xref: /qemu/target/arm/hvf/hvf.c (revision 57b6f8d07f1478375f85a4593a207e936c63ff59)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 #include "qemu/log.h"
15 
16 #include "system/runstate.h"
17 #include "system/hvf.h"
18 #include "system/hvf_int.h"
19 #include "system/hw_accel.h"
20 #include "hvf_arm.h"
21 #include "cpregs.h"
22 
23 #include <mach/mach_time.h>
24 
25 #include "system/address-spaces.h"
26 #include "system/memory.h"
27 #include "hw/boards.h"
28 #include "hw/irq.h"
29 #include "qemu/main-loop.h"
30 #include "system/cpus.h"
31 #include "arm-powerctl.h"
32 #include "target/arm/cpu.h"
33 #include "target/arm/internals.h"
34 #include "target/arm/multiprocessing.h"
35 #include "target/arm/gtimer.h"
36 #include "trace.h"
37 #include "migration/vmstate.h"
38 
39 #include "gdbstub/enums.h"
40 
41 #define MDSCR_EL1_SS_SHIFT  0
42 #define MDSCR_EL1_MDE_SHIFT 15
43 
44 static const uint16_t dbgbcr_regs[] = {
45     HV_SYS_REG_DBGBCR0_EL1,
46     HV_SYS_REG_DBGBCR1_EL1,
47     HV_SYS_REG_DBGBCR2_EL1,
48     HV_SYS_REG_DBGBCR3_EL1,
49     HV_SYS_REG_DBGBCR4_EL1,
50     HV_SYS_REG_DBGBCR5_EL1,
51     HV_SYS_REG_DBGBCR6_EL1,
52     HV_SYS_REG_DBGBCR7_EL1,
53     HV_SYS_REG_DBGBCR8_EL1,
54     HV_SYS_REG_DBGBCR9_EL1,
55     HV_SYS_REG_DBGBCR10_EL1,
56     HV_SYS_REG_DBGBCR11_EL1,
57     HV_SYS_REG_DBGBCR12_EL1,
58     HV_SYS_REG_DBGBCR13_EL1,
59     HV_SYS_REG_DBGBCR14_EL1,
60     HV_SYS_REG_DBGBCR15_EL1,
61 };
62 
63 static const uint16_t dbgbvr_regs[] = {
64     HV_SYS_REG_DBGBVR0_EL1,
65     HV_SYS_REG_DBGBVR1_EL1,
66     HV_SYS_REG_DBGBVR2_EL1,
67     HV_SYS_REG_DBGBVR3_EL1,
68     HV_SYS_REG_DBGBVR4_EL1,
69     HV_SYS_REG_DBGBVR5_EL1,
70     HV_SYS_REG_DBGBVR6_EL1,
71     HV_SYS_REG_DBGBVR7_EL1,
72     HV_SYS_REG_DBGBVR8_EL1,
73     HV_SYS_REG_DBGBVR9_EL1,
74     HV_SYS_REG_DBGBVR10_EL1,
75     HV_SYS_REG_DBGBVR11_EL1,
76     HV_SYS_REG_DBGBVR12_EL1,
77     HV_SYS_REG_DBGBVR13_EL1,
78     HV_SYS_REG_DBGBVR14_EL1,
79     HV_SYS_REG_DBGBVR15_EL1,
80 };
81 
82 static const uint16_t dbgwcr_regs[] = {
83     HV_SYS_REG_DBGWCR0_EL1,
84     HV_SYS_REG_DBGWCR1_EL1,
85     HV_SYS_REG_DBGWCR2_EL1,
86     HV_SYS_REG_DBGWCR3_EL1,
87     HV_SYS_REG_DBGWCR4_EL1,
88     HV_SYS_REG_DBGWCR5_EL1,
89     HV_SYS_REG_DBGWCR6_EL1,
90     HV_SYS_REG_DBGWCR7_EL1,
91     HV_SYS_REG_DBGWCR8_EL1,
92     HV_SYS_REG_DBGWCR9_EL1,
93     HV_SYS_REG_DBGWCR10_EL1,
94     HV_SYS_REG_DBGWCR11_EL1,
95     HV_SYS_REG_DBGWCR12_EL1,
96     HV_SYS_REG_DBGWCR13_EL1,
97     HV_SYS_REG_DBGWCR14_EL1,
98     HV_SYS_REG_DBGWCR15_EL1,
99 };
100 
101 static const uint16_t dbgwvr_regs[] = {
102     HV_SYS_REG_DBGWVR0_EL1,
103     HV_SYS_REG_DBGWVR1_EL1,
104     HV_SYS_REG_DBGWVR2_EL1,
105     HV_SYS_REG_DBGWVR3_EL1,
106     HV_SYS_REG_DBGWVR4_EL1,
107     HV_SYS_REG_DBGWVR5_EL1,
108     HV_SYS_REG_DBGWVR6_EL1,
109     HV_SYS_REG_DBGWVR7_EL1,
110     HV_SYS_REG_DBGWVR8_EL1,
111     HV_SYS_REG_DBGWVR9_EL1,
112     HV_SYS_REG_DBGWVR10_EL1,
113     HV_SYS_REG_DBGWVR11_EL1,
114     HV_SYS_REG_DBGWVR12_EL1,
115     HV_SYS_REG_DBGWVR13_EL1,
116     HV_SYS_REG_DBGWVR14_EL1,
117     HV_SYS_REG_DBGWVR15_EL1,
118 };
119 
hvf_arm_num_brps(hv_vcpu_config_t config)120 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
121 {
122     uint64_t val;
123     hv_return_t ret;
124     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
125                                          &val);
126     assert_hvf_ok(ret);
127     return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
128 }
129 
hvf_arm_num_wrps(hv_vcpu_config_t config)130 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
131 {
132     uint64_t val;
133     hv_return_t ret;
134     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
135                                          &val);
136     assert_hvf_ok(ret);
137     return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
138 }
139 
hvf_arm_init_debug(void)140 void hvf_arm_init_debug(void)
141 {
142     hv_vcpu_config_t config;
143     config = hv_vcpu_config_create();
144 
145     max_hw_bps = hvf_arm_num_brps(config);
146     hw_breakpoints =
147         g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
148 
149     max_hw_wps = hvf_arm_num_wrps(config);
150     hw_watchpoints =
151         g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
152 }
153 
154 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
155         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
156 
157 #define SYSREG_OP0_SHIFT      20
158 #define SYSREG_OP0_MASK       0x3
159 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
160 #define SYSREG_OP1_SHIFT      14
161 #define SYSREG_OP1_MASK       0x7
162 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
163 #define SYSREG_CRN_SHIFT      10
164 #define SYSREG_CRN_MASK       0xf
165 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
166 #define SYSREG_CRM_SHIFT      1
167 #define SYSREG_CRM_MASK       0xf
168 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
169 #define SYSREG_OP2_SHIFT      17
170 #define SYSREG_OP2_MASK       0x7
171 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
172 
173 #define SYSREG(op0, op1, crn, crm, op2) \
174     ((op0 << SYSREG_OP0_SHIFT) | \
175      (op1 << SYSREG_OP1_SHIFT) | \
176      (crn << SYSREG_CRN_SHIFT) | \
177      (crm << SYSREG_CRM_SHIFT) | \
178      (op2 << SYSREG_OP2_SHIFT))
179 #define SYSREG_MASK \
180     SYSREG(SYSREG_OP0_MASK, \
181            SYSREG_OP1_MASK, \
182            SYSREG_CRN_MASK, \
183            SYSREG_CRM_MASK, \
184            SYSREG_OP2_MASK)
185 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
186 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
187 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
188 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
189 #define SYSREG_CNTP_CTL_EL0   SYSREG(3, 3, 14, 2, 1)
190 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
191 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
192 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
193 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
194 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
195 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
196 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
197 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
198 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
199 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
200 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
201 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
202 
203 #define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
204 #define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
205 #define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
206 #define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
207 #define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
208 #define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
209 #define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
210 #define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
211 #define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
212 #define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
213 #define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
214 #define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
215 #define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
216 #define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
217 #define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
218 #define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
219 #define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
220 #define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
221 #define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
222 #define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
223 #define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
224 #define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
225 #define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
226 #define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
227 #define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
228 #define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)
229 
230 #define SYSREG_MDSCR_EL1      SYSREG(2, 0, 0, 2, 2)
231 #define SYSREG_DBGBVR0_EL1    SYSREG(2, 0, 0, 0, 4)
232 #define SYSREG_DBGBCR0_EL1    SYSREG(2, 0, 0, 0, 5)
233 #define SYSREG_DBGWVR0_EL1    SYSREG(2, 0, 0, 0, 6)
234 #define SYSREG_DBGWCR0_EL1    SYSREG(2, 0, 0, 0, 7)
235 #define SYSREG_DBGBVR1_EL1    SYSREG(2, 0, 0, 1, 4)
236 #define SYSREG_DBGBCR1_EL1    SYSREG(2, 0, 0, 1, 5)
237 #define SYSREG_DBGWVR1_EL1    SYSREG(2, 0, 0, 1, 6)
238 #define SYSREG_DBGWCR1_EL1    SYSREG(2, 0, 0, 1, 7)
239 #define SYSREG_DBGBVR2_EL1    SYSREG(2, 0, 0, 2, 4)
240 #define SYSREG_DBGBCR2_EL1    SYSREG(2, 0, 0, 2, 5)
241 #define SYSREG_DBGWVR2_EL1    SYSREG(2, 0, 0, 2, 6)
242 #define SYSREG_DBGWCR2_EL1    SYSREG(2, 0, 0, 2, 7)
243 #define SYSREG_DBGBVR3_EL1    SYSREG(2, 0, 0, 3, 4)
244 #define SYSREG_DBGBCR3_EL1    SYSREG(2, 0, 0, 3, 5)
245 #define SYSREG_DBGWVR3_EL1    SYSREG(2, 0, 0, 3, 6)
246 #define SYSREG_DBGWCR3_EL1    SYSREG(2, 0, 0, 3, 7)
247 #define SYSREG_DBGBVR4_EL1    SYSREG(2, 0, 0, 4, 4)
248 #define SYSREG_DBGBCR4_EL1    SYSREG(2, 0, 0, 4, 5)
249 #define SYSREG_DBGWVR4_EL1    SYSREG(2, 0, 0, 4, 6)
250 #define SYSREG_DBGWCR4_EL1    SYSREG(2, 0, 0, 4, 7)
251 #define SYSREG_DBGBVR5_EL1    SYSREG(2, 0, 0, 5, 4)
252 #define SYSREG_DBGBCR5_EL1    SYSREG(2, 0, 0, 5, 5)
253 #define SYSREG_DBGWVR5_EL1    SYSREG(2, 0, 0, 5, 6)
254 #define SYSREG_DBGWCR5_EL1    SYSREG(2, 0, 0, 5, 7)
255 #define SYSREG_DBGBVR6_EL1    SYSREG(2, 0, 0, 6, 4)
256 #define SYSREG_DBGBCR6_EL1    SYSREG(2, 0, 0, 6, 5)
257 #define SYSREG_DBGWVR6_EL1    SYSREG(2, 0, 0, 6, 6)
258 #define SYSREG_DBGWCR6_EL1    SYSREG(2, 0, 0, 6, 7)
259 #define SYSREG_DBGBVR7_EL1    SYSREG(2, 0, 0, 7, 4)
260 #define SYSREG_DBGBCR7_EL1    SYSREG(2, 0, 0, 7, 5)
261 #define SYSREG_DBGWVR7_EL1    SYSREG(2, 0, 0, 7, 6)
262 #define SYSREG_DBGWCR7_EL1    SYSREG(2, 0, 0, 7, 7)
263 #define SYSREG_DBGBVR8_EL1    SYSREG(2, 0, 0, 8, 4)
264 #define SYSREG_DBGBCR8_EL1    SYSREG(2, 0, 0, 8, 5)
265 #define SYSREG_DBGWVR8_EL1    SYSREG(2, 0, 0, 8, 6)
266 #define SYSREG_DBGWCR8_EL1    SYSREG(2, 0, 0, 8, 7)
267 #define SYSREG_DBGBVR9_EL1    SYSREG(2, 0, 0, 9, 4)
268 #define SYSREG_DBGBCR9_EL1    SYSREG(2, 0, 0, 9, 5)
269 #define SYSREG_DBGWVR9_EL1    SYSREG(2, 0, 0, 9, 6)
270 #define SYSREG_DBGWCR9_EL1    SYSREG(2, 0, 0, 9, 7)
271 #define SYSREG_DBGBVR10_EL1   SYSREG(2, 0, 0, 10, 4)
272 #define SYSREG_DBGBCR10_EL1   SYSREG(2, 0, 0, 10, 5)
273 #define SYSREG_DBGWVR10_EL1   SYSREG(2, 0, 0, 10, 6)
274 #define SYSREG_DBGWCR10_EL1   SYSREG(2, 0, 0, 10, 7)
275 #define SYSREG_DBGBVR11_EL1   SYSREG(2, 0, 0, 11, 4)
