xref: /linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision 260f6f4fda93c8485c8037865c941b42b9cba5d2)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include "i915_drv.h"
40 #include "i915_reg.h"
41 #include "display/intel_display_regs.h"
42 #include "gt/intel_engine_regs.h"
43 #include "gt/intel_gpu_commands.h"
44 #include "gt/intel_gt_regs.h"
45 #include "gt/intel_lrc.h"
46 #include "gt/intel_ring.h"
47 #include "gt/intel_gt_requests.h"
48 #include "gt/shmem_utils.h"
49 #include "gvt.h"
50 #include "i915_pvinfo.h"
51 #include "trace.h"
52 
53 #include "display/i9xx_plane_regs.h"
54 #include "display/intel_display_core.h"
55 #include "display/intel_sprite_regs.h"
56 #include "gem/i915_gem_context.h"
57 #include "gem/i915_gem_pm.h"
58 #include "gt/intel_context.h"
59 
60 #define INVALID_OP    (~0U)
61 
62 #define OP_LEN_MI           9
63 #define OP_LEN_2D           10
64 #define OP_LEN_3D_MEDIA     16
65 #define OP_LEN_MFX_VC       16
66 #define OP_LEN_VEBOX	    16
67 
68 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
69 
70 struct sub_op_bits {
71 	int hi;
72 	int low;
73 };
74 struct decode_info {
75 	const char *name;
76 	int op_len;
77 	int nr_sub_op;
78 	const struct sub_op_bits *sub_op;
79 };
80 
81 #define   MAX_CMD_BUDGET			0x7fffffff
82 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
83 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
84 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
85 
86 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
87 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
88 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
89 
90 /* Render Command Map */
91 
92 /* MI_* command Opcode (28:23) */
93 #define OP_MI_NOOP                          0x0
94 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
95 #define OP_MI_USER_INTERRUPT                0x2
96 #define OP_MI_WAIT_FOR_EVENT                0x3
97 #define OP_MI_FLUSH                         0x4
98 #define OP_MI_ARB_CHECK                     0x5
99 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
100 #define OP_MI_REPORT_HEAD                   0x7
101 #define OP_MI_ARB_ON_OFF                    0x8
102 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
103 #define OP_MI_BATCH_BUFFER_END              0xA
104 #define OP_MI_SUSPEND_FLUSH                 0xB
105 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
106 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
107 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
108 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
109 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
110 #define OP_MI_DISPLAY_FLIP                  0x14
111 #define OP_MI_SEMAPHORE_MBOX                0x16
112 #define OP_MI_SET_CONTEXT                   0x18
113 #define OP_MI_MATH                          0x1A
114 #define OP_MI_URB_CLEAR                     0x19
115 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
116 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
117 
118 #define OP_MI_STORE_DATA_IMM                0x20
119 #define OP_MI_STORE_DATA_INDEX              0x21
120 #define OP_MI_LOAD_REGISTER_IMM             0x22
121 #define OP_MI_UPDATE_GTT                    0x23
122 #define OP_MI_STORE_REGISTER_MEM            0x24
123 #define OP_MI_FLUSH_DW                      0x26
124 #define OP_MI_CLFLUSH                       0x27
125 #define OP_MI_REPORT_PERF_COUNT             0x28
126 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
127 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
128 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
129 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
130 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
131 #define OP_MI_2E			    0x2E  /* BDW+ */
132 #define OP_MI_2F			    0x2F  /* BDW+ */
133 #define OP_MI_BATCH_BUFFER_START            0x31
134 
135 /* Bit definition for dword 0 */
136 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
137 
138 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
139 
140 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
141 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
142 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
143 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
144 
145 /* 2D command: Opcode (28:22) */
146 #define OP_2D(x)    ((2<<7) | x)
147 
148 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
149 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
150 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
151 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
152 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
153 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
154 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
155 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
156 #define OP_XY_PAT_BLT                               OP_2D(0x51)
157 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
158 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
159 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
160 #define OP_XY_FULL_BLT                              OP_2D(0x55)
161 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
162 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
163 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
164 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
165 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
166 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
167 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
168 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
169 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
170 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
171 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
172 
173 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
174 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
175 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
176 
177 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
178 
179 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
180 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
181 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
182 #define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
183 
184 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
185 
186 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
187 
188 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
189 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
190 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
191 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
192 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
193 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
194 
195 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
196 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
197 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
198 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
199 
200 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
201 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
202 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
203 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
204 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
205 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
206 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
207 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
208 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
209 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
210 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
211 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
212 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
213 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
214 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
215 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
216 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
217 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
218 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
219 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
220 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
221 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
222 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
223 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
224 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
225 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
226 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
227 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
228 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
229 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
230 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
231 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
232 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
233 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
234 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
235 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
236 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
237 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
238 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
239 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
240 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
241 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
242 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
243 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
244 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
245 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
246 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
247 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
248 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
249 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
250 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
251 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
252 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
253 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
254 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
255 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
256 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
257 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
258 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
259 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
260 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
261 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
262 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
263 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
264 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
265 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
266 
267 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
268 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
269 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
270 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
271 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
272 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
273 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
274 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
275 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
276 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
277 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
278 
279 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
280 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
281 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
282 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
283 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
284 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
285 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
286 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
287 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
288 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
289 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
290 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
291 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
292 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
293 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
294 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
295 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
296 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
297 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
298 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
299 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
300 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
301 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
302 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
303 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
304 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
305 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
306 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
307 
308 /* VCCP Command Parser */
309 
310 /*
311  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
312  * git://anongit.freedesktop.org/vaapi/intel-driver
313  * src/i965_defines.h
314  *
315  */
316 
317 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
318 	(3 << 13 | \
319 	 (pipeline) << 11 | \
320 	 (op) << 8 | \
321 	 (sub_opa) << 5 | \
322 	 (sub_opb))
323 
324 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
325 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
326 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
327 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
328 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
329 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
330 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
331 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
332 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
333 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
334 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
335 
336 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
337 
338 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
339 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
340 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
341 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
342 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
343 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
344 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
345 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
346 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
347 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
348 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
349 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
350 
351 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
352 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
353 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
354 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
355 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
356 
357 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
358 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
359 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
360 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
361 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
362 
363 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
364 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
365 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
366 
367 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
368 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
369 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
370 
371 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
372 	(3 << 13 | \
373 	 (pipeline) << 11 | \
374 	 (op) << 8 | \
375 	 (sub_opa) << 5 | \
376 	 (sub_opb))
377 
378 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
379 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
380 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
381 
382 struct parser_exec_state;
383 
384 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
385 
386 #define GVT_CMD_HASH_BITS   7
387 
388 /* which DWords need address fix */
389 #define ADDR_FIX_1(x1)			(1 << (x1))
390 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
391 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
392 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
393 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
394 
395 #define DWORD_FIELD(dword, end, start) \
396 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
397 
398 #define OP_LENGTH_BIAS 2
399 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
400 
gvt_check_valid_cmd_length(int len,int valid_len)401 static int gvt_check_valid_cmd_length(int len, int valid_len)
402 {
403 	if (valid_len != len) {
404 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
405 			len, valid_len);
406 		return -EFAULT;
407 	}
408 	return 0;
409 }
410 
411 struct cmd_info {
412 	const char *name;
413 	u32 opcode;
414 
415 #define F_LEN_MASK	3U
416 #define F_LEN_CONST  1U
417 #define F_LEN_VAR    0U
418 /* value is const although LEN maybe variable */
419 #define F_LEN_VAR_FIXED    (1<<1)
420 
421 /*
422  * command has its own ip advance logic
423  * e.g. MI_BATCH_START, MI_BATCH_END
424  */
425 #define F_IP_ADVANCE_CUSTOM (1<<2)
426 	u32 flag;
427 
428 #define R_RCS	BIT(RCS0)
429 #define R_VCS1  BIT(VCS0)
430 #define R_VCS2  BIT(VCS1)
431 #define R_VCS	(R_VCS1 | R_VCS2)
432 #define R_BCS	BIT(BCS0)
433 #define R_VECS	BIT(VECS0)
434 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
435 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
436 	intel_engine_mask_t rings;
437 
438 	/* devices that support this cmd: SNB/IVB/HSW/... */
439 	u16 devices;
440 
441 	/* which DWords are address that need fix up.
442 	 * bit 0 means a 32-bit non address operand in command
443 	 * bit 1 means address operand, which could be 32-bit
444 	 * or 64-bit depending on different architectures.(
445 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
446 	 * No matter the address length, each address only takes
447 	 * one bit in the bitmap.
