fw)1132 static void iwl_init_sbands(struct iwl_trans *trans,
1133 			    struct iwl_nvm_data *data,
1134 			    const void *nvm_ch_flags, u8 tx_chains,
1135 			    u8 rx_chains, u32 sbands_flags, bool v4,
1136 			    const struct iwl_fw *fw)
1137 {
1138 	struct device *dev = trans->dev;
1139 	const struct iwl_cfg *cfg = trans->cfg;
1140 	int n_channels;
1141 	int n_used = 0;
1142 	struct ieee80211_supported_band *sband;
1143 
1144 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1145 					  sbands_flags, v4);
1146 	sband = &data->bands[NL80211_BAND_2GHZ];
1147 	sband->band = NL80211_BAND_2GHZ;
1148 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1149 	sband->n_bitrates = N_RATES_24;
1150 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1151 					  NL80211_BAND_2GHZ);
1152 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1153 			     tx_chains, rx_chains);
1154 
1155 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1156 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1157 				     fw);
1158 
1159 	sband = &data->bands[NL80211_BAND_5GHZ];
1160 	sband->band = NL80211_BAND_5GHZ;
1161 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1162 	sband->n_bitrates = N_RATES_52;
1163 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1164 					  NL80211_BAND_5GHZ);
1165 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1166 			     tx_chains, rx_chains);
1167 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1168 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1169 				      tx_chains, rx_chains);
1170 
1171 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1172 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1173 				     fw);
1174 
1175 	/* 6GHz band. */
1176 	sband = &data->bands[NL80211_BAND_6GHZ];
1177 	sband->band = NL80211_BAND_6GHZ;
1178 	/* use the same rates as 5GHz band */
1179 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1180 	sband->n_bitrates = N_RATES_52;
1181 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1182 					  NL80211_BAND_6GHZ);
1183 
1184 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1185 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1186 				     fw);
1187 	else
1188 		sband->n_channels = 0;
1189 	if (n_channels != n_used)
1190 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1191 			    n_used, n_channels);
1192 }
1193 
iwl_get_sku(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1194 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1195 		       const __le16 *phy_sku)
1196 {
1197 	if (cfg->nvm_type != IWL_NVM_EXT)
1198 		return le16_to_cpup(nvm_sw + SKU);
1199 
1200 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1201 }
1202 
iwl_get_nvm_version(const struct iwl_cfg * cfg,const __le16 * nvm_sw)1203 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1204 {
1205 	if (cfg->nvm_type != IWL_NVM_EXT)
1206 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1207 	else
1208 		return le32_to_cpup((const __le32 *)(nvm_sw +
1209 						     NVM_VERSION_EXT_NVM));
1210 }
1211 
iwl_get_radio_cfg(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1212 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1213 			     const __le16 *phy_sku)
1214 {
1215 	if (cfg->nvm_type != IWL_NVM_EXT)
1216 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1217 
1218 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1219 
1220 }
1221 
iwl_get_n_hw_addrs(const struct iwl_cfg * cfg,const __le16 * nvm_sw)1222 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1223 {
1224 	int n_hw_addr;
1225 
1226 	if (cfg->nvm_type != IWL_NVM_EXT)
1227 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1228 
1229 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1230 
1231 	return n_hw_addr & N_HW_ADDR_MASK;
1232 }
1233 
iwl_set_radio_cfg(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)1234 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1235 			      struct iwl_nvm_data *data,
1236 			      u32 radio_cfg)
1237 {
1238 	if (cfg->nvm_type != IWL_NVM_EXT) {
1239 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1240 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1241 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1242 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1243 		return;
1244 	}
1245 
1246 	/* set the radio configuration for family 8000 */
1247 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1248 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1249 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1250 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1251 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1252 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1253 }
1254 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)1255 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1256 {
1257 	const u8 *hw_addr;
1258 
1259 	hw_addr = (const u8 *)&mac_addr0;
1260 	dest[0] = hw_addr[3];
1261 	dest[1] = hw_addr[2];
1262 	dest[2] = hw_addr[1];
1263 	dest[3] = hw_addr[0];
1264 
1265 	hw_addr = (const u8 *)&mac_addr1;
1266 	dest[4] = hw_addr[1];
1267 	dest[5] = hw_addr[0];
1268 }
1269 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)1270 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1271 					struct iwl_nvm_data *data)
1272 {
1273 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1274 						  CSR_MAC_ADDR0_STRAP(trans)));
1275 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1276 						  CSR_MAC_ADDR1_STRAP(trans)));
1277 
1278 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1279 	/*
1280 	 * If the OEM fused a valid address, use it instead of the one in the
1281 	 * OTP
1282 	 */
1283 	if (is_valid_ether_addr(data->hw_addr))
1284 		return;
1285 
1286 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1287 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1288 
1289 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1290 }
1291 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)1292 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1293 					   const struct iwl_cfg *cfg,
1294 					   struct iwl_nvm_data *data,
1295 					   const __le16 *mac_override,
1296 					   const __be16 *nvm_hw)
1297 {
1298 	const u8 *hw_addr;
1299 
1300 	if (mac_override) {
1301 		static const u8 reserved_mac[] = {
1302 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1303 		};
1304 
1305 		hw_addr = (const u8 *)(mac_override +
1306 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1307 
1308 		/*
1309 		 * Store the MAC address from MAO section.
