1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7 #define pr_fmt(fmt) "iommu: " fmt
8
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/iommufd.h>
22 #include <linux/idr.h>
23 #include <linux/err.h>
24 #include <linux/pci.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitops.h>
27 #include <linux/platform_device.h>
28 #include <linux/property.h>
29 #include <linux/fsl/mc.h>
30 #include <linux/module.h>
31 #include <linux/cc_platform.h>
32 #include <linux/cdx/cdx_bus.h>
33 #include <trace/events/iommu.h>
34 #include <linux/sched/mm.h>
35 #include <linux/msi.h>
36 #include <uapi/linux/iommufd.h>
37
38 #include "dma-iommu.h"
39 #include "iommu-priv.h"
40
41 static struct kset *iommu_group_kset;
42 static DEFINE_IDA(iommu_group_ida);
43 static DEFINE_IDA(iommu_global_pasid_ida);
44
45 static unsigned int iommu_def_domain_type __read_mostly;
46 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
47 static u32 iommu_cmd_line __read_mostly;
48
49 /* Tags used with xa_tag_pointer() in group->pasid_array */
50 enum { IOMMU_PASID_ARRAY_DOMAIN = 0, IOMMU_PASID_ARRAY_HANDLE = 1 };
51
52 struct iommu_group {
53 struct kobject kobj;
54 struct kobject *devices_kobj;
55 struct list_head devices;
56 struct xarray pasid_array;
57 struct mutex mutex;
58 void *iommu_data;
59 void (*iommu_data_release)(void *iommu_data);
60 char *name;
61 int id;
62 struct iommu_domain *default_domain;
63 struct iommu_domain *blocking_domain;
64 struct iommu_domain *domain;
65 struct list_head entry;
66 unsigned int owner_cnt;
67 void *owner;
68 };
69
70 struct group_device {
71 struct list_head list;
72 struct device *dev;
73 char *name;
74 };
75
76 /* Iterate over each struct group_device in a struct iommu_group */
77 #define for_each_group_device(group, pos) \
78 list_for_each_entry(pos, &(group)->devices, list)
79
80 struct iommu_group_attribute {
81 struct attribute attr;
82 ssize_t (*show)(struct iommu_group *group, char *buf);
83 ssize_t (*store)(struct iommu_group *group,
84 const char *buf, size_t count);
85 };
86
87 static const char * const iommu_group_resv_type_string[] = {
88 [IOMMU_RESV_DIRECT] = "direct",
89 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable",
90 [IOMMU_RESV_RESERVED] = "reserved",
91 [IOMMU_RESV_MSI] = "msi",
92 [IOMMU_RESV_SW_MSI] = "msi",
93 };
94
95 #define IOMMU_CMD_LINE_DMA_API BIT(0)
96 #define IOMMU_CMD_LINE_STRICT BIT(1)
97
98 static int bus_iommu_probe(const struct bus_type *bus);
99 static int iommu_bus_notifier(struct notifier_block *nb,
100 unsigned long action, void *data);
101 static void iommu_release_device(struct device *dev);
102 static int __iommu_attach_device(struct iommu_domain *domain,
103 struct device *dev);
104 static int __iommu_attach_group(struct iommu_domain *domain,
105 struct iommu_group *group);
106 static struct iommu_domain *__iommu_paging_domain_alloc_flags(struct device *dev,
107 unsigned int type,
108 unsigned int flags);
109
110 enum {
111 IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
112 };
113
114 static int __iommu_device_set_domain(struct iommu_group *group,
115 struct device *dev,
116 struct iommu_domain *new_domain,
117 unsigned int flags);
118 static int __iommu_group_set_domain_internal(struct iommu_group *group,
119 struct iommu_domain *new_domain,
120 unsigned int flags);
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)121 static int __iommu_group_set_domain(struct iommu_group *group,
122 struct iommu_domain *new_domain)
123 {
124 return __iommu_group_set_domain_internal(group, new_domain, 0);
125 }
__iommu_group_set_domain_nofail(struct iommu_group * group,struct iommu_domain * new_domain)126 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
127 struct iommu_domain *new_domain)
128 {
129 WARN_ON(__iommu_group_set_domain_internal(
130 group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
131 }
132
133 static int iommu_setup_default_domain(struct iommu_group *group,
134 int target_type);
135 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
136 struct device *dev);
137 static ssize_t iommu_group_store_type(struct iommu_group *group,
138 const char *buf, size_t count);
139 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
140 struct device *dev);
141 static void __iommu_group_free_device(struct iommu_group *group,
142 struct group_device *grp_dev);
143 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
144 const struct iommu_ops *ops);
145
146 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
147 struct iommu_group_attribute iommu_group_attr_##_name = \
148 __ATTR(_name, _mode, _show, _store)
149
150 #define to_iommu_group_attr(_attr) \
151 container_of(_attr, struct iommu_group_attribute, attr)
152 #define to_iommu_group(_kobj) \
153 container_of(_kobj, struct iommu_group, kobj)
154
155 static LIST_HEAD(iommu_device_list);
156 static DEFINE_SPINLOCK(iommu_device_lock);
157
158 static const struct bus_type * const iommu_buses[] = {
159 &platform_bus_type,
160 #ifdef CONFIG_PCI
161 &pci_bus_type,
162 #endif
163 #ifdef CONFIG_ARM_AMBA
164 &amba_bustype,
165 #endif
166 #ifdef CONFIG_FSL_MC_BUS
167 &fsl_mc_bus_type,
168 #endif
169 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
170 &host1x_context_device_bus_type,
171 #endif
172 #ifdef CONFIG_CDX_BUS
173 &cdx_bus_type,
174 #endif
175 };
176
177 /*
178 * Use a function instead of an array here because the domain-type is a
179 * bit-field, so an array would waste memory.
180 */
iommu_domain_type_str(unsigned int t)181 static const char *iommu_domain_type_str(unsigned int t)
182 {
183 switch (t) {
184 case IOMMU_DOMAIN_BLOCKED:
185 return "Blocked";
186 case IOMMU_DOMAIN_IDENTITY:
187 return "Passthrough";
188 case IOMMU_DOMAIN_UNMANAGED:
189 return "Unmanaged";
190 case IOMMU_DOMAIN_DMA:
191 case IOMMU_DOMAIN_DMA_FQ:
192 return "Translated";
193 case IOMMU_DOMAIN_PLATFORM:
194 return "Platform";
195 default:
196 return "Unknown";
197 }
198 }
199
iommu_subsys_init(void)200 static int __init iommu_subsys_init(void)
201 {
202 struct notifier_block *nb;
203
204 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
205 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
206 iommu_set_default_passthrough(false);
207 else
208 iommu_set_default_translated(false);
209
210 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
211 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
212 iommu_set_default_translated(false);
213 }
214 }
215
216 if (!iommu_default_passthrough() && !iommu_dma_strict)
217 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
218
219 pr_info("Default domain type: %s%s\n",
220 iommu_domain_type_str(iommu_def_domain_type),
221 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
222 " (set via kernel command line)" : "");
223
224 if (!iommu_default_passthrough())
225 pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
226 iommu_dma_strict ? "strict" : "lazy",
227 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
228 " (set via kernel command line)" : "");
229
230 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
231 if (!nb)
232 return -ENOMEM;
233
234 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
235 nb[i].notifier_call = iommu_bus_notifier;
236 bus_register_notifier(iommu_buses[i], &nb[i]);
237 }
238
239 return 0;
240 }
241 subsys_initcall(iommu_subsys_init);
242
remove_iommu_group(struct device * dev,void * data)243 static int remove_iommu_group(struct device *dev, void *data)
244 {
245 if (dev->iommu && dev->iommu->iommu_dev == data)
246 iommu_release_device(dev);
247
248 return 0;
249 }
250
251 /**
252 * iommu_device_register() - Register an IOMMU hardware instance
253 * @iommu: IOMMU handle for the instance
254 * @ops: IOMMU ops to associate with the instance
255 * @hwdev: (optional) actual instance device, used for fwnode lookup
256 *
257 * Return: 0 on success, or an error.
258 */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)259 int iommu_device_register(struct iommu_device *iommu,
260 const struct iommu_ops *ops, struct device *hwdev)
261 {
262 int err = 0;
263
264 /* We need to be able to take module references appropriately */
265 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
266 return -EINVAL;
267
268 iommu->ops = ops;
269 if (hwdev)
270 iommu->fwnode = dev_fwnode(hwdev);
271
272 spin_lock(&iommu_device_lock);
273 list_add_tail(&iommu->list, &iommu_device_list);
274 spin_unlock(&iommu_device_lock);
275
276 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++)
277 err = bus_iommu_probe(iommu_buses[i]);
278 if (err)
279 iommu_device_unregister(iommu);
280 return err;
281 }
282 EXPORT_SYMBOL_GPL(iommu_device_register);
283
iommu_device_unregister(struct iommu_device * iommu)284 void iommu_device_unregister(struct iommu_device *iommu)
285 {
286 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
287 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
288
289 spin_lock(&iommu_device_lock);
290 list_del(&iommu->list);
291 spin_unlock(&iommu_device_lock);
292
293 /* Pairs with the alloc in generic_single_device_group() */
294 iommu_group_put(iommu->singleton_group);
295 iommu->singleton_group = NULL;
296 }
297 EXPORT_SYMBOL_GPL(iommu_device_unregister);
298
299 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
iommu_device_unregister_bus(struct iommu_device * iommu,const struct bus_type * bus,struct notifier_block * nb)300 void iommu_device_unregister_bus(struct iommu_device *iommu,
301 const struct bus_type *bus,
302 struct notifier_block *nb)
303 {
304 bus_unregister_notifier(bus, nb);
305 iommu_device_unregister(iommu);
306 }
307 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
308
309 /*
310 * Register an iommu driver against a single bus. This is only used by iommufd
311 * selftest to create a mock iommu driver. The caller must provide
312 * some memory to hold a notifier_block.
313 */
iommu_device_register_bus(struct iommu_device * iommu,const struct iommu_ops * ops,const struct bus_type * bus,struct notifier_block * nb)314 int iommu_device_register_bus(struct iommu_device *iommu,
315 const struct iommu_ops *ops,
316 const struct bus_type *bus,
317 struct notifier_block *nb)
318 {
319 int err;
320
321 iommu->ops = ops;
322 nb->notifier_call = iommu_bus_notifier;
323 err = bus_register_notifier(bus, nb);
324 if (err)
325 return err;
326
327 spin_lock(&iommu_device_lock);
328 list_add_tail(&iommu->list, &iommu_device_list);
329 spin_unlock(&iommu_device_lock);
330
331 err = bus_iommu_probe(bus);
332 if (err) {
333 iommu_device_unregister_bus(iommu, bus, nb);
334 return err;
335 }
336 return 0;
337 }
338 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
339 #endif
340
dev_iommu_get(struct device * dev)341 static struct dev_iommu *dev_iommu_get(struct device *dev)
342 {
343 struct dev_iommu *param = dev->iommu;
344
345 lockdep_assert_held(&iommu_probe_device_lock);
346
347 if (param)
348 return param;
349
350 param = kzalloc(sizeof(*param), GFP_KERNEL);
351 if (!param)
352 return NULL;
353
354 mutex_init(¶m->lock);
355 dev->iommu = param;
356 return param;
357 }
358
dev_iommu_free(struct device * dev)359 void dev_iommu_free(struct device *dev)
360 {
361 struct dev_iommu *param = dev->iommu;
362
363 dev->iommu = NULL;
364 if (param->fwspec) {
365 fwnode_handle_put(param->fwspec->iommu_fwnode);
366 kfree(param->fwspec);
367 }
368 kfree(param);
369 }
370
371 /*
372 * Internal equivalent of device_iommu_mapped() for when we care that a device
373 * actually has API ops, and don't want false positives from VFIO-only groups.
374 */
dev_has_iommu(struct device * dev)375 static bool dev_has_iommu(struct device *dev)
376 {
377 return dev->iommu && dev->iommu->iommu_dev;
378 }
379
dev_iommu_get_max_pasids(struct device * dev)380 static u32 dev_iommu_get_max_pasids(struct device *dev)
381 {
382 u32 max_pasids = 0, bits = 0;
383 int ret;
384
385 if (dev_is_pci(dev)) {
386 ret = pci_max_pasids(to_pci_dev(dev));
387 if (ret > 0)
388 max_pasids = ret;
389 } else {
390 ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
391 if (!ret)
392 max_pasids = 1UL << bits;
393 }
394
395 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
396 }
397
dev_iommu_priv_set(struct device * dev,void * priv)398 void dev_iommu_priv_set(struct device *dev, void *priv)
399 {
400 /* FSL_PAMU does something weird */
401 if (!IS_ENABLED(CONFIG_FSL_PAMU))
402 lockdep_assert_held(&iommu_probe_device_lock);
403 dev->iommu->priv = priv;
404 }
405 EXPORT_SYMBOL_GPL(dev_iommu_priv_set);
406
407 /*
408 * Init the dev->iommu and dev->iommu_group in the struct device and get the
409 * driver probed
410 */
iommu_init_device(struct device * dev)411 static int iommu_init_device(struct device *dev)
412 {
413 const struct iommu_ops *ops;
414 struct iommu_device *iommu_dev;
415 struct iommu_group *group;
416 int ret;
417
418 if (!dev_iommu_get(dev))
419 return -ENOMEM;
420 /*
421 * For FDT-based systems and ACPI IORT/VIOT, the common firmware parsing
422 * is buried in the bus dma_configure path. Properly unpicking that is
423 * still a big job, so for now just invoke the whole thing. The device
424 * already having a driver bound means dma_configure has already run and
425 * either found no IOMMU to wait for, or we're in its replay call right
426 * now, so either way there's no point calling it again.
427 */
428 if (!dev->driver && dev->bus->dma_configure) {
429 mutex_unlock(&iommu_probe_device_lock);
430 dev->bus->dma_configure(dev);
431 mutex_lock(&iommu_probe_device_lock);
432 }
433 /*
434 * At this point, relevant devices either now have a fwspec which will
435 * match ops registered with a non-NULL fwnode, or we can reasonably
436 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can
437 * be present, and that any of their registered instances has suitable
438 * ops for probing, and thus cheekily co-opt the same mechanism.
439 */
440 ops = iommu_fwspec_ops(dev->iommu->fwspec);
441 if (!ops) {
442 ret = -ENODEV;
443 goto err_free;
444 }
445
446 if (!try_module_get(ops->owner)) {
447 ret = -EINVAL;
448 goto err_free;
449 }
450
451 iommu_dev = ops->probe_device(dev);
452 if (IS_ERR(iommu_dev)) {
453 ret = PTR_ERR(iommu_dev);
454 goto err_module_put;
455 }
456 dev->iommu->iommu_dev = iommu_dev;
457
458 ret = iommu_device_link(iommu_dev, dev);
459 if (ret)
460 goto err_release;
461
462 group = ops->device_group(dev);
463 if (WARN_ON_ONCE(group == NULL))
464 group = ERR_PTR(-EINVAL);
465 if (IS_ERR(group)) {
466 ret = PTR_ERR(group);
467 goto err_unlink;
468 }
469 dev->iommu_group = group;
470
471 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
472 if (ops->is_attach_deferred)
473 dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
474 return 0;
475
476 err_unlink:
477 iommu_device_unlink(iommu_dev, dev);
478 err_release:
479 if (ops->release_device)
480 ops->release_device(dev);
481 err_module_put:
482 module_put(ops->owner);
483 err_free:
484 dev->iommu->iommu_dev = NULL;
485 dev_iommu_free(dev);
486 return ret;
487 }
488
iommu_deinit_device(struct device * dev)489 static void iommu_deinit_device(struct device *dev)
490 {
491 struct iommu_group *group = dev->iommu_group;
492 const struct iommu_ops *ops = dev_iommu_ops(dev);
493
494 lockdep_assert_held(&group->mutex);
495
496 iommu_device_unlink(dev->iommu->iommu_dev, dev);
497
498 /*
499 * release_device() must stop using any attached domain on the device.
