1 // SPDX-License-Identifier: MIT
2 //
3 // This file is based on library/core/src/cell.rs from
4 // Rust 1.82.0.
5 //
6 // Permission is hereby granted, free of charge, to any
7 // person obtaining a copy of this software and associated
8 // documentation files (the "Software"), to deal in the
9 // Software without restriction, including without
10 // limitation the rights to use, copy, modify, merge,
11 // publish, distribute, sublicense, and/or sell copies of
12 // the Software, and to permit persons to whom the Software
13 // is furnished to do so, subject to the following
14 // conditions:
15 //
16 // The above copyright notice and this permission notice
17 // shall be included in all copies or substantial portions
18 // of the Software.
19 //
20 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
21 // ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
22 // TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
23 // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
24 // SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
25 // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
26 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
27 // IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 // DEALINGS IN THE SOFTWARE.
29
30 //! QEMU-specific mutable containers
31 //!
32 //! Rust memory safety is based on this rule: Given an object `T`, it is only
33 //! possible to have one of the following:
34 //!
35 //! - Having several immutable references (`&T`) to the object (also known as
36 //! **aliasing**).
37 //! - Having one mutable reference (`&mut T`) to the object (also known as
38 //! **mutability**).
39 //!
40 //! This is enforced by the Rust compiler. However, there are situations where
41 //! this rule is not flexible enough. Sometimes it is required to have multiple
42 //! references to an object and yet mutate it. In particular, QEMU objects
43 //! usually have their pointer shared with the "outside world very early in
44 //! their lifetime", for example when they create their
45 //! [`MemoryRegion`s](crate::bindings::MemoryRegion). Therefore, individual
46 //! parts of a device must be made mutable in a controlled manner; this module
47 //! provides the tools to do so.
48 //!
49 //! ## Cell types
50 //!
51 //! [`BqlCell<T>`] and [`BqlRefCell<T>`] allow doing this via the Big QEMU Lock.
52 //! While they are essentially the same single-threaded primitives that are
53 //! available in `std::cell`, the BQL allows them to be used from a
54 //! multi-threaded context and to share references across threads, while
55 //! maintaining Rust's safety guarantees. For this reason, unlike
56 //! their `std::cell` counterparts, `BqlCell` and `BqlRefCell` implement the
57 //! `Sync` trait.
58 //!
59 //! BQL checks are performed in debug builds but can be optimized away in
60 //! release builds, providing runtime safety during development with no overhead
61 //! in production.
62 //!
63 //! The two provide different ways of handling interior mutability.
64 //! `BqlRefCell` is best suited for data that is primarily accessed by the
65 //! device's own methods, where multiple reads and writes can be grouped within
66 //! a single borrow and a mutable reference can be passed around. Instead,
67 //! [`BqlCell`] is a better choice when sharing small pieces of data with
68 //! external code (especially C code), because it provides simple get/set
69 //! operations that can be used one at a time.
70 //!
71 //! Warning: While `BqlCell` and `BqlRefCell` are similar to their `std::cell`
72 //! counterparts, they are not interchangeable. Using `std::cell` types in
73 //! QEMU device implementations is usually incorrect and can lead to
74 //! thread-safety issues.
75 //!
76 //! ### Example
77 //!
78 //! ```
79 //! # use qemu_api::prelude::*;
80 //! # use qemu_api::{cell::BqlRefCell, irq::InterruptSource, irq::IRQState};
81 //! # use qemu_api::{sysbus::SysBusDevice, qom::Owned, qom::ParentField};
82 //! # const N_GPIOS: usize = 8;
83 //! # struct PL061Registers { /* ... */ }
84 //! # unsafe impl ObjectType for PL061State {
85 //! # type Class = <SysBusDevice as ObjectType>::Class;
86 //! # const TYPE_NAME: &'static std::ffi::CStr = c"pl061";
87 //! # }
88 //! struct PL061State {
89 //! parent_obj: ParentField<SysBusDevice>,
90 //!
91 //! // Configuration is read-only after initialization
92 //! pullups: u32,
93 //! pulldowns: u32,
94 //!
95 //! // Single values shared with C code use BqlCell, in this case via InterruptSource
96 //! out: [InterruptSource; N_GPIOS],
97 //! interrupt: InterruptSource,
98 //!
99 //! // Larger state accessed by device methods uses BqlRefCell or Mutex
100 //! registers: BqlRefCell<PL061Registers>,
101 //! }
102 //! ```
103 //!
104 //! ### `BqlCell<T>`
105 //!
106 //! [`BqlCell<T>`] implements interior mutability by moving values in and out of
107 //! the cell. That is, an `&mut T` to the inner value can never be obtained as
108 //! long as the cell is shared. The value itself cannot be directly obtained
109 //! without copying it, cloning it, or replacing it with something else. This
110 //! type provides the following methods, all of which can be called only while
111 //! the BQL is held:
112 //!
113 //! - For types that implement [`Copy`], the [`get`](BqlCell::get) method
114 //! retrieves the current interior value by duplicating it.
115 //! - For types that implement [`Default`], the [`take`](BqlCell::take) method
116 //! replaces the current interior value with [`Default::default()`] and
117 //! returns the replaced value.
118 //! - All types have:
119 //! - [`replace`](BqlCell::replace): replaces the current interior value and
120 //! returns the replaced value.
