1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{AllocError, Flags, KBox}, 21 bindings, 22 init::InPlaceInit, 23 try_init, 24 types::{ForeignOwnable, Opaque}, 25 }; 26 use core::{ 27 alloc::Layout, 28 fmt, 29 marker::PhantomData, 30 mem::{ManuallyDrop, MaybeUninit}, 31 ops::{Deref, DerefMut}, 32 pin::Pin, 33 ptr::NonNull, 34 }; 35 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit}; 36 37 mod std_vendor; 38 39 /// A reference-counted pointer to an instance of `T`. 40 /// 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 43 /// 44 /// # Invariants 45 /// 46 /// The reference count on an instance of [`Arc`] is always non-zero. 47 /// The object pointed to by [`Arc`] is always pinned. 48 /// 49 /// # Examples 50 /// 51 /// ``` 52 /// use kernel::sync::Arc; 53 /// 54 /// struct Example { 55 /// a: u32, 56 /// b: u32, 57 /// } 58 /// 59 /// // Create a refcounted instance of `Example`. 60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 61 /// 62 /// // Get a new pointer to `obj` and increment the refcount. 63 /// let cloned = obj.clone(); 64 /// 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// 68 /// // Destroy `obj` and decrement its refcount. 69 /// drop(obj); 70 /// 71 /// // Check that the values are still accessible through `cloned`. 72 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.b, 20); 74 /// 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 76 /// # Ok::<(), Error>(()) 77 /// ``` 78 /// 79 /// Using `Arc<T>` as the type of `self`: 80 /// 81 /// ``` 82 /// use kernel::sync::Arc; 83 /// 84 /// struct Example { 85 /// a: u32, 86 /// b: u32, 87 /// } 88 /// 89 /// impl Example { 90 /// fn take_over(self: Arc<Self>) { 91 /// // ... 92 /// } 93 /// 94 /// fn use_reference(self: &Arc<Self>) { 95 /// // ... 96 /// } 97 /// } 98 /// 99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 100 /// obj.use_reference(); 101 /// obj.take_over(); 102 /// # Ok::<(), Error>(()) 103 /// ``` 104 /// 105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 106 /// 107 /// ``` 108 /// use kernel::sync::{Arc, ArcBorrow}; 109 /// 110 /// trait MyTrait { 111 /// // Trait has a function whose `self` type is `Arc<Self>`. 112 /// fn example1(self: Arc<Self>) {} 113 /// 114 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 115 /// fn example2(self: ArcBorrow<'_, Self>) {} 116 /// } 117 /// 118 /// struct Example; 119 /// impl MyTrait for Example {} 120 /// 121 /// // `obj` has type `Arc<Example>`. 122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 123 /// 124 /// // `coerced` has type `Arc<dyn MyTrait>`. 125 /// let coerced: Arc<dyn MyTrait> = obj; 126 /// # Ok::<(), Error>(()) 127 /// ``` 128 #[repr(transparent)] 129 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 130 pub struct Arc<T: ?Sized> { 131 ptr: NonNull<ArcInner<T>>, 132 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as 133 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in 134 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently 135 // meaningful with respect to dropck - but this may change in the future so this is left here 136 // out of an abundance of caution. 137 // 138 // See https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking 139 // for more detail on the semantics of dropck in the presence of `PhantomData`. 140 _p: PhantomData<ArcInner<T>>, 141 } 142 143 #[pin_data] 144 #[repr(C)] 145 struct ArcInner<T: ?Sized> { 146 refcount: Opaque<bindings::refcount_t>, 147 data: T, 148 } 149 150 impl<T: ?Sized> ArcInner<T> { 151 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 152 /// 153 /// # Safety 154 /// 155 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 156 /// not yet have been destroyed. container_of(ptr: *const T) -> NonNull<ArcInner<T>>157 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 158 let refcount_layout = Layout::new::<bindings::refcount_t>(); 159 // SAFETY: The caller guarantees that the pointer is valid. 160 let val_layout = Layout::for_value(unsafe { &*ptr }); 161 // SAFETY: We're computing the layout of a real struct that existed when compiling this 162 // binary, so its layout is not so large that it can trigger arithmetic overflow. 163 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 164 165 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 166 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 167 // 168 // This is documented at: 169 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 170 let ptr = ptr as *const ArcInner<T>; 171 172 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 173 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 174 // still valid. 175 let ptr = unsafe { ptr.byte_sub(val_offset) }; 176 177 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 178 // address. 