500 * If there are still other devices in the group, they are not affected
501 * by this callback.
502 *
503 * If the iommu driver provides release_domain, the core code ensures
504 * that domain is attached prior to calling release_device. Drivers can
505 * use this to enforce a translation on the idle iommu. Typically, the
506 * global static blocked_domain is a good choice.
507 *
508 * Otherwise, the iommu driver must set the device to either an identity
509 * or a blocking translation in release_device() and stop using any
510 * domain pointer, as it is going to be freed.
511 *
512 * Regardless, if a delayed attach never occurred, then the release
513 * should still avoid touching any hardware configuration either.
514 */
515 if (!dev->iommu->attach_deferred && ops->release_domain)
516 ops->release_domain->ops->attach_dev(ops->release_domain, dev);
517
518 if (ops->release_device)
519 ops->release_device(dev);
520
521 /*
522 * If this is the last driver to use the group then we must free the
523 * domains before we do the module_put().
524 */
525 if (list_empty(&group->devices)) {
526 if (group->default_domain) {
527 iommu_domain_free(group->default_domain);
528 group->default_domain = NULL;
529 }
530 if (group->blocking_domain) {
531 iommu_domain_free(group->blocking_domain);
532 group->blocking_domain = NULL;
533 }
534 group->domain = NULL;
535 }
536
537 /* Caller must put iommu_group */
538 dev->iommu_group = NULL;
539 module_put(ops->owner);
540 dev_iommu_free(dev);
541 #ifdef CONFIG_IOMMU_DMA
542 dev->dma_iommu = false;
543 #endif
544 }
545
pasid_array_entry_to_domain(void * entry)546 static struct iommu_domain *pasid_array_entry_to_domain(void *entry)
547 {
548 if (xa_pointer_tag(entry) == IOMMU_PASID_ARRAY_DOMAIN)
549 return xa_untag_pointer(entry);
550 return ((struct iommu_attach_handle *)xa_untag_pointer(entry))->domain;
551 }
552
553 DEFINE_MUTEX(iommu_probe_device_lock);
554
__iommu_probe_device(struct device * dev,struct list_head * group_list)555 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
556 {
557 struct iommu_group *group;
558 struct group_device *gdev;
559 int ret;
560
561 /*
562 * Serialise to avoid races between IOMMU drivers registering in
563 * parallel and/or the "replay" calls from ACPI/OF code via client
564 * driver probe. Once the latter have been cleaned up we should
565 * probably be able to use device_lock() here to minimise the scope,
566 * but for now enforcing a simple global ordering is fine.
567 */
568 lockdep_assert_held(&iommu_probe_device_lock);
569
570 /* Device is probed already if in a group */
571 if (dev->iommu_group)
572 return 0;
573
574 ret = iommu_init_device(dev);
575 if (ret)
576 return ret;
577 /*
578 * And if we do now see any replay calls, they would indicate someone
579 * misusing the dma_configure path outside bus code.
580 */
581 if (dev->driver)
582 dev_WARN(dev, "late IOMMU probe at driver bind, something fishy here!\n");
583
584 group = dev->iommu_group;
585 gdev = iommu_group_alloc_device(group, dev);
586 mutex_lock(&group->mutex);
587 if (IS_ERR(gdev)) {
588 ret = PTR_ERR(gdev);
589 goto err_put_group;
590 }
591
592 /*
593 * The gdev must be in the list before calling
594 * iommu_setup_default_domain()
595 */
596 list_add_tail(&gdev->list, &group->devices);
597 WARN_ON(group->default_domain && !group->domain);
598 if (group->default_domain)
599 iommu_create_device_direct_mappings(group->default_domain, dev);
600 if (group->domain) {
601 ret = __iommu_device_set_domain(group, dev, group->domain, 0);
602 if (ret)
603 goto err_remove_gdev;
604 } else if (!group->default_domain && !group_list) {
605 ret = iommu_setup_default_domain(group, 0);
606 if (ret)
607 goto err_remove_gdev;
608 } else if (!group->default_domain) {
609 /*
610 * With a group_list argument we defer the default_domain setup
611 * to the caller by providing a de-duplicated list of groups
612 * that need further setup.
613 */
614 if (list_empty(&group->entry))
615 list_add_tail(&group->entry, group_list);
616 }
617
618 if (group->default_domain)
619 iommu_setup_dma_ops(dev);
620
621 mutex_unlock(&group->mutex);
622
623 return 0;
624
625 err_remove_gdev:
626 list_del(&gdev->list);
627 __iommu_group_free_device(group, gdev);
628 err_put_group:
629 iommu_deinit_device(dev);
630 mutex_unlock(&group->mutex);
631 iommu_group_put(group);
632
633 return ret;
634 }
635
iommu_probe_device(struct device * dev)636 int iommu_probe_device(struct device *dev)
637 {
638 const struct iommu_ops *ops;
639 int ret;
640
641 mutex_lock(&iommu_probe_device_lock);
642 ret = __iommu_probe_device(dev, NULL);
643 mutex_unlock(&iommu_probe_device_lock);
644 if (ret)
645 return ret;
646
647 ops = dev_iommu_ops(dev);
648 if (ops->probe_finalize)
649 ops->probe_finalize(dev);
650
651 return 0;
652 }
653
__iommu_group_free_device(struct iommu_group * group,struct group_device * grp_dev)654 static void __iommu_group_free_device(struct iommu_group *group,
655 struct group_device *grp_dev)
656 {
657 struct device *dev = grp_dev->dev;
658
659 sysfs_remove_link(group->devices_kobj, grp_dev->name);
660 sysfs_remove_link(&dev->kobj, "iommu_group");
661
662 trace_remove_device_from_group(group->id, dev);
663
664 /*
665 * If the group has become empty then ownership must have been
666 * released, and the current domain must be set back to NULL or
667 * the default domain.
668 */
669 if (list_empty(&group->devices))
670 WARN_ON(group->owner_cnt ||
671 group->domain != group->default_domain);
672
673 kfree(grp_dev->name);
674 kfree(grp_dev);
675 }
676
677 /* Remove the iommu_group from the struct device. */
__iommu_group_remove_device(struct device * dev)678 static void __iommu_group_remove_device(struct device *dev)
679 {
680 struct iommu_group *group = dev->iommu_group;
681 struct group_device *device;
682
683 mutex_lock(&group->mutex);
684 for_each_group_device(group, device) {
685 if (device->dev != dev)
686 continue;
687
688 list_del(&device->list);
689 __iommu_group_free_device(group, device);
690 if (dev_has_iommu(dev))
691 iommu_deinit_device(dev);
692 else
693 dev->iommu_group = NULL;
694 break;
695 }
696 mutex_unlock(&group->mutex);
697
698 /*
699 * Pairs with the get in iommu_init_device() or
700 * iommu_group_add_device()
701 */
702 iommu_group_put(group);
703 }
704
iommu_release_device(struct device * dev)705 static void iommu_release_device(struct device *dev)
706 {
707 struct iommu_group *group = dev->iommu_group;
708
709 if (group)
710 __iommu_group_remove_device(dev);
711
712 /* Free any fwspec if no iommu_driver was ever attached */
713 if (dev->iommu)
714 dev_iommu_free(dev);
715 }
716
iommu_set_def_domain_type(char * str)717 static int __init iommu_set_def_domain_type(char *str)
718 {
719 bool pt;
720 int ret;
721
722 ret = kstrtobool(str, &pt);
723 if (ret)
724 return ret;
725
726 if (pt)
727 iommu_set_default_passthrough(true);
728 else
729 iommu_set_default_translated(true);
730
731 return 0;
732 }
733 early_param("iommu.passthrough", iommu_set_def_domain_type);
734
iommu_dma_setup(char * str)735 static int __init iommu_dma_setup(char *str)
736 {
737 int ret = kstrtobool(str, &iommu_dma_strict);
738
739 if (!ret)
740 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
741 return ret;
742 }
743 early_param("iommu.strict", iommu_dma_setup);
744
iommu_set_dma_strict(void)745 void iommu_set_dma_strict(void)
746 {
747 iommu_dma_strict = true;
748 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
749 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
750 }
751
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)752 static ssize_t iommu_group_attr_show(struct kobject *kobj,
753 struct attribute *__attr, char *buf)
754 {
755 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
756 struct iommu_group *group = to_iommu_group(kobj);
757 ssize_t ret = -EIO;
758
759 if (attr->show)
760 ret = attr->show(group, buf);
761 return ret;
762 }
763
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)764 static ssize_t iommu_group_attr_store(struct kobject *kobj,
765 struct attribute *__attr,
766 const char *buf, size_t count)
767 {
768 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
769 struct iommu_group *group = to_iommu_group(kobj);
770 ssize_t ret = -EIO;
771
772 if (attr->store)
773 ret = attr->store(group, buf, count);
774 return ret;
775 }
776
777 static const struct sysfs_ops iommu_group_sysfs_ops = {
778 .show = iommu_group_attr_show,
779 .store = iommu_group_attr_store,
780 };
781
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)782 static int iommu_group_create_file(struct iommu_group *group,
783 struct iommu_group_attribute *attr)
784 {
785 return sysfs_create_file(&group->kobj, &attr->attr);
786 }
787
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)788 static void iommu_group_remove_file(struct iommu_group *group,
789 struct iommu_group_attribute *attr)
790 {
791 sysfs_remove_file(&group->kobj, &attr->attr);
792 }
793
iommu_group_show_name(struct iommu_group * group,char * buf)794 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
795 {
796 return sysfs_emit(buf, "%s\n", group->name);
797 }
798
799 /**
800 * iommu_insert_resv_region - Insert a new region in the
801 * list of reserved regions.
802 * @new: new region to insert
803 * @regions: list of regions
804 *
805 * Elements are sorted by start address and overlapping segments
806 * of the same type are merged.
807 */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)808 static int iommu_insert_resv_region(struct iommu_resv_region *new,
809 struct list_head *regions)
810 {
811 struct iommu_resv_region *iter, *tmp, *nr, *top;
812 LIST_HEAD(stack);
813
814 nr = iommu_alloc_resv_region(new->start, new->length,
815 new->prot, new->type, GFP_KERNEL);
816 if (!nr)
817 return -ENOMEM;
818
819 /* First add the new element based on start address sorting */
820 list_for_each_entry(iter, regions, list) {
821 if (nr->start < iter->start ||
822 (nr->start == iter->start && nr->type <= iter->type))
823 break;
824 }
825 list_add_tail(&nr->list, &iter->list);
826
827 /* Merge overlapping segments of type nr->type in @regions, if any */
828 list_for_each_entry_safe(iter, tmp, regions, list) {
829 phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
830
831 /* no merge needed on elements of different types than @new */
832 if (iter->type != new->type) {
833 list_move_tail(&iter->list, &stack);
834 continue;
835 }
836
837 /* look for the last stack element of same type as @iter */
838 list_for_each_entry_reverse(top, &stack, list)
839 if (top->type == iter->type)
840 goto check_overlap;
841
842 list_move_tail(&iter->list, &stack);
843 continue;
844
845 check_overlap:
846 top_end = top->start + top->length - 1;
847
848 if (iter->start > top_end + 1) {
849 list_move_tail(&iter->list, &stack);
850 } else {
851 top->length = max(top_end, iter_end) - top->start + 1;
852 list_del(&iter->list);
853 kfree(iter);
854 }
855 }
856 list_splice(&stack, regions);
857 return 0;
858 }
859
860 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)861 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
862 struct list_head *group_resv_regions)
863 {
864 struct iommu_resv_region *entry;
865 int ret = 0;
866
867 list_for_each_entry(entry, dev_resv_regions, list) {
868 ret = iommu_insert_resv_region(entry, group_resv_regions);
869 if (ret)
870 break;
871 }
872 return ret;
873 }
874
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)875 int iommu_get_group_resv_regions(struct iommu_group *group,
876 struct list_head *head)
877 {
878 struct group_device *device;
879 int ret = 0;
880
881 mutex_lock(&group->mutex);
882 for_each_group_device(group, device) {
883 struct list_head dev_resv_regions;
884
885 /*
886 * Non-API groups still expose reserved_regions in sysfs,
887 * so filter out calls that get here that way.
888 */
889 if (!dev_has_iommu(device->dev))
890 break;
891
892 INIT_LIST_HEAD(&dev_resv_regions);
893 iommu_get_resv_regions(device->dev, &dev_resv_regions);
894 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
895 iommu_put_resv_regions(device->dev, &dev_resv_regions);
896 if (ret)
897 break;
898 }
899 mutex_unlock(&group->mutex);
900 return ret;
901 }
902 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
903
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)904 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
905 char *buf)
906 {
907 struct iommu_resv_region *region, *next;
908 struct list_head group_resv_regions;
909 int offset = 0;
910
911 INIT_LIST_HEAD(&group_resv_regions);
912 iommu_get_group_resv_regions(group, &group_resv_regions);
913
914 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
915 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
916 (long long)region->start,
917 (long long)(region->start +
918 region->length - 1),
919 iommu_group_resv_type_string[region->type]);
920 kfree(region);
921 }
922
923 return offset;
924 }
925
iommu_group_show_type(struct iommu_group * group,char * buf)926 static ssize_t iommu_group_show_type(struct iommu_group *group,
927 char *buf)
928 {
929 char *type = "unknown";
930
931 mutex_lock(&group->mutex);
932 if (group->default_domain) {
933 switch (group->default_domain->type) {
934 case IOMMU_DOMAIN_BLOCKED:
935 type = "blocked";
936 break;
937 case IOMMU_DOMAIN_IDENTITY:
938 type = "identity";
939 break;
940 case IOMMU_DOMAIN_UNMANAGED:
941 type = "unmanaged";
942 break;
943 case IOMMU_DOMAIN_DMA:
944 type = "DMA";
945 break;
946 case IOMMU_DOMAIN_DMA_FQ:
947 type = "DMA-FQ";
948 break;
949 }
950 }
951 mutex_unlock(&group->mutex);
952
953 return sysfs_emit(buf, "%s\n", type);
954 }
955
956 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
957
958 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
959 iommu_group_show_resv_regions, NULL);
960
961 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
962 iommu_group_store_type);
963
iommu_group_release(struct kobject * kobj)964 static void iommu_group_release(struct kobject *kobj)
965 {
966 struct iommu_group *group = to_iommu_group(kobj);
967
968 pr_debug("Releasing group %d\n", group->id);
969
970 if (group->iommu_data_release)
971 group->iommu_data_release(group->iommu_data);
972
973 ida_free(&iommu_group_ida, group->id);
974
975 /* Domains are free'd by iommu_deinit_device() */
976 WARN_ON(group->default_domain);
977 WARN_ON(group->blocking_domain);
978
979 kfree(group->name);
980 kfree(group);
981 }
982
983 static const struct kobj_type iommu_group_ktype = {
984 .sysfs_ops = &iommu_group_sysfs_ops,
985 .release = iommu_group_release,
986 };
987
988 /**
989 * iommu_group_alloc - Allocate a new group
990 *
991 * This function is called by an iommu driver to allocate a new iommu
992 * group. The iommu group represents the minimum granularity of the iommu.