276 #define SYSREG_DBGBCR11_EL1   SYSREG(2, 0, 0, 11, 5)
277 #define SYSREG_DBGWVR11_EL1   SYSREG(2, 0, 0, 11, 6)
278 #define SYSREG_DBGWCR11_EL1   SYSREG(2, 0, 0, 11, 7)
279 #define SYSREG_DBGBVR12_EL1   SYSREG(2, 0, 0, 12, 4)
280 #define SYSREG_DBGBCR12_EL1   SYSREG(2, 0, 0, 12, 5)
281 #define SYSREG_DBGWVR12_EL1   SYSREG(2, 0, 0, 12, 6)
282 #define SYSREG_DBGWCR12_EL1   SYSREG(2, 0, 0, 12, 7)
283 #define SYSREG_DBGBVR13_EL1   SYSREG(2, 0, 0, 13, 4)
284 #define SYSREG_DBGBCR13_EL1   SYSREG(2, 0, 0, 13, 5)
285 #define SYSREG_DBGWVR13_EL1   SYSREG(2, 0, 0, 13, 6)
286 #define SYSREG_DBGWCR13_EL1   SYSREG(2, 0, 0, 13, 7)
287 #define SYSREG_DBGBVR14_EL1   SYSREG(2, 0, 0, 14, 4)
288 #define SYSREG_DBGBCR14_EL1   SYSREG(2, 0, 0, 14, 5)
289 #define SYSREG_DBGWVR14_EL1   SYSREG(2, 0, 0, 14, 6)
290 #define SYSREG_DBGWCR14_EL1   SYSREG(2, 0, 0, 14, 7)
291 #define SYSREG_DBGBVR15_EL1   SYSREG(2, 0, 0, 15, 4)
292 #define SYSREG_DBGBCR15_EL1   SYSREG(2, 0, 0, 15, 5)
293 #define SYSREG_DBGWVR15_EL1   SYSREG(2, 0, 0, 15, 6)
294 #define SYSREG_DBGWCR15_EL1   SYSREG(2, 0, 0, 15, 7)
295 
296 #define WFX_IS_WFE (1 << 0)
297 
298 #define TMR_CTL_ENABLE  (1 << 0)
299 #define TMR_CTL_IMASK   (1 << 1)
300 #define TMR_CTL_ISTATUS (1 << 2)
301 
302 static void hvf_wfi(CPUState *cpu);
303 
304 static uint32_t chosen_ipa_bit_size;
305 
306 typedef struct HVFVTimer {
307     /* Vtimer value during migration and paused state */
308     uint64_t vtimer_val;
309 } HVFVTimer;
310 
311 static HVFVTimer vtimer;
312 
313 typedef struct ARMHostCPUFeatures {
314     ARMISARegisters isar;
315     uint64_t features;
316     uint64_t midr;
317     uint32_t reset_sctlr;
318     const char *dtb_compatible;
319 } ARMHostCPUFeatures;
320 
321 static ARMHostCPUFeatures arm_host_cpu_features;
322 
323 struct hvf_reg_match {
324     int reg;
325     uint64_t offset;
326 };
327 
328 static const struct hvf_reg_match hvf_reg_match[] = {
329     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
330     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
331     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
332     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
333     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
334     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
335     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
336     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
337     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
338     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
339     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
340     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
341     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
342     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
343     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
344     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
345     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
346     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
347     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
348     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
349     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
350     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
351     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
352     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
353     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
354     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
355     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
356     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
357     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
358     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
359     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
360     { HV_REG_PC,   offsetof(CPUARMState, pc) },
361 };
362 
363 static const struct hvf_reg_match hvf_fpreg_match[] = {
364     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
365     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
366     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
367     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
368     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
369     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
370     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
371     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
372     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
373     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
374     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
375     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
376     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
377     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
378     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
379     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
380     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
381     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
382     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
383     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
384     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
385     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
386     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
387     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
388     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
389     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
390     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
391     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
392     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
393     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
394     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
395     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
396 };
397 
398 struct hvf_sreg_match {
399     int reg;
400     uint32_t key;
401     uint32_t cp_idx;
402 };
403 
404 static struct hvf_sreg_match hvf_sreg_match[] = {
405     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 4) },
406     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 5) },
407     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 6) },
408     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 7) },
409 
410     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 4) },
411     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 5) },
412     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 6) },
413     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 7) },
414 
415     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 4) },
416     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 5) },
417     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 6) },
418     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 7) },
419 
420     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 4) },
421     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 5) },
422     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 6) },
423     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 7) },
424 
425     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 4) },
426     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 5) },
427     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 6) },
428     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 7) },
429 
430     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 4) },
431     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 5) },
432     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 6) },
433     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 7) },
434 
435     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 4) },
436     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 5) },
437     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 6) },
438     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 7) },
439 
440     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 4) },
441     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 5) },
442     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 6) },
443     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 7) },
444 
445     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 4) },
446     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 5) },
447     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 6) },
448     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 7) },
449 
450     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 4) },
451     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 5) },
452     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 6) },
453     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 7) },
454 
455     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 4) },
456     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 5) },
457     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 6) },
458     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 7) },
459 
460     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 4) },
461     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 5) },
462     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 6) },
463     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 7) },
464 
465     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 4) },
466     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 5) },
467     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 6) },
468     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 7) },
469 
470     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 4) },
471     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 5) },
472     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 6) },
473     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 7) },
474 
475     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 4) },
476     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 5) },
477     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 6) },
478     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 7) },
479 
480     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 4) },
481     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 5) },
482     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 6) },
483     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 7) },
484 
485 #ifdef SYNC_NO_RAW_REGS
486     /*
487      * The registers below are manually synced on init because they are
488      * marked as NO_RAW. We still list them to make number space sync easier.