179 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 180 } 181 } 182 183 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 184 // dynamically-sized type (DST) `U`. 185 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 186 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 187 188 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 189 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 190 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 191 192 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 193 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 194 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 195 // mutable reference when the reference count reaches zero and `T` is dropped. 196 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 197 198 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 199 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 200 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 201 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 202 // the reference count reaches zero and `T` is dropped. 203 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 204 205 impl<T> InPlaceInit<T> for Arc<T> { 206 type PinnedSelf = Self; 207 208 #[inline] try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> where E: From<AllocError>,209 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 210 where 211 E: From<AllocError>, 212 { 213 UniqueArc::try_pin_init(init, flags).map(|u| u.into()) 214 } 215 216 #[inline] try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> where E: From<AllocError>,217 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 218 where 219 E: From<AllocError>, 220 { 221 UniqueArc::try_init(init, flags).map(|u| u.into()) 222 } 223 } 224 225 impl<T> Arc<T> { 226 /// Constructs a new reference counted instance of `T`. new(contents: T, flags: Flags) -> Result<Self, AllocError>227 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 228 // INVARIANT: The refcount is initialised to a non-zero value. 229 let value = ArcInner { 230 // SAFETY: There are no safety requirements for this FFI call. 231 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 232 data: contents, 233 }; 234 235 let inner = KBox::new(value, flags)?; 236 let inner = KBox::leak(inner).into(); 237 238 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 239 // `Arc` object. 240 Ok(unsafe { Self::from_inner(inner) }) 241 } 242 } 243 244 impl<T: ?Sized> Arc<T> { 245 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 246 /// 247 /// # Safety 248 /// 249 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 250 /// count, one of which will be owned by the new [`Arc`] instance. from_inner(inner: NonNull<ArcInner<T>>) -> Self251 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 252 // INVARIANT: By the safety requirements, the invariants hold. 253 Arc { 254 ptr: inner, 255 _p: PhantomData, 256 } 257 } 258 259 /// Convert the [`Arc`] into a raw pointer. 260 /// 261 /// The raw pointer has ownership of the refcount that this Arc object owned. into_raw(self) -> *const T262 pub fn into_raw(self) -> *const T { 263 let ptr = self.ptr.as_ptr(); 264 core::mem::forget(self); 265 // SAFETY: The pointer is valid. 266 unsafe { core::ptr::addr_of!((*ptr).data) } 267 } 268 269 /// Return a raw pointer to the data in this arc. as_ptr(this: &Self) -> *const T270 pub fn as_ptr(this: &Self) -> *const T { 271 let ptr = this.ptr.as_ptr(); 272 273 // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`, 274 // field projection to `data`is within bounds of the allocation. 275 unsafe { core::ptr::addr_of!((*ptr).data) } 276 } 277 278 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 279 /// 280 /// # Safety 281 /// 282 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 283 /// must not be called more than once for each previous call to [`Arc::into_raw`]. from_raw(ptr: *const T) -> Self284 pub unsafe fn from_raw(ptr: *const T) -> Self { 285 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 286 // `Arc` that is still valid. 287 let ptr = unsafe { ArcInner::container_of(ptr) }; 288 289 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 290 // reference count held then will be owned by the new `Arc` object. 291 unsafe { Self::from_inner(ptr) } 292 } 293 294 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 295 /// 296 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 297 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 298 #[inline] as_arc_borrow(&self) -> ArcBorrow<'_, T>299 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 300 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 301 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 302 // reference can be created. 