993 * Upon successful return, the caller holds a reference to the supplied
994 * group in order to hold the group until devices are added. Use
995 * iommu_group_put() to release this extra reference count, allowing the
996 * group to be automatically reclaimed once it has no devices or external
997 * references.
998 */
iommu_group_alloc(void)999 struct iommu_group *iommu_group_alloc(void)
1000 {
1001 struct iommu_group *group;
1002 int ret;
1003
1004 group = kzalloc(sizeof(*group), GFP_KERNEL);
1005 if (!group)
1006 return ERR_PTR(-ENOMEM);
1007
1008 group->kobj.kset = iommu_group_kset;
1009 mutex_init(&group->mutex);
1010 INIT_LIST_HEAD(&group->devices);
1011 INIT_LIST_HEAD(&group->entry);
1012 xa_init(&group->pasid_array);
1013
1014 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
1015 if (ret < 0) {
1016 kfree(group);
1017 return ERR_PTR(ret);
1018 }
1019 group->id = ret;
1020
1021 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
1022 NULL, "%d", group->id);
1023 if (ret) {
1024 kobject_put(&group->kobj);
1025 return ERR_PTR(ret);
1026 }
1027
1028 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
1029 if (!group->devices_kobj) {
1030 kobject_put(&group->kobj); /* triggers .release & free */
1031 return ERR_PTR(-ENOMEM);
1032 }
1033
1034 /*
1035 * The devices_kobj holds a reference on the group kobject, so
1036 * as long as that exists so will the group. We can therefore
1037 * use the devices_kobj for reference counting.
1038 */
1039 kobject_put(&group->kobj);
1040
1041 ret = iommu_group_create_file(group,
1042 &iommu_group_attr_reserved_regions);
1043 if (ret) {
1044 kobject_put(group->devices_kobj);
1045 return ERR_PTR(ret);
1046 }
1047
1048 ret = iommu_group_create_file(group, &iommu_group_attr_type);
1049 if (ret) {
1050 kobject_put(group->devices_kobj);
1051 return ERR_PTR(ret);
1052 }
1053
1054 pr_debug("Allocated group %d\n", group->id);
1055
1056 return group;
1057 }
1058 EXPORT_SYMBOL_GPL(iommu_group_alloc);
1059
1060 /**
1061 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
1062 * @group: the group
1063 *
1064 * iommu drivers can store data in the group for use when doing iommu
1065 * operations. This function provides a way to retrieve it. Caller
1066 * should hold a group reference.
1067 */
iommu_group_get_iommudata(struct iommu_group * group)1068 void *iommu_group_get_iommudata(struct iommu_group *group)
1069 {
1070 return group->iommu_data;
1071 }
1072 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1073
1074 /**
1075 * iommu_group_set_iommudata - set iommu_data for a group
1076 * @group: the group
1077 * @iommu_data: new data
1078 * @release: release function for iommu_data
1079 *
1080 * iommu drivers can store data in the group for use when doing iommu
1081 * operations. This function provides a way to set the data after
1082 * the group has been allocated. Caller should hold a group reference.
1083 */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))1084 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1085 void (*release)(void *iommu_data))
1086 {
1087 group->iommu_data = iommu_data;
1088 group->iommu_data_release = release;
1089 }
1090 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1091
1092 /**
1093 * iommu_group_set_name - set name for a group
1094 * @group: the group
1095 * @name: name
1096 *
1097 * Allow iommu driver to set a name for a group. When set it will
1098 * appear in a name attribute file under the group in sysfs.
1099 */
iommu_group_set_name(struct iommu_group * group,const char * name)1100 int iommu_group_set_name(struct iommu_group *group, const char *name)
1101 {
1102 int ret;
1103
1104 if (group->name) {
1105 iommu_group_remove_file(group, &iommu_group_attr_name);
1106 kfree(group->name);
1107 group->name = NULL;
1108 if (!name)
1109 return 0;
1110 }
1111
1112 group->name = kstrdup(name, GFP_KERNEL);
1113 if (!group->name)
1114 return -ENOMEM;
1115
1116 ret = iommu_group_create_file(group, &iommu_group_attr_name);
1117 if (ret) {
1118 kfree(group->name);
1119 group->name = NULL;
1120 return ret;
1121 }
1122
1123 return 0;
1124 }
1125 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1126
iommu_create_device_direct_mappings(struct iommu_domain * domain,struct device * dev)1127 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1128 struct device *dev)
1129 {
1130 struct iommu_resv_region *entry;
1131 struct list_head mappings;
1132 unsigned long pg_size;
1133 int ret = 0;
1134
1135 pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1136 INIT_LIST_HEAD(&mappings);
1137
1138 if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1139 return -EINVAL;
1140
1141 iommu_get_resv_regions(dev, &mappings);
1142
1143 /* We need to consider overlapping regions for different devices */
1144 list_for_each_entry(entry, &mappings, list) {
1145 dma_addr_t start, end, addr;
1146 size_t map_size = 0;
1147
1148 if (entry->type == IOMMU_RESV_DIRECT)
1149 dev->iommu->require_direct = 1;
1150
1151 if ((entry->type != IOMMU_RESV_DIRECT &&
1152 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1153 !iommu_is_dma_domain(domain))
1154 continue;
1155
1156 start = ALIGN(entry->start, pg_size);
1157 end = ALIGN(entry->start + entry->length, pg_size);
1158
1159 for (addr = start; addr <= end; addr += pg_size) {
1160 phys_addr_t phys_addr;
1161
1162 if (addr == end)
1163 goto map_end;
1164
1165 phys_addr = iommu_iova_to_phys(domain, addr);
1166 if (!phys_addr) {
1167 map_size += pg_size;
1168 continue;
1169 }
1170
1171 map_end:
1172 if (map_size) {
1173 ret = iommu_map(domain, addr - map_size,
1174 addr - map_size, map_size,
1175 entry->prot, GFP_KERNEL);
1176 if (ret)
1177 goto out;
1178 map_size = 0;
1179 }
1180 }
1181
1182 }
1183 out:
1184 iommu_put_resv_regions(dev, &mappings);
1185
1186 return ret;
1187 }
1188
1189 /* This is undone by __iommu_group_free_device() */
iommu_group_alloc_device(struct iommu_group * group,struct device * dev)1190 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1191 struct device *dev)
1192 {
1193 int ret, i = 0;
1194 struct group_device *device;
1195
1196 device = kzalloc(sizeof(*device), GFP_KERNEL);
1197 if (!device)
1198 return ERR_PTR(-ENOMEM);
1199
1200 device->dev = dev;
1201
1202 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1203 if (ret)
1204 goto err_free_device;
1205
1206 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1207 rename:
1208 if (!device->name) {
1209 ret = -ENOMEM;
1210 goto err_remove_link;
1211 }
1212
1213 ret = sysfs_create_link_nowarn(group->devices_kobj,
1214 &dev->kobj, device->name);
1215 if (ret) {
1216 if (ret == -EEXIST && i >= 0) {
1217 /*
1218 * Account for the slim chance of collision
1219 * and append an instance to the name.
1220 */
1221 kfree(device->name);
1222 device->name = kasprintf(GFP_KERNEL, "%s.%d",
1223 kobject_name(&dev->kobj), i++);
1224 goto rename;
1225 }
1226 goto err_free_name;
1227 }
1228
1229 trace_add_device_to_group(group->id, dev);
1230
1231 dev_info(dev, "Adding to iommu group %d\n", group->id);
1232
1233 return device;
1234
1235 err_free_name:
1236 kfree(device->name);
1237 err_remove_link:
1238 sysfs_remove_link(&dev->kobj, "iommu_group");
1239 err_free_device:
1240 kfree(device);
1241 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1242 return ERR_PTR(ret);
1243 }
1244
1245 /**
1246 * iommu_group_add_device - add a device to an iommu group
1247 * @group: the group into which to add the device (reference should be held)
1248 * @dev: the device
1249 *
1250 * This function is called by an iommu driver to add a device into a
1251 * group. Adding a device increments the group reference count.
1252 */
iommu_group_add_device(struct iommu_group * group,struct device * dev)1253 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1254 {
1255 struct group_device *gdev;
1256
1257 gdev = iommu_group_alloc_device(group, dev);
1258 if (IS_ERR(gdev))
1259 return PTR_ERR(gdev);
1260
1261 iommu_group_ref_get(group);
1262 dev->iommu_group = group;
1263
1264 mutex_lock(&group->mutex);
1265 list_add_tail(&gdev->list, &group->devices);
1266 mutex_unlock(&group->mutex);
1267 return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1270
1271 /**
1272 * iommu_group_remove_device - remove a device from it's current group
1273 * @dev: device to be removed
1274 *
1275 * This function is called by an iommu driver to remove the device from
1276 * it's current group. This decrements the iommu group reference count.
1277 */
iommu_group_remove_device(struct device * dev)1278 void iommu_group_remove_device(struct device *dev)
1279 {
1280 struct iommu_group *group = dev->iommu_group;
1281
1282 if (!group)
1283 return;
1284
1285 dev_info(dev, "Removing from iommu group %d\n", group->id);
1286
1287 __iommu_group_remove_device(dev);
1288 }
1289 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1290
1291 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API)
1292 /**
1293 * iommu_group_mutex_assert - Check device group mutex lock
1294 * @dev: the device that has group param set
1295 *
1296 * This function is called by an iommu driver to check whether it holds
1297 * group mutex lock for the given device or not.
1298 *
1299 * Note that this function must be called after device group param is set.
1300 */
iommu_group_mutex_assert(struct device * dev)1301 void iommu_group_mutex_assert(struct device *dev)
1302 {
1303 struct iommu_group *group = dev->iommu_group;
1304
1305 lockdep_assert_held(&group->mutex);
1306 }
1307 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert);
1308 #endif
1309
iommu_group_first_dev(struct iommu_group * group)1310 static struct device *iommu_group_first_dev(struct iommu_group *group)
1311 {
1312 lockdep_assert_held(&group->mutex);
1313 return list_first_entry(&group->devices, struct group_device, list)->dev;
1314 }
1315
1316 /**
1317 * iommu_group_for_each_dev - iterate over each device in the group
1318 * @group: the group
1319 * @data: caller opaque data to be passed to callback function
1320 * @fn: caller supplied callback function
1321 *
1322 * This function is called by group users to iterate over group devices.
1323 * Callers should hold a reference count to the group during callback.
1324 * The group->mutex is held across callbacks, which will block calls to
1325 * iommu_group_add/remove_device.
1326 */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1327 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1328 int (*fn)(struct device *, void *))
1329 {
1330 struct group_device *device;
1331 int ret = 0;
1332
1333 mutex_lock(&group->mutex);
1334 for_each_group_device(group, device) {
1335 ret = fn(device->dev, data);
1336 if (ret)
1337 break;
1338 }
1339 mutex_unlock(&group->mutex);
1340
1341 return ret;
1342 }
1343 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1344
1345 /**
1346 * iommu_group_get - Return the group for a device and increment reference
1347 * @dev: get the group that this device belongs to
1348 *
1349 * This function is called by iommu drivers and users to get the group
1350 * for the specified device. If found, the group is returned and the group
1351 * reference in incremented, else NULL.
1352 */
iommu_group_get(struct device * dev)1353 struct iommu_group *iommu_group_get(struct device *dev)
1354 {
1355 struct iommu_group *group = dev->iommu_group;
1356
1357 if (group)
1358 kobject_get(group->devices_kobj);
1359
1360 return group;
1361 }
1362 EXPORT_SYMBOL_GPL(iommu_group_get);
1363
1364 /**
1365 * iommu_group_ref_get - Increment reference on a group
1366 * @group: the group to use, must not be NULL
1367 *
1368 * This function is called by iommu drivers to take additional references on an
1369 * existing group. Returns the given group for convenience.
1370 */
iommu_group_ref_get(struct iommu_group * group)1371 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1372 {
1373 kobject_get(group->devices_kobj);
1374 return group;
1375 }
1376 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1377
1378 /**
1379 * iommu_group_put - Decrement group reference
1380 * @group: the group to use
1381 *
1382 * This function is called by iommu drivers and users to release the
1383 * iommu group. Once the reference count is zero, the group is released.
1384 */
iommu_group_put(struct iommu_group * group)1385 void iommu_group_put(struct iommu_group *group)
1386 {
1387 if (group)
1388 kobject_put(group->devices_kobj);
1389 }
1390 EXPORT_SYMBOL_GPL(iommu_group_put);
1391
1392 /**
1393 * iommu_group_id - Return ID for a group
1394 * @group: the group to ID
1395 *
1396 * Return the unique ID for the group matching the sysfs group number.
1397 */
iommu_group_id(struct iommu_group * group)1398 int iommu_group_id(struct iommu_group *group)
1399 {
1400 return group->id;
1401 }
1402 EXPORT_SYMBOL_GPL(iommu_group_id);
1403
1404 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1405 unsigned long *devfns);
1406
1407 /*
1408 * To consider a PCI device isolated, we require ACS to support Source
1409 * Validation, Request Redirection, Completer Redirection, and Upstream
1410 * Forwarding. This effectively means that devices cannot spoof their
1411 * requester ID, requests and completions cannot be redirected, and all
1412 * transactions are forwarded upstream, even as it passes through a
1413 * bridge where the target device is downstream.
1414 */
1415 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1416
1417 /*
1418 * For multifunction devices which are not isolated from each other, find
1419 * all the other non-isolated functions and look for existing groups. For
1420 * each function, we also need to look for aliases to or from other devices
1421 * that may already have a group.
1422 */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1423 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1424 unsigned long *devfns)
1425 {
1426 struct pci_dev *tmp = NULL;
1427 struct iommu_group *group;
1428
1429 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1430 return NULL;
1431
1432 for_each_pci_dev(tmp) {
1433 if (tmp == pdev || tmp->bus != pdev->bus ||
1434 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1435 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1436 continue;
1437
1438 group = get_pci_alias_group(tmp, devfns);
1439 if (group) {
1440 pci_dev_put(tmp);
1441 return group;
1442 }
1443 }
1444
1445 return NULL;
1446 }
1447
1448 /*
1449 * Look for aliases to or from the given device for existing groups. DMA
1450 * aliases are only supported on the same bus, therefore the search
1451 * space is quite small (especially since we're really only looking at pcie
1452 * device, and therefore only expect multiple slots on the root complex or
1453 * downstream switch ports). It's conceivable though that a pair of
1454 * multifunction devices could have aliases between them that would cause a
1455 * loop. To prevent this, we use a bitmap to track where we've been.
