xref: /linux/drivers/net/ethernet/qlogic/qed/qed_init_fw_funcs.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2021 Marvell International Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/crc8.h>
9 #include <linux/delay.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/string.h>
13 #include "qed_hsi.h"
14 #include "qed_hw.h"
15 #include "qed_init_ops.h"
16 #include "qed_iro_hsi.h"
17 #include "qed_reg_addr.h"
18 
19 #define CDU_VALIDATION_DEFAULT_CFG CDU_CONTEXT_VALIDATION_DEFAULT_CFG
20 
21 /* General constants */
22 #define QM_PQ_MEM_4KB(pq_size)	(pq_size ? DIV_ROUND_UP((pq_size + 1) *	\
23 							QM_PQ_ELEMENT_SIZE, \
24 							0x1000) : 0)
25 #define QM_PQ_SIZE_256B(pq_size)	(pq_size ? DIV_ROUND_UP(pq_size, \
26 								0x100) - 1 : 0)
27 #define QM_INVALID_PQ_ID		0xffff
28 
29 /* Max link speed (in Mbps) */
30 #define QM_MAX_LINK_SPEED               100000
31 
32 /* Feature enable */
33 #define QM_BYPASS_EN	1
34 #define QM_BYTE_CRD_EN	1
35 
36 /* Initial VOQ byte credit */
37 #define QM_INITIAL_VOQ_BYTE_CRD         98304
38 /* Other PQ constants */
39 #define QM_OTHER_PQS_PER_PF	4
40 
41 /* VOQ constants */
42 #define MAX_NUM_VOQS	(MAX_NUM_PORTS_K2 * NUM_TCS_4PORT_K2)
43 #define VOQS_BIT_MASK	(BIT(MAX_NUM_VOQS) - 1)
44 
45 /* WFQ constants */
46 
47 /* PF WFQ increment value, 0x9000 = 4*9*1024 */
48 #define QM_PF_WFQ_INC_VAL(weight)       ((weight) * 0x9000)
49 
50 /* PF WFQ Upper bound, in MB, 10 * burst size of 1ms in 50Gbps */
51 #define QM_PF_WFQ_UPPER_BOUND           62500000
52 
53 /* PF WFQ max increment value, 0.7 * upper bound */
54 #define QM_PF_WFQ_MAX_INC_VAL           ((QM_PF_WFQ_UPPER_BOUND * 7) / 10)
55 
56 /* Number of VOQs in E5 PF WFQ credit register (QmWfqCrd) */
57 #define QM_PF_WFQ_CRD_E5_NUM_VOQS       16
58 
59 /* VP WFQ increment value */
60 #define QM_VP_WFQ_INC_VAL(weight)       ((weight) * QM_VP_WFQ_MIN_INC_VAL)
61 
62 /* VP WFQ min increment value */
63 #define QM_VP_WFQ_MIN_INC_VAL           10800
64 
65 /* VP WFQ max increment value, 2^30 */
66 #define QM_VP_WFQ_MAX_INC_VAL           0x40000000
67 
68 /* VP WFQ bypass threshold */
69 #define QM_VP_WFQ_BYPASS_THRESH         (QM_VP_WFQ_MIN_INC_VAL - 100)
70 
71 /* VP RL credit task cost */
72 #define QM_VP_RL_CRD_TASK_COST          9700
73 
74 /* Bit of VOQ in VP WFQ PQ map */
75 #define QM_VP_WFQ_PQ_VOQ_SHIFT          0
76 
77 /* Bit of PF in VP WFQ PQ map */
78 #define QM_VP_WFQ_PQ_PF_SHIFT   5
79 
80 /* RL constants */
81 
82 /* Period in us */
83 #define QM_RL_PERIOD	5
84 
85 /* Period in 25MHz cycles */
86 #define QM_RL_PERIOD_CLK_25M	(25 * QM_RL_PERIOD)
87 
88 /* RL increment value - rate is specified in mbps */
89 #define QM_RL_INC_VAL(rate)                     ({	\
90 						typeof(rate) __rate = (rate); \
91 						max_t(u32,		\
92 						(u32)(((__rate ? __rate : \
93 						100000) *		\
94 						QM_RL_PERIOD *		\
95 						101) / (8 * 100)), 1); })
96 
97 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
98 #define QM_PF_RL_UPPER_BOUND	62500000
99 
100 /* Max PF RL increment value is 0.7 * upper bound */
101 #define QM_PF_RL_MAX_INC_VAL	((QM_PF_RL_UPPER_BOUND * 7) / 10)
102 
103 /* QCN RL Upper bound, speed is in Mpbs */
104 #define QM_GLOBAL_RL_UPPER_BOUND(speed)         ((u32)max_t( \
105 		u32,					    \
106 		(u32)(((speed) *			    \
107 		       QM_RL_PERIOD * 101) / (8 * 100)),    \
108 		QM_VP_RL_CRD_TASK_COST			    \
109 		+ 1000))
110 
111 /* AFullOprtnstcCrdMask constants */
112 #define QM_OPPOR_LINE_VOQ_DEF	1
113 #define QM_OPPOR_FW_STOP_DEF	0
114 #define QM_OPPOR_PQ_EMPTY_DEF	1
115 
116 /* Command Queue constants */
117 
118 /* Pure LB CmdQ lines (+spare) */
119 #define PBF_CMDQ_PURE_LB_LINES	150
120 
121 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
122 	(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
123 	 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
124 		PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
125 
126 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
127 	(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
128 	 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
129 		PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
130 
131 /* Returns the VOQ line credit for the specified number of PBF command lines.
132  * PBF lines are specified in 256b units.
133  */
134 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
135 	((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
136 
137 /* BTB: blocks constants (block size = 256B) */
138 
139 /* 256B blocks in 9700B packet */
140 #define BTB_JUMBO_PKT_BLOCKS	38
141 
142 /* Headroom per-port */
143 #define BTB_HEADROOM_BLOCKS	BTB_JUMBO_PKT_BLOCKS
144 #define BTB_PURE_LB_FACTOR	10
145 
146 /* Factored (hence really 0.7) */
147 #define BTB_PURE_LB_RATIO	7
148 
149 /* QM stop command constants */
150 #define QM_STOP_PQ_MASK_WIDTH		32
151 #define QM_STOP_CMD_ADDR		2
152 #define QM_STOP_CMD_STRUCT_SIZE		2
153 #define QM_STOP_CMD_PAUSE_MASK_OFFSET	0
154 #define QM_STOP_CMD_PAUSE_MASK_SHIFT	0
155 #define QM_STOP_CMD_PAUSE_MASK_MASK	-1
156 #define QM_STOP_CMD_GROUP_ID_OFFSET	1
157 #define QM_STOP_CMD_GROUP_ID_SHIFT	16
158 #define QM_STOP_CMD_GROUP_ID_MASK	15
159 #define QM_STOP_CMD_PQ_TYPE_OFFSET	1
160 #define QM_STOP_CMD_PQ_TYPE_SHIFT	24
161 #define QM_STOP_CMD_PQ_TYPE_MASK	1
162 #define QM_STOP_CMD_MAX_POLL_COUNT	100
163 #define QM_STOP_CMD_POLL_PERIOD_US	500
164 
165 /* QM command macros */
166 #define QM_CMD_STRUCT_SIZE(cmd)	cmd ## _STRUCT_SIZE
167 #define QM_CMD_SET_FIELD(var, cmd, field, value) \
168 	SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
169 		  cmd ## _ ## field, \
170 		  value)
171 
172 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, pq_id, vp_pq_id, rl_valid,	      \
173 			  rl_id, ext_voq, wrr)				      \
174 	do {								      \
175 		u32 __reg = 0;						      \
176 									      \
177 		BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg));	      \
178 		memset(&(map), 0, sizeof(map));				      \
179 		SET_FIELD(__reg, QM_RF_PQ_MAP_PQ_VALID, 1);	      \
180 		SET_FIELD(__reg, QM_RF_PQ_MAP_RL_VALID,	      \
181 			  !!(rl_valid));				      \
182 		SET_FIELD(__reg, QM_RF_PQ_MAP_VP_PQ_ID, (vp_pq_id)); \
183 		SET_FIELD(__reg, QM_RF_PQ_MAP_RL_ID, (rl_id));	      \
184 		SET_FIELD(__reg, QM_RF_PQ_MAP_VOQ, (ext_voq));	      \
185 		SET_FIELD(__reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,      \
186 			  (wrr));					      \
187 									      \
188 		STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id),    \
189 			     __reg);					      \
190 		(map).reg = cpu_to_le32(__reg);				      \
191 	} while (0)
192 
193 #define WRITE_PQ_INFO_TO_RAM	1
194 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
195 	(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
196 	((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
197 	(((rl) >> 8) << 9))
198 
199 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
200 	(XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
201 	XSTORM_PQ_INFO_OFFSET(pq_id))
202 
203 static const char * const s_protocol_types[] = {
204 	"PROTOCOLID_ISCSI", "PROTOCOLID_FCOE", "PROTOCOLID_ROCE",
205 	"PROTOCOLID_CORE", "PROTOCOLID_ETH", "PROTOCOLID_IWARP",
