1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc.
4 * Copyright (C) 2012 Jeremy Kerr <jeremy.kerr@canonical.com>
5 */
6
7 #include <linux/ctype.h>
8 #include <linux/efi.h>
9 #include <linux/fs.h>
10 #include <linux/fs_context.h>
11 #include <linux/fs_parser.h>
12 #include <linux/module.h>
13 #include <linux/pagemap.h>
14 #include <linux/ucs2_string.h>
15 #include <linux/slab.h>
16 #include <linux/suspend.h>
17 #include <linux/magic.h>
18 #include <linux/statfs.h>
19 #include <linux/notifier.h>
20 #include <linux/printk.h>
21 #include <linux/namei.h>
22
23 #include "internal.h"
24 #include "../internal.h"
25
efivarfs_ops_notifier(struct notifier_block * nb,unsigned long event,void * data)26 static int efivarfs_ops_notifier(struct notifier_block *nb, unsigned long event,
27 void *data)
28 {
29 struct efivarfs_fs_info *sfi = container_of(nb, struct efivarfs_fs_info, nb);
30
31 switch (event) {
32 case EFIVAR_OPS_RDONLY:
33 sfi->sb->s_flags |= SB_RDONLY;
34 break;
35 case EFIVAR_OPS_RDWR:
36 sfi->sb->s_flags &= ~SB_RDONLY;
37 break;
38 default:
39 return NOTIFY_DONE;
40 }
41
42 return NOTIFY_OK;
43 }
44
efivarfs_alloc_inode(struct super_block * sb)45 static struct inode *efivarfs_alloc_inode(struct super_block *sb)
46 {
47 struct efivar_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
48
49 if (!entry)
50 return NULL;
51
52 inode_init_once(&entry->vfs_inode);
53 entry->removed = false;
54
55 return &entry->vfs_inode;
56 }
57
efivarfs_free_inode(struct inode * inode)58 static void efivarfs_free_inode(struct inode *inode)
59 {
60 struct efivar_entry *entry = efivar_entry(inode);
61
62 kfree(entry);
63 }
64
efivarfs_show_options(struct seq_file * m,struct dentry * root)65 static int efivarfs_show_options(struct seq_file *m, struct dentry *root)
66 {
67 struct super_block *sb = root->d_sb;
68 struct efivarfs_fs_info *sbi = sb->s_fs_info;
69 struct efivarfs_mount_opts *opts = &sbi->mount_opts;
70
71 if (!uid_eq(opts->uid, GLOBAL_ROOT_UID))
72 seq_printf(m, ",uid=%u",
73 from_kuid_munged(&init_user_ns, opts->uid));
74 if (!gid_eq(opts->gid, GLOBAL_ROOT_GID))
75 seq_printf(m, ",gid=%u",
76 from_kgid_munged(&init_user_ns, opts->gid));
77 return 0;
78 }
79
efivarfs_statfs(struct dentry * dentry,struct kstatfs * buf)80 static int efivarfs_statfs(struct dentry *dentry, struct kstatfs *buf)
81 {
82 const u32 attr = EFI_VARIABLE_NON_VOLATILE |
83 EFI_VARIABLE_BOOTSERVICE_ACCESS |
84 EFI_VARIABLE_RUNTIME_ACCESS;
85 u64 storage_space, remaining_space, max_variable_size;
86 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
87 efi_status_t status;
88
89 /* Some UEFI firmware does not implement QueryVariableInfo() */
90 storage_space = remaining_space = 0;
91 if (efi_rt_services_supported(EFI_RT_SUPPORTED_QUERY_VARIABLE_INFO)) {
92 status = efivar_query_variable_info(attr, &storage_space,
93 &remaining_space,
94 &max_variable_size);
95 if (status != EFI_SUCCESS && status != EFI_UNSUPPORTED)
96 pr_warn_ratelimited("query_variable_info() failed: 0x%lx\n",
97 status);
98 }
99
100 /*
101 * This is not a normal filesystem, so no point in pretending it has a block
102 * size; we declare f_bsize to 1, so that we can then report the exact value
103 * sent by EFI QueryVariableInfo in f_blocks and f_bfree
104 */
105 buf->f_bsize = 1;
106 buf->f_namelen = NAME_MAX;
107 buf->f_blocks = storage_space;
108 buf->f_bfree = remaining_space;
109 buf->f_type = dentry->d_sb->s_magic;
110 buf->f_fsid = u64_to_fsid(id);
111
112 /*
113 * In f_bavail we declare the free space that the kernel will allow writing
114 * when the storage_paranoia x86 quirk is active. To use more, users
115 * should boot the kernel with efi_no_storage_paranoia.