1456 */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1457 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1458 unsigned long *devfns)
1459 {
1460 struct pci_dev *tmp = NULL;
1461 struct iommu_group *group;
1462
1463 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1464 return NULL;
1465
1466 group = iommu_group_get(&pdev->dev);
1467 if (group)
1468 return group;
1469
1470 for_each_pci_dev(tmp) {
1471 if (tmp == pdev || tmp->bus != pdev->bus)
1472 continue;
1473
1474 /* We alias them or they alias us */
1475 if (pci_devs_are_dma_aliases(pdev, tmp)) {
1476 group = get_pci_alias_group(tmp, devfns);
1477 if (group) {
1478 pci_dev_put(tmp);
1479 return group;
1480 }
1481
1482 group = get_pci_function_alias_group(tmp, devfns);
1483 if (group) {
1484 pci_dev_put(tmp);
1485 return group;
1486 }
1487 }
1488 }
1489
1490 return NULL;
1491 }
1492
1493 struct group_for_pci_data {
1494 struct pci_dev *pdev;
1495 struct iommu_group *group;
1496 };
1497
1498 /*
1499 * DMA alias iterator callback, return the last seen device. Stop and return
1500 * the IOMMU group if we find one along the way.
1501 */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1502 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1503 {
1504 struct group_for_pci_data *data = opaque;
1505
1506 data->pdev = pdev;
1507 data->group = iommu_group_get(&pdev->dev);
1508
1509 return data->group != NULL;
1510 }
1511
1512 /*
1513 * Generic device_group call-back function. It just allocates one
1514 * iommu-group per device.
1515 */
generic_device_group(struct device * dev)1516 struct iommu_group *generic_device_group(struct device *dev)
1517 {
1518 return iommu_group_alloc();
1519 }
1520 EXPORT_SYMBOL_GPL(generic_device_group);
1521
1522 /*
1523 * Generic device_group call-back function. It just allocates one
1524 * iommu-group per iommu driver instance shared by every device
1525 * probed by that iommu driver.
1526 */
generic_single_device_group(struct device * dev)1527 struct iommu_group *generic_single_device_group(struct device *dev)
1528 {
1529 struct iommu_device *iommu = dev->iommu->iommu_dev;
1530
1531 if (!iommu->singleton_group) {
1532 struct iommu_group *group;
1533
1534 group = iommu_group_alloc();
1535 if (IS_ERR(group))
1536 return group;
1537 iommu->singleton_group = group;
1538 }
1539 return iommu_group_ref_get(iommu->singleton_group);
1540 }
1541 EXPORT_SYMBOL_GPL(generic_single_device_group);
1542
1543 /*
1544 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1545 * to find or create an IOMMU group for a device.
1546 */
pci_device_group(struct device * dev)1547 struct iommu_group *pci_device_group(struct device *dev)
1548 {
1549 struct pci_dev *pdev = to_pci_dev(dev);
1550 struct group_for_pci_data data;
1551 struct pci_bus *bus;
1552 struct iommu_group *group = NULL;
1553 u64 devfns[4] = { 0 };
1554
1555 if (WARN_ON(!dev_is_pci(dev)))
1556 return ERR_PTR(-EINVAL);
1557
1558 /*
1559 * Find the upstream DMA alias for the device. A device must not
1560 * be aliased due to topology in order to have its own IOMMU group.
1561 * If we find an alias along the way that already belongs to a
1562 * group, use it.
1563 */
1564 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1565 return data.group;
1566
1567 pdev = data.pdev;
1568
1569 /*
1570 * Continue upstream from the point of minimum IOMMU granularity
1571 * due to aliases to the point where devices are protected from
1572 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
1573 * group, use it.
1574 */
1575 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1576 if (!bus->self)
1577 continue;
1578
1579 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1580 break;
1581
1582 pdev = bus->self;
1583
1584 group = iommu_group_get(&pdev->dev);
1585 if (group)
1586 return group;
1587 }
1588
1589 /*
1590 * Look for existing groups on device aliases. If we alias another
1591 * device or another device aliases us, use the same group.
1592 */
1593 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1594 if (group)
1595 return group;
1596
1597 /*
1598 * Look for existing groups on non-isolated functions on the same
1599 * slot and aliases of those funcions, if any. No need to clear
1600 * the search bitmap, the tested devfns are still valid.
1601 */
1602 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1603 if (group)
1604 return group;
1605
1606 /* No shared group found, allocate new */
1607 return iommu_group_alloc();
1608 }
1609 EXPORT_SYMBOL_GPL(pci_device_group);
1610
1611 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1612 struct iommu_group *fsl_mc_device_group(struct device *dev)
1613 {
1614 struct device *cont_dev = fsl_mc_cont_dev(dev);
1615 struct iommu_group *group;
1616
1617 group = iommu_group_get(cont_dev);
1618 if (!group)
1619 group = iommu_group_alloc();
1620 return group;
1621 }
1622 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1623
__iommu_alloc_identity_domain(struct device * dev)1624 static struct iommu_domain *__iommu_alloc_identity_domain(struct device *dev)
1625 {
1626 const struct iommu_ops *ops = dev_iommu_ops(dev);
1627 struct iommu_domain *domain;
1628
1629 if (ops->identity_domain)
1630 return ops->identity_domain;
1631
1632 /* Older drivers create the identity domain via ops->domain_alloc() */
1633 if (!ops->domain_alloc)
1634 return ERR_PTR(-EOPNOTSUPP);
1635
1636 domain = ops->domain_alloc(IOMMU_DOMAIN_IDENTITY);
1637 if (IS_ERR(domain))
1638 return domain;
1639 if (!domain)
1640 return ERR_PTR(-ENOMEM);
1641
1642 iommu_domain_init(domain, IOMMU_DOMAIN_IDENTITY, ops);
1643 return domain;
1644 }
1645
1646 static struct iommu_domain *
__iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1647 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1648 {
1649 struct device *dev = iommu_group_first_dev(group);
1650 struct iommu_domain *dom;
1651
1652 if (group->default_domain && group->default_domain->type == req_type)
1653 return group->default_domain;
1654
1655 /*
1656 * When allocating the DMA API domain assume that the driver is going to
1657 * use PASID and make sure the RID's domain is PASID compatible.
1658 */
1659 if (req_type & __IOMMU_DOMAIN_PAGING) {
1660 dom = __iommu_paging_domain_alloc_flags(dev, req_type,
1661 dev->iommu->max_pasids ? IOMMU_HWPT_ALLOC_PASID : 0);
1662
1663 /*
1664 * If driver does not support PASID feature then
1665 * try to allocate non-PASID domain
1666 */
1667 if (PTR_ERR(dom) == -EOPNOTSUPP)
1668 dom = __iommu_paging_domain_alloc_flags(dev, req_type, 0);
1669
1670 return dom;
1671 }
1672
1673 if (req_type == IOMMU_DOMAIN_IDENTITY)
1674 return __iommu_alloc_identity_domain(dev);
1675
1676 return ERR_PTR(-EINVAL);
1677 }
1678
1679 /*
1680 * req_type of 0 means "auto" which means to select a domain based on
1681 * iommu_def_domain_type or what the driver actually supports.
1682 */
1683 static struct iommu_domain *
iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1684 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1685 {
1686 const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group));
1687 struct iommu_domain *dom;
1688
1689 lockdep_assert_held(&group->mutex);
1690
1691 /*
1692 * Allow legacy drivers to specify the domain that will be the default
1693 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM
1694 * domain. Do not use in new drivers.
1695 */
1696 if (ops->default_domain) {
1697 if (req_type != ops->default_domain->type)
1698 return ERR_PTR(-EINVAL);
1699 return ops->default_domain;
1700 }
1701
1702 if (req_type)
1703 return __iommu_group_alloc_default_domain(group, req_type);
1704
1705 /* The driver gave no guidance on what type to use, try the default */
1706 dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type);
1707 if (!IS_ERR(dom))
1708 return dom;
1709
1710 /* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1711 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1712 return ERR_PTR(-EINVAL);
1713 dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA);
1714 if (IS_ERR(dom))
1715 return dom;
1716
1717 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1718 iommu_def_domain_type, group->name);
1719 return dom;
1720 }
1721
iommu_group_default_domain(struct iommu_group * group)1722 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1723 {
1724 return group->default_domain;
1725 }
1726
probe_iommu_group(struct device * dev,void * data)1727 static int probe_iommu_group(struct device *dev, void *data)
1728 {
1729 struct list_head *group_list = data;
1730 int ret;
1731
1732 mutex_lock(&iommu_probe_device_lock);
1733 ret = __iommu_probe_device(dev, group_list);
1734 mutex_unlock(&iommu_probe_device_lock);
1735 if (ret == -ENODEV)
1736 ret = 0;
1737
1738 return ret;
1739 }
1740
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1741 static int iommu_bus_notifier(struct notifier_block *nb,
1742 unsigned long action, void *data)
1743 {
1744 struct device *dev = data;
1745
1746 if (action == BUS_NOTIFY_ADD_DEVICE) {
1747 int ret;
1748
1749 ret = iommu_probe_device(dev);
1750 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1751 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1752 iommu_release_device(dev);
1753 return NOTIFY_OK;
1754 }
1755
1756 return 0;
1757 }
1758
1759 /*
1760 * Combine the driver's chosen def_domain_type across all the devices in a
1761 * group. Drivers must give a consistent result.
1762 */
iommu_get_def_domain_type(struct iommu_group * group,struct device * dev,int cur_type)1763 static int iommu_get_def_domain_type(struct iommu_group *group,
1764 struct device *dev, int cur_type)
1765 {
1766 const struct iommu_ops *ops = dev_iommu_ops(dev);
1767 int type;
1768
1769 if (ops->default_domain) {
1770 /*
1771 * Drivers that declare a global static default_domain will
1772 * always choose that.
1773 */
1774 type = ops->default_domain->type;
1775 } else {
1776 if (ops->def_domain_type)
1777 type = ops->def_domain_type(dev);
1778 else
1779 return cur_type;
1780 }
1781 if (!type || cur_type == type)
1782 return cur_type;
1783 if (!cur_type)
1784 return type;
1785
1786 dev_err_ratelimited(
1787 dev,
1788 "IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n",
1789 iommu_domain_type_str(cur_type), iommu_domain_type_str(type),
1790 group->id);
1791
1792 /*
1793 * Try to recover, drivers are allowed to force IDENTITY or DMA, IDENTITY
1794 * takes precedence.
1795 */
1796 if (type == IOMMU_DOMAIN_IDENTITY)
1797 return type;
1798 return cur_type;
1799 }
1800
1801 /*
1802 * A target_type of 0 will select the best domain type. 0 can be returned in
1803 * this case meaning the global default should be used.
1804 */
iommu_get_default_domain_type(struct iommu_group * group,int target_type)1805 static int iommu_get_default_domain_type(struct iommu_group *group,
1806 int target_type)
1807 {
1808 struct device *untrusted = NULL;
1809 struct group_device *gdev;
1810 int driver_type = 0;
1811
1812 lockdep_assert_held(&group->mutex);
1813
1814 /*
1815 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an
1816 * identity_domain and it will automatically become their default
1817 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain.
1818 * Override the selection to IDENTITY.
1819 */
1820 if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
1821 static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) &&
1822 IS_ENABLED(CONFIG_IOMMU_DMA)));
1823 driver_type = IOMMU_DOMAIN_IDENTITY;
1824 }
1825
1826 for_each_group_device(group, gdev) {
1827 driver_type = iommu_get_def_domain_type(group, gdev->dev,
1828 driver_type);
1829
1830 if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) {
1831 /*
1832 * No ARM32 using systems will set untrusted, it cannot
1833 * work.
1834 */
1835 if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)))
1836 return -1;
1837 untrusted = gdev->dev;
1838 }
1839 }
1840
1841 /*
1842 * If the common dma ops are not selected in kconfig then we cannot use
1843 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been
1844 * selected.
1845 */
1846 if (!IS_ENABLED(CONFIG_IOMMU_DMA)) {
1847 if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA))
1848 return -1;
1849 if (!driver_type)
1850 driver_type = IOMMU_DOMAIN_IDENTITY;
1851 }
1852
1853 if (untrusted) {
1854 if (driver_type && driver_type != IOMMU_DOMAIN_DMA) {
1855 dev_err_ratelimited(
1856 untrusted,
1857 "Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n",
1858 group->id, iommu_domain_type_str(driver_type));
1859 return -1;
1860 }
1861 driver_type = IOMMU_DOMAIN_DMA;
1862 }
1863
1864 if (target_type) {
1865 if (driver_type && target_type != driver_type)
1866 return -1;
1867 return target_type;
1868 }
1869 return driver_type;
1870 }
1871
iommu_group_do_probe_finalize(struct device * dev)1872 static void iommu_group_do_probe_finalize(struct device *dev)
1873 {
1874 const struct iommu_ops *ops = dev_iommu_ops(dev);
1875
1876 if (ops->probe_finalize)
1877 ops->probe_finalize(dev);
1878 }
1879
bus_iommu_probe(const struct bus_type * bus)1880 static int bus_iommu_probe(const struct bus_type *bus)
1881 {
1882 struct iommu_group *group, *next;
1883 LIST_HEAD(group_list);
1884 int ret;
1885
1886 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1887 if (ret)
1888 return ret;
1889
1890 list_for_each_entry_safe(group, next, &group_list, entry) {
1891 struct group_device *gdev;
1892
1893 mutex_lock(&group->mutex);
1894
1895 /* Remove item from the list */
1896 list_del_init(&group->entry);
1897
1898 /*
1899 * We go to the trouble of deferred default domain creation so
1900 * that the cross-group default domain type and the setup of the
1901 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1902 */
1903 ret = iommu_setup_default_domain(group, 0);
1904 if (ret) {
1905 mutex_unlock(&group->mutex);
1906 return ret;
1907 }
1908 for_each_group_device(group, gdev)
1909 iommu_setup_dma_ops(gdev->dev);
1910 mutex_unlock(&group->mutex);
1911
1912 /*
1913 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1914 * of some IOMMU drivers calls arm_iommu_attach_device() which
1915 * in-turn might call back into IOMMU core code, where it tries
1916 * to take group->mutex, resulting in a deadlock.
1917 */
1918 for_each_group_device(group, gdev)
1919 iommu_group_do_probe_finalize(gdev->dev);
1920 }
1921
1922 return 0;
1923 }
1924
1925 /**
1926 * device_iommu_capable() - check for a general IOMMU capability
1927 * @dev: device to which the capability would be relevant, if available
1928 * @cap: IOMMU capability
1929 *
1930 * Return: true if an IOMMU is present and supports the given capability
1931 * for the given device, otherwise false.
1932 */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1933 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1934 {
1935 const struct iommu_ops *ops;
1936
1937 if (!dev_has_iommu(dev))
1938 return false;
1939
1940 ops = dev_iommu_ops(dev);
1941 if (!ops->capable)
1942 return false;
1943
1944 return ops->capable(dev, cap);
1945 }
1946 EXPORT_SYMBOL_GPL(device_iommu_capable);
1947
1948 /**
1949 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1950 * for a group
1951 * @group: Group to query
1952 *
1953 * IOMMU groups should not have differing values of
1954 * msi_device_has_isolated_msi() for devices in a group. However nothing
1955 * directly prevents this, so ensure mistakes don't result in isolation failures
1956 * by checking that all the devices are the same.
1957 */
iommu_group_has_isolated_msi(struct iommu_group * group)1958 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1959 {
1960 struct group_device *group_dev;
1961 bool ret = true;
1962
1963 mutex_lock(&group->mutex);
1964 for_each_group_device(group, group_dev)
1965 ret &= msi_device_has_isolated_msi(group_dev->dev);
1966 mutex_unlock(&group->mutex);
1967 return ret;
1968 }
1969 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1970
1971 /**
1972 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1973 * @domain: iommu domain
1974 * @handler: fault handler
1975 * @token: user data, will be passed back to the fault handler
1976 *
1977 * This function should be used by IOMMU users which want to be notified
1978 * whenever an IOMMU fault happens.