121 //! - [`set`](BqlCell::set): this method replaces the interior value,
122 //! dropping the replaced value.
123 //!
124 //! ### `BqlRefCell<T>`
125 //!
126 //! [`BqlRefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a
127 //! process whereby one can claim temporary, exclusive, mutable access to the
128 //! inner value:
129 //!
130 //! ```ignore
131 //! fn clear_interrupts(&self, val: u32) {
132 //! // A mutable borrow gives read-write access to the registers
133 //! let mut regs = self.registers.borrow_mut();
134 //! let old = regs.interrupt_status();
135 //! regs.update_interrupt_status(old & !val);
136 //! }
137 //! ```
138 //!
139 //! Borrows for `BqlRefCell<T>`s are tracked at _runtime_, unlike Rust's native
140 //! reference types which are entirely tracked statically, at compile time.
141 //! Multiple immutable borrows are allowed via [`borrow`](BqlRefCell::borrow),
142 //! or a single mutable borrow via [`borrow_mut`](BqlRefCell::borrow_mut). The
143 //! thread will panic if these rules are violated or if the BQL is not held.
144 //!
145 //! ## Opaque wrappers
146 //!
147 //! The cell types from the previous section are useful at the boundaries
148 //! of code that requires interior mutability. When writing glue code that
149 //! interacts directly with C structs, however, it is useful to operate
150 //! at a lower level.
151 //!
152 //! C functions often violate Rust's fundamental assumptions about memory
153 //! safety by modifying memory even if it is shared. Furthermore, C structs
154 //! often start their life uninitialized and may be populated lazily.
155 //!
156 //! For this reason, this module provides the [`Opaque<T>`] type to opt out
157 //! of Rust's usual guarantees about the wrapped type. Access to the wrapped
158 //! value is always through raw pointers, obtained via methods like
159 //! [`as_mut_ptr()`](Opaque::as_mut_ptr) and [`as_ptr()`](Opaque::as_ptr). These
160 //! pointers can then be passed to C functions or dereferenced; both actions
161 //! require `unsafe` blocks, making it clear where safety guarantees must be
162 //! manually verified. For example
163 //!
164 //! ```ignore
165 //! unsafe {
166 //! let state = Opaque::<MyStruct>::uninit();
167 //! qemu_struct_init(state.as_mut_ptr());
168 //! }
169 //! ```
170 //!
171 //! [`Opaque<T>`] will usually be wrapped one level further, so that
172 //! bridge methods can be added to the wrapper:
173 //!
174 //! ```ignore
175 //! pub struct MyStruct(Opaque<bindings::MyStruct>);
176 //!
177 //! impl MyStruct {
178 //! fn new() -> Pin<Box<MyStruct>> {
179 //! let result = Box::pin(unsafe { Opaque::uninit() });
180 //! unsafe { qemu_struct_init(result.as_mut_ptr()) };
181 //! result
182 //! }
183 //! }
184 //! ```
185 //!
186 //! This pattern of wrapping bindgen-generated types in [`Opaque<T>`] provides
187 //! several advantages:
188 //!
189 //! * The choice of traits to be implemented is not limited by the
190 //! bindgen-generated code. For example, [`Drop`] can be added without
191 //! disabling [`Copy`] on the underlying bindgen type
192 //!
193 //! * [`Send`] and [`Sync`] implementations can be controlled by the wrapper
194 //! type rather than being automatically derived from the C struct's layout
195 //!
196 //! * Methods can be implemented in a separate crate from the bindgen-generated
197 //! bindings
198 //!
199 //! * [`Debug`](std::fmt::Debug) and [`Display`](std::fmt::Display)
200 //! implementations can be customized to be more readable than the raw C
201 //! struct representation
202 //!
203 //! The [`Opaque<T>`] type does not include BQL validation; it is possible to
204 //! assert in the code that the right lock is taken, to use it together
205 //! with a custom lock guard type, or to let C code take the lock, as
206 //! appropriate. It is also possible to use it with non-thread-safe
207 //! types, since by default (unlike [`BqlCell`] and [`BqlRefCell`]
208 //! it is neither `Sync` nor `Send`.
209 //!
210 //! While [`Opaque<T>`] is necessary for C interop, it should be used sparingly
211 //! and only at FFI boundaries. For QEMU-specific types that need interior
212 //! mutability, prefer [`BqlCell`] or [`BqlRefCell`].
213
214 use std::{
215 cell::{Cell, UnsafeCell},
216 cmp::Ordering,
217 fmt,
218 marker::{PhantomData, PhantomPinned},
219 mem::{self, MaybeUninit},
220 ops::{Deref, DerefMut},
221 ptr::NonNull,
222 };
223
224 use crate::bindings;
225
226 /// An internal function that is used by doctests.
bql_start_test()227 pub fn bql_start_test() {
228 // SAFETY: integration tests are run with --test-threads=1, while
229 // unit tests and doctests are not multithreaded and do not have
230 // any BQL-protected data. Just set bql_locked to true.
231 unsafe {
232 bindings::rust_bql_mock_lock();
233 }
234 }
235
bql_locked() -> bool236 pub fn bql_locked() -> bool {
237 // SAFETY: the function does nothing but return a thread-local bool
238 unsafe { bindings::bql_locked() }
239 }
240
bql_block_unlock(increase: bool)241 fn bql_block_unlock(increase: bool) {
242 // SAFETY: this only adjusts a counter
243 unsafe {
244 bindings::bql_block_unlock(increase);
245 }
246 }
247
248 /// A mutable memory location that is protected by the Big QEMU Lock.