303 unsafe { ArcBorrow::new(self.ptr) } 304 } 305 306 /// Compare whether two [`Arc`] pointers reference the same underlying object. ptr_eq(this: &Self, other: &Self) -> bool307 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 308 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 309 } 310 311 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 312 /// 313 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 314 /// this method will never call the destructor of the value. 315 /// 316 /// # Examples 317 /// 318 /// ``` 319 /// use kernel::sync::{Arc, UniqueArc}; 320 /// 321 /// let arc = Arc::new(42, GFP_KERNEL)?; 322 /// let unique_arc = arc.into_unique_or_drop(); 323 /// 324 /// // The above conversion should succeed since refcount of `arc` is 1. 325 /// assert!(unique_arc.is_some()); 326 /// 327 /// assert_eq!(*(unique_arc.unwrap()), 42); 328 /// 329 /// # Ok::<(), Error>(()) 330 /// ``` 331 /// 332 /// ``` 333 /// use kernel::sync::{Arc, UniqueArc}; 334 /// 335 /// let arc = Arc::new(42, GFP_KERNEL)?; 336 /// let another = arc.clone(); 337 /// 338 /// let unique_arc = arc.into_unique_or_drop(); 339 /// 340 /// // The above conversion should fail since refcount of `arc` is >1. 341 /// assert!(unique_arc.is_none()); 342 /// 343 /// # Ok::<(), Error>(()) 344 /// ``` into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>>345 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 346 // We will manually manage the refcount in this method, so we disable the destructor. 347 let me = ManuallyDrop::new(self); 348 // SAFETY: We own a refcount, so the pointer is still valid. 349 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 350 351 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 352 // return without further touching the `Arc`. If the refcount reaches zero, then there are 353 // no other arcs, and we can create a `UniqueArc`. 354 // 355 // SAFETY: We own a refcount, so the pointer is not dangling. 356 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 357 if is_zero { 358 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 359 // accesses to the refcount. 360 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 361 362 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 363 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 364 // their values. 365 Some(Pin::from(UniqueArc { 366 inner: ManuallyDrop::into_inner(me), 367 })) 368 } else { 369 None 370 } 371 } 372 } 373 374 impl<T: 'static> ForeignOwnable for Arc<T> { 375 type Borrowed<'a> = ArcBorrow<'a, T>; 376 type BorrowedMut<'a> = Self::Borrowed<'a>; 377 into_foreign(self) -> *mut crate::ffi::c_void378 fn into_foreign(self) -> *mut crate::ffi::c_void { 379 ManuallyDrop::new(self).ptr.as_ptr().cast() 380 } 381 from_foreign(ptr: *mut crate::ffi::c_void) -> Self382 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self { 383 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 384 // call to `Self::into_foreign`. 385 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 386 387 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 388 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 389 // holds a reference count increment that is transferrable to us. 390 unsafe { Self::from_inner(inner) } 391 } 392 borrow<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T>393 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T> { 394 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 395 // call to `Self::into_foreign`. 396 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 397 398 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 399 // for the lifetime of the returned value. 400 unsafe { ArcBorrow::new(inner) } 401 } 402 borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T>403 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T> { 404 // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety 405 // requirements for `borrow`. 406 unsafe { Self::borrow(ptr) } 407 } 408 } 409 410 impl<T: ?Sized> Deref for Arc<T> { 411 type Target = T; 412 deref(&self) -> &Self::Target413 fn deref(&self) -> &Self::Target { 414 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 415 // safe to dereference it. 416 unsafe { &self.ptr.as_ref().data } 417 } 418 } 419 420 impl<T: ?Sized> AsRef<T> for Arc<T> { as_ref(&self) -> &T421 fn as_ref(&self) -> &T { 422 self.deref() 423 } 424 } 425 426 impl<T: ?Sized> Clone for Arc<T> { clone(&self) -> Self427 fn clone(&self) -> Self { 428 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 429 // safe to dereference it. 430 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 431 432 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 433 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 434 // safe to increment the refcount. 