1979 *
1980 * The fault handler itself should return 0 on success, and an appropriate
1981 * error code otherwise.
1982 */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1983 void iommu_set_fault_handler(struct iommu_domain *domain,
1984 iommu_fault_handler_t handler,
1985 void *token)
1986 {
1987 if (WARN_ON(!domain || domain->cookie_type != IOMMU_COOKIE_NONE))
1988 return;
1989
1990 domain->cookie_type = IOMMU_COOKIE_FAULT_HANDLER;
1991 domain->handler = handler;
1992 domain->handler_token = token;
1993 }
1994 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1995
iommu_domain_init(struct iommu_domain * domain,unsigned int type,const struct iommu_ops * ops)1996 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
1997 const struct iommu_ops *ops)
1998 {
1999 domain->type = type;
2000 domain->owner = ops;
2001 if (!domain->ops)
2002 domain->ops = ops->default_domain_ops;
2003
2004 /*
2005 * If not already set, assume all sizes by default; the driver
2006 * may override this later
2007 */
2008 if (!domain->pgsize_bitmap)
2009 domain->pgsize_bitmap = ops->pgsize_bitmap;
2010 }
2011
2012 static struct iommu_domain *
__iommu_paging_domain_alloc_flags(struct device * dev,unsigned int type,unsigned int flags)2013 __iommu_paging_domain_alloc_flags(struct device *dev, unsigned int type,
2014 unsigned int flags)
2015 {
2016 const struct iommu_ops *ops;
2017 struct iommu_domain *domain;
2018
2019 if (!dev_has_iommu(dev))
2020 return ERR_PTR(-ENODEV);
2021
2022 ops = dev_iommu_ops(dev);
2023
2024 if (ops->domain_alloc_paging && !flags)
2025 domain = ops->domain_alloc_paging(dev);
2026 else if (ops->domain_alloc_paging_flags)
2027 domain = ops->domain_alloc_paging_flags(dev, flags, NULL);
2028 else if (ops->domain_alloc && !flags)
2029 domain = ops->domain_alloc(IOMMU_DOMAIN_UNMANAGED);
2030 else
2031 return ERR_PTR(-EOPNOTSUPP);
2032
2033 if (IS_ERR(domain))
2034 return domain;
2035 if (!domain)
2036 return ERR_PTR(-ENOMEM);
2037
2038 iommu_domain_init(domain, type, ops);
2039 return domain;
2040 }
2041
2042 /**
2043 * iommu_paging_domain_alloc_flags() - Allocate a paging domain
2044 * @dev: device for which the domain is allocated
2045 * @flags: Bitmap of iommufd_hwpt_alloc_flags
2046 *
2047 * Allocate a paging domain which will be managed by a kernel driver. Return
2048 * allocated domain if successful, or an ERR pointer for failure.
2049 */
iommu_paging_domain_alloc_flags(struct device * dev,unsigned int flags)2050 struct iommu_domain *iommu_paging_domain_alloc_flags(struct device *dev,
2051 unsigned int flags)
2052 {
2053 return __iommu_paging_domain_alloc_flags(dev,
2054 IOMMU_DOMAIN_UNMANAGED, flags);
2055 }
2056 EXPORT_SYMBOL_GPL(iommu_paging_domain_alloc_flags);
2057
iommu_domain_free(struct iommu_domain * domain)2058 void iommu_domain_free(struct iommu_domain *domain)
2059 {
2060 switch (domain->cookie_type) {
2061 case IOMMU_COOKIE_DMA_IOVA:
2062 iommu_put_dma_cookie(domain);
2063 break;
2064 case IOMMU_COOKIE_DMA_MSI:
2065 iommu_put_msi_cookie(domain);
2066 break;
2067 case IOMMU_COOKIE_SVA:
2068 mmdrop(domain->mm);
2069 break;
2070 default:
2071 break;
2072 }
2073 if (domain->ops->free)
2074 domain->ops->free(domain);
2075 }
2076 EXPORT_SYMBOL_GPL(iommu_domain_free);
2077
2078 /*
2079 * Put the group's domain back to the appropriate core-owned domain - either the
2080 * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2081 */
__iommu_group_set_core_domain(struct iommu_group * group)2082 static void __iommu_group_set_core_domain(struct iommu_group *group)
2083 {
2084 struct iommu_domain *new_domain;
2085
2086 if (group->owner)
2087 new_domain = group->blocking_domain;
2088 else
2089 new_domain = group->default_domain;
2090
2091 __iommu_group_set_domain_nofail(group, new_domain);
2092 }
2093
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)2094 static int __iommu_attach_device(struct iommu_domain *domain,
2095 struct device *dev)
2096 {
2097 int ret;
2098
2099 if (unlikely(domain->ops->attach_dev == NULL))
2100 return -ENODEV;
2101
2102 ret = domain->ops->attach_dev(domain, dev);
2103 if (ret)
2104 return ret;
2105 dev->iommu->attach_deferred = 0;
2106 trace_attach_device_to_domain(dev);
2107 return 0;
2108 }
2109
2110 /**
2111 * iommu_attach_device - Attach an IOMMU domain to a device
2112 * @domain: IOMMU domain to attach
2113 * @dev: Device that will be attached
2114 *
2115 * Returns 0 on success and error code on failure
2116 *
2117 * Note that EINVAL can be treated as a soft failure, indicating
2118 * that certain configuration of the domain is incompatible with
2119 * the device. In this case attaching a different domain to the
2120 * device may succeed.
2121 */
iommu_attach_device(struct iommu_domain * domain,struct device * dev)2122 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2123 {
2124 /* Caller must be a probed driver on dev */
2125 struct iommu_group *group = dev->iommu_group;
2126 int ret;
2127
2128 if (!group)
2129 return -ENODEV;
2130
2131 /*
2132 * Lock the group to make sure the device-count doesn't
2133 * change while we are attaching
2134 */
2135 mutex_lock(&group->mutex);
2136 ret = -EINVAL;
2137 if (list_count_nodes(&group->devices) != 1)
2138 goto out_unlock;
2139
2140 ret = __iommu_attach_group(domain, group);
2141
2142 out_unlock:
2143 mutex_unlock(&group->mutex);
2144 return ret;
2145 }
2146 EXPORT_SYMBOL_GPL(iommu_attach_device);
2147
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2148 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2149 {
2150 if (dev->iommu && dev->iommu->attach_deferred)
2151 return __iommu_attach_device(domain, dev);
2152
2153 return 0;
2154 }
2155
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2156 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2157 {
2158 /* Caller must be a probed driver on dev */
2159 struct iommu_group *group = dev->iommu_group;
2160
2161 if (!group)
2162 return;
2163
2164 mutex_lock(&group->mutex);
2165 if (WARN_ON(domain != group->domain) ||
2166 WARN_ON(list_count_nodes(&group->devices) != 1))
2167 goto out_unlock;
2168 __iommu_group_set_core_domain(group);
2169
2170 out_unlock:
2171 mutex_unlock(&group->mutex);
2172 }
2173 EXPORT_SYMBOL_GPL(iommu_detach_device);
2174
iommu_get_domain_for_dev(struct device * dev)2175 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2176 {
2177 /* Caller must be a probed driver on dev */
2178 struct iommu_group *group = dev->iommu_group;
2179
2180 if (!group)
2181 return NULL;
2182
2183 return group->domain;
2184 }
2185 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2186
2187 /*
2188 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2189 * guarantees that the group and its default domain are valid and correct.
2190 */
iommu_get_dma_domain(struct device * dev)2191 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2192 {
2193 return dev->iommu_group->default_domain;
2194 }
2195
iommu_make_pasid_array_entry(struct iommu_domain * domain,struct iommu_attach_handle * handle)2196 static void *iommu_make_pasid_array_entry(struct iommu_domain *domain,
2197 struct iommu_attach_handle *handle)
2198 {
2199 if (handle) {
2200 handle->domain = domain;
2201 return xa_tag_pointer(handle, IOMMU_PASID_ARRAY_HANDLE);
2202 }
2203
2204 return xa_tag_pointer(domain, IOMMU_PASID_ARRAY_DOMAIN);
2205 }
2206
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2207 static int __iommu_attach_group(struct iommu_domain *domain,
2208 struct iommu_group *group)
2209 {
2210 struct device *dev;
2211
2212 if (group->domain && group->domain != group->default_domain &&
2213 group->domain != group->blocking_domain)
2214 return -EBUSY;
2215
2216 dev = iommu_group_first_dev(group);
2217 if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner)
2218 return -EINVAL;
2219
2220 return __iommu_group_set_domain(group, domain);
2221 }
2222
2223 /**
2224 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2225 * @domain: IOMMU domain to attach
2226 * @group: IOMMU group that will be attached
2227 *
2228 * Returns 0 on success and error code on failure
2229 *
2230 * Note that EINVAL can be treated as a soft failure, indicating
2231 * that certain configuration of the domain is incompatible with
2232 * the group. In this case attaching a different domain to the
2233 * group may succeed.
2234 */
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2235 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2236 {
2237 int ret;
2238
2239 mutex_lock(&group->mutex);
2240 ret = __iommu_attach_group(domain, group);
2241 mutex_unlock(&group->mutex);
2242
2243 return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(iommu_attach_group);
2246
__iommu_device_set_domain(struct iommu_group * group,struct device * dev,struct iommu_domain * new_domain,unsigned int flags)2247 static int __iommu_device_set_domain(struct iommu_group *group,
2248 struct device *dev,
2249 struct iommu_domain *new_domain,
2250 unsigned int flags)
2251 {
2252 int ret;
2253
2254 /*
2255 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2256 * the blocking domain to be attached as it does not contain the
2257 * required 1:1 mapping. This test effectively excludes the device
2258 * being used with iommu_group_claim_dma_owner() which will block
2259 * vfio and iommufd as well.
2260 */
2261 if (dev->iommu->require_direct &&
2262 (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2263 new_domain == group->blocking_domain)) {
2264 dev_warn(dev,
2265 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2266 return -EINVAL;
2267 }
2268
2269 if (dev->iommu->attach_deferred) {
2270 if (new_domain == group->default_domain)
2271 return 0;
2272 dev->iommu->attach_deferred = 0;
2273 }
2274
2275 ret = __iommu_attach_device(new_domain, dev);
2276 if (ret) {
2277 /*
2278 * If we have a blocking domain then try to attach that in hopes
2279 * of avoiding a UAF. Modern drivers should implement blocking
2280 * domains as global statics that cannot fail.
2281 */
2282 if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2283 group->blocking_domain &&
2284 group->blocking_domain != new_domain)
2285 __iommu_attach_device(group->blocking_domain, dev);
2286 return ret;
2287 }
2288 return 0;
2289 }
2290
2291 /*
2292 * If 0 is returned the group's domain is new_domain. If an error is returned
2293 * then the group's domain will be set back to the existing domain unless
2294 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2295 * domains is left inconsistent. This is a driver bug to fail attach with a
2296 * previously good domain. We try to avoid a kernel UAF because of this.
2297 *
2298 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2299 * API works on domains and devices. Bridge that gap by iterating over the
2300 * devices in a group. Ideally we'd have a single device which represents the
2301 * requestor ID of the group, but we also allow IOMMU drivers to create policy
2302 * defined minimum sets, where the physical hardware may be able to distiguish
2303 * members, but we wish to group them at a higher level (ex. untrusted
2304 * multi-function PCI devices). Thus we attach each device.
2305 */
__iommu_group_set_domain_internal(struct iommu_group * group,struct iommu_domain * new_domain,unsigned int flags)2306 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2307 struct iommu_domain *new_domain,
2308 unsigned int flags)
2309 {
2310 struct group_device *last_gdev;
2311 struct group_device *gdev;
2312 int result;
2313 int ret;
2314
2315 lockdep_assert_held(&group->mutex);
2316
2317 if (group->domain == new_domain)
2318 return 0;
2319
2320 if (WARN_ON(!new_domain))
2321 return -EINVAL;
2322
2323 /*
2324 * Changing the domain is done by calling attach_dev() on the new
2325 * domain. This switch does not have to be atomic and DMA can be
2326 * discarded during the transition. DMA must only be able to access
2327 * either new_domain or group->domain, never something else.
2328 */
2329 result = 0;
2330 for_each_group_device(group, gdev) {
2331 ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2332 flags);
2333 if (ret) {
2334 result = ret;
2335 /*
2336 * Keep trying the other devices in the group. If a
2337 * driver fails attach to an otherwise good domain, and
2338 * does not support blocking domains, it should at least
2339 * drop its reference on the current domain so we don't
2340 * UAF.
2341 */
2342 if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2343 continue;
2344 goto err_revert;
2345 }
2346 }
2347 group->domain = new_domain;
2348 return result;
2349
2350 err_revert:
2351 /*
2352 * This is called in error unwind paths. A well behaved driver should
2353 * always allow us to attach to a domain that was already attached.
2354 */
2355 last_gdev = gdev;
2356 for_each_group_device(group, gdev) {
2357 /*
2358 * A NULL domain can happen only for first probe, in which case
2359 * we leave group->domain as NULL and let release clean
2360 * everything up.
2361 */
2362 if (group->domain)
2363 WARN_ON(__iommu_device_set_domain(
2364 group, gdev->dev, group->domain,
2365 IOMMU_SET_DOMAIN_MUST_SUCCEED));
2366 if (gdev == last_gdev)
2367 break;
2368 }
2369 return ret;
2370 }
2371
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2372 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2373 {
2374 mutex_lock(&group->mutex);
2375 __iommu_group_set_core_domain(group);
2376 mutex_unlock(&group->mutex);
2377 }
2378 EXPORT_SYMBOL_GPL(iommu_detach_group);
2379
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2380 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2381 {
2382 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2383 return iova;
2384
2385 if (domain->type == IOMMU_DOMAIN_BLOCKED)
2386 return 0;
2387
2388 return domain->ops->iova_to_phys(domain, iova);
2389 }
2390 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2391
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2392 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2393 phys_addr_t paddr, size_t size, size_t *count)
2394 {
2395 unsigned int pgsize_idx, pgsize_idx_next;
2396 unsigned long pgsizes;
2397 size_t offset, pgsize, pgsize_next;
2398 unsigned long addr_merge = paddr | iova;
2399
2400 /* Page sizes supported by the hardware and small enough for @size */
2401 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2402
2403 /* Constrain the page sizes further based on the maximum alignment */
2404 if (likely(addr_merge))
2405 pgsizes &= GENMASK(__ffs(addr_merge), 0);
2406
2407 /* Make sure we have at least one suitable page size */
2408 BUG_ON(!pgsizes);
2409
2410 /* Pick the biggest page size remaining */
2411 pgsize_idx = __fls(pgsizes);
2412 pgsize = BIT(pgsize_idx);
2413 if (!count)
2414 return pgsize;
2415
2416 /* Find the next biggest support page size, if it exists */
2417 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2418 if (!pgsizes)
2419 goto out_set_count;
2420
2421 pgsize_idx_next = __ffs(pgsizes);
2422 pgsize_next = BIT(pgsize_idx_next);
2423
2424 /*
2425 * There's no point trying a bigger page size unless the virtual
2426 * and physical addresses are similarly offset within the larger page.
2427 */
2428 if ((iova ^ paddr) & (pgsize_next - 1))
2429 goto out_set_count;
2430
2431 /* Calculate the offset to the next page size alignment boundary */
2432 offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2433
2434 /*
2435 * If size is big enough to accommodate the larger page, reduce
2436 * the number of smaller pages.