249 ///
250 /// # Memory layout
251 ///
252 /// `BqlCell<T>` has the same in-memory representation as its inner type `T`.
253 #[repr(transparent)]
254 pub struct BqlCell<T> {
255 value: UnsafeCell<T>,
256 }
257
258 // SAFETY: Same as for std::sync::Mutex. In the end this *is* a Mutex,
259 // except it is stored out-of-line
260 unsafe impl<T: Send> Send for BqlCell<T> {}
261 unsafe impl<T: Send> Sync for BqlCell<T> {}
262
263 impl<T: Copy> Clone for BqlCell<T> {
264 #[inline]
clone(&self) -> BqlCell<T>265 fn clone(&self) -> BqlCell<T> {
266 BqlCell::new(self.get())
267 }
268 }
269
270 impl<T: Default> Default for BqlCell<T> {
271 /// Creates a `BqlCell<T>`, with the `Default` value for T.
272 #[inline]
default() -> BqlCell<T>273 fn default() -> BqlCell<T> {
274 BqlCell::new(Default::default())
275 }
276 }
277
278 impl<T: PartialEq + Copy> PartialEq for BqlCell<T> {
279 #[inline]
eq(&self, other: &BqlCell<T>) -> bool280 fn eq(&self, other: &BqlCell<T>) -> bool {
281 self.get() == other.get()
282 }
283 }
284
285 impl<T: Eq + Copy> Eq for BqlCell<T> {}
286
287 impl<T: PartialOrd + Copy> PartialOrd for BqlCell<T> {
288 #[inline]
partial_cmp(&self, other: &BqlCell<T>) -> Option<Ordering>289 fn partial_cmp(&self, other: &BqlCell<T>) -> Option<Ordering> {
290 self.get().partial_cmp(&other.get())
291 }
292 }
293
294 impl<T: Ord + Copy> Ord for BqlCell<T> {
295 #[inline]
cmp(&self, other: &BqlCell<T>) -> Ordering296 fn cmp(&self, other: &BqlCell<T>) -> Ordering {
297 self.get().cmp(&other.get())
298 }
299 }
300
301 impl<T> From<T> for BqlCell<T> {
302 /// Creates a new `BqlCell<T>` containing the given value.
from(t: T) -> BqlCell<T>303 fn from(t: T) -> BqlCell<T> {
304 BqlCell::new(t)
305 }
306 }
307
308 impl<T: fmt::Debug + Copy> fmt::Debug for BqlCell<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result309 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
310 self.get().fmt(f)
311 }
312 }
313
314 impl<T: fmt::Display + Copy> fmt::Display for BqlCell<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result315 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
316 self.get().fmt(f)
317 }
318 }
319
320 impl<T> BqlCell<T> {
321 /// Creates a new `BqlCell` containing the given value.
322 ///
323 /// # Examples
324 ///
325 /// ```
326 /// use qemu_api::cell::BqlCell;
327 /// # qemu_api::cell::bql_start_test();
328 ///
329 /// let c = BqlCell::new(5);
330 /// ```
331 #[inline]
new(value: T) -> BqlCell<T>332 pub const fn new(value: T) -> BqlCell<T> {
333 BqlCell {
334 value: UnsafeCell::new(value),
335 }
336 }
337
338 /// Sets the contained value.
339 ///
340 /// # Examples
341 ///
342 /// ```
343 /// use qemu_api::cell::BqlCell;
344 /// # qemu_api::cell::bql_start_test();
345 ///
346 /// let c = BqlCell::new(5);
347 ///
348 /// c.set(10);
349 /// ```
350 #[inline]
set(&self, val: T)351 pub fn set(&self, val: T) {
352 self.replace(val);
353 }
354
355 /// Replaces the contained value with `val`, and returns the old contained
356 /// value.
357 ///
358 /// # Examples
359 ///
360 /// ```
361 /// use qemu_api::cell::BqlCell;
362 /// # qemu_api::cell::bql_start_test();
363 ///
364 /// let cell = BqlCell::new(5);
365 /// assert_eq!(cell.get(), 5);
366 /// assert_eq!(cell.replace(10), 5);
367 /// assert_eq!(cell.get(), 10);
368 /// ```
369 #[inline]
replace(&self, val: T) -> T370 pub fn replace(&self, val: T) -> T {
371 assert!(bql_locked());
372 // SAFETY: This can cause data races if called from multiple threads,
373 // but it won't happen as long as C code accesses the value
374 // under BQL protection only.
375 mem::replace(unsafe { &mut *self.value.get() }, val)
376 }
377
378 /// Unwraps the value, consuming the cell.
379 ///
380 /// # Examples
381 ///
382 /// ```
383 /// use qemu_api::cell::BqlCell;
384 /// # qemu_api::cell::bql_start_test();
385 ///
386 /// let c = BqlCell::new(5);
387 /// let five = c.into_inner();
388 ///
389 /// assert_eq!(five, 5);
390 /// ```
into_inner(self) -> T391 pub fn into_inner(self) -> T {
392 assert!(bql_locked());
393 self.value.into_inner()
394 }
395 }
396
397 impl<T: Copy> BqlCell<T> {
398 /// Returns a copy of the contained value.