489      */
490     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
491     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
492     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
493     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
494 #endif
495     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 1) },
496     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
497     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
498     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
499     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
500 #ifdef SYNC_NO_MMFR0
501     /* We keep the hardware MMFR0 around. HW limits are there anyway */
502     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
503 #endif
504     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
505     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
506     /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
507 
508     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
509     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
510     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
511     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
512     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
513     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
514 
515     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
516     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
517     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
518     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
519     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
520     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
521     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
522     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
523     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
524     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
525 
526     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
527     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
528     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
529     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
530     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
531     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
532     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
533     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
534     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
535     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
536     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
537     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
538     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
539     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
540     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
541     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
542     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
543     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
544     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
545     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
546 };
547 
hvf_get_registers(CPUState * cpu)548 int hvf_get_registers(CPUState *cpu)
549 {
550     ARMCPU *arm_cpu = ARM_CPU(cpu);
551     CPUARMState *env = &arm_cpu->env;
552     hv_return_t ret;
553     uint64_t val;
554     hv_simd_fp_uchar16_t fpval;
555     int i;
556 
557     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
558         ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
559         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
560         assert_hvf_ok(ret);
561     }
562 
563     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
564         ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
565                                       &fpval);
566         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
567         assert_hvf_ok(ret);
568     }
569 
570     val = 0;
571     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
572     assert_hvf_ok(ret);
573     vfp_set_fpcr(env, val);
574 
575     val = 0;
576     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
577     assert_hvf_ok(ret);
578     vfp_set_fpsr(env, val);
579 
580     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
581     assert_hvf_ok(ret);
582     pstate_write(env, val);
583 
584     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
585         if (hvf_sreg_match[i].cp_idx == -1) {
586             continue;
587         }
588 
589         if (cpu->accel->guest_debug_enabled) {
590             /* Handle debug registers */
591             switch (hvf_sreg_match[i].reg) {
592             case HV_SYS_REG_DBGBVR0_EL1:
593             case HV_SYS_REG_DBGBCR0_EL1:
594             case HV_SYS_REG_DBGWVR0_EL1:
595             case HV_SYS_REG_DBGWCR0_EL1:
596             case HV_SYS_REG_DBGBVR1_EL1:
597             case HV_SYS_REG_DBGBCR1_EL1:
598             case HV_SYS_REG_DBGWVR1_EL1:
599             case HV_SYS_REG_DBGWCR1_EL1:
600             case HV_SYS_REG_DBGBVR2_EL1:
601             case HV_SYS_REG_DBGBCR2_EL1:
602             case HV_SYS_REG_DBGWVR2_EL1:
603             case HV_SYS_REG_DBGWCR2_EL1:
604             case HV_SYS_REG_DBGBVR3_EL1:
605             case HV_SYS_REG_DBGBCR3_EL1:
606             case HV_SYS_REG_DBGWVR3_EL1:
607             case HV_SYS_REG_DBGWCR3_EL1:
608             case HV_SYS_REG_DBGBVR4_EL1:
609             case HV_SYS_REG_DBGBCR4_EL1:
610             case HV_SYS_REG_DBGWVR4_EL1:
611             case HV_SYS_REG_DBGWCR4_EL1:
612             case HV_SYS_REG_DBGBVR5_EL1:
613             case HV_SYS_REG_DBGBCR5_EL1:
614             case HV_SYS_REG_DBGWVR5_EL1:
615             case HV_SYS_REG_DBGWCR5_EL1:
616             case HV_SYS_REG_DBGBVR6_EL1:
617             case HV_SYS_REG_DBGBCR6_EL1:
618             case HV_SYS_REG_DBGWVR6_EL1:
619             case HV_SYS_REG_DBGWCR6_EL1:
620             case HV_SYS_REG_DBGBVR7_EL1:
621             case HV_SYS_REG_DBGBCR7_EL1:
622             case HV_SYS_REG_DBGWVR7_EL1:
623             case HV_SYS_REG_DBGWCR7_EL1:
624             case HV_SYS_REG_DBGBVR8_EL1:
625             case HV_SYS_REG_DBGBCR8_EL1:
626             case HV_SYS_REG_DBGWVR8_EL1:
627             case HV_SYS_REG_DBGWCR8_EL1:
628             case HV_SYS_REG_DBGBVR9_EL1:
629             case HV_SYS_REG_DBGBCR9_EL1:
630             case HV_SYS_REG_DBGWVR9_EL1:
631             case HV_SYS_REG_DBGWCR9_EL1:
632             case HV_SYS_REG_DBGBVR10_EL1:
633             case HV_SYS_REG_DBGBCR10_EL1:
634             case HV_SYS_REG_DBGWVR10_EL1:
635             case HV_SYS_REG_DBGWCR10_EL1:
636             case HV_SYS_REG_DBGBVR11_EL1:
637             case HV_SYS_REG_DBGBCR11_EL1:
638             case HV_SYS_REG_DBGWVR11_EL1:
639             case HV_SYS_REG_DBGWCR11_EL1:
640             case HV_SYS_REG_DBGBVR12_EL1:
641             case HV_SYS_REG_DBGBCR12_EL1:
642             case HV_SYS_REG_DBGWVR12_EL1:
643             case HV_SYS_REG_DBGWCR12_EL1:
644             case HV_SYS_REG_DBGBVR13_EL1:
645             case HV_SYS_REG_DBGBCR13_EL1:
646             case HV_SYS_REG_DBGWVR13_EL1:
647             case HV_SYS_REG_DBGWCR13_EL1:
648             case HV_SYS_REG_DBGBVR14_EL1:
649             case HV_SYS_REG_DBGBCR14_EL1:
650             case HV_SYS_REG_DBGWVR14_EL1:
651             case HV_SYS_REG_DBGWCR14_EL1:
652             case HV_SYS_REG_DBGBVR15_EL1:
653             case HV_SYS_REG_DBGBCR15_EL1:
654             case HV_SYS_REG_DBGWVR15_EL1:
655             case HV_SYS_REG_DBGWCR15_EL1: {
656                 /*
657                  * If the guest is being debugged, the vCPU's debug registers
658                  * are holding the gdbstub's view of the registers (set in
659                  * hvf_arch_update_guest_debug()).
660                  * Since the environment is used to store only the guest's view
661                  * of the registers, don't update it with the values from the
662                  * vCPU but simply keep the values from the previous
663                  * environment.
664                  */
665                 const ARMCPRegInfo *ri;
666                 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
667                 val = read_raw_cp_reg(env, ri);
668 
669                 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
670                 continue;
671             }
672             }
673         }
674 
675         ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
676         assert_hvf_ok(ret);
677 
678         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
679     }
680     assert(write_list_to_cpustate(arm_cpu));
681 
682     aarch64_restore_sp(env, arm_current_el(env));
683 
684     return 0;
685 }
686 
hvf_put_registers(CPUState * cpu)687 int hvf_put_registers(CPUState *cpu)
688 {
689     ARMCPU *arm_cpu = ARM_CPU(cpu);
690     CPUARMState *env = &arm_cpu->env;
691     hv_return_t ret;
692     uint64_t val;
693     hv_simd_fp_uchar16_t fpval;
694     int i;
695 
696     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
697         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
698         ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
699         assert_hvf_ok(ret);
700     }
701 
702     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
703         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
704         ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
705                                       fpval);
706         assert_hvf_ok(ret);
707     }
708 
709     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
710     assert_hvf_ok(ret);
711 
712     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
713     assert_hvf_ok(ret);
714 
715     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
716     assert_hvf_ok(ret);
717 
718     aarch64_save_sp(env, arm_current_el(env));
719 
720     assert(write_cpustate_to_list(arm_cpu, false));
721     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
722         if (hvf_sreg_match[i].cp_idx == -1) {
723             continue;
724         }
725 
726         if (cpu->accel->guest_debug_enabled) {
727             /* Handle debug registers */
728             switch (hvf_sreg_match[i].reg) {
729             case HV_SYS_REG_DBGBVR0_EL1:
730             case HV_SYS_REG_DBGBCR0_EL1:
731             case HV_SYS_REG_DBGWVR0_EL1:
732             case HV_SYS_REG_DBGWCR0_EL1:
733             case HV_SYS_REG_DBGBVR1_EL1:
734             case HV_SYS_REG_DBGBCR1_EL1:
735             case HV_SYS_REG_DBGWVR1_EL1:
736             case HV_SYS_REG_DBGWCR1_EL1:
737             case HV_SYS_REG_DBGBVR2_EL1:
738             case HV_SYS_REG_DBGBCR2_EL1:
739             case HV_SYS_REG_DBGWVR2_EL1:
740             case HV_SYS_REG_DBGWCR2_EL1:
741             case HV_SYS_REG_DBGBVR3_EL1:
742             case HV_SYS_REG_DBGBCR3_EL1:
743             case HV_SYS_REG_DBGWVR3_EL1:
744             case HV_SYS_REG_DBGWCR3_EL1:
745             case HV_SYS_REG_DBGBVR4_EL1:
746             case HV_SYS_REG_DBGBCR4_EL1:
747             case HV_SYS_REG_DBGWVR4_EL1:
748             case HV_SYS_REG_DBGWCR4_EL1:
749             case HV_SYS_REG_DBGBVR5_EL1:
750             case HV_SYS_REG_DBGBCR5_EL1:
751             case HV_SYS_REG_DBGWVR5_EL1:
752             case HV_SYS_REG_DBGWCR5_EL1:
753             case HV_SYS_REG_DBGBVR6_EL1:
754             case HV_SYS_REG_DBGBCR6_EL1:
755             case HV_SYS_REG_DBGWVR6_EL1:
756             case HV_SYS_REG_DBGWCR6_EL1:
757             case HV_SYS_REG_DBGBVR7_EL1:
758             case HV_SYS_REG_DBGBCR7_EL1:
759             case HV_SYS_REG_DBGWVR7_EL1:
760             case HV_SYS_REG_DBGWCR7_EL1:
761             case HV_SYS_REG_DBGBVR8_EL1:
762             case HV_SYS_REG_DBGBCR8_EL1:
763             case HV_SYS_REG_DBGWVR8_EL1:
764             case HV_SYS_REG_DBGWCR8_EL1:
765             case HV_SYS_REG_DBGBVR9_EL1:
766             case HV_SYS_REG_DBGBCR9_EL1:
767             case HV_SYS_REG_DBGWVR9_EL1:
768             case HV_SYS_REG_DBGWCR9_EL1:
769             case HV_SYS_REG_DBGBVR10_EL1:
770             case HV_SYS_REG_DBGBCR10_EL1:
771             case HV_SYS_REG_DBGWVR10_EL1:
772             case HV_SYS_REG_DBGWCR10_EL1:
773             case HV_SYS_REG_DBGBVR11_EL1:
774             case HV_SYS_REG_DBGBCR11_EL1:
775             case HV_SYS_REG_DBGWVR11_EL1:
776             case HV_SYS_REG_DBGWCR11_EL1:
777             case HV_SYS_REG_DBGBVR12_EL1:
778             case HV_SYS_REG_DBGBCR12_EL1:
779             case HV_SYS_REG_DBGWVR12_EL1:
780             case HV_SYS_REG_DBGWCR12_EL1:
781             case HV_SYS_REG_DBGBVR13_EL1:
782             case HV_SYS_REG_DBGBCR13_EL1:
783             case HV_SYS_REG_DBGWVR13_EL1:
784             case HV_SYS_REG_DBGWCR13_EL1:
785             case HV_SYS_REG_DBGBVR14_EL1:
786             case HV_SYS_REG_DBGBCR14_EL1:
787             case HV_SYS_REG_DBGWVR14_EL1:
788             case HV_SYS_REG_DBGWCR14_EL1:
789             case HV_SYS_REG_DBGBVR15_EL1:
790             case HV_SYS_REG_DBGBCR15_EL1:
791             case HV_SYS_REG_DBGWVR15_EL1:
792             case HV_SYS_REG_DBGWCR15_EL1:
793                 /*
794                  * If the guest is being debugged, the vCPU's debug registers
795                  * are already holding the gdbstub's view of the registers (set
796                  * in hvf_arch_update_guest_debug()).
797                  */
798                 continue;
799             }
800         }
801 
802         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
803         ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
804         assert_hvf_ok(ret);
805     }
806 
807     ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
808     assert_hvf_ok(ret);
809 
810     return 0;
811 }
812 
flush_cpu_state(CPUState * cpu)813 static void flush_cpu_state(CPUState *cpu)
814 {
815     if (cpu->accel->dirty) {
816         hvf_put_registers(cpu);
817         cpu->accel->dirty = false;
818     }
819 }
820 
hvf_set_reg(CPUState * cpu,int rt,uint64_t val)821 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
822 {
823     hv_return_t r;
824 
825     flush_cpu_state(cpu);
826 
827     if (rt < 31) {
828         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
829         assert_hvf_ok(r);
830     }
831 }
832 
hvf_get_reg(CPUState * cpu,int rt)833 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
834 {
835     uint64_t val = 0;
836     hv_return_t r;
837 
838     flush_cpu_state(cpu);
839 
840     if (rt < 31) {
841         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
842         assert_hvf_ok(r);
843     }
844 
845     return val;
846 }
847 
clamp_id_aa64mmfr0_parange_to_ipa_size(uint64_t * id_aa64mmfr0)848 static void clamp_id_aa64mmfr0_parange_to_ipa_size(uint64_t *id_aa64mmfr0)
849 {
850     uint32_t ipa_size = chosen_ipa_bit_size ?