2437 */
2438 if (offset + pgsize_next <= size)
2439 size = offset;
2440
2441 out_set_count:
2442 *count = size >> pgsize_idx;
2443 return pgsize;
2444 }
2445
__iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2446 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2447 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2448 {
2449 const struct iommu_domain_ops *ops = domain->ops;
2450 unsigned long orig_iova = iova;
2451 unsigned int min_pagesz;
2452 size_t orig_size = size;
2453 phys_addr_t orig_paddr = paddr;
2454 int ret = 0;
2455
2456 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2457 return -EINVAL;
2458
2459 if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL))
2460 return -ENODEV;
2461
2462 /* find out the minimum page size supported */
2463 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2464
2465 /*
2466 * both the virtual address and the physical one, as well as
2467 * the size of the mapping, must be aligned (at least) to the
2468 * size of the smallest page supported by the hardware
2469 */
2470 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2471 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2472 iova, &paddr, size, min_pagesz);
2473 return -EINVAL;
2474 }
2475
2476 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2477
2478 while (size) {
2479 size_t pgsize, count, mapped = 0;
2480
2481 pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2482
2483 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2484 iova, &paddr, pgsize, count);
2485 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2486 gfp, &mapped);
2487 /*
2488 * Some pages may have been mapped, even if an error occurred,
2489 * so we should account for those so they can be unmapped.
2490 */
2491 size -= mapped;
2492
2493 if (ret)
2494 break;
2495
2496 iova += mapped;
2497 paddr += mapped;
2498 }
2499
2500 /* unroll mapping in case something went wrong */
2501 if (ret)
2502 iommu_unmap(domain, orig_iova, orig_size - size);
2503 else
2504 trace_map(orig_iova, orig_paddr, orig_size);
2505
2506 return ret;
2507 }
2508
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2509 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2510 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2511 {
2512 const struct iommu_domain_ops *ops = domain->ops;
2513 int ret;
2514
2515 might_sleep_if(gfpflags_allow_blocking(gfp));
2516
2517 /* Discourage passing strange GFP flags */
2518 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2519 __GFP_HIGHMEM)))
2520 return -EINVAL;
2521
2522 ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2523 if (ret == 0 && ops->iotlb_sync_map) {
2524 ret = ops->iotlb_sync_map(domain, iova, size);
2525 if (ret)
2526 goto out_err;
2527 }
2528
2529 return ret;
2530
2531 out_err:
2532 /* undo mappings already done */
2533 iommu_unmap(domain, iova, size);
2534
2535 return ret;
2536 }
2537 EXPORT_SYMBOL_GPL(iommu_map);
2538
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2539 static size_t __iommu_unmap(struct iommu_domain *domain,
2540 unsigned long iova, size_t size,
2541 struct iommu_iotlb_gather *iotlb_gather)
2542 {
2543 const struct iommu_domain_ops *ops = domain->ops;
2544 size_t unmapped_page, unmapped = 0;
2545 unsigned long orig_iova = iova;
2546 unsigned int min_pagesz;
2547
2548 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2549 return 0;
2550
2551 if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL))
2552 return 0;
2553
2554 /* find out the minimum page size supported */
2555 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2556
2557 /*
2558 * The virtual address, as well as the size of the mapping, must be
2559 * aligned (at least) to the size of the smallest page supported
2560 * by the hardware
2561 */
2562 if (!IS_ALIGNED(iova | size, min_pagesz)) {
2563 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2564 iova, size, min_pagesz);
2565 return 0;
2566 }
2567
2568 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2569
2570 /*
2571 * Keep iterating until we either unmap 'size' bytes (or more)
2572 * or we hit an area that isn't mapped.
2573 */
2574 while (unmapped < size) {
2575 size_t pgsize, count;
2576
2577 pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count);
2578 unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather);
2579 if (!unmapped_page)
2580 break;
2581
2582 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2583 iova, unmapped_page);
2584
2585 iova += unmapped_page;
2586 unmapped += unmapped_page;
2587 }
2588
2589 trace_unmap(orig_iova, size, unmapped);
2590 return unmapped;
2591 }
2592
2593 /**
2594 * iommu_unmap() - Remove mappings from a range of IOVA
2595 * @domain: Domain to manipulate
2596 * @iova: IO virtual address to start
2597 * @size: Length of the range starting from @iova
2598 *
2599 * iommu_unmap() will remove a translation created by iommu_map(). It cannot
2600 * subdivide a mapping created by iommu_map(), so it should be called with IOVA
2601 * ranges that match what was passed to iommu_map(). The range can aggregate
2602 * contiguous iommu_map() calls so long as no individual range is split.
2603 *
2604 * Returns: Number of bytes of IOVA unmapped. iova + res will be the point
2605 * unmapping stopped.
2606 */
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2607 size_t iommu_unmap(struct iommu_domain *domain,
2608 unsigned long iova, size_t size)
2609 {
2610 struct iommu_iotlb_gather iotlb_gather;
2611 size_t ret;
2612
2613 iommu_iotlb_gather_init(&iotlb_gather);
2614 ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2615 iommu_iotlb_sync(domain, &iotlb_gather);
2616
2617 return ret;
2618 }
2619 EXPORT_SYMBOL_GPL(iommu_unmap);
2620
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2621 size_t iommu_unmap_fast(struct iommu_domain *domain,
2622 unsigned long iova, size_t size,
2623 struct iommu_iotlb_gather *iotlb_gather)
2624 {
2625 return __iommu_unmap(domain, iova, size, iotlb_gather);
2626 }
2627 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2628
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2629 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2630 struct scatterlist *sg, unsigned int nents, int prot,
2631 gfp_t gfp)
2632 {
2633 const struct iommu_domain_ops *ops = domain->ops;
2634 size_t len = 0, mapped = 0;
2635 phys_addr_t start;
2636 unsigned int i = 0;
2637 int ret;
2638
2639 might_sleep_if(gfpflags_allow_blocking(gfp));
2640
2641 /* Discourage passing strange GFP flags */
2642 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2643 __GFP_HIGHMEM)))
2644 return -EINVAL;
2645
2646 while (i <= nents) {
2647 phys_addr_t s_phys = sg_phys(sg);
2648
2649 if (len && s_phys != start + len) {
2650 ret = __iommu_map(domain, iova + mapped, start,
2651 len, prot, gfp);
2652
2653 if (ret)
2654 goto out_err;
2655
2656 mapped += len;
2657 len = 0;
2658 }
2659
2660 if (sg_dma_is_bus_address(sg))
2661 goto next;
2662
2663 if (len) {
2664 len += sg->length;
2665 } else {
2666 len = sg->length;
2667 start = s_phys;
2668 }
2669
2670 next:
2671 if (++i < nents)
2672 sg = sg_next(sg);
2673 }
2674
2675 if (ops->iotlb_sync_map) {
2676 ret = ops->iotlb_sync_map(domain, iova, mapped);
2677 if (ret)
2678 goto out_err;
2679 }
2680 return mapped;
2681
2682 out_err:
2683 /* undo mappings already done */
2684 iommu_unmap(domain, iova, mapped);
2685
2686 return ret;
2687 }
2688 EXPORT_SYMBOL_GPL(iommu_map_sg);
2689
2690 /**
2691 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2692 * @domain: the iommu domain where the fault has happened
2693 * @dev: the device where the fault has happened
2694 * @iova: the faulting address
2695 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2696 *
2697 * This function should be called by the low-level IOMMU implementations
2698 * whenever IOMMU faults happen, to allow high-level users, that are
2699 * interested in such events, to know about them.
2700 *
2701 * This event may be useful for several possible use cases:
2702 * - mere logging of the event
2703 * - dynamic TLB/PTE loading
2704 * - if restarting of the faulting device is required
2705 *
2706 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2707 * PTE/TLB loading will one day be supported, implementations will be able
2708 * to tell whether it succeeded or not according to this return value).
2709 *
2710 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2711 * (though fault handlers can also return -ENOSYS, in case they want to
2712 * elicit the default behavior of the IOMMU drivers).
2713 */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2714 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2715 unsigned long iova, int flags)
2716 {
2717 int ret = -ENOSYS;
2718
2719 /*
2720 * if upper layers showed interest and installed a fault handler,
2721 * invoke it.
2722 */
2723 if (domain->cookie_type == IOMMU_COOKIE_FAULT_HANDLER &&
2724 domain->handler)
2725 ret = domain->handler(domain, dev, iova, flags,
2726 domain->handler_token);
2727
2728 trace_io_page_fault(dev, iova, flags);
2729 return ret;
2730 }
2731 EXPORT_SYMBOL_GPL(report_iommu_fault);
2732
iommu_init(void)2733 static int __init iommu_init(void)
2734 {
2735 iommu_group_kset = kset_create_and_add("iommu_groups",
2736 NULL, kernel_kobj);
2737 BUG_ON(!iommu_group_kset);
2738
2739 iommu_debugfs_setup();
2740
2741 return 0;
2742 }
2743 core_initcall(iommu_init);
2744
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2745 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2746 unsigned long quirk)
2747 {
2748 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2749 return -EINVAL;
2750 if (!domain->ops->set_pgtable_quirks)
2751 return -EINVAL;
2752 return domain->ops->set_pgtable_quirks(domain, quirk);
2753 }
2754 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2755
2756 /**
2757 * iommu_get_resv_regions - get reserved regions
2758 * @dev: device for which to get reserved regions
2759 * @list: reserved region list for device
2760 *
2761 * This returns a list of reserved IOVA regions specific to this device.
2762 * A domain user should not map IOVA in these ranges.
2763 */
iommu_get_resv_regions(struct device * dev,struct list_head * list)2764 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2765 {
2766 const struct iommu_ops *ops = dev_iommu_ops(dev);
2767
2768 if (ops->get_resv_regions)
2769 ops->get_resv_regions(dev, list);
2770 }
2771 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2772
2773 /**
2774 * iommu_put_resv_regions - release reserved regions
2775 * @dev: device for which to free reserved regions
2776 * @list: reserved region list for device
2777 *
2778 * This releases a reserved region list acquired by iommu_get_resv_regions().
2779 */
iommu_put_resv_regions(struct device * dev,struct list_head * list)2780 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2781 {
2782 struct iommu_resv_region *entry, *next;
2783
2784 list_for_each_entry_safe(entry, next, list, list) {
2785 if (entry->free)
2786 entry->free(dev, entry);
2787 else
2788 kfree(entry);
2789 }
2790 }
2791 EXPORT_SYMBOL(iommu_put_resv_regions);
2792
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type,gfp_t gfp)2793 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2794 size_t length, int prot,
2795 enum iommu_resv_type type,
2796 gfp_t gfp)
2797 {
2798 struct iommu_resv_region *region;
2799
2800 region = kzalloc(sizeof(*region), gfp);
2801 if (!region)
2802 return NULL;
2803
2804 INIT_LIST_HEAD(®ion->list);
2805 region->start = start;
2806 region->length = length;
2807 region->prot = prot;
2808 region->type = type;
2809 return region;
2810 }
2811 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2812
iommu_set_default_passthrough(bool cmd_line)2813 void iommu_set_default_passthrough(bool cmd_line)
2814 {
2815 if (cmd_line)
2816 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2817 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2818 }
2819
iommu_set_default_translated(bool cmd_line)2820 void iommu_set_default_translated(bool cmd_line)
2821 {
2822 if (cmd_line)
2823 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2824 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2825 }
2826
iommu_default_passthrough(void)2827 bool iommu_default_passthrough(void)
2828 {
2829 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2830 }
2831 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2832
iommu_ops_from_fwnode(const struct fwnode_handle * fwnode)2833 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode)
2834 {
2835 const struct iommu_ops *ops = NULL;
2836 struct iommu_device *iommu;
2837
2838 spin_lock(&iommu_device_lock);
2839 list_for_each_entry(iommu, &iommu_device_list, list)
2840 if (iommu->fwnode == fwnode) {
2841 ops = iommu->ops;
2842 break;
2843 }
2844 spin_unlock(&iommu_device_lock);
2845 return ops;
2846 }
2847
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode)2848 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode)
2849 {
2850 const struct iommu_ops *ops = iommu_ops_from_fwnode(iommu_fwnode);
2851 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2852
2853 if (!ops)
2854 return driver_deferred_probe_check_state(dev);
2855
2856 if (fwspec)
2857 return ops == iommu_fwspec_ops(fwspec) ? 0 : -EINVAL;
2858
2859 if (!dev_iommu_get(dev))
2860 return -ENOMEM;
2861
2862 /* Preallocate for the overwhelmingly common case of 1 ID */
2863 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2864 if (!fwspec)
2865 return -ENOMEM;
2866
2867 fwnode_handle_get(iommu_fwnode);
2868 fwspec->iommu_fwnode = iommu_fwnode;
2869 dev_iommu_fwspec_set(dev, fwspec);
2870 return 0;
2871 }
2872 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2873
iommu_fwspec_free(struct device * dev)2874 void iommu_fwspec_free(struct device *dev)
2875 {
2876 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2877
2878 if (fwspec) {
2879 fwnode_handle_put(fwspec->iommu_fwnode);
2880 kfree(fwspec);
2881 dev_iommu_fwspec_set(dev, NULL);
2882 }
2883 }
2884
iommu_fwspec_add_ids(struct device * dev,const u32 * ids,int num_ids)2885 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids)
2886 {
2887 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2888 int i, new_num;
2889
2890 if (!fwspec)
2891 return -EINVAL;
2892
2893 new_num = fwspec->num_ids + num_ids;
2894 if (new_num > 1) {
2895 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2896 GFP_KERNEL);
2897 if (!fwspec)
2898 return -ENOMEM;
2899
2900 dev_iommu_fwspec_set(dev, fwspec);
2901 }
2902
2903 for (i = 0; i < num_ids; i++)
2904 fwspec->ids[fwspec->num_ids + i] = ids[i];
2905
2906 fwspec->num_ids = new_num;
2907 return 0;
2908 }
2909 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2910
2911 /*
2912 * Per device IOMMU features.
2913 */
iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2914 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2915 {
2916 if (dev_has_iommu(dev)) {
2917 const struct iommu_ops *ops = dev_iommu_ops(dev);
2918
2919 if (ops->dev_enable_feat)
2920 return ops->dev_enable_feat(dev, feat);
2921 }
2922
2923 return -ENODEV;
2924 }
2925 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2926
2927 /*
2928 * The device drivers should do the necessary cleanups before calling this.
2929 */
iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2930 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2931 {
2932 if (dev_has_iommu(dev)) {
2933 const struct iommu_ops *ops = dev_iommu_ops(dev);
2934
2935 if (ops->dev_disable_feat)
2936 return ops->dev_disable_feat(dev, feat);
2937 }
2938
2939 return -EBUSY;
2940 }
2941 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2942
2943 /**
2944 * iommu_setup_default_domain - Set the default_domain for the group
2945 * @group: Group to change
2946 * @target_type: Domain type to set as the default_domain
2947 *
2948 * Allocate a default domain and set it as the current domain on the group. If
2949 * the group already has a default domain it will be changed to the target_type.
2950 * When target_type is 0 the default domain is selected based on driver and
2951 * system preferences.