206 	"PROTOCOLID_TOE", "PROTOCOLID_PREROCE", "PROTOCOLID_COMMON",
207 	"PROTOCOLID_TCP", "PROTOCOLID_RDMA", "PROTOCOLID_SCSI",
208 };
209 
210 static const char *s_ramrod_cmd_ids[][28] = {
211 	{
212 	"ISCSI_RAMROD_CMD_ID_UNUSED", "ISCSI_RAMROD_CMD_ID_INIT_FUNC",
213 	 "ISCSI_RAMROD_CMD_ID_DESTROY_FUNC",
214 	 "ISCSI_RAMROD_CMD_ID_OFFLOAD_CONN",
215 	 "ISCSI_RAMROD_CMD_ID_UPDATE_CONN",
216 	 "ISCSI_RAMROD_CMD_ID_TERMINATION_CONN",
217 	 "ISCSI_RAMROD_CMD_ID_CLEAR_SQ", "ISCSI_RAMROD_CMD_ID_MAC_UPDATE",
218 	 "ISCSI_RAMROD_CMD_ID_CONN_STATS", },
219 	{ "FCOE_RAMROD_CMD_ID_INIT_FUNC", "FCOE_RAMROD_CMD_ID_DESTROY_FUNC",
220 	 "FCOE_RAMROD_CMD_ID_STAT_FUNC",
221 	 "FCOE_RAMROD_CMD_ID_OFFLOAD_CONN",
222 	 "FCOE_RAMROD_CMD_ID_TERMINATE_CONN", },
223 	{ "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
224 	 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
225 	 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
226 	 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
227 	 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
228 	 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
229 	 "RDMA_RAMROD_STOP_NS_TRACKING", "ROCE_RAMROD_CREATE_QP",
230 	 "ROCE_RAMROD_MODIFY_QP", "ROCE_RAMROD_QUERY_QP",
231 	 "ROCE_RAMROD_DESTROY_QP", "ROCE_RAMROD_CREATE_UD_QP",
232 	 "ROCE_RAMROD_DESTROY_UD_QP", "ROCE_RAMROD_FUNC_UPDATE",
233 	 "ROCE_RAMROD_SUSPEND_QP", "ROCE_RAMROD_QUERY_SUSPENDED_QP",
234 	 "ROCE_RAMROD_CREATE_SUSPENDED_QP", "ROCE_RAMROD_RESUME_QP",
235 	 "ROCE_RAMROD_SUSPEND_UD_QP", "ROCE_RAMROD_RESUME_UD_QP",
236 	 "ROCE_RAMROD_CREATE_SUSPENDED_UD_QP", "ROCE_RAMROD_FLUSH_DPT_QP", },
237 	{ "CORE_RAMROD_UNUSED", "CORE_RAMROD_RX_QUEUE_START",
238 	 "CORE_RAMROD_TX_QUEUE_START", "CORE_RAMROD_RX_QUEUE_STOP",
239 	 "CORE_RAMROD_TX_QUEUE_STOP",
240 	 "CORE_RAMROD_RX_QUEUE_FLUSH",
241 	 "CORE_RAMROD_TX_QUEUE_UPDATE", "CORE_RAMROD_QUEUE_STATS_QUERY", },
242 	{ "ETH_RAMROD_UNUSED", "ETH_RAMROD_VPORT_START",
243 	 "ETH_RAMROD_VPORT_UPDATE", "ETH_RAMROD_VPORT_STOP",
244 	 "ETH_RAMROD_RX_QUEUE_START", "ETH_RAMROD_RX_QUEUE_STOP",
245 	 "ETH_RAMROD_TX_QUEUE_START", "ETH_RAMROD_TX_QUEUE_STOP",
246 	 "ETH_RAMROD_FILTERS_UPDATE", "ETH_RAMROD_RX_QUEUE_UPDATE",
247 	 "ETH_RAMROD_RX_CREATE_OPENFLOW_ACTION",
248 	 "ETH_RAMROD_RX_ADD_OPENFLOW_FILTER",
249 	 "ETH_RAMROD_RX_DELETE_OPENFLOW_FILTER",
250 	 "ETH_RAMROD_RX_ADD_UDP_FILTER",
251 	 "ETH_RAMROD_RX_DELETE_UDP_FILTER",
252 	 "ETH_RAMROD_RX_CREATE_GFT_ACTION",
253 	 "ETH_RAMROD_RX_UPDATE_GFT_FILTER", "ETH_RAMROD_TX_QUEUE_UPDATE",
254 	 "ETH_RAMROD_RGFS_FILTER_ADD", "ETH_RAMROD_RGFS_FILTER_DEL",
255 	 "ETH_RAMROD_TGFS_FILTER_ADD", "ETH_RAMROD_TGFS_FILTER_DEL",
256 	 "ETH_RAMROD_GFS_COUNTERS_REPORT_REQUEST", },
257 	{ "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
258 	 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
259 	 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
260 	 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
261 	 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
262 	 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
263 	 "RDMA_RAMROD_STOP_NS_TRACKING",
264 	 "IWARP_RAMROD_CMD_ID_TCP_OFFLOAD",
265 	 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD",
266 	 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD_SEND_RTR",
267 	 "IWARP_RAMROD_CMD_ID_CREATE_QP", "IWARP_RAMROD_CMD_ID_QUERY_QP",
268 	 "IWARP_RAMROD_CMD_ID_MODIFY_QP",
269 	 "IWARP_RAMROD_CMD_ID_DESTROY_QP",
270 	 "IWARP_RAMROD_CMD_ID_ABORT_TCP_OFFLOAD", },
271 	{ NULL }, /*TOE*/
272 	{ NULL }, /*PREROCE*/
273 	{ "COMMON_RAMROD_UNUSED", "COMMON_RAMROD_PF_START",
274 	     "COMMON_RAMROD_PF_STOP", "COMMON_RAMROD_VF_START",
275 	     "COMMON_RAMROD_VF_STOP", "COMMON_RAMROD_PF_UPDATE",
276 	     "COMMON_RAMROD_RL_UPDATE", "COMMON_RAMROD_EMPTY", }
277 };
278 
279 /******************** INTERNAL IMPLEMENTATION *********************/
280 
281 /* Returns the external VOQ number */
qed_get_ext_voq(struct qed_hwfn * p_hwfn,u8 port_id,u8 tc,u8 max_phys_tcs_per_port)282 static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
283 			  u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
284 {
285 	if (tc == PURE_LB_TC)
286 		return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
287 	else
288 		return port_id * max_phys_tcs_per_port + tc;
289 }
290 
291 /* Prepare PF RL enable/disable runtime init values */
qed_enable_pf_rl(struct qed_hwfn * p_hwfn,bool pf_rl_en)292 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
293 {
294 	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
295 	if (pf_rl_en) {
296 		u8 num_ext_voqs = MAX_NUM_VOQS;
297 		u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
298 
299 		/* Enable RLs for all VOQs */
300 		STORE_RT_REG(p_hwfn,
301 			     QM_REG_RLPFVOQENABLE_RT_OFFSET,
302 			     (u32)voq_bit_mask);
303 
304 		/* Write RL period */
305 		STORE_RT_REG(p_hwfn,
306 			     QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
307 		STORE_RT_REG(p_hwfn,
308 			     QM_REG_RLPFPERIODTIMER_RT_OFFSET,
309 			     QM_RL_PERIOD_CLK_25M);
310 
311 		/* Set credit threshold for QM bypass flow */
312 		if (QM_BYPASS_EN)
313 			STORE_RT_REG(p_hwfn,
314 				     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
315 				     QM_PF_RL_UPPER_BOUND);
316 	}
317 }
318 
319 /* Prepare PF WFQ enable/disable runtime init values */
qed_enable_pf_wfq(struct qed_hwfn * p_hwfn,bool pf_wfq_en)320 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
321 {
322 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
323 
324 	/* Set credit threshold for QM bypass flow */
325 	if (pf_wfq_en && QM_BYPASS_EN)
326 		STORE_RT_REG(p_hwfn,
327 			     QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
328 			     QM_PF_WFQ_UPPER_BOUND);
329 }
330 
331 /* Prepare global RL enable/disable runtime init values */
qed_enable_global_rl(struct qed_hwfn * p_hwfn,bool global_rl_en)332 static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
333 {
334 	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
335 		     global_rl_en ? 1 : 0);
336 	if (global_rl_en) {
337 		/* Write RL period (use timer 0 only) */
338 		STORE_RT_REG(p_hwfn,
339 			     QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
340 			     QM_RL_PERIOD_CLK_25M);
341 		STORE_RT_REG(p_hwfn,
342 			     QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
343 			     QM_RL_PERIOD_CLK_25M);
344 
345 		/* Set credit threshold for QM bypass flow */
346 		if (QM_BYPASS_EN)
347 			STORE_RT_REG(p_hwfn,
348 				     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
349 				     QM_GLOBAL_RL_UPPER_BOUND(10000) - 1);
350 	}
351 }
352 
353 /* Prepare VPORT WFQ enable/disable runtime init values */
qed_enable_vport_wfq(struct qed_hwfn * p_hwfn,bool vport_wfq_en)354 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
355 {
356 	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
357 		     vport_wfq_en ? 1 : 0);
358 
359 	/* Set credit threshold for QM bypass flow */
360 	if (vport_wfq_en && QM_BYPASS_EN)
361 		STORE_RT_REG(p_hwfn,
362 			     QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
363 			     QM_VP_WFQ_BYPASS_THRESH);
364 }
365 
366 /* Prepare runtime init values to allocate PBF command queue lines for
367  * the specified VOQ.