435 unsafe { bindings::refcount_inc(refcount) }; 436 437 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 438 unsafe { Self::from_inner(self.ptr) } 439 } 440 } 441 442 impl<T: ?Sized> Drop for Arc<T> { drop(&mut self)443 fn drop(&mut self) { 444 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 445 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 446 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 447 // freed/invalid memory as long as it is never dereferenced. 448 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 449 450 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 451 // this instance is being dropped, so the broken invariant is not observable. 452 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 453 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 454 if is_zero { 455 // The count reached zero, we must free the memory. 456 // 457 // SAFETY: The pointer was initialised from the result of `KBox::leak`. 458 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) }; 459 } 460 } 461 } 462 463 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { from(item: UniqueArc<T>) -> Self464 fn from(item: UniqueArc<T>) -> Self { 465 item.inner 466 } 467 } 468 469 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { from(item: Pin<UniqueArc<T>>) -> Self470 fn from(item: Pin<UniqueArc<T>>) -> Self { 471 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 472 unsafe { Pin::into_inner_unchecked(item).inner } 473 } 474 } 475 476 /// A borrowed reference to an [`Arc`] instance. 477 /// 478 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 479 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 480 /// 481 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 482 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 483 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 484 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 485 /// needed. 486 /// 487 /// # Invariants 488 /// 489 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 490 /// lifetime of the [`ArcBorrow`] instance. 491 /// 492 /// # Example 493 /// 494 /// ``` 495 /// use kernel::sync::{Arc, ArcBorrow}; 496 /// 497 /// struct Example; 498 /// 499 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 500 /// e.into() 501 /// } 502 /// 503 /// let obj = Arc::new(Example, GFP_KERNEL)?; 504 /// let cloned = do_something(obj.as_arc_borrow()); 505 /// 506 /// // Assert that both `obj` and `cloned` point to the same underlying object. 507 /// assert!(core::ptr::eq(&*obj, &*cloned)); 508 /// # Ok::<(), Error>(()) 509 /// ``` 510 /// 511 /// Using `ArcBorrow<T>` as the type of `self`: 512 /// 513 /// ``` 514 /// use kernel::sync::{Arc, ArcBorrow}; 515 /// 516 /// struct Example { 517 /// a: u32, 518 /// b: u32, 519 /// } 520 /// 521 /// impl Example { 522 /// fn use_reference(self: ArcBorrow<'_, Self>) { 523 /// // ... 524 /// } 525 /// } 526 /// 527 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 528 /// obj.as_arc_borrow().use_reference(); 529 /// # Ok::<(), Error>(()) 530 /// ``` 531 #[repr(transparent)] 532 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 533 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 534 inner: NonNull<ArcInner<T>>, 535 _p: PhantomData<&'a ()>, 536 } 537 538 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 539 // `ArcBorrow<U>`. 540 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 541 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 542 for ArcBorrow<'_, T> 543 { 544 } 545 546 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { clone(&self) -> Self547 fn clone(&self) -> Self { 548 *self 549 } 550 } 551 552 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 553 554 impl<T: ?Sized> ArcBorrow<'_, T> { 555 /// Creates a new [`ArcBorrow`] instance. 556 /// 557 /// # Safety 558 /// 559 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 560 /// 1. That `inner` remains valid; 561 /// 2. That no mutable references to `inner` are created. new(inner: NonNull<ArcInner<T>>) -> Self562 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 563 // INVARIANT: The safety requirements guarantee the invariants. 564 Self { 565 inner, 566 _p: PhantomData, 567 } 568 } 569 570 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 571 /// [`Arc::into_raw`] or [`Arc::as_ptr`]. 572 /// 573 /// # Safety 574 /// 575 /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`]. 576 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 577 /// not hit zero. 578 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 579 /// [`UniqueArc`] reference to this value. from_raw(ptr: *const T) -> Self580 pub unsafe fn from_raw(ptr: *const T) -> Self { 581 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 582 // `Arc` that is still valid. 