1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43 
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45 
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50 
51 typedef struct {
52 	/* given values */
53 	int n;
54 	int m1, m2;
55 	int p1, p2;
56 	/* derived values */
57 	int	dot;
58 	int	vco;
59 	int	m;
60 	int	p;
61 } intel_clock_t;
62 
63 typedef struct {
64 	int	min, max;
65 } intel_range_t;
66 
67 typedef struct {
68 	int	dot_limit;
69 	int	p2_slow, p2_fast;
70 } intel_p2_t;
71 
72 #define INTEL_P2_NUM		      2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75 	intel_range_t   dot, vco, n, m, m1, m2, p, p1;
76 	intel_p2_t	    p2;
77 	bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 			int, int, intel_clock_t *);
79 };
80 
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ		2700000 /* in kHz for mode->clock */
83 
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 		    int target, int refclk, intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 			int target, int refclk, intel_clock_t *best_clock);
90 
91 static bool
92 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93 		      int target, int refclk, intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 			   int target, int refclk, intel_clock_t *best_clock);
97 
98 static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device * dev)99 intel_fdi_link_freq(struct drm_device *dev)
100 {
101 	if (IS_GEN5(dev)) {
102 		struct drm_i915_private *dev_priv = dev->dev_private;
103 		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104 	} else
105 		return 27;
106 }
107 
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109 	.dot = { .min = 25000, .max = 350000 },
110 	.vco = { .min = 930000, .max = 1400000 },
111 	.n = { .min = 3, .max = 16 },
112 	.m = { .min = 96, .max = 140 },
113 	.m1 = { .min = 18, .max = 26 },
114 	.m2 = { .min = 6, .max = 16 },
115 	.p = { .min = 4, .max = 128 },
116 	.p1 = { .min = 2, .max = 33 },
117 	.p2 = { .dot_limit = 165000,
118 		.p2_slow = 4, .p2_fast = 2 },
119 	.find_pll = intel_find_best_PLL,
120 };
121 
122 static const intel_limit_t intel_limits_i8xx_lvds = {
123 	.dot = { .min = 25000, .max = 350000 },
124 	.vco = { .min = 930000, .max = 1400000 },
125 	.n = { .min = 3, .max = 16 },
126 	.m = { .min = 96, .max = 140 },
127 	.m1 = { .min = 18, .max = 26 },
128 	.m2 = { .min = 6, .max = 16 },
129 	.p = { .min = 4, .max = 128 },
130 	.p1 = { .min = 1, .max = 6 },
131 	.p2 = { .dot_limit = 165000,
132 		.p2_slow = 14, .p2_fast = 7 },
133 	.find_pll = intel_find_best_PLL,
134 };
135 
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137 	.dot = { .min = 20000, .max = 400000 },
138 	.vco = { .min = 1400000, .max = 2800000 },
139 	.n = { .min = 1, .max = 6 },
140 	.m = { .min = 70, .max = 120 },
141 	.m1 = { .min = 10, .max = 22 },
142 	.m2 = { .min = 5, .max = 9 },
143 	.p = { .min = 5, .max = 80 },
144 	.p1 = { .min = 1, .max = 8 },
145 	.p2 = { .dot_limit = 200000,
146 		.p2_slow = 10, .p2_fast = 5 },
147 	.find_pll = intel_find_best_PLL,
148 };
149 
150 static const intel_limit_t intel_limits_i9xx_lvds = {
151 	.dot = { .min = 20000, .max = 400000 },
152 	.vco = { .min = 1400000, .max = 2800000 },
153 	.n = { .min = 1, .max = 6 },
154 	.m = { .min = 70, .max = 120 },
155 	.m1 = { .min = 10, .max = 22 },
156 	.m2 = { .min = 5, .max = 9 },
157 	.p = { .min = 7, .max = 98 },
158 	.p1 = { .min = 1, .max = 8 },
159 	.p2 = { .dot_limit = 112000,
160 		.p2_slow = 14, .p2_fast = 7 },
161 	.find_pll = intel_find_best_PLL,
162 };
163 
164 
165 static const intel_limit_t intel_limits_g4x_sdvo = {
166 	.dot = { .min = 25000, .max = 270000 },
167 	.vco = { .min = 1750000, .max = 3500000},
168 	.n = { .min = 1, .max = 4 },
169 	.m = { .min = 104, .max = 138 },
170 	.m1 = { .min = 17, .max = 23 },
171 	.m2 = { .min = 5, .max = 11 },
172 	.p = { .min = 10, .max = 30 },
173 	.p1 = { .min = 1, .max = 3},
174 	.p2 = { .dot_limit = 270000,
175 		.p2_slow = 10,
176 		.p2_fast = 10
177 	},
178 	.find_pll = intel_g4x_find_best_PLL,
179 };
180 
181 static const intel_limit_t intel_limits_g4x_hdmi = {
182 	.dot = { .min = 22000, .max = 400000 },
183 	.vco = { .min = 1750000, .max = 3500000},
184 	.n = { .min = 1, .max = 4 },
185 	.m = { .min = 104, .max = 138 },
186 	.m1 = { .min = 16, .max = 23 },
187 	.m2 = { .min = 5, .max = 11 },
188 	.p = { .min = 5, .max = 80 },
189 	.p1 = { .min = 1, .max = 8},
190 	.p2 = { .dot_limit = 165000,
191 		.p2_slow = 10, .p2_fast = 5 },
192 	.find_pll = intel_g4x_find_best_PLL,
193 };
194 
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
196 	.dot = { .min = 20000, .max = 115000 },
197 	.vco = { .min = 1750000, .max = 3500000 },
198 	.n = { .min = 1, .max = 3 },
199 	.m = { .min = 104, .max = 138 },
200 	.m1 = { .min = 17, .max = 23 },
201 	.m2 = { .min = 5, .max = 11 },
202 	.p = { .min = 28, .max = 112 },
203 	.p1 = { .min = 2, .max = 8 },
204 	.p2 = { .dot_limit = 0,
205 		.p2_slow = 14, .p2_fast = 14
206 	},
207 	.find_pll = intel_g4x_find_best_PLL,
208 };
209 
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
211 	.dot = { .min = 80000, .max = 224000 },
212 	.vco = { .min = 1750000, .max = 3500000 },
213 	.n = { .min = 1, .max = 3 },
214 	.m = { .min = 104, .max = 138 },
215 	.m1 = { .min = 17, .max = 23 },
216 	.m2 = { .min = 5, .max = 11 },
217 	.p = { .min = 14, .max = 42 },
218 	.p1 = { .min = 2, .max = 6 },
219 	.p2 = { .dot_limit = 0,
220 		.p2_slow = 7, .p2_fast = 7
221 	},
222 	.find_pll = intel_g4x_find_best_PLL,
223 };
224 
225 static const intel_limit_t intel_limits_g4x_display_port = {
226 	.dot = { .min = 161670, .max = 227000 },
227 	.vco = { .min = 1750000, .max = 3500000},
228 	.n = { .min = 1, .max = 2 },
229 	.m = { .min = 97, .max = 108 },
230 	.m1 = { .min = 0x10, .max = 0x12 },
231 	.m2 = { .min = 0x05, .max = 0x06 },
232 	.p = { .min = 10, .max = 20 },
233 	.p1 = { .min = 1, .max = 2},
234 	.p2 = { .dot_limit = 0,
235 		.p2_slow = 10, .p2_fast = 10 },
236 	.find_pll = intel_find_pll_g4x_dp,
237 };
238 
239 static const intel_limit_t intel_limits_pineview_sdvo = {
240 	.dot = { .min = 20000, .max = 400000},
241 	.vco = { .min = 1700000, .max = 3500000 },
242 	/* Pineview's Ncounter is a ring counter */
243 	.n = { .min = 3, .max = 6 },
244 	.m = { .min = 2, .max = 256 },
245 	/* Pineview only has one combined m divider, which we treat as m2. */
246 	.m1 = { .min = 0, .max = 0 },
247 	.m2 = { .min = 0, .max = 254 },
248 	.p = { .min = 5, .max = 80 },
249 	.p1 = { .min = 1, .max = 8 },
250 	.p2 = { .dot_limit = 200000,
251 		.p2_slow = 10, .p2_fast = 5 },
252 	.find_pll = intel_find_best_PLL,
253 };
254 
255 static const intel_limit_t intel_limits_pineview_lvds = {
256 	.dot = { .min = 20000, .max = 400000 },
257 	.vco = { .min = 1700000, .max = 3500000 },
258 	.n = { .min = 3, .max = 6 },
259 	.m = { .min = 2, .max = 256 },
260 	.m1 = { .min = 0, .max = 0 },
261 	.m2 = { .min = 0, .max = 254 },
262 	.p = { .min = 7, .max = 112 },
263 	.p1 = { .min = 1, .max = 8 },
264 	.p2 = { .dot_limit = 112000,
265 		.p2_slow = 14, .p2_fast = 14 },
266 	.find_pll = intel_find_best_PLL,
267 };
268 
269 /* Ironlake / Sandybridge
270  *
271  * We calculate clock using (register_value + 2) for N/M1/M2, so here
272  * the range value for them is (actual_value - 2).
273  */
274 static const intel_limit_t intel_limits_ironlake_dac = {
275 	.dot = { .min = 25000, .max = 350000 },
276 	.vco = { .min = 1760000, .max = 3510000 },
277 	.n = { .min = 1, .max = 5 },
278 	.m = { .min = 79, .max = 127 },
279 	.m1 = { .min = 12, .max = 22 },
280 	.m2 = { .min = 5, .max = 9 },
281 	.p = { .min = 5, .max = 80 },
282 	.p1 = { .min = 1, .max = 8 },
283 	.p2 = { .dot_limit = 225000,
284 		.p2_slow = 10, .p2_fast = 5 },
285 	.find_pll = intel_g4x_find_best_PLL,
286 };
287 
288 static const intel_limit_t intel_limits_ironlake_single_lvds = {
289 	.dot = { .min = 25000, .max = 350000 },
290 	.vco = { .min = 1760000, .max = 3510000 },
291 	.n = { .min = 1, .max = 3 },
292 	.m = { .min = 79, .max = 118 },
293 	.m1 = { .min = 12, .max = 22 },
294 	.m2 = { .min = 5, .max = 9 },
295 	.p = { .min = 28, .max = 112 },
296 	.p1 = { .min = 2, .max = 8 },
297 	.p2 = { .dot_limit = 225000,
298 		.p2_slow = 14, .p2_fast = 14 },
299 	.find_pll = intel_g4x_find_best_PLL,
300 };
301 
302 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
303 	.dot = { .min = 25000, .max = 350000 },
304 	.vco = { .min = 1760000, .max = 3510000 },
305 	.n = { .min = 1, .max = 3 },
306 	.m = { .min = 79, .max = 127 },
307 	.m1 = { .min = 12, .max = 22 },
308 	.m2 = { .min = 5, .max = 9 },
309 	.p = { .min = 14, .max = 56 },
310 	.p1 = { .min = 2, .max = 8 },
311 	.p2 = { .dot_limit = 225000,
312 		.p2_slow = 7, .p2_fast = 7 },
313 	.find_pll = intel_g4x_find_best_PLL,
314 };
315 
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
318 	.dot = { .min = 25000, .max = 350000 },
319 	.vco = { .min = 1760000, .max = 3510000 },
320 	.n = { .min = 1, .max = 2 },
321 	.m = { .min = 79, .max = 126 },
322 	.m1 = { .min = 12, .max = 22 },
323 	.m2 = { .min = 5, .max = 9 },
324 	.p = { .min = 28, .max = 112 },
325 	.p1 = { .min = 2, .max = 8 },
326 	.p2 = { .dot_limit = 225000,
327 		.p2_slow = 14, .p2_fast = 14 },
328 	.find_pll = intel_g4x_find_best_PLL,
329 };
330 
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
332 	.dot = { .min = 25000, .max = 350000 },
333 	.vco = { .min = 1760000, .max = 3510000 },
334 	.n = { .min = 1, .max = 3 },
335 	.m = { .min = 79, .max = 126 },
336 	.m1 = { .min = 12, .max = 22 },
337 	.m2 = { .min = 5, .max = 9 },
338 	.p = { .min = 14, .max = 42 },
339 	.p1 = { .min = 2, .max = 6 },
340 	.p2 = { .dot_limit = 225000,
341 		.p2_slow = 7, .p2_fast = 7 },
342 	.find_pll = intel_g4x_find_best_PLL,
343 };
344 
345 static const intel_limit_t intel_limits_ironlake_display_port = {
346 	.dot = { .min = 25000, .max = 350000 },
347 	.vco = { .min = 1760000, .max = 3510000},
348 	.n = { .min = 1, .max = 2 },
349 	.m = { .min = 81, .max = 90 },
350 	.m1 = { .min = 12, .max = 22 },
351 	.m2 = { .min = 5, .max = 9 },
352 	.p = { .min = 10, .max = 20 },
353 	.p1 = { .min = 1, .max = 2},
354 	.p2 = { .dot_limit = 0,
355 		.p2_slow = 10, .p2_fast = 10 },
356 	.find_pll = intel_find_pll_ironlake_dp,
357 };
358 
intel_ironlake_limit(struct drm_crtc * crtc,int refclk)359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360 						int refclk)
361 {
362 	struct drm_device *dev = crtc->dev;
363 	struct drm_i915_private *dev_priv = dev->dev_private;
364 	const intel_limit_t *limit;
365 
366 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
367 		if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368 		    LVDS_CLKB_POWER_UP) {
369 			/* LVDS dual channel */
370 			if (refclk == 100000)
371 				limit = &intel_limits_ironlake_dual_lvds_100m;
372 			else
373 				limit = &intel_limits_ironlake_dual_lvds;
374 		} else {
375 			if (refclk == 100000)
376 				limit = &intel_limits_ironlake_single_lvds_100m;
377 			else
378 				limit = &intel_limits_ironlake_single_lvds;
379 		}
380 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
381 			HAS_eDP)
382 		limit = &intel_limits_ironlake_display_port;
383 	else
384 		limit = &intel_limits_ironlake_dac;
385 
386 	return limit;
387 }
388 
intel_g4x_limit(struct drm_crtc * crtc)389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 {
391 	struct drm_device *dev = crtc->dev;
392 	struct drm_i915_private *dev_priv = dev->dev_private;
393 	const intel_limit_t *limit;
394 
395 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396 		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397 		    LVDS_CLKB_POWER_UP)
398 			/* LVDS with dual channel */
399 			limit = &intel_limits_g4x_dual_channel_lvds;
400 		else
401 			/* LVDS with dual channel */
402 			limit = &intel_limits_g4x_single_channel_lvds;
403 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404 		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405 		limit = &intel_limits_g4x_hdmi;
406 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407 		limit = &intel_limits_g4x_sdvo;
408 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
409 		limit = &intel_limits_g4x_display_port;
410 	} else /* The option is for other outputs */
411 		limit = &intel_limits_i9xx_sdvo;
412 
413 	return limit;
414 }
415 
intel_limit(struct drm_crtc * crtc,int refclk)416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
417 {
418 	struct drm_device *dev = crtc->dev;
419 	const intel_limit_t *limit;
420 
421 	if (HAS_PCH_SPLIT(dev))
422 		limit = intel_ironlake_limit(crtc, refclk);
423 	else if (IS_G4X(dev)) {
424 		limit = intel_g4x_limit(crtc);
425 	} else if (IS_PINEVIEW(dev)) {
426 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427 			limit = &intel_limits_pineview_lvds;
428 		else
429 			limit = &intel_limits_pineview_sdvo;
430 	} else if (!IS_GEN2(dev)) {
431 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432 			limit = &intel_limits_i9xx_lvds;
433 		else
434 			limit = &intel_limits_i9xx_sdvo;
435 	} else {
436 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
437 			limit = &intel_limits_i8xx_lvds;
438 		else
439 			limit = &intel_limits_i8xx_dvo;
440 	}
441 	return limit;
442 }
443 
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pineview_clock(int refclk,intel_clock_t * clock)445 static void pineview_clock(int refclk, intel_clock_t *clock)
446 {
447 	clock->m = clock->m2 + 2;
448 	clock->p = clock->p1 * clock->p2;
449 	clock->vco = refclk * clock->m / clock->n;
450 	clock->dot = clock->vco / clock->p;
451 }
452 
intel_clock(struct drm_device * dev,int refclk,intel_clock_t * clock)453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454 {
455 	if (IS_PINEVIEW(dev)) {
456 		pineview_clock(refclk, clock);
457 		return;
458 	}
459 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460 	clock->p = clock->p1 * clock->p2;
461 	clock->vco = refclk * clock->m / (clock->n + 2);
462 	clock->dot = clock->vco / clock->p;
463 }
464 
465 /**
466  * Returns whether any output on the specified pipe is of the specified type
467  */
intel_pipe_has_type(struct drm_crtc * crtc,int type)468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
469 {
470 	struct drm_device *dev = crtc->dev;
471 	struct drm_mode_config *mode_config = &dev->mode_config;
472 	struct intel_encoder *encoder;
473 
474 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475 		if (encoder->base.crtc == crtc && encoder->type == type)
476 			return true;
477 
478 	return false;
479 }
480 
481 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
482 /**
483  * Returns whether the given set of divisors are valid for a given refclk with
484  * the given connectors.
485  */
486 
intel_PLL_is_valid(struct drm_device * dev,const intel_limit_t * limit,const intel_clock_t * clock)487 static bool intel_PLL_is_valid(struct drm_device *dev,
488 			       const intel_limit_t *limit,
489 			       const intel_clock_t *clock)
490 {
491 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
492 		INTELPllInvalid("p1 out of range\n");
493 	if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
494 		INTELPllInvalid("p out of range\n");
495 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
496 		INTELPllInvalid("m2 out of range\n");
497 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
498 		INTELPllInvalid("m1 out of range\n");
499 	if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
500 		INTELPllInvalid("m1 <= m2\n");
501 	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
502 		INTELPllInvalid("m out of range\n");
503 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
504 		INTELPllInvalid("n out of range\n");
505 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
506 		INTELPllInvalid("vco out of range\n");
507 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508 	 * connector, etc., rather than just a single range.
509 	 */
510 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
511 		INTELPllInvalid("dot out of range\n");
512 
513 	return true;
514 }
515 
516 static bool
intel_find_best_PLL(const intel_limit_t * limit,struct drm_crtc * crtc,int target,int refclk,intel_clock_t * best_clock)517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518 		    int target, int refclk, intel_clock_t *best_clock)
519 
520 {
521 	struct drm_device *dev = crtc->dev;
522 	struct drm_i915_private *dev_priv = dev->dev_private;
523 	intel_clock_t clock;
524 	int err = target;
525 
526 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
527 	    (I915_READ(LVDS)) != 0) {
528 		/*
529 		 * For LVDS, if the panel is on, just rely on its current
530 		 * settings for dual-channel.  We haven't figured out how to
531 		 * reliably set up different single/dual channel state, if we
532 		 * even can.
