1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Anhua Xu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *
27  * Contributors:
28  *    Min He <min.he@intel.com>
29  *    Bing Niu <bing.niu@intel.com>
30  *    Zhi Wang <zhi.a.wang@intel.com>
31  *
32  */
33 
34 #include "i915_drv.h"
35 #include "gvt.h"
36 
vgpu_has_pending_workload(struct intel_vgpu * vgpu)37 static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
38 {
39 	enum intel_engine_id i;
40 	struct intel_engine_cs *engine;
41 
42 	for_each_engine(engine, vgpu->gvt->gt, i) {
43 		if (!list_empty(workload_q_head(vgpu, engine)))
44 			return true;
45 	}
46 
47 	return false;
48 }
49 
50 /* We give 2 seconds higher prio for vGPU during start */
51 #define GVT_SCHED_VGPU_PRI_TIME  2
52 
53 struct vgpu_sched_data {
54 	struct list_head lru_list;
55 	struct intel_vgpu *vgpu;
56 	bool active;
57 	bool pri_sched;
58 	ktime_t pri_time;
59 	ktime_t sched_in_time;
60 	ktime_t sched_time;
61 	ktime_t left_ts;
62 	ktime_t allocated_ts;
63 
64 	struct vgpu_sched_ctl sched_ctl;
65 };
66 
67 struct gvt_sched_data {
68 	struct intel_gvt *gvt;
69 	struct hrtimer timer;
70 	unsigned long period;
71 	struct list_head lru_runq_head;
72 	ktime_t expire_time;
73 };
74 
vgpu_update_timeslice(struct intel_vgpu * vgpu,ktime_t cur_time)75 static void vgpu_update_timeslice(struct intel_vgpu *vgpu, ktime_t cur_time)
76 {
77 	ktime_t delta_ts;
78 	struct vgpu_sched_data *vgpu_data;
79 
80 	if (!vgpu || vgpu == vgpu->gvt->idle_vgpu)
81 		return;
82 
83 	vgpu_data = vgpu->sched_data;
84 	delta_ts = ktime_sub(cur_time, vgpu_data->sched_in_time);
85 	vgpu_data->sched_time = ktime_add(vgpu_data->sched_time, delta_ts);
86 	vgpu_data->left_ts = ktime_sub(vgpu_data->left_ts, delta_ts);
87 	vgpu_data->sched_in_time = cur_time;
88 }
89 
90 #define GVT_TS_BALANCE_PERIOD_MS 100
91 #define GVT_TS_BALANCE_STAGE_NUM 10
92 
gvt_balance_timeslice(struct gvt_sched_data * sched_data)93 static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
94 {
95 	struct vgpu_sched_data *vgpu_data;
96 	struct list_head *pos;
97 	static u64 stage_check;
98 	int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;
99 
100 	/* The timeslice accumulation reset at stage 0, which is
101 	 * allocated again without adding previous debt.
102 	 */
103 	if (stage == 0) {
104 		int total_weight = 0;
105 		ktime_t fair_timeslice;
106 
107 		list_for_each(pos, &sched_data->lru_runq_head) {
108 			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
109 			total_weight += vgpu_data->sched_ctl.weight;
110 		}
111 
112 		list_for_each(pos, &sched_data->lru_runq_head) {
113 			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
114 			fair_timeslice = ktime_divns(ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS),
115 						     total_weight) * vgpu_data->sched_ctl.weight;
116 
117 			vgpu_data->allocated_ts = fair_timeslice;
118 			vgpu_data->left_ts = vgpu_data->allocated_ts;
119 		}
120 	} else {
121 		list_for_each(pos, &sched_data->lru_runq_head) {
122 			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
123 
124 			/* timeslice for next 100ms should add the left/debt
125 			 * slice of previous stages.
126 			 */
127 			vgpu_data->left_ts += vgpu_data->allocated_ts;
128 		}
129 	}
130 }
131 
try_to_schedule_next_vgpu(struct intel_gvt * gvt)132 static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
133 {
134 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
135 	enum intel_engine_id i;
136 	struct intel_engine_cs *engine;
137 	struct vgpu_sched_data *vgpu_data;
138 	ktime_t cur_time;
139 
140 	/* no need to schedule if next_vgpu is the same with current_vgpu,
141 	 * let scheduler chose next_vgpu again by setting it to NULL.