368  */
qed_cmdq_lines_voq_rt_init(struct qed_hwfn * p_hwfn,u8 ext_voq,u16 cmdq_lines)369 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
370 				       u8 ext_voq, u16 cmdq_lines)
371 {
372 	u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
373 
374 	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
375 			 (u32)cmdq_lines);
376 	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
377 		     qm_line_crd);
378 	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
379 		     qm_line_crd);
380 }
381 
382 /* Prepare runtime init values to allocate PBF command queue lines. */
383 static void
qed_cmdq_lines_rt_init(struct qed_hwfn * p_hwfn,u8 max_ports_per_engine,u8 max_phys_tcs_per_port,struct init_qm_port_params port_params[MAX_NUM_PORTS])384 qed_cmdq_lines_rt_init(struct qed_hwfn *p_hwfn,
385 		       u8 max_ports_per_engine,
386 		       u8 max_phys_tcs_per_port,
387 		       struct init_qm_port_params port_params[MAX_NUM_PORTS])
388 {
389 	u8 tc, ext_voq, port_id, num_tcs_in_port;
390 	u8 num_ext_voqs = MAX_NUM_VOQS;
391 
392 	/* Clear PBF lines of all VOQs */
393 	for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
394 		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
395 
396 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
397 		u16 phys_lines, phys_lines_per_tc;
398 
399 		if (!port_params[port_id].active)
400 			continue;
401 
402 		/* Find number of command queue lines to divide between the
403 		 * active physical TCs.
404 		 */
405 		phys_lines = port_params[port_id].num_pbf_cmd_lines;
406 		phys_lines -= PBF_CMDQ_PURE_LB_LINES;
407 
408 		/* Find #lines per active physical TC */
409 		num_tcs_in_port = 0;
410 		for (tc = 0; tc < max_phys_tcs_per_port; tc++)
411 			if (((port_params[port_id].active_phys_tcs >>
412 			      tc) & 0x1) == 1)
413 				num_tcs_in_port++;
414 		phys_lines_per_tc = phys_lines / num_tcs_in_port;
415 
416 		/* Init registers per active TC */
417 		for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
418 			ext_voq = qed_get_ext_voq(p_hwfn,
419 						  port_id,
420 						  tc, max_phys_tcs_per_port);
421 			if (((port_params[port_id].active_phys_tcs >>
422 			      tc) & 0x1) == 1)
423 				qed_cmdq_lines_voq_rt_init(p_hwfn,
424 							   ext_voq,
425 							   phys_lines_per_tc);
426 		}
427 
428 		/* Init registers for pure LB TC */
429 		ext_voq = qed_get_ext_voq(p_hwfn,
430 					  port_id,
431 					  PURE_LB_TC, max_phys_tcs_per_port);
432 		qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
433 					   PBF_CMDQ_PURE_LB_LINES);
434 	}
435 }
436 
437 /* Prepare runtime init values to allocate guaranteed BTB blocks for the
438  * specified port. The guaranteed BTB space is divided between the TCs as
439  * follows (shared space Is currently not used):
440  * 1. Parameters:
441  *    B - BTB blocks for this port
442  *    C - Number of physical TCs for this port
443  * 2. Calculation:
444  *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
445  *	 headroom.
446  *    b. B = B - 38 (remainder after global headroom allocation).
447  *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
448  *    d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
449  *    e. B/C blocks are allocated for each physical TC.
450  * Assumptions:
451  * - MTU is up to 9700 bytes (38 blocks)
452  * - All TCs are considered symmetrical (same rate and packet size)
453  * - No optimization for lossy TC (all are considered lossless). Shared space
454  *   is not enabled and allocated for each TC.
455  */
456 static void
qed_btb_blocks_rt_init(struct qed_hwfn * p_hwfn,u8 max_ports_per_engine,u8 max_phys_tcs_per_port,struct init_qm_port_params port_params[MAX_NUM_PORTS])457 qed_btb_blocks_rt_init(struct qed_hwfn *p_hwfn,
458 		       u8 max_ports_per_engine,
459 		       u8 max_phys_tcs_per_port,
460 		       struct init_qm_port_params port_params[MAX_NUM_PORTS])
461 {
462 	u32 usable_blocks, pure_lb_blocks, phys_blocks;
463 	u8 tc, ext_voq, port_id, num_tcs_in_port;
464 
465 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
466 		if (!port_params[port_id].active)
467 			continue;
468 
469 		/* Subtract headroom blocks */
470 		usable_blocks = port_params[port_id].num_btb_blocks -
471 				BTB_HEADROOM_BLOCKS;
472 
473 		/* Find blocks per physical TC. Use factor to avoid floating
474 		 * arithmethic.
475 		 */
476 		num_tcs_in_port = 0;
477 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
478 			if (((port_params[port_id].active_phys_tcs >>
479 			      tc) & 0x1) == 1)
480 				num_tcs_in_port++;
481 
482 		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
483 				 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
484 				  BTB_PURE_LB_RATIO);
485 		pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
486 				       pure_lb_blocks / BTB_PURE_LB_FACTOR);
487 		phys_blocks = (usable_blocks - pure_lb_blocks) /
488 			      num_tcs_in_port;
489 
490 		/* Init physical TCs */
491 		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
492 			if (((port_params[port_id].active_phys_tcs >>
493 			      tc) & 0x1) == 1) {
494 				ext_voq =
495 					qed_get_ext_voq(p_hwfn,
496 							port_id,
497 							tc,
498 							max_phys_tcs_per_port);
499 				STORE_RT_REG(p_hwfn,
500 					     PBF_BTB_GUARANTEED_RT_OFFSET
501 					     (ext_voq), phys_blocks);
502 			}
503 		}
504 
505 		/* Init pure LB TC */
506 		ext_voq = qed_get_ext_voq(p_hwfn,
507 					  port_id,
508 					  PURE_LB_TC, max_phys_tcs_per_port);
509 		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
510 			     pure_lb_blocks);
511 	}
512 }
513 
514 /* Prepare runtime init values for the specified RL.
515  * Set max link speed (100Gbps) per rate limiter.
516  * Return -1 on error.
517  */
qed_global_rl_rt_init(struct qed_hwfn * p_hwfn)518 static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
519 {
520 	u32 upper_bound = QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
521 			  (u32)QM_RL_CRD_REG_SIGN_BIT;
522 	u32 inc_val;
523 	u16 rl_id;
524 
525 	/* Go over all global RLs */
526 	for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
527 		inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
528 
529 		STORE_RT_REG(p_hwfn,
530 			     QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
531 			     (u32)QM_RL_CRD_REG_SIGN_BIT);
532 		STORE_RT_REG(p_hwfn,
533 			     QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
534 			     upper_bound);
535 		STORE_RT_REG(p_hwfn,
536 			     QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
537 	}
538 
539 	return 0;
540 }
541 
542 /* Returns the upper bound for the specified Vport RL parameters.