533 		 */
534 		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535 		    LVDS_CLKB_POWER_UP)
536 			clock.p2 = limit->p2.p2_fast;
537 		else
538 			clock.p2 = limit->p2.p2_slow;
539 	} else {
540 		if (target < limit->p2.dot_limit)
541 			clock.p2 = limit->p2.p2_slow;
542 		else
543 			clock.p2 = limit->p2.p2_fast;
544 	}
545 
546 	memset(best_clock, 0, sizeof(*best_clock));
547 
548 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549 	     clock.m1++) {
550 		for (clock.m2 = limit->m2.min;
551 		     clock.m2 <= limit->m2.max; clock.m2++) {
552 			/* m1 is always 0 in Pineview */
553 			if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
554 				break;
555 			for (clock.n = limit->n.min;
556 			     clock.n <= limit->n.max; clock.n++) {
557 				for (clock.p1 = limit->p1.min;
558 					clock.p1 <= limit->p1.max; clock.p1++) {
559 					int this_err;
560 
561 					intel_clock(dev, refclk, &clock);
562 					if (!intel_PLL_is_valid(dev, limit,
563 								&clock))
564 						continue;
565 
566 					this_err = abs(clock.dot - target);
567 					if (this_err < err) {
568 						*best_clock = clock;
569 						err = this_err;
570 					}
571 				}
572 			}
573 		}
574 	}
575 
576 	return (err != target);
577 }
578 
579 static bool
intel_g4x_find_best_PLL(const intel_limit_t * limit,struct drm_crtc * crtc,int target,int refclk,intel_clock_t * best_clock)580 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581 			int target, int refclk, intel_clock_t *best_clock)
582 {
583 	struct drm_device *dev = crtc->dev;
584 	struct drm_i915_private *dev_priv = dev->dev_private;
585 	intel_clock_t clock;
586 	int max_n;
587 	bool found;
588 	/* approximately equals target * 0.00585 */
589 	int err_most = (target >> 8) + (target >> 9);
590 	found = false;
591 
592 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593 		int lvds_reg;
594 
595 		if (HAS_PCH_SPLIT(dev))
596 			lvds_reg = PCH_LVDS;
597 		else
598 			lvds_reg = LVDS;
599 		if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
600 		    LVDS_CLKB_POWER_UP)
601 			clock.p2 = limit->p2.p2_fast;
602 		else
603 			clock.p2 = limit->p2.p2_slow;
604 	} else {
605 		if (target < limit->p2.dot_limit)
606 			clock.p2 = limit->p2.p2_slow;
607 		else
608 			clock.p2 = limit->p2.p2_fast;
609 	}
610 
611 	memset(best_clock, 0, sizeof(*best_clock));
612 	max_n = limit->n.max;
613 	/* based on hardware requirement, prefer smaller n to precision */
614 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
615 		/* based on hardware requirement, prefere larger m1,m2 */
616 		for (clock.m1 = limit->m1.max;
617 		     clock.m1 >= limit->m1.min; clock.m1--) {
618 			for (clock.m2 = limit->m2.max;
619 			     clock.m2 >= limit->m2.min; clock.m2--) {
620 				for (clock.p1 = limit->p1.max;
621 				     clock.p1 >= limit->p1.min; clock.p1--) {
622 					int this_err;
623 
624 					intel_clock(dev, refclk, &clock);
625 					if (!intel_PLL_is_valid(dev, limit,
626 								&clock))
627 						continue;
628 
629 					this_err = abs(clock.dot - target);
630 					if (this_err < err_most) {
631 						*best_clock = clock;
632 						err_most = this_err;
633 						max_n = clock.n;
634 						found = true;
635 					}
636 				}
637 			}
638 		}
639 	}
640 	return found;
641 }
642 
643 static bool
intel_find_pll_ironlake_dp(const intel_limit_t * limit,struct drm_crtc * crtc,int target,int refclk,intel_clock_t * best_clock)644 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645 			   int target, int refclk, intel_clock_t *best_clock)
646 {
647 	struct drm_device *dev = crtc->dev;
648 	intel_clock_t clock;
649 
650 	if (target < 200000) {
651 		clock.n = 1;
652 		clock.p1 = 2;
653 		clock.p2 = 10;
654 		clock.m1 = 12;
655 		clock.m2 = 9;
656 	} else {
657 		clock.n = 2;
658 		clock.p1 = 1;
659 		clock.p2 = 10;
660 		clock.m1 = 14;
661 		clock.m2 = 8;
662 	}
663 	intel_clock(dev, refclk, &clock);
664 	memcpy(best_clock, &clock, sizeof(intel_clock_t));
665 	return true;
666 }
667 
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 static bool
intel_find_pll_g4x_dp(const intel_limit_t * limit,struct drm_crtc * crtc,int target,int refclk,intel_clock_t * best_clock)670 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671 		      int target, int refclk, intel_clock_t *best_clock)
672 {
673 	intel_clock_t clock;
674 	if (target < 200000) {
675 		clock.p1 = 2;
676 		clock.p2 = 10;
677 		clock.n = 2;
678 		clock.m1 = 23;
679 		clock.m2 = 8;
680 	} else {
681 		clock.p1 = 1;
682 		clock.p2 = 10;
683 		clock.n = 1;
684 		clock.m1 = 14;
685 		clock.m2 = 2;
686 	}
687 	clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688 	clock.p = (clock.p1 * clock.p2);
689 	clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690 	clock.vco = 0;
691 	memcpy(best_clock, &clock, sizeof(intel_clock_t));
692 	return true;
693 }
694 
695 /**
696  * intel_wait_for_vblank - wait for vblank on a given pipe
697  * @dev: drm device
698  * @pipe: pipe to wait for
699  *
700  * Wait for vblank to occur on a given pipe.  Needed for various bits of
701  * mode setting code.
702  */
intel_wait_for_vblank(struct drm_device * dev,int pipe)703 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
704 {
705 	struct drm_i915_private *dev_priv = dev->dev_private;
706 	int pipestat_reg = PIPESTAT(pipe);
707 
708 	/* Clear existing vblank status. Note this will clear any other
709 	 * sticky status fields as well.
710 	 *
711 	 * This races with i915_driver_irq_handler() with the result
712 	 * that either function could miss a vblank event.  Here it is not
713 	 * fatal, as we will either wait upon the next vblank interrupt or
714 	 * timeout.  Generally speaking intel_wait_for_vblank() is only
715 	 * called during modeset at which time the GPU should be idle and
716 	 * should *not* be performing page flips and thus not waiting on
717 	 * vblanks...
718 	 * Currently, the result of us stealing a vblank from the irq
719 	 * handler is that a single frame will be skipped during swapbuffers.
720 	 */
721 	I915_WRITE(pipestat_reg,
722 		   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723 
724 	/* Wait for vblank interrupt bit to set */
725 	if (wait_for(I915_READ(pipestat_reg) &
726 		     PIPE_VBLANK_INTERRUPT_STATUS,
727 		     50))
728 		DRM_DEBUG_KMS("vblank wait timed out\n");
729 }
730 
731 /*
732  * intel_wait_for_pipe_off - wait for pipe to turn off
733  * @dev: drm device
734  * @pipe: pipe to wait for
735  *
736  * After disabling a pipe, we can't wait for vblank in the usual way,
737  * spinning on the vblank interrupt status bit, since we won't actually
738  * see an interrupt when the pipe is disabled.
739  *
740  * On Gen4 and above:
741  *   wait for the pipe register state bit to turn off
742  *
743  * Otherwise:
744  *   wait for the display line value to settle (it usually
745  *   ends up stopping at the start of the next frame).
746  *
747  */
intel_wait_for_pipe_off(struct drm_device * dev,int pipe)748 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
749 {
750 	struct drm_i915_private *dev_priv = dev->dev_private;
751 
752 	if (INTEL_INFO(dev)->gen >= 4) {
753 		int reg = PIPECONF(pipe);
754 
755 		/* Wait for the Pipe State to go off */
756 		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757 			     100))
758 			DRM_DEBUG_KMS("pipe_off wait timed out\n");
759 	} else {
760 		u32 last_line;
761 		int reg = PIPEDSL(pipe);
762 		unsigned long timeout = jiffies + msecs_to_jiffies(100);
763 
764 		/* Wait for the display line to settle */
765 		do {
766 			last_line = I915_READ(reg) & DSL_LINEMASK;
767 			mdelay(5);
768 		} while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
769 			 time_after(timeout, jiffies));
770 		if (time_after(jiffies, timeout))
771 			DRM_DEBUG_KMS("pipe_off wait timed out\n");
772 	}
773 }
774 
state_string(bool enabled)775 static const char *state_string(bool enabled)
776 {
777 	return enabled ? "on" : "off";
778 }
779 
780 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)781 static void assert_pll(struct drm_i915_private *dev_priv,
782 		       enum pipe pipe, bool state)
783 {
784 	int reg;
785 	u32 val;
786 	bool cur_state;
787 
788 	reg = DPLL(pipe);
789 	val = I915_READ(reg);
790 	cur_state = !!(val & DPLL_VCO_ENABLE);
791 	WARN(cur_state != state,
792 	     "PLL state assertion failure (expected %s, current %s)\n",
793 	     state_string(state), state_string(cur_state));
794 }
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
797 
798 /* For ILK+ */
assert_pch_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)799 static void assert_pch_pll(struct drm_i915_private *dev_priv,
800 			   enum pipe pipe, bool state)
801 {
802 	int reg;
803 	u32 val;
804 	bool cur_state;
805 
806 	if (HAS_PCH_CPT(dev_priv->dev)) {
807 		u32 pch_dpll;
808 
809 		pch_dpll = I915_READ(PCH_DPLL_SEL);
810 
811 		/* Make sure the selected PLL is enabled to the transcoder */
812 		WARN(!((pch_dpll >> (4 * pipe)) & 8),
813 		     "transcoder %d PLL not enabled\n", pipe);
814 
815 		/* Convert the transcoder pipe number to a pll pipe number */
816 		pipe = (pch_dpll >> (4 * pipe)) & 1;
817 	}
818 
819 	reg = PCH_DPLL(pipe);
820 	val = I915_READ(reg);
821 	cur_state = !!(val & DPLL_VCO_ENABLE);
822 	WARN(cur_state != state,
823 	     "PCH PLL state assertion failure (expected %s, current %s)\n",
824 	     state_string(state), state_string(cur_state));
825 }
826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
828 
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)829 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830 			  enum pipe pipe, bool state)
831 {
832 	int reg;
833 	u32 val;
834 	bool cur_state;
835 
836 	reg = FDI_TX_CTL(pipe);
837 	val = I915_READ(reg);
838 	cur_state = !!(val & FDI_TX_ENABLE);
839 	WARN(cur_state != state,
840 	     "FDI TX state assertion failure (expected %s, current %s)\n",
841 	     state_string(state), state_string(cur_state));
842 }
843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
845 
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)846 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847 			  enum pipe pipe, bool state)
848 {
849 	int reg;
850 	u32 val;
851 	bool cur_state;
852 
853 	reg = FDI_RX_CTL(pipe);
854 	val = I915_READ(reg);
855 	cur_state = !!(val & FDI_RX_ENABLE);
856 	WARN(cur_state != state,
857 	     "FDI RX state assertion failure (expected %s, current %s)\n",
858 	     state_string(state), state_string(cur_state));
859 }
860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
862 
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864 				      enum pipe pipe)
865 {
866 	int reg;
867 	u32 val;
868 
869 	/* ILK FDI PLL is always enabled */
870 	if (dev_priv->info->gen == 5)
871 		return;
872 
873 	reg = FDI_TX_CTL(pipe);
874 	val = I915_READ(reg);
875 	WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
876 }
877 
assert_fdi_rx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879 				      enum pipe pipe)
880 {
881 	int reg;
882 	u32 val;
883 
884 	reg = FDI_RX_CTL(pipe);
885 	val = I915_READ(reg);
886 	WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
887 }
888 
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)889 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890 				  enum pipe pipe)
891 {
892 	int pp_reg, lvds_reg;
893 	u32 val;
894 	enum pipe panel_pipe = PIPE_A;
895 	bool locked = true;
896 
897 	if (HAS_PCH_SPLIT(dev_priv->dev)) {
898 		pp_reg = PCH_PP_CONTROL;
899 		lvds_reg = PCH_LVDS;
900 	} else {
901 		pp_reg = PP_CONTROL;
902 		lvds_reg = LVDS;
903 	}
904 
905 	val = I915_READ(pp_reg);
906 	if (!(val & PANEL_POWER_ON) ||
907 	    ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908 		locked = false;
909 
910 	if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911 		panel_pipe = PIPE_B;
912 
913 	WARN(panel_pipe == pipe && locked,
914 	     "panel assertion failure, pipe %c regs locked\n",
915 	     pipe_name(pipe));
916 }
917 
assert_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)918 void assert_pipe(struct drm_i915_private *dev_priv,
919 		 enum pipe pipe, bool state)
920 {
921 	int reg;
922 	u32 val;
923 	bool cur_state;
924 
925 	reg = PIPECONF(pipe);
926 	val = I915_READ(reg);
927 	cur_state = !!(val & PIPECONF_ENABLE);
928 	WARN(cur_state != state,
929 	     "pipe %c assertion failure (expected %s, current %s)\n",
930 	     pipe_name(pipe), state_string(state), state_string(cur_state));
931 }
932 
assert_plane_enabled(struct drm_i915_private * dev_priv,enum plane plane)933 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
934 				 enum plane plane)
935 {
936 	int reg;
937 	u32 val;
938 
939 	reg = DSPCNTR(plane);
940 	val = I915_READ(reg);
941 	WARN(!(val & DISPLAY_PLANE_ENABLE),
942 	     "plane %c assertion failure, should be active but is disabled\n",
943 	     plane_name(plane));
944 }
945 
assert_planes_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)946 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
947 				   enum pipe pipe)
948 {
949 	int reg, i;
950 	u32 val;
951 	int cur_pipe;
952 
953 	/* Planes are fixed to pipes on ILK+ */
954 	if (HAS_PCH_SPLIT(dev_priv->dev))
955 		return;
956 
957 	/* Need to check both planes against the pipe */
958 	for (i = 0; i < 2; i++) {
959 		reg = DSPCNTR(i);
960 		val = I915_READ(reg);
961 		cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
962 			DISPPLANE_SEL_PIPE_SHIFT;
963 		WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
964 		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
965 		     plane_name(i), pipe_name(pipe));
966 	}
967 }
968 
assert_pch_refclk_enabled(struct drm_i915_private * dev_priv)969 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
970 {
971 	u32 val;
972 	bool enabled;
973 
974 	val = I915_READ(PCH_DREF_CONTROL);
975 	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
976 			    DREF_SUPERSPREAD_SOURCE_MASK));
977 	WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
978 }
979 
assert_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)980 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
981 				       enum pipe pipe)
982 {
983 	int reg;
984 	u32 val;
985 	bool enabled;
986 
987 	reg = TRANSCONF(pipe);
988 	val = I915_READ(reg);
989 	enabled = !!(val & TRANS_ENABLE);
990 	WARN(enabled,
991 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
992 	     pipe_name(pipe));
993 }
994 
dp_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 port_sel,u32 val)995 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
996 			    enum pipe pipe, u32 port_sel, u32 val)
997 {
998 	if ((val & DP_PORT_EN) == 0)
999 		return false;
1000 
1001 	if (HAS_PCH_CPT(dev_priv->dev)) {
1002 		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1003 		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1004 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1005 			return false;
1006 	} else {
1007 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1008 			return false;
1009 	}
1010 	return true;
1011 }
1012 
hdmi_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1013 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1014 			      enum pipe pipe, u32 val)
1015 {
1016 	if ((val & PORT_ENABLE) == 0)
1017 		return false;
1018 
1019 	if (HAS_PCH_CPT(dev_priv->dev)) {
1020 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1021 			return false;
1022 	} else {
1023 		if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1024 			return false;
1025 	}
1026 	return true;
1027 }
1028 
lvds_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1029 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1030 			      enum pipe pipe, u32 val)
1031 {
1032 	if ((val & LVDS_PORT_EN) == 0)
1033 		return false;
1034 
1035 	if (HAS_PCH_CPT(dev_priv->dev)) {
1036 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1037 			return false;
1038 	} else {
1039 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1040 			return false;
1041 	}
1042 	return true;
1043 }
1044 
adpa_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1045 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1046 			      enum pipe pipe, u32 val)
1047 {
1048 	if ((val & ADPA_DAC_ENABLE) == 0)
1049 		return false;
1050 	if (HAS_PCH_CPT(dev_priv->dev)) {
1051 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1052 			return false;
1053 	} else {
1054 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1055 			return false;
1056 	}
1057 	return true;
1058 }
1059 
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,int reg,u32 port_sel)1060 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1061 				   enum pipe pipe, int reg, u32 port_sel)
1062 {
1063 	u32 val = I915_READ(reg);
1064 	WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1065 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1066 	     reg, pipe_name(pipe));
1067 }
1068 
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,int reg)1069 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1070 				     enum pipe pipe, int reg)
1071 {
1072 	u32 val = I915_READ(reg);
1073 	WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1074 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1075 	     reg, pipe_name(pipe));
1076 }
1077 
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1078 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1079 				      enum pipe pipe)
1080 {
1081 	int reg;
1082 	u32 val;
1083 
1084 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1085 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1086 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1087 
1088 	reg = PCH_ADPA;
1089 	val = I915_READ(reg);
1090 	WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1091 	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1092 	     pipe_name(pipe));
1093 
1094 	reg = PCH_LVDS;
1095 	val = I915_READ(reg);
1096 	WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1097 	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1098 	     pipe_name(pipe));
1099 
1100 	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1101 	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1102 	assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1103 }
1104 
1105 /**
1106  * intel_enable_pll - enable a PLL
1107  * @dev_priv: i915 private structure
1108  * @pipe: pipe PLL to enable
1109  *
1110  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1111  * make sure the PLL reg is writable first though, since the panel write
1112  * protect mechanism may be enabled.
1113  *
1114  * Note!  This is for pre-ILK only.