851             chosen_ipa_bit_size : hvf_arm_get_max_ipa_bit_size();
852 
853     /* Clamp down the PARange to the IPA size the kernel supports. */
854     uint8_t index = round_down_to_parange_index(ipa_size);
855     *id_aa64mmfr0 = (*id_aa64mmfr0 & ~R_ID_AA64MMFR0_PARANGE_MASK) | index;
856 }
857 
hvf_arm_get_host_cpu_features(ARMHostCPUFeatures * ahcf)858 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
859 {
860     ARMISARegisters host_isar = {};
861     const struct isar_regs {
862         int reg;
863         uint64_t *val;
864     } regs[] = {
865         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
866         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
867         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
868         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
869         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
870         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
871         /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
872         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
873         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
874         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
875         /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
876     };
877     hv_vcpu_t fd;
878     hv_return_t r = HV_SUCCESS;
879     hv_vcpu_exit_t *exit;
880     int i;
881 
882     ahcf->dtb_compatible = "arm,arm-v8";
883     ahcf->features = (1ULL << ARM_FEATURE_V8) |
884                      (1ULL << ARM_FEATURE_NEON) |
885                      (1ULL << ARM_FEATURE_AARCH64) |
886                      (1ULL << ARM_FEATURE_PMU) |
887                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
888 
889     /* We set up a small vcpu to extract host registers */
890 
891     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
892         return false;
893     }
894 
895     for (i = 0; i < ARRAY_SIZE(regs); i++) {
896         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
897     }
898     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
899     r |= hv_vcpu_destroy(fd);
900 
901     clamp_id_aa64mmfr0_parange_to_ipa_size(&host_isar.id_aa64mmfr0);
902 
903     /*
904      * Disable SME, which is not properly handled by QEMU hvf yet.
905      * To allow this through we would need to:
906      * - make sure that the SME state is correctly handled in the
907      *   get_registers/put_registers functions
908      * - get the SME-specific CPU properties to work with accelerators
909      *   other than TCG
910      * - fix any assumptions we made that SME implies SVE (since
911      *   on the M4 there is SME but not SVE)
912      */
913     host_isar.id_aa64pfr1 &= ~R_ID_AA64PFR1_SME_MASK;
914 
915     ahcf->isar = host_isar;
916 
917     /*
918      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
919      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
920      */
921     ahcf->reset_sctlr = 0x30100180;
922     /*
923      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
924      * let's disable it on boot and then allow guest software to turn it on by
925      * setting it to 0.
926      */
927     ahcf->reset_sctlr |= 0x00800000;
928 
929     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
930     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
931         return false;
932     }
933 
934     return r == HV_SUCCESS;
935 }
936 
hvf_arm_get_default_ipa_bit_size(void)937 uint32_t hvf_arm_get_default_ipa_bit_size(void)
938 {
939     uint32_t default_ipa_size;
940     hv_return_t ret = hv_vm_config_get_default_ipa_size(&default_ipa_size);
941     assert_hvf_ok(ret);
942 
943     return default_ipa_size;
944 }
945 
hvf_arm_get_max_ipa_bit_size(void)946 uint32_t hvf_arm_get_max_ipa_bit_size(void)
947 {
948     uint32_t max_ipa_size;
949     hv_return_t ret = hv_vm_config_get_max_ipa_size(&max_ipa_size);
950     assert_hvf_ok(ret);
951 
952     /*
953      * We clamp any IPA size we want to back the VM with to a valid PARange
954      * value so the guest doesn't try and map memory outside of the valid range.
955      * This logic just clamps the passed in IPA bit size to the first valid
956      * PARange value <= to it.
957      */
958     return round_down_to_parange_bit_size(max_ipa_size);
959 }
960 
hvf_arm_set_cpu_features_from_host(ARMCPU * cpu)961 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
962 {
963     if (!arm_host_cpu_features.dtb_compatible) {
964         if (!hvf_enabled() ||
965             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
966             /*
967              * We can't report this error yet, so flag that we need to
968              * in arm_cpu_realizefn().
969              */
970             cpu->host_cpu_probe_failed = true;
971             return;
972         }
973     }
974 
975     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
976     cpu->isar = arm_host_cpu_features.isar;
977     cpu->env.features = arm_host_cpu_features.features;
978     cpu->midr = arm_host_cpu_features.midr;
979     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
980 }
981 
hvf_arch_vcpu_destroy(CPUState * cpu)982 void hvf_arch_vcpu_destroy(CPUState *cpu)
983 {
984 }
985 
hvf_arch_vm_create(MachineState * ms,uint32_t pa_range)986 hv_return_t hvf_arch_vm_create(MachineState *ms, uint32_t pa_range)
987 {
988     hv_return_t ret;
989     hv_vm_config_t config = hv_vm_config_create();
990 
991     ret = hv_vm_config_set_ipa_size(config, pa_range);
992     if (ret != HV_SUCCESS) {
993         goto cleanup;
994     }
995     chosen_ipa_bit_size = pa_range;
996 
997     ret = hv_vm_create(config);
998 
999 cleanup:
1000     os_release(config);
1001 
1002     return ret;
1003 }
1004 
hvf_arch_init_vcpu(CPUState * cpu)1005 int hvf_arch_init_vcpu(CPUState *cpu)
1006 {
1007     ARMCPU *arm_cpu = ARM_CPU(cpu);
1008     CPUARMState *env = &arm_cpu->env;
1009     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
1010     uint32_t sregs_cnt = 0;
1011     uint64_t pfr;
1012     hv_return_t ret;
1013     int i;
1014 
1015     env->aarch64 = true;
1016     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
1017 
1018     /* Allocate enough space for our sysreg sync */
1019     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
1020                                      sregs_match_len);
1021     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
1022                                     sregs_match_len);
1023     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
1024                                              arm_cpu->cpreg_vmstate_indexes,
1025                                              sregs_match_len);
1026     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
1027                                             arm_cpu->cpreg_vmstate_values,
1028                                             sregs_match_len);
1029 
1030     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
1031 
1032     /* Populate cp list for all known sysregs */
1033     for (i = 0; i < sregs_match_len; i++) {
1034         const ARMCPRegInfo *ri;
1035         uint32_t key = hvf_sreg_match[i].key;
1036 
1037         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
1038         if (ri) {
1039             assert(!(ri->type & ARM_CP_NO_RAW));
1040             hvf_sreg_match[i].cp_idx = sregs_cnt;
1041             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
1042         } else {
1043             hvf_sreg_match[i].cp_idx = -1;
1044         }
1045     }
1046     arm_cpu->cpreg_array_len = sregs_cnt;
1047     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
1048 
1049     assert(write_cpustate_to_list(arm_cpu, false));
1050 
1051     /* Set CP_NO_RAW system registers on init */
1052     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
1053                               arm_cpu->midr);
1054     assert_hvf_ok(ret);
1055 
1056     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
1057                               arm_cpu->mp_affinity);
1058     assert_hvf_ok(ret);
1059 
1060     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
1061     assert_hvf_ok(ret);
1062     pfr |= env->gicv3state ? (1 << 24) : 0;
1063     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
1064     assert_hvf_ok(ret);
1065 
1066     /* We're limited to underlying hardware caps, override internal versions */
1067     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
1068                               &arm_cpu->isar.id_aa64mmfr0);
1069     assert_hvf_ok(ret);
1070 
1071     clamp_id_aa64mmfr0_parange_to_ipa_size(&arm_cpu->isar.id_aa64mmfr0);
1072     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
1073                               arm_cpu->isar.id_aa64mmfr0);
1074     assert_hvf_ok(ret);
1075 
1076     return 0;
1077 }
1078 
hvf_kick_vcpu_thread(CPUState * cpu)1079 void hvf_kick_vcpu_thread(CPUState *cpu)
1080 {
1081     cpus_kick_thread(cpu);
1082     hv_vcpus_exit(&cpu->accel->fd, 1);
1083 }
1084 
hvf_raise_exception(CPUState * cpu,uint32_t excp,uint32_t syndrome)1085 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1086                                 uint32_t syndrome)
1087 {
1088     ARMCPU *arm_cpu = ARM_CPU(cpu);
1089     CPUARMState *env = &arm_cpu->env;
1090 
1091     cpu->exception_index = excp;
1092     env->exception.target_el = 1;
1093     env->exception.syndrome = syndrome;
1094 
1095     arm_cpu_do_interrupt(cpu);
1096 }
1097 
hvf_psci_cpu_off(ARMCPU * arm_cpu)1098 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1099 {
1100     int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
1101     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1102 }
1103 
1104 /*
1105  * Handle a PSCI call.
1106  *
1107  * Returns 0 on success
1108  *         -1 when the PSCI call is unknown,
1109  */
hvf_handle_psci_call(CPUState * cpu)1110 static bool hvf_handle_psci_call(CPUState *cpu)
1111 {
1112     ARMCPU *arm_cpu = ARM_CPU(cpu);
1113     CPUARMState *env = &arm_cpu->env;
1114     uint64_t param[4] = {
1115         env->xregs[0],
1116         env->xregs[1],
1117         env->xregs[2],
1118         env->xregs[3]
1119     };
1120     uint64_t context_id, mpidr;
1121     bool target_aarch64 = true;
1122     CPUState *target_cpu_state;
1123     ARMCPU *target_cpu;
1124     target_ulong entry;
1125     int target_el = 1;
1126     int32_t ret = 0;
1127 
1128     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1129                         arm_cpu_mp_affinity(arm_cpu));
1130 
1131     switch (param[0]) {
1132     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1133         ret = QEMU_PSCI_VERSION_1_1;
1134         break;
1135     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1136         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1137         break;
1138     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1139     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1140         mpidr = param[1];
1141 
1142         switch (param[2]) {
1143         case 0:
1144             target_cpu_state = arm_get_cpu_by_id(mpidr);
1145             if (!target_cpu_state) {
1146                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1147                 break;
1148             }
1149             target_cpu = ARM_CPU(target_cpu_state);
1150 
1151             ret = target_cpu->power_state;
1152             break;
1153         default:
1154             /* Everything above affinity level 0 is always on. */
1155             ret = 0;
1156         }
1157         break;
1158     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1159         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1160         /*
1161          * QEMU reset and shutdown are async requests, but PSCI
1162          * mandates that we never return from the reset/shutdown
1163          * call, so power the CPU off now so it doesn't execute
1164          * anything further.