116 */
117 if (remaining_space > efivar_reserved_space())
118 buf->f_bavail = remaining_space - efivar_reserved_space();
119 else
120 buf->f_bavail = 0;
121
122 return 0;
123 }
124
125 static int efivarfs_freeze_fs(struct super_block *sb);
126 static int efivarfs_unfreeze_fs(struct super_block *sb);
127
128 static const struct super_operations efivarfs_ops = {
129 .statfs = efivarfs_statfs,
130 .drop_inode = generic_delete_inode,
131 .alloc_inode = efivarfs_alloc_inode,
132 .free_inode = efivarfs_free_inode,
133 .show_options = efivarfs_show_options,
134 .freeze_fs = efivarfs_freeze_fs,
135 .unfreeze_fs = efivarfs_unfreeze_fs,
136 };
137
138 /*
139 * Compare two efivarfs file names.
140 *
141 * An efivarfs filename is composed of two parts,
142 *
143 * 1. A case-sensitive variable name
144 * 2. A case-insensitive GUID
145 *
146 * So we need to perform a case-sensitive match on part 1 and a
147 * case-insensitive match on part 2.
148 */
efivarfs_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)149 static int efivarfs_d_compare(const struct dentry *dentry,
150 unsigned int len, const char *str,
151 const struct qstr *name)
152 {
153 int guid = len - EFI_VARIABLE_GUID_LEN;
154
155 if (name->len != len)
156 return 1;
157
158 /* Case-sensitive compare for the variable name */
159 if (memcmp(str, name->name, guid))
160 return 1;
161
162 /* Case-insensitive compare for the GUID */
163 return strncasecmp(name->name + guid, str + guid, EFI_VARIABLE_GUID_LEN);
164 }
165
efivarfs_d_hash(const struct dentry * dentry,struct qstr * qstr)166 static int efivarfs_d_hash(const struct dentry *dentry, struct qstr *qstr)
167 {
168 unsigned long hash = init_name_hash(dentry);
169 const unsigned char *s = qstr->name;
170 unsigned int len = qstr->len;
171
172 while (len-- > EFI_VARIABLE_GUID_LEN)
173 hash = partial_name_hash(*s++, hash);
174
175 /* GUID is case-insensitive. */
176 while (len--)
177 hash = partial_name_hash(tolower(*s++), hash);
178
179 qstr->hash = end_name_hash(hash);
180 return 0;
181 }
182
183 static const struct dentry_operations efivarfs_d_ops = {
184 .d_compare = efivarfs_d_compare,
185 .d_hash = efivarfs_d_hash,
186 };
187
efivarfs_alloc_dentry(struct dentry * parent,char * name)188 static struct dentry *efivarfs_alloc_dentry(struct dentry *parent, char *name)
189 {
190 struct dentry *d;
191 struct qstr q;
192 int err;
193
194 q.name = name;
195 q.len = strlen(name);
196
197 err = efivarfs_d_hash(parent, &q);
198 if (err)
199 return ERR_PTR(err);
200
201 d = d_alloc(parent, &q);
202 if (d)
203 return d;
204
205 return ERR_PTR(-ENOMEM);
206 }
207
efivarfs_variable_is_present(efi_char16_t * variable_name,efi_guid_t * vendor,void * data)208 bool efivarfs_variable_is_present(efi_char16_t *variable_name,
209 efi_guid_t *vendor, void *data)
210 {
211 char *name = efivar_get_utf8name(variable_name, vendor);
212 struct super_block *sb = data;
213 struct dentry *dentry;
214
215 if (!name)
216 /*
217 * If the allocation failed there'll already be an
218 * error in the log (and likely a huge and growing
219 * number of them since they system will be under
220 * extreme memory pressure), so simply assume
221 * collision for safety but don't add to the log
222 * flood.