399 ///
400 /// # Examples
401 ///
402 /// ```
403 /// use qemu_api::cell::BqlCell;
404 /// # qemu_api::cell::bql_start_test();
405 ///
406 /// let c = BqlCell::new(5);
407 ///
408 /// let five = c.get();
409 /// ```
410 #[inline]
get(&self) -> T411 pub fn get(&self) -> T {
412 assert!(bql_locked());
413 // SAFETY: This can cause data races if called from multiple threads,
414 // but it won't happen as long as C code accesses the value
415 // under BQL protection only.
416 unsafe { *self.value.get() }
417 }
418 }
419
420 impl<T> BqlCell<T> {
421 /// Returns a raw pointer to the underlying data in this cell.
422 ///
423 /// # Examples
424 ///
425 /// ```
426 /// use qemu_api::cell::BqlCell;
427 /// # qemu_api::cell::bql_start_test();
428 ///
429 /// let c = BqlCell::new(5);
430 ///
431 /// let ptr = c.as_ptr();
432 /// ```
433 #[inline]
as_ptr(&self) -> *mut T434 pub const fn as_ptr(&self) -> *mut T {
435 self.value.get()
436 }
437 }
438
439 impl<T: Default> BqlCell<T> {
440 /// Takes the value of the cell, leaving `Default::default()` in its place.
441 ///
442 /// # Examples
443 ///
444 /// ```
445 /// use qemu_api::cell::BqlCell;
446 /// # qemu_api::cell::bql_start_test();
447 ///
448 /// let c = BqlCell::new(5);
449 /// let five = c.take();
450 ///
451 /// assert_eq!(five, 5);
452 /// assert_eq!(c.into_inner(), 0);
453 /// ```
take(&self) -> T454 pub fn take(&self) -> T {
455 self.replace(Default::default())
456 }
457 }
458
459 /// A mutable memory location with dynamically checked borrow rules,
460 /// protected by the Big QEMU Lock.
461 ///
462 /// See the [module-level documentation](self) for more.
463 ///
464 /// # Memory layout
465 ///
466 /// `BqlRefCell<T>` starts with the same in-memory representation as its
467 /// inner type `T`.
468 #[repr(C)]
469 pub struct BqlRefCell<T> {
470 // It is important that this is the first field (which is not the case
471 // for std::cell::BqlRefCell), so that we can use offset_of! on it.
472 // UnsafeCell and repr(C) both prevent usage of niches.
473 value: UnsafeCell<T>,
474 borrow: Cell<BorrowFlag>,
475 // Stores the location of the earliest currently active borrow.
476 // This gets updated whenever we go from having zero borrows
477 // to having a single borrow. When a borrow occurs, this gets included
478 // in the panic message
479 #[cfg(feature = "debug_cell")]
480 borrowed_at: Cell<Option<&'static std::panic::Location<'static>>>,
481 }
482
483 // Positive values represent the number of `BqlRef` active. Negative values
484 // represent the number of `BqlRefMut` active. Right now QEMU's implementation
485 // does not allow to create `BqlRefMut`s that refer to distinct, nonoverlapping
486 // components of a `BqlRefCell` (e.g., different ranges of a slice).
487 //
488 // `BqlRef` and `BqlRefMut` are both two words in size, and so there will likely
489 // never be enough `BqlRef`s or `BqlRefMut`s in existence to overflow half of
490 // the `usize` range. Thus, a `BorrowFlag` will probably never overflow or
491 // underflow. However, this is not a guarantee, as a pathological program could
492 // repeatedly create and then mem::forget `BqlRef`s or `BqlRefMut`s. Thus, all
493 // code must explicitly check for overflow and underflow in order to avoid
494 // unsafety, or at least behave correctly in the event that overflow or
495 // underflow happens (e.g., see BorrowRef::new).
496 type BorrowFlag = isize;
497 const UNUSED: BorrowFlag = 0;
498
499 #[inline(always)]
is_writing(x: BorrowFlag) -> bool500 const fn is_writing(x: BorrowFlag) -> bool {
501 x < UNUSED
502 }
503
504 #[inline(always)]
is_reading(x: BorrowFlag) -> bool505 const fn is_reading(x: BorrowFlag) -> bool {
506 x > UNUSED
507 }
508
509 impl<T> BqlRefCell<T> {
510 /// Creates a new `BqlRefCell` containing `value`.
511 ///
512 /// # Examples
513 ///
514 /// ```
515 /// use qemu_api::cell::BqlRefCell;
516 ///
517 /// let c = BqlRefCell::new(5);
518 /// ```
519 #[inline]
new(value: T) -> BqlRefCell<T>520 pub const fn new(value: T) -> BqlRefCell<T> {
521 BqlRefCell {
522 value: UnsafeCell::new(value),
523 borrow: Cell::new(UNUSED),
524 #[cfg(feature = "debug_cell")]
525 borrowed_at: Cell::new(None),
526 }
527 }
528 }
529
530 // This ensures the panicking code is outlined from `borrow_mut` for
531 // `BqlRefCell`.