2952 */
iommu_setup_default_domain(struct iommu_group * group,int target_type)2953 static int iommu_setup_default_domain(struct iommu_group *group,
2954 int target_type)
2955 {
2956 struct iommu_domain *old_dom = group->default_domain;
2957 struct group_device *gdev;
2958 struct iommu_domain *dom;
2959 bool direct_failed;
2960 int req_type;
2961 int ret;
2962
2963 lockdep_assert_held(&group->mutex);
2964
2965 req_type = iommu_get_default_domain_type(group, target_type);
2966 if (req_type < 0)
2967 return -EINVAL;
2968
2969 dom = iommu_group_alloc_default_domain(group, req_type);
2970 if (IS_ERR(dom))
2971 return PTR_ERR(dom);
2972
2973 if (group->default_domain == dom)
2974 return 0;
2975
2976 if (iommu_is_dma_domain(dom)) {
2977 ret = iommu_get_dma_cookie(dom);
2978 if (ret) {
2979 iommu_domain_free(dom);
2980 return ret;
2981 }
2982 }
2983
2984 /*
2985 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2986 * mapped before their device is attached, in order to guarantee
2987 * continuity with any FW activity
2988 */
2989 direct_failed = false;
2990 for_each_group_device(group, gdev) {
2991 if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2992 direct_failed = true;
2993 dev_warn_once(
2994 gdev->dev->iommu->iommu_dev->dev,
2995 "IOMMU driver was not able to establish FW requested direct mapping.");
2996 }
2997 }
2998
2999 /* We must set default_domain early for __iommu_device_set_domain */
3000 group->default_domain = dom;
3001 if (!group->domain) {
3002 /*
3003 * Drivers are not allowed to fail the first domain attach.
3004 * The only way to recover from this is to fail attaching the
3005 * iommu driver and call ops->release_device. Put the domain
3006 * in group->default_domain so it is freed after.
3007 */
3008 ret = __iommu_group_set_domain_internal(
3009 group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3010 if (WARN_ON(ret))
3011 goto out_free_old;
3012 } else {
3013 ret = __iommu_group_set_domain(group, dom);
3014 if (ret)
3015 goto err_restore_def_domain;
3016 }
3017
3018 /*
3019 * Drivers are supposed to allow mappings to be installed in a domain
3020 * before device attachment, but some don't. Hack around this defect by
3021 * trying again after attaching. If this happens it means the device
3022 * will not continuously have the IOMMU_RESV_DIRECT map.
3023 */
3024 if (direct_failed) {
3025 for_each_group_device(group, gdev) {
3026 ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3027 if (ret)
3028 goto err_restore_domain;
3029 }
3030 }
3031
3032 out_free_old:
3033 if (old_dom)
3034 iommu_domain_free(old_dom);
3035 return ret;
3036
3037 err_restore_domain:
3038 if (old_dom)
3039 __iommu_group_set_domain_internal(
3040 group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3041 err_restore_def_domain:
3042 if (old_dom) {
3043 iommu_domain_free(dom);
3044 group->default_domain = old_dom;
3045 }
3046 return ret;
3047 }
3048
3049 /*
3050 * Changing the default domain through sysfs requires the users to unbind the
3051 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3052 * transition. Return failure if this isn't met.
3053 *
3054 * We need to consider the race between this and the device release path.
3055 * group->mutex is used here to guarantee that the device release path
3056 * will not be entered at the same time.
3057 */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)3058 static ssize_t iommu_group_store_type(struct iommu_group *group,
3059 const char *buf, size_t count)
3060 {
3061 struct group_device *gdev;
3062 int ret, req_type;
3063
3064 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3065 return -EACCES;
3066
3067 if (WARN_ON(!group) || !group->default_domain)
3068 return -EINVAL;
3069
3070 if (sysfs_streq(buf, "identity"))
3071 req_type = IOMMU_DOMAIN_IDENTITY;
3072 else if (sysfs_streq(buf, "DMA"))
3073 req_type = IOMMU_DOMAIN_DMA;
3074 else if (sysfs_streq(buf, "DMA-FQ"))
3075 req_type = IOMMU_DOMAIN_DMA_FQ;
3076 else if (sysfs_streq(buf, "auto"))
3077 req_type = 0;
3078 else
3079 return -EINVAL;
3080
3081 mutex_lock(&group->mutex);
3082 /* We can bring up a flush queue without tearing down the domain. */
3083 if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3084 group->default_domain->type == IOMMU_DOMAIN_DMA) {
3085 ret = iommu_dma_init_fq(group->default_domain);
3086 if (ret)
3087 goto out_unlock;
3088
3089 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3090 ret = count;
3091 goto out_unlock;
3092 }
3093
3094 /* Otherwise, ensure that device exists and no driver is bound. */
3095 if (list_empty(&group->devices) || group->owner_cnt) {
3096 ret = -EPERM;
3097 goto out_unlock;
3098 }
3099
3100 ret = iommu_setup_default_domain(group, req_type);
3101 if (ret)
3102 goto out_unlock;
3103
3104 /* Make sure dma_ops is appropriatley set */
3105 for_each_group_device(group, gdev)
3106 iommu_setup_dma_ops(gdev->dev);
3107
3108 out_unlock:
3109 mutex_unlock(&group->mutex);
3110 return ret ?: count;
3111 }
3112
3113 /**
3114 * iommu_device_use_default_domain() - Device driver wants to handle device
3115 * DMA through the kernel DMA API.
3116 * @dev: The device.
3117 *
3118 * The device driver about to bind @dev wants to do DMA through the kernel
3119 * DMA API. Return 0 if it is allowed, otherwise an error.
3120 */
iommu_device_use_default_domain(struct device * dev)3121 int iommu_device_use_default_domain(struct device *dev)
3122 {
3123 /* Caller is the driver core during the pre-probe path */
3124 struct iommu_group *group = dev->iommu_group;
3125 int ret = 0;
3126
3127 if (!group)
3128 return 0;
3129
3130 mutex_lock(&group->mutex);
3131 /* We may race against bus_iommu_probe() finalising groups here */
3132 if (!group->default_domain) {
3133 ret = -EPROBE_DEFER;
3134 goto unlock_out;
3135 }
3136 if (group->owner_cnt) {
3137 if (group->domain != group->default_domain || group->owner ||
3138 !xa_empty(&group->pasid_array)) {
3139 ret = -EBUSY;
3140 goto unlock_out;
3141 }
3142 }
3143
3144 group->owner_cnt++;
3145
3146 unlock_out:
3147 mutex_unlock(&group->mutex);
3148 return ret;
3149 }
3150
3151 /**
3152 * iommu_device_unuse_default_domain() - Device driver stops handling device
3153 * DMA through the kernel DMA API.
3154 * @dev: The device.
3155 *
3156 * The device driver doesn't want to do DMA through kernel DMA API anymore.
3157 * It must be called after iommu_device_use_default_domain().
3158 */
iommu_device_unuse_default_domain(struct device * dev)3159 void iommu_device_unuse_default_domain(struct device *dev)
3160 {
3161 /* Caller is the driver core during the post-probe path */
3162 struct iommu_group *group = dev->iommu_group;
3163
3164 if (!group)
3165 return;
3166
3167 mutex_lock(&group->mutex);
3168 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3169 group->owner_cnt--;
3170
3171 mutex_unlock(&group->mutex);
3172 }
3173
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3174 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3175 {
3176 struct device *dev = iommu_group_first_dev(group);
3177 const struct iommu_ops *ops = dev_iommu_ops(dev);
3178 struct iommu_domain *domain;
3179
3180 if (group->blocking_domain)
3181 return 0;
3182
3183 if (ops->blocked_domain) {
3184 group->blocking_domain = ops->blocked_domain;
3185 return 0;
3186 }
3187
3188 /*
3189 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED create an
3190 * empty PAGING domain instead.
3191 */
3192 domain = iommu_paging_domain_alloc(dev);
3193 if (IS_ERR(domain))
3194 return PTR_ERR(domain);
3195 group->blocking_domain = domain;
3196 return 0;
3197 }
3198
__iommu_take_dma_ownership(struct iommu_group * group,void * owner)3199 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3200 {
3201 int ret;
3202
3203 if ((group->domain && group->domain != group->default_domain) ||
3204 !xa_empty(&group->pasid_array))
3205 return -EBUSY;
3206
3207 ret = __iommu_group_alloc_blocking_domain(group);
3208 if (ret)
3209 return ret;
3210 ret = __iommu_group_set_domain(group, group->blocking_domain);
3211 if (ret)
3212 return ret;
3213
3214 group->owner = owner;
3215 group->owner_cnt++;
3216 return 0;
3217 }
3218
3219 /**
3220 * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3221 * @group: The group.
3222 * @owner: Caller specified pointer. Used for exclusive ownership.
3223 *
3224 * This is to support backward compatibility for vfio which manages the dma
3225 * ownership in iommu_group level. New invocations on this interface should be
3226 * prohibited. Only a single owner may exist for a group.
3227 */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3228 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3229 {
3230 int ret = 0;
3231
3232 if (WARN_ON(!owner))
3233 return -EINVAL;
3234
3235 mutex_lock(&group->mutex);
3236 if (group->owner_cnt) {
3237 ret = -EPERM;
3238 goto unlock_out;
3239 }
3240
3241 ret = __iommu_take_dma_ownership(group, owner);
3242 unlock_out:
3243 mutex_unlock(&group->mutex);
3244
3245 return ret;
3246 }
3247 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3248
3249 /**
3250 * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3251 * @dev: The device.
3252 * @owner: Caller specified pointer. Used for exclusive ownership.
3253 *
3254 * Claim the DMA ownership of a device. Multiple devices in the same group may
3255 * concurrently claim ownership if they present the same owner value. Returns 0
3256 * on success and error code on failure
3257 */
iommu_device_claim_dma_owner(struct device * dev,void * owner)3258 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3259 {
3260 /* Caller must be a probed driver on dev */
3261 struct iommu_group *group = dev->iommu_group;
3262 int ret = 0;
3263
3264 if (WARN_ON(!owner))
3265 return -EINVAL;
3266
3267 if (!group)
3268 return -ENODEV;
3269
3270 mutex_lock(&group->mutex);
3271 if (group->owner_cnt) {
3272 if (group->owner != owner) {
3273 ret = -EPERM;
3274 goto unlock_out;
3275 }
3276 group->owner_cnt++;
3277 goto unlock_out;
3278 }
3279
3280 ret = __iommu_take_dma_ownership(group, owner);
3281 unlock_out:
3282 mutex_unlock(&group->mutex);
3283 return ret;
3284 }
3285 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3286
__iommu_release_dma_ownership(struct iommu_group * group)3287 static void __iommu_release_dma_ownership(struct iommu_group *group)
3288 {
3289 if (WARN_ON(!group->owner_cnt || !group->owner ||
3290 !xa_empty(&group->pasid_array)))
3291 return;
3292
3293 group->owner_cnt = 0;
3294 group->owner = NULL;
3295 __iommu_group_set_domain_nofail(group, group->default_domain);
3296 }
3297
3298 /**
3299 * iommu_group_release_dma_owner() - Release DMA ownership of a group
3300 * @group: The group
3301 *
3302 * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3303 */
iommu_group_release_dma_owner(struct iommu_group * group)3304 void iommu_group_release_dma_owner(struct iommu_group *group)
3305 {
3306 mutex_lock(&group->mutex);
3307 __iommu_release_dma_ownership(group);
3308 mutex_unlock(&group->mutex);
3309 }
3310 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3311
3312 /**
3313 * iommu_device_release_dma_owner() - Release DMA ownership of a device
3314 * @dev: The device.
3315 *
3316 * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3317 */
iommu_device_release_dma_owner(struct device * dev)3318 void iommu_device_release_dma_owner(struct device *dev)
3319 {
3320 /* Caller must be a probed driver on dev */
3321 struct iommu_group *group = dev->iommu_group;
3322
3323 mutex_lock(&group->mutex);
3324 if (group->owner_cnt > 1)
3325 group->owner_cnt--;
3326 else
3327 __iommu_release_dma_ownership(group);
3328 mutex_unlock(&group->mutex);
3329 }
3330 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3331
3332 /**
3333 * iommu_group_dma_owner_claimed() - Query group dma ownership status
3334 * @group: The group.
3335 *
3336 * This provides status query on a given group. It is racy and only for
3337 * non-binding status reporting.
3338 */
iommu_group_dma_owner_claimed(struct iommu_group * group)3339 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3340 {
3341 unsigned int user;
3342
3343 mutex_lock(&group->mutex);
3344 user = group->owner_cnt;
3345 mutex_unlock(&group->mutex);
3346
3347 return user;
3348 }
3349 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3350
iommu_remove_dev_pasid(struct device * dev,ioasid_t pasid,struct iommu_domain * domain)3351 static void iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid,
3352 struct iommu_domain *domain)
3353 {
3354 const struct iommu_ops *ops = dev_iommu_ops(dev);
3355 struct iommu_domain *blocked_domain = ops->blocked_domain;
3356
3357 WARN_ON(blocked_domain->ops->set_dev_pasid(blocked_domain,
3358 dev, pasid, domain));
3359 }
3360
__iommu_set_group_pasid(struct iommu_domain * domain,struct iommu_group * group,ioasid_t pasid,struct iommu_domain * old)3361 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3362 struct iommu_group *group, ioasid_t pasid,
3363 struct iommu_domain *old)
3364 {
3365 struct group_device *device, *last_gdev;
3366 int ret;
3367
3368 for_each_group_device(group, device) {
3369 if (device->dev->iommu->max_pasids > 0) {
3370 ret = domain->ops->set_dev_pasid(domain, device->dev,
3371 pasid, old);
3372 if (ret)
3373 goto err_revert;
3374 }
3375 }
3376
3377 return 0;
3378
3379 err_revert:
3380 last_gdev = device;
3381 for_each_group_device(group, device) {
3382 if (device == last_gdev)
3383 break;
3384 if (device->dev->iommu->max_pasids > 0) {
3385 /*
3386 * If no old domain, undo the succeeded devices/pasid.
3387 * Otherwise, rollback the succeeded devices/pasid to
3388 * the old domain. And it is a driver bug to fail
3389 * attaching with a previously good domain.
3390 */
3391 if (!old ||
3392 WARN_ON(old->ops->set_dev_pasid(old, device->dev,
3393 pasid, domain)))
3394 iommu_remove_dev_pasid(device->dev, pasid, domain);
3395 }
3396 }
3397 return ret;
3398 }
3399
__iommu_remove_group_pasid(struct iommu_group * group,ioasid_t pasid,struct iommu_domain * domain)3400 static void __iommu_remove_group_pasid(struct iommu_group *group,
3401 ioasid_t pasid,
3402 struct iommu_domain *domain)
3403 {
3404 struct group_device *device;
3405
3406 for_each_group_device(group, device) {
3407 if (device->dev->iommu->max_pasids > 0)
3408 iommu_remove_dev_pasid(device->dev, pasid, domain);
3409 }
3410 }
3411
3412 /*
3413 * iommu_attach_device_pasid() - Attach a domain to pasid of device
3414 * @domain: the iommu domain.
3415 * @dev: the attached device.
3416 * @pasid: the pasid of the device.
3417 * @handle: the attach handle.
3418 *
3419 * Caller should always provide a new handle to avoid race with the paths
3420 * that have lockless reference to handle if it intends to pass a valid handle.
3421 *
3422 * Return: 0 on success, or an error.