1310 		 * No byte swapping is required in MAO section
1311 		 */
1312 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1313 
1314 		/*
1315 		 * Force the use of the OTP MAC address in case of reserved MAC
1316 		 * address in the NVM, or if address is given but invalid.
1317 		 */
1318 		if (is_valid_ether_addr(data->hw_addr) &&
1319 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1320 			return;
1321 
1322 		IWL_ERR(trans,
1323 			"mac address from nvm override section is not valid\n");
1324 	}
1325 
1326 	if (nvm_hw) {
1327 		/* read the mac address from WFMP registers */
1328 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1329 						WFMP_MAC_ADDR_0));
1330 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1331 						WFMP_MAC_ADDR_1));
1332 
1333 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1334 
1335 		return;
1336 	}
1337 
1338 	IWL_ERR(trans, "mac address is not found\n");
1339 }
1340 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)1341 static int iwl_set_hw_address(struct iwl_trans *trans,
1342 			      const struct iwl_cfg *cfg,
1343 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1344 			      const __le16 *mac_override)
1345 {
1346 	if (cfg->mac_addr_from_csr) {
1347 		iwl_set_hw_address_from_csr(trans, data);
1348 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1349 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1350 
1351 		/* The byte order is little endian 16 bit, meaning 214365 */
1352 		data->hw_addr[0] = hw_addr[1];
1353 		data->hw_addr[1] = hw_addr[0];
1354 		data->hw_addr[2] = hw_addr[3];
1355 		data->hw_addr[3] = hw_addr[2];
1356 		data->hw_addr[4] = hw_addr[5];
1357 		data->hw_addr[5] = hw_addr[4];
1358 	} else {
1359 		iwl_set_hw_address_family_8000(trans, cfg, data,
1360 					       mac_override, nvm_hw);
1361 	}
1362 
1363 	if (!is_valid_ether_addr(data->hw_addr)) {
1364 		IWL_ERR(trans, "no valid mac address was found\n");
1365 		return -EINVAL;
1366 	}
1367 
1368 	if (!trans->csme_own)
1369 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1370 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1371 
1372 	return 0;
1373 }
1374 
1375 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_cfg * cfg,const __be16 * nvm_hw)1376 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1377 			const __be16 *nvm_hw)
1378 {
1379 	/*
1380 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1381 	 * some 7000-family OTPs erroneously allow wide channels in
1382 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1383 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1384 	 * 9.  In those cases, we need to force-disable wide channels
1385 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1386 	 * to use them.
1387 	 */
1388 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1389 		/*
1390 		 * Unlike the other sections in the NVM, the hw
1391 		 * section uses big-endian.