1115  */
intel_enable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1116 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1117 {
1118 	int reg;
1119 	u32 val;
1120 
1121 	/* No really, not for ILK+ */
1122 	BUG_ON(dev_priv->info->gen >= 5);
1123 
1124 	/* PLL is protected by panel, make sure we can write it */
1125 	if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1126 		assert_panel_unlocked(dev_priv, pipe);
1127 
1128 	reg = DPLL(pipe);
1129 	val = I915_READ(reg);
1130 	val |= DPLL_VCO_ENABLE;
1131 
1132 	/* We do this three times for luck */
1133 	I915_WRITE(reg, val);
1134 	POSTING_READ(reg);
1135 	udelay(150); /* wait for warmup */
1136 	I915_WRITE(reg, val);
1137 	POSTING_READ(reg);
1138 	udelay(150); /* wait for warmup */
1139 	I915_WRITE(reg, val);
1140 	POSTING_READ(reg);
1141 	udelay(150); /* wait for warmup */
1142 }
1143 
1144 /**
1145  * intel_disable_pll - disable a PLL
1146  * @dev_priv: i915 private structure
1147  * @pipe: pipe PLL to disable
1148  *
1149  * Disable the PLL for @pipe, making sure the pipe is off first.
1150  *
1151  * Note!  This is for pre-ILK only.
1152  */
intel_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1153 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1154 {
1155 	int reg;
1156 	u32 val;
1157 
1158 	/* Don't disable pipe A or pipe A PLLs if needed */
1159 	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1160 		return;
1161 
1162 	/* Make sure the pipe isn't still relying on us */
1163 	assert_pipe_disabled(dev_priv, pipe);
1164 
1165 	reg = DPLL(pipe);
1166 	val = I915_READ(reg);
1167 	val &= ~DPLL_VCO_ENABLE;
1168 	I915_WRITE(reg, val);
1169 	POSTING_READ(reg);
1170 }
1171 
1172 /**
1173  * intel_enable_pch_pll - enable PCH PLL
1174  * @dev_priv: i915 private structure
1175  * @pipe: pipe PLL to enable
1176  *
1177  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1178  * drives the transcoder clock.
1179  */
intel_enable_pch_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1180 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1181 				 enum pipe pipe)
1182 {
1183 	int reg;
1184 	u32 val;
1185 
1186 	if (pipe > 1)
1187 		return;
1188 
1189 	/* PCH only available on ILK+ */
1190 	BUG_ON(dev_priv->info->gen < 5);
1191 
1192 	/* PCH refclock must be enabled first */
1193 	assert_pch_refclk_enabled(dev_priv);
1194 
1195 	reg = PCH_DPLL(pipe);
1196 	val = I915_READ(reg);
1197 	val |= DPLL_VCO_ENABLE;
1198 	I915_WRITE(reg, val);
1199 	POSTING_READ(reg);
1200 	udelay(200);
1201 }
1202 
intel_disable_pch_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1203 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1204 				  enum pipe pipe)
1205 {
1206 	int reg;
1207 	u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1208 		pll_sel = TRANSC_DPLL_ENABLE;
1209 
1210 	if (pipe > 1)
1211 		return;
1212 
1213 	/* PCH only available on ILK+ */
1214 	BUG_ON(dev_priv->info->gen < 5);
1215 
1216 	/* Make sure transcoder isn't still depending on us */
1217 	assert_transcoder_disabled(dev_priv, pipe);
1218 
1219 	if (pipe == 0)
1220 		pll_sel |= TRANSC_DPLLA_SEL;
1221 	else if (pipe == 1)
1222 		pll_sel |= TRANSC_DPLLB_SEL;
1223 
1224 
1225 	if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1226 		return;
1227 
1228 	reg = PCH_DPLL(pipe);
1229 	val = I915_READ(reg);
1230 	val &= ~DPLL_VCO_ENABLE;
1231 	I915_WRITE(reg, val);
1232 	POSTING_READ(reg);
1233 	udelay(200);
1234 }
1235 
intel_enable_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1236 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1237 				    enum pipe pipe)
1238 {
1239 	int reg;
1240 	u32 val;
1241 
1242 	/* PCH only available on ILK+ */
1243 	BUG_ON(dev_priv->info->gen < 5);
1244 
1245 	/* Make sure PCH DPLL is enabled */
1246 	assert_pch_pll_enabled(dev_priv, pipe);
1247 
1248 	/* FDI must be feeding us bits for PCH ports */
1249 	assert_fdi_tx_enabled(dev_priv, pipe);
1250 	assert_fdi_rx_enabled(dev_priv, pipe);
1251 
1252 	reg = TRANSCONF(pipe);
1253 	val = I915_READ(reg);
1254 
1255 	if (HAS_PCH_IBX(dev_priv->dev)) {
1256 		/*
1257 		 * make the BPC in transcoder be consistent with
1258 		 * that in pipeconf reg.
1259 		 */
1260 		val &= ~PIPE_BPC_MASK;
1261 		val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1262 	}
1263 	I915_WRITE(reg, val | TRANS_ENABLE);
1264 	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1265 		DRM_ERROR("failed to enable transcoder %d\n", pipe);
1266 }
1267 
intel_disable_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1268 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1269 				     enum pipe pipe)
1270 {
1271 	int reg;
1272 	u32 val;
1273 
1274 	/* FDI relies on the transcoder */
1275 	assert_fdi_tx_disabled(dev_priv, pipe);
1276 	assert_fdi_rx_disabled(dev_priv, pipe);
1277 
1278 	/* Ports must be off as well */
1279 	assert_pch_ports_disabled(dev_priv, pipe);
1280 
1281 	reg = TRANSCONF(pipe);
1282 	val = I915_READ(reg);
1283 	val &= ~TRANS_ENABLE;
1284 	I915_WRITE(reg, val);
1285 	/* wait for PCH transcoder off, transcoder state */
1286 	if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1287 		DRM_ERROR("failed to disable transcoder %d\n", pipe);
1288 }
1289 
1290 /**
1291  * intel_enable_pipe - enable a pipe, asserting requirements
1292  * @dev_priv: i915 private structure
1293  * @pipe: pipe to enable
1294  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1295  *
1296  * Enable @pipe, making sure that various hardware specific requirements
1297  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1298  *
1299  * @pipe should be %PIPE_A or %PIPE_B.
1300  *
1301  * Will wait until the pipe is actually running (i.e. first vblank) before
1302  * returning.
1303  */
intel_enable_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,bool pch_port)1304 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1305 			      bool pch_port)
1306 {
1307 	int reg;
1308 	u32 val;
1309 
1310 	/*
1311 	 * A pipe without a PLL won't actually be able to drive bits from
1312 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1313 	 * need the check.
1314 	 */
1315 	if (!HAS_PCH_SPLIT(dev_priv->dev))
1316 		assert_pll_enabled(dev_priv, pipe);
1317 	else {
1318 		if (pch_port) {
1319 			/* if driving the PCH, we need FDI enabled */
1320 			assert_fdi_rx_pll_enabled(dev_priv, pipe);
1321 			assert_fdi_tx_pll_enabled(dev_priv, pipe);
1322 		}
1323 		/* FIXME: assert CPU port conditions for SNB+ */
1324 	}
1325 
1326 	reg = PIPECONF(pipe);
1327 	val = I915_READ(reg);
1328 	if (val & PIPECONF_ENABLE)
1329 		return;
1330 
1331 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1332 	intel_wait_for_vblank(dev_priv->dev, pipe);
1333 }
1334 
1335 /**
1336  * intel_disable_pipe - disable a pipe, asserting requirements
1337  * @dev_priv: i915 private structure
1338  * @pipe: pipe to disable
1339  *
1340  * Disable @pipe, making sure that various hardware specific requirements
1341  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1342  *
1343  * @pipe should be %PIPE_A or %PIPE_B.
1344  *
1345  * Will wait until the pipe has shut down before returning.
1346  */
intel_disable_pipe(struct drm_i915_private * dev_priv,enum pipe pipe)1347 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1348 			       enum pipe pipe)
1349 {
1350 	int reg;
1351 	u32 val;
1352 
1353 	/*
1354 	 * Make sure planes won't keep trying to pump pixels to us,
1355 	 * or we might hang the display.
1356 	 */
1357 	assert_planes_disabled(dev_priv, pipe);
1358 
1359 	/* Don't disable pipe A or pipe A PLLs if needed */
1360 	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1361 		return;
1362 
1363 	reg = PIPECONF(pipe);
1364 	val = I915_READ(reg);
1365 	if ((val & PIPECONF_ENABLE) == 0)
1366 		return;
1367 
1368 	I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1369 	intel_wait_for_pipe_off(dev_priv->dev, pipe);
1370 }
1371 
1372 /*
1373  * Plane regs are double buffered, going from enabled->disabled needs a
1374  * trigger in order to latch.  The display address reg provides this.
1375  */
intel_flush_display_plane(struct drm_i915_private * dev_priv,enum plane plane)1376 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1377 				      enum plane plane)
1378 {
1379 	I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1380 	I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1381 }
1382 
1383 /**
1384  * intel_enable_plane - enable a display plane on a given pipe
1385  * @dev_priv: i915 private structure
1386  * @plane: plane to enable
1387  * @pipe: pipe being fed
1388  *
1389  * Enable @plane on @pipe, making sure that @pipe is running first.
1390  */
intel_enable_plane(struct drm_i915_private * dev_priv,enum plane plane,enum pipe pipe)1391 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1392 			       enum plane plane, enum pipe pipe)
1393 {
1394 	int reg;
1395 	u32 val;
1396 
1397 	/* If the pipe isn't enabled, we can't pump pixels and may hang */
1398 	assert_pipe_enabled(dev_priv, pipe);
1399 
1400 	reg = DSPCNTR(plane);
1401 	val = I915_READ(reg);
1402 	if (val & DISPLAY_PLANE_ENABLE)
1403 		return;
1404 
1405 	I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1406 	intel_flush_display_plane(dev_priv, plane);
1407 	intel_wait_for_vblank(dev_priv->dev, pipe);
1408 }
1409 
1410 /**
1411  * intel_disable_plane - disable a display plane
1412  * @dev_priv: i915 private structure
1413  * @plane: plane to disable
1414  * @pipe: pipe consuming the data
1415  *
1416  * Disable @plane; should be an independent operation.
1417  */
intel_disable_plane(struct drm_i915_private * dev_priv,enum plane plane,enum pipe pipe)1418 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1419 				enum plane plane, enum pipe pipe)
1420 {
1421 	int reg;
1422 	u32 val;
1423 
1424 	reg = DSPCNTR(plane);
1425 	val = I915_READ(reg);
1426 	if ((val & DISPLAY_PLANE_ENABLE) == 0)
1427 		return;
1428 
1429 	I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1430 	intel_flush_display_plane(dev_priv, plane);
1431 	intel_wait_for_vblank(dev_priv->dev, pipe);
1432 }
1433 
disable_pch_dp(struct drm_i915_private * dev_priv,enum pipe pipe,int reg,u32 port_sel)1434 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1435 			   enum pipe pipe, int reg, u32 port_sel)
1436 {
1437 	u32 val = I915_READ(reg);
1438 	if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1439 		DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1440 		I915_WRITE(reg, val & ~DP_PORT_EN);
1441 	}
1442 }
1443 
disable_pch_hdmi(struct drm_i915_private * dev_priv,enum pipe pipe,int reg)1444 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1445 			     enum pipe pipe, int reg)
1446 {
1447 	u32 val = I915_READ(reg);
1448 	if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1449 		DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1450 			      reg, pipe);
1451 		I915_WRITE(reg, val & ~PORT_ENABLE);
1452 	}
1453 }
1454 
1455 /* Disable any ports connected to this transcoder */
intel_disable_pch_ports(struct drm_i915_private * dev_priv,enum pipe pipe)1456 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1457 				    enum pipe pipe)
1458 {
1459 	u32 reg, val;
1460 
1461 	val = I915_READ(PCH_PP_CONTROL);
1462 	I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1463 
1464 	disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1465 	disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1466 	disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1467 
1468 	reg = PCH_ADPA;
1469 	val = I915_READ(reg);
1470 	if (adpa_pipe_enabled(dev_priv, val, pipe))
1471 		I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1472 
1473 	reg = PCH_LVDS;
1474 	val = I915_READ(reg);
1475 	if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1476 		DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1477 		I915_WRITE(reg, val & ~LVDS_PORT_EN);
1478 		POSTING_READ(reg);
1479 		udelay(100);
1480 	}
1481 
1482 	disable_pch_hdmi(dev_priv, pipe, HDMIB);
1483 	disable_pch_hdmi(dev_priv, pipe, HDMIC);
1484 	disable_pch_hdmi(dev_priv, pipe, HDMID);
1485 }
1486 
i8xx_disable_fbc(struct drm_device * dev)1487 static void i8xx_disable_fbc(struct drm_device *dev)
1488 {
1489 	struct drm_i915_private *dev_priv = dev->dev_private;
1490 	u32 fbc_ctl;
1491 
1492 	/* Disable compression */
1493 	fbc_ctl = I915_READ(FBC_CONTROL);
1494 	if ((fbc_ctl & FBC_CTL_EN) == 0)
1495 		return;
1496 
1497 	fbc_ctl &= ~FBC_CTL_EN;
1498 	I915_WRITE(FBC_CONTROL, fbc_ctl);
1499 
1500 	/* Wait for compressing bit to clear */
1501 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1502 		DRM_DEBUG_KMS("FBC idle timed out\n");
1503 		return;
1504 	}
1505 
1506 	DRM_DEBUG_KMS("disabled FBC\n");
1507 }
1508 
i8xx_enable_fbc(struct drm_crtc * crtc,unsigned long interval)1509 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1510 {
1511 	struct drm_device *dev = crtc->dev;
1512 	struct drm_i915_private *dev_priv = dev->dev_private;
1513 	struct drm_framebuffer *fb = crtc->fb;
1514 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1515 	struct drm_i915_gem_object *obj = intel_fb->obj;
1516 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1517 	int cfb_pitch;
1518 	int plane, i;
1519 	u32 fbc_ctl, fbc_ctl2;
1520 
1521 	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1522 	if (fb->pitches[0] < cfb_pitch)
1523 		cfb_pitch = fb->pitches[0];
1524 
1525 	/* FBC_CTL wants 64B units */
1526 	cfb_pitch = (cfb_pitch / 64) - 1;
1527 	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1528 
1529 	/* Clear old tags */
1530 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1531 		I915_WRITE(FBC_TAG + (i * 4), 0);
1532 
1533 	/* Set it up... */
1534 	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1535 	fbc_ctl2 |= plane;
1536 	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1537 	I915_WRITE(FBC_FENCE_OFF, crtc->y);
1538 
1539 	/* enable it... */
1540 	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1541 	if (IS_I945GM(dev))
1542 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1543 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1544 	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1545 	fbc_ctl |= obj->fence_reg;
1546 	I915_WRITE(FBC_CONTROL, fbc_ctl);
1547 
1548 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1549 		      cfb_pitch, crtc->y, intel_crtc->plane);
1550 }
1551 
i8xx_fbc_enabled(struct drm_device * dev)1552 static bool i8xx_fbc_enabled(struct drm_device *dev)
1553 {
1554 	struct drm_i915_private *dev_priv = dev->dev_private;
1555 
1556 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1557 }
1558 
g4x_enable_fbc(struct drm_crtc * crtc,unsigned long interval)1559 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1560 {
1561 	struct drm_device *dev = crtc->dev;
1562 	struct drm_i915_private *dev_priv = dev->dev_private;
1563 	struct drm_framebuffer *fb = crtc->fb;
1564 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1565 	struct drm_i915_gem_object *obj = intel_fb->obj;
1566 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1567 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1568 	unsigned long stall_watermark = 200;
1569 	u32 dpfc_ctl;
1570 
1571 	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1572 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1573 	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1574 
1575 	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1576 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1577 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1578 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1579 
1580 	/* enable it... */
1581 	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1582 
1583 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1584 }
1585 
g4x_disable_fbc(struct drm_device * dev)1586 static void g4x_disable_fbc(struct drm_device *dev)
1587 {
1588 	struct drm_i915_private *dev_priv = dev->dev_private;
1589 	u32 dpfc_ctl;
1590 
1591 	/* Disable compression */
1592 	dpfc_ctl = I915_READ(DPFC_CONTROL);
1593 	if (dpfc_ctl & DPFC_CTL_EN) {
1594 		dpfc_ctl &= ~DPFC_CTL_EN;
1595 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1596 
1597 		DRM_DEBUG_KMS("disabled FBC\n");
1598 	}
1599 }
1600 
g4x_fbc_enabled(struct drm_device * dev)1601 static bool g4x_fbc_enabled(struct drm_device *dev)
1602 {
1603 	struct drm_i915_private *dev_priv = dev->dev_private;
1604 
1605 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1606 }
1607 
sandybridge_blit_fbc_update(struct drm_device * dev)1608 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1609 {
1610 	struct drm_i915_private *dev_priv = dev->dev_private;
1611 	u32 blt_ecoskpd;
1612 
1613 	/* Make sure blitter notifies FBC of writes */
1614 	gen6_gt_force_wake_get(dev_priv);
1615 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1616 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1617 		GEN6_BLITTER_LOCK_SHIFT;
1618 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1619 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1620 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1621 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1622 			 GEN6_BLITTER_LOCK_SHIFT);
1623 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1624 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
1625 	gen6_gt_force_wake_put(dev_priv);
1626 }
1627 
ironlake_enable_fbc(struct drm_crtc * crtc,unsigned long interval)1628 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1629 {
1630 	struct drm_device *dev = crtc->dev;
1631 	struct drm_i915_private *dev_priv = dev->dev_private;
1632 	struct drm_framebuffer *fb = crtc->fb;
1633 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1634 	struct drm_i915_gem_object *obj = intel_fb->obj;
1635 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1636 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1637 	unsigned long stall_watermark = 200;
1638 	u32 dpfc_ctl;
1639 
1640 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1641 	dpfc_ctl &= DPFC_RESERVED;
1642 	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1643 	/* Set persistent mode for front-buffer rendering, ala X. */
1644 	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1645 	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1646 	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1647 
1648 	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1649 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1650 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1651 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1652 	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1653 	/* enable it... */
1654 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1655 
1656 	if (IS_GEN6(dev)) {
1657 		I915_WRITE(SNB_DPFC_CTL_SA,
1658 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1659 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1660 		sandybridge_blit_fbc_update(dev);
1661 	}
1662 
1663 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1664 }
1665 
ironlake_disable_fbc(struct drm_device * dev)1666 static void ironlake_disable_fbc(struct drm_device *dev)
1667 {
1668 	struct drm_i915_private *dev_priv = dev->dev_private;
1669 	u32 dpfc_ctl;
1670 
1671 	/* Disable compression */
1672 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1673 	if (dpfc_ctl & DPFC_CTL_EN) {
1674 		dpfc_ctl &= ~DPFC_CTL_EN;
1675 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1676 
1677 		DRM_DEBUG_KMS("disabled FBC\n");
1678 	}
1679 }
1680 
ironlake_fbc_enabled(struct drm_device * dev)1681 static bool ironlake_fbc_enabled(struct drm_device *dev)
1682 {
1683 	struct drm_i915_private *dev_priv = dev->dev_private;
1684 
1685 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1686 }
1687 
intel_fbc_enabled(struct drm_device * dev)1688 bool intel_fbc_enabled(struct drm_device *dev)
1689 {
1690 	struct drm_i915_private *dev_priv = dev->dev_private;
1691 
1692 	if (!dev_priv->display.fbc_enabled)
1693 		return false;
1694 
1695 	return dev_priv->display.fbc_enabled(dev);
1696 }
1697 
intel_fbc_work_fn(struct work_struct * __work)1698 static void intel_fbc_work_fn(struct work_struct *__work)
1699 {
1700 	struct intel_fbc_work *work =
1701 		container_of(to_delayed_work(__work),
1702 			     struct intel_fbc_work, work);
1703 	struct drm_device *dev = work->crtc->dev;
1704 	struct drm_i915_private *dev_priv = dev->dev_private;
1705 
1706 	mutex_lock(&dev->struct_mutex);
1707 	if (work == dev_priv->fbc_work) {
1708 		/* Double check that we haven't switched fb without cancelling
1709 		 * the prior work.