583 let ptr = unsafe { ArcInner::container_of(ptr) }; 584 585 // SAFETY: The caller promises that the value remains valid since the reference count must 586 // not hit zero, and no mutable reference will be created since that would involve a 587 // `UniqueArc`. 588 unsafe { Self::new(ptr) } 589 } 590 } 591 592 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { from(b: ArcBorrow<'_, T>) -> Self593 fn from(b: ArcBorrow<'_, T>) -> Self { 594 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 595 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 596 // increment. 597 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 598 .deref() 599 .clone() 600 } 601 } 602 603 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 604 type Target = T; 605 deref(&self) -> &Self::Target606 fn deref(&self) -> &Self::Target { 607 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 608 // references to it, so it is safe to create a shared reference. 609 unsafe { &self.inner.as_ref().data } 610 } 611 } 612 613 /// A refcounted object that is known to have a refcount of 1. 614 /// 615 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 616 /// 617 /// # Invariants 618 /// 619 /// `inner` always has a reference count of 1. 620 /// 621 /// # Examples 622 /// 623 /// In the following example, we make changes to the inner object before turning it into an 624 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 625 /// cannot fail. 626 /// 627 /// ``` 628 /// use kernel::sync::{Arc, UniqueArc}; 629 /// 630 /// struct Example { 631 /// a: u32, 632 /// b: u32, 633 /// } 634 /// 635 /// fn test() -> Result<Arc<Example>> { 636 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 637 /// x.a += 1; 638 /// x.b += 1; 639 /// Ok(x.into()) 640 /// } 641 /// 642 /// # test().unwrap(); 643 /// ``` 644 /// 645 /// In the following example we first allocate memory for a refcounted `Example` but we don't 646 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 647 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 648 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 649 /// 650 /// ``` 651 /// use kernel::sync::{Arc, UniqueArc}; 652 /// 653 /// struct Example { 654 /// a: u32, 655 /// b: u32, 656 /// } 657 /// 658 /// fn test() -> Result<Arc<Example>> { 659 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 660 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 661 /// } 662 /// 663 /// # test().unwrap(); 664 /// ``` 665 /// 666 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 667 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 668 /// initialisation, for example, when initialising fields that are wrapped in locks. 669 /// 670 /// ``` 671 /// use kernel::sync::{Arc, UniqueArc}; 672 /// 673 /// struct Example { 674 /// a: u32, 675 /// b: u32, 676 /// } 677 /// 678 /// fn test() -> Result<Arc<Example>> { 679 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 680 /// // We can modify `pinned` because it is `Unpin`. 681 /// pinned.as_mut().a += 1; 682 /// Ok(pinned.into()) 683 /// } 684 /// 685 /// # test().unwrap(); 686 /// ``` 687 pub struct UniqueArc<T: ?Sized> { 688 inner: Arc<T>, 689 } 690 691 impl<T> InPlaceInit<T> for UniqueArc<T> { 692 type PinnedSelf = Pin<Self>; 693 694 #[inline] try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> where E: From<AllocError>,695 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 696 where 697 E: From<AllocError>, 698 { 699 UniqueArc::new_uninit(flags)?.write_pin_init(init) 700 } 701 702 #[inline] try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> where E: From<AllocError>,703 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 704 where 705 E: From<AllocError>, 706 { 707 UniqueArc::new_uninit(flags)?.write_init(init) 708 } 709 } 710 711 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> { 712 type Initialized = UniqueArc<T>; 713 write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E>714 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 715 let slot = self.as_mut_ptr(); 716 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 717 // slot is valid. 718 unsafe { init.__init(slot)? }; 719 // SAFETY: All fields have been initialized. 720 Ok(unsafe { self.assume_init() }) 721 } 722 write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>723 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 724 let slot = self.as_mut_ptr(); 725 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 726 // slot is valid and will not be moved, because we pin it later. 727 unsafe { init.