532 #[inline(never)]
533 #[cold]
534 #[cfg(feature = "debug_cell")]
panic_already_borrowed(source: &Cell<Option<&'static std::panic::Location<'static>>>) -> !535 fn panic_already_borrowed(source: &Cell<Option<&'static std::panic::Location<'static>>>) -> ! {
536 // If a borrow occurred, then we must already have an outstanding borrow,
537 // so `borrowed_at` will be `Some`
538 panic!("already borrowed at {:?}", source.take().unwrap())
539 }
540
541 #[inline(never)]
542 #[cold]
543 #[cfg(not(feature = "debug_cell"))]
panic_already_borrowed() -> !544 fn panic_already_borrowed() -> ! {
545 panic!("already borrowed")
546 }
547
548 impl<T> BqlRefCell<T> {
549 #[inline]
550 #[allow(clippy::unused_self)]
panic_already_borrowed(&self) -> !551 fn panic_already_borrowed(&self) -> ! {
552 #[cfg(feature = "debug_cell")]
553 {
554 panic_already_borrowed(&self.borrowed_at)
555 }
556 #[cfg(not(feature = "debug_cell"))]
557 {
558 panic_already_borrowed()
559 }
560 }
561
562 /// Immutably borrows the wrapped value.
563 ///
564 /// The borrow lasts until the returned `BqlRef` exits scope. Multiple
565 /// immutable borrows can be taken out at the same time.
566 ///
567 /// # Panics
568 ///
569 /// Panics if the value is currently mutably borrowed.
570 ///
571 /// # Examples
572 ///
573 /// ```
574 /// use qemu_api::cell::BqlRefCell;
575 /// # qemu_api::cell::bql_start_test();
576 ///
577 /// let c = BqlRefCell::new(5);
578 ///
579 /// let borrowed_five = c.borrow();
580 /// let borrowed_five2 = c.borrow();
581 /// ```
582 ///
583 /// An example of panic:
584 ///
585 /// ```should_panic
586 /// use qemu_api::cell::BqlRefCell;
587 /// # qemu_api::cell::bql_start_test();
588 ///
589 /// let c = BqlRefCell::new(5);
590 ///
591 /// let m = c.borrow_mut();
592 /// let b = c.borrow(); // this causes a panic
593 /// ```
594 #[inline]
595 #[track_caller]
borrow(&self) -> BqlRef<'_, T>596 pub fn borrow(&self) -> BqlRef<'_, T> {
597 if let Some(b) = BorrowRef::new(&self.borrow) {
598 // `borrowed_at` is always the *first* active borrow
599 if b.borrow.get() == 1 {
600 #[cfg(feature = "debug_cell")]
601 self.borrowed_at.set(Some(std::panic::Location::caller()));
602 }
603
604 bql_block_unlock(true);
605
606 // SAFETY: `BorrowRef` ensures that there is only immutable access
607 // to the value while borrowed.
608 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
609 BqlRef { value, borrow: b }
610 } else {
611 self.panic_already_borrowed()
612 }
613 }
614
615 /// Mutably borrows the wrapped value.
616 ///
617 /// The borrow lasts until the returned `BqlRefMut` or all `BqlRefMut`s
618 /// derived from it exit scope. The value cannot be borrowed while this
619 /// borrow is active.
620 ///
621 /// # Panics
622 ///
623 /// Panics if the value is currently borrowed.
624 ///
625 /// # Examples
626 ///
627 /// ```
628 /// use qemu_api::cell::BqlRefCell;
629 /// # qemu_api::cell::bql_start_test();
630 ///
631 /// let c = BqlRefCell::new("hello".to_owned());
632 ///
633 /// *c.borrow_mut() = "bonjour".to_owned();
634 ///
635 /// assert_eq!(&*c.borrow(), "bonjour");
636 /// ```
637 ///
638 /// An example of panic:
639 ///
640 /// ```should_panic
641 /// use qemu_api::cell::BqlRefCell;
642 /// # qemu_api::cell::bql_start_test();
643 ///
644 /// let c = BqlRefCell::new(5);
645 /// let m = c.borrow();
646 ///
647 /// let b = c.borrow_mut(); // this causes a panic
648 /// ```
649 #[inline]
650 #[track_caller]
borrow_mut(&self) -> BqlRefMut<'_, T>651 pub fn borrow_mut(&self) -> BqlRefMut<'_, T> {
652 if let Some(b) = BorrowRefMut::new(&self.borrow) {
653 #[cfg(feature = "debug_cell")]
654 {
655 self.borrowed_at.set(Some(std::panic::Location::caller()));
656 }
657
658 // SAFETY: this only adjusts a counter
659 bql_block_unlock(true);
660
661 // SAFETY: `BorrowRefMut` guarantees unique access.
662 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
663 BqlRefMut {
664 value,
665 _borrow: b,
666 marker: PhantomData,
667 }
668 } else {
669 self.panic_already_borrowed()
670 }
671 }
672
673 /// Returns a raw pointer to the underlying data in this cell.
674 ///
675 /// # Examples
676 ///
677 /// ```
678 /// use qemu_api::cell::BqlRefCell;
679 ///
680 /// let c = BqlRefCell::new(5);
681 ///
682 /// let ptr = c.as_ptr();
683 /// ```
684 #[inline]
as_ptr(&self) -> *mut T685 pub const fn as_ptr(&self) -> *mut T {
686 self.value.get()
687 }
688 }
689
690 // SAFETY: Same as for std::sync::Mutex. In the end this is a Mutex that is
691 // stored out-of-line. Even though BqlRefCell includes Cells, they are
692 // themselves protected by the Big QEMU Lock. Furtheremore, the Big QEMU
693 // Lock cannot be released while any borrows is active.