223 */
224 return true;
225
226 dentry = try_lookup_noperm(&QSTR(name), sb->s_root);
227 kfree(name);
228 if (!IS_ERR_OR_NULL(dentry))
229 dput(dentry);
230
231 return dentry != NULL;
232 }
233
efivarfs_create_dentry(struct super_block * sb,efi_char16_t * name16,unsigned long name_size,efi_guid_t vendor,char * name)234 static int efivarfs_create_dentry(struct super_block *sb, efi_char16_t *name16,
235 unsigned long name_size, efi_guid_t vendor,
236 char *name)
237 {
238 struct efivar_entry *entry;
239 struct inode *inode;
240 struct dentry *dentry, *root = sb->s_root;
241 unsigned long size = 0;
242 int len;
243 int err = -ENOMEM;
244 bool is_removable = false;
245
246 /* length of the variable name itself: remove GUID and separator */
247 len = strlen(name) - EFI_VARIABLE_GUID_LEN - 1;
248
249 if (efivar_variable_is_removable(vendor, name, len))
250 is_removable = true;
251
252 inode = efivarfs_get_inode(sb, d_inode(root), S_IFREG | 0644, 0,
253 is_removable);
254 if (!inode)
255 goto fail_name;
256
257 entry = efivar_entry(inode);
258
259 memcpy(entry->var.VariableName, name16, name_size);
260 memcpy(&(entry->var.VendorGuid), &vendor, sizeof(efi_guid_t));
261
262 dentry = efivarfs_alloc_dentry(root, name);
263 if (IS_ERR(dentry)) {
264 err = PTR_ERR(dentry);
265 goto fail_inode;
266 }
267
268 __efivar_entry_get(entry, NULL, &size, NULL);
269
270 /* copied by the above to local storage in the dentry. */
271 kfree(name);
272
273 inode_lock(inode);
274 inode->i_private = entry;
275 i_size_write(inode, size + sizeof(__u32)); /* attributes + data */
276 inode_unlock(inode);
277 d_add(dentry, inode);
278
279 return 0;
280
281 fail_inode:
282 iput(inode);
283 fail_name:
284 kfree(name);
285
286 return err;
287 }
288
efivarfs_callback(efi_char16_t * name16,efi_guid_t vendor,unsigned long name_size,void * data)289 static int efivarfs_callback(efi_char16_t *name16, efi_guid_t vendor,
290 unsigned long name_size, void *data)
291 {
292 struct super_block *sb = (struct super_block *)data;
293 char *name;
294
295 if (guid_equal(&vendor, &LINUX_EFI_RANDOM_SEED_TABLE_GUID))
296 return 0;
297
298 name = efivar_get_utf8name(name16, &vendor);
299 if (!name)
300 return -ENOMEM;
301
302 return efivarfs_create_dentry(sb, name16, name_size, vendor, name);
303 }
304
305 enum {
306 Opt_uid, Opt_gid,
307 };
308
309 static const struct fs_parameter_spec efivarfs_parameters[] = {
310 fsparam_uid("uid", Opt_uid),
311 fsparam_gid("gid", Opt_gid),
312 {},
313 };
314
efivarfs_parse_param(struct fs_context * fc,struct fs_parameter * param)315 static int efivarfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
316 {
317 struct efivarfs_fs_info *sbi = fc->s_fs_info;
318 struct efivarfs_mount_opts *opts = &sbi->mount_opts;
319 struct fs_parse_result result;
320 int opt;
321
322 opt = fs_parse(fc, efivarfs_parameters, param, &result);
323 if (opt < 0)
324 return opt;
325
326 switch (opt) {
327 case Opt_uid:
328 opts->uid = result.uid;
329 break;
330 case Opt_gid:
331 opts->gid = result.gid;
332 break;
333 default:
334 return -EINVAL;
335 }
336
337 return 0;
338 }
339
efivarfs_fill_super(struct super_block * sb,struct fs_context * fc)340 static int efivarfs_fill_super(struct super_block *sb, struct fs_context *fc)