142 	 */
143 	if (scheduler->next_vgpu == scheduler->current_vgpu) {
144 		scheduler->next_vgpu = NULL;
145 		return;
146 	}
147 
148 	/*
149 	 * after the flag is set, workload dispatch thread will
150 	 * stop dispatching workload for current vgpu
151 	 */
152 	scheduler->need_reschedule = true;
153 
154 	/* still have uncompleted workload? */
155 	for_each_engine(engine, gvt->gt, i) {
156 		if (scheduler->current_workload[engine->id])
157 			return;
158 	}
159 
160 	cur_time = ktime_get();
161 	vgpu_update_timeslice(scheduler->current_vgpu, cur_time);
162 	vgpu_data = scheduler->next_vgpu->sched_data;
163 	vgpu_data->sched_in_time = cur_time;
164 
165 	/* switch current vgpu */
166 	scheduler->current_vgpu = scheduler->next_vgpu;
167 	scheduler->next_vgpu = NULL;
168 
169 	scheduler->need_reschedule = false;
170 
171 	/* wake up workload dispatch thread */
172 	for_each_engine(engine, gvt->gt, i)
173 		wake_up(&scheduler->waitq[engine->id]);
174 }
175 
find_busy_vgpu(struct gvt_sched_data * sched_data)176 static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
177 {
178 	struct vgpu_sched_data *vgpu_data;
179 	struct intel_vgpu *vgpu = NULL;
180 	struct list_head *head = &sched_data->lru_runq_head;
181 	struct list_head *pos;
182 
183 	/* search a vgpu with pending workload */
184 	list_for_each(pos, head) {
185 
186 		vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
187 		if (!vgpu_has_pending_workload(vgpu_data->vgpu))
188 			continue;
189 
190 		if (vgpu_data->pri_sched) {
191 			if (ktime_before(ktime_get(), vgpu_data->pri_time)) {
192 				vgpu = vgpu_data->vgpu;
193 				break;
194 			} else
195 				vgpu_data->pri_sched = false;
196 		}
197 
198 		/* Return the vGPU only if it has time slice left */
199 		if (vgpu_data->left_ts > 0) {
200 			vgpu = vgpu_data->vgpu;
201 			break;
202 		}
203 	}
204 
205 	return vgpu;
206 }
207 
208 /* in nanosecond */
209 #define GVT_DEFAULT_TIME_SLICE 1000000
210 
tbs_sched_func(struct gvt_sched_data * sched_data)211 static void tbs_sched_func(struct gvt_sched_data *sched_data)
212 {
213 	struct intel_gvt *gvt = sched_data->gvt;
214 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
215 	struct vgpu_sched_data *vgpu_data;
216 	struct intel_vgpu *vgpu = NULL;
217 
218 	/* no active vgpu or has already had a target */
219 	if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
220 		goto out;
221 
222 	vgpu = find_busy_vgpu(sched_data);
223 	if (vgpu) {
224 		scheduler->next_vgpu = vgpu;
225 		vgpu_data = vgpu->sched_data;
226 		if (!vgpu_data->pri_sched) {
227 			/* Move the last used vGPU to the tail of lru_list */
228 			list_del_init(&vgpu_data->lru_list);
229 			list_add_tail(&vgpu_data->lru_list,
230 				      &sched_data->lru_runq_head);
231 		}
232 	} else {
233 		scheduler->next_vgpu = gvt->idle_vgpu;
234 	}
235 out:
236 	if (scheduler->next_vgpu)
237 		try_to_schedule_next_vgpu(gvt);
238 }
239 
intel_gvt_schedule(struct intel_gvt * gvt)240 void intel_gvt_schedule(struct intel_gvt *gvt)
241 {
242 	struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
243 	ktime_t cur_time;
244 
245 	mutex_lock(&gvt->sched_lock);
246 	cur_time = ktime_get();
247 
248 	if (test_and_clear_bit(INTEL_GVT_REQUEST_SCHED,
249 				(void *)&gvt->service_request)) {
250 		if (cur_time >= sched_data->expire_time) {
251 			gvt_balance_timeslice(sched_data);
252 			sched_data->expire_time = ktime_add_ms(
253 				cur_time, GVT_TS_BALANCE_PERIOD_MS);
254 		}
255 	}
256 	clear_bit(INTEL_GVT_REQUEST_EVENT_SCHED, (void *)&gvt->service_request);
257 