543  * link_speed is in Mbps.
544  * Returns 0 in case of error.
545  */
qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type,u32 link_speed)546 static u32 qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type,
547 					u32 link_speed)
548 {
549 	switch (vport_rl_type) {
550 	case QM_RL_TYPE_NORMAL:
551 		return QM_INITIAL_VOQ_BYTE_CRD;
552 	case QM_RL_TYPE_QCN:
553 		return QM_GLOBAL_RL_UPPER_BOUND(link_speed);
554 	default:
555 		return 0;
556 	}
557 }
558 
559 /* Prepare VPORT RL runtime init values.
560  * Return -1 on error.
561  */
qed_vport_rl_rt_init(struct qed_hwfn * p_hwfn,u16 start_rl,u16 num_rls,u32 link_speed,struct init_qm_rl_params * rl_params)562 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
563 				u16 start_rl,
564 				u16 num_rls,
565 				u32 link_speed,
566 				struct init_qm_rl_params *rl_params)
567 {
568 	u16 i, rl_id;
569 
570 	if (num_rls && start_rl + num_rls >= MAX_QM_GLOBAL_RLS) {
571 		DP_NOTICE(p_hwfn, "Invalid rate limiter configuration\n");
572 		return -1;
573 	}
574 
575 	/* Go over all PF VPORTs */
576 	for (i = 0, rl_id = start_rl; i < num_rls; i++, rl_id++) {
577 		u32 upper_bound, inc_val;
578 
579 		upper_bound =
580 		    qed_get_vport_rl_upper_bound((enum init_qm_rl_type)
581 						 rl_params[i].vport_rl_type,
582 						 link_speed);
583 
584 		inc_val =
585 		    QM_RL_INC_VAL(rl_params[i].vport_rl ?
586 				  rl_params[i].vport_rl : link_speed);
587 		if (inc_val > upper_bound) {
588 			DP_NOTICE(p_hwfn,
589 				  "Invalid RL rate - limit configuration\n");
590 			return -1;
591 		}
592 
593 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
594 			     (u32)QM_RL_CRD_REG_SIGN_BIT);
595 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
596 			     upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
597 		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id,
598 			     inc_val);
599 	}
600 
601 	return 0;
602 }
603 
604 /* Prepare Tx PQ mapping runtime init values for the specified PF */
qed_tx_pq_map_rt_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_qm_pf_rt_init_params * p_params,u32 base_mem_addr_4kb)605 static int qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
606 				 struct qed_ptt *p_ptt,
607 				 struct qed_qm_pf_rt_init_params *p_params,
608 				 u32 base_mem_addr_4kb)
609 {
610 	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
611 	struct init_qm_vport_params *vport_params = p_params->vport_params;
612 	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
613 	u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
614 	struct init_qm_pq_params *pq_params = p_params->pq_params;
615 	u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
616 
617 	num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
618 
619 	first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
620 	last_pq_group = (p_params->start_pq + num_pqs - 1) /
621 			QM_PF_QUEUE_GROUP_SIZE;
622 
623 	pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
624 	vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
625 	mem_addr_4kb = base_mem_addr_4kb;
626 
627 	/* Set mapping from PQ group to PF */
628 	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
629 		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
630 			     (u32)(p_params->pf_id));
631 
632 	/* Set PQ sizes */
633 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
634 		     QM_PQ_SIZE_256B(p_params->num_pf_cids));
635 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
636 		     QM_PQ_SIZE_256B(p_params->num_vf_cids));
637 
638 	/* Go over all Tx PQs */
639 	for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
640 		u16 *p_first_tx_pq_id, vport_id_in_pf;
641 		struct qm_rf_pq_map tx_pq_map;
642 		u8 tc_id = pq_params[i].tc_id;
643 		bool is_vf_pq;
644 		u8 ext_voq;
645 
646 		ext_voq = qed_get_ext_voq(p_hwfn,
647 					  pq_params[i].port_id,
648 					  tc_id,
649 					  p_params->max_phys_tcs_per_port);
650 		is_vf_pq = (i >= p_params->num_pf_pqs);
651 
652 		/* Update first Tx PQ of VPORT/TC */
653 		vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
654 		p_first_tx_pq_id =
655 		    &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
656 		if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
657 			u32 map_val =
658 				(ext_voq << QM_VP_WFQ_PQ_VOQ_SHIFT) |
659 				(p_params->pf_id << QM_VP_WFQ_PQ_PF_SHIFT);
660 
661 			/* Create new VP PQ */
662 			*p_first_tx_pq_id = pq_id;
663 
664 			/* Map VP PQ to VOQ and PF */
665 			STORE_RT_REG(p_hwfn,
666 				     QM_REG_WFQVPMAP_RT_OFFSET +
667 				     *p_first_tx_pq_id,
668 				     map_val);
669 		}
670 
671 		/* Prepare PQ map entry */
672 		QM_INIT_TX_PQ_MAP(p_hwfn,
673 				  tx_pq_map,
674 				  pq_id,
675 				  *p_first_tx_pq_id,
676 				  pq_params[i].rl_valid,
677 				  pq_params[i].rl_id,
678 				  ext_voq, pq_params[i].wrr_group);
679 
680 		/* Set PQ base address */
681 		STORE_RT_REG(p_hwfn,
682 			     QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
683 			     mem_addr_4kb);
684 
685 		/* Clear PQ pointer table entry (64 bit) */
686 		if (p_params->is_pf_loading)
687 			for (j = 0; j < 2; j++)
688 				STORE_RT_REG(p_hwfn,
689 					     QM_REG_PTRTBLTX_RT_OFFSET +
690 					     (pq_id * 2) + j, 0);
691 
692 		/* Write PQ info to RAM */
693 		if (WRITE_PQ_INFO_TO_RAM != 0) {
694 			u32 pq_info = 0;
695 
696 			pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
697 						  p_params->pf_id,
698 						  tc_id,
699 						  pq_params[i].port_id,
700 						  pq_params[i].rl_valid,
701 						  pq_params[i].rl_id);
702 			qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
703 			       pq_info);
704 		}
705 
706 		/* If VF PQ, add indication to PQ VF mask */
707 		if (is_vf_pq) {
708 			tx_pq_vf_mask[pq_id /
709 				      QM_PF_QUEUE_GROUP_SIZE] |=
710 			    BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
711 			mem_addr_4kb += vport_pq_mem_4kb;
712 		} else {
713 			mem_addr_4kb += pq_mem_4kb;
714 		}
715 	}
716 
717 	/* Store Tx PQ VF mask to size select register */
718 	for (i = 0; i < num_tx_pq_vf_masks; i++)
719 		if (tx_pq_vf_mask[i])
720 			STORE_RT_REG(p_hwfn,
721 				     QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
722 				     tx_pq_vf_mask[i]);
723 
724 	return 0;
725 }
726 
727 /* Prepare Other PQ mapping runtime init values for the specified PF */
qed_other_pq_map_rt_init(struct qed_hwfn * p_hwfn,u8 pf_id,bool is_pf_loading,u32 num_pf_cids,u32 num_tids,u32 base_mem_addr_4kb)728 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
729 				     u8 pf_id,
730 				     bool is_pf_loading,
731 				     u32 num_pf_cids,
732 				     u32 num_tids, u32 base_mem_addr_4kb)
733 {
734 	u32 pq_size, pq_mem_4kb, mem_addr_4kb;
735 	u16 i, j, pq_id, pq_group;
736 
737 	/* A single other PQ group is used in each PF, where PQ group i is used
738 	 * in PF i.
739 	 */
740 	pq_group = pf_id;
741 	pq_size = num_pf_cids + num_tids;
742 	pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
743 	mem_addr_4kb = base_mem_addr_4kb;
744 
745 	/* Map PQ group to PF */
746 	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
747 		     (u32)(pf_id));
748 
749 	/* Set PQ sizes */
750 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
751 		     QM_PQ_SIZE_256B(pq_size));
752 
753 	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
754 	     i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
755 		/* Set PQ base address */
756 		STORE_RT_REG(p_hwfn,
757 			     QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
758 			     mem_addr_4kb);
759 
760 		/* Clear PQ pointer table entry */
761 		if (is_pf_loading)
762 			for (j = 0; j < 2; j++)
763 				STORE_RT_REG(p_hwfn,
764 					     QM_REG_PTRTBLOTHER_RT_OFFSET +
765 					     (pq_id * 2) + j, 0);
766 
767 		mem_addr_4kb += pq_mem_4kb;
768 	}
769 }
770 
771 /* Prepare PF WFQ runtime init values for the specified PF.