1165          */
1166         hvf_psci_cpu_off(arm_cpu);
1167         break;
1168     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1169         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1170         hvf_psci_cpu_off(arm_cpu);
1171         break;
1172     case QEMU_PSCI_0_1_FN_CPU_ON:
1173     case QEMU_PSCI_0_2_FN_CPU_ON:
1174     case QEMU_PSCI_0_2_FN64_CPU_ON:
1175         mpidr = param[1];
1176         entry = param[2];
1177         context_id = param[3];
1178         ret = arm_set_cpu_on(mpidr, entry, context_id,
1179                              target_el, target_aarch64);
1180         break;
1181     case QEMU_PSCI_0_1_FN_CPU_OFF:
1182     case QEMU_PSCI_0_2_FN_CPU_OFF:
1183         hvf_psci_cpu_off(arm_cpu);
1184         break;
1185     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1186     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1187     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1188         /* Affinity levels are not supported in QEMU */
1189         if (param[1] & 0xfffe0000) {
1190             ret = QEMU_PSCI_RET_INVALID_PARAMS;
1191             break;
1192         }
1193         /* Powerdown is not supported, we always go into WFI */
1194         env->xregs[0] = 0;
1195         hvf_wfi(cpu);
1196         break;
1197     case QEMU_PSCI_0_1_FN_MIGRATE:
1198     case QEMU_PSCI_0_2_FN_MIGRATE:
1199         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1200         break;
1201     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1202         switch (param[1]) {
1203         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1204         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1205         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1206         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1207         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1208         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1209         case QEMU_PSCI_0_1_FN_CPU_ON:
1210         case QEMU_PSCI_0_2_FN_CPU_ON:
1211         case QEMU_PSCI_0_2_FN64_CPU_ON:
1212         case QEMU_PSCI_0_1_FN_CPU_OFF:
1213         case QEMU_PSCI_0_2_FN_CPU_OFF:
1214         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1215         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1216         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1217         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1218             ret = 0;
1219             break;
1220         case QEMU_PSCI_0_1_FN_MIGRATE:
1221         case QEMU_PSCI_0_2_FN_MIGRATE:
1222         default:
1223             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1224         }
1225         break;
1226     default:
1227         return false;
1228     }
1229 
1230     env->xregs[0] = ret;
1231     return true;
1232 }
1233 
is_id_sysreg(uint32_t reg)1234 static bool is_id_sysreg(uint32_t reg)
1235 {
1236     return SYSREG_OP0(reg) == 3 &&
1237            SYSREG_OP1(reg) == 0 &&
1238            SYSREG_CRN(reg) == 0 &&
1239            SYSREG_CRM(reg) >= 1 &&
1240            SYSREG_CRM(reg) < 8;
1241 }
1242 
hvf_reg2cp_reg(uint32_t reg)1243 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1244 {
1245     return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1246                               (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1247                               (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1248                               (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1249                               (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1250                               (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1251 }
1252 
hvf_sysreg_read_cp(CPUState * cpu,uint32_t reg,uint64_t * val)1253 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1254 {
1255     ARMCPU *arm_cpu = ARM_CPU(cpu);
1256     CPUARMState *env = &arm_cpu->env;
1257     const ARMCPRegInfo *ri;
1258 
1259     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1260     if (ri) {
1261         if (ri->accessfn) {
1262             if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1263                 return false;
1264             }
1265         }
1266         if (ri->type & ARM_CP_CONST) {
1267             *val = ri->resetvalue;
1268         } else if (ri->readfn) {
1269             *val = ri->readfn(env, ri);
1270         } else {
1271             *val = CPREG_FIELD64(env, ri);
1272         }
1273         trace_hvf_vgic_read(ri->name, *val);
1274         return true;
1275     }
1276 
1277     return false;
1278 }
1279 
hvf_sysreg_read(CPUState * cpu,uint32_t reg,uint64_t * val)1280 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint64_t *val)
1281 {
1282     ARMCPU *arm_cpu = ARM_CPU(cpu);
1283     CPUARMState *env = &arm_cpu->env;
1284 
1285     if (arm_feature(env, ARM_FEATURE_PMU)) {
1286         switch (reg) {
1287         case SYSREG_PMCR_EL0:
1288             *val = env->cp15.c9_pmcr;
1289             return 0;
1290         case SYSREG_PMCCNTR_EL0:
1291             pmu_op_start(env);
1292             *val = env->cp15.c15_ccnt;
1293             pmu_op_finish(env);
1294             return 0;
1295         case SYSREG_PMCNTENCLR_EL0:
1296             *val = env->cp15.c9_pmcnten;
1297             return 0;
1298         case SYSREG_PMOVSCLR_EL0:
1299             *val = env->cp15.c9_pmovsr;
1300             return 0;
1301         case SYSREG_PMSELR_EL0:
1302             *val = env->cp15.c9_pmselr;
1303             return 0;
1304         case SYSREG_PMINTENCLR_EL1:
1305             *val = env->cp15.c9_pminten;
1306             return 0;
1307         case SYSREG_PMCCFILTR_EL0:
1308             *val = env->cp15.pmccfiltr_el0;
1309             return 0;
1310         case SYSREG_PMCNTENSET_EL0:
1311             *val = env->cp15.c9_pmcnten;
1312             return 0;
1313         case SYSREG_PMUSERENR_EL0:
1314             *val = env->cp15.c9_pmuserenr;
1315             return 0;
1316         case SYSREG_PMCEID0_EL0:
1317         case SYSREG_PMCEID1_EL0:
1318             /* We can't really count anything yet, declare all events invalid */
1319             *val = 0;
1320             return 0;
1321         }
1322     }
1323 
1324     switch (reg) {
1325     case SYSREG_CNTPCT_EL0:
1326         *val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1327               gt_cntfrq_period_ns(arm_cpu);
1328         return 0;
1329     case SYSREG_OSLSR_EL1:
1330         *val = env->cp15.oslsr_el1;
1331         return 0;
1332     case SYSREG_OSDLR_EL1:
1333         /* Dummy register */
1334         return 0;
1335     case SYSREG_ICC_AP0R0_EL1:
1336     case SYSREG_ICC_AP0R1_EL1:
1337     case SYSREG_ICC_AP0R2_EL1:
1338     case SYSREG_ICC_AP0R3_EL1:
1339     case SYSREG_ICC_AP1R0_EL1:
1340     case SYSREG_ICC_AP1R1_EL1:
1341     case SYSREG_ICC_AP1R2_EL1:
1342     case SYSREG_ICC_AP1R3_EL1:
1343     case SYSREG_ICC_ASGI1R_EL1:
1344     case SYSREG_ICC_BPR0_EL1:
1345     case SYSREG_ICC_BPR1_EL1:
1346     case SYSREG_ICC_DIR_EL1:
1347     case SYSREG_ICC_EOIR0_EL1:
1348     case SYSREG_ICC_EOIR1_EL1:
1349     case SYSREG_ICC_HPPIR0_EL1:
1350     case SYSREG_ICC_HPPIR1_EL1:
1351     case SYSREG_ICC_IAR0_EL1:
1352     case SYSREG_ICC_IAR1_EL1:
1353     case SYSREG_ICC_IGRPEN0_EL1:
1354     case SYSREG_ICC_IGRPEN1_EL1:
1355     case SYSREG_ICC_PMR_EL1:
1356     case SYSREG_ICC_SGI0R_EL1:
1357     case SYSREG_ICC_SGI1R_EL1:
1358     case SYSREG_ICC_SRE_EL1:
1359     case SYSREG_ICC_CTLR_EL1:
1360         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1361         if (hvf_sysreg_read_cp(cpu, reg, val)) {
1362             return 0;
1363         }
1364         break;
1365     case SYSREG_DBGBVR0_EL1:
1366     case SYSREG_DBGBVR1_EL1:
1367     case SYSREG_DBGBVR2_EL1:
1368     case SYSREG_DBGBVR3_EL1:
1369     case SYSREG_DBGBVR4_EL1:
1370     case SYSREG_DBGBVR5_EL1:
1371     case SYSREG_DBGBVR6_EL1:
1372     case SYSREG_DBGBVR7_EL1:
1373     case SYSREG_DBGBVR8_EL1:
1374     case SYSREG_DBGBVR9_EL1:
1375     case SYSREG_DBGBVR10_EL1:
1376     case SYSREG_DBGBVR11_EL1:
1377     case SYSREG_DBGBVR12_EL1:
1378     case SYSREG_DBGBVR13_EL1:
1379     case SYSREG_DBGBVR14_EL1:
1380     case SYSREG_DBGBVR15_EL1:
1381         *val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1382         return 0;
1383     case SYSREG_DBGBCR0_EL1:
1384     case SYSREG_DBGBCR1_EL1:
1385     case SYSREG_DBGBCR2_EL1:
1386     case SYSREG_DBGBCR3_EL1:
1387     case SYSREG_DBGBCR4_EL1:
1388     case SYSREG_DBGBCR5_EL1:
1389     case SYSREG_DBGBCR6_EL1:
1390     case SYSREG_DBGBCR7_EL1:
1391     case SYSREG_DBGBCR8_EL1:
1392     case SYSREG_DBGBCR9_EL1:
1393     case SYSREG_DBGBCR10_EL1:
1394     case SYSREG_DBGBCR11_EL1:
1395     case SYSREG_DBGBCR12_EL1:
1396     case SYSREG_DBGBCR13_EL1:
1397     case SYSREG_DBGBCR14_EL1:
1398     case SYSREG_DBGBCR15_EL1:
1399         *val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1400         return 0;
1401     case SYSREG_DBGWVR0_EL1:
1402     case SYSREG_DBGWVR1_EL1:
1403     case SYSREG_DBGWVR2_EL1:
1404     case SYSREG_DBGWVR3_EL1:
1405     case SYSREG_DBGWVR4_EL1:
1406     case SYSREG_DBGWVR5_EL1:
1407     case SYSREG_DBGWVR6_EL1:
1408     case SYSREG_DBGWVR7_EL1:
1409     case SYSREG_DBGWVR8_EL1:
1410     case SYSREG_DBGWVR9_EL1:
1411     case SYSREG_DBGWVR10_EL1:
1412     case SYSREG_DBGWVR11_EL1:
1413     case SYSREG_DBGWVR12_EL1:
1414     case SYSREG_DBGWVR13_EL1:
1415     case SYSREG_DBGWVR14_EL1:
1416     case SYSREG_DBGWVR15_EL1:
1417         *val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1418         return 0;
1419     case SYSREG_DBGWCR0_EL1:
1420     case SYSREG_DBGWCR1_EL1:
1421     case SYSREG_DBGWCR2_EL1:
1422     case SYSREG_DBGWCR3_EL1:
1423     case SYSREG_DBGWCR4_EL1:
1424     case SYSREG_DBGWCR5_EL1:
1425     case SYSREG_DBGWCR6_EL1:
1426     case SYSREG_DBGWCR7_EL1:
1427     case SYSREG_DBGWCR8_EL1:
1428     case SYSREG_DBGWCR9_EL1:
1429     case SYSREG_DBGWCR10_EL1:
1430     case SYSREG_DBGWCR11_EL1:
1431     case SYSREG_DBGWCR12_EL1:
1432     case SYSREG_DBGWCR13_EL1:
1433     case SYSREG_DBGWCR14_EL1:
1434     case SYSREG_DBGWCR15_EL1:
1435         *val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1436         return 0;
1437     default:
1438         if (is_id_sysreg(reg)) {
1439             /* ID system registers read as RES0 */
1440             *val = 0;
1441             return 0;
1442         }
1443     }
1444 
1445     cpu_synchronize_state(cpu);
1446     trace_hvf_unhandled_sysreg_read(env->pc, reg,
1447                                     SYSREG_OP0(reg),
1448                                     SYSREG_OP1(reg),
1449                                     SYSREG_CRN(reg),
1450                                     SYSREG_CRM(reg),
1451                                     SYSREG_OP2(reg));
1452     hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1453     return 1;
1454 }
1455 
pmu_update_irq(CPUARMState * env)1456 static void pmu_update_irq(CPUARMState *env)
1457 {
1458     ARMCPU *cpu = env_archcpu(env);
1459     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1460             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1461 }
1462 
pmu_event_supported(uint16_t number)1463 static bool pmu_event_supported(uint16_t number)
1464 {
1465     return false;
1466 }
1467 
1468 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1469  * the current EL, security state, and register configuration.