1710 		 */
1711 		if (work->crtc->fb == work->fb) {
1712 			dev_priv->display.enable_fbc(work->crtc,
1713 						     work->interval);
1714 
1715 			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1716 			dev_priv->cfb_fb = work->crtc->fb->base.id;
1717 			dev_priv->cfb_y = work->crtc->y;
1718 		}
1719 
1720 		dev_priv->fbc_work = NULL;
1721 	}
1722 	mutex_unlock(&dev->struct_mutex);
1723 
1724 	kfree(work);
1725 }
1726 
intel_cancel_fbc_work(struct drm_i915_private * dev_priv)1727 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1728 {
1729 	if (dev_priv->fbc_work == NULL)
1730 		return;
1731 
1732 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1733 
1734 	/* Synchronisation is provided by struct_mutex and checking of
1735 	 * dev_priv->fbc_work, so we can perform the cancellation
1736 	 * entirely asynchronously.
1737 	 */
1738 	if (cancel_delayed_work(&dev_priv->fbc_work->work))
1739 		/* tasklet was killed before being run, clean up */
1740 		kfree(dev_priv->fbc_work);
1741 
1742 	/* Mark the work as no longer wanted so that if it does
1743 	 * wake-up (because the work was already running and waiting
1744 	 * for our mutex), it will discover that is no longer
1745 	 * necessary to run.
1746 	 */
1747 	dev_priv->fbc_work = NULL;
1748 }
1749 
intel_enable_fbc(struct drm_crtc * crtc,unsigned long interval)1750 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1751 {
1752 	struct intel_fbc_work *work;
1753 	struct drm_device *dev = crtc->dev;
1754 	struct drm_i915_private *dev_priv = dev->dev_private;
1755 
1756 	if (!dev_priv->display.enable_fbc)
1757 		return;
1758 
1759 	intel_cancel_fbc_work(dev_priv);
1760 
1761 	work = kzalloc(sizeof *work, GFP_KERNEL);
1762 	if (work == NULL) {
1763 		dev_priv->display.enable_fbc(crtc, interval);
1764 		return;
1765 	}
1766 
1767 	work->crtc = crtc;
1768 	work->fb = crtc->fb;
1769 	work->interval = interval;
1770 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1771 
1772 	dev_priv->fbc_work = work;
1773 
1774 	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1775 
1776 	/* Delay the actual enabling to let pageflipping cease and the
1777 	 * display to settle before starting the compression. Note that
1778 	 * this delay also serves a second purpose: it allows for a
1779 	 * vblank to pass after disabling the FBC before we attempt
1780 	 * to modify the control registers.
1781 	 *
1782 	 * A more complicated solution would involve tracking vblanks
1783 	 * following the termination of the page-flipping sequence
1784 	 * and indeed performing the enable as a co-routine and not
1785 	 * waiting synchronously upon the vblank.
1786 	 */
1787 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1788 }
1789 
intel_disable_fbc(struct drm_device * dev)1790 void intel_disable_fbc(struct drm_device *dev)
1791 {
1792 	struct drm_i915_private *dev_priv = dev->dev_private;
1793 
1794 	intel_cancel_fbc_work(dev_priv);
1795 
1796 	if (!dev_priv->display.disable_fbc)
1797 		return;
1798 
1799 	dev_priv->display.disable_fbc(dev);
1800 	dev_priv->cfb_plane = -1;
1801 }
1802 
1803 /**
1804  * intel_update_fbc - enable/disable FBC as needed
1805  * @dev: the drm_device
1806  *
1807  * Set up the framebuffer compression hardware at mode set time.  We
1808  * enable it if possible:
1809  *   - plane A only (on pre-965)
1810  *   - no pixel mulitply/line duplication
1811  *   - no alpha buffer discard
1812  *   - no dual wide
1813  *   - framebuffer <= 2048 in width, 1536 in height
1814  *
1815  * We can't assume that any compression will take place (worst case),
1816  * so the compressed buffer has to be the same size as the uncompressed
1817  * one.  It also must reside (along with the line length buffer) in
1818  * stolen memory.
1819  *
1820  * We need to enable/disable FBC on a global basis.
1821  */
intel_update_fbc(struct drm_device * dev)1822 static void intel_update_fbc(struct drm_device *dev)
1823 {
1824 	struct drm_i915_private *dev_priv = dev->dev_private;
1825 	struct drm_crtc *crtc = NULL, *tmp_crtc;
1826 	struct intel_crtc *intel_crtc;
1827 	struct drm_framebuffer *fb;
1828 	struct intel_framebuffer *intel_fb;
1829 	struct drm_i915_gem_object *obj;
1830 	int enable_fbc;
1831 
1832 	DRM_DEBUG_KMS("\n");
1833 
1834 	if (!i915_powersave)
1835 		return;
1836 
1837 	if (!I915_HAS_FBC(dev))
1838 		return;
1839 
1840 	/*
1841 	 * If FBC is already on, we just have to verify that we can
1842 	 * keep it that way...
1843 	 * Need to disable if:
1844 	 *   - more than one pipe is active
1845 	 *   - changing FBC params (stride, fence, mode)
1846 	 *   - new fb is too large to fit in compressed buffer
1847 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
1848 	 */
1849 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1850 		if (tmp_crtc->enabled && tmp_crtc->fb) {
1851 			if (crtc) {
1852 				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1853 				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1854 				goto out_disable;
1855 			}
1856 			crtc = tmp_crtc;
1857 		}
1858 	}
1859 
1860 	if (!crtc || crtc->fb == NULL) {
1861 		DRM_DEBUG_KMS("no output, disabling\n");
1862 		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1863 		goto out_disable;
1864 	}
1865 
1866 	intel_crtc = to_intel_crtc(crtc);
1867 	fb = crtc->fb;
1868 	intel_fb = to_intel_framebuffer(fb);
1869 	obj = intel_fb->obj;
1870 
1871 	enable_fbc = i915_enable_fbc;
1872 	if (enable_fbc < 0) {
1873 		DRM_DEBUG_KMS("fbc set to per-chip default\n");
1874 		enable_fbc = 1;
1875 		if (INTEL_INFO(dev)->gen <= 6)
1876 			enable_fbc = 0;
1877 	}
1878 	if (!enable_fbc) {
1879 		DRM_DEBUG_KMS("fbc disabled per module param\n");
1880 		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1881 		goto out_disable;
1882 	}
1883 	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1884 		DRM_DEBUG_KMS("framebuffer too large, disabling "
1885 			      "compression\n");
1886 		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1887 		goto out_disable;
1888 	}
1889 	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1890 	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1891 		DRM_DEBUG_KMS("mode incompatible with compression, "
1892 			      "disabling\n");
1893 		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1894 		goto out_disable;
1895 	}
1896 	if ((crtc->mode.hdisplay > 2048) ||
1897 	    (crtc->mode.vdisplay > 1536)) {
1898 		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1899 		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1900 		goto out_disable;
1901 	}
1902 	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1903 		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1904 		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1905 		goto out_disable;
1906 	}
1907 
1908 	/* The use of a CPU fence is mandatory in order to detect writes
1909 	 * by the CPU to the scanout and trigger updates to the FBC.
1910 	 */
1911 	if (obj->tiling_mode != I915_TILING_X ||
1912 	    obj->fence_reg == I915_FENCE_REG_NONE) {
1913 		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1914 		dev_priv->no_fbc_reason = FBC_NOT_TILED;
1915 		goto out_disable;
1916 	}
1917 
1918 	/* If the kernel debugger is active, always disable compression */
1919 	if (in_dbg_master())
1920 		goto out_disable;
1921 
1922 	/* If the scanout has not changed, don't modify the FBC settings.
1923 	 * Note that we make the fundamental assumption that the fb->obj
1924 	 * cannot be unpinned (and have its GTT offset and fence revoked)
1925 	 * without first being decoupled from the scanout and FBC disabled.
1926 	 */
1927 	if (dev_priv->cfb_plane == intel_crtc->plane &&
1928 	    dev_priv->cfb_fb == fb->base.id &&
1929 	    dev_priv->cfb_y == crtc->y)
1930 		return;
1931 
1932 	if (intel_fbc_enabled(dev)) {
1933 		/* We update FBC along two paths, after changing fb/crtc
1934 		 * configuration (modeswitching) and after page-flipping
1935 		 * finishes. For the latter, we know that not only did
1936 		 * we disable the FBC at the start of the page-flip
1937 		 * sequence, but also more than one vblank has passed.
1938 		 *
1939 		 * For the former case of modeswitching, it is possible
1940 		 * to switch between two FBC valid configurations
1941 		 * instantaneously so we do need to disable the FBC
1942 		 * before we can modify its control registers. We also
1943 		 * have to wait for the next vblank for that to take
1944 		 * effect. However, since we delay enabling FBC we can
1945 		 * assume that a vblank has passed since disabling and
1946 		 * that we can safely alter the registers in the deferred
1947 		 * callback.
1948 		 *
1949 		 * In the scenario that we go from a valid to invalid
1950 		 * and then back to valid FBC configuration we have
1951 		 * no strict enforcement that a vblank occurred since
1952 		 * disabling the FBC. However, along all current pipe
1953 		 * disabling paths we do need to wait for a vblank at
1954 		 * some point. And we wait before enabling FBC anyway.
1955 		 */
1956 		DRM_DEBUG_KMS("disabling active FBC for update\n");
1957 		intel_disable_fbc(dev);
1958 	}
1959 
1960 	intel_enable_fbc(crtc, 500);
1961 	return;
1962 
1963 out_disable:
1964 	/* Multiple disables should be harmless */
1965 	if (intel_fbc_enabled(dev)) {
1966 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1967 		intel_disable_fbc(dev);
1968 	}
1969 }
1970 
1971 int
intel_pin_and_fence_fb_obj(struct drm_device * dev,struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)1972 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1973 			   struct drm_i915_gem_object *obj,
1974 			   struct intel_ring_buffer *pipelined)
1975 {
1976 	struct drm_i915_private *dev_priv = dev->dev_private;
1977 	u32 alignment;
1978 	int ret;
1979 
1980 	switch (obj->tiling_mode) {
1981 	case I915_TILING_NONE:
1982 		if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1983 			alignment = 128 * 1024;
1984 		else if (INTEL_INFO(dev)->gen >= 4)
1985 			alignment = 4 * 1024;
1986 		else
1987 			alignment = 64 * 1024;
1988 		break;
1989 	case I915_TILING_X:
1990 		/* pin() will align the object as required by fence */
1991 		alignment = 0;
1992 		break;
1993 	case I915_TILING_Y:
1994 		/* FIXME: Is this true? */
1995 		DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1996 		return -EINVAL;
1997 	default:
1998 		BUG();
1999 	}
2000 
2001 	dev_priv->mm.interruptible = false;
2002 	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2003 	if (ret)
2004 		goto err_interruptible;
2005 
2006 	/* Install a fence for tiled scan-out. Pre-i965 always needs a
2007 	 * fence, whereas 965+ only requires a fence if using
2008 	 * framebuffer compression.  For simplicity, we always install
2009 	 * a fence as the cost is not that onerous.
2010 	 */
2011 	if (obj->tiling_mode != I915_TILING_NONE) {
2012 		ret = i915_gem_object_get_fence(obj, pipelined);
2013 		if (ret)
2014 			goto err_unpin;
2015 	}
2016 
2017 	dev_priv->mm.interruptible = true;
2018 	return 0;
2019 
2020 err_unpin:
2021 	i915_gem_object_unpin(obj);
2022 err_interruptible:
2023 	dev_priv->mm.interruptible = true;
2024 	return ret;
2025 }
2026 
i9xx_update_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2027 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2028 			     int x, int y)
2029 {
2030 	struct drm_device *dev = crtc->dev;
2031 	struct drm_i915_private *dev_priv = dev->dev_private;
2032 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2033 	struct intel_framebuffer *intel_fb;
2034 	struct drm_i915_gem_object *obj;
2035 	int plane = intel_crtc->plane;
2036 	unsigned long Start, Offset;
2037 	u32 dspcntr;
2038 	u32 reg;
2039 
2040 	switch (plane) {
2041 	case 0:
2042 	case 1:
2043 		break;
2044 	default:
2045 		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046 		return -EINVAL;
2047 	}
2048 
2049 	intel_fb = to_intel_framebuffer(fb);
2050 	obj = intel_fb->obj;
2051 
2052 	reg = DSPCNTR(plane);
2053 	dspcntr = I915_READ(reg);
2054 	/* Mask out pixel format bits in case we change it */
2055 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056 	switch (fb->bits_per_pixel) {
2057 	case 8:
2058 		dspcntr |= DISPPLANE_8BPP;
2059 		break;
2060 	case 16:
2061 		if (fb->depth == 15)
2062 			dspcntr |= DISPPLANE_15_16BPP;
2063 		else
2064 			dspcntr |= DISPPLANE_16BPP;
2065 		break;
2066 	case 24:
2067 	case 32:
2068 		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2069 		break;
2070 	default:
2071 		DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2072 		return -EINVAL;
2073 	}
2074 	if (INTEL_INFO(dev)->gen >= 4) {
2075 		if (obj->tiling_mode != I915_TILING_NONE)
2076 			dspcntr |= DISPPLANE_TILED;
2077 		else
2078 			dspcntr &= ~DISPPLANE_TILED;
2079 	}
2080 
2081 	I915_WRITE(reg, dspcntr);
2082 
2083 	Start = obj->gtt_offset;
2084 	Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2085 
2086 	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2087 		      Start, Offset, x, y, fb->pitches[0]);
2088 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2089 	if (INTEL_INFO(dev)->gen >= 4) {
2090 		I915_WRITE(DSPSURF(plane), Start);
2091 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2092 		I915_WRITE(DSPADDR(plane), Offset);
2093 	} else
2094 		I915_WRITE(DSPADDR(plane), Start + Offset);
2095 	POSTING_READ(reg);
2096 
2097 	return 0;
2098 }
2099 
ironlake_update_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2100 static int ironlake_update_plane(struct drm_crtc *crtc,
2101 				 struct drm_framebuffer *fb, int x, int y)
2102 {
2103 	struct drm_device *dev = crtc->dev;
2104 	struct drm_i915_private *dev_priv = dev->dev_private;
2105 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2106 	struct intel_framebuffer *intel_fb;
2107 	struct drm_i915_gem_object *obj;
2108 	int plane = intel_crtc->plane;
2109 	unsigned long Start, Offset;
2110 	u32 dspcntr;
2111 	u32 reg;
2112 
2113 	switch (plane) {
2114 	case 0:
2115 	case 1:
2116 	case 2:
2117 		break;
2118 	default:
2119 		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2120 		return -EINVAL;
2121 	}
2122 
2123 	intel_fb = to_intel_framebuffer(fb);
2124 	obj = intel_fb->obj;
2125 
2126 	reg = DSPCNTR(plane);
2127 	dspcntr = I915_READ(reg);
2128 	/* Mask out pixel format bits in case we change it */
2129 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2130 	switch (fb->bits_per_pixel) {
2131 	case 8:
2132 		dspcntr |= DISPPLANE_8BPP;
2133 		break;
2134 	case 16:
2135 		if (fb->depth != 16)
2136 			return -EINVAL;
2137 
2138 		dspcntr |= DISPPLANE_16BPP;
2139 		break;
2140 	case 24:
2141 	case 32:
2142 		if (fb->depth == 24)
2143 			dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2144 		else if (fb->depth == 30)
2145 			dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2146 		else
2147 			return -EINVAL;
2148 		break;
2149 	default:
2150 		DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2151 		return -EINVAL;
2152 	}
2153 
2154 	if (obj->tiling_mode != I915_TILING_NONE)
2155 		dspcntr |= DISPPLANE_TILED;
2156 	else
2157 		dspcntr &= ~DISPPLANE_TILED;
2158 
2159 	/* must disable */
2160 	dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2161 
2162 	I915_WRITE(reg, dspcntr);
2163 
2164 	Start = obj->gtt_offset;
2165 	Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2166 
2167 	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2168 		      Start, Offset, x, y, fb->pitches[0]);
2169 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2170 	I915_WRITE(DSPSURF(plane), Start);
2171 	I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2172 	I915_WRITE(DSPADDR(plane), Offset);
2173 	POSTING_READ(reg);
2174 
2175 	return 0;
2176 }
2177 
2178 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2179 static int
intel_pipe_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)2180 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2181 			   int x, int y, enum mode_set_atomic state)
2182 {
2183 	struct drm_device *dev = crtc->dev;
2184 	struct drm_i915_private *dev_priv = dev->dev_private;
2185 	int ret;
2186 
2187 	ret = dev_priv->display.update_plane(crtc, fb, x, y);
2188 	if (ret)
2189 		return ret;
2190 
2191 	intel_update_fbc(dev);
2192 	intel_increase_pllclock(crtc);
2193 
2194 	return 0;
2195 }
2196 
2197 static int
intel_pipe_set_base(struct drm_crtc * crtc,int x,int y,struct drm_framebuffer * old_fb)2198 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2199 		    struct drm_framebuffer *old_fb)
2200 {
2201 	struct drm_device *dev = crtc->dev;
2202 	struct drm_i915_master_private *master_priv;
2203 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2204 	int ret;
2205 
2206 	/* no fb bound */
2207 	if (!crtc->fb) {
2208 		DRM_ERROR("No FB bound\n");
2209 		return 0;
2210 	}
2211 
2212 	switch (intel_crtc->plane) {
2213 	case 0:
2214 	case 1:
2215 		break;
2216 	case 2:
2217 		if (IS_IVYBRIDGE(dev))
2218 			break;
2219 		/* fall through otherwise */
2220 	default:
2221 		DRM_ERROR("no plane for crtc\n");
2222 		return -EINVAL;
2223 	}
2224 
2225 	mutex_lock(&dev->struct_mutex);
2226 	ret = intel_pin_and_fence_fb_obj(dev,
2227 					 to_intel_framebuffer(crtc->fb)->obj,
2228 					 NULL);
2229 	if (ret != 0) {
2230 		mutex_unlock(&dev->struct_mutex);
2231 		DRM_ERROR("pin & fence failed\n");
2232 		return ret;
2233 	}
2234 
2235 	if (old_fb) {
2236 		struct drm_i915_private *dev_priv = dev->dev_private;
2237 		struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2238 
2239 		wait_event(dev_priv->pending_flip_queue,
2240 			   atomic_read(&dev_priv->mm.wedged) ||
2241 			   atomic_read(&obj->pending_flip) == 0);
2242 
2243 		/* Big Hammer, we also need to ensure that any pending
2244 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2245 		 * current scanout is retired before unpinning the old
2246 		 * framebuffer.