448 	 */
449 	u16 addr_bitmap;
450 
451 	/* flag == F_LEN_CONST : command length
452 	 * flag == F_LEN_VAR : length bias bits
453 	 * Note: length is in DWord
454 	 */
455 	u32 len;
456 
457 	parser_cmd_handler handler;
458 
459 	/* valid length in DWord */
460 	u32 valid_len;
461 };
462 
463 struct cmd_entry {
464 	struct hlist_node hlist;
465 	const struct cmd_info *info;
466 };
467 
468 enum {
469 	RING_BUFFER_INSTRUCTION,
470 	BATCH_BUFFER_INSTRUCTION,
471 	BATCH_BUFFER_2ND_LEVEL,
472 	RING_BUFFER_CTX,
473 };
474 
475 enum {
476 	GTT_BUFFER,
477 	PPGTT_BUFFER
478 };
479 
480 struct parser_exec_state {
481 	struct intel_vgpu *vgpu;
482 	const struct intel_engine_cs *engine;
483 
484 	int buf_type;
485 
486 	/* batch buffer address type */
487 	int buf_addr_type;
488 
489 	/* graphics memory address of ring buffer start */
490 	unsigned long ring_start;
491 	unsigned long ring_size;
492 	unsigned long ring_head;
493 	unsigned long ring_tail;
494 
495 	/* instruction graphics memory address */
496 	unsigned long ip_gma;
497 
498 	/* mapped va of the instr_gma */
499 	void *ip_va;
500 	void *rb_va;
501 
502 	void *ret_bb_va;
503 	/* next instruction when return from  batch buffer to ring buffer */
504 	unsigned long ret_ip_gma_ring;
505 
506 	/* next instruction when return from 2nd batch buffer to batch buffer */
507 	unsigned long ret_ip_gma_bb;
508 
509 	/* batch buffer address type (GTT or PPGTT)
510 	 * used when ret from 2nd level batch buffer
511 	 */
512 	int saved_buf_addr_type;
513 	bool is_ctx_wa;
514 	bool is_init_ctx;
515 
516 	const struct cmd_info *info;
517 
518 	struct intel_vgpu_workload *workload;
519 };
520 
521 #define gmadr_dw_number(s)	\
522 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
523 
524 static unsigned long bypass_scan_mask = 0;
525 
526 /* ring ALL, type = 0 */
527 static const struct sub_op_bits sub_op_mi[] = {
528 	{31, 29},
529 	{28, 23},
530 };
531 
532 static const struct decode_info decode_info_mi = {
533 	"MI",
534 	OP_LEN_MI,
535 	ARRAY_SIZE(sub_op_mi),
536 	sub_op_mi,
537 };
538 
539 /* ring RCS, command type 2 */
540 static const struct sub_op_bits sub_op_2d[] = {
541 	{31, 29},
542 	{28, 22},
543 };
544 
545 static const struct decode_info decode_info_2d = {
546 	"2D",
547 	OP_LEN_2D,
548 	ARRAY_SIZE(sub_op_2d),
549 	sub_op_2d,
550 };
551 
552 /* ring RCS, command type 3 */
553 static const struct sub_op_bits sub_op_3d_media[] = {
554 	{31, 29},
555 	{28, 27},
556 	{26, 24},
557 	{23, 16},
558 };
559 
560 static const struct decode_info decode_info_3d_media = {
561 	"3D_Media",
562 	OP_LEN_3D_MEDIA,
563 	ARRAY_SIZE(sub_op_3d_media),
564 	sub_op_3d_media,
565 };
566 
567 /* ring VCS, command type 3 */
568 static const struct sub_op_bits sub_op_mfx_vc[] = {
569 	{31, 29},
570 	{28, 27},
571 	{26, 24},
572 	{23, 21},
573 	{20, 16},
574 };
575 
576 static const struct decode_info decode_info_mfx_vc = {
577 	"MFX_VC",
578 	OP_LEN_MFX_VC,
579 	ARRAY_SIZE(sub_op_mfx_vc),
580 	sub_op_mfx_vc,
581 };
582 
583 /* ring VECS, command type 3 */
584 static const struct sub_op_bits sub_op_vebox[] = {
585 	{31, 29},
586 	{28, 27},
587 	{26, 24},
588 	{23, 21},
589 	{20, 16},
590 };
591 
592 static const struct decode_info decode_info_vebox = {
593 	"VEBOX",
594 	OP_LEN_VEBOX,
595 	ARRAY_SIZE(sub_op_vebox),
596 	sub_op_vebox,
597 };
598 
599 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
600 	[RCS0] = {
601 		&decode_info_mi,
602 		NULL,
603 		NULL,
604 		&decode_info_3d_media,
605 		NULL,
606 		NULL,
607 		NULL,
608 		NULL,
609 	},
610 
611 	[VCS0] = {
612 		&decode_info_mi,
613 		NULL,
614 		NULL,
615 		&decode_info_mfx_vc,
616 		NULL,
617 		NULL,
618 		NULL,
619 		NULL,
620 	},
621 
622 	[BCS0] = {
623 		&decode_info_mi,
624 		NULL,
625 		&decode_info_2d,
626 		NULL,
627 		NULL,
628 		NULL,
629 		NULL,
630 		NULL,
631 	},
632 
633 	[VECS0] = {
634 		&decode_info_mi,
635 		NULL,
636 		NULL,
637 		&decode_info_vebox,
638 		NULL,
639 		NULL,
640 		NULL,
641 		NULL,
642 	},
643 
644 	[VCS1] = {
645 		&decode_info_mi,
646 		NULL,
647 		NULL,
648 		&decode_info_mfx_vc,
649 		NULL,
650 		NULL,
651 		NULL,
652 		NULL,
653 	},
654 };
655 
get_opcode(u32 cmd,const struct intel_engine_cs * engine)656 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
657 {
658 	const struct decode_info *d_info;
659 
660 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
661 	if (d_info == NULL)
662 		return INVALID_OP;
663 
664 	return cmd >> (32 - d_info->op_len);
665 }
666 
667 static inline const struct cmd_info *
find_cmd_entry(struct intel_gvt * gvt,unsigned int opcode,const struct intel_engine_cs * engine)668 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
669 	       const struct intel_engine_cs *engine)
670 {
671 	struct cmd_entry *e;
672 
673 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
674 		if (opcode == e->info->opcode &&
675 		    e->info->rings & engine->mask)
676 			return e->info;
677 	}
678 	return NULL;
679 }
680 
681 static inline const struct cmd_info *
get_cmd_info(struct intel_gvt * gvt,u32 cmd,const struct intel_engine_cs * engine)682 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
683 	     const struct intel_engine_cs *engine)
684 {
685 	u32 opcode;
686 
687 	opcode = get_opcode(cmd, engine);
688 	if (opcode == INVALID_OP)
689 		return NULL;
690 
691 	return find_cmd_entry(gvt, opcode, engine);
692 }
693 
sub_op_val(u32 cmd,u32 hi,u32 low)694 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
695 {
696 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
697 }
698 
print_opcode(u32 cmd,const struct intel_engine_cs * engine)699 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
700 {
701 	const struct decode_info *d_info;
702 	int i;
703 
704 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
705 	if (d_info == NULL)
706 		return;
707 
708 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
709 			cmd >> (32 - d_info->op_len), d_info->name);
710 
711 	for (i = 0; i < d_info->nr_sub_op; i++)
712 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
713 					d_info->sub_op[i].low));
714 
715 	pr_err("\n");
716 }
717 
cmd_ptr(struct parser_exec_state * s,int index)718 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
719 {
720 	return s->ip_va + (index << 2);
721 }
722 
cmd_val(struct parser_exec_state * s,int index)723 static inline u32 cmd_val(struct parser_exec_state *s, int index)
724 {
725 	return *cmd_ptr(s, index);
726 }
727 
is_init_ctx(struct parser_exec_state * s)728 static inline bool is_init_ctx(struct parser_exec_state *s)
729 {
730 	return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
731 }
732 
parser_exec_state_dump(struct parser_exec_state * s)733 static void parser_exec_state_dump(struct parser_exec_state *s)
734 {
735 	int cnt = 0;
736 	int i;
737 
738 	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
739 		    " ring_head(%08lx) ring_tail(%08lx)\n",
740 		    s->vgpu->id, s->engine->name,
741 		    s->ring_start, s->ring_start + s->ring_size,
742 		    s->ring_head, s->ring_tail);
743 
744 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
745 			s->buf_type == RING_BUFFER_INSTRUCTION ?
746 			"RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
747 				"CTX_BUFFER" : "BATCH_BUFFER"),
748 			s->buf_addr_type == GTT_BUFFER ?
749 			"GTT" : "PPGTT", s->ip_gma);
750 
751 	if (s->ip_va == NULL) {
752 		gvt_dbg_cmd(" ip_va(NULL)");
753 		return;
754 	}
755 
756 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
757 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
758 			cmd_val(s, 2), cmd_val(s, 3));
759 
760 	print_opcode(cmd_val(s, 0), s->engine);
761 
762 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
763 
764 	while (cnt < 1024) {
765 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
766 		for (i = 0; i < 8; i++)
767 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
768 		gvt_dbg_cmd("\n");
769 
770 		s->ip_va += 8 * sizeof(u32);
771 		cnt += 8;
772 	}
773 }
774 
update_ip_va(struct parser_exec_state * s)775 static inline void update_ip_va(struct parser_exec_state *s)
776 {
777 	unsigned long len = 0;
778 
779 	if (WARN_ON(s->ring_head == s->ring_tail))
780 		return;
781 
782 	if (s->buf_type == RING_BUFFER_INSTRUCTION ||
783 			s->buf_type == RING_BUFFER_CTX) {
784 		unsigned long ring_top = s->ring_start + s->ring_size;
785 
786 		if (s->ring_head > s->ring_tail) {
787 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
788 				len = (s->ip_gma - s->ring_head);
789 			else if (s->ip_gma >= s->ring_start &&
790 					s->ip_gma <= s->ring_tail)
791 				len = (ring_top - s->ring_head) +
792 					(s->ip_gma - s->ring_start);
793 		} else
794 			len = (s->ip_gma - s->ring_head);
795 
796 		s->ip_va = s->rb_va + len;
797 	} else {/* shadow batch buffer */
798 		s->ip_va = s->ret_bb_va;
799 	}
800 }
801 
ip_gma_set(struct parser_exec_state * s,unsigned long ip_gma)802 static inline int ip_gma_set(struct parser_exec_state *s,
803 		unsigned long ip_gma)
804 {
805 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
806 
807 	s->ip_gma = ip_gma;
808 	update_ip_va(s);
809 	return 0;
810 }
811 
ip_gma_advance(struct parser_exec_state * s,unsigned int dw_len)812 static inline int ip_gma_advance(struct parser_exec_state *s,
813 		unsigned int dw_len)
814 {
815 	s->ip_gma += (dw_len << 2);
816 
817 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
818 		if (s->ip_gma >= s->ring_start + s->ring_size)
819 			s->ip_gma -= s->ring_size;
820 		update_ip_va(s);
821 	} else {
822 		s->ip_va += (dw_len << 2);
823 	}
824 
825 	return 0;
826 }
827 
get_cmd_length(const struct cmd_info * info,u32 cmd)828 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
829 {
830 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
831 		return info->len;
832 	else
833 		return (cmd & ((1U << info->len) - 1)) + 2;
834 	return 0;
835 }
836 
cmd_length(struct parser_exec_state * s)837 static inline int cmd_length(struct parser_exec_state *s)
838 {
839 	return get_cmd_length(s->info, cmd_val(s, 0));
840 }
841 
842 /* do not remove this, some platform may need clflush here */
843 #define patch_value(s, addr, val) do { \
844 	*addr = val; \
845 } while (0)
846 
is_mocs_mmio(unsigned int offset)847 static inline bool is_mocs_mmio(unsigned int offset)
848 {
849 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
850 		((offset >= 0xb020) && (offset <= 0xb0a0));
851 }
852 
is_cmd_update_pdps(unsigned int offset,struct parser_exec_state * s)853 static int is_cmd_update_pdps(unsigned int offset,
854 			      struct parser_exec_state *s)
855 {
856 	u32 base = s->workload->engine->mmio_base;
857 	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
858 }
859 
cmd_pdp_mmio_update_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index)860 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
861 				       unsigned int offset, unsigned int index)
862 {
863 	struct intel_vgpu *vgpu = s->vgpu;
864 	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
865 	struct intel_vgpu_mm *mm;
866 	u64 pdps[GEN8_3LVL_PDPES];
867 
868 	if (shadow_mm->ppgtt_mm.root_entry_type ==
869 	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
870 		pdps[0] = (u64)cmd_val(s, 2) << 32;
871 		pdps[0] |= cmd_val(s, 4);
872 
873 		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
874 		if (!mm) {
875 			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
876 			return -EINVAL;
877 		}
878 		intel_vgpu_mm_get(mm);
879 		list_add_tail(&mm->ppgtt_mm.link,
880 			      &s->workload->lri_shadow_mm);
881 		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