694 unsafe impl<T> Send for BqlRefCell<T> where T: Send {}
695 unsafe impl<T> Sync for BqlRefCell<T> {}
696
697 impl<T: Clone> Clone for BqlRefCell<T> {
698 /// # Panics
699 ///
700 /// Panics if the value is currently mutably borrowed.
701 #[inline]
702 #[track_caller]
clone(&self) -> BqlRefCell<T>703 fn clone(&self) -> BqlRefCell<T> {
704 BqlRefCell::new(self.borrow().clone())
705 }
706
707 /// # Panics
708 ///
709 /// Panics if `source` is currently mutably borrowed.
710 #[inline]
711 #[track_caller]
clone_from(&mut self, source: &Self)712 fn clone_from(&mut self, source: &Self) {
713 self.value.get_mut().clone_from(&source.borrow())
714 }
715 }
716
717 impl<T: Default> Default for BqlRefCell<T> {
718 /// Creates a `BqlRefCell<T>`, with the `Default` value for T.
719 #[inline]
default() -> BqlRefCell<T>720 fn default() -> BqlRefCell<T> {
721 BqlRefCell::new(Default::default())
722 }
723 }
724
725 impl<T: PartialEq> PartialEq for BqlRefCell<T> {
726 /// # Panics
727 ///
728 /// Panics if the value in either `BqlRefCell` is currently mutably
729 /// borrowed.
730 #[inline]
eq(&self, other: &BqlRefCell<T>) -> bool731 fn eq(&self, other: &BqlRefCell<T>) -> bool {
732 *self.borrow() == *other.borrow()
733 }
734 }
735
736 impl<T: Eq> Eq for BqlRefCell<T> {}
737
738 impl<T: PartialOrd> PartialOrd for BqlRefCell<T> {
739 /// # Panics
740 ///
741 /// Panics if the value in either `BqlRefCell` is currently mutably
742 /// borrowed.
743 #[inline]
partial_cmp(&self, other: &BqlRefCell<T>) -> Option<Ordering>744 fn partial_cmp(&self, other: &BqlRefCell<T>) -> Option<Ordering> {
745 self.borrow().partial_cmp(&*other.borrow())
746 }
747 }
748
749 impl<T: Ord> Ord for BqlRefCell<T> {
750 /// # Panics
751 ///
752 /// Panics if the value in either `BqlRefCell` is currently mutably
753 /// borrowed.
754 #[inline]
cmp(&self, other: &BqlRefCell<T>) -> Ordering755 fn cmp(&self, other: &BqlRefCell<T>) -> Ordering {
756 self.borrow().cmp(&*other.borrow())
757 }
758 }
759
760 impl<T> From<T> for BqlRefCell<T> {
761 /// Creates a new `BqlRefCell<T>` containing the given value.
from(t: T) -> BqlRefCell<T>762 fn from(t: T) -> BqlRefCell<T> {
763 BqlRefCell::new(t)
764 }
765 }
766
767 struct BorrowRef<'b> {
768 borrow: &'b Cell<BorrowFlag>,
769 }
770
771 impl<'b> BorrowRef<'b> {
772 #[inline]
new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>>773 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
774 let b = borrow.get().wrapping_add(1);
775 if !is_reading(b) {
776 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
777 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read
778 // borrow due to Rust's reference aliasing rules
779 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
780 // into isize::MIN (the max amount of writing borrows) so we can't allow an
781 // additional read borrow because isize can't represent so many read borrows
782 // (this can only happen if you mem::forget more than a small constant amount
783 // of `BqlRef`s, which is not good practice)
784 None
785 } else {
786 // Incrementing borrow can result in a reading value (> 0) in these cases:
787 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read
788 // borrow
789 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize is
790 // large enough to represent having one more read borrow
791 borrow.set(b);
792 Some(BorrowRef { borrow })
793 }
794 }
795 }
796
797 impl Drop for BorrowRef<'_> {
798 #[inline]
drop(&mut self)799 fn drop(&mut self) {
800 let borrow = self.borrow.get();
801 debug_assert!(is_reading(borrow));
802 self.borrow.set(borrow - 1);
803 bql_block_unlock(false)
804 }
805 }
806
807 impl Clone for BorrowRef<'_> {
808 #[inline]
clone(&self) -> Self809 fn clone(&self) -> Self {
810 BorrowRef::new(self.borrow).unwrap()
811 }
812 }
813
814 /// Wraps a borrowed reference to a value in a `BqlRefCell` box.
815 /// A wrapper type for an immutably borrowed value from a `BqlRefCell<T>`.
816 ///
817 /// See the [module-level documentation](self) for more.
818 pub struct BqlRef<'b, T: 'b> {
819 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
820 // `BqlRef` argument doesn't hold immutability for its whole scope, only until it drops.
821 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
822 value: NonNull<T>,
823 borrow: BorrowRef<'b>,
824 }
825
826 impl<T> Deref for BqlRef<'_, T> {
827 type Target = T;
828
829 #[inline]
deref(&self) -> &T830 fn deref(&self) -> &T {
831 // SAFETY: the value is accessible as long as we hold our borrow.