772  * Return -1 on error.
773  */
qed_pf_wfq_rt_init(struct qed_hwfn * p_hwfn,struct qed_qm_pf_rt_init_params * p_params)774 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
775 			      struct qed_qm_pf_rt_init_params *p_params)
776 {
777 	u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
778 	struct init_qm_pq_params *pq_params = p_params->pq_params;
779 	u32 inc_val, crd_reg_offset;
780 	u8 ext_voq;
781 	u16 i;
782 
783 	inc_val = QM_PF_WFQ_INC_VAL(p_params->pf_wfq);
784 	if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
785 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
786 		return -1;
787 	}
788 
789 	for (i = 0; i < num_tx_pqs; i++) {
790 		ext_voq = qed_get_ext_voq(p_hwfn,
791 					  pq_params[i].port_id,
792 					  pq_params[i].tc_id,
793 					  p_params->max_phys_tcs_per_port);
794 		crd_reg_offset =
795 			(p_params->pf_id < MAX_NUM_PFS_BB ?
796 			 QM_REG_WFQPFCRD_RT_OFFSET :
797 			 QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
798 			ext_voq * MAX_NUM_PFS_BB +
799 			(p_params->pf_id % MAX_NUM_PFS_BB);
800 		OVERWRITE_RT_REG(p_hwfn,
801 				 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
802 	}
803 
804 	STORE_RT_REG(p_hwfn,
805 		     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
806 		     QM_PF_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
807 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
808 		     inc_val);
809 
810 	return 0;
811 }
812 
813 /* Prepare PF RL runtime init values for the specified PF.
814  * Return -1 on error.
815  */
qed_pf_rl_rt_init(struct qed_hwfn * p_hwfn,u8 pf_id,u32 pf_rl)816 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
817 {
818 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
819 
820 	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
821 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
822 		return -1;
823 	}
824 
825 	STORE_RT_REG(p_hwfn,
826 		     QM_REG_RLPFCRD_RT_OFFSET + pf_id,
827 		     (u32)QM_RL_CRD_REG_SIGN_BIT);
828 	STORE_RT_REG(p_hwfn,
829 		     QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
830 		     QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
831 	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
832 
833 	return 0;
834 }
835 
836 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
837  * Return -1 on error.
838  */
qed_vp_wfq_rt_init(struct qed_hwfn * p_hwfn,u16 num_vports,struct init_qm_vport_params * vport_params)839 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
840 			      u16 num_vports,
841 			      struct init_qm_vport_params *vport_params)
842 {
843 	u16 vport_pq_id, wfq, i;
844 	u32 inc_val;
845 	u8 tc;
846 
847 	/* Go over all PF VPORTs */
848 	for (i = 0; i < num_vports; i++) {
849 		/* Each VPORT can have several VPORT PQ IDs for various TCs */
850 		for (tc = 0; tc < NUM_OF_TCS; tc++) {
851 			/* Check if VPORT/TC is valid */
852 			vport_pq_id = vport_params[i].first_tx_pq_id[tc];
853 			if (vport_pq_id == QM_INVALID_PQ_ID)
854 				continue;
855 
856 			/* Find WFQ weight (per VPORT or per VPORT+TC) */
857 			wfq = vport_params[i].wfq;
858 			wfq = wfq ? wfq : vport_params[i].tc_wfq[tc];
859 			inc_val = QM_VP_WFQ_INC_VAL(wfq);
860 			if (inc_val > QM_VP_WFQ_MAX_INC_VAL) {
861 				DP_NOTICE(p_hwfn,
862 					  "Invalid VPORT WFQ weight configuration\n");
863 				return -1;
864 			}
865 
866 			/* Config registers */
867 			STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET +
868 				     vport_pq_id,
869 				     (u32)QM_WFQ_CRD_REG_SIGN_BIT);
870 			STORE_RT_REG(p_hwfn, QM_REG_WFQVPUPPERBOUND_RT_OFFSET +
871 				     vport_pq_id,
872 				     inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
873 			STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET +
874 				     vport_pq_id, inc_val);
875 		}
876 	}
877 
878 	return 0;
879 }
880 
qed_poll_on_qm_cmd_ready(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)881 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
882 				     struct qed_ptt *p_ptt)
883 {
884 	u32 reg_val, i;
885 
886 	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
887 	     i++) {
888 		udelay(QM_STOP_CMD_POLL_PERIOD_US);
889 		reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
890 	}
891 
892 	/* Check if timeout while waiting for SDM command ready */
893 	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
894 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
895 			   "Timeout when waiting for QM SDM command ready signal\n");
896 		return false;
897 	}
898 
899 	return true;
900 }
901 
qed_send_qm_cmd(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 cmd_addr,u32 cmd_data_lsb,u32 cmd_data_msb)902 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
903 			    struct qed_ptt *p_ptt,
904 			    u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
905 {
906 	if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
907 		return false;
908 
909 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
910 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
911 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
912 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
913 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
914 
915 	return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
916 }
917 
918 /******************** INTERFACE IMPLEMENTATION *********************/
919 
qed_qm_pf_mem_size(u32 num_pf_cids,u32 num_vf_cids,u32 num_tids,u16 num_pf_pqs,u16 num_vf_pqs)920 u32 qed_qm_pf_mem_size(u32 num_pf_cids,
921 		       u32 num_vf_cids,
922 		       u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
923 {
924 	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
925 	       QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
926 	       QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
927 }
928 
qed_qm_common_rt_init(struct qed_hwfn * p_hwfn,struct qed_qm_common_rt_init_params * p_params)929 int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
930 			  struct qed_qm_common_rt_init_params *p_params)
931 {
932 	u32 mask = 0;
933 
934 	/* Init AFullOprtnstcCrdMask */
935 	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
936 		  QM_OPPOR_LINE_VOQ_DEF);
937 	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
938 	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ,
939 		  p_params->pf_wfq_en ? 1 : 0);
940 	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ,
941 		  p_params->vport_wfq_en ? 1 : 0);
942 	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL,
943 		  p_params->pf_rl_en ? 1 : 0);
944 	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
945 		  p_params->global_rl_en ? 1 : 0);
946 	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
947 	SET_FIELD(mask,
948 		  QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
949 	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
950 
951 	/* Enable/disable PF RL */
952 	qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
953 
954 	/* Enable/disable PF WFQ */
955 	qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
956 
957 	/* Enable/disable global RL */
958 	qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
959 
960 	/* Enable/disable VPORT WFQ */
961 	qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
962 
963 	/* Init PBF CMDQ line credit */
964 	qed_cmdq_lines_rt_init(p_hwfn,
965 			       p_params->max_ports_per_engine,
966 			       p_params->max_phys_tcs_per_port,
967 			       p_params->port_params);
968 
969 	/* Init BTB blocks in PBF */
970 	qed_btb_blocks_rt_init(p_hwfn,
971 			       p_params->max_ports_per_engine,
972 			       p_params->max_phys_tcs_per_port,
973 			       p_params->port_params);
974 
975 	qed_global_rl_rt_init(p_hwfn);
976 
977 	return 0;
978 }
979 
qed_qm_pf_rt_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_qm_pf_rt_init_params * p_params)980 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