1470  */
pmu_counter_enabled(CPUARMState * env,uint8_t counter)1471 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1472 {
1473     uint64_t filter;
1474     bool enabled, filtered = true;
1475     int el = arm_current_el(env);
1476 
1477     enabled = (env->cp15.c9_pmcr & PMCRE) &&
1478               (env->cp15.c9_pmcnten & (1 << counter));
1479 
1480     if (counter == 31) {
1481         filter = env->cp15.pmccfiltr_el0;
1482     } else {
1483         filter = env->cp15.c14_pmevtyper[counter];
1484     }
1485 
1486     if (el == 0) {
1487         filtered = filter & PMXEVTYPER_U;
1488     } else if (el == 1) {
1489         filtered = filter & PMXEVTYPER_P;
1490     }
1491 
1492     if (counter != 31) {
1493         /*
1494          * If not checking PMCCNTR, ensure the counter is setup to an event we
1495          * support
1496          */
1497         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1498         if (!pmu_event_supported(event)) {
1499             return false;
1500         }
1501     }
1502 
1503     return enabled && !filtered;
1504 }
1505 
pmswinc_write(CPUARMState * env,uint64_t value)1506 static void pmswinc_write(CPUARMState *env, uint64_t value)
1507 {
1508     unsigned int i;
1509     for (i = 0; i < pmu_num_counters(env); i++) {
1510         /* Increment a counter's count iff: */
1511         if ((value & (1 << i)) && /* counter's bit is set */
1512                 /* counter is enabled and not filtered */
1513                 pmu_counter_enabled(env, i) &&
1514                 /* counter is SW_INCR */
1515                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1516             /*
1517              * Detect if this write causes an overflow since we can't predict
1518              * PMSWINC overflows like we can for other events
1519              */
1520             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1521 
1522             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1523                 env->cp15.c9_pmovsr |= (1 << i);
1524                 pmu_update_irq(env);
1525             }
1526 
1527             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1528         }
1529     }
1530 }
1531 
hvf_sysreg_write_cp(CPUState * cpu,uint32_t reg,uint64_t val)1532 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1533 {
1534     ARMCPU *arm_cpu = ARM_CPU(cpu);
1535     CPUARMState *env = &arm_cpu->env;
1536     const ARMCPRegInfo *ri;
1537 
1538     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1539 
1540     if (ri) {
1541         if (ri->accessfn) {
1542             if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1543                 return false;
1544             }
1545         }
1546         if (ri->writefn) {
1547             ri->writefn(env, ri, val);
1548         } else {
1549             CPREG_FIELD64(env, ri) = val;
1550         }
1551 
1552         trace_hvf_vgic_write(ri->name, val);
1553         return true;
1554     }
1555 
1556     return false;
1557 }
1558 
hvf_sysreg_write(CPUState * cpu,uint32_t reg,uint64_t val)1559 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1560 {
1561     ARMCPU *arm_cpu = ARM_CPU(cpu);
1562     CPUARMState *env = &arm_cpu->env;
1563 
1564     trace_hvf_sysreg_write(reg,
1565                            SYSREG_OP0(reg),
1566                            SYSREG_OP1(reg),
1567                            SYSREG_CRN(reg),
1568                            SYSREG_CRM(reg),
1569                            SYSREG_OP2(reg),
1570                            val);
1571 
1572     if (arm_feature(env, ARM_FEATURE_PMU)) {
1573         switch (reg) {
1574         case SYSREG_PMCCNTR_EL0:
1575             pmu_op_start(env);
1576             env->cp15.c15_ccnt = val;
1577             pmu_op_finish(env);
1578             return 0;
1579         case SYSREG_PMCR_EL0:
1580             pmu_op_start(env);
1581 
1582             if (val & PMCRC) {
1583                 /* The counter has been reset */
1584                 env->cp15.c15_ccnt = 0;
1585             }
1586 
1587             if (val & PMCRP) {
1588                 unsigned int i;
1589                 for (i = 0; i < pmu_num_counters(env); i++) {
1590                     env->cp15.c14_pmevcntr[i] = 0;
1591                 }
1592             }
1593 
1594             env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1595             env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1596 
1597             pmu_op_finish(env);
1598             return 0;
1599         case SYSREG_PMUSERENR_EL0:
1600             env->cp15.c9_pmuserenr = val & 0xf;
1601             return 0;
1602         case SYSREG_PMCNTENSET_EL0:
1603             env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1604             return 0;
1605         case SYSREG_PMCNTENCLR_EL0:
1606             env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1607             return 0;
1608         case SYSREG_PMINTENCLR_EL1:
1609             pmu_op_start(env);
1610             env->cp15.c9_pminten |= val;
1611             pmu_op_finish(env);
1612             return 0;
1613         case SYSREG_PMOVSCLR_EL0:
1614             pmu_op_start(env);
1615             env->cp15.c9_pmovsr &= ~val;
1616             pmu_op_finish(env);
1617             return 0;
1618         case SYSREG_PMSWINC_EL0:
1619             pmu_op_start(env);
1620             pmswinc_write(env, val);
1621             pmu_op_finish(env);
1622             return 0;
1623         case SYSREG_PMSELR_EL0:
1624             env->cp15.c9_pmselr = val & 0x1f;
1625             return 0;
1626         case SYSREG_PMCCFILTR_EL0:
1627             pmu_op_start(env);
1628             env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1629             pmu_op_finish(env);
1630             return 0;
1631         }
1632     }
1633 
1634     switch (reg) {
1635     case SYSREG_OSLAR_EL1:
1636         env->cp15.oslsr_el1 = val & 1;
1637         return 0;
1638     case SYSREG_CNTP_CTL_EL0:
1639         /*
1640          * Guests should not rely on the physical counter, but macOS emits
1641          * disable writes to it. Let it do so, but ignore the requests.
1642          */
1643         qemu_log_mask(LOG_UNIMP, "Unsupported write to CNTP_CTL_EL0\n");
1644         return 0;
1645     case SYSREG_OSDLR_EL1:
1646         /* Dummy register */
1647         return 0;
1648     case SYSREG_ICC_AP0R0_EL1:
1649     case SYSREG_ICC_AP0R1_EL1:
1650     case SYSREG_ICC_AP0R2_EL1:
1651     case SYSREG_ICC_AP0R3_EL1:
1652     case SYSREG_ICC_AP1R0_EL1:
1653     case SYSREG_ICC_AP1R1_EL1:
1654     case SYSREG_ICC_AP1R2_EL1:
1655     case SYSREG_ICC_AP1R3_EL1:
1656     case SYSREG_ICC_ASGI1R_EL1:
1657     case SYSREG_ICC_BPR0_EL1:
1658     case SYSREG_ICC_BPR1_EL1:
1659     case SYSREG_ICC_CTLR_EL1:
1660     case SYSREG_ICC_DIR_EL1:
1661     case SYSREG_ICC_EOIR0_EL1:
1662     case SYSREG_ICC_EOIR1_EL1:
1663     case SYSREG_ICC_HPPIR0_EL1:
1664     case SYSREG_ICC_HPPIR1_EL1:
1665     case SYSREG_ICC_IAR0_EL1:
1666     case SYSREG_ICC_IAR1_EL1:
1667     case SYSREG_ICC_IGRPEN0_EL1:
1668     case SYSREG_ICC_IGRPEN1_EL1:
1669     case SYSREG_ICC_PMR_EL1:
1670     case SYSREG_ICC_SGI0R_EL1:
1671     case SYSREG_ICC_SGI1R_EL1:
1672     case SYSREG_ICC_SRE_EL1:
1673         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1674         if (hvf_sysreg_write_cp(cpu, reg, val)) {
1675             return 0;
1676         }
1677         break;
1678     case SYSREG_MDSCR_EL1:
1679         env->cp15.mdscr_el1 = val;
1680         return 0;
1681     case SYSREG_DBGBVR0_EL1:
1682     case SYSREG_DBGBVR1_EL1:
1683     case SYSREG_DBGBVR2_EL1:
1684     case SYSREG_DBGBVR3_EL1:
1685     case SYSREG_DBGBVR4_EL1:
1686     case SYSREG_DBGBVR5_EL1:
1687     case SYSREG_DBGBVR6_EL1:
1688     case SYSREG_DBGBVR7_EL1:
1689     case SYSREG_DBGBVR8_EL1:
1690     case SYSREG_DBGBVR9_EL1:
1691     case SYSREG_DBGBVR10_EL1:
1692     case SYSREG_DBGBVR11_EL1:
1693     case SYSREG_DBGBVR12_EL1:
1694     case SYSREG_DBGBVR13_EL1:
1695     case SYSREG_DBGBVR14_EL1:
1696     case SYSREG_DBGBVR15_EL1:
1697         env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1698         return 0;
1699     case SYSREG_DBGBCR0_EL1:
1700     case SYSREG_DBGBCR1_EL1:
1701     case SYSREG_DBGBCR2_EL1:
1702     case SYSREG_DBGBCR3_EL1:
1703     case SYSREG_DBGBCR4_EL1:
1704     case SYSREG_DBGBCR5_EL1:
1705     case SYSREG_DBGBCR6_EL1:
1706     case SYSREG_DBGBCR7_EL1:
1707     case SYSREG_DBGBCR8_EL1:
1708     case SYSREG_DBGBCR9_EL1:
1709     case SYSREG_DBGBCR10_EL1:
1710     case SYSREG_DBGBCR11_EL1:
1711     case SYSREG_DBGBCR12_EL1:
1712     case SYSREG_DBGBCR13_EL1:
1713     case SYSREG_DBGBCR14_EL1:
1714     case SYSREG_DBGBCR15_EL1:
1715         env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1716         return 0;
1717     case SYSREG_DBGWVR0_EL1:
1718     case SYSREG_DBGWVR1_EL1:
1719     case SYSREG_DBGWVR2_EL1:
1720     case SYSREG_DBGWVR3_EL1:
1721     case SYSREG_DBGWVR4_EL1:
1722     case SYSREG_DBGWVR5_EL1:
1723     case SYSREG_DBGWVR6_EL1:
1724     case SYSREG_DBGWVR7_EL1:
1725     case SYSREG_DBGWVR8_EL1:
1726     case SYSREG_DBGWVR9_EL1:
1727     case SYSREG_DBGWVR10_EL1:
1728     case SYSREG_DBGWVR11_EL1:
1729     case SYSREG_DBGWVR12_EL1:
1730     case SYSREG_DBGWVR13_EL1:
1731     case SYSREG_DBGWVR14_EL1:
1732     case SYSREG_DBGWVR15_EL1:
1733         env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1734         return 0;
1735     case SYSREG_DBGWCR0_EL1:
1736     case SYSREG_DBGWCR1_EL1:
1737     case SYSREG_DBGWCR2_EL1:
1738     case SYSREG_DBGWCR3_EL1:
1739     case SYSREG_DBGWCR4_EL1:
1740     case SYSREG_DBGWCR5_EL1:
1741     case SYSREG_DBGWCR6_EL1:
1742     case SYSREG_DBGWCR7_EL1:
1743     case SYSREG_DBGWCR8_EL1:
1744     case SYSREG_DBGWCR9_EL1:
1745     case SYSREG_DBGWCR10_EL1:
1746     case SYSREG_DBGWCR11_EL1:
1747     case SYSREG_DBGWCR12_EL1:
1748     case SYSREG_DBGWCR13_EL1:
1749     case SYSREG_DBGWCR14_EL1:
1750     case SYSREG_DBGWCR15_EL1:
1751         env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1752         return 0;
1753     }
1754 
1755     cpu_synchronize_state(cpu);
1756     trace_hvf_unhandled_sysreg_write(env->pc, reg,
1757                                      SYSREG_OP0(reg),