882 		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
883 	} else {
884 		/* Currently all guests use PML4 table and now can't
885 		 * have a guest with 3-level table but uses LRI for
886 		 * PPGTT update. So this is simply un-testable. */
887 		GEM_BUG_ON(1);
888 		gvt_vgpu_err("invalid shared shadow vm type\n");
889 		return -EINVAL;
890 	}
891 	return 0;
892 }
893 
cmd_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index,char * cmd)894 static int cmd_reg_handler(struct parser_exec_state *s,
895 	unsigned int offset, unsigned int index, char *cmd)
896 {
897 	struct intel_vgpu *vgpu = s->vgpu;
898 	struct intel_gvt *gvt = vgpu->gvt;
899 	u32 ctx_sr_ctl;
900 	u32 *vreg, vreg_old;
901 
902 	if (offset + 4 > gvt->device_info.mmio_size) {
903 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
904 				cmd, offset);
905 		return -EFAULT;
906 	}
907 
908 	if (is_init_ctx(s)) {
909 		struct intel_gvt_mmio_info *mmio_info;
910 
911 		intel_gvt_mmio_set_cmd_accessible(gvt, offset);
912 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
913 		if (mmio_info && mmio_info->write)
914 			intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
915 		return 0;
916 	}
917 
918 	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
919 		gvt_vgpu_err("%s access to non-render register (%x)\n",
920 				cmd, offset);
921 		return -EBADRQC;
922 	}
923 
924 	if (!strncmp(cmd, "srm", 3) ||
925 			!strncmp(cmd, "lrm", 3)) {
926 		if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
927 		    offset == 0x21f0 ||
928 		    (IS_BROADWELL(gvt->gt->i915) &&
929 		     offset == i915_mmio_reg_offset(INSTPM)))
930 			return 0;
931 		else {
932 			gvt_vgpu_err("%s access to register (%x)\n",
933 					cmd, offset);
934 			return -EPERM;
935 		}
936 	}
937 
938 	if (!strncmp(cmd, "lrr-src", 7) ||
939 			!strncmp(cmd, "lrr-dst", 7)) {
940 		if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
941 			return 0;
942 		else {
943 			gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
944 			return -EPERM;
945 		}
946 	}
947 
948 	if (!strncmp(cmd, "pipe_ctrl", 9)) {
949 		/* TODO: add LRI POST logic here */
950 		return 0;
951 	}
952 
953 	if (strncmp(cmd, "lri", 3))
954 		return -EPERM;
955 
956 	/* below are all lri handlers */
957 	vreg = &vgpu_vreg(s->vgpu, offset);
958 
959 	if (is_cmd_update_pdps(offset, s) &&
960 	    cmd_pdp_mmio_update_handler(s, offset, index))
961 		return -EINVAL;
962 
963 	if (offset == i915_mmio_reg_offset(DERRMR) ||
964 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
965 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
966 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
967 	}
968 
969 	if (is_mocs_mmio(offset))
970 		*vreg = cmd_val(s, index + 1);
971 
972 	vreg_old = *vreg;
973 
974 	if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
975 		u32 cmdval_new, cmdval;
976 		struct intel_gvt_mmio_info *mmio_info;
977 
978 		cmdval = cmd_val(s, index + 1);
979 
980 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
981 		if (!mmio_info) {
982 			cmdval_new = cmdval;
983 		} else {
984 			u64 ro_mask = mmio_info->ro_mask;
985 			int ret;
986 
987 			if (likely(!ro_mask))
988 				ret = mmio_info->write(s->vgpu, offset,
989 						&cmdval, 4);
990 			else {
991 				gvt_vgpu_err("try to write RO reg %x\n",
992 						offset);
993 				ret = -EBADRQC;
994 			}
995 			if (ret)
996 				return ret;
997 			cmdval_new = *vreg;
998 		}
999 		if (cmdval_new != cmdval)
1000 			patch_value(s, cmd_ptr(s, index+1), cmdval_new);
1001 	}
1002 
1003 	/* only patch cmd. restore vreg value if changed in mmio write handler*/
1004 	*vreg = vreg_old;
1005 
1006 	/* TODO
1007 	 * In order to let workload with inhibit context to generate
1008 	 * correct image data into memory, vregs values will be loaded to
1009 	 * hw via LRIs in the workload with inhibit context. But as
1010 	 * indirect context is loaded prior to LRIs in workload, we don't
1011 	 * want reg values specified in indirect context overwritten by
1012 	 * LRIs in workloads. So, when scanning an indirect context, we
1013 	 * update reg values in it into vregs, so LRIs in workload with
1014 	 * inhibit context will restore with correct values
1015 	 */
1016 	if (GRAPHICS_VER(s->engine->i915) == 9 &&
1017 	    intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1018 	    !strncmp(cmd, "lri", 3)) {
1019 		intel_gvt_read_gpa(s->vgpu,
1020 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1021 		/* check inhibit context */
1022 		if (ctx_sr_ctl & 1) {
1023 			u32 data = cmd_val(s, index + 1);
1024 
1025 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1026 				intel_vgpu_mask_mmio_write(vgpu,
1027 							offset, &data, 4);
1028 			else
1029 				vgpu_vreg(vgpu, offset) = data;
1030 		}
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 #define cmd_reg(s, i) \
1037 	(cmd_val(s, i) & GENMASK(22, 2))
1038 
1039 #define cmd_reg_inhibit(s, i) \
1040 	(cmd_val(s, i) & GENMASK(22, 18))
1041 
1042 #define cmd_gma(s, i) \
1043 	(cmd_val(s, i) & GENMASK(31, 2))
1044 
1045 #define cmd_gma_hi(s, i) \
1046 	(cmd_val(s, i) & GENMASK(15, 0))
1047 
cmd_handler_lri(struct parser_exec_state * s)1048 static int cmd_handler_lri(struct parser_exec_state *s)
1049 {
1050 	int i, ret = 0;
1051 	int cmd_len = cmd_length(s);
1052 
1053 	for (i = 1; i < cmd_len; i += 2) {
1054 		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1055 			if (s->engine->id == BCS0 &&
1056 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1057 				ret |= 0;
1058 			else
1059 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1060 		}
1061 		if (ret)
1062 			break;
1063 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1064 		if (ret)
1065 			break;
1066 	}
1067 	return ret;
1068 }
1069 
cmd_handler_lrr(struct parser_exec_state * s)1070 static int cmd_handler_lrr(struct parser_exec_state *s)
1071 {
1072 	int i, ret = 0;
1073 	int cmd_len = cmd_length(s);
1074 
1075 	for (i = 1; i < cmd_len; i += 2) {
1076 		if (IS_BROADWELL(s->engine->i915))
1077 			ret |= ((cmd_reg_inhibit(s, i) ||
1078 				 (cmd_reg_inhibit(s, i + 1)))) ?
1079 				-EBADRQC : 0;
1080 		if (ret)
1081 			break;
1082 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1083 		if (ret)
1084 			break;
1085 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1086 		if (ret)
1087 			break;
1088 	}
1089 	return ret;
1090 }
1091 
1092 static inline int cmd_address_audit(struct parser_exec_state *s,
1093 		unsigned long guest_gma, int op_size, bool index_mode);
1094 
cmd_handler_lrm(struct parser_exec_state * s)1095 static int cmd_handler_lrm(struct parser_exec_state *s)
1096 {
1097 	struct intel_gvt *gvt = s->vgpu->gvt;
1098 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1099 	unsigned long gma;
1100 	int i, ret = 0;
1101 	int cmd_len = cmd_length(s);
1102 
1103 	for (i = 1; i < cmd_len;) {
1104 		if (IS_BROADWELL(s->engine->i915))
1105 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1106 		if (ret)
1107 			break;
1108 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1109 		if (ret)
1110 			break;
1111 		if (cmd_val(s, 0) & (1 << 22)) {
1112 			gma = cmd_gma(s, i + 1);
1113 			if (gmadr_bytes == 8)
1114 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1115 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1116 			if (ret)
1117 				break;
1118 		}
1119 		i += gmadr_dw_number(s) + 1;
1120 	}
1121 	return ret;
1122 }
1123 
cmd_handler_srm(struct parser_exec_state * s)1124 static int cmd_handler_srm(struct parser_exec_state *s)
1125 {
1126 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1127 	unsigned long gma;
1128 	int i, ret = 0;
1129 	int cmd_len = cmd_length(s);
1130 
1131 	for (i = 1; i < cmd_len;) {
1132 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1133 		if (ret)
1134 			break;
1135 		if (cmd_val(s, 0) & (1 << 22)) {
1136 			gma = cmd_gma(s, i + 1);
1137 			if (gmadr_bytes == 8)
1138 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1139 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1140 			if (ret)
1141 				break;
1142 		}
1143 		i += gmadr_dw_number(s) + 1;
1144 	}
1145 	return ret;
1146 }
1147 
1148 struct cmd_interrupt_event {
1149 	int pipe_control_notify;
1150 	int mi_flush_dw;
1151 	int mi_user_interrupt;
1152 };
1153 
1154 static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1155 	[RCS0] = {
1156 		.pipe_control_notify = RCS_PIPE_CONTROL,
1157 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1158 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1159 	},
1160 	[BCS0] = {
1161 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1162 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1163 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1164 	},
1165 	[VCS0] = {
1166 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1167 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1168 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1169 	},
1170 	[VCS1] = {
1171 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1172 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1173 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1174 	},
1175 	[VECS0] = {
1176 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1177 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1178 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1179 	},
1180 };
1181 
cmd_handler_pipe_control(struct parser_exec_state * s)1182 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1183 {
1184 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1185 	unsigned long gma;
1186 	bool index_mode = false;
1187 	unsigned int post_sync;
1188 	int ret = 0;
1189 	u32 hws_pga, val;
1190 
1191 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1192 
1193 	/* LRI post sync */
1194 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1195 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1196 	/* post sync */
1197 	else if (post_sync) {
1198 		if (post_sync == 2)
1199 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1200 		else if (post_sync == 3)
1201 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1202 		else if (post_sync == 1) {
1203 			/* check ggtt*/
1204 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1205 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1206 				if (gmadr_bytes == 8)
1207 					gma |= (cmd_gma_hi(s, 3)) << 32;
1208 				/* Store Data Index */
1209 				if (cmd_val(s, 1) & (1 << 21))
1210 					index_mode = true;
1211 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1212 						index_mode);
1213 				if (ret)
1214 					return ret;
1215 				if (index_mode) {
1216 					hws_pga = s->vgpu->hws_pga[s->engine->id];
1217 					gma = hws_pga + gma;
1218 					patch_value(s, cmd_ptr(s, 2), gma);
1219 					val = cmd_val(s, 1) & (~(1 << 21));
1220 					patch_value(s, cmd_ptr(s, 1), val);
1221 				}
1222 			}
1223 		}
1224 	}
1225 
1226 	if (ret)
1227 		return ret;
1228 
1229 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1230 		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1231 			s->workload->pending_events);
1232 	return 0;
1233 }
1234 
cmd_handler_mi_user_interrupt(struct parser_exec_state * s)1235 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1236 {
1237 	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1238 		s->workload->pending_events);
1239 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1240 	return 0;
1241 }
1242 
cmd_advance_default(struct parser_exec_state * s)1243 static int cmd_advance_default(struct parser_exec_state *s)
1244 {
1245 	return ip_gma_advance(s, cmd_length(s));
1246 }