1392 		 */
1393 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1394 		u8 sku = (subsystem_id & 0x1e) >> 1;
1395 
1396 		if (sku == 5 || sku == 9) {
1397 			IWL_DEBUG_EEPROM(trans->dev,
1398 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1399 					 subsystem_id, sku);
1400 			return true;
1401 		}
1402 	}
1403 
1404 	return false;
1405 }
1406 
1407 struct iwl_nvm_data *
iwl_parse_mei_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_mei_nvm * mei_nvm,const struct iwl_fw * fw,u8 tx_ant,u8 rx_ant)1408 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1409 		       const struct iwl_mei_nvm *mei_nvm,
1410 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1411 {
1412 	struct iwl_nvm_data *data;
1413 	u32 sbands_flags = 0;
1414 	u8 rx_chains = fw->valid_rx_ant;
1415 	u8 tx_chains = fw->valid_rx_ant;
1416 
1417 	if (cfg->uhb_supported)
1418 		data = kzalloc(struct_size(data, channels,
1419 					   IWL_NVM_NUM_CHANNELS_UHB),
1420 					   GFP_KERNEL);
1421 	else
1422 		data = kzalloc(struct_size(data, channels,
1423 					   IWL_NVM_NUM_CHANNELS_EXT),
1424 					   GFP_KERNEL);
1425 	if (!data)
1426 		return NULL;
1427 
1428 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1429 		     IWL_NVM_NUM_CHANNELS_UHB);
1430 	data->nvm_version = mei_nvm->nvm_version;
1431 
1432 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1433 	if (data->valid_tx_ant)
1434 		tx_chains &= data->valid_tx_ant;
1435 	if (data->valid_rx_ant)
1436 		rx_chains &= data->valid_rx_ant;
1437 	if (tx_ant)
1438 		tx_chains &= tx_ant;
1439 	if (rx_ant)
1440 		rx_chains &= rx_ant;
1441 
1442 	data->sku_cap_mimo_disabled = false;
1443 	data->sku_cap_band_24ghz_enable = true;
1444 	data->sku_cap_band_52ghz_enable = true;
1445 	data->sku_cap_11n_enable =
1446 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1447 	data->sku_cap_11ac_enable = true;
1448 	data->sku_cap_11ax_enable =
1449 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1450 
1451 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1452 
1453 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1454 	/* If no valid mac address was found - bail out */
1455 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1456 		kfree(data);
1457 		return NULL;
1458 	}
1459 
1460 	if (data->lar_enabled &&
1461 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1462 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1463 
1464 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1465 			sbands_flags, true, fw);
1466 
1467 	return data;
1468 }
1469 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1470 
1471 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1472 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1473 		   const struct iwl_fw *fw,
1474 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1475 		   const __le16 *nvm_calib, const __le16 *regulatory,
1476 		   const __le16 *mac_override, const __le16 *phy_sku,
1477 		   u8 tx_chains, u8 rx_chains)
1478 {
1479 	struct iwl_nvm_data *data;
1480 	bool lar_enabled;
1481 	u32 sku, radio_cfg;
1482 	u32 sbands_flags = 0;
1483 	u16 lar_config;
1484 	const __le16 *ch_section;
1485 
1486 	if (cfg->uhb_supported)
1487 		data = kzalloc(struct_size(data, channels,
1488 					   IWL_NVM_NUM_CHANNELS_UHB),
1489 					   GFP_KERNEL);
1490 	else if (cfg->nvm_type != IWL_NVM_EXT)
1491 		data = kzalloc(struct_size(data, channels,
1492 					   IWL_NVM_NUM_CHANNELS),
1493 					   GFP_KERNEL);
1494 	else
1495 		data = kzalloc(struct_size(data, channels,
1496 					   IWL_NVM_NUM_CHANNELS_EXT),
1497 					   GFP_KERNEL);
1498 	if (!data)
1499 		return NULL;
1500 
1501 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1502 
1503 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1504 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1505 	if (data->valid_tx_ant)
1506 		tx_chains &= data->valid_tx_ant;
1507 	if (data->valid_rx_ant)
1508 		rx_chains &= data->valid_rx_ant;
1509 
1510 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1511 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1512 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1513 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1514 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1515 		data->sku_cap_11n_enable = false;
1516 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1517 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1518 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1519 
1520 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1521 
1522 	if (cfg->nvm_type != IWL_NVM_EXT) {
1523 		/* Checking for required sections */
1524 		if (!nvm_calib) {
1525 			IWL_ERR(trans,
1526 				"Can't parse empty Calib NVM sections\n");
1527 			kfree(data);
1528 			return NULL;
1529 		}
1530 
1531 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1532 			     &regulatory[NVM_CHANNELS_SDP] :
1533 			     &nvm_sw[NVM_CHANNELS];
1534 
1535 		/* in family 8000 Xtal calibration values moved to OTP */
1536 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1537 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1538 		lar_enabled = true;
1539 	} else {
1540 		u16 lar_offset = data->nvm_version < 0xE39 ?