258 	vgpu_update_timeslice(gvt->scheduler.current_vgpu, cur_time);
259 	tbs_sched_func(sched_data);
260 
261 	mutex_unlock(&gvt->sched_lock);
262 }
263 
tbs_timer_fn(struct hrtimer * timer_data)264 static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
265 {
266 	struct gvt_sched_data *data;
267 
268 	data = container_of(timer_data, struct gvt_sched_data, timer);
269 
270 	intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);
271 
272 	hrtimer_add_expires_ns(&data->timer, data->period);
273 
274 	return HRTIMER_RESTART;
275 }
276 
tbs_sched_init(struct intel_gvt * gvt)277 static int tbs_sched_init(struct intel_gvt *gvt)
278 {
279 	struct intel_gvt_workload_scheduler *scheduler =
280 		&gvt->scheduler;
281 
282 	struct gvt_sched_data *data;
283 
284 	data = kzalloc(sizeof(*data), GFP_KERNEL);
285 	if (!data)
286 		return -ENOMEM;
287 
288 	INIT_LIST_HEAD(&data->lru_runq_head);
289 	hrtimer_setup(&data->timer, tbs_timer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
290 	data->period = GVT_DEFAULT_TIME_SLICE;
291 	data->gvt = gvt;
292 
293 	scheduler->sched_data = data;
294 
295 	return 0;
296 }
297 
tbs_sched_clean(struct intel_gvt * gvt)298 static void tbs_sched_clean(struct intel_gvt *gvt)
299 {
300 	struct intel_gvt_workload_scheduler *scheduler =
301 		&gvt->scheduler;
302 	struct gvt_sched_data *data = scheduler->sched_data;
303 
304 	hrtimer_cancel(&data->timer);
305 
306 	kfree(data);
307 	scheduler->sched_data = NULL;
308 }
309 
tbs_sched_init_vgpu(struct intel_vgpu * vgpu)310 static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
311 {
312 	struct vgpu_sched_data *data;
313 
314 	data = kzalloc(sizeof(*data), GFP_KERNEL);
315 	if (!data)
316 		return -ENOMEM;
317 
318 	data->sched_ctl.weight = vgpu->sched_ctl.weight;
319 	data->vgpu = vgpu;
320 	INIT_LIST_HEAD(&data->lru_list);
321 
322 	vgpu->sched_data = data;
323 
324 	return 0;
325 }
326 
tbs_sched_clean_vgpu(struct intel_vgpu * vgpu)327 static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
328 {
329 	struct intel_gvt *gvt = vgpu->gvt;
330 	struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
331 
332 	kfree(vgpu->sched_data);
333 	vgpu->sched_data = NULL;
334 
335 	/* this vgpu id has been removed */
336 	if (idr_is_empty(&gvt->vgpu_idr))
337 		hrtimer_cancel(&sched_data->timer);
338 }
339 
tbs_sched_start_schedule(struct intel_vgpu * vgpu)340 static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
341 {
342 	struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
343 	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
344 	ktime_t now;
345 
346 	if (!list_empty(&vgpu_data->lru_list))
347 		return;
348 
349 	now = ktime_get();
350 	vgpu_data->pri_time = ktime_add(now,
351 					ktime_set(GVT_SCHED_VGPU_PRI_TIME, 0));
352 	vgpu_data->pri_sched = true;
353 
354 	list_add(&vgpu_data->lru_list, &sched_data->lru_runq_head);
355 
356 	if (!hrtimer_active(&sched_data->timer))
357 		hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
358 			sched_data->period), HRTIMER_MODE_ABS);
359 	vgpu_data->active = true;
360 }
361 
tbs_sched_stop_schedule(struct intel_vgpu * vgpu)362 static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
363 {
364 	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
365 
366 	list_del_init(&vgpu_data->lru_list);
367 	vgpu_data->active = false;
368 }
369 
370 static const struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
371 	.init = tbs_sched_init,
372 	.clean = tbs_sched_clean,
373 	.init_vgpu = tbs_sched_init_vgpu,
374 	.clean_vgpu = tbs_sched_clean_vgpu,
375 	.start_schedule = tbs_sched_start_schedule,