1247 
cmd_handler_mi_batch_buffer_end(struct parser_exec_state * s)1248 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1249 {
1250 	int ret;
1251 
1252 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1253 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1254 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1255 		s->buf_addr_type = s->saved_buf_addr_type;
1256 	} else if (s->buf_type == RING_BUFFER_CTX) {
1257 		ret = ip_gma_set(s, s->ring_tail);
1258 	} else {
1259 		s->buf_type = RING_BUFFER_INSTRUCTION;
1260 		s->buf_addr_type = GTT_BUFFER;
1261 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1262 			s->ret_ip_gma_ring -= s->ring_size;
1263 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1264 	}
1265 	return ret;
1266 }
1267 
1268 struct mi_display_flip_command_info {
1269 	int pipe;
1270 	int plane;
1271 	int event;
1272 	i915_reg_t stride_reg;
1273 	i915_reg_t ctrl_reg;
1274 	i915_reg_t surf_reg;
1275 	u64 stride_val;
1276 	u64 tile_val;
1277 	u64 surf_val;
1278 	bool async_flip;
1279 };
1280 
1281 struct plane_code_mapping {
1282 	int pipe;
1283 	int plane;
1284 	int event;
1285 };
1286 
gen8_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1287 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1288 		struct mi_display_flip_command_info *info)
1289 {
1290 	struct drm_i915_private *dev_priv = s->engine->i915;
1291 	struct intel_display *display = dev_priv->display;
1292 	struct plane_code_mapping gen8_plane_code[] = {
1293 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1294 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1295 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1296 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1297 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1298 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1299 	};
1300 	u32 dword0, dword1, dword2;
1301 	u32 v;
1302 
1303 	dword0 = cmd_val(s, 0);
1304 	dword1 = cmd_val(s, 1);
1305 	dword2 = cmd_val(s, 2);
1306 
1307 	v = (dword0 & GENMASK(21, 19)) >> 19;
1308 	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1309 		return -EBADRQC;
1310 
1311 	info->pipe = gen8_plane_code[v].pipe;
1312 	info->plane = gen8_plane_code[v].plane;
1313 	info->event = gen8_plane_code[v].event;
1314 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1315 	info->tile_val = (dword1 & 0x1);
1316 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1317 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1318 
1319 	if (info->plane == PLANE_A) {
1320 		info->ctrl_reg = DSPCNTR(display, info->pipe);
1321 		info->stride_reg = DSPSTRIDE(display, info->pipe);
1322 		info->surf_reg = DSPSURF(display, info->pipe);
1323 	} else if (info->plane == PLANE_B) {
1324 		info->ctrl_reg = SPRCTL(info->pipe);
1325 		info->stride_reg = SPRSTRIDE(info->pipe);
1326 		info->surf_reg = SPRSURF(info->pipe);
1327 	} else {
1328 		drm_WARN_ON(&dev_priv->drm, 1);
1329 		return -EBADRQC;
1330 	}
1331 	return 0;
1332 }
1333 
skl_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1334 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1335 		struct mi_display_flip_command_info *info)
1336 {
1337 	struct drm_i915_private *dev_priv = s->engine->i915;
1338 	struct intel_display *display = dev_priv->display;
1339 	struct intel_vgpu *vgpu = s->vgpu;
1340 	u32 dword0 = cmd_val(s, 0);
1341 	u32 dword1 = cmd_val(s, 1);
1342 	u32 dword2 = cmd_val(s, 2);
1343 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1344 
1345 	info->plane = PRIMARY_PLANE;
1346 
1347 	switch (plane) {
1348 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1349 		info->pipe = PIPE_A;
1350 		info->event = PRIMARY_A_FLIP_DONE;
1351 		break;
1352 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1353 		info->pipe = PIPE_B;
1354 		info->event = PRIMARY_B_FLIP_DONE;
1355 		break;
1356 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1357 		info->pipe = PIPE_C;
1358 		info->event = PRIMARY_C_FLIP_DONE;
1359 		break;
1360 
1361 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1362 		info->pipe = PIPE_A;
1363 		info->event = SPRITE_A_FLIP_DONE;
1364 		info->plane = SPRITE_PLANE;
1365 		break;
1366 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1367 		info->pipe = PIPE_B;
1368 		info->event = SPRITE_B_FLIP_DONE;
1369 		info->plane = SPRITE_PLANE;
1370 		break;
1371 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1372 		info->pipe = PIPE_C;
1373 		info->event = SPRITE_C_FLIP_DONE;
1374 		info->plane = SPRITE_PLANE;
1375 		break;
1376 
1377 	default:
1378 		gvt_vgpu_err("unknown plane code %d\n", plane);
1379 		return -EBADRQC;
1380 	}
1381 
1382 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1383 	info->tile_val = (dword1 & GENMASK(2, 0));
1384 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1385 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1386 
1387 	info->ctrl_reg = DSPCNTR(display, info->pipe);
1388 	info->stride_reg = DSPSTRIDE(display, info->pipe);
1389 	info->surf_reg = DSPSURF(display, info->pipe);
1390 
1391 	return 0;
1392 }
1393 
gen8_check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1394 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1395 		struct mi_display_flip_command_info *info)
1396 {
1397 	u32 stride, tile;
1398 
1399 	if (!info->async_flip)
1400 		return 0;
1401 
1402 	if (GRAPHICS_VER(s->engine->i915) >= 9) {
1403 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1404 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1405 				GENMASK(12, 10)) >> 10;
1406 	} else {
1407 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1408 				GENMASK(15, 6)) >> 6;
1409 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1410 	}
1411 
1412 	if (stride != info->stride_val)
1413 		gvt_dbg_cmd("cannot change stride during async flip\n");
1414 
1415 	if (tile != info->tile_val)
1416 		gvt_dbg_cmd("cannot change tile during async flip\n");
1417 
1418 	return 0;
1419 }
1420 
gen8_update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1421 static int gen8_update_plane_mmio_from_mi_display_flip(
1422 		struct parser_exec_state *s,
1423 		struct mi_display_flip_command_info *info)
1424 {
1425 	struct drm_i915_private *dev_priv = s->engine->i915;
1426 	struct intel_display *display = dev_priv->display;
1427 	struct intel_vgpu *vgpu = s->vgpu;
1428 
1429 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1430 		      info->surf_val << 12);
1431 	if (GRAPHICS_VER(dev_priv) >= 9) {
1432 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1433 			      info->stride_val);
1434 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1435 			      info->tile_val << 10);
1436 	} else {
1437 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1438 			      info->stride_val << 6);
1439 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1440 			      info->tile_val << 10);
1441 	}
1442 
1443 	if (info->plane == PLANE_PRIMARY)
1444 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, info->pipe))++;
1445 
1446 	if (info->async_flip)
1447 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1448 	else
1449 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1450 
1451 	return 0;
1452 }
1453 
decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1454 static int decode_mi_display_flip(struct parser_exec_state *s,
1455 		struct mi_display_flip_command_info *info)
1456 {
1457 	if (IS_BROADWELL(s->engine->i915))
1458 		return gen8_decode_mi_display_flip(s, info);
1459 	if (GRAPHICS_VER(s->engine->i915) >= 9)
1460 		return skl_decode_mi_display_flip(s, info);
1461 
1462 	return -ENODEV;
1463 }
1464 
check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1465 static int check_mi_display_flip(struct parser_exec_state *s,
1466 		struct mi_display_flip_command_info *info)
1467 {
1468 	return gen8_check_mi_display_flip(s, info);
1469 }
1470 
update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1471 static int update_plane_mmio_from_mi_display_flip(
1472 		struct parser_exec_state *s,
1473 		struct mi_display_flip_command_info *info)
1474 {
1475 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1476 }
1477 
cmd_handler_mi_display_flip(struct parser_exec_state * s)1478 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1479 {
1480 	struct mi_display_flip_command_info info;
1481 	struct intel_vgpu *vgpu = s->vgpu;
1482 	int ret;
1483 	int i;
1484 	int len = cmd_length(s);
1485 	u32 valid_len = CMD_LEN(1);
1486 
1487 	/* Flip Type == Stereo 3D Flip */
1488 	if (DWORD_FIELD(2, 1, 0) == 2)
1489 		valid_len++;
1490 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1491 			valid_len);
1492 	if (ret)
1493 		return ret;
1494 
1495 	ret = decode_mi_display_flip(s, &info);
1496 	if (ret) {
1497 		gvt_vgpu_err("fail to decode MI display flip command\n");
1498 		return ret;
1499 	}
1500 
1501 	ret = check_mi_display_flip(s, &info);
1502 	if (ret) {
1503 		gvt_vgpu_err("invalid MI display flip command\n");
1504 		return ret;
1505 	}
1506 
1507 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1508 	if (ret) {
1509 		gvt_vgpu_err("fail to update plane mmio\n");
1510 		return ret;
1511 	}
1512 
1513 	for (i = 0; i < len; i++)
1514 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1515 	return 0;
1516 }
1517 
is_wait_for_flip_pending(u32 cmd)1518 static bool is_wait_for_flip_pending(u32 cmd)
1519 {
1520 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1521 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1522 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1523 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1524 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1525 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1526 }
1527 
cmd_handler_mi_wait_for_event(struct parser_exec_state * s)1528 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1529 {
1530 	u32 cmd = cmd_val(s, 0);
1531 
1532 	if (!is_wait_for_flip_pending(cmd))
1533 		return 0;
1534 
1535 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1536 	return 0;
1537 }
1538 
get_gma_bb_from_cmd(struct parser_exec_state * s,int index)1539 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1540 {
1541 	unsigned long addr;
1542 	unsigned long gma_high, gma_low;
1543 	struct intel_vgpu *vgpu = s->vgpu;
1544 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1545 
1546 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1547 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1548 		return INTEL_GVT_INVALID_ADDR;
1549 	}
1550 
1551 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1552 	if (gmadr_bytes == 4) {
1553 		addr = gma_low;
1554 	} else {
1555 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1556 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1557 	}
1558 	return addr;
1559 }
1560 
cmd_address_audit(struct parser_exec_state * s,unsigned long guest_gma,int op_size,bool index_mode)1561 static inline int cmd_address_audit(struct parser_exec_state *s,
1562 		unsigned long guest_gma, int op_size, bool index_mode)
1563 {
1564 	struct intel_vgpu *vgpu = s->vgpu;
1565 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1566 	int i;
1567 	int ret;
1568 
1569 	if (op_size > max_surface_size) {
1570 		gvt_vgpu_err("command address audit fail name %s\n",
1571 			s->info->name);
1572 		return -EFAULT;
1573 	}
1574 
1575 	if (index_mode)	{
1576 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1577 			ret = -EFAULT;
1578 			goto err;
1579 		}
1580 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1581 		ret = -EFAULT;
1582 		goto err;
1583 	}
1584 
1585 	return 0;
1586 
1587 err:
1588 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1589 			s->info->name, guest_gma, op_size);
1590 
1591 	pr_err("cmd dump: ");
1592 	for (i = 0; i < cmd_length(s); i++) {
1593 		if (!(i % 4))
1594 			pr_err("\n%08x ", cmd_val(s, i));
1595 		else
1596 			pr_err("%08x ", cmd_val(s, i));
1597 	}
1598 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1599 			vgpu->id,
1600 			vgpu_aperture_gmadr_base(vgpu),
1601 			vgpu_aperture_gmadr_end(vgpu),
1602 			vgpu_hidden_gmadr_base(vgpu),
1603 			vgpu_hidden_gmadr_end(vgpu));
1604 	return ret;
1605 }
1606 
cmd_handler_mi_store_data_imm(struct parser_exec_state * s)1607 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1608 {
1609 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1610 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1611 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1612 	unsigned long gma, gma_low, gma_high;
1613 	u32 valid_len = CMD_LEN(2);
1614 	int ret = 0;
1615 
1616 	/* check ppggt */
1617 	if (!(cmd_val(s, 0) & (1 << 22)))
1618 		return 0;
1619 
1620 	/* check if QWORD */
1621 	if (DWORD_FIELD(0, 21, 21))
1622 		valid_len++;
1623 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1624 			valid_len);
1625 	if (ret)
1626 		return ret;
1627 
1628 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1629 
1630 	if (gmadr_bytes == 8) {
1631 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1632 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1633 		gma = (gma_high << 32) | gma_low;
1634 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1635 	}
1636 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1637 	return ret;
1638 }
1639 
unexpected_cmd(struct parser_exec_state * s)1640 static inline int unexpected_cmd(struct parser_exec_state *s)
1641 {
1642 	struct intel_vgpu *vgpu = s->vgpu;
1643 
1644 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1645 
1646 	return -EBADRQC;
1647 }
1648 
cmd_handler_mi_semaphore_wait(struct parser_exec_state * s)1649 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1650 {
1651 	return unexpected_cmd(s);
1652 }
1653 
cmd_handler_mi_report_perf_count(struct parser_exec_state * s)1654 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1655 {
1656 	return unexpected_cmd(s);
1657 }
1658 
cmd_handler_mi_op_2e(struct parser_exec_state * s)1659 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1660 {
1661 	return unexpected_cmd(s);
1662 }
1663 
cmd_handler_mi_op_2f(struct parser_exec_state * s)1664 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1665 {
1666 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1667 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1668 			sizeof(u32);
1669 	unsigned long gma, gma_high;
1670 	u32 valid_len = CMD_LEN(1);
1671 	int ret = 0;
1672 
1673 	if (!(cmd_val(s, 0) & (1 << 22)))
1674 		return ret;
1675 
1676 	/* check inline data */
1677 	if (cmd_val(s, 0) & BIT(18))
1678 		valid_len = CMD_LEN(9);
1679 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1680 			valid_len);
1681 	if (ret)
1682 		return ret;
1683 
1684 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1685 	if (gmadr_bytes == 8) {
1686 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1687 		gma = (gma_high << 32) | gma;
1688 	}
1689 	ret = cmd_address_audit(s, gma, op_size, false);
1690 	return ret;
1691 }
1692 
cmd_handler_mi_store_data_index(struct parser_exec_state * s)1693 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1694 {
1695 	return unexpected_cmd(s);
1696 }
1697 
cmd_handler_mi_clflush(struct parser_exec_state * s)1698 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1699 {
1700 	return unexpected_cmd(s);
1701 }
1702 
cmd_handler_mi_conditional_batch_buffer_end(struct parser_exec_state * s)1703 static int cmd_handler_mi_conditional_batch_buffer_end(
1704 		struct parser_exec_state *s)
1705 {
1706 	return unexpected_cmd(s);
1707 }
1708 
cmd_handler_mi_update_gtt(struct parser_exec_state * s)1709 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1710 {
1711 	return unexpected_cmd(s);
1712 }
1713 
cmd_handler_mi_flush_dw(struct parser_exec_state * s)1714 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1715 {
1716 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1717 	unsigned long gma;
1718 	bool index_mode = false;
1719 	int ret = 0;
1720 	u32 hws_pga, val;
1721 	u32 valid_len = CMD_LEN(2);
1722 
1723 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1724 			valid_len);
1725 	if (ret) {
1726 		/* Check again for Qword */
1727 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1728 			++valid_len);
1729 		return ret;
1730 	}
1731 
1732 	/* Check post-sync and ppgtt bit */
1733 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1734 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1735 		if (gmadr_bytes == 8)
1736 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1737 		/* Store Data Index */
1738 		if (cmd_val(s, 0) & (1 << 21))
1739 			index_mode = true;
1740 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1741 		if (ret)
1742 			return ret;
1743 		if (index_mode) {
1744 			hws_pga = s->vgpu->hws_pga[s->engine->id];
1745 			gma = hws_pga + gma;
1746 			patch_value(s, cmd_ptr(s, 1), gma);
1747 			val = cmd_val(s, 0) & (~(1 << 21));
1748 			patch_value(s, cmd_ptr(s, 0), val);
1749 		}
1750 	}
1751 	/* Check notify bit */
1752 	if ((cmd_val(s, 0) & (1 << 8)))
1753 		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1754 			s->workload->pending_events);
1755 	return ret;
1756 }
1757 
addr_type_update_snb(struct parser_exec_state * s)1758 static void addr_type_update_snb(struct parser_exec_state *s)
1759 {
1760 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1761 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1762 		s->buf_addr_type = PPGTT_BUFFER;
1763 	}
1764 }
1765 
1766 
copy_gma_to_hva(struct intel_vgpu * vgpu,struct intel_vgpu_mm * mm,unsigned long gma,unsigned long end_gma,void * va)1767 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1768 		unsigned long gma, unsigned long end_gma, void *va)
1769 {
1770 	unsigned long copy_len, offset;
1771 	unsigned long len = 0;
1772 	unsigned long gpa;
1773 
1774 	while (gma != end_gma) {
1775 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1776 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1777 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1778 			return -EFAULT;
1779 		}
1780 
1781 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1782 
1783 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1784 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1785 
1786 		intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1787 
1788 		len += copy_len;
1789 		gma += copy_len;
1790 	}
1791 	return len;
1792 }
1793 
1794 
1795 /*
1796  * Check whether a batch buffer needs to be scanned. Currently
1797  * the only criteria is based on privilege.
1798  */
batch_buffer_needs_scan(struct parser_exec_state * s)1799 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1800 {
1801 	/* Decide privilege based on address space */
1802 	if (cmd_val(s, 0) & BIT(8) &&
1803 	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1804 		return 0;
1805 
1806 	return 1;
1807 }
1808 
repr_addr_type(unsigned int type)1809 static const char *repr_addr_type(unsigned int type)
1810 {
1811 	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1812 }
1813 
find_bb_size(struct parser_exec_state * s,unsigned long * bb_size,unsigned long * bb_end_cmd_offset)1814 static int find_bb_size(struct parser_exec_state *s,
1815 			unsigned long *bb_size,
1816 			unsigned long *bb_end_cmd_offset)
1817 {
1818 	unsigned long gma = 0;
1819 	const struct cmd_info *info;
1820 	u32 cmd_len = 0;
1821 	bool bb_end = false;
1822 	struct intel_vgpu *vgpu = s->vgpu;
1823 	u32 cmd;
1824 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1825 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1826 
1827 	*bb_size = 0;
1828 	*bb_end_cmd_offset = 0;
1829 
1830 	/* get the start gm address of the batch buffer */
1831 	gma = get_gma_bb_from_cmd(s, 1);
1832 	if (gma == INTEL_GVT_INVALID_ADDR)
1833 		return -EFAULT;
1834 
1835 	cmd = cmd_val(s, 0);
1836 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1837 	if (info == NULL) {
1838 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1839 			     cmd, get_opcode(cmd, s->engine),
1840 			     repr_addr_type(s->buf_addr_type),
1841 			     s->engine->name, s->workload);
1842 		return -EBADRQC;
1843 	}
1844 	do {
1845 		if (copy_gma_to_hva(s->vgpu, mm,
1846 				    gma, gma + 4, &cmd) < 0)
1847 			return -EFAULT;
1848 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1849 		if (info == NULL) {
1850 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1851 				     cmd, get_opcode(cmd, s->engine),
1852 				     repr_addr_type(s->buf_addr_type),
1853 				     s->engine->name, s->workload);
1854 			return -EBADRQC;
1855 		}
1856 
1857 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1858 			bb_end = true;
1859 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1860 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1861 				/* chained batch buffer */
1862 				bb_end = true;
1863 		}
1864 
1865 		if (bb_end)
1866 			*bb_end_cmd_offset = *bb_size;
1867 
1868 		cmd_len = get_cmd_length(info, cmd) << 2;
1869 		*bb_size += cmd_len;
1870 		gma += cmd_len;
1871 	} while (!bb_end);
1872 
1873 	return 0;
1874 }
1875 
audit_bb_end(struct parser_exec_state * s,void * va)1876 static int audit_bb_end(struct parser_exec_state *s, void *va)
1877 {
1878 	struct intel_vgpu *vgpu = s->vgpu;
1879 	u32 cmd = *(u32 *)va;
1880 	const struct cmd_info *info;
1881 
1882 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1883 	if (info == NULL) {
1884 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1885 			     cmd, get_opcode(cmd, s->engine),
1886 			     repr_addr_type(s->buf_addr_type),
1887 			     s->engine->name, s->workload);
1888 		return -EBADRQC;
1889 	}
1890 
1891 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1892 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1893 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1894 		return 0;
1895 
1896 	return -EBADRQC;
1897 }
1898 
perform_bb_shadow(struct parser_exec_state * s)1899 static int perform_bb_shadow(struct parser_exec_state *s)
1900 {
1901 	struct intel_vgpu *vgpu = s->vgpu;
1902 	struct intel_vgpu_shadow_bb *bb;
1903 	unsigned long gma = 0;
1904 	unsigned long bb_size;
1905 	unsigned long bb_end_cmd_offset;
1906 	int ret = 0;
1907 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1908 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1909 	unsigned long start_offset = 0;
1910 
1911 	/* Get the start gm address of the batch buffer */
1912 	gma = get_gma_bb_from_cmd(s, 1);
1913 	if (gma == INTEL_GVT_INVALID_ADDR)
1914 		return -EFAULT;
1915 
1916 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1917 	if (ret)
1918 		return ret;
1919 
1920 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1921 	if (!bb)
1922 		return -ENOMEM;
1923 
1924 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1925 
1926 	/*
1927 	 * The start_offset stores the batch buffer's start gma's
1928 	 * offset relative to page boundary. So for non-privileged batch
1929 	 * buffer, the shadowed gem object holds exactly the same page
1930 	 * layout as original gem object. This is for the convenience of
1931 	 * replacing the whole non-privilged batch buffer page to this
1932 	 * shadowed one in PPGTT at the same gma address. (This replacing
1933 	 * action is not implemented yet now, but may be necessary in
1934 	 * future).