__pinned_init(slot)? }; 728 // SAFETY: All fields have been initialized. 729 Ok(unsafe { self.assume_init() }.into()) 730 } 731 } 732 733 impl<T> UniqueArc<T> { 734 /// Tries to allocate a new [`UniqueArc`] instance. new(value: T, flags: Flags) -> Result<Self, AllocError>735 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 736 Ok(Self { 737 // INVARIANT: The newly-created object has a refcount of 1. 738 inner: Arc::new(value, flags)?, 739 }) 740 } 741 742 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError>743 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 744 // INVARIANT: The refcount is initialised to a non-zero value. 745 let inner = KBox::try_init::<AllocError>( 746 try_init!(ArcInner { 747 // SAFETY: There are no safety requirements for this FFI call. 748 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 749 data <- pin_init::uninit::<T, AllocError>(), 750 }? AllocError), 751 flags, 752 )?; 753 Ok(UniqueArc { 754 // INVARIANT: The newly-created object has a refcount of 1. 755 // SAFETY: The pointer from the `KBox` is valid. 756 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) }, 757 }) 758 } 759 } 760 761 impl<T> UniqueArc<MaybeUninit<T>> { 762 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. write(mut self, value: T) -> UniqueArc<T>763 pub fn write(mut self, value: T) -> UniqueArc<T> { 764 self.deref_mut().write(value); 765 // SAFETY: We just wrote the value to be initialized. 766 unsafe { self.assume_init() } 767 } 768 769 /// Unsafely assume that `self` is initialized. 770 /// 771 /// # Safety 772 /// 773 /// The caller guarantees that the value behind this pointer has been initialized. It is 774 /// *immediate* UB to call this when the value is not initialized. assume_init(self) -> UniqueArc<T>775 pub unsafe fn assume_init(self) -> UniqueArc<T> { 776 let inner = ManuallyDrop::new(self).inner.ptr; 777 UniqueArc { 778 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 779 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 780 inner: unsafe { Arc::from_inner(inner.cast()) }, 781 } 782 } 783 784 /// Initialize `self` using the given initializer. init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E>785 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 786 // SAFETY: The supplied pointer is valid for initialization. 787 match unsafe { init.__init(self.as_mut_ptr()) } { 788 // SAFETY: Initialization completed successfully. 789 Ok(()) => Ok(unsafe { self.assume_init() }), 790 Err(err) => Err(err), 791 } 792 } 793 794 /// Pin-initialize `self` using the given pin-initializer. pin_init_with<E>( mut self, init: impl PinInit<T, E>, ) -> core::result::Result<Pin<UniqueArc<T>>, E>795 pub fn pin_init_with<E>( 796 mut self, 797 init: impl PinInit<T, E>, 798 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 799 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 800 // to ensure it does not move. 801 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 802 // SAFETY: Initialization completed successfully. 803 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 804 Err(err) => Err(err), 805 } 806 } 807 } 808 809 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { from(obj: UniqueArc<T>) -> Self810 fn from(obj: UniqueArc<T>) -> Self { 811 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 812 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 813 unsafe { Pin::new_unchecked(obj) } 814 } 815 } 816 817 impl<T: ?Sized> Deref for UniqueArc<T> { 818 type Target = T; 819 deref(&self) -> &Self::Target820 fn deref(&self) -> &Self::Target { 821 self.inner.deref() 822 } 823 } 824 825 impl<T: ?Sized> DerefMut for UniqueArc<T> { deref_mut(&mut self) -> &mut Self::Target826 fn deref_mut(&mut self) -> &mut Self::Target { 827 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 828 // it is safe to dereference it. Additionally, we know there is only one reference when 829 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 830 unsafe { &mut self.inner.ptr.as_mut().data } 831 } 832 } 833 834 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result835 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 836 fmt::Display::fmt(self.deref(), f) 837 } 838 } 839 840 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result841 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 842 fmt::Display::fmt(self.deref(), f) 843 } 844 } 845 846 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result847 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 848 fmt::Debug::fmt(self.deref(), f) 849 } 850 } 851 852 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result853 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 854 fmt::Debug::fmt(self.deref(), f) 855 } 856 } 857