2247 		 *
2248 		 * This should only fail upon a hung GPU, in which case we
2249 		 * can safely continue.
2250 		 */
2251 		ret = i915_gem_object_finish_gpu(obj);
2252 		(void) ret;
2253 	}
2254 
2255 	ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2256 					 LEAVE_ATOMIC_MODE_SET);
2257 	if (ret) {
2258 		i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2259 		mutex_unlock(&dev->struct_mutex);
2260 		DRM_ERROR("failed to update base address\n");
2261 		return ret;
2262 	}
2263 
2264 	if (old_fb) {
2265 		intel_wait_for_vblank(dev, intel_crtc->pipe);
2266 		i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2267 	}
2268 
2269 	mutex_unlock(&dev->struct_mutex);
2270 
2271 	if (!dev->primary->master)
2272 		return 0;
2273 
2274 	master_priv = dev->primary->master->driver_priv;
2275 	if (!master_priv->sarea_priv)
2276 		return 0;
2277 
2278 	if (intel_crtc->pipe) {
2279 		master_priv->sarea_priv->pipeB_x = x;
2280 		master_priv->sarea_priv->pipeB_y = y;
2281 	} else {
2282 		master_priv->sarea_priv->pipeA_x = x;
2283 		master_priv->sarea_priv->pipeA_y = y;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
ironlake_set_pll_edp(struct drm_crtc * crtc,int clock)2289 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2290 {
2291 	struct drm_device *dev = crtc->dev;
2292 	struct drm_i915_private *dev_priv = dev->dev_private;
2293 	u32 dpa_ctl;
2294 
2295 	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2296 	dpa_ctl = I915_READ(DP_A);
2297 	dpa_ctl &= ~DP_PLL_FREQ_MASK;
2298 
2299 	if (clock < 200000) {
2300 		u32 temp;
2301 		dpa_ctl |= DP_PLL_FREQ_160MHZ;
2302 		/* workaround for 160Mhz:
2303 		   1) program 0x4600c bits 15:0 = 0x8124
2304 		   2) program 0x46010 bit 0 = 1
2305 		   3) program 0x46034 bit 24 = 1
2306 		   4) program 0x64000 bit 14 = 1
2307 		   */
2308 		temp = I915_READ(0x4600c);
2309 		temp &= 0xffff0000;
2310 		I915_WRITE(0x4600c, temp | 0x8124);
2311 
2312 		temp = I915_READ(0x46010);
2313 		I915_WRITE(0x46010, temp | 1);
2314 
2315 		temp = I915_READ(0x46034);
2316 		I915_WRITE(0x46034, temp | (1 << 24));
2317 	} else {
2318 		dpa_ctl |= DP_PLL_FREQ_270MHZ;
2319 	}
2320 	I915_WRITE(DP_A, dpa_ctl);
2321 
2322 	POSTING_READ(DP_A);
2323 	udelay(500);
2324 }
2325 
intel_fdi_normal_train(struct drm_crtc * crtc)2326 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2327 {
2328 	struct drm_device *dev = crtc->dev;
2329 	struct drm_i915_private *dev_priv = dev->dev_private;
2330 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2331 	int pipe = intel_crtc->pipe;
2332 	u32 reg, temp;
2333 
2334 	/* enable normal train */
2335 	reg = FDI_TX_CTL(pipe);
2336 	temp = I915_READ(reg);
2337 	if (IS_IVYBRIDGE(dev)) {
2338 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2339 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2340 	} else {
2341 		temp &= ~FDI_LINK_TRAIN_NONE;
2342 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2343 	}
2344 	I915_WRITE(reg, temp);
2345 
2346 	reg = FDI_RX_CTL(pipe);
2347 	temp = I915_READ(reg);
2348 	if (HAS_PCH_CPT(dev)) {
2349 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2350 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2351 	} else {
2352 		temp &= ~FDI_LINK_TRAIN_NONE;
2353 		temp |= FDI_LINK_TRAIN_NONE;
2354 	}
2355 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2356 
2357 	/* wait one idle pattern time */
2358 	POSTING_READ(reg);
2359 	udelay(1000);
2360 
2361 	/* IVB wants error correction enabled */
2362 	if (IS_IVYBRIDGE(dev))
2363 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2364 			   FDI_FE_ERRC_ENABLE);
2365 }
2366 
cpt_phase_pointer_enable(struct drm_device * dev,int pipe)2367 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2368 {
2369 	struct drm_i915_private *dev_priv = dev->dev_private;
2370 	u32 flags = I915_READ(SOUTH_CHICKEN1);
2371 
2372 	flags |= FDI_PHASE_SYNC_OVR(pipe);
2373 	I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2374 	flags |= FDI_PHASE_SYNC_EN(pipe);
2375 	I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2376 	POSTING_READ(SOUTH_CHICKEN1);
2377 }
2378 
2379 /* The FDI link training functions for ILK/Ibexpeak. */
ironlake_fdi_link_train(struct drm_crtc * crtc)2380 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2381 {
2382 	struct drm_device *dev = crtc->dev;
2383 	struct drm_i915_private *dev_priv = dev->dev_private;
2384 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2385 	int pipe = intel_crtc->pipe;
2386 	int plane = intel_crtc->plane;
2387 	u32 reg, temp, tries;
2388 
2389 	/* FDI needs bits from pipe & plane first */
2390 	assert_pipe_enabled(dev_priv, pipe);
2391 	assert_plane_enabled(dev_priv, plane);
2392 
2393 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2394 	   for train result */
2395 	reg = FDI_RX_IMR(pipe);
2396 	temp = I915_READ(reg);
2397 	temp &= ~FDI_RX_SYMBOL_LOCK;
2398 	temp &= ~FDI_RX_BIT_LOCK;
2399 	I915_WRITE(reg, temp);
2400 	I915_READ(reg);
2401 	udelay(150);
2402 
2403 	/* enable CPU FDI TX and PCH FDI RX */
2404 	reg = FDI_TX_CTL(pipe);
2405 	temp = I915_READ(reg);
2406 	temp &= ~(7 << 19);
2407 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2408 	temp &= ~FDI_LINK_TRAIN_NONE;
2409 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2410 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2411 
2412 	reg = FDI_RX_CTL(pipe);
2413 	temp = I915_READ(reg);
2414 	temp &= ~FDI_LINK_TRAIN_NONE;
2415 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2416 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2417 
2418 	POSTING_READ(reg);
2419 	udelay(150);
2420 
2421 	/* Ironlake workaround, enable clock pointer after FDI enable*/
2422 	if (HAS_PCH_IBX(dev)) {
2423 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2424 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2425 			   FDI_RX_PHASE_SYNC_POINTER_EN);
2426 	}
2427 
2428 	reg = FDI_RX_IIR(pipe);
2429 	for (tries = 0; tries < 5; tries++) {
2430 		temp = I915_READ(reg);
2431 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2432 
2433 		if ((temp & FDI_RX_BIT_LOCK)) {
2434 			DRM_DEBUG_KMS("FDI train 1 done.\n");
2435 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2436 			break;
2437 		}
2438 	}
2439 	if (tries == 5)
2440 		DRM_ERROR("FDI train 1 fail!\n");
2441 
2442 	/* Train 2 */
2443 	reg = FDI_TX_CTL(pipe);
2444 	temp = I915_READ(reg);
2445 	temp &= ~FDI_LINK_TRAIN_NONE;
2446 	temp |= FDI_LINK_TRAIN_PATTERN_2;
2447 	I915_WRITE(reg, temp);
2448 
2449 	reg = FDI_RX_CTL(pipe);
2450 	temp = I915_READ(reg);
2451 	temp &= ~FDI_LINK_TRAIN_NONE;
2452 	temp |= FDI_LINK_TRAIN_PATTERN_2;
2453 	I915_WRITE(reg, temp);
2454 
2455 	POSTING_READ(reg);
2456 	udelay(150);
2457 
2458 	reg = FDI_RX_IIR(pipe);
2459 	for (tries = 0; tries < 5; tries++) {
2460 		temp = I915_READ(reg);
2461 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2462 
2463 		if (temp & FDI_RX_SYMBOL_LOCK) {
2464 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2465 			DRM_DEBUG_KMS("FDI train 2 done.\n");
2466 			break;
2467 		}
2468 	}
2469 	if (tries == 5)
2470 		DRM_ERROR("FDI train 2 fail!\n");
2471 
2472 	DRM_DEBUG_KMS("FDI train done\n");
2473 
2474 }
2475 
2476 static const int snb_b_fdi_train_param[] = {
2477 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2478 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2479 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2480 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2481 };
2482 
2483 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct drm_crtc * crtc)2484 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2485 {
2486 	struct drm_device *dev = crtc->dev;
2487 	struct drm_i915_private *dev_priv = dev->dev_private;
2488 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2489 	int pipe = intel_crtc->pipe;
2490 	u32 reg, temp, i;
2491 
2492 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2493 	   for train result */
2494 	reg = FDI_RX_IMR(pipe);
2495 	temp = I915_READ(reg);
2496 	temp &= ~FDI_RX_SYMBOL_LOCK;
2497 	temp &= ~FDI_RX_BIT_LOCK;
2498 	I915_WRITE(reg, temp);
2499 
2500 	POSTING_READ(reg);
2501 	udelay(150);
2502 
2503 	/* enable CPU FDI TX and PCH FDI RX */
2504 	reg = FDI_TX_CTL(pipe);
2505 	temp = I915_READ(reg);
2506 	temp &= ~(7 << 19);
2507 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2508 	temp &= ~FDI_LINK_TRAIN_NONE;
2509 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2510 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2511 	/* SNB-B */
2512 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2513 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2514 
2515 	reg = FDI_RX_CTL(pipe);
2516 	temp = I915_READ(reg);
2517 	if (HAS_PCH_CPT(dev)) {
2518 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2519 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2520 	} else {
2521 		temp &= ~FDI_LINK_TRAIN_NONE;
2522 		temp |= FDI_LINK_TRAIN_PATTERN_1;
2523 	}
2524 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2525 
2526 	POSTING_READ(reg);
2527 	udelay(150);
2528 
2529 	if (HAS_PCH_CPT(dev))
2530 		cpt_phase_pointer_enable(dev, pipe);
2531 
2532 	for (i = 0; i < 4; i++) {
2533 		reg = FDI_TX_CTL(pipe);
2534 		temp = I915_READ(reg);
2535 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2536 		temp |= snb_b_fdi_train_param[i];
2537 		I915_WRITE(reg, temp);
2538 
2539 		POSTING_READ(reg);
2540 		udelay(500);
2541 
2542 		reg = FDI_RX_IIR(pipe);
2543 		temp = I915_READ(reg);
2544 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2545 
2546 		if (temp & FDI_RX_BIT_LOCK) {
2547 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2548 			DRM_DEBUG_KMS("FDI train 1 done.\n");
2549 			break;
2550 		}
2551 	}
2552 	if (i == 4)
2553 		DRM_ERROR("FDI train 1 fail!\n");
2554 
2555 	/* Train 2 */
2556 	reg = FDI_TX_CTL(pipe);
2557 	temp = I915_READ(reg);
2558 	temp &= ~FDI_LINK_TRAIN_NONE;
2559 	temp |= FDI_LINK_TRAIN_PATTERN_2;
2560 	if (IS_GEN6(dev)) {
2561 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2562 		/* SNB-B */
2563 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2564 	}
2565 	I915_WRITE(reg, temp);
2566 
2567 	reg = FDI_RX_CTL(pipe);
2568 	temp = I915_READ(reg);
2569 	if (HAS_PCH_CPT(dev)) {
2570 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2571 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2572 	} else {
2573 		temp &= ~FDI_LINK_TRAIN_NONE;
2574 		temp |= FDI_LINK_TRAIN_PATTERN_2;
2575 	}
2576 	I915_WRITE(reg, temp);
2577 
2578 	POSTING_READ(reg);
2579 	udelay(150);
2580 
2581 	for (i = 0; i < 4; i++) {
2582 		reg = FDI_TX_CTL(pipe);
2583 		temp = I915_READ(reg);
2584 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2585 		temp |= snb_b_fdi_train_param[i];
2586 		I915_WRITE(reg, temp);
2587 
2588 		POSTING_READ(reg);
2589 		udelay(500);
2590 
2591 		reg = FDI_RX_IIR(pipe);
2592 		temp = I915_READ(reg);
2593 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2594 
2595 		if (temp & FDI_RX_SYMBOL_LOCK) {
2596 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2597 			DRM_DEBUG_KMS("FDI train 2 done.\n");
2598 			break;
2599 		}
2600 	}
2601 	if (i == 4)
2602 		DRM_ERROR("FDI train 2 fail!\n");
2603 
2604 	DRM_DEBUG_KMS("FDI train done.\n");
2605 }
2606 
2607 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct drm_crtc * crtc)2608 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2609 {
2610 	struct drm_device *dev = crtc->dev;
2611 	struct drm_i915_private *dev_priv = dev->dev_private;
2612 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2613 	int pipe = intel_crtc->pipe;
2614 	u32 reg, temp, i;
2615 
2616 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2617 	   for train result */
2618 	reg = FDI_RX_IMR(pipe);
2619 	temp = I915_READ(reg);
2620 	temp &= ~FDI_RX_SYMBOL_LOCK;
2621 	temp &= ~FDI_RX_BIT_LOCK;
2622 	I915_WRITE(reg, temp);
2623 
2624 	POSTING_READ(reg);
2625 	udelay(150);
2626 
2627 	/* enable CPU FDI TX and PCH FDI RX */
2628 	reg = FDI_TX_CTL(pipe);
2629 	temp = I915_READ(reg);
2630 	temp &= ~(7 << 19);
2631 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2632 	temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2633 	temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2634 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2635 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2636 	temp |= FDI_COMPOSITE_SYNC;
2637 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2638 
2639 	reg = FDI_RX_CTL(pipe);
2640 	temp = I915_READ(reg);
2641 	temp &= ~FDI_LINK_TRAIN_AUTO;
2642 	temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2643 	temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2644 	temp |= FDI_COMPOSITE_SYNC;
2645 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2646 
2647 	POSTING_READ(reg);
2648 	udelay(150);
2649 
2650 	if (HAS_PCH_CPT(dev))
2651 		cpt_phase_pointer_enable(dev, pipe);
2652 
2653 	for (i = 0; i < 4; i++) {
2654 		reg = FDI_TX_CTL(pipe);
2655 		temp = I915_READ(reg);
2656 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2657 		temp |= snb_b_fdi_train_param[i];
2658 		I915_WRITE(reg, temp);
2659 
2660 		POSTING_READ(reg);
2661 		udelay(500);
2662 
2663 		reg = FDI_RX_IIR(pipe);
2664 		temp = I915_READ(reg);
2665 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2666 
2667 		if (temp & FDI_RX_BIT_LOCK ||
2668 		    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2669 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2670 			DRM_DEBUG_KMS("FDI train 1 done.\n");
2671 			break;
2672 		}
2673 	}
2674 	if (i == 4)
2675 		DRM_ERROR("FDI train 1 fail!\n");
2676 
2677 	/* Train 2 */
2678 	reg = FDI_TX_CTL(pipe);
2679 	temp = I915_READ(reg);
2680 	temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2681 	temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2682 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2683 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2684 	I915_WRITE(reg, temp);
2685 
2686 	reg = FDI_RX_CTL(pipe);
2687 	temp = I915_READ(reg);
2688 	temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2689 	temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2690 	I915_WRITE(reg, temp);
2691 
2692 	POSTING_READ(reg);
2693 	udelay(150);
2694 
2695 	for (i = 0; i < 4; i++) {
2696 		reg = FDI_TX_CTL(pipe);
2697 		temp = I915_READ(reg);
2698 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2699 		temp |= snb_b_fdi_train_param[i];
2700 		I915_WRITE(reg, temp);
2701 
2702 		POSTING_READ(reg);
2703 		udelay(500);
2704 
2705 		reg = FDI_RX_IIR(pipe);
2706 		temp = I915_READ(reg);
2707 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2708 
2709 		if (temp & FDI_RX_SYMBOL_LOCK) {
2710 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2711 			DRM_DEBUG_KMS("FDI train 2 done.\n");
2712 			break;
2713 		}
2714 	}
2715 	if (i == 4)
2716 		DRM_ERROR("FDI train 2 fail!\n");
2717 
2718 	DRM_DEBUG_KMS("FDI train done.\n");
2719 }
2720 
ironlake_fdi_pll_enable(struct drm_crtc * crtc)2721 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2722 {
2723 	struct drm_device *dev = crtc->dev;
2724 	struct drm_i915_private *dev_priv = dev->dev_private;
2725 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2726 	int pipe = intel_crtc->pipe;
2727 	u32 reg, temp;
2728 
2729 	/* Write the TU size bits so error detection works */
2730 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
2731 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2732 
2733 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2734 	reg = FDI_RX_CTL(pipe);
2735 	temp = I915_READ(reg);
2736 	temp &= ~((0x7 << 19) | (0x7 << 16));
2737 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2738 	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2739 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2740 
2741 	POSTING_READ(reg);
2742 	udelay(200);
2743 
2744 	/* Switch from Rawclk to PCDclk */
2745 	temp = I915_READ(reg);
2746 	I915_WRITE(reg, temp | FDI_PCDCLK);
2747 
2748 	POSTING_READ(reg);
2749 	udelay(200);
2750 
2751 	/* Enable CPU FDI TX PLL, always on for Ironlake */
2752 	reg = FDI_TX_CTL(pipe);
2753 	temp = I915_READ(reg);
2754 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2755 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2756 
2757 		POSTING_READ(reg);
2758 		udelay(100);
2759 	}
2760 }
2761 
cpt_phase_pointer_disable(struct drm_device * dev,int pipe)2762 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2763 {
2764 	struct drm_i915_private *dev_priv = dev->dev_private;
2765 	u32 flags = I915_READ(SOUTH_CHICKEN1);
2766 
2767 	flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2768 	I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2769 	flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2770 	I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2771 	POSTING_READ(SOUTH_CHICKEN1);
2772 }
ironlake_fdi_disable(struct drm_crtc * crtc)2773 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2774 {
2775 	struct drm_device *dev = crtc->dev;
2776 	struct drm_i915_private *dev_priv = dev->dev_private;
2777 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2778 	int pipe = intel_crtc->pipe;
2779 	u32 reg, temp;
2780 
2781 	/* disable CPU FDI tx and PCH FDI rx */
2782 	reg = FDI_TX_CTL(pipe);
2783 	temp = I915_READ(reg);
2784 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2785 	POSTING_READ(reg);
2786 
2787 	reg = FDI_RX_CTL(pipe);
2788 	temp = I915_READ(reg);
2789 	temp &= ~(0x7 << 16);
2790 	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2791 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2792 
2793 	POSTING_READ(reg);
2794 	udelay(100);
2795 
2796 	/* Ironlake workaround, disable clock pointer after downing FDI */
2797 	if (HAS_PCH_IBX(dev)) {
2798 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2799 		I915_WRITE(FDI_RX_CHICKEN(pipe),
2800 			   I915_READ(FDI_RX_CHICKEN(pipe) &
2801 				     ~FDI_RX_PHASE_SYNC_POINTER_EN));
2802 	} else if (HAS_PCH_CPT(dev)) {
2803 		cpt_phase_pointer_disable(dev, pipe);
2804 	}
2805 
2806 	/* still set train pattern 1 */
2807 	reg = FDI_TX_CTL(pipe);
2808 	temp = I915_READ(reg);
2809 	temp &= ~FDI_LINK_TRAIN_NONE;
2810 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2811 	I915_WRITE(reg, temp);
2812 
2813 	reg = FDI_RX_CTL(pipe);
2814 	temp = I915_READ(reg);
2815 	if (HAS_PCH_CPT(dev)) {
2816 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2817 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2818 	} else {
2819 		temp &= ~FDI_LINK_TRAIN_NONE;
2820 		temp |= FDI_LINK_TRAIN_PATTERN_1;
2821 	}
2822 	/* BPC in FDI rx is consistent with that in PIPECONF */
2823 	temp &= ~(0x07 << 16);
2824 	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2825 	I915_WRITE(reg, temp);
2826 
2827 	POSTING_READ(reg);
2828 	udelay(100);
2829 }
2830 
2831 /*
2832  * When we disable a pipe, we need to clear any pending scanline wait events
2833  * to avoid hanging the ring, which we assume we are waiting on.