981 		      struct qed_ptt *p_ptt,
982 		      struct qed_qm_pf_rt_init_params *p_params)
983 {
984 	struct init_qm_vport_params *vport_params = p_params->vport_params;
985 	u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
986 					       p_params->num_tids) *
987 				 QM_OTHER_PQS_PER_PF;
988 	u16 i;
989 	u8 tc;
990 
991 	/* Clear first Tx PQ ID array for each VPORT */
992 	for (i = 0; i < p_params->num_vports; i++)
993 		for (tc = 0; tc < NUM_OF_TCS; tc++)
994 			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
995 
996 	/* Map Other PQs (if any) */
997 	qed_other_pq_map_rt_init(p_hwfn,
998 				 p_params->pf_id,
999 				 p_params->is_pf_loading, p_params->num_pf_cids,
1000 				 p_params->num_tids, 0);
1001 
1002 	/* Map Tx PQs */
1003 	if (qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb))
1004 		return -1;
1005 
1006 	/* Init PF WFQ */
1007 	if (p_params->pf_wfq)
1008 		if (qed_pf_wfq_rt_init(p_hwfn, p_params))
1009 			return -1;
1010 
1011 	/* Init PF RL */
1012 	if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
1013 		return -1;
1014 
1015 	/* Init VPORT WFQ */
1016 	if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
1017 		return -1;
1018 
1019 	/* Set VPORT RL */
1020 	if (qed_vport_rl_rt_init(p_hwfn, p_params->start_rl,
1021 				 p_params->num_rls, p_params->link_speed,
1022 				 p_params->rl_params))
1023 		return -1;
1024 
1025 	return 0;
1026 }
1027 
qed_init_pf_wfq(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 pf_id,u16 pf_wfq)1028 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
1029 		    struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
1030 {
1031 	u32 inc_val = QM_PF_WFQ_INC_VAL(pf_wfq);
1032 
1033 	if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
1034 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
1035 		return -1;
1036 	}
1037 
1038 	qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
1039 
1040 	return 0;
1041 }
1042 
qed_init_pf_rl(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 pf_id,u32 pf_rl)1043 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
1044 		   struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
1045 {
1046 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
1047 
1048 	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
1049 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
1050 		return -1;
1051 	}
1052 
1053 	qed_wr(p_hwfn,
1054 	       p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1055 	qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
1056 
1057 	return 0;
1058 }
1059 
qed_init_vport_wfq(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 first_tx_pq_id[NUM_OF_TCS],u16 wfq)1060 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
1061 		       struct qed_ptt *p_ptt,
1062 		       u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
1063 {
1064 	int result = 0;
1065 	u16 vport_pq_id;
1066 	u8 tc;
1067 
1068 	for (tc = 0; tc < NUM_OF_TCS && !result; tc++) {
1069 		vport_pq_id = first_tx_pq_id[tc];
1070 		if (vport_pq_id != QM_INVALID_PQ_ID)
1071 			result = qed_init_vport_tc_wfq(p_hwfn, p_ptt,
1072 						       vport_pq_id, wfq);
1073 	}
1074 
1075 	return result;
1076 }
1077 
qed_init_vport_tc_wfq(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 first_tx_pq_id,u16 wfq)1078 int qed_init_vport_tc_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1079 			  u16 first_tx_pq_id, u16 wfq)
1080 {
1081 	u32 inc_val;
1082 
1083 	if (first_tx_pq_id == QM_INVALID_PQ_ID)
1084 		return -1;
1085 
1086 	inc_val = QM_VP_WFQ_INC_VAL(wfq);
1087 	if (!inc_val || inc_val > QM_VP_WFQ_MAX_INC_VAL) {
1088 		DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
1089 		return -1;
1090 	}
1091 
1092 	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPCRD + first_tx_pq_id * 4,
1093 	       (u32)QM_WFQ_CRD_REG_SIGN_BIT);
1094 	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPUPPERBOUND + first_tx_pq_id * 4,
1095 	       inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
1096 	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + first_tx_pq_id * 4,
1097 	       inc_val);
1098 
1099 	return 0;
1100 }
1101 
qed_init_global_rl(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 rl_id,u32 rate_limit,enum init_qm_rl_type vport_rl_type)1102 int qed_init_global_rl(struct qed_hwfn *p_hwfn,
1103 		       struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit,
1104 		       enum init_qm_rl_type vport_rl_type)
1105 {
1106 	u32 inc_val, upper_bound;
1107 
1108 	upper_bound =
1109 	    (vport_rl_type ==
1110 	     QM_RL_TYPE_QCN) ? QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) :
1111 	    QM_INITIAL_VOQ_BYTE_CRD;
1112 	inc_val = QM_RL_INC_VAL(rate_limit);
1113 	if (inc_val > upper_bound) {
1114 		DP_NOTICE(p_hwfn, "Invalid VPORT rate limit configuration.\n");
1115 		return -1;
1116 	}
1117 
1118 	qed_wr(p_hwfn, p_ptt,
1119 	       QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1120 	qed_wr(p_hwfn,
1121 	       p_ptt,
1122 	       QM_REG_RLGLBLUPPERBOUND + rl_id * 4,
1123 	       upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
1124 	qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
1125 
1126 	return 0;
1127 }
1128 
qed_send_qm_stop_cmd(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool is_release_cmd,bool is_tx_pq,u16 start_pq,u16 num_pqs)1129 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
1130 			  struct qed_ptt *p_ptt,
1131 			  bool is_release_cmd,
1132 			  bool is_tx_pq, u16 start_pq, u16 num_pqs)
1133 {
1134 	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
1135 	u32 pq_mask = 0, last_pq, pq_id;
1136 
1137 	last_pq = start_pq + num_pqs - 1;
1138 
1139 	/* Set command's PQ type */
1140 	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
1141 
1142 	/* Go over requested PQs */
1143 	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
1144 		/* Set PQ bit in mask (stop command only) */
1145 		if (!is_release_cmd)
1146 			pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
1147 
1148 		/* If last PQ or end of PQ mask, write command */
1149 		if ((pq_id == last_pq) ||
1150 		    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
1151 		     (QM_STOP_PQ_MASK_WIDTH - 1))) {
1152 			QM_CMD_SET_FIELD(cmd_arr,
1153 					 QM_STOP_CMD, PAUSE_MASK, pq_mask);
1154 			QM_CMD_SET_FIELD(cmd_arr,
1155 					 QM_STOP_CMD,
1156 					 GROUP_ID,
1157 					 pq_id / QM_STOP_PQ_MASK_WIDTH);
1158 			if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
1159 					     cmd_arr[0], cmd_arr[1]))
1160 				return false;
1161 			pq_mask = 0;
1162 		}
1163 	}
1164 
1165 	return true;
1166 }
1167 
1168 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1169 	do { \
1170 		typeof(var) *__p_var = &(var); \
1171 		typeof(offset) __offset = offset; \
1172 		*__p_var = (*__p_var & ~BIT(__offset)) | \
1173 			   ((enable) ? BIT(__offset) : 0); \
1174 	} while (0)
1175 
1176 #define PRS_ETH_TUNN_OUTPUT_FORMAT     0xF4DAB910
1177 #define PRS_ETH_OUTPUT_FORMAT          0xFFFF4910
1178 
1179 #define ARR_REG_WR(dev, ptt, addr, arr,	arr_size) \
1180 	do { \
1181 		u32 i; \
1182 		\
1183 		for (i = 0; i < (arr_size); i++) \
1184 			qed_wr(dev, ptt, \
1185 			       ((addr) + (4 * i)), \
1186 			       ((u32 *)&(arr))[i]); \
1187 	} while (0)
1188 
1189 /**
1190  * qed_dmae_to_grc() - Internal function for writing from host to
1191  * wide-bus registers (split registers are not supported yet).
1192  *
1193  * @p_hwfn: HW device data.
1194  * @p_ptt: PTT window used for writing the registers.
1195  * @p_data: Pointer to source data.
1196  * @addr: Destination register address.
1197  * @len_in_dwords: Data length in dwords (u32).
1198  *
1199  * Return: Length of the written data in dwords (u32) or -1 on invalid
1200  *         input.