1935 	 * For prileged batch buffer, we just change start gma address to
1936 	 * that of shadowed page.
1937 	 */
1938 	if (bb->ppgtt)
1939 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1940 
1941 	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1942 					       round_up(bb_size + start_offset,
1943 							PAGE_SIZE));
1944 	if (IS_ERR(bb->obj)) {
1945 		ret = PTR_ERR(bb->obj);
1946 		goto err_free_bb;
1947 	}
1948 
1949 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1950 	if (IS_ERR(bb->va)) {
1951 		ret = PTR_ERR(bb->va);
1952 		goto err_free_obj;
1953 	}
1954 
1955 	ret = copy_gma_to_hva(s->vgpu, mm,
1956 			      gma, gma + bb_size,
1957 			      bb->va + start_offset);
1958 	if (ret < 0) {
1959 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1960 		ret = -EFAULT;
1961 		goto err_unmap;
1962 	}
1963 
1964 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1965 	if (ret)
1966 		goto err_unmap;
1967 
1968 	i915_gem_object_unlock(bb->obj);
1969 	INIT_LIST_HEAD(&bb->list);
1970 	list_add(&bb->list, &s->workload->shadow_bb);
1971 
1972 	bb->bb_start_cmd_va = s->ip_va;
1973 
1974 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1975 		bb->bb_offset = s->ip_va - s->rb_va;
1976 	else
1977 		bb->bb_offset = 0;
1978 
1979 	/*
1980 	 * ip_va saves the virtual address of the shadow batch buffer, while
1981 	 * ip_gma saves the graphics address of the original batch buffer.
1982 	 * As the shadow batch buffer is just a copy from the original one,
1983 	 * it should be right to use shadow batch buffer'va and original batch
1984 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1985 	 * buffer here (too early).
1986 	 */
1987 	s->ip_va = bb->va + start_offset;
1988 	s->ip_gma = gma;
1989 	return 0;
1990 err_unmap:
1991 	i915_gem_object_unpin_map(bb->obj);
1992 err_free_obj:
1993 	i915_gem_object_put(bb->obj);
1994 err_free_bb:
1995 	kfree(bb);
1996 	return ret;
1997 }
1998 
cmd_handler_mi_batch_buffer_start(struct parser_exec_state * s)1999 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
2000 {
2001 	bool second_level;
2002 	int ret = 0;
2003 	struct intel_vgpu *vgpu = s->vgpu;
2004 
2005 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
2006 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
2007 		return -EFAULT;
2008 	}
2009 
2010 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2011 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2012 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2013 		return -EFAULT;
2014 	}
2015 
2016 	s->saved_buf_addr_type = s->buf_addr_type;
2017 	addr_type_update_snb(s);
2018 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2019 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2020 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
2021 	} else if (second_level) {
2022 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2023 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2024 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2025 	}
2026 
2027 	if (batch_buffer_needs_scan(s)) {
2028 		ret = perform_bb_shadow(s);
2029 		if (ret < 0)
2030 			gvt_vgpu_err("invalid shadow batch buffer\n");
2031 	} else {
2032 		/* emulate a batch buffer end to do return right */
2033 		ret = cmd_handler_mi_batch_buffer_end(s);
2034 		if (ret < 0)
2035 			return ret;
2036 	}
2037 	return ret;
2038 }
2039 
2040 static int mi_noop_index;
2041 
2042 static const struct cmd_info cmd_info[] = {
2043 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2044 
2045 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2046 		0, 1, NULL},
2047 
2048 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2049 		0, 1, cmd_handler_mi_user_interrupt},
2050 
2051 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2052 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2053 
2054 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2055 
2056 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2057 		NULL},
2058 
2059 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2060 		NULL},
2061 
2062 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2063 		NULL},
2064 
2065 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2066 		NULL},
2067 
2068 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2069 		D_ALL, 0, 1, NULL},
2070 
2071 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2072 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2073 		cmd_handler_mi_batch_buffer_end},
2074 
2075 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2076 		0, 1, NULL},
2077 
2078 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2079 		NULL},
2080 
2081 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2082 		D_ALL, 0, 1, NULL},
2083 
2084 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2085 		NULL},
2086 
2087 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2088 		NULL},
2089 
2090 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2091 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2092 
2093 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2094 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2095 
2096 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2097 
2098 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2099 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2100 
2101 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2102 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2103 		NULL, CMD_LEN(0)},
2104 
2105 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2106 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2107 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2108 
2109 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2110 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2111 
2112 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2113 		0, 8, cmd_handler_mi_store_data_index},
2114 
2115 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2116 		D_ALL, 0, 8, cmd_handler_lri},
2117 
2118 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2119 		cmd_handler_mi_update_gtt},
2120 
2121 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2122 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2123 		cmd_handler_srm, CMD_LEN(2)},
2124 
2125 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2126 		cmd_handler_mi_flush_dw},
2127 
2128 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2129 		10, cmd_handler_mi_clflush},
2130 
2131 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2132 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2133 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2134 
2135 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2136 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2137 		cmd_handler_lrm, CMD_LEN(2)},
2138 
2139 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2140 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2141 		cmd_handler_lrr, CMD_LEN(1)},
2142 
2143 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2144 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2145 		8, NULL, CMD_LEN(2)},
2146 
2147 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2148 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2149 
2150 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2151 		ADDR_FIX_1(2), 8, NULL},
2152 
2153 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2154 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2155 
2156 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2157 		8, cmd_handler_mi_op_2f},
2158 
2159 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2160 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2161 		cmd_handler_mi_batch_buffer_start},
2162 
2163 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2164 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2165 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2166 
2167 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2168 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2169 
2170 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2171 		ADDR_FIX_2(4, 7), 8, NULL},
2172 
2173 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2174 		0, 8, NULL},
2175 
2176 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2177 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2178 
2179 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2180 
2181 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2182 		0, 8, NULL},
2183 
2184 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2185 		ADDR_FIX_1(3), 8, NULL},
2186 
2187 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2188 		D_ALL, 0, 8, NULL},
2189 
2190 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2191 		ADDR_FIX_1(4), 8, NULL},
2192 
2193 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2194 		ADDR_FIX_2(4, 5), 8, NULL},
2195 
2196 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2197 		ADDR_FIX_1(4), 8, NULL},
2198 
2199 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2200 		ADDR_FIX_2(4, 7), 8, NULL},
2201 
2202 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2203 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2204 
2205 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2206 
2207 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2208 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2209 
2210 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2211 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2212 
2213 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2214 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2215 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2216 
2217 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2218 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2219 
2220 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2221 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2222 
2223 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2224 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2225 
2226 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2227 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2228 
2229 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2230 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2231 
2232 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2233 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2234 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2235 
2236 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2237 		ADDR_FIX_2(4, 5), 8, NULL},
2238 
2239 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2240 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2241 
2242 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2243 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2244 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245 
2246 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2247 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2248 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249 
2250 	{"3DSTATE_BLEND_STATE_POINTERS",
2251 		OP_3DSTATE_BLEND_STATE_POINTERS,
2252 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253 
2254 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2255 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2256 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2257 
2258 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2259 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2260 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2261 
2262 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2263 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2264 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2265 
2266 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2267 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2268 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2269 
2270 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2271 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2272 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2273 
2274 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2275 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2276 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277 
2278 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2279 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2280 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2281 
2282 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2283 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2284 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2285 
2286 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2287 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2288 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2289 
2290 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2291 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2292 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2293 
2294 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2295 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2296 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2297 
2298 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2299 		0, 8, NULL},
2300 
2301 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2302 		0, 8, NULL},
2303 
2304 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2305 		0, 8, NULL},
2306 
2307 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2308 		0, 8, NULL},
2309 
2310 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2311 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2312 
2313 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2314 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2315 
2316 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2317 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2318 
2319 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2320 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2321 
2322 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2323 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2324 
2325 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2326 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2327 
2328 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2329 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2330 
2331 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2332 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2333 
2334 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2335 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2336 
2337 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2338 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2339 
2340 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2341 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2342 
2343 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2344 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2345 
2346 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2347 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2348 
2349 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2350 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2351 
2352 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2353 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2354 
2355 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2356 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2357 
2358 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2359 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2360 