2834  */
intel_clear_scanline_wait(struct drm_device * dev)2835 static void intel_clear_scanline_wait(struct drm_device *dev)
2836 {
2837 	struct drm_i915_private *dev_priv = dev->dev_private;
2838 	struct intel_ring_buffer *ring;
2839 	u32 tmp;
2840 
2841 	if (IS_GEN2(dev))
2842 		/* Can't break the hang on i8xx */
2843 		return;
2844 
2845 	ring = LP_RING(dev_priv);
2846 	tmp = I915_READ_CTL(ring);
2847 	if (tmp & RING_WAIT)
2848 		I915_WRITE_CTL(ring, tmp);
2849 }
2850 
intel_crtc_wait_for_pending_flips(struct drm_crtc * crtc)2851 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2852 {
2853 	struct drm_i915_gem_object *obj;
2854 	struct drm_i915_private *dev_priv;
2855 
2856 	if (crtc->fb == NULL)
2857 		return;
2858 
2859 	obj = to_intel_framebuffer(crtc->fb)->obj;
2860 	dev_priv = crtc->dev->dev_private;
2861 	wait_event(dev_priv->pending_flip_queue,
2862 		   atomic_read(&obj->pending_flip) == 0);
2863 }
2864 
intel_crtc_driving_pch(struct drm_crtc * crtc)2865 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2866 {
2867 	struct drm_device *dev = crtc->dev;
2868 	struct drm_mode_config *mode_config = &dev->mode_config;
2869 	struct intel_encoder *encoder;
2870 
2871 	/*
2872 	 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2873 	 * must be driven by its own crtc; no sharing is possible.
2874 	 */
2875 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2876 		if (encoder->base.crtc != crtc)
2877 			continue;
2878 
2879 		switch (encoder->type) {
2880 		case INTEL_OUTPUT_EDP:
2881 			if (!intel_encoder_is_pch_edp(&encoder->base))
2882 				return false;
2883 			continue;
2884 		}
2885 	}
2886 
2887 	return true;
2888 }
2889 
2890 /*
2891  * Enable PCH resources required for PCH ports:
2892  *   - PCH PLLs
2893  *   - FDI training & RX/TX
2894  *   - update transcoder timings
2895  *   - DP transcoding bits
2896  *   - transcoder
2897  */
ironlake_pch_enable(struct drm_crtc * crtc)2898 static void ironlake_pch_enable(struct drm_crtc *crtc)
2899 {
2900 	struct drm_device *dev = crtc->dev;
2901 	struct drm_i915_private *dev_priv = dev->dev_private;
2902 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2903 	int pipe = intel_crtc->pipe;
2904 	u32 reg, temp, transc_sel;
2905 
2906 	/* For PCH output, training FDI link */
2907 	dev_priv->display.fdi_link_train(crtc);
2908 
2909 	intel_enable_pch_pll(dev_priv, pipe);
2910 
2911 	if (HAS_PCH_CPT(dev)) {
2912 		transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2913 			TRANSC_DPLLB_SEL;
2914 
2915 		/* Be sure PCH DPLL SEL is set */
2916 		temp = I915_READ(PCH_DPLL_SEL);
2917 		if (pipe == 0) {
2918 			temp &= ~(TRANSA_DPLLB_SEL);
2919 			temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2920 		} else if (pipe == 1) {
2921 			temp &= ~(TRANSB_DPLLB_SEL);
2922 			temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2923 		} else if (pipe == 2) {
2924 			temp &= ~(TRANSC_DPLLB_SEL);
2925 			temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2926 		}
2927 		I915_WRITE(PCH_DPLL_SEL, temp);
2928 	}
2929 
2930 	/* set transcoder timing, panel must allow it */
2931 	assert_panel_unlocked(dev_priv, pipe);
2932 	I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2933 	I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2934 	I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2935 
2936 	I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2937 	I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2938 	I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2939 
2940 	intel_fdi_normal_train(crtc);
2941 
2942 	/* For PCH DP, enable TRANS_DP_CTL */
2943 	if (HAS_PCH_CPT(dev) &&
2944 	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2945 	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2946 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2947 		reg = TRANS_DP_CTL(pipe);
2948 		temp = I915_READ(reg);
2949 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
2950 			  TRANS_DP_SYNC_MASK |
2951 			  TRANS_DP_BPC_MASK);
2952 		temp |= (TRANS_DP_OUTPUT_ENABLE |
2953 			 TRANS_DP_ENH_FRAMING);
2954 		temp |= bpc << 9; /* same format but at 11:9 */
2955 
2956 		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2957 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2958 		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2959 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2960 
2961 		switch (intel_trans_dp_port_sel(crtc)) {
2962 		case PCH_DP_B:
2963 			temp |= TRANS_DP_PORT_SEL_B;
2964 			break;
2965 		case PCH_DP_C:
2966 			temp |= TRANS_DP_PORT_SEL_C;
2967 			break;
2968 		case PCH_DP_D:
2969 			temp |= TRANS_DP_PORT_SEL_D;
2970 			break;
2971 		default:
2972 			DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2973 			temp |= TRANS_DP_PORT_SEL_B;
2974 			break;
2975 		}
2976 
2977 		I915_WRITE(reg, temp);
2978 	}
2979 
2980 	intel_enable_transcoder(dev_priv, pipe);
2981 }
2982 
intel_cpt_verify_modeset(struct drm_device * dev,int pipe)2983 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2984 {
2985 	struct drm_i915_private *dev_priv = dev->dev_private;
2986 	int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2987 	u32 temp;
2988 
2989 	temp = I915_READ(dslreg);
2990 	udelay(500);
2991 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
2992 		/* Without this, mode sets may fail silently on FDI */
2993 		I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2994 		udelay(250);
2995 		I915_WRITE(tc2reg, 0);
2996 		if (wait_for(I915_READ(dslreg) != temp, 5))
2997 			DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2998 	}
2999 }
3000 
ironlake_crtc_enable(struct drm_crtc * crtc)3001 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3002 {
3003 	struct drm_device *dev = crtc->dev;
3004 	struct drm_i915_private *dev_priv = dev->dev_private;
3005 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3006 	int pipe = intel_crtc->pipe;
3007 	int plane = intel_crtc->plane;
3008 	u32 temp;
3009 	bool is_pch_port;
3010 
3011 	if (intel_crtc->active)
3012 		return;
3013 
3014 	intel_crtc->active = true;
3015 	intel_update_watermarks(dev);
3016 
3017 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3018 		temp = I915_READ(PCH_LVDS);
3019 		if ((temp & LVDS_PORT_EN) == 0)
3020 			I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3021 	}
3022 
3023 	is_pch_port = intel_crtc_driving_pch(crtc);
3024 
3025 	if (is_pch_port)
3026 		ironlake_fdi_pll_enable(crtc);
3027 	else
3028 		ironlake_fdi_disable(crtc);
3029 
3030 	/* Enable panel fitting for LVDS */
3031 	if (dev_priv->pch_pf_size &&
3032 	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3033 		/* Force use of hard-coded filter coefficients
3034 		 * as some pre-programmed values are broken,
3035 		 * e.g. x201.
3036 		 */
3037 		I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3038 		I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3039 		I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3040 	}
3041 
3042 	/*
3043 	 * On ILK+ LUT must be loaded before the pipe is running but with
3044 	 * clocks enabled
3045 	 */
3046 	intel_crtc_load_lut(crtc);
3047 
3048 	intel_enable_pipe(dev_priv, pipe, is_pch_port);
3049 	intel_enable_plane(dev_priv, plane, pipe);
3050 
3051 	if (is_pch_port)
3052 		ironlake_pch_enable(crtc);
3053 
3054 	mutex_lock(&dev->struct_mutex);
3055 	intel_update_fbc(dev);
3056 	mutex_unlock(&dev->struct_mutex);
3057 
3058 	intel_crtc_update_cursor(crtc, true);
3059 }
3060 
ironlake_crtc_disable(struct drm_crtc * crtc)3061 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3062 {
3063 	struct drm_device *dev = crtc->dev;
3064 	struct drm_i915_private *dev_priv = dev->dev_private;
3065 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3066 	int pipe = intel_crtc->pipe;
3067 	int plane = intel_crtc->plane;
3068 	u32 reg, temp;
3069 
3070 	if (!intel_crtc->active)
3071 		return;
3072 
3073 	intel_crtc_wait_for_pending_flips(crtc);
3074 	drm_vblank_off(dev, pipe);
3075 	intel_crtc_update_cursor(crtc, false);
3076 
3077 	intel_disable_plane(dev_priv, plane, pipe);
3078 
3079 	if (dev_priv->cfb_plane == plane)
3080 		intel_disable_fbc(dev);
3081 
3082 	intel_disable_pipe(dev_priv, pipe);
3083 
3084 	/* Disable PF */
3085 	I915_WRITE(PF_CTL(pipe), 0);
3086 	I915_WRITE(PF_WIN_SZ(pipe), 0);
3087 
3088 	ironlake_fdi_disable(crtc);
3089 
3090 	/* This is a horrible layering violation; we should be doing this in
3091 	 * the connector/encoder ->prepare instead, but we don't always have
3092 	 * enough information there about the config to know whether it will
3093 	 * actually be necessary or just cause undesired flicker.
3094 	 */
3095 	intel_disable_pch_ports(dev_priv, pipe);
3096 
3097 	intel_disable_transcoder(dev_priv, pipe);
3098 
3099 	if (HAS_PCH_CPT(dev)) {
3100 		/* disable TRANS_DP_CTL */
3101 		reg = TRANS_DP_CTL(pipe);
3102 		temp = I915_READ(reg);
3103 		temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3104 		temp |= TRANS_DP_PORT_SEL_NONE;
3105 		I915_WRITE(reg, temp);
3106 
3107 		/* disable DPLL_SEL */
3108 		temp = I915_READ(PCH_DPLL_SEL);
3109 		switch (pipe) {
3110 		case 0:
3111 			temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3112 			break;
3113 		case 1:
3114 			temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3115 			break;
3116 		case 2:
3117 			/* C shares PLL A or B */
3118 			temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3119 			break;
3120 		default:
3121 			BUG(); /* wtf */
3122 		}
3123 		I915_WRITE(PCH_DPLL_SEL, temp);
3124 	}
3125 
3126 	/* disable PCH DPLL */
3127 	if (!intel_crtc->no_pll)
3128 		intel_disable_pch_pll(dev_priv, pipe);
3129 
3130 	/* Switch from PCDclk to Rawclk */
3131 	reg = FDI_RX_CTL(pipe);
3132 	temp = I915_READ(reg);
3133 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
3134 
3135 	/* Disable CPU FDI TX PLL */
3136 	reg = FDI_TX_CTL(pipe);
3137 	temp = I915_READ(reg);
3138 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3139 
3140 	POSTING_READ(reg);
3141 	udelay(100);
3142 
3143 	reg = FDI_RX_CTL(pipe);
3144 	temp = I915_READ(reg);
3145 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3146 
3147 	/* Wait for the clocks to turn off. */
3148 	POSTING_READ(reg);
3149 	udelay(100);
3150 
3151 	intel_crtc->active = false;
3152 	intel_update_watermarks(dev);
3153 
3154 	mutex_lock(&dev->struct_mutex);
3155 	intel_update_fbc(dev);
3156 	intel_clear_scanline_wait(dev);
3157 	mutex_unlock(&dev->struct_mutex);
3158 }
3159 
ironlake_crtc_dpms(struct drm_crtc * crtc,int mode)3160 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3161 {
3162 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3163 	int pipe = intel_crtc->pipe;
3164 	int plane = intel_crtc->plane;
3165 
3166 	/* XXX: When our outputs are all unaware of DPMS modes other than off
3167 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3168 	 */
3169 	switch (mode) {
3170 	case DRM_MODE_DPMS_ON:
3171 	case DRM_MODE_DPMS_STANDBY:
3172 	case DRM_MODE_DPMS_SUSPEND:
3173 		DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3174 		ironlake_crtc_enable(crtc);
3175 		break;
3176 
3177 	case DRM_MODE_DPMS_OFF:
3178 		DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3179 		ironlake_crtc_disable(crtc);
3180 		break;
3181 	}
3182 }
3183 
intel_crtc_dpms_overlay(struct intel_crtc * intel_crtc,bool enable)3184 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3185 {
3186 	if (!enable && intel_crtc->overlay) {
3187 		struct drm_device *dev = intel_crtc->base.dev;
3188 		struct drm_i915_private *dev_priv = dev->dev_private;
3189 
3190 		mutex_lock(&dev->struct_mutex);
3191 		dev_priv->mm.interruptible = false;
3192 		(void) intel_overlay_switch_off(intel_crtc->overlay);
3193 		dev_priv->mm.interruptible = true;
3194 		mutex_unlock(&dev->struct_mutex);
3195 	}
3196 
3197 	/* Let userspace switch the overlay on again. In most cases userspace
3198 	 * has to recompute where to put it anyway.
3199 	 */
3200 }
3201 
i9xx_crtc_enable(struct drm_crtc * crtc)3202 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3203 {
3204 	struct drm_device *dev = crtc->dev;
3205 	struct drm_i915_private *dev_priv = dev->dev_private;
3206 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3207 	int pipe = intel_crtc->pipe;
3208 	int plane = intel_crtc->plane;
3209 
3210 	if (intel_crtc->active)
3211 		return;
3212 
3213 	intel_crtc->active = true;
3214 	intel_update_watermarks(dev);
3215 
3216 	intel_enable_pll(dev_priv, pipe);
3217 	intel_enable_pipe(dev_priv, pipe, false);
3218 	intel_enable_plane(dev_priv, plane, pipe);
3219 
3220 	intel_crtc_load_lut(crtc);
3221 	intel_update_fbc(dev);
3222 
3223 	/* Give the overlay scaler a chance to enable if it's on this pipe */
3224 	intel_crtc_dpms_overlay(intel_crtc, true);
3225 	intel_crtc_update_cursor(crtc, true);
3226 }
3227 
i9xx_crtc_disable(struct drm_crtc * crtc)3228 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3229 {
3230 	struct drm_device *dev = crtc->dev;
3231 	struct drm_i915_private *dev_priv = dev->dev_private;
3232 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3233 	int pipe = intel_crtc->pipe;
3234 	int plane = intel_crtc->plane;
3235 
3236 	if (!intel_crtc->active)
3237 		return;
3238 
3239 	/* Give the overlay scaler a chance to disable if it's on this pipe */
3240 	intel_crtc_wait_for_pending_flips(crtc);
3241 	drm_vblank_off(dev, pipe);
3242 	intel_crtc_dpms_overlay(intel_crtc, false);
3243 	intel_crtc_update_cursor(crtc, false);
3244 
3245 	if (dev_priv->cfb_plane == plane)
3246 		intel_disable_fbc(dev);
3247 
3248 	intel_disable_plane(dev_priv, plane, pipe);
3249 	intel_disable_pipe(dev_priv, pipe);
3250 	intel_disable_pll(dev_priv, pipe);
3251 
3252 	intel_crtc->active = false;
3253 	intel_update_fbc(dev);
3254 	intel_update_watermarks(dev);
3255 	intel_clear_scanline_wait(dev);
3256 }
3257 
i9xx_crtc_dpms(struct drm_crtc * crtc,int mode)3258 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3259 {
3260 	/* XXX: When our outputs are all unaware of DPMS modes other than off
3261 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3262 	 */
3263 	switch (mode) {
3264 	case DRM_MODE_DPMS_ON:
3265 	case DRM_MODE_DPMS_STANDBY:
3266 	case DRM_MODE_DPMS_SUSPEND:
3267 		i9xx_crtc_enable(crtc);
3268 		break;
3269 	case DRM_MODE_DPMS_OFF:
3270 		i9xx_crtc_disable(crtc);
3271 		break;
3272 	}
3273 }
3274 
3275 /**
3276  * Sets the power management mode of the pipe and plane.