1541 				 NVM_LAR_OFFSET_OLD :
1542 				 NVM_LAR_OFFSET;
1543 
1544 		lar_config = le16_to_cpup(regulatory + lar_offset);
1545 		data->lar_enabled = !!(lar_config &
1546 				       NVM_LAR_ENABLED);
1547 		lar_enabled = data->lar_enabled;
1548 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1549 	}
1550 
1551 	/* If no valid mac address was found - bail out */
1552 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1553 		kfree(data);
1554 		return NULL;
1555 	}
1556 
1557 	if (lar_enabled &&
1558 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1559 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1560 
1561 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1562 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1563 
1564 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1565 			sbands_flags, false, fw);
1566 	data->calib_version = 255;
1567 
1568 	return data;
1569 }
1570 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1571 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa,const struct iwl_cfg * cfg)1572 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1573 				       int ch_idx, u16 nvm_flags,
1574 				       struct iwl_reg_capa reg_capa,
1575 				       const struct iwl_cfg *cfg)
1576 {
1577 	u32 flags = NL80211_RRF_NO_HT40;
1578 
1579 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1580 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1581 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1582 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1583 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1584 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1585 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1586 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1587 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1588 		else
1589 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1590 	}
1591 
1592 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1593 		flags |= NL80211_RRF_NO_80MHZ;
1594 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1595 		flags |= NL80211_RRF_NO_160MHZ;
1596 
1597 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1598 		flags |= NL80211_RRF_NO_IR;
1599 
1600 	if (nvm_flags & NVM_CHANNEL_RADAR)
1601 		flags |= NL80211_RRF_DFS;
1602 
1603 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1604 		flags |= NL80211_RRF_NO_OUTDOOR;
1605 
1606 	/* Set the GO concurrent flag only in case that NO_IR is set.
1607 	 * Otherwise it is meaningless
1608 	 */
1609 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1610 		if (flags & NL80211_RRF_NO_IR)
1611 			flags |= NL80211_RRF_GO_CONCURRENT;
1612 		if (flags & NL80211_RRF_DFS) {
1613 			flags |= NL80211_RRF_DFS_CONCURRENT;
1614 			/* Our device doesn't set active bit for DFS channels
1615 			 * however, once marked as DFS no-ir is not needed.
1616 			 */
1617 			flags &= ~NL80211_RRF_NO_IR;
1618 		}
1619 	}
1620 	/*
1621 	 * reg_capa is per regulatory domain so apply it for every channel
1622 	 */
1623 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1624 		if (!reg_capa.allow_40mhz)
1625 			flags |= NL80211_RRF_NO_HT40;
1626 
1627 		if (!reg_capa.allow_80mhz)
1628 			flags |= NL80211_RRF_NO_80MHZ;
1629 
1630 		if (!reg_capa.allow_160mhz)
1631 			flags |= NL80211_RRF_NO_160MHZ;
1632 
1633 		if (!reg_capa.allow_320mhz)
1634 			flags |= NL80211_RRF_NO_320MHZ;
1635 	}
1636 
1637 	if (reg_capa.disable_11ax)
1638 		flags |= NL80211_RRF_NO_HE;
1639 
1640 	if (reg_capa.disable_11be)
1641 		flags |= NL80211_RRF_NO_EHT;
1642 
1643 	return flags;
1644 }
1645 
iwl_get_reg_capa(u32 flags,u8 resp_ver)1646 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1647 {
1648 	struct iwl_reg_capa reg_capa = {};
1649 
1650 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1651 		reg_capa.allow_40mhz = true;
1652 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1653 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1654 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1655 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1656 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1657 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1658 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1659 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1660 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1661 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1662 	} else {
1663 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1664 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1665 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1666 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1667 	}
1668 	return reg_capa;
1669 }
1670 