1201  */
qed_dmae_to_grc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,__le32 * p_data,u32 addr,u32 len_in_dwords)1202 static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1203 			   __le32 *p_data, u32 addr, u32 len_in_dwords)
1204 {
1205 	struct qed_dmae_params params = { 0 };
1206 	u32 *data_cpu;
1207 	int rc;
1208 
1209 	if (!p_data)
1210 		return -1;
1211 
1212 	/* Set DMAE params */
1213 	SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
1214 
1215 	/* Execute DMAE command */
1216 	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
1217 			       (u64)(uintptr_t)(p_data),
1218 			       addr, len_in_dwords, &params);
1219 
1220 	/* If not read using DMAE, read using GRC */
1221 	if (rc) {
1222 		DP_VERBOSE(p_hwfn,
1223 			   QED_MSG_DEBUG,
1224 			   "Failed writing to chip using DMAE, using GRC instead\n");
1225 
1226 		/* Swap to CPU byteorder and write to registers using GRC */
1227 		data_cpu = (__force u32 *)p_data;
1228 		le32_to_cpu_array(data_cpu, len_in_dwords);
1229 
1230 		ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
1231 		cpu_to_le32_array(data_cpu, len_in_dwords);
1232 	}
1233 
1234 	return len_in_dwords;
1235 }
1236 
qed_set_vxlan_dest_port(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 dest_port)1237 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1238 			     struct qed_ptt *p_ptt, u16 dest_port)
1239 {
1240 	/* Update PRS register */
1241 	qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1242 
1243 	/* Update NIG register */
1244 	qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1245 
1246 	/* Update PBF register */
1247 	qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1248 }
1249 
qed_set_vxlan_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool vxlan_enable)1250 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1251 			  struct qed_ptt *p_ptt, bool vxlan_enable)
1252 {
1253 	u32 reg_val;
1254 	u8 shift;
1255 
1256 	/* Update PRS register */
1257 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1258 	SET_FIELD(reg_val,
1259 		  PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE, vxlan_enable);
1260 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1261 	if (reg_val) {
1262 		reg_val =
1263 		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1264 
1265 		/* Update output  only if tunnel blocks not included. */
1266 		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1267 			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1268 			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1269 	}
1270 
1271 	/* Update NIG register */
1272 	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1273 	shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1274 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1275 	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1276 
1277 	/* Update DORQ register */
1278 	qed_wr(p_hwfn,
1279 	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1280 }
1281 
qed_set_gre_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool eth_gre_enable,bool ip_gre_enable)1282 void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1283 			struct qed_ptt *p_ptt,
1284 			bool eth_gre_enable, bool ip_gre_enable)
1285 {
1286 	u32 reg_val;
1287 	u8 shift;
1288 
1289 	/* Update PRS register */
1290 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1291 	SET_FIELD(reg_val,
1292 		  PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE,
1293 		  eth_gre_enable);
1294 	SET_FIELD(reg_val,
1295 		  PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE,
1296 		  ip_gre_enable);
1297 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1298 	if (reg_val) {
1299 		reg_val =
1300 		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1301 
1302 		/* Update output  only if tunnel blocks not included. */
1303 		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1304 			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1305 			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1306 	}
1307 
1308 	/* Update NIG register */
1309 	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1310 	shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1311 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1312 	shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1313 	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1314 	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1315 
1316 	/* Update DORQ registers */
1317 	qed_wr(p_hwfn,
1318 	       p_ptt,
1319 	       DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1320 	qed_wr(p_hwfn,
1321 	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1322 }
1323 
qed_set_geneve_dest_port(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 dest_port)1324 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1325 			      struct qed_ptt *p_ptt, u16 dest_port)
1326 {
1327 	/* Update PRS register */
1328 	qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1329 
1330 	/* Update NIG register */
1331 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1332 
1333 	/* Update PBF register */
1334 	qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1335 }
1336 
qed_set_geneve_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool eth_geneve_enable,bool ip_geneve_enable)1337 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1338 			   struct qed_ptt *p_ptt,
1339 			   bool eth_geneve_enable, bool ip_geneve_enable)
1340 {
1341 	u32 reg_val;
1342 
1343 	/* Update PRS register */
1344 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1345 	SET_FIELD(reg_val,
1346 		  PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE,
1347 		  eth_geneve_enable);
1348 	SET_FIELD(reg_val,
1349 		  PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE,
1350 		  ip_geneve_enable);
1351 	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1352 	if (reg_val) {
1353 		reg_val =
1354 		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1355 
1356 		/* Update output  only if tunnel blocks not included. */
1357 		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1358 			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1359 			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1360 	}
1361 
1362 	/* Update NIG register */
1363 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1364 	       eth_geneve_enable ? 1 : 0);
1365 	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1366 
1367 	/* EDPM with geneve tunnel not supported in BB */
1368 	if (QED_IS_BB_B0(p_hwfn->cdev))
1369 		return;
1370 
1371 	/* Update DORQ registers */
1372 	qed_wr(p_hwfn,
1373 	       p_ptt,
1374 	       DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2,
1375 	       eth_geneve_enable ? 1 : 0);
1376 	qed_wr(p_hwfn,
1377 	       p_ptt,
1378 	       DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2,
1379 	       ip_geneve_enable ? 1 : 0);
1380 }
1381 
1382 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET      3
1383 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT   0xC8DAB910
1384 
qed_set_vxlan_no_l2_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool enable)1385 void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1386 				struct qed_ptt *p_ptt, bool enable)
1387 {
1388 	u32 reg_val, cfg_mask;
1389 
1390 	/* read PRS config register */
1391 	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1392 
1393 	/* set VXLAN_NO_L2_ENABLE mask */
1394 	cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1395 
1396 	if (enable) {
1397 		/* set VXLAN_NO_L2_ENABLE flag */
1398 		reg_val |= cfg_mask;
1399 
1400 		/* update PRS FIC  register */
1401 		qed_wr(p_hwfn,
1402 		       p_ptt,
1403 		       PRS_REG_OUTPUT_FORMAT_4_0,
1404 		       (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1405 	} else {
1406 		/* clear VXLAN_NO_L2_ENABLE flag */
1407 		reg_val &= ~cfg_mask;
1408 	}
1409 
1410 	/* write PRS config register */
1411 	qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1412 }
1413 
1414 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1415 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1416 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1417 #define PARSER_ETH_CONN_CM_HDR 0
1418 #define CAM_LINE_SIZE sizeof(u32)
1419 #define RAM_LINE_SIZE sizeof(u64)
1420 #define REG_SIZE sizeof(u32)
1421 
qed_gft_disable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 pf_id)1422 void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1423 {
1424 	struct regpair ram_line = { 0 };
1425 
1426 	/* Disable gft search for PF */
1427 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1428 
1429 	/* Clean ram & cam for next gft session */
1430 
1431 	/* Zero camline */
1432 	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1433 
1434 	/* Zero ramline */
1435 	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1436 			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1437 			sizeof(ram_line) / REG_SIZE);
1438 }
1439 
qed_gft_config(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 pf_id,bool tcp,bool udp,bool ipv4,bool ipv6,enum gft_profile_type profile_type)1440 void qed_gft_config(struct qed_hwfn *p_hwfn,
1441 		    struct qed_ptt *p_ptt,
1442 		    u16 pf_id,
1443 		    bool tcp,
1444 		    bool udp,
1445 		    bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1446 {
1447 	struct regpair ram_line;
1448 	u32 search_non_ip_as_gft;
1449 	u32 reg_val, cam_line;
1450 	u32 lo = 0, hi = 0;
1451 
1452 	if (!ipv6 && !ipv4)
1453 		DP_NOTICE(p_hwfn,
1454 			  "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1455 	if (!tcp && !udp)
1456 		DP_NOTICE(p_hwfn,
1457 			  "gft_config: must accept at least on of - udp or tcp\n");
1458 	if (profile_type >= MAX_GFT_PROFILE_TYPE)
1459 		DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1460 
1461 	/* Set RFS event ID to be awakened i Tstorm By Prs */
1462 	reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1463 		  PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1464 	reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1465 	qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1466 
1467 	/* Do not load context only cid in PRS on match. */
1468 	qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1469 
1470 	/* Do not use tenant ID exist bit for gft search */
1471 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1472 
1473 	/* Set Cam */
1474 	cam_line = 0;
1475 	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1476 
1477 	/* Filters are per PF!! */
1478 	SET_FIELD(cam_line,
1479 		  GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1480 		  GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1481 	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1482 
1483 	if (!(tcp && udp)) {
1484 		SET_FIELD(cam_line,
1485 			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1486 			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1487 		if (tcp)
1488 			SET_FIELD(cam_line,
1489 				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1490 				  GFT_PROFILE_TCP_PROTOCOL);
1491 		else
1492 			SET_FIELD(cam_line,
1493 				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1494 				  GFT_PROFILE_UDP_PROTOCOL);
1495 	}
1496 
1497 	if (!(ipv4 && ipv6)) {
1498 		SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1499 		if (ipv4)