3277  */
intel_crtc_dpms(struct drm_crtc * crtc,int mode)3278 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3279 {
3280 	struct drm_device *dev = crtc->dev;
3281 	struct drm_i915_private *dev_priv = dev->dev_private;
3282 	struct drm_i915_master_private *master_priv;
3283 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284 	int pipe = intel_crtc->pipe;
3285 	bool enabled;
3286 
3287 	if (intel_crtc->dpms_mode == mode)
3288 		return;
3289 
3290 	intel_crtc->dpms_mode = mode;
3291 
3292 	dev_priv->display.dpms(crtc, mode);
3293 
3294 	if (!dev->primary->master)
3295 		return;
3296 
3297 	master_priv = dev->primary->master->driver_priv;
3298 	if (!master_priv->sarea_priv)
3299 		return;
3300 
3301 	enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3302 
3303 	switch (pipe) {
3304 	case 0:
3305 		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3306 		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3307 		break;
3308 	case 1:
3309 		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3310 		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3311 		break;
3312 	default:
3313 		DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3314 		break;
3315 	}
3316 }
3317 
intel_crtc_disable(struct drm_crtc * crtc)3318 static void intel_crtc_disable(struct drm_crtc *crtc)
3319 {
3320 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3321 	struct drm_device *dev = crtc->dev;
3322 
3323 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3324 
3325 	if (crtc->fb) {
3326 		mutex_lock(&dev->struct_mutex);
3327 		i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3328 		mutex_unlock(&dev->struct_mutex);
3329 	}
3330 }
3331 
3332 /* Prepare for a mode set.
3333  *
3334  * Note we could be a lot smarter here.  We need to figure out which outputs
3335  * will be enabled, which disabled (in short, how the config will changes)
3336  * and perform the minimum necessary steps to accomplish that, e.g. updating
3337  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3338  * panel fitting is in the proper state, etc.
3339  */
i9xx_crtc_prepare(struct drm_crtc * crtc)3340 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3341 {
3342 	i9xx_crtc_disable(crtc);
3343 }
3344 
i9xx_crtc_commit(struct drm_crtc * crtc)3345 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3346 {
3347 	i9xx_crtc_enable(crtc);
3348 }
3349 
ironlake_crtc_prepare(struct drm_crtc * crtc)3350 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3351 {
3352 	ironlake_crtc_disable(crtc);
3353 }
3354 
ironlake_crtc_commit(struct drm_crtc * crtc)3355 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3356 {
3357 	ironlake_crtc_enable(crtc);
3358 }
3359 
intel_encoder_prepare(struct drm_encoder * encoder)3360 void intel_encoder_prepare(struct drm_encoder *encoder)
3361 {
3362 	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3363 	/* lvds has its own version of prepare see intel_lvds_prepare */
3364 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3365 }
3366 
intel_encoder_commit(struct drm_encoder * encoder)3367 void intel_encoder_commit(struct drm_encoder *encoder)
3368 {
3369 	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3370 	struct drm_device *dev = encoder->dev;
3371 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3372 	struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3373 
3374 	/* lvds has its own version of commit see intel_lvds_commit */
3375 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3376 
3377 	if (HAS_PCH_CPT(dev))
3378 		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3379 }
3380 
intel_encoder_destroy(struct drm_encoder * encoder)3381 void intel_encoder_destroy(struct drm_encoder *encoder)
3382 {
3383 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3384 
3385 	drm_encoder_cleanup(encoder);
3386 	kfree(intel_encoder);
3387 }
3388 
intel_crtc_mode_fixup(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)3389 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3390 				  struct drm_display_mode *mode,
3391 				  struct drm_display_mode *adjusted_mode)
3392 {
3393 	struct drm_device *dev = crtc->dev;
3394 
3395 	if (HAS_PCH_SPLIT(dev)) {
3396 		/* FDI link clock is fixed at 2.7G */
3397 		if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3398 			return false;
3399 	}
3400 
3401 	/* XXX some encoders set the crtcinfo, others don't.
3402 	 * Obviously we need some form of conflict resolution here...
3403 	 */
3404 	if (adjusted_mode->crtc_htotal == 0)
3405 		drm_mode_set_crtcinfo(adjusted_mode, 0);
3406 
3407 	return true;
3408 }
3409 
i945_get_display_clock_speed(struct drm_device * dev)3410 static int i945_get_display_clock_speed(struct drm_device *dev)
3411 {
3412 	return 400000;
3413 }
3414 
i915_get_display_clock_speed(struct drm_device * dev)3415 static int i915_get_display_clock_speed(struct drm_device *dev)
3416 {
3417 	return 333000;
3418 }
3419 
i9xx_misc_get_display_clock_speed(struct drm_device * dev)3420 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3421 {
3422 	return 200000;
3423 }
3424 
i915gm_get_display_clock_speed(struct drm_device * dev)3425 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3426 {
3427 	u16 gcfgc = 0;
3428 
3429 	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3430 
3431 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3432 		return 133000;
3433 	else {
3434 		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3435 		case GC_DISPLAY_CLOCK_333_MHZ:
3436 			return 333000;
3437 		default:
3438 		case GC_DISPLAY_CLOCK_190_200_MHZ:
3439 			return 190000;
3440 		}
3441 	}
3442 }
3443 
i865_get_display_clock_speed(struct drm_device * dev)3444 static int i865_get_display_clock_speed(struct drm_device *dev)
3445 {
3446 	return 266000;
3447 }
3448 
i855_get_display_clock_speed(struct drm_device * dev)3449 static int i855_get_display_clock_speed(struct drm_device *dev)
3450 {
3451 	u16 hpllcc = 0;
3452 	/* Assume that the hardware is in the high speed state.  This
3453 	 * should be the default.
3454 	 */
3455 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3456 	case GC_CLOCK_133_200:
3457 	case GC_CLOCK_100_200:
3458 		return 200000;
3459 	case GC_CLOCK_166_250:
3460 		return 250000;
3461 	case GC_CLOCK_100_133:
3462 		return 133000;
3463 	}
3464 
3465 	/* Shouldn't happen */
3466 	return 0;
3467 }
3468 
i830_get_display_clock_speed(struct drm_device * dev)3469 static int i830_get_display_clock_speed(struct drm_device *dev)
3470 {
3471 	return 133000;
3472 }
3473 
3474 struct fdi_m_n {
3475 	u32        tu;
3476 	u32        gmch_m;
3477 	u32        gmch_n;
3478 	u32        link_m;
3479 	u32        link_n;
3480 };
3481 
3482 static void
fdi_reduce_ratio(u32 * num,u32 * den)3483 fdi_reduce_ratio(u32 *num, u32 *den)
3484 {
3485 	while (*num > 0xffffff || *den > 0xffffff) {
3486 		*num >>= 1;
3487 		*den >>= 1;
3488 	}
3489 }
3490 
3491 static void
ironlake_compute_m_n(int bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct fdi_m_n * m_n)3492 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3493 		     int link_clock, struct fdi_m_n *m_n)
3494 {
3495 	m_n->tu = 64; /* default size */
3496 
3497 	/* BUG_ON(pixel_clock > INT_MAX / 36); */
3498 	m_n->gmch_m = bits_per_pixel * pixel_clock;
3499 	m_n->gmch_n = link_clock * nlanes * 8;
3500 	fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3501 
3502 	m_n->link_m = pixel_clock;
3503 	m_n->link_n = link_clock;
3504 	fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3505 }
3506 
3507 
3508 struct intel_watermark_params {
3509 	unsigned long fifo_size;
3510 	unsigned long max_wm;
3511 	unsigned long default_wm;
3512 	unsigned long guard_size;
3513 	unsigned long cacheline_size;
3514 };
3515 
3516 /* Pineview has different values for various configs */
3517 static const struct intel_watermark_params pineview_display_wm = {
3518 	PINEVIEW_DISPLAY_FIFO,
3519 	PINEVIEW_MAX_WM,
3520 	PINEVIEW_DFT_WM,
3521 	PINEVIEW_GUARD_WM,
3522 	PINEVIEW_FIFO_LINE_SIZE
3523 };
3524 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3525 	PINEVIEW_DISPLAY_FIFO,
3526 	PINEVIEW_MAX_WM,
3527 	PINEVIEW_DFT_HPLLOFF_WM,
3528 	PINEVIEW_GUARD_WM,
3529 	PINEVIEW_FIFO_LINE_SIZE
3530 };
3531 static const struct intel_watermark_params pineview_cursor_wm = {
3532 	PINEVIEW_CURSOR_FIFO,
3533 	PINEVIEW_CURSOR_MAX_WM,
3534 	PINEVIEW_CURSOR_DFT_WM,
3535 	PINEVIEW_CURSOR_GUARD_WM,
3536 	PINEVIEW_FIFO_LINE_SIZE,
3537 };
3538 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3539 	PINEVIEW_CURSOR_FIFO,
3540 	PINEVIEW_CURSOR_MAX_WM,
3541 	PINEVIEW_CURSOR_DFT_WM,
3542 	PINEVIEW_CURSOR_GUARD_WM,
3543 	PINEVIEW_FIFO_LINE_SIZE
3544 };
3545 static const struct intel_watermark_params g4x_wm_info = {
3546 	G4X_FIFO_SIZE,
3547 	G4X_MAX_WM,
3548 	G4X_MAX_WM,
3549 	2,
3550 	G4X_FIFO_LINE_SIZE,
3551 };
3552 static const struct intel_watermark_params g4x_cursor_wm_info = {
3553 	I965_CURSOR_FIFO,
3554 	I965_CURSOR_MAX_WM,
3555 	I965_CURSOR_DFT_WM,
3556 	2,
3557 	G4X_FIFO_LINE_SIZE,
3558 };
3559 static const struct intel_watermark_params i965_cursor_wm_info = {
3560 	I965_CURSOR_FIFO,
3561 	I965_CURSOR_MAX_WM,
3562 	I965_CURSOR_DFT_WM,
3563 	2,
3564 	I915_FIFO_LINE_SIZE,
3565 };
3566 static const struct intel_watermark_params i945_wm_info = {
3567 	I945_FIFO_SIZE,
3568 	I915_MAX_WM,
3569 	1,
3570 	2,
3571 	I915_FIFO_LINE_SIZE
3572 };
3573 static const struct intel_watermark_params i915_wm_info = {
3574 	I915_FIFO_SIZE,
3575 	I915_MAX_WM,
3576 	1,
3577 	2,
3578 	I915_FIFO_LINE_SIZE
3579 };
3580 static const struct intel_watermark_params i855_wm_info = {
3581 	I855GM_FIFO_SIZE,
3582 	I915_MAX_WM,
3583 	1,
3584 	2,
3585 	I830_FIFO_LINE_SIZE
3586 };
3587 static const struct intel_watermark_params i830_wm_info = {
3588 	I830_FIFO_SIZE,
3589 	I915_MAX_WM,
3590 	1,
3591 	2,
3592 	I830_FIFO_LINE_SIZE
3593 };
3594 
3595 static const struct intel_watermark_params ironlake_display_wm_info = {
3596 	ILK_DISPLAY_FIFO,
3597 	ILK_DISPLAY_MAXWM,
3598 	ILK_DISPLAY_DFTWM,
3599 	2,
3600 	ILK_FIFO_LINE_SIZE
3601 };
3602 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3603 	ILK_CURSOR_FIFO,
3604 	ILK_CURSOR_MAXWM,
3605 	ILK_CURSOR_DFTWM,
3606 	2,
3607 	ILK_FIFO_LINE_SIZE
3608 };
3609 static const struct intel_watermark_params ironlake_display_srwm_info = {
3610 	ILK_DISPLAY_SR_FIFO,
3611 	ILK_DISPLAY_MAX_SRWM,
3612 	ILK_DISPLAY_DFT_SRWM,
3613 	2,
3614 	ILK_FIFO_LINE_SIZE
3615 };
3616 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3617 	ILK_CURSOR_SR_FIFO,
3618 	ILK_CURSOR_MAX_SRWM,
3619 	ILK_CURSOR_DFT_SRWM,
3620 	2,
3621 	ILK_FIFO_LINE_SIZE
3622 };
3623 
3624 static const struct intel_watermark_params sandybridge_display_wm_info = {
3625 	SNB_DISPLAY_FIFO,
3626 	SNB_DISPLAY_MAXWM,
3627 	SNB_DISPLAY_DFTWM,
3628 	2,
3629 	SNB_FIFO_LINE_SIZE
3630 };
3631 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3632 	SNB_CURSOR_FIFO,
3633 	SNB_CURSOR_MAXWM,
3634 	SNB_CURSOR_DFTWM,
3635 	2,
3636 	SNB_FIFO_LINE_SIZE
3637 };
3638 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3639 	SNB_DISPLAY_SR_FIFO,
3640 	SNB_DISPLAY_MAX_SRWM,
3641 	SNB_DISPLAY_DFT_SRWM,
3642 	2,
3643 	SNB_FIFO_LINE_SIZE
3644 };
3645 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3646 	SNB_CURSOR_SR_FIFO,
3647 	SNB_CURSOR_MAX_SRWM,
3648 	SNB_CURSOR_DFT_SRWM,
3649 	2,
3650 	SNB_FIFO_LINE_SIZE
3651 };
3652 
3653 
3654 /**
3655  * intel_calculate_wm - calculate watermark level
3656  * @clock_in_khz: pixel clock
3657  * @wm: chip FIFO params
3658  * @pixel_size: display pixel size
3659  * @latency_ns: memory latency for the platform
3660  *
3661  * Calculate the watermark level (the level at which the display plane will
3662  * start fetching from memory again).  Each chip has a different display
3663  * FIFO size and allocation, so the caller needs to figure that out and pass
3664  * in the correct intel_watermark_params structure.
3665  *
3666  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3667  * on the pixel size.  When it reaches the watermark level, it'll start
3668  * fetching FIFO line sized based chunks from memory until the FIFO fills
3669  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3670  * will occur, and a display engine hang could result.
3671  */
intel_calculate_wm(unsigned long clock_in_khz,const struct intel_watermark_params * wm,int fifo_size,int pixel_size,unsigned long latency_ns)3672 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3673 					const struct intel_watermark_params *wm,
3674 					int fifo_size,
3675 					int pixel_size,
3676 					unsigned long latency_ns)
3677 {
3678 	long entries_required, wm_size;
3679 
3680 	/*
3681 	 * Note: we need to make sure we don't overflow for various clock &
3682 	 * latency values.
3683 	 * clocks go from a few thousand to several hundred thousand.
3684 	 * latency is usually a few thousand
3685 	 */
3686 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3687 		1000;
3688 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3689 
3690 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3691 
3692 	wm_size = fifo_size - (entries_required + wm->guard_size);
3693 
3694 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3695 
3696 	/* Don't promote wm_size to unsigned... */
3697 	if (wm_size > (long)wm->max_wm)
3698 		wm_size = wm->max_wm;
3699 	if (wm_size <= 0)
3700 		wm_size = wm->default_wm;
3701 	return wm_size;
3702 }
3703 
3704 struct cxsr_latency {
3705 	int is_desktop;
3706 	int is_ddr3;
3707 	unsigned long fsb_freq;
3708 	unsigned long mem_freq;
3709 	unsigned long display_sr;
3710 	unsigned long display_hpll_disable;
3711 	unsigned long cursor_sr;
3712 	unsigned long cursor_hpll_disable;
3713 };
3714 
3715 static const struct cxsr_latency cxsr_latency_table[] = {
3716 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3717 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3718 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3719 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3720 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3721 
3722 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3723 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3724 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3725 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3726 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3727 
3728 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3729 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3730 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3731 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3732 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3733 
3734 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3735 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3736 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3737 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3738 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3739 
3740 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3741 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3742 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3743 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3744 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3745 
3746 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3747 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3748 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3749 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3750 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3751 };
3752 
intel_get_cxsr_latency(int is_desktop,int is_ddr3,int fsb,int mem)3753 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3754 							 int is_ddr3,
3755 							 int fsb,
3756 							 int mem)
3757 {
3758 	const struct cxsr_latency *latency;
3759 	int i;
3760 
3761 	if (fsb == 0 || mem == 0)
3762 		return NULL;
3763 
3764 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3765 		latency = &cxsr_latency_table[i];
3766 		if (is_desktop == latency->is_desktop &&
3767 		    is_ddr3 == latency->is_ddr3 &&
3768 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
3769 			return latency;
3770 	}
3771 
3772 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3773 
3774 	return NULL;
3775 }
3776 
pineview_disable_cxsr(struct drm_device * dev)3777 static void pineview_disable_cxsr(struct drm_device *dev)
3778 {
3779 	struct drm_i915_private *dev_priv = dev->dev_private;
3780 
3781 	/* deactivate cxsr */
3782 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3783 }
3784 
3785 /*
3786  * Latency for FIFO fetches is dependent on several factors:
3787  *   - memory configuration (speed, channels)
3788  *   - chipset
3789  *   - current MCH state
3790  * It can be fairly high in some situations, so here we assume a fairly
3791  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3792  * set this value too high, the FIFO will fetch frequently to stay full)
3793  * and power consumption (set it too low to save power and we might see
3794  * FIFO underruns and display "flicker").
3795  *
3796  * A value of 5us seems to be a good balance; safe for very low end
3797  * platforms but not overly aggressive on lower latency configs.