1758                                      SYSREG_OP1(reg),
1759                                      SYSREG_CRN(reg),
1760                                      SYSREG_CRM(reg),
1761                                      SYSREG_OP2(reg));
1762     hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1763     return 1;
1764 }
1765 
hvf_inject_interrupts(CPUState * cpu)1766 static int hvf_inject_interrupts(CPUState *cpu)
1767 {
1768     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1769         trace_hvf_inject_fiq();
1770         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1771                                       true);
1772     }
1773 
1774     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1775         trace_hvf_inject_irq();
1776         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1777                                       true);
1778     }
1779 
1780     return 0;
1781 }
1782 
hvf_vtimer_val_raw(void)1783 static uint64_t hvf_vtimer_val_raw(void)
1784 {
1785     /*
1786      * mach_absolute_time() returns the vtimer value without the VM
1787      * offset that we define. Add our own offset on top.
1788      */
1789     return mach_absolute_time() - hvf_state->vtimer_offset;
1790 }
1791 
hvf_vtimer_val(void)1792 static uint64_t hvf_vtimer_val(void)
1793 {
1794     if (!runstate_is_running()) {
1795         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1796         return vtimer.vtimer_val;
1797     }
1798 
1799     return hvf_vtimer_val_raw();
1800 }
1801 
hvf_wait_for_ipi(CPUState * cpu,struct timespec * ts)1802 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1803 {
1804     /*
1805      * Use pselect to sleep so that other threads can IPI us while we're
1806      * sleeping.
1807      */
1808     qatomic_set_mb(&cpu->thread_kicked, false);
1809     bql_unlock();
1810     pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1811     bql_lock();
1812 }
1813 
hvf_wfi(CPUState * cpu)1814 static void hvf_wfi(CPUState *cpu)
1815 {
1816     ARMCPU *arm_cpu = ARM_CPU(cpu);
1817     struct timespec ts;
1818     hv_return_t r;
1819     uint64_t ctl;
1820     uint64_t cval;
1821     int64_t ticks_to_sleep;
1822     uint64_t seconds;
1823     uint64_t nanos;
1824     uint32_t cntfrq;
1825 
1826     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1827         /* Interrupt pending, no need to wait */
1828         return;
1829     }
1830 
1831     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1832     assert_hvf_ok(r);
1833 
1834     if (!(ctl & 1) || (ctl & 2)) {
1835         /* Timer disabled or masked, just wait for an IPI. */
1836         hvf_wait_for_ipi(cpu, NULL);
1837         return;
1838     }
1839 
1840     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1841     assert_hvf_ok(r);
1842 
1843     ticks_to_sleep = cval - hvf_vtimer_val();
1844     if (ticks_to_sleep < 0) {
1845         return;
1846     }
1847 
1848     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1849     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1850     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1851     nanos = ticks_to_sleep * cntfrq;
1852 
1853     /*
1854      * Don't sleep for less than the time a context switch would take,
1855      * so that we can satisfy fast timer requests on the same CPU.
1856      * Measurements on M1 show the sweet spot to be ~2ms.
1857      */
1858     if (!seconds && nanos < (2 * SCALE_MS)) {
1859         return;
1860     }
1861 
1862     ts = (struct timespec) { seconds, nanos };
1863     hvf_wait_for_ipi(cpu, &ts);
1864 }
1865 
hvf_sync_vtimer(CPUState * cpu)1866 static void hvf_sync_vtimer(CPUState *cpu)
1867 {
1868     ARMCPU *arm_cpu = ARM_CPU(cpu);
1869     hv_return_t r;
1870     uint64_t ctl;
1871     bool irq_state;
1872 
1873     if (!cpu->accel->vtimer_masked) {
1874         /* We will get notified on vtimer changes by hvf, nothing to do */
1875         return;
1876     }
1877 
1878     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1879     assert_hvf_ok(r);
1880 
1881     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1882                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1883     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1884 
1885     if (!irq_state) {
1886         /* Timer no longer asserting, we can unmask it */
1887         hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1888         cpu->accel->vtimer_masked = false;
1889     }
1890 }
1891 
hvf_vcpu_exec(CPUState * cpu)1892 int hvf_vcpu_exec(CPUState *cpu)
1893 {
1894     ARMCPU *arm_cpu = ARM_CPU(cpu);
1895     CPUARMState *env = &arm_cpu->env;
1896     int ret;
1897     hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1898     hv_return_t r;
1899     bool advance_pc = false;
1900 
1901     if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1902         hvf_inject_interrupts(cpu)) {
1903         return EXCP_INTERRUPT;
1904     }
1905 
1906     if (cpu->halted) {
1907         return EXCP_HLT;
1908     }
1909 
1910     flush_cpu_state(cpu);
1911 
1912     bql_unlock();
1913     assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1914 
1915     /* handle VMEXIT */
1916     uint64_t exit_reason = hvf_exit->reason;
1917     uint64_t syndrome = hvf_exit->exception.syndrome;
1918     uint32_t ec = syn_get_ec(syndrome);
1919 
1920     ret = 0;
1921     bql_lock();
1922     switch (exit_reason) {
1923     case HV_EXIT_REASON_EXCEPTION:
1924         /* This is the main one, handle below. */
1925         break;
1926     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1927         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1928         cpu->accel->vtimer_masked = true;
1929         return 0;
1930     case HV_EXIT_REASON_CANCELED:
1931         /* we got kicked, no exit to process */
1932         return 0;
1933     default:
1934         g_assert_not_reached();
1935     }
1936 
1937     hvf_sync_vtimer(cpu);
1938 
1939     switch (ec) {
1940     case EC_SOFTWARESTEP: {
1941         ret = EXCP_DEBUG;
1942 
1943         if (!cpu->singlestep_enabled) {
1944             error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1945         }
1946         break;
1947     }
1948     case EC_AA64_BKPT: {
1949         ret = EXCP_DEBUG;
1950 
1951         cpu_synchronize_state(cpu);
1952 
1953         if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1954             /* Re-inject into the guest */
1955             ret = 0;
1956             hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1957         }
1958         break;
1959     }
1960     case EC_BREAKPOINT: {
1961         ret = EXCP_DEBUG;
1962 
1963         cpu_synchronize_state(cpu);
1964 
1965         if (!find_hw_breakpoint(cpu, env->pc)) {
1966             error_report("EC_BREAKPOINT but unknown hw breakpoint");
1967         }
1968         break;
1969     }
1970     case EC_WATCHPOINT: {
1971         ret = EXCP_DEBUG;
1972 
1973         cpu_synchronize_state(cpu);
1974 
1975         CPUWatchpoint *wp =
1976             find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1977         if (!wp) {
1978             error_report("EXCP_DEBUG but unknown hw watchpoint");
1979         }
1980         cpu->watchpoint_hit = wp;
1981         break;
1982     }
1983     case EC_DATAABORT: {
1984         bool isv = syndrome & ARM_EL_ISV;
1985         bool iswrite = (syndrome >> 6) & 1;
1986         bool s1ptw = (syndrome >> 7) & 1;
1987         bool sse = (syndrome >> 21) & 1;
1988         uint32_t sas = (syndrome >> 22) & 3;
1989         uint32_t len = 1 << sas;
1990         uint32_t srt = (syndrome >> 16) & 0x1f;
1991         uint32_t cm = (syndrome >> 8) & 0x1;
1992         uint64_t val = 0;
1993 
1994         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1995                              hvf_exit->exception.physical_address, isv,
1996                              iswrite, s1ptw, len, srt);
1997 
1998         if (cm) {
1999             /* We don't cache MMIO regions */
2000             advance_pc = true;
2001             break;
2002         }
2003 
2004         assert(isv);
2005 
2006         if (iswrite) {
2007             val = hvf_get_reg(cpu, srt);
2008             address_space_write(&address_space_memory,
2009                                 hvf_exit->exception.physical_address,
2010                                 MEMTXATTRS_UNSPECIFIED, &val, len);
2011         } else {
2012             address_space_read(&address_space_memory,
2013                                hvf_exit->exception.physical_address,
2014                                MEMTXATTRS_UNSPECIFIED, &val, len);
2015             if (sse) {
2016                 val = sextract64(val, 0, len * 8);
2017             }
2018             hvf_set_reg(cpu, srt, val);
2019         }
2020 
2021         advance_pc = true;
2022         break;
2023     }
2024     case EC_SYSTEMREGISTERTRAP: {
2025         bool isread = (syndrome >> 0) & 1;
2026         uint32_t rt = (syndrome >> 5) & 0x1f;
2027         uint32_t reg = syndrome & SYSREG_MASK;
2028         uint64_t val;
2029         int sysreg_ret = 0;
2030 
2031         if (isread) {
2032             sysreg_ret = hvf_sysreg_read(cpu, reg, &val);
2033             if (!sysreg_ret) {
2034                 trace_hvf_sysreg_read(reg,
2035                                       SYSREG_OP0(reg),
2036                                       SYSREG_OP1(reg),
2037                                       SYSREG_CRN(reg),
2038                                       SYSREG_CRM(reg),
2039                                       SYSREG_OP2(reg),
2040                                       val);
2041                 hvf_set_reg(cpu, rt, val);
2042             }
2043         } else {
2044             val = hvf_get_reg(cpu, rt);
2045             sysreg_ret = hvf_sysreg_write(cpu, reg, val);
2046         }
2047 
2048         advance_pc = !sysreg_ret;
2049         break;
2050     }
2051     case EC_WFX_TRAP:
2052         advance_pc = true;
2053         if (!(syndrome & WFX_IS_WFE)) {
2054             hvf_wfi(cpu);
2055         }
2056         break;
2057     case EC_AA64_HVC:
2058         cpu_synchronize_state(cpu);
2059         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