832 unsafe { self.value.as_ref() }
833 }
834 }
835
836 impl<'b, T> BqlRef<'b, T> {
837 /// Copies a `BqlRef`.
838 ///
839 /// The `BqlRefCell` is already immutably borrowed, so this cannot fail.
840 ///
841 /// This is an associated function that needs to be used as
842 /// `BqlRef::clone(...)`. A `Clone` implementation or a method would
843 /// interfere with the widespread use of `r.borrow().clone()` to clone
844 /// the contents of a `BqlRefCell`.
845 #[must_use]
846 #[inline]
847 #[allow(clippy::should_implement_trait)]
clone(orig: &BqlRef<'b, T>) -> BqlRef<'b, T>848 pub fn clone(orig: &BqlRef<'b, T>) -> BqlRef<'b, T> {
849 BqlRef {
850 value: orig.value,
851 borrow: orig.borrow.clone(),
852 }
853 }
854 }
855
856 impl<T: fmt::Debug> fmt::Debug for BqlRef<'_, T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result857 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
858 (**self).fmt(f)
859 }
860 }
861
862 impl<T: fmt::Display> fmt::Display for BqlRef<'_, T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result863 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
864 (**self).fmt(f)
865 }
866 }
867
868 struct BorrowRefMut<'b> {
869 borrow: &'b Cell<BorrowFlag>,
870 }
871
872 impl<'b> BorrowRefMut<'b> {
873 #[inline]
new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>>874 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
875 // There must currently be no existing references when borrow_mut() is
876 // called, so we explicitly only allow going from UNUSED to UNUSED - 1.
877 match borrow.get() {
878 UNUSED => {
879 borrow.set(UNUSED - 1);
880 Some(BorrowRefMut { borrow })
881 }
882 _ => None,
883 }
884 }
885 }
886
887 impl Drop for BorrowRefMut<'_> {
888 #[inline]
drop(&mut self)889 fn drop(&mut self) {
890 let borrow = self.borrow.get();
891 debug_assert!(is_writing(borrow));
892 self.borrow.set(borrow + 1);
893 bql_block_unlock(false)
894 }
895 }
896
897 /// A wrapper type for a mutably borrowed value from a `BqlRefCell<T>`.
898 ///
899 /// See the [module-level documentation](self) for more.
900 pub struct BqlRefMut<'b, T: 'b> {
901 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
902 // `BqlRefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
903 value: NonNull<T>,
904 _borrow: BorrowRefMut<'b>,
905 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
906 marker: PhantomData<&'b mut T>,
907 }
908
909 impl<T> Deref for BqlRefMut<'_, T> {
910 type Target = T;
911
912 #[inline]
deref(&self) -> &T913 fn deref(&self) -> &T {
914 // SAFETY: the value is accessible as long as we hold our borrow.
915 unsafe { self.value.as_ref() }
916 }
917 }
918
919 impl<T> DerefMut for BqlRefMut<'_, T> {
920 #[inline]
deref_mut(&mut self) -> &mut T921 fn deref_mut(&mut self) -> &mut T {
922 // SAFETY: the value is accessible as long as we hold our borrow.
923 unsafe { self.value.as_mut() }
924 }
925 }
926
927 impl<T: fmt::Debug> fmt::Debug for BqlRefMut<'_, T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result928 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
929 (**self).fmt(f)
930 }
931 }
932
933 impl<T: fmt::Display> fmt::Display for BqlRefMut<'_, T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result934 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
935 (**self).fmt(f)
936 }
937 }
938
939 /// Stores an opaque value that is shared with C code.
940 ///
941 /// Often, C structs can changed when calling a C function even if they are
942 /// behind a shared Rust reference, or they can be initialized lazily and have
943 /// invalid bit patterns (e.g. `3` for a [`bool`]). This goes against Rust's
944 /// strict aliasing rules, which normally prevent mutation through shared
945 /// references.
946 ///
947 /// Wrapping the struct with `Opaque<T>` ensures that the Rust compiler does not
948 /// assume the usual constraints that Rust structs require, and allows using
949 /// shared references on the Rust side.
950 ///
951 /// `Opaque<T>` is `#[repr(transparent)]`, so that it matches the memory layout
952 /// of `T`.
953 #[repr(transparent)]
954 pub struct Opaque<T> {
955 value: UnsafeCell<MaybeUninit<T>>,
956 // PhantomPinned also allows multiple references to the `Opaque<T>`, i.e.
957 // one `&mut Opaque<T>` can coexist with a `&mut T` or any number of `&T`;
958 // see https://docs.rs/pinned-aliasable/latest/pinned_aliasable/.
959 _pin: PhantomPinned,
960 }
961
962 impl<T> Opaque<T> {
963 /// Creates a new shared reference from a C pointer
964 ///
965 /// # Safety
966 ///
967 /// The pointer must be valid, though it need not point to a valid value.
from_raw<'a>(ptr: *mut T) -> &'a Self968 pub unsafe fn from_raw<'a>(ptr: *mut T) -> &'a Self {
969 let ptr = NonNull::new(ptr).unwrap().cast::<Self>();
970 // SAFETY: Self is a transparent wrapper over T
971 unsafe { ptr.as_ref() }
972 }
973
974 /// Creates a new opaque object with uninitialized contents.