3423 */
iommu_attach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3424 int iommu_attach_device_pasid(struct iommu_domain *domain,
3425 struct device *dev, ioasid_t pasid,
3426 struct iommu_attach_handle *handle)
3427 {
3428 /* Caller must be a probed driver on dev */
3429 struct iommu_group *group = dev->iommu_group;
3430 struct group_device *device;
3431 const struct iommu_ops *ops;
3432 void *entry;
3433 int ret;
3434
3435 if (!group)
3436 return -ENODEV;
3437
3438 ops = dev_iommu_ops(dev);
3439
3440 if (!domain->ops->set_dev_pasid ||
3441 !ops->blocked_domain ||
3442 !ops->blocked_domain->ops->set_dev_pasid)
3443 return -EOPNOTSUPP;
3444
3445 if (ops != domain->owner || pasid == IOMMU_NO_PASID)
3446 return -EINVAL;
3447
3448 mutex_lock(&group->mutex);
3449 for_each_group_device(group, device) {
3450 /*
3451 * Skip PASID validation for devices without PASID support
3452 * (max_pasids = 0). These devices cannot issue transactions
3453 * with PASID, so they don't affect group's PASID usage.
3454 */
3455 if ((device->dev->iommu->max_pasids > 0) &&
3456 (pasid >= device->dev->iommu->max_pasids)) {
3457 ret = -EINVAL;
3458 goto out_unlock;
3459 }
3460 }
3461
3462 entry = iommu_make_pasid_array_entry(domain, handle);
3463
3464 /*
3465 * Entry present is a failure case. Use xa_insert() instead of
3466 * xa_reserve().
3467 */
3468 ret = xa_insert(&group->pasid_array, pasid, XA_ZERO_ENTRY, GFP_KERNEL);
3469 if (ret)
3470 goto out_unlock;
3471
3472 ret = __iommu_set_group_pasid(domain, group, pasid, NULL);
3473 if (ret) {
3474 xa_release(&group->pasid_array, pasid);
3475 goto out_unlock;
3476 }
3477
3478 /*
3479 * The xa_insert() above reserved the memory, and the group->mutex is
3480 * held, this cannot fail. The new domain cannot be visible until the
3481 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3482 * queued and then failing attach.
3483 */
3484 WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3485 pasid, entry, GFP_KERNEL)));
3486
3487 out_unlock:
3488 mutex_unlock(&group->mutex);
3489 return ret;
3490 }
3491 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3492
3493 /**
3494 * iommu_replace_device_pasid - Replace the domain that a specific pasid
3495 * of the device is attached to
3496 * @domain: the new iommu domain
3497 * @dev: the attached device.
3498 * @pasid: the pasid of the device.
3499 * @handle: the attach handle.
3500 *
3501 * This API allows the pasid to switch domains. The @pasid should have been
3502 * attached. Otherwise, this fails. The pasid will keep the old configuration
3503 * if replacement failed.
3504 *
3505 * Caller should always provide a new handle to avoid race with the paths
3506 * that have lockless reference to handle if it intends to pass a valid handle.
3507 *
3508 * Return 0 on success, or an error.
3509 */
iommu_replace_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3510 int iommu_replace_device_pasid(struct iommu_domain *domain,
3511 struct device *dev, ioasid_t pasid,
3512 struct iommu_attach_handle *handle)
3513 {
3514 /* Caller must be a probed driver on dev */
3515 struct iommu_group *group = dev->iommu_group;
3516 struct iommu_attach_handle *entry;
3517 struct iommu_domain *curr_domain;
3518 void *curr;
3519 int ret;
3520
3521 if (!group)
3522 return -ENODEV;
3523
3524 if (!domain->ops->set_dev_pasid)
3525 return -EOPNOTSUPP;
3526
3527 if (dev_iommu_ops(dev) != domain->owner ||
3528 pasid == IOMMU_NO_PASID || !handle)
3529 return -EINVAL;
3530
3531 mutex_lock(&group->mutex);
3532 entry = iommu_make_pasid_array_entry(domain, handle);
3533 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL,
3534 XA_ZERO_ENTRY, GFP_KERNEL);
3535 if (xa_is_err(curr)) {
3536 ret = xa_err(curr);
3537 goto out_unlock;
3538 }
3539
3540 /*
3541 * No domain (with or without handle) attached, hence not
3542 * a replace case.
3543 */
3544 if (!curr) {
3545 xa_release(&group->pasid_array, pasid);
3546 ret = -EINVAL;
3547 goto out_unlock;
3548 }
3549
3550 /*
3551 * Reusing handle is problematic as there are paths that refers
3552 * the handle without lock. To avoid race, reject the callers that
3553 * attempt it.
3554 */
3555 if (curr == entry) {
3556 WARN_ON(1);
3557 ret = -EINVAL;
3558 goto out_unlock;
3559 }
3560
3561 curr_domain = pasid_array_entry_to_domain(curr);
3562 ret = 0;
3563
3564 if (curr_domain != domain) {
3565 ret = __iommu_set_group_pasid(domain, group,
3566 pasid, curr_domain);
3567 if (ret)
3568 goto out_unlock;
3569 }
3570
3571 /*
3572 * The above xa_cmpxchg() reserved the memory, and the
3573 * group->mutex is held, this cannot fail.
3574 */
3575 WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3576 pasid, entry, GFP_KERNEL)));
3577
3578 out_unlock:
3579 mutex_unlock(&group->mutex);
3580 return ret;
3581 }
3582 EXPORT_SYMBOL_NS_GPL(iommu_replace_device_pasid, "IOMMUFD_INTERNAL");
3583
3584 /*
3585 * iommu_detach_device_pasid() - Detach the domain from pasid of device
3586 * @domain: the iommu domain.
3587 * @dev: the attached device.
3588 * @pasid: the pasid of the device.
3589 *
3590 * The @domain must have been attached to @pasid of the @dev with
3591 * iommu_attach_device_pasid().
3592 */
iommu_detach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3593 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3594 ioasid_t pasid)
3595 {
3596 /* Caller must be a probed driver on dev */
3597 struct iommu_group *group = dev->iommu_group;
3598
3599 mutex_lock(&group->mutex);
3600 __iommu_remove_group_pasid(group, pasid, domain);
3601 xa_erase(&group->pasid_array, pasid);
3602 mutex_unlock(&group->mutex);
3603 }
3604 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3605
iommu_alloc_global_pasid(struct device * dev)3606 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3607 {
3608 int ret;
3609
3610 /* max_pasids == 0 means that the device does not support PASID */
3611 if (!dev->iommu->max_pasids)
3612 return IOMMU_PASID_INVALID;
3613
3614 /*
3615 * max_pasids is set up by vendor driver based on number of PASID bits
3616 * supported but the IDA allocation is inclusive.
3617 */
3618 ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3619 dev->iommu->max_pasids - 1, GFP_KERNEL);
3620 return ret < 0 ? IOMMU_PASID_INVALID : ret;
3621 }
3622 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3623
iommu_free_global_pasid(ioasid_t pasid)3624 void iommu_free_global_pasid(ioasid_t pasid)
3625 {
3626 if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3627 return;
3628
3629 ida_free(&iommu_global_pasid_ida, pasid);
3630 }
3631 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3632
3633 /**
3634 * iommu_attach_handle_get - Return the attach handle
3635 * @group: the iommu group that domain was attached to
3636 * @pasid: the pasid within the group
3637 * @type: matched domain type, 0 for any match
3638 *
3639 * Return handle or ERR_PTR(-ENOENT) on none, ERR_PTR(-EBUSY) on mismatch.
3640 *
3641 * Return the attach handle to the caller. The life cycle of an iommu attach
3642 * handle is from the time when the domain is attached to the time when the
3643 * domain is detached. Callers are required to synchronize the call of
3644 * iommu_attach_handle_get() with domain attachment and detachment. The attach
3645 * handle can only be used during its life cycle.
3646 */
3647 struct iommu_attach_handle *
iommu_attach_handle_get(struct iommu_group * group,ioasid_t pasid,unsigned int type)3648 iommu_attach_handle_get(struct iommu_group *group, ioasid_t pasid, unsigned int type)
3649 {
3650 struct iommu_attach_handle *handle;
3651 void *entry;
3652
3653 xa_lock(&group->pasid_array);
3654 entry = xa_load(&group->pasid_array, pasid);
3655 if (!entry || xa_pointer_tag(entry) != IOMMU_PASID_ARRAY_HANDLE) {
3656 handle = ERR_PTR(-ENOENT);
3657 } else {
3658 handle = xa_untag_pointer(entry);
3659 if (type && handle->domain->type != type)
3660 handle = ERR_PTR(-EBUSY);
3661 }
3662 xa_unlock(&group->pasid_array);
3663
3664 return handle;
3665 }
3666 EXPORT_SYMBOL_NS_GPL(iommu_attach_handle_get, "IOMMUFD_INTERNAL");
3667
3668 /**
3669 * iommu_attach_group_handle - Attach an IOMMU domain to an IOMMU group
3670 * @domain: IOMMU domain to attach
3671 * @group: IOMMU group that will be attached
3672 * @handle: attach handle
3673 *
3674 * Returns 0 on success and error code on failure.
3675 *
3676 * This is a variant of iommu_attach_group(). It allows the caller to provide
3677 * an attach handle and use it when the domain is attached. This is currently
3678 * used by IOMMUFD to deliver the I/O page faults.
3679 *
3680 * Caller should always provide a new handle to avoid race with the paths
3681 * that have lockless reference to handle.
3682 */
iommu_attach_group_handle(struct iommu_domain * domain,struct iommu_group * group,struct iommu_attach_handle * handle)3683 int iommu_attach_group_handle(struct iommu_domain *domain,
3684 struct iommu_group *group,
3685 struct iommu_attach_handle *handle)
3686 {
3687 void *entry;
3688 int ret;
3689
3690 if (!handle)
3691 return -EINVAL;
3692
3693 mutex_lock(&group->mutex);
3694 entry = iommu_make_pasid_array_entry(domain, handle);
3695 ret = xa_insert(&group->pasid_array,
3696 IOMMU_NO_PASID, XA_ZERO_ENTRY, GFP_KERNEL);
3697 if (ret)
3698 goto out_unlock;
3699
3700 ret = __iommu_attach_group(domain, group);
3701 if (ret) {
3702 xa_release(&group->pasid_array, IOMMU_NO_PASID);
3703 goto out_unlock;
3704 }
3705
3706 /*
3707 * The xa_insert() above reserved the memory, and the group->mutex is
3708 * held, this cannot fail. The new domain cannot be visible until the
3709 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3710 * queued and then failing attach.
3711 */
3712 WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3713 IOMMU_NO_PASID, entry, GFP_KERNEL)));
3714
3715 out_unlock:
3716 mutex_unlock(&group->mutex);
3717 return ret;
3718 }
3719 EXPORT_SYMBOL_NS_GPL(iommu_attach_group_handle, "IOMMUFD_INTERNAL");
3720
3721 /**
3722 * iommu_detach_group_handle - Detach an IOMMU domain from an IOMMU group
3723 * @domain: IOMMU domain to attach
3724 * @group: IOMMU group that will be attached
3725 *
3726 * Detach the specified IOMMU domain from the specified IOMMU group.
3727 * It must be used in conjunction with iommu_attach_group_handle().
3728 */
iommu_detach_group_handle(struct iommu_domain * domain,struct iommu_group * group)3729 void iommu_detach_group_handle(struct iommu_domain *domain,
3730 struct iommu_group *group)
3731 {
3732 mutex_lock(&group->mutex);
3733 __iommu_group_set_core_domain(group);
3734 xa_erase(&group->pasid_array, IOMMU_NO_PASID);
3735 mutex_unlock(&group->mutex);
3736 }
3737 EXPORT_SYMBOL_NS_GPL(iommu_detach_group_handle, "IOMMUFD_INTERNAL");
3738
3739 /**
3740 * iommu_replace_group_handle - replace the domain that a group is attached to
3741 * @group: IOMMU group that will be attached to the new domain
3742 * @new_domain: new IOMMU domain to replace with
3743 * @handle: attach handle
3744 *
3745 * This API allows the group to switch domains without being forced to go to
3746 * the blocking domain in-between. It allows the caller to provide an attach
3747 * handle for the new domain and use it when the domain is attached.
3748 *
3749 * If the currently attached domain is a core domain (e.g. a default_domain),
3750 * it will act just like the iommu_attach_group_handle().
3751 *
3752 * Caller should always provide a new handle to avoid race with the paths
3753 * that have lockless reference to handle.
3754 */
iommu_replace_group_handle(struct iommu_group * group,struct iommu_domain * new_domain,struct iommu_attach_handle * handle)3755 int iommu_replace_group_handle(struct iommu_group *group,
3756 struct iommu_domain *new_domain,
3757 struct iommu_attach_handle *handle)
3758 {
3759 void *curr, *entry;
3760 int ret;
3761
3762 if (!new_domain || !handle)
3763 return -EINVAL;
3764
3765 mutex_lock(&group->mutex);
3766 entry = iommu_make_pasid_array_entry(new_domain, handle);
3767 ret = xa_reserve(&group->pasid_array, IOMMU_NO_PASID, GFP_KERNEL);
3768 if (ret)
3769 goto err_unlock;
3770
3771 ret = __iommu_group_set_domain(group, new_domain);
3772 if (ret)
3773 goto err_release;
3774
3775 curr = xa_store(&group->pasid_array, IOMMU_NO_PASID, entry, GFP_KERNEL);
3776 WARN_ON(xa_is_err(curr));
3777
3778 mutex_unlock(&group->mutex);
3779
3780 return 0;
3781 err_release:
3782 xa_release(&group->pasid_array, IOMMU_NO_PASID);
3783 err_unlock:
3784 mutex_unlock(&group->mutex);
3785 return ret;
3786 }
3787 EXPORT_SYMBOL_NS_GPL(iommu_replace_group_handle, "IOMMUFD_INTERNAL");
3788
3789 #if IS_ENABLED(CONFIG_IRQ_MSI_IOMMU)
3790 /**
3791 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
3792 * @desc: MSI descriptor, will store the MSI page
3793 * @msi_addr: MSI target address to be mapped
3794 *
3795 * The implementation of sw_msi() should take msi_addr and map it to
3796 * an IOVA in the domain and call msi_desc_set_iommu_msi_iova() with the
3797 * mapping information.
3798 *
3799 * Return: 0 on success or negative error code if the mapping failed.
3800 */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)3801 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
3802 {
3803 struct device *dev = msi_desc_to_dev(desc);
3804 struct iommu_group *group = dev->iommu_group;
3805 int ret = 0;
3806
3807 if (!group)
3808 return 0;
3809
3810 mutex_lock(&group->mutex);
3811 /* An IDENTITY domain must pass through */
3812 if (group->domain && group->domain->type != IOMMU_DOMAIN_IDENTITY) {
3813 switch (group->domain->cookie_type) {
3814 case IOMMU_COOKIE_DMA_MSI:
3815 case IOMMU_COOKIE_DMA_IOVA:
3816 ret = iommu_dma_sw_msi(group->domain, desc, msi_addr);
3817 break;
3818 case IOMMU_COOKIE_IOMMUFD:
3819 ret = iommufd_sw_msi(group->domain, desc, msi_addr);
3820 break;
3821 default:
3822 ret = -EOPNOTSUPP;
3823 break;
3824 }
3825 }
3826 mutex_unlock(&group->mutex);
3827 return ret;
3828 }
3829 #endif /* CONFIG_IRQ_MSI_IOMMU */
3830