341 {
342 struct efivarfs_fs_info *sfi = sb->s_fs_info;
343 struct inode *inode = NULL;
344 struct dentry *root;
345 int err;
346
347 sb->s_maxbytes = MAX_LFS_FILESIZE;
348 sb->s_blocksize = PAGE_SIZE;
349 sb->s_blocksize_bits = PAGE_SHIFT;
350 sb->s_magic = EFIVARFS_MAGIC;
351 sb->s_op = &efivarfs_ops;
352 set_default_d_op(sb, &efivarfs_d_ops);
353 sb->s_d_flags |= DCACHE_DONTCACHE;
354 sb->s_time_gran = 1;
355
356 if (!efivar_supports_writes())
357 sb->s_flags |= SB_RDONLY;
358
359 inode = efivarfs_get_inode(sb, NULL, S_IFDIR | 0755, 0, true);
360 if (!inode)
361 return -ENOMEM;
362 inode->i_op = &efivarfs_dir_inode_operations;
363
364 root = d_make_root(inode);
365 sb->s_root = root;
366 if (!root)
367 return -ENOMEM;
368
369 sfi->sb = sb;
370 sfi->nb.notifier_call = efivarfs_ops_notifier;
371 err = blocking_notifier_chain_register(&efivar_ops_nh, &sfi->nb);
372 if (err)
373 return err;
374
375 return efivar_init(efivarfs_callback, sb, true);
376 }
377
efivarfs_get_tree(struct fs_context * fc)378 static int efivarfs_get_tree(struct fs_context *fc)
379 {
380 return get_tree_single(fc, efivarfs_fill_super);
381 }
382
efivarfs_reconfigure(struct fs_context * fc)383 static int efivarfs_reconfigure(struct fs_context *fc)
384 {
385 if (!efivar_supports_writes() && !(fc->sb_flags & SB_RDONLY)) {
386 pr_err("Firmware does not support SetVariableRT. Can not remount with rw\n");
387 return -EINVAL;
388 }
389
390 return 0;
391 }
392
efivarfs_free(struct fs_context * fc)393 static void efivarfs_free(struct fs_context *fc)
394 {
395 kfree(fc->s_fs_info);
396 }
397
398 static const struct fs_context_operations efivarfs_context_ops = {
399 .get_tree = efivarfs_get_tree,
400 .parse_param = efivarfs_parse_param,
401 .reconfigure = efivarfs_reconfigure,
402 .free = efivarfs_free,
403 };
404
efivarfs_check_missing(efi_char16_t * name16,efi_guid_t vendor,unsigned long name_size,void * data)405 static int efivarfs_check_missing(efi_char16_t *name16, efi_guid_t vendor,
406 unsigned long name_size, void *data)
407 {
408 char *name;
409 struct super_block *sb = data;
410 struct dentry *dentry;
411 int err;
412
413 if (guid_equal(&vendor, &LINUX_EFI_RANDOM_SEED_TABLE_GUID))
414 return 0;
415
416 name = efivar_get_utf8name(name16, &vendor);
417 if (!name)
418 return -ENOMEM;
419
420 dentry = try_lookup_noperm(&QSTR(name), sb->s_root);
421 if (IS_ERR(dentry)) {
422 err = PTR_ERR(dentry);
423 goto out;
424 }
425
426 if (!dentry) {
427 /* found missing entry */
428 pr_info("efivarfs: creating variable %s\n", name);
429 return efivarfs_create_dentry(sb, name16, name_size, vendor, name);
430 }
431
432 dput(dentry);
433 err = 0;
434
435 out:
436 kfree(name);
437
438 return err;
439 }
440
441 static struct file_system_type efivarfs_type;
442
efivarfs_freeze_fs(struct super_block * sb)443 static int efivarfs_freeze_fs(struct super_block *sb)
444 {
445 /* Nothing for us to do. */
446 return 0;
447 }
448
efivarfs_unfreeze_fs(struct super_block * sb)449 static int efivarfs_unfreeze_fs(struct super_block *sb)
450 {
451 struct dentry *child = NULL;
452
453 /*
454 * Unconditionally resync the variable state on a thaw request.