2361 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2362 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2363 
2364 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2365 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2366 
2367 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2368 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2369 
2370 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2371 		D_BDW_PLUS, 0, 8, NULL},
2372 
2373 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2374 		NULL},
2375 
2376 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2377 		D_BDW_PLUS, 0, 8, NULL},
2378 
2379 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2380 		D_BDW_PLUS, 0, 8, NULL},
2381 
2382 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2383 		8, NULL},
2384 
2385 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2386 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2387 
2388 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2389 		8, NULL},
2390 
2391 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2392 		NULL},
2393 
2394 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2395 		NULL},
2396 
2397 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2398 		NULL},
2399 
2400 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2401 		D_BDW_PLUS, 0, 8, NULL},
2402 
2403 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2404 		R_RCS, D_ALL, 0, 8, NULL},
2405 
2406 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2407 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2408 
2409 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2410 		R_RCS, D_ALL, 0, 1, NULL},
2411 
2412 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2413 
2414 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2415 		R_RCS, D_ALL, 0, 8, NULL},
2416 
2417 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2418 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2419 
2420 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2421 
2422 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2423 
2424 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2425 
2426 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2427 		D_BDW_PLUS, 0, 8, NULL},
2428 
2429 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2430 		D_BDW_PLUS, 0, 8, NULL},
2431 
2432 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2433 		D_ALL, 0, 8, NULL},
2434 
2435 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2436 		D_BDW_PLUS, 0, 8, NULL},
2437 
2438 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2439 		D_BDW_PLUS, 0, 8, NULL},
2440 
2441 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2442 
2443 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2444 
2445 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2446 
2447 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2448 		D_ALL, 0, 8, NULL},
2449 
2450 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2451 
2452 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2453 
2454 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2455 		R_RCS, D_ALL, 0, 8, NULL},
2456 
2457 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2458 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2459 
2460 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2461 		0, 8, NULL},
2462 
2463 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2464 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2465 
2466 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2467 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2468 
2469 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2470 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2471 
2472 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2473 		D_ALL, 0, 8, NULL},
2474 
2475 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2476 		D_ALL, 0, 8, NULL},
2477 
2478 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2479 		D_ALL, 0, 8, NULL},
2480 
2481 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2482 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2483 
2484 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2485 		D_BDW_PLUS, 0, 8, NULL},
2486 
2487 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2488 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2489 
2490 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2491 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2492 
2493 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2494 		R_RCS, D_ALL, 0, 8, NULL},
2495 
2496 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2497 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2498 
2499 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2500 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2501 
2502 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2503 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2504 
2505 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2506 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2507 
2508 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2509 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2510 
2511 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2512 		R_RCS, D_ALL, 0, 8, NULL},
2513 
2514 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2515 		D_ALL, 0, 9, NULL},
2516 
2517 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2518 		ADDR_FIX_2(2, 4), 8, NULL},
2519 
2520 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2521 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2522 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2523 
2524 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2525 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2526 
2527 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2528 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2529 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2530 
2531 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2532 		D_BDW_PLUS, 0, 8, NULL},
2533 
2534 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2535 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2536 
2537 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2538 
2539 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2540 		1, NULL},
2541 
2542 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2543 		ADDR_FIX_1(1), 8, NULL},
2544 
2545 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2546 
2547 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2548 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2549 
2550 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2551 		ADDR_FIX_1(1), 8, NULL},
2552 
2553 	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2554 		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2555 
2556 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2557 
2558 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2559 
2560 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2561 		0, 8, NULL},
2562 
2563 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2564 		D_SKL_PLUS, 0, 8, NULL},
2565 
2566 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2567 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2568 
2569 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2570 		0, 16, NULL},
2571 
2572 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2573 		0, 16, NULL},
2574 
2575 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2576 		0, 16, NULL},
2577 
2578 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2579 
2580 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2581 		0, 16, NULL},
2582 
2583 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2584 		0, 16, NULL},
2585 
2586 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2587 		0, 16, NULL},
2588 
2589 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2590 		0, 8, NULL},
2591 
2592 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2593 		NULL},
2594 
2595 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2596 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2597 
2598 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2599 		R_VCS, D_ALL, 0, 12, NULL},
2600 
2601 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2602 		R_VCS, D_ALL, 0, 12, NULL},
2603 
2604 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2605 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2606 
2607 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2608 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2609 
2610 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2611 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2612 
2613 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2614 
2615 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2616 		R_VCS, D_ALL, 0, 12, NULL},
2617 
2618 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2619 		R_VCS, D_ALL, 0, 12, NULL},
2620 
2621 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2622 		R_VCS, D_ALL, 0, 12, NULL},
2623 
2624 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2625 		R_VCS, D_ALL, 0, 12, NULL},
2626 
2627 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2628 		R_VCS, D_ALL, 0, 12, NULL},
2629 
2630 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2631 		R_VCS, D_ALL, 0, 12, NULL},
2632 
2633 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2634 		R_VCS, D_ALL, 0, 6, NULL},
2635 
2636 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2637 		R_VCS, D_ALL, 0, 12, NULL},
2638 
2639 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2640 		R_VCS, D_ALL, 0, 12, NULL},
2641 
2642 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2643 		R_VCS, D_ALL, 0, 12, NULL},
2644 
2645 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2646 		R_VCS, D_ALL, 0, 12, NULL},
2647 
2648 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2649 		R_VCS, D_ALL, 0, 12, NULL},
2650 
2651 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2652 		R_VCS, D_ALL, 0, 12, NULL},
2653 
2654 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2655 		R_VCS, D_ALL, 0, 12, NULL},
2656 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2657 		R_VCS, D_ALL, 0, 12, NULL},
2658 
2659 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2660 		R_VCS, D_ALL, 0, 12, NULL},
2661 
2662 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2663 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2664 
2665 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2666 		R_VCS, D_ALL, 0, 12, NULL},
2667 
2668 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2669 		R_VCS, D_ALL, 0, 12, NULL},
2670 
2671 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2672 		R_VCS, D_ALL, 0, 12, NULL},
2673 
2674 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2675 		R_VCS, D_ALL, 0, 12, NULL},
2676 
2677 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2678 		R_VCS, D_ALL, 0, 12, NULL},
2679 
2680 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2681 		R_VCS, D_ALL, 0, 12, NULL},
2682 
2683 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2684 		R_VCS, D_ALL, 0, 12, NULL},
2685 
2686 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2687 		R_VCS, D_ALL, 0, 12, NULL},
2688 
2689 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2690 		R_VCS, D_ALL, 0, 12, NULL},
2691 
2692 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2693 		R_VCS, D_ALL, 0, 12, NULL},
2694 
2695 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2696 		R_VCS, D_ALL, 0, 12, NULL},
2697 
2698 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2699 		0, 16, NULL},
2700 
2701 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2702 
2703 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2704 
2705 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2706 		R_VCS, D_ALL, 0, 12, NULL},
2707 
2708 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2709 		R_VCS, D_ALL, 0, 12, NULL},
2710 
2711 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2712 		R_VCS, D_ALL, 0, 12, NULL},
2713 
2714 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2715 
2716 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2717 		0, 12, NULL},
2718 
2719 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2720 		0, 12, NULL},
2721 };
2722 
add_cmd_entry(struct intel_gvt * gvt,struct cmd_entry * e)2723 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2724 {
2725 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2726 }
2727 
2728 /* call the cmd handler, and advance ip */
cmd_parser_exec(struct parser_exec_state * s)2729 static int cmd_parser_exec(struct parser_exec_state *s)
2730 {
2731 	struct intel_vgpu *vgpu = s->vgpu;
2732 	const struct cmd_info *info;
2733 	u32 cmd;
2734 	int ret = 0;
2735 
2736 	cmd = cmd_val(s, 0);
2737 
2738 	/* fastpath for MI_NOOP */
2739 	if (cmd == MI_NOOP)
2740 		info = &cmd_info[mi_noop_index];
2741 	else
2742 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2743 
2744 	if (info == NULL) {
2745 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2746 			     cmd, get_opcode(cmd, s->engine),
2747 			     repr_addr_type(s->buf_addr_type),
2748 			     s->engine->name, s->workload);
2749 		return -EBADRQC;
2750 	}
2751 
2752 	s->info = info;
2753 
2754 	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2755 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2756 			  s->workload, info->name);
2757 
2758 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2759 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2760 						 info->valid_len);
2761 		if (ret)
2762 			return ret;
2763 	}
2764 
2765 	if (info->handler) {
2766 		ret = info->handler(s);
2767 		if (ret < 0) {
2768 			gvt_vgpu_err("%s handler error\n", info->name);
2769 			return ret;
2770 		}
2771 	}
2772 
2773 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2774 		ret = cmd_advance_default(s);
2775 		if (ret) {
2776 			gvt_vgpu_err("%s IP advance error\n", info->name);
2777 			return ret;
2778 		}
2779 	}
2780 	return 0;
2781 }
2782 
gma_out_of_range(unsigned long gma,unsigned long gma_head,unsigned int gma_tail)2783 static inline bool gma_out_of_range(unsigned long gma,
2784 		unsigned long gma_head, unsigned int gma_tail)
2785 {
2786 	if (gma_tail >= gma_head)
2787 		return (gma < gma_head) || (gma > gma_tail);
2788 	else
2789 		return (gma > gma_tail) && (gma < gma_head);
2790 }
2791 
2792 /* Keep the consistent return type, e.g EBADRQC for unknown
2793  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2794  * works as the input of VM healthy status.
2795  */
command_scan(struct parser_exec_state * s,unsigned long rb_head,unsigned long rb_tail,unsigned long rb_start,unsigned long rb_len)2796 static int command_scan(struct parser_exec_state *s,
2797 		unsigned long rb_head, unsigned long rb_tail,
2798 		unsigned long rb_start, unsigned long rb_len)
2799 {
2800 
2801 	unsigned long gma_head, gma_tail, gma_bottom;
2802 	int ret = 0;
2803 	struct intel_vgpu *vgpu = s->vgpu;
2804 
2805 	gma_head = rb_start + rb_head;
2806 	gma_tail = rb_start + rb_tail;
2807 	gma_bottom = rb_start +  rb_len;
2808 
2809 	while (s->ip_gma != gma_tail) {
2810 		if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2811 				s->buf_type == RING_BUFFER_CTX) {
2812 			if (!(s->ip_gma >= rb_start) ||
2813 				!(s->ip_gma < gma_bottom)) {
2814 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2815 					"(base:0x%lx, bottom: 0x%lx)\n",
2816 					s->ip_gma, rb_start,
2817 					gma_bottom);
2818 				parser_exec_state_dump(s);
2819 				return -EFAULT;
2820 			}
2821 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2822 				gvt_vgpu_err("ip_gma %lx out of range."