1500 			SET_FIELD(cam_line,
1501 				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1502 				  GFT_PROFILE_IPV4);
1503 		else
1504 			SET_FIELD(cam_line,
1505 				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1506 				  GFT_PROFILE_IPV6);
1507 	}
1508 
1509 	/* Write characteristics to cam */
1510 	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1511 	       cam_line);
1512 	cam_line =
1513 	    qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1514 
1515 	/* Write line to RAM - compare to filter 4 tuple */
1516 
1517 	/* Search no IP as GFT */
1518 	search_non_ip_as_gft = 0;
1519 
1520 	/* Tunnel type */
1521 	SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1522 	SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1523 
1524 	if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1525 		SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1526 		SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1527 		SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1528 		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1529 		SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
1530 		SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1531 	} else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1532 		SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1533 		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1534 		SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1535 	} else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1536 		SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1537 		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1538 	} else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1539 		SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1540 		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1541 	} else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1542 		SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1543 
1544 		/* Allow tunneled traffic without inner IP */
1545 		search_non_ip_as_gft = 1;
1546 	}
1547 
1548 	ram_line.lo = cpu_to_le32(lo);
1549 	ram_line.hi = cpu_to_le32(hi);
1550 
1551 	qed_wr(p_hwfn,
1552 	       p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1553 	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1554 			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1555 			sizeof(ram_line) / REG_SIZE);
1556 
1557 	/* Set default profile so that no filter match will happen */
1558 	ram_line.lo = cpu_to_le32(0xffffffff);
1559 	ram_line.hi = cpu_to_le32(0x3ff);
1560 	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1561 			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1562 			PRS_GFT_CAM_LINES_NO_MATCH,
1563 			sizeof(ram_line) / REG_SIZE);
1564 
1565 	/* Enable gft search */
1566 	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1567 }
1568 
1569 /* Enable and configure context validation */
qed_enable_context_validation(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1570 void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1571 				   struct qed_ptt *p_ptt)
1572 {
1573 	u32 ctx_validation;
1574 
1575 	/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1576 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1577 	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1578 
1579 	/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1580 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1581 	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1582 
1583 	/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1584 	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1585 	qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1586 }
1587 
qed_get_protocol_type_str(u32 protocol_type)1588 const char *qed_get_protocol_type_str(u32 protocol_type)
1589 {
1590 	if (protocol_type >= ARRAY_SIZE(s_protocol_types))
1591 		return "Invalid protocol type";
1592 
1593 	return s_protocol_types[protocol_type];
1594 }
1595 
qed_get_ramrod_cmd_id_str(u32 protocol_type,u32 ramrod_cmd_id)1596 const char *qed_get_ramrod_cmd_id_str(u32 protocol_type, u32 ramrod_cmd_id)
1597 {
1598 	const char *ramrod_cmd_id_str;
1599 
1600 	if (protocol_type >= ARRAY_SIZE(s_ramrod_cmd_ids))
1601 		return "Invalid protocol type";
1602 
1603 	if (ramrod_cmd_id >= ARRAY_SIZE(s_ramrod_cmd_ids[0]))
1604 		return "Invalid Ramrod command ID";
1605 
1606 	ramrod_cmd_id_str = s_ramrod_cmd_ids[protocol_type][ramrod_cmd_id];
1607 
1608 	if (!ramrod_cmd_id_str)
1609 		return "Invalid Ramrod command ID";
1610 
1611 	return ramrod_cmd_id_str;
1612 }
1613 
qed_get_rdma_assert_ram_addr(struct qed_hwfn * p_hwfn,u8 storm_id)1614 static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1615 {
1616 	switch (storm_id) {
1617 	case 0:
1618 		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1619 		    TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1620 	case 1:
1621 		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1622 		    MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1623 	case 2:
1624 		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1625 		    USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1626 	case 3:
1627 		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1628 		    XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1629 	case 4:
1630 		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1631 		    YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1632 	case 5:
1633 		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1634 		    PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1635 
1636 	default:
1637 		return 0;
1638 	}
1639 }
1640 
qed_set_rdma_error_level(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 assert_level[NUM_STORMS])1641 void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1642 			      struct qed_ptt *p_ptt,
1643 			      u8 assert_level[NUM_STORMS])
1644 {
1645 	u8 storm_id;
1646 
1647 	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1648 		u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1649 
1650 		qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1651 	}
1652 }
1653 
1654 #define PHYS_ADDR_DWORDS        DIV_ROUND_UP(sizeof(dma_addr_t), 4)
1655 #define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
1656 
qed_get_overlay_addr_ram_addr(struct qed_hwfn * p_hwfn,u8 storm_id)1657 static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1658 {
1659 	switch (storm_id) {
1660 	case 0:
1661 		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1662 		    TSTORM_OVERLAY_BUF_ADDR_OFFSET;
1663 	case 1:
1664 		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1665 		    MSTORM_OVERLAY_BUF_ADDR_OFFSET;
1666 	case 2:
1667 		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1668 		    USTORM_OVERLAY_BUF_ADDR_OFFSET;
1669 	case 3:
1670 		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1671 		    XSTORM_OVERLAY_BUF_ADDR_OFFSET;
1672 	case 4:
1673 		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1674 		    YSTORM_OVERLAY_BUF_ADDR_OFFSET;
1675 	case 5:
1676 		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1677 		    PSTORM_OVERLAY_BUF_ADDR_OFFSET;
1678 
1679 	default:
1680 		return 0;
1681 	}
1682 }
1683 
qed_fw_overlay_mem_alloc(struct qed_hwfn * p_hwfn,const u32 * const fw_overlay_in_buf,u32 buf_size_in_bytes)1684 struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
1685 					       const u32 * const
1686 					       fw_overlay_in_buf,
1687 					       u32 buf_size_in_bytes)
1688 {
1689 	u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
1690 	struct phys_mem_desc *allocated_mem;
1691 
1692 	if (!buf_size)
1693 		return NULL;
1694 
1695 	allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
1696 				GFP_KERNEL);
1697 	if (!allocated_mem)
1698 		return NULL;
1699 
1700 	/* For each Storm, set physical address in RAM */
1701 	while (buf_offset < buf_size) {
1702 		struct phys_mem_desc *storm_mem_desc;
1703 		struct fw_overlay_buf_hdr *hdr;
1704 		u32 storm_buf_size;
1705 		u8 storm_id;
1706 
1707 		hdr =
1708 		    (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
1709 		storm_buf_size = GET_FIELD(hdr->data,
1710 					   FW_OVERLAY_BUF_HDR_BUF_SIZE);
1711 		storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
1712 		if (storm_id >= NUM_STORMS)
1713 			break;
1714 		storm_mem_desc = allocated_mem + storm_id;
1715 		storm_mem_desc->size = storm_buf_size * sizeof(u32);
1716 
1717 		/* Allocate physical memory for Storm's overlays buffer */
1718 		storm_mem_desc->virt_addr =
1719 		    dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1720 				       storm_mem_desc->size,
1721 				       &storm_mem_desc->phys_addr, GFP_KERNEL);
1722 		if (!storm_mem_desc->virt_addr)
1723 			break;
1724 
1725 		/* Skip overlays buffer header */
1726 		buf_offset += OVERLAY_HDR_SIZE_DWORDS;
1727 
1728 		/* Copy Storm's overlays buffer to allocated memory */
1729 		memcpy(storm_mem_desc->virt_addr,
1730 		       &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
1731 
1732 		/* Advance to next Storm */
1733 		buf_offset += storm_buf_size;
1734 	}
1735 
1736 	/* If memory allocation has failed, free all allocated memory */
1737 	if (buf_offset < buf_size) {
1738 		qed_fw_overlay_mem_free(p_hwfn, &allocated_mem);
1739 		return NULL;
1740 	}
1741 
1742 	return allocated_mem;
1743 }
1744 
qed_fw_overlay_init_ram(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct phys_mem_desc * fw_overlay_mem)1745 void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
1746 			     struct qed_ptt *p_ptt,
1747 			     struct phys_mem_desc *fw_overlay_mem)
1748 {
1749 	u8 storm_id;
1750 
1751 	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1752 		struct phys_mem_desc *storm_mem_desc =
1753 		    (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1754 		u32 ram_addr, i;
1755 
1756 		/* Skip Storms with no FW overlays */
1757 		if (!storm_mem_desc->virt_addr)
1758 			continue;
1759 
1760 		/* Calculate overlay RAM GRC address of current PF */
1761 		ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
1762 			   sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
1763 
1764 		/* Write Storm's overlay physical address to RAM */
1765 		for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
1766 			qed_wr(p_hwfn, p_ptt, ram_addr,
1767 			       ((u32 *)&storm_mem_desc->phys_addr)[i]);
1768 	}
1769 }
1770 
qed_fw_overlay_mem_free(struct qed_hwfn * p_hwfn,struct phys_mem_desc ** fw_overlay_mem)1771 void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
1772 			     struct phys_mem_desc **fw_overlay_mem)
1773 {
1774 	u8 storm_id;
1775 
1776 	if (!fw_overlay_mem || !(*fw_overlay_mem))
1777 		return;
1778 
1779 	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1780 		struct phys_mem_desc *storm_mem_desc =
1781 		    (struct phys_mem_desc *)*fw_overlay_mem + storm_id;
1782 
1783 		/* Free Storm's physical memory */
1784 		if (storm_mem_desc->virt_addr)
1785 			dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1786 					  storm_mem_desc->size,
1787 					  storm_mem_desc->virt_addr,
1788 					  storm_mem_desc->phys_addr);
1789 	}
1790 
1791 	/* Free allocated virtual memory */
1792 	kfree(*fw_overlay_mem);
1793 	*fw_overlay_mem = NULL;
1794 }
1795