1671 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device * dev,const struct iwl_cfg * cfg,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u32 cap,u8 resp_ver)1672 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1673 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1674 		       u16 geo_info, u32 cap, u8 resp_ver)
1675 {
1676 	int ch_idx;
1677 	u16 ch_flags;
1678 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1679 	const u16 *nvm_chan;
1680 	struct ieee80211_regdomain *regd, *copy_rd;
1681 	struct ieee80211_reg_rule *rule;
1682 	enum nl80211_band band;
1683 	int center_freq, prev_center_freq = 0;
1684 	int valid_rules = 0;
1685 	bool new_rule;
1686 	int max_num_ch;
1687 	struct iwl_reg_capa reg_capa;
1688 
1689 	if (cfg->uhb_supported) {
1690 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1691 		nvm_chan = iwl_uhb_nvm_channels;
1692 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1693 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1694 		nvm_chan = iwl_ext_nvm_channels;
1695 	} else {
1696 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1697 		nvm_chan = iwl_nvm_channels;
1698 	}
1699 
1700 	if (num_of_ch > max_num_ch) {
1701 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1702 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1703 			      num_of_ch, max_num_ch);
1704 		num_of_ch = max_num_ch;
1705 	}
1706 
1707 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1708 		return ERR_PTR(-EINVAL);
1709 
1710 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1711 		      num_of_ch);
1712 
1713 	/* build a regdomain rule for every valid channel */
1714 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1715 	if (!regd)
1716 		return ERR_PTR(-ENOMEM);
1717 
1718 	/* set alpha2 from FW. */
1719 	regd->alpha2[0] = fw_mcc >> 8;
1720 	regd->alpha2[1] = fw_mcc & 0xff;
1721 
1722 	/* parse regulatory capability flags */
1723 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1724 
1725 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1726 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1727 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1728 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1729 							     band);
1730 		new_rule = false;
1731 
1732 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1733 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1734 						    nvm_chan[ch_idx], ch_flags);
1735 			continue;
1736 		}
1737 
1738 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1739 							     ch_flags, reg_capa,
1740 							     cfg);
1741 
1742 		/* we can't continue the same rule */
1743 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1744 		    center_freq - prev_center_freq > 20) {
1745 			valid_rules++;
1746 			new_rule = true;
1747 		}
1748 
1749 		rule = &regd->reg_rules[valid_rules - 1];
1750 
1751 		if (new_rule)
1752 			rule->freq_range.start_freq_khz =
1753 						MHZ_TO_KHZ(center_freq - 10);
1754 
1755 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1756 
1757 		/* this doesn't matter - not used by FW */
1758 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1759 		rule->power_rule.max_eirp =
1760 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1761 
1762 		rule->flags = reg_rule_flags;
1763 
1764 		/* rely on auto-calculation to merge BW of contiguous chans */
1765 		rule->flags |= NL80211_RRF_AUTO_BW;
1766 		rule->freq_range.max_bandwidth_khz = 0;
1767 
1768 		prev_center_freq = center_freq;
1769 		prev_reg_rule_flags = reg_rule_flags;
1770 
1771 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1772 					    nvm_chan[ch_idx], ch_flags);
1773 
1774 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1775 		    band == NL80211_BAND_2GHZ)
1776 			continue;
1777 
1778 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1779 	}
1780 
1781 	/*
1782 	 * Certain firmware versions might report no valid channels
1783 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1784 	 * running. We'll get out of this situation later when the
1785 	 * rfkill is removed and we update the regdomain again, but
1786 	 * since cfg80211 doesn't accept an empty regdomain, add a
1787 	 * dummy (unusable) rule here in this case so we can init.
1788 	 */
1789 	if (!valid_rules) {
1790 		valid_rules = 1;
1791 		rule = &regd->reg_rules[valid_rules - 1];
1792 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1793 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1794 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1795 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1796 		rule->power_rule.max_eirp =
1797 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1798 	}
1799 
1800 	regd->n_reg_rules = valid_rules;
1801 
1802 	/*
1803 	 * Narrow down regdom for unused regulatory rules to prevent hole
1804 	 * between reg rules to wmm rules.