455 * Given the size of efivarfs it really doesn't matter to simply
456 * iterate through all of the entries and resync. Freeze/thaw
457 * requests are rare enough for that to not matter and the
458 * number of entries is pretty low too. So we really don't care.
459 */
460 pr_info("efivarfs: resyncing variable state\n");
461 for (;;) {
462 int err;
463 unsigned long size = 0;
464 struct inode *inode;
465 struct efivar_entry *entry;
466
467 child = find_next_child(sb->s_root, child);
468 if (!child)
469 break;
470
471 inode = d_inode(child);
472 entry = efivar_entry(inode);
473
474 err = efivar_entry_size(entry, &size);
475 if (err)
476 size = 0;
477 else
478 size += sizeof(__u32);
479
480 inode_lock(inode);
481 i_size_write(inode, size);
482 inode_unlock(inode);
483
484 /* The variable doesn't exist anymore, delete it. */
485 if (!size) {
486 pr_info("efivarfs: removing variable %pd\n", child);
487 simple_recursive_removal(child, NULL);
488 }
489 }
490
491 efivar_init(efivarfs_check_missing, sb, false);
492 pr_info("efivarfs: finished resyncing variable state\n");
493 return 0;
494 }
495
efivarfs_init_fs_context(struct fs_context * fc)496 static int efivarfs_init_fs_context(struct fs_context *fc)
497 {
498 struct efivarfs_fs_info *sfi;
499
500 if (!efivar_is_available())
501 return -EOPNOTSUPP;
502
503 sfi = kzalloc(sizeof(*sfi), GFP_KERNEL);
504 if (!sfi)
505 return -ENOMEM;
506
507 sfi->mount_opts.uid = GLOBAL_ROOT_UID;
508 sfi->mount_opts.gid = GLOBAL_ROOT_GID;
509
510 fc->s_fs_info = sfi;
511 fc->ops = &efivarfs_context_ops;
512
513 return 0;
514 }
515
efivarfs_kill_sb(struct super_block * sb)516 static void efivarfs_kill_sb(struct super_block *sb)
517 {
518 struct efivarfs_fs_info *sfi = sb->s_fs_info;
519
520 blocking_notifier_chain_unregister(&efivar_ops_nh, &sfi->nb);
521 kill_litter_super(sb);
522
523 kfree(sfi);
524 }
525
526 static struct file_system_type efivarfs_type = {
527 .owner = THIS_MODULE,
528 .name = "efivarfs",
529 .init_fs_context = efivarfs_init_fs_context,
530 .kill_sb = efivarfs_kill_sb,
531 .parameters = efivarfs_parameters,
532 };
533
efivarfs_init(void)534 static __init int efivarfs_init(void)
535 {
536 return register_filesystem(&efivarfs_type);
537 }
538
efivarfs_exit(void)539 static __exit void efivarfs_exit(void)
540 {
541 unregister_filesystem(&efivarfs_type);
542 }
543
544 MODULE_AUTHOR("Matthew Garrett, Jeremy Kerr");
545 MODULE_DESCRIPTION("EFI Variable Filesystem");
546 MODULE_LICENSE("GPL");
547 MODULE_ALIAS_FS("efivarfs");
548
549 module_init(efivarfs_init);
550 module_exit(efivarfs_exit);
551