2060             if (!hvf_handle_psci_call(cpu)) {
2061                 trace_hvf_unknown_hvc(env->xregs[0]);
2062                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
2063                 env->xregs[0] = -1;
2064             }
2065         } else {
2066             trace_hvf_unknown_hvc(env->xregs[0]);
2067             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
2068         }
2069         break;
2070     case EC_AA64_SMC:
2071         cpu_synchronize_state(cpu);
2072         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
2073             advance_pc = true;
2074 
2075             if (!hvf_handle_psci_call(cpu)) {
2076                 trace_hvf_unknown_smc(env->xregs[0]);
2077                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
2078                 env->xregs[0] = -1;
2079             }
2080         } else {
2081             trace_hvf_unknown_smc(env->xregs[0]);
2082             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
2083         }
2084         break;
2085     default:
2086         cpu_synchronize_state(cpu);
2087         trace_hvf_exit(syndrome, ec, env->pc);
2088         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
2089     }
2090 
2091     if (advance_pc) {
2092         uint64_t pc;
2093 
2094         flush_cpu_state(cpu);
2095 
2096         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
2097         assert_hvf_ok(r);
2098         pc += 4;
2099         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
2100         assert_hvf_ok(r);
2101 
2102         /* Handle single-stepping over instructions which trigger a VM exit */
2103         if (cpu->singlestep_enabled) {
2104             ret = EXCP_DEBUG;
2105         }
2106     }
2107 
2108     return ret;
2109 }
2110 
2111 static const VMStateDescription vmstate_hvf_vtimer = {
2112     .name = "hvf-vtimer",
2113     .version_id = 1,
2114     .minimum_version_id = 1,
2115     .fields = (const VMStateField[]) {
2116         VMSTATE_UINT64(vtimer_val, HVFVTimer),
2117         VMSTATE_END_OF_LIST()
2118     },
2119 };
2120 
hvf_vm_state_change(void * opaque,bool running,RunState state)2121 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2122 {
2123     HVFVTimer *s = opaque;
2124 
2125     if (running) {
2126         /* Update vtimer offset on all CPUs */
2127         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2128         cpu_synchronize_all_states();
2129     } else {
2130         /* Remember vtimer value on every pause */
2131         s->vtimer_val = hvf_vtimer_val_raw();
2132     }
2133 }
2134 
hvf_arch_init(void)2135 int hvf_arch_init(void)
2136 {
2137     hvf_state->vtimer_offset = mach_absolute_time();
2138     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2139     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2140 
2141     hvf_arm_init_debug();
2142 
2143     return 0;
2144 }
2145 
2146 static const uint32_t brk_insn = 0xd4200000;
2147 
hvf_arch_insert_sw_breakpoint(CPUState * cpu,struct hvf_sw_breakpoint * bp)2148 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2149 {
2150     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2151         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2152         return -EINVAL;
2153     }
2154     return 0;
2155 }
2156 
hvf_arch_remove_sw_breakpoint(CPUState * cpu,struct hvf_sw_breakpoint * bp)2157 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2158 {
2159     static uint32_t brk;
2160 
2161     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2162         brk != brk_insn ||
2163         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2164         return -EINVAL;
2165     }
2166     return 0;
2167 }
2168 
hvf_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)2169 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2170 {
2171     switch (type) {
2172     case GDB_BREAKPOINT_HW:
2173         return insert_hw_breakpoint(addr);
2174     case GDB_WATCHPOINT_READ:
2175     case GDB_WATCHPOINT_WRITE:
2176     case GDB_WATCHPOINT_ACCESS:
2177         return insert_hw_watchpoint(addr, len, type);
2178     default:
2179         return -ENOSYS;
2180     }
2181 }
2182 
hvf_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)2183 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2184 {
2185     switch (type) {
2186     case GDB_BREAKPOINT_HW:
2187         return delete_hw_breakpoint(addr);
2188     case GDB_WATCHPOINT_READ:
2189     case GDB_WATCHPOINT_WRITE:
2190     case GDB_WATCHPOINT_ACCESS:
2191         return delete_hw_watchpoint(addr, len, type);
2192     default:
2193         return -ENOSYS;
2194     }
2195 }
2196 
hvf_arch_remove_all_hw_breakpoints(void)2197 void hvf_arch_remove_all_hw_breakpoints(void)
2198 {
2199     if (cur_hw_wps > 0) {
2200         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2201     }
2202     if (cur_hw_bps > 0) {
2203         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2204     }
2205 }
2206 
2207 /*
2208  * Update the vCPU with the gdbstub's view of debug registers. This view
2209  * consists of all hardware breakpoints and watchpoints inserted so far while
2210  * debugging the guest.
2211  */
hvf_put_gdbstub_debug_registers(CPUState * cpu)2212 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2213 {
2214     hv_return_t r = HV_SUCCESS;
2215     int i;
2216 
2217     for (i = 0; i < cur_hw_bps; i++) {
2218         HWBreakpoint *bp = get_hw_bp(i);
2219         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2220         assert_hvf_ok(r);
2221         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2222         assert_hvf_ok(r);
2223     }
2224     for (i = cur_hw_bps; i < max_hw_bps; i++) {
2225         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2226         assert_hvf_ok(r);
2227         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2228         assert_hvf_ok(r);
2229     }
2230 
2231     for (i = 0; i < cur_hw_wps; i++) {
2232         HWWatchpoint *wp = get_hw_wp(i);
2233         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2234         assert_hvf_ok(r);
2235         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2236         assert_hvf_ok(r);
2237     }
2238     for (i = cur_hw_wps; i < max_hw_wps; i++) {
2239         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2240         assert_hvf_ok(r);
2241         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2242         assert_hvf_ok(r);
2243     }
2244 }
2245 
2246 /*
2247  * Update the vCPU with the guest's view of debug registers. This view is kept
2248  * in the environment at all times.
2249  */
hvf_put_guest_debug_registers(CPUState * cpu)2250 static void hvf_put_guest_debug_registers(CPUState *cpu)
2251 {
2252     ARMCPU *arm_cpu = ARM_CPU(cpu);
2253     CPUARMState *env = &arm_cpu->env;
2254     hv_return_t r = HV_SUCCESS;
2255     int i;
2256 
2257     for (i = 0; i < max_hw_bps; i++) {
2258         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2259                                 env->cp15.dbgbcr[i]);
2260         assert_hvf_ok(r);
2261         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2262                                 env->cp15.dbgbvr[i]);
2263         assert_hvf_ok(r);
2264     }
2265 
2266     for (i = 0; i < max_hw_wps; i++) {
2267         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2268                                 env->cp15.dbgwcr[i]);
2269         assert_hvf_ok(r);
2270         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2271                                 env->cp15.dbgwvr[i]);
2272         assert_hvf_ok(r);
2273     }
2274 }
2275 
hvf_arm_hw_debug_active(CPUState * cpu)2276 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2277 {
2278     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2279 }
2280 
hvf_arch_set_traps(CPUState * cpu)2281 static void hvf_arch_set_traps(CPUState *cpu)
2282 {
2283     bool should_enable_traps = false;
2284     hv_return_t r = HV_SUCCESS;
2285 
2286     /* Check whether guest debugging is enabled for at least one vCPU; if it
2287      * is, enable exiting the guest on all vCPUs */
2288     should_enable_traps |= cpu->accel->guest_debug_enabled;
2289     /* Set whether debug exceptions exit the guest */
2290     r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2291                                             should_enable_traps);
2292     assert_hvf_ok(r);
2293 
2294     /* Set whether accesses to debug registers exit the guest */
2295     r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2296                                             should_enable_traps);
2297     assert_hvf_ok(r);
2298 }
2299 
hvf_arch_update_guest_debug(CPUState * cpu)2300 void hvf_arch_update_guest_debug(CPUState *cpu)
2301 {
2302     ARMCPU *arm_cpu = ARM_CPU(cpu);
2303     CPUARMState *env = &arm_cpu->env;
2304 
2305     /* Check whether guest debugging is enabled */
2306     cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2307                                     hvf_sw_breakpoints_active(cpu) ||
2308                                     hvf_arm_hw_debug_active(cpu);
2309 
2310     /* Update debug registers */
2311     if (cpu->accel->guest_debug_enabled) {
2312         hvf_put_gdbstub_debug_registers(cpu);
2313     } else {
2314         hvf_put_guest_debug_registers(cpu);
2315     }
2316 
2317     cpu_synchronize_state(cpu);
2318 
2319     /* Enable/disable single-stepping */
2320     if (cpu->singlestep_enabled) {
2321         env->cp15.mdscr_el1 =
2322             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2323         pstate_write(env, pstate_read(env) | PSTATE_SS);
2324     } else {
2325         env->cp15.mdscr_el1 =
2326             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2327     }
2328 
2329     /* Enable/disable Breakpoint exceptions */
2330     if (hvf_arm_hw_debug_active(cpu)) {
2331         env->cp15.mdscr_el1 =
2332             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2333     } else {
2334         env->cp15.mdscr_el1 =
2335             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2336     }
2337 
2338     hvf_arch_set_traps(cpu);
2339 }
2340 
hvf_arch_supports_guest_debug(void)2341 bool hvf_arch_supports_guest_debug(void)
2342 {
2343     return true;
2344 }
2345