1805 	 */
1806 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1807 			  GFP_KERNEL);
1808 	if (!copy_rd)
1809 		copy_rd = ERR_PTR(-ENOMEM);
1810 
1811 	kfree(regd);
1812 	return copy_rd;
1813 }
1814 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1815 
1816 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1817 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1818 #define MAX_NVM_FILE_LEN	16384
1819 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1820 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1821 		    unsigned int len)
1822 {
1823 #define IWL_4165_DEVICE_ID	0x5501
1824 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1825 
1826 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1827 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1828 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1829 		/* OTP 0x52 bug work around: it's a 1x1 device */
1830 		data[3] = ANT_B | (ANT_B << 4);
1831 }
1832 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1833 
1834 /*
1835  * Reads external NVM from a file into mvm->nvm_sections
1836  *
1837  * HOW TO CREATE THE NVM FILE FORMAT:
1838  * ------------------------------
1839  * 1. create hex file, format:
1840  *      3800 -> header
1841  *      0000 -> header
1842  *      5a40 -> data
1843  *
1844  *   rev - 6 bit (word1)
1845  *   len - 10 bit (word1)
1846  *   id - 4 bit (word2)
1847  *   rsv - 12 bit (word2)
1848  *
1849  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1850  *
1851  * 3. create binary file from the hex file
1852  *
1853  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1854  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1855 int iwl_read_external_nvm(struct iwl_trans *trans,
1856 			  const char *nvm_file_name,
1857 			  struct iwl_nvm_section *nvm_sections)
1858 {
1859 	int ret, section_size;
1860 	u16 section_id;
1861 	const struct firmware *fw_entry;
1862 	const struct {
1863 		__le16 word1;
1864 		__le16 word2;
1865 		u8 data[];
1866 	} *file_sec;
1867 	const u8 *eof;
1868 	u8 *temp;
1869 	int max_section_size;
1870 	const __le32 *dword_buff;
1871 
1872 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1873 #define NVM_WORD2_ID(x) (x >> 12)
1874 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1875 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1876 #define NVM_HEADER_0	(0x2A504C54)
1877 #define NVM_HEADER_1	(0x4E564D2A)
1878 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1879 
1880 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1881 
1882 	/* Maximal size depends on NVM version */
1883 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1884 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1885 	else
1886 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1887 
1888 	/*
1889 	 * Obtain NVM image via request_firmware. Since we already used
1890 	 * request_firmware_nowait() for the firmware binary load and only
1891 	 * get here after that we assume the NVM request can be satisfied
1892 	 * synchronously.
1893 	 */
1894 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1895 	if (ret) {
1896 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1897 			nvm_file_name, ret);
1898 		return ret;
1899 	}
1900 
1901 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1902 		 nvm_file_name, fw_entry->size);
1903 
1904 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1905 		IWL_ERR(trans, "NVM file too large\n");
1906 		ret = -EINVAL;
1907 		goto out;
1908 	}
1909 
1910 	eof = fw_entry->data + fw_entry->size;
1911 	dword_buff = (const __le32 *)fw_entry->data;
1912 
1913 	/* some NVM file will contain a header.
1914 	 * The header is identified by 2 dwords header as follow:
1915 	 * dword[0] = 0x2A504C54
1916 	 * dword[1] = 0x4E564D2A
1917 	 *
1918 	 * This header must be skipped when providing the NVM data to the FW.
1919 	 */
1920 	if (fw_entry->size > NVM_HEADER_SIZE &&
1921 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1922 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1923 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1924 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1925 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1926 			 le32_to_cpu(dword_buff[3]));
1927 
1928 		/* nvm file validation, dword_buff[2] holds the file version */
1929 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1930 		    trans->hw_rev_step == SILICON_C_STEP &&
1931 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1932 			ret = -EFAULT;
1933 			goto out;
1934 		}
1935 	} else {
1936 		file_sec = (const void *)fw_entry->data;
1937 	}
1938 
1939 	while (true) {
1940 		if (file_sec->data > eof) {
1941 			IWL_ERR(trans,
1942 				"ERROR - NVM file too short for section header\n");
1943 			ret = -EINVAL;
1944 			break;
1945 		}
1946 
1947 		/* check for EOF marker */
1948 		if (!file_sec->word1 && !file_sec->word2) {
1949 			ret = 0;
1950 			break;
1951 		}
1952 
1953 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1954 			section_size =
1955 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1956 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1957 		} else {
1958 			section_size = 2 * EXT_NVM_WORD2_LEN(
1959 						le16_to_cpu(file_sec->word2));
1960 			section_id = EXT_NVM_WORD1_ID(
1961 						le16_to_cpu(file_sec->word1));
1962 		}
1963 
1964 		if (section_size > max_section_size) {
1965 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1966 				section_size);
1967 			ret = -EINVAL;
1968 			break;