975 ///
976 /// # Safety
977 ///
978 /// Ultimately the pointer to the returned value will be dereferenced
979 /// in another `unsafe` block, for example when passing it to a C function,
980 /// but the functions containing the dereference are usually safe. The
981 /// value returned from `uninit()` must be initialized and pinned before
982 /// calling them.
983 #[allow(clippy::missing_const_for_fn)]
uninit() -> Self984 pub unsafe fn uninit() -> Self {
985 Self {
986 value: UnsafeCell::new(MaybeUninit::uninit()),
987 _pin: PhantomPinned,
988 }
989 }
990
991 /// Creates a new opaque object with zeroed contents.
992 ///
993 /// # Safety
994 ///
995 /// Ultimately the pointer to the returned value will be dereferenced
996 /// in another `unsafe` block, for example when passing it to a C function,
997 /// but the functions containing the dereference are usually safe. The
998 /// value returned from `uninit()` must be pinned (and possibly initialized)
999 /// before calling them.
1000 #[allow(clippy::missing_const_for_fn)]
zeroed() -> Self1001 pub unsafe fn zeroed() -> Self {
1002 Self {
1003 value: UnsafeCell::new(MaybeUninit::zeroed()),
1004 _pin: PhantomPinned,
1005 }
1006 }
1007
1008 /// Returns a raw mutable pointer to the opaque data.
as_mut_ptr(&self) -> *mut T1009 pub const fn as_mut_ptr(&self) -> *mut T {
1010 UnsafeCell::get(&self.value).cast()
1011 }
1012
1013 /// Returns a raw pointer to the opaque data.
as_ptr(&self) -> *const T1014 pub const fn as_ptr(&self) -> *const T {
1015 self.as_mut_ptr().cast_const()
1016 }
1017
1018 /// Returns a raw pointer to the opaque data that can be passed to a
1019 /// C function as `void *`.
as_void_ptr(&self) -> *mut std::ffi::c_void1020 pub const fn as_void_ptr(&self) -> *mut std::ffi::c_void {
1021 UnsafeCell::get(&self.value).cast()
1022 }
1023
1024 /// Converts a raw pointer to the wrapped type.
raw_get(slot: *mut Self) -> *mut T1025 pub const fn raw_get(slot: *mut Self) -> *mut T {
1026 // Compare with Linux's raw_get method, which goes through an UnsafeCell
1027 // because it takes a *const Self instead.
1028 slot.cast()
1029 }
1030 }
1031
1032 impl<T> fmt::Debug for Opaque<T> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1033 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1034 let mut name: String = "Opaque<".to_string();
1035 name += std::any::type_name::<T>();
1036 name += ">";
1037 f.debug_tuple(&name).field(&self.as_ptr()).finish()
1038 }
1039 }
1040
1041 impl<T: Default> Opaque<T> {
1042 /// Creates a new opaque object with default contents.
1043 ///
1044 /// # Safety
1045 ///
1046 /// Ultimately the pointer to the returned value will be dereferenced
1047 /// in another `unsafe` block, for example when passing it to a C function,
1048 /// but the functions containing the dereference are usually safe. The
1049 /// value returned from `uninit()` must be pinned before calling them.
new() -> Self1050 pub unsafe fn new() -> Self {
1051 Self {
1052 value: UnsafeCell::new(MaybeUninit::new(T::default())),
1053 _pin: PhantomPinned,
1054 }
1055 }
1056 }
1057
1058 /// Annotates [`Self`] as a transparent wrapper for another type.
1059 ///
1060 /// Usually defined via the [`qemu_api_macros::Wrapper`] derive macro.
1061 ///
1062 /// # Examples
1063 ///
1064 /// ```
1065 /// # use std::mem::ManuallyDrop;
1066 /// # use qemu_api::cell::Wrapper;
1067 /// #[repr(transparent)]
1068 /// pub struct Example {
1069 /// inner: ManuallyDrop<String>,
1070 /// }
1071 ///
1072 /// unsafe impl Wrapper for Example {
1073 /// type Wrapped = String;
1074 /// }
1075 /// ```
1076 ///
1077 /// # Safety
1078 ///
1079 /// `Self` must be a `#[repr(transparent)]` wrapper for the `Wrapped` type,
1080 /// whether directly or indirectly.
1081 ///
1082 /// # Methods
1083 ///
1084 /// By convention, types that implement Wrapper also implement the following
1085 /// methods:
1086 ///
1087 /// ```ignore
1088 /// pub const unsafe fn from_raw<'a>(value: *mut Self::Wrapped) -> &'a Self;
1089 /// pub const unsafe fn as_mut_ptr(&self) -> *mut Self::Wrapped;
1090 /// pub const unsafe fn as_ptr(&self) -> *const Self::Wrapped;
1091 /// pub const unsafe fn raw_get(slot: *mut Self) -> *const Self::Wrapped;
1092 /// ```
1093 ///
1094 /// They are not defined here to allow them to be `const`.
1095 pub unsafe trait Wrapper {
1096 type Wrapped;
1097 }
1098
1099 unsafe impl<T> Wrapper for Opaque<T> {
1100 type Wrapped = T;
1101 }
1102