376 	.stop_schedule = tbs_sched_stop_schedule,
377 };
378 
intel_gvt_init_sched_policy(struct intel_gvt * gvt)379 int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
380 {
381 	int ret;
382 
383 	mutex_lock(&gvt->sched_lock);
384 	gvt->scheduler.sched_ops = &tbs_schedule_ops;
385 	ret = gvt->scheduler.sched_ops->init(gvt);
386 	mutex_unlock(&gvt->sched_lock);
387 
388 	return ret;
389 }
390 
intel_gvt_clean_sched_policy(struct intel_gvt * gvt)391 void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
392 {
393 	mutex_lock(&gvt->sched_lock);
394 	gvt->scheduler.sched_ops->clean(gvt);
395 	mutex_unlock(&gvt->sched_lock);
396 }
397 
398 /* for per-vgpu scheduler policy, there are 2 per-vgpu data:
399  * sched_data, and sched_ctl. We see these 2 data as part of
400  * the global scheduler which are proteced by gvt->sched_lock.
401  * Caller should make their decision if the vgpu_lock should
402  * be hold outside.
403  */
404 
intel_vgpu_init_sched_policy(struct intel_vgpu * vgpu)405 int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
406 {
407 	int ret;
408 
409 	mutex_lock(&vgpu->gvt->sched_lock);
410 	ret = vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
411 	mutex_unlock(&vgpu->gvt->sched_lock);
412 
413 	return ret;
414 }
415 
intel_vgpu_clean_sched_policy(struct intel_vgpu * vgpu)416 void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
417 {
418 	mutex_lock(&vgpu->gvt->sched_lock);
419 	vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
420 	mutex_unlock(&vgpu->gvt->sched_lock);
421 }
422 
intel_vgpu_start_schedule(struct intel_vgpu * vgpu)423 void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
424 {
425 	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
426 
427 	mutex_lock(&vgpu->gvt->sched_lock);
428 	if (!vgpu_data->active) {
429 		gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);
430 		vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
431 	}
432 	mutex_unlock(&vgpu->gvt->sched_lock);
433 }
434 
intel_gvt_kick_schedule(struct intel_gvt * gvt)435 void intel_gvt_kick_schedule(struct intel_gvt *gvt)
436 {
437 	mutex_lock(&gvt->sched_lock);
438 	intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
439 	mutex_unlock(&gvt->sched_lock);
440 }
441 
intel_vgpu_stop_schedule(struct intel_vgpu * vgpu)442 void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
443 {
444 	struct intel_gvt_workload_scheduler *scheduler =
445 		&vgpu->gvt->scheduler;
446 	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
447 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
448 	struct intel_engine_cs *engine;
449 	enum intel_engine_id id;
450 
451 	if (!vgpu_data->active)
452 		return;
453 
454 	gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);
455 
456 	mutex_lock(&vgpu->gvt->sched_lock);
457 	scheduler->sched_ops->stop_schedule(vgpu);
458 
459 	if (scheduler->next_vgpu == vgpu)
460 		scheduler->next_vgpu = NULL;
461 
462 	if (scheduler->current_vgpu == vgpu) {
463 		/* stop workload dispatching */
464 		scheduler->need_reschedule = true;
465 		scheduler->current_vgpu = NULL;
466 	}
467 
468 	intel_runtime_pm_get(&dev_priv->runtime_pm);
469 	spin_lock_bh(&scheduler->mmio_context_lock);
470 	for_each_engine(engine, vgpu->gvt->gt, id) {
471 		if (scheduler->engine_owner[engine->id] == vgpu) {
472 			intel_gvt_switch_mmio(vgpu, NULL, engine);
473 			scheduler->engine_owner[engine->id] = NULL;
474 		}
475 	}
476 	spin_unlock_bh(&scheduler->mmio_context_lock);
477 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
478 	mutex_unlock(&vgpu->gvt->sched_lock);
479 }
480