1969 		}
1970 
1971 		if (!section_size) {
1972 			IWL_ERR(trans, "ERROR - section empty\n");
1973 			ret = -EINVAL;
1974 			break;
1975 		}
1976 
1977 		if (file_sec->data + section_size > eof) {
1978 			IWL_ERR(trans,
1979 				"ERROR - NVM file too short for section (%d bytes)\n",
1980 				section_size);
1981 			ret = -EINVAL;
1982 			break;
1983 		}
1984 
1985 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1986 			 "Invalid NVM section ID %d\n", section_id)) {
1987 			ret = -EINVAL;
1988 			break;
1989 		}
1990 
1991 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1992 		if (!temp) {
1993 			ret = -ENOMEM;
1994 			break;
1995 		}
1996 
1997 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1998 
1999 		kfree(nvm_sections[section_id].data);
2000 		nvm_sections[section_id].data = temp;
2001 		nvm_sections[section_id].length = section_size;
2002 
2003 		/* advance to the next section */
2004 		file_sec = (const void *)(file_sec->data + section_size);
2005 	}
2006 out:
2007 	release_firmware(fw_entry);
2008 	return ret;
2009 }
2010 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2011 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw,u8 set_tx_ant,u8 set_rx_ant)2012 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2013 				 const struct iwl_fw *fw,
2014 				 u8 set_tx_ant, u8 set_rx_ant)
2015 {
2016 	struct iwl_nvm_get_info cmd = {};
2017 	struct iwl_nvm_data *nvm;
2018 	struct iwl_host_cmd hcmd = {
2019 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2020 		.data = { &cmd, },
2021 		.len = { sizeof(cmd) },
2022 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2023 	};
2024 	int  ret;
2025 	bool empty_otp;
2026 	u32 mac_flags;
2027 	u32 sbands_flags = 0;
2028 	u8 tx_ant;
2029 	u8 rx_ant;
2030 
2031 	/*
2032 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2033 	 * in v3, except for the channel profile part of the
2034 	 * regulatory.  So we can just access the new struct, with the
2035 	 * exception of the latter.
2036 	 */
2037 	struct iwl_nvm_get_info_rsp *rsp;
2038 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2039 	bool v4 = fw_has_api(&fw->ucode_capa,
2040 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2041 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2042 	void *channel_profile;
2043 
2044 	ret = iwl_trans_send_cmd(trans, &hcmd);
2045 	if (ret)
2046 		return ERR_PTR(ret);
2047 
2048 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2049 		 "Invalid payload len in NVM response from FW %d",
2050 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2051 		ret = -EINVAL;
2052 		goto out;
2053 	}
2054 
2055 	rsp = (void *)hcmd.resp_pkt->data;
2056 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2057 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2058 	if (empty_otp)
2059 		IWL_INFO(trans, "OTP is empty\n");
2060 
2061 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2062 	if (!nvm) {
2063 		ret = -ENOMEM;
2064 		goto out;
2065 	}
2066 
2067 	iwl_set_hw_address_from_csr(trans, nvm);
2068 	/* TODO: if platform NVM has MAC address - override it here */
2069 
2070 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2071 		IWL_ERR(trans, "no valid mac address was found\n");
2072 		ret = -EINVAL;
2073 		goto err_free;
2074 	}
2075 
2076 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2077 
2078 	/* Initialize general data */
2079 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2080 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2081 	if (nvm->n_hw_addrs == 0)
2082 		IWL_WARN(trans,
2083 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2084 			 empty_otp);
2085 
2086 	/* Initialize MAC sku data */
2087 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2088 	nvm->sku_cap_11ac_enable =
2089 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2090 	nvm->sku_cap_11n_enable =
2091 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2092 	nvm->sku_cap_11ax_enable =
2093 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2094 	nvm->sku_cap_band_24ghz_enable =
2095 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2096 	nvm->sku_cap_band_52ghz_enable =
2097 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2098 	nvm->sku_cap_mimo_disabled =
2099 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2100 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
2101 		nvm->sku_cap_11be_enable = true;
2102 
2103 	/* Initialize PHY sku data */
2104 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2105 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2106 
2107 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2108 	    fw_has_capa(&fw->ucode_capa,
2109 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2110 		nvm->lar_enabled = true;
2111 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2112 	}
2113 
2114 	rsp_v3 = (void *)rsp;
2115 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2116 			  (void *)rsp_v3->regulatory.channel_profile;
2117 
2118 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2119 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2120 
2121 	if (set_tx_ant)
2122 		tx_ant &= set_tx_ant;
2123 	if (set_rx_ant)
2124 		rx_ant &= set_rx_ant;
2125 
2126 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2127 			sbands_flags, v4, fw);
2128 
2129 	iwl_free_resp(&hcmd);
2130 	return nvm;
2131 
2132 err_free:
2133 	kfree(nvm);
2134 out:
2135 	iwl_free_resp(&hcmd);
2136 	return ERR_PTR(ret);
2137 }
2138 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2139