2823 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2824 					s->ip_gma, rb_start,
2825 					rb_head, rb_tail);
2826 				parser_exec_state_dump(s);
2827 				break;
2828 			}
2829 		}
2830 		ret = cmd_parser_exec(s);
2831 		if (ret) {
2832 			gvt_vgpu_err("cmd parser error\n");
2833 			parser_exec_state_dump(s);
2834 			break;
2835 		}
2836 	}
2837 
2838 	return ret;
2839 }
2840 
scan_workload(struct intel_vgpu_workload * workload)2841 static int scan_workload(struct intel_vgpu_workload *workload)
2842 {
2843 	unsigned long gma_head, gma_tail;
2844 	struct parser_exec_state s;
2845 	int ret = 0;
2846 
2847 	/* ring base is page aligned */
2848 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2849 		return -EINVAL;
2850 
2851 	gma_head = workload->rb_start + workload->rb_head;
2852 	gma_tail = workload->rb_start + workload->rb_tail;
2853 
2854 	s.buf_type = RING_BUFFER_INSTRUCTION;
2855 	s.buf_addr_type = GTT_BUFFER;
2856 	s.vgpu = workload->vgpu;
2857 	s.engine = workload->engine;
2858 	s.ring_start = workload->rb_start;
2859 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2860 	s.ring_head = gma_head;
2861 	s.ring_tail = gma_tail;
2862 	s.rb_va = workload->shadow_ring_buffer_va;
2863 	s.workload = workload;
2864 	s.is_ctx_wa = false;
2865 
2866 	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2867 		return 0;
2868 
2869 	ret = ip_gma_set(&s, gma_head);
2870 	if (ret)
2871 		goto out;
2872 
2873 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2874 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2875 
2876 out:
2877 	return ret;
2878 }
2879 
scan_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)2880 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2881 {
2882 
2883 	unsigned long gma_head, gma_tail, ring_size, ring_tail;
2884 	struct parser_exec_state s;
2885 	int ret = 0;
2886 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2887 				struct intel_vgpu_workload,
2888 				wa_ctx);
2889 
2890 	/* ring base is page aligned */
2891 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2892 					I915_GTT_PAGE_SIZE)))
2893 		return -EINVAL;
2894 
2895 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2896 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2897 			PAGE_SIZE);
2898 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2899 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2900 
2901 	s.buf_type = RING_BUFFER_INSTRUCTION;
2902 	s.buf_addr_type = GTT_BUFFER;
2903 	s.vgpu = workload->vgpu;
2904 	s.engine = workload->engine;
2905 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2906 	s.ring_size = ring_size;
2907 	s.ring_head = gma_head;
2908 	s.ring_tail = gma_tail;
2909 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2910 	s.workload = workload;
2911 	s.is_ctx_wa = true;
2912 
2913 	ret = ip_gma_set(&s, gma_head);
2914 	if (ret)
2915 		goto out;
2916 
2917 	ret = command_scan(&s, 0, ring_tail,
2918 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2919 out:
2920 	return ret;
2921 }
2922 
shadow_workload_ring_buffer(struct intel_vgpu_workload * workload)2923 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2924 {
2925 	struct intel_vgpu *vgpu = workload->vgpu;
2926 	struct intel_vgpu_submission *s = &vgpu->submission;
2927 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2928 	void *shadow_ring_buffer_va;
2929 	int ret;
2930 
2931 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2932 
2933 	/* calculate workload ring buffer size */
2934 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2935 			workload->rb_head) % guest_rb_size;
2936 
2937 	gma_head = workload->rb_start + workload->rb_head;
2938 	gma_tail = workload->rb_start + workload->rb_tail;
2939 	gma_top = workload->rb_start + guest_rb_size;
2940 
2941 	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2942 		void *p;
2943 
2944 		/* realloc the new ring buffer if needed */
2945 		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2946 			     workload->rb_len, GFP_KERNEL);
2947 		if (!p) {
2948 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2949 			return -ENOMEM;
2950 		}
2951 		s->ring_scan_buffer[workload->engine->id] = p;
2952 		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2953 	}
2954 
2955 	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2956 
2957 	/* get shadow ring buffer va */
2958 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2959 
2960 	/* head > tail --> copy head <-> top */
2961 	if (gma_head > gma_tail) {
2962 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2963 				      gma_head, gma_top, shadow_ring_buffer_va);
2964 		if (ret < 0) {
2965 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2966 			return ret;
2967 		}
2968 		shadow_ring_buffer_va += ret;
2969 		gma_head = workload->rb_start;
2970 	}
2971 
2972 	/* copy head or start <-> tail */
2973 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2974 				shadow_ring_buffer_va);
2975 	if (ret < 0) {
2976 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2977 		return ret;
2978 	}
2979 	return 0;
2980 }
2981 
intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload * workload)2982 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2983 {
2984 	int ret;
2985 	struct intel_vgpu *vgpu = workload->vgpu;
2986 
2987 	ret = shadow_workload_ring_buffer(workload);
2988 	if (ret) {
2989 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2990 		return ret;
2991 	}
2992 
2993 	ret = scan_workload(workload);
2994 	if (ret) {
2995 		gvt_vgpu_err("scan workload error\n");
2996 		return ret;
2997 	}
2998 	return 0;
2999 }
3000 
shadow_indirect_ctx(struct intel_shadow_wa_ctx * wa_ctx)3001 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3002 {
3003 	int ctx_size = wa_ctx->indirect_ctx.size;
3004 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
3005 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3006 					struct intel_vgpu_workload,
3007 					wa_ctx);
3008 	struct intel_vgpu *vgpu = workload->vgpu;
3009 	struct drm_i915_gem_object *obj;
3010 	int ret = 0;
3011 	void *map;
3012 
3013 	obj = i915_gem_object_create_shmem(workload->engine->i915,
3014 					   roundup(ctx_size + CACHELINE_BYTES,
3015 						   PAGE_SIZE));
3016 	if (IS_ERR(obj))
3017 		return PTR_ERR(obj);
3018 
3019 	/* get the va of the shadow batch buffer */
3020 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3021 	if (IS_ERR(map)) {
3022 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3023 		ret = PTR_ERR(map);
3024 		goto put_obj;
3025 	}
3026 
3027 	i915_gem_object_lock(obj, NULL);
3028 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
3029 	i915_gem_object_unlock(obj);
3030 	if (ret) {
3031 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3032 		goto unmap_src;
3033 	}
3034 
3035 	ret = copy_gma_to_hva(workload->vgpu,
3036 				workload->vgpu->gtt.ggtt_mm,
3037 				guest_gma, guest_gma + ctx_size,
3038 				map);
3039 	if (ret < 0) {
3040 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
3041 		goto unmap_src;
3042 	}
3043 
3044 	wa_ctx->indirect_ctx.obj = obj;
3045 	wa_ctx->indirect_ctx.shadow_va = map;
3046 	return 0;
3047 
3048 unmap_src:
3049 	i915_gem_object_unpin_map(obj);
3050 put_obj:
3051 	i915_gem_object_put(obj);
3052 	return ret;
3053 }
3054 
combine_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3055 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3056 {
3057 	u32 per_ctx_start[CACHELINE_DWORDS] = {};
3058 	unsigned char *bb_start_sva;
3059 
3060 	if (!wa_ctx->per_ctx.valid)
3061 		return 0;
3062 
3063 	per_ctx_start[0] = 0x18800001;
3064 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3065 
3066 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3067 				wa_ctx->indirect_ctx.size;
3068 
3069 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3070 
3071 	return 0;
3072 }
3073 
intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3074 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3075 {
3076 	int ret;
3077 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3078 					struct intel_vgpu_workload,
3079 					wa_ctx);
3080 	struct intel_vgpu *vgpu = workload->vgpu;
3081 
3082 	if (wa_ctx->indirect_ctx.size == 0)
3083 		return 0;
3084 
3085 	ret = shadow_indirect_ctx(wa_ctx);
3086 	if (ret) {
3087 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3088 		return ret;
3089 	}
3090 
3091 	combine_wa_ctx(wa_ctx);
3092 
3093 	ret = scan_wa_ctx(wa_ctx);
3094 	if (ret) {
3095 		gvt_vgpu_err("scan wa ctx error\n");
3096 		return ret;
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 /* generate dummy contexts by sending empty requests to HW, and let
3103  * the HW to fill Engine Contexts. This dummy contexts are used for
3104  * initialization purpose (update reg whitelist), so referred to as
3105  * init context here
3106  */
intel_gvt_update_reg_whitelist(struct intel_vgpu * vgpu)3107 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3108 {
3109 	const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3110 	struct intel_gvt *gvt = vgpu->gvt;
3111 	struct intel_engine_cs *engine;
3112 	enum intel_engine_id id;
3113 
3114 	if (gvt->is_reg_whitelist_updated)
3115 		return;
3116 
3117 	/* scan init ctx to update cmd accessible list */
3118 	for_each_engine(engine, gvt->gt, id) {
3119 		struct parser_exec_state s;
3120 		void *vaddr;
3121 		int ret;
3122 
3123 		if (!engine->default_state)
3124 			continue;
3125 
3126 		vaddr = shmem_pin_map(engine->default_state);
3127 		if (!vaddr) {
3128 			gvt_err("failed to map %s->default state\n",
3129 				engine->name);
3130 			return;
3131 		}
3132 
3133 		s.buf_type = RING_BUFFER_CTX;
3134 		s.buf_addr_type = GTT_BUFFER;
3135 		s.vgpu = vgpu;
3136 		s.engine = engine;
3137 		s.ring_start = 0;
3138 		s.ring_size = engine->context_size - start;
3139 		s.ring_head = 0;
3140 		s.ring_tail = s.ring_size;
3141 		s.rb_va = vaddr + start;
3142 		s.workload = NULL;
3143 		s.is_ctx_wa = false;
3144 		s.is_init_ctx = true;
3145 
3146 		/* skipping the first RING_CTX_SIZE(0x50) dwords */
3147 		ret = ip_gma_set(&s, RING_CTX_SIZE);
3148 		if (ret == 0) {
3149 			ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3150 			if (ret)
3151 				gvt_err("Scan init ctx error\n");
3152 		}
3153 
3154 		shmem_unpin_map(engine->default_state, vaddr);
3155 		if (ret)
3156 			return;
3157 	}
3158 
3159 	gvt->is_reg_whitelist_updated = true;
3160 }
3161 
intel_gvt_scan_engine_context(struct intel_vgpu_workload * workload)3162 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3163 {
3164 	struct intel_vgpu *vgpu = workload->vgpu;
3165 	unsigned long gma_head, gma_tail, gma_start, ctx_size;
3166 	struct parser_exec_state s;
3167 	int ring_id = workload->engine->id;
3168 	struct intel_context *ce = vgpu->submission.shadow[ring_id];
3169 	int ret;
3170 
3171 	GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3172 
3173 	ctx_size = workload->engine->context_size - PAGE_SIZE;
3174 
3175 	/* Only ring contxt is loaded to HW for inhibit context, no need to
3176 	 * scan engine context
3177 	 */
3178 	if (is_inhibit_context(ce))
3179 		return 0;
3180 
3181 	gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3182 	gma_head = 0;
3183 	gma_tail = ctx_size;
3184 
3185 	s.buf_type = RING_BUFFER_CTX;
3186 	s.buf_addr_type = GTT_BUFFER;
3187 	s.vgpu = workload->vgpu;
3188 	s.engine = workload->engine;
3189 	s.ring_start = gma_start;
3190 	s.ring_size = ctx_size;
3191 	s.ring_head = gma_start + gma_head;
3192 	s.ring_tail = gma_start + gma_tail;
3193 	s.rb_va = ce->lrc_reg_state;
3194 	s.workload = workload;
3195 	s.is_ctx_wa = false;
3196 	s.is_init_ctx = false;
3197 
3198 	/* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3199 	 * context
3200 	 */
3201 	ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3202 	if (ret)
3203 		goto out;
3204 
3205 	ret = command_scan(&s, gma_head, gma_tail,
3206 		gma_start, ctx_size);
3207 out:
3208 	if (ret)
3209 		gvt_vgpu_err("scan shadow ctx error\n");
3210 
3211 	return ret;
3212 }
3213 
init_cmd_table(struct intel_gvt * gvt)3214 static int init_cmd_table(struct intel_gvt *gvt)
3215 {
3216 	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3217 	int i;
3218 
3219 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3220 		struct cmd_entry *e;
3221 
3222 		if (!(cmd_info[i].devices & gen_type))
3223 			continue;
3224 
3225 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3226 		if (!e)
3227 			return -ENOMEM;
3228 
3229 		e->info = &cmd_info[i];
3230 		if (cmd_info[i].opcode == OP_MI_NOOP)
3231 			mi_noop_index = i;
3232 
3233 		INIT_HLIST_NODE(&e->hlist);
3234 		add_cmd_entry(gvt, e);
3235 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3236 			    e->info->name, e->info->opcode, e->info->flag,
3237 			    e->info->devices, e->info->rings);
3238 	}
3239 
3240 	return 0;
3241 }
3242 
clean_cmd_table(struct intel_gvt * gvt)3243 static void clean_cmd_table(struct intel_gvt *gvt)
3244 {
3245 	struct hlist_node *tmp;
3246 	struct cmd_entry *e;
3247 	int i;
3248 
3249 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3250 		kfree(e);
3251 
3252 	hash_init(gvt->cmd_table);
3253 }
3254 
intel_gvt_clean_cmd_parser(struct intel_gvt * gvt)3255 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3256 {
3257 	clean_cmd_table(gvt);
3258 }
3259 
intel_gvt_init_cmd_parser(struct intel_gvt * gvt)3260 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3261 {
3262 	int ret;
3263 
3264 	ret = init_cmd_table(gvt);
3265 	if (ret) {
3266 		intel_gvt_clean_cmd_parser(gvt);
3267 		return ret;
3268 	}
3269 	return 0;
3270 }
3271