3798  */
3799 static const int latency_ns = 5000;
3800 
i9xx_get_fifo_size(struct drm_device * dev,int plane)3801 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3802 {
3803 	struct drm_i915_private *dev_priv = dev->dev_private;
3804 	uint32_t dsparb = I915_READ(DSPARB);
3805 	int size;
3806 
3807 	size = dsparb & 0x7f;
3808 	if (plane)
3809 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3810 
3811 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3812 		      plane ? "B" : "A", size);
3813 
3814 	return size;
3815 }
3816 
i85x_get_fifo_size(struct drm_device * dev,int plane)3817 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3818 {
3819 	struct drm_i915_private *dev_priv = dev->dev_private;
3820 	uint32_t dsparb = I915_READ(DSPARB);
3821 	int size;
3822 
3823 	size = dsparb & 0x1ff;
3824 	if (plane)
3825 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3826 	size >>= 1; /* Convert to cachelines */
3827 
3828 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3829 		      plane ? "B" : "A", size);
3830 
3831 	return size;
3832 }
3833 
i845_get_fifo_size(struct drm_device * dev,int plane)3834 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3835 {
3836 	struct drm_i915_private *dev_priv = dev->dev_private;
3837 	uint32_t dsparb = I915_READ(DSPARB);
3838 	int size;
3839 
3840 	size = dsparb & 0x7f;
3841 	size >>= 2; /* Convert to cachelines */
3842 
3843 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3844 		      plane ? "B" : "A",
3845 		      size);
3846 
3847 	return size;
3848 }
3849 
i830_get_fifo_size(struct drm_device * dev,int plane)3850 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3851 {
3852 	struct drm_i915_private *dev_priv = dev->dev_private;
3853 	uint32_t dsparb = I915_READ(DSPARB);
3854 	int size;
3855 
3856 	size = dsparb & 0x7f;
3857 	size >>= 1; /* Convert to cachelines */
3858 
3859 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3860 		      plane ? "B" : "A", size);
3861 
3862 	return size;
3863 }
3864 
single_enabled_crtc(struct drm_device * dev)3865 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3866 {
3867 	struct drm_crtc *crtc, *enabled = NULL;
3868 
3869 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3870 		if (crtc->enabled && crtc->fb) {
3871 			if (enabled)
3872 				return NULL;
3873 			enabled = crtc;
3874 		}
3875 	}
3876 
3877 	return enabled;
3878 }
3879 
pineview_update_wm(struct drm_device * dev)3880 static void pineview_update_wm(struct drm_device *dev)
3881 {
3882 	struct drm_i915_private *dev_priv = dev->dev_private;
3883 	struct drm_crtc *crtc;
3884 	const struct cxsr_latency *latency;
3885 	u32 reg;
3886 	unsigned long wm;
3887 
3888 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3889 					 dev_priv->fsb_freq, dev_priv->mem_freq);
3890 	if (!latency) {
3891 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3892 		pineview_disable_cxsr(dev);
3893 		return;
3894 	}
3895 
3896 	crtc = single_enabled_crtc(dev);
3897 	if (crtc) {
3898 		int clock = crtc->mode.clock;
3899 		int pixel_size = crtc->fb->bits_per_pixel / 8;
3900 
3901 		/* Display SR */
3902 		wm = intel_calculate_wm(clock, &pineview_display_wm,
3903 					pineview_display_wm.fifo_size,
3904 					pixel_size, latency->display_sr);
3905 		reg = I915_READ(DSPFW1);
3906 		reg &= ~DSPFW_SR_MASK;
3907 		reg |= wm << DSPFW_SR_SHIFT;
3908 		I915_WRITE(DSPFW1, reg);
3909 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3910 
3911 		/* cursor SR */
3912 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3913 					pineview_display_wm.fifo_size,
3914 					pixel_size, latency->cursor_sr);
3915 		reg = I915_READ(DSPFW3);
3916 		reg &= ~DSPFW_CURSOR_SR_MASK;
3917 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3918 		I915_WRITE(DSPFW3, reg);
3919 
3920 		/* Display HPLL off SR */
3921 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3922 					pineview_display_hplloff_wm.fifo_size,
3923 					pixel_size, latency->display_hpll_disable);
3924 		reg = I915_READ(DSPFW3);
3925 		reg &= ~DSPFW_HPLL_SR_MASK;
3926 		reg |= wm & DSPFW_HPLL_SR_MASK;
3927 		I915_WRITE(DSPFW3, reg);
3928 
3929 		/* cursor HPLL off SR */
3930 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3931 					pineview_display_hplloff_wm.fifo_size,
3932 					pixel_size, latency->cursor_hpll_disable);
3933 		reg = I915_READ(DSPFW3);
3934 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
3935 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3936 		I915_WRITE(DSPFW3, reg);
3937 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3938 
3939 		/* activate cxsr */
3940 		I915_WRITE(DSPFW3,
3941 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3942 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
3943 	} else {
3944 		pineview_disable_cxsr(dev);
3945 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
3946 	}
3947 }
3948 
g4x_compute_wm0(struct drm_device * dev,int plane,const struct intel_watermark_params * display,int display_latency_ns,const struct intel_watermark_params * cursor,int cursor_latency_ns,int * plane_wm,int * cursor_wm)3949 static bool g4x_compute_wm0(struct drm_device *dev,
3950 			    int plane,
3951 			    const struct intel_watermark_params *display,
3952 			    int display_latency_ns,
3953 			    const struct intel_watermark_params *cursor,
3954 			    int cursor_latency_ns,
3955 			    int *plane_wm,
3956 			    int *cursor_wm)
3957 {
3958 	struct drm_crtc *crtc;
3959 	int htotal, hdisplay, clock, pixel_size;
3960 	int line_time_us, line_count;
3961 	int entries, tlb_miss;
3962 
3963 	crtc = intel_get_crtc_for_plane(dev, plane);
3964 	if (crtc->fb == NULL || !crtc->enabled) {
3965 		*cursor_wm = cursor->guard_size;
3966 		*plane_wm = display->guard_size;
3967 		return false;
3968 	}
3969 
3970 	htotal = crtc->mode.htotal;
3971 	hdisplay = crtc->mode.hdisplay;
3972 	clock = crtc->mode.clock;
3973 	pixel_size = crtc->fb->bits_per_pixel / 8;
3974 
3975 	/* Use the small buffer method to calculate plane watermark */
3976 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3977 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3978 	if (tlb_miss > 0)
3979 		entries += tlb_miss;
3980 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
3981 	*plane_wm = entries + display->guard_size;
3982 	if (*plane_wm > (int)display->max_wm)
3983 		*plane_wm = display->max_wm;
3984 
3985 	/* Use the large buffer method to calculate cursor watermark */
3986 	line_time_us = ((htotal * 1000) / clock);
3987 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3988 	entries = line_count * 64 * pixel_size;
3989 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3990 	if (tlb_miss > 0)
3991 		entries += tlb_miss;
3992 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3993 	*cursor_wm = entries + cursor->guard_size;
3994 	if (*cursor_wm > (int)cursor->max_wm)
3995 		*cursor_wm = (int)cursor->max_wm;
3996 
3997 	return true;
3998 }
3999 
4000 /*
4001  * Check the wm result.
4002  *
4003  * If any calculated watermark values is larger than the maximum value that
4004  * can be programmed into the associated watermark register, that watermark
4005  * must be disabled.
4006  */
g4x_check_srwm(struct drm_device * dev,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)4007 static bool g4x_check_srwm(struct drm_device *dev,
4008 			   int display_wm, int cursor_wm,
4009 			   const struct intel_watermark_params *display,
4010 			   const struct intel_watermark_params *cursor)
4011 {
4012 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4013 		      display_wm, cursor_wm);
4014 
4015 	if (display_wm > display->max_wm) {
4016 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4017 			      display_wm, display->max_wm);
4018 		return false;
4019 	}
4020 
4021 	if (cursor_wm > cursor->max_wm) {
4022 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4023 			      cursor_wm, cursor->max_wm);
4024 		return false;
4025 	}
4026 
4027 	if (!(display_wm || cursor_wm)) {
4028 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4029 		return false;
4030 	}
4031 
4032 	return true;
4033 }
4034 
g4x_compute_srwm(struct drm_device * dev,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * display_wm,int * cursor_wm)4035 static bool g4x_compute_srwm(struct drm_device *dev,
4036 			     int plane,
4037 			     int latency_ns,
4038 			     const struct intel_watermark_params *display,
4039 			     const struct intel_watermark_params *cursor,
4040 			     int *display_wm, int *cursor_wm)
4041 {
4042 	struct drm_crtc *crtc;
4043 	int hdisplay, htotal, pixel_size, clock;
4044 	unsigned long line_time_us;
4045 	int line_count, line_size;
4046 	int small, large;
4047 	int entries;
4048 
4049 	if (!latency_ns) {
4050 		*display_wm = *cursor_wm = 0;
4051 		return false;
4052 	}
4053 
4054 	crtc = intel_get_crtc_for_plane(dev, plane);
4055 	hdisplay = crtc->mode.hdisplay;
4056 	htotal = crtc->mode.htotal;
4057 	clock = crtc->mode.clock;
4058 	pixel_size = crtc->fb->bits_per_pixel / 8;
4059 
4060 	line_time_us = (htotal * 1000) / clock;
4061 	line_count = (latency_ns / line_time_us + 1000) / 1000;
4062 	line_size = hdisplay * pixel_size;
4063 
4064 	/* Use the minimum of the small and large buffer method for primary */
4065 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4066 	large = line_count * line_size;
4067 
4068 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4069 	*display_wm = entries + display->guard_size;
4070 
4071 	/* calculate the self-refresh watermark for display cursor */
4072 	entries = line_count * pixel_size * 64;
4073 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4074 	*cursor_wm = entries + cursor->guard_size;
4075 
4076 	return g4x_check_srwm(dev,
4077 			      *display_wm, *cursor_wm,
4078 			      display, cursor);
4079 }
4080 
4081 #define single_plane_enabled(mask) is_power_of_2(mask)
4082 
g4x_update_wm(struct drm_device * dev)4083 static void g4x_update_wm(struct drm_device *dev)
4084 {
4085 	static const int sr_latency_ns = 12000;
4086 	struct drm_i915_private *dev_priv = dev->dev_private;
4087 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4088 	int plane_sr, cursor_sr;
4089 	unsigned int enabled = 0;
4090 
4091 	if (g4x_compute_wm0(dev, 0,
4092 			    &g4x_wm_info, latency_ns,
4093 			    &g4x_cursor_wm_info, latency_ns,
4094 			    &planea_wm, &cursora_wm))
4095 		enabled |= 1;
4096 
4097 	if (g4x_compute_wm0(dev, 1,
4098 			    &g4x_wm_info, latency_ns,
4099 			    &g4x_cursor_wm_info, latency_ns,
4100 			    &planeb_wm, &cursorb_wm))
4101 		enabled |= 2;
4102 
4103 	plane_sr = cursor_sr = 0;
4104 	if (single_plane_enabled(enabled) &&
4105 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
4106 			     sr_latency_ns,
4107 			     &g4x_wm_info,
4108 			     &g4x_cursor_wm_info,
4109 			     &plane_sr, &cursor_sr))
4110 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4111 	else
4112 		I915_WRITE(FW_BLC_SELF,
4113 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4114 
4115 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4116 		      planea_wm, cursora_wm,
4117 		      planeb_wm, cursorb_wm,
4118 		      plane_sr, cursor_sr);
4119 
4120 	I915_WRITE(DSPFW1,
4121 		   (plane_sr << DSPFW_SR_SHIFT) |
4122 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4123 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
4124 		   planea_wm);
4125 	I915_WRITE(DSPFW2,
4126 		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4127 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
4128 	/* HPLL off in SR has some issues on G4x... disable it */
4129 	I915_WRITE(DSPFW3,
4130 		   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4131 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4132 }
4133 
i965_update_wm(struct drm_device * dev)4134 static void i965_update_wm(struct drm_device *dev)
4135 {
4136 	struct drm_i915_private *dev_priv = dev->dev_private;
4137 	struct drm_crtc *crtc;
4138 	int srwm = 1;
4139 	int cursor_sr = 16;
4140 
4141 	/* Calc sr entries for one plane configs */
4142 	crtc = single_enabled_crtc(dev);
4143 	if (crtc) {
4144 		/* self-refresh has much higher latency */
4145 		static const int sr_latency_ns = 12000;
4146 		int clock = crtc->mode.clock;
4147 		int htotal = crtc->mode.htotal;
4148 		int hdisplay = crtc->mode.hdisplay;
4149 		int pixel_size = crtc->fb->bits_per_pixel / 8;
4150 		unsigned long line_time_us;
4151 		int entries;
4152 
4153 		line_time_us = ((htotal * 1000) / clock);
4154 
4155 		/* Use ns/us then divide to preserve precision */
4156 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4157 			pixel_size * hdisplay;
4158 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4159 		srwm = I965_FIFO_SIZE - entries;
4160 		if (srwm < 0)
4161 			srwm = 1;
4162 		srwm &= 0x1ff;
4163 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4164 			      entries, srwm);
4165 
4166 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4167 			pixel_size * 64;
4168 		entries = DIV_ROUND_UP(entries,
4169 					  i965_cursor_wm_info.cacheline_size);
4170 		cursor_sr = i965_cursor_wm_info.fifo_size -
4171 			(entries + i965_cursor_wm_info.guard_size);
4172 
4173 		if (cursor_sr > i965_cursor_wm_info.max_wm)
4174 			cursor_sr = i965_cursor_wm_info.max_wm;
4175 
4176 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4177 			      "cursor %d\n", srwm, cursor_sr);
4178 
4179 		if (IS_CRESTLINE(dev))
4180 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4181 	} else {
4182 		/* Turn off self refresh if both pipes are enabled */
4183 		if (IS_CRESTLINE(dev))
4184 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4185 				   & ~FW_BLC_SELF_EN);
4186 	}
4187 
4188 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4189 		      srwm);
4190 
4191 	/* 965 has limitations... */
4192 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4193 		   (8 << 16) | (8 << 8) | (8 << 0));
4194 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4195 	/* update cursor SR watermark */
4196 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4197 }
4198 
i9xx_update_wm(struct drm_device * dev)4199 static void i9xx_update_wm(struct drm_device *dev)
4200 {
4201 	struct drm_i915_private *dev_priv = dev->dev_private;
4202 	const struct intel_watermark_params *wm_info;
4203 	uint32_t fwater_lo;
4204 	uint32_t fwater_hi;
4205 	int cwm, srwm = 1;
4206 	int fifo_size;
4207 	int planea_wm, planeb_wm;
4208 	struct drm_crtc *crtc, *enabled = NULL;
4209 
4210 	if (IS_I945GM(dev))
4211 		wm_info = &i945_wm_info;
4212 	else if (!IS_GEN2(dev))
4213 		wm_info = &i915_wm_info;
4214 	else
4215 		wm_info = &i855_wm_info;
4216 
4217 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4218 	crtc = intel_get_crtc_for_plane(dev, 0);
4219 	if (crtc->enabled && crtc->fb) {
4220 		planea_wm = intel_calculate_wm(crtc->mode.clock,
4221 					       wm_info, fifo_size,
4222 					       crtc->fb->bits_per_pixel / 8,
4223 					       latency_ns);
4224 		enabled = crtc;
4225 	} else
4226 		planea_wm = fifo_size - wm_info->guard_size;
4227 
4228 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4229 	crtc = intel_get_crtc_for_plane(dev, 1);
4230 	if (crtc->enabled && crtc->fb) {
4231 		planeb_wm = intel_calculate_wm(crtc->mode.clock,
4232 					       wm_info, fifo_size,
4233 					       crtc->fb->bits_per_pixel / 8,
4234 					       latency_ns);
4235 		if (enabled == NULL)
4236 			enabled = crtc;
4237 		else
4238 			enabled = NULL;
4239 	} else
4240 		planeb_wm = fifo_size - wm_info->guard_size;
4241 
4242 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4243 
4244 	/*
4245 	 * Overlay gets an aggressive default since video jitter is bad.
4246 	 */
4247 	cwm = 2;
4248 
4249 	/* Play safe and disable self-refresh before adjusting watermarks. */
4250 	if (IS_I945G(dev) || IS_I945GM(dev))
4251 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4252 	else if (IS_I915GM(dev))
4253 		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4254 
4255 	/* Calc sr entries for one plane configs */
4256 	if (HAS_FW_BLC(dev) && enabled) {
4257 		/* self-refresh has much higher latency */
4258 		static const int sr_latency_ns = 6000;
4259 		int clock = enabled->mode.clock;
4260 		int htotal = enabled->mode.htotal;
4261 		int hdisplay = enabled->mode.hdisplay;
4262 		int pixel_size = enabled->fb->bits_per_pixel / 8;
4263 		unsigned long line_time_us;
4264 		int entries;
4265 
4266 		line_time_us = (htotal * 1000) / clock;
4267 
4268 		/* Use ns/us then divide to preserve precision */
4269 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4270 			pixel_size * hdisplay;
4271 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4272 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4273 		srwm = wm_info->fifo_size - entries;
4274 		if (srwm < 0)
4275 			srwm = 1;
4276 
4277 		if (IS_I945G(dev) || IS_I945GM(dev))
4278 			I915_WRITE(FW_BLC_SELF,
4279 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4280 		else if (IS_I915GM(dev))
4281 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4282 	}
4283 
4284 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4285 		      planea_wm, planeb_wm, cwm, srwm);
4286 
4287 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4288 	fwater_hi = (cwm & 0x1f);
4289 
4290 	/* Set request length to 8 cachelines per fetch */
4291 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4292 	fwater_hi = fwater_hi | (1 << 8);
4293 
4294 	I915_WRITE(FW_BLC, fwater_lo);
4295 	I915_WRITE(FW_BLC2, fwater_hi);
4296 
4297 	if (HAS_FW_BLC(dev)) {
4298 		if (enabled) {
4299 			if (IS_I945G(dev) || IS_I945GM(dev))
4300 				I915_WRITE(FW_BLC_SELF,
4301 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4302 			else if (IS_I915GM(dev))
4303 				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4304 			DRM_DEBUG_KMS("memory self refresh enabled\n");
4305 		} else
4306 			DRM_DEBUG_KMS("memory self refresh disabled\n");
4307 	}
4308 }
4309 
i830_update_wm(struct drm_device * dev)4310 static void i830_update_wm(struct drm_device *dev)
4311 {
4312 	struct drm_i915_private *dev_priv = dev->dev_private;
4313 	struct drm_crtc *crtc;
4314 	uint32_t fwater_lo;
4315 	int planea_wm;
4316 
4317 	crtc = single_enabled_crtc(dev);
4318 	if (crtc == NULL)
4319 		return;
4320 
4321 	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4322 				       dev_priv->display.get_fifo_size(dev, 0),
4323 				       crtc->fb->bits_per_pixel / 8,
4324 				       latency_ns);
4325 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4326 	fwater_lo |= (3<<8) | planea_wm;
4327 
4328 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4329 
4330 	I915_WRITE(FW_BLC, fwater_lo);
4331 }
4332 
4333 #define ILK_LP0_PLANE_LATENCY		700
4334 #define ILK_LP0_CURSOR_LATENCY		1300
4335 
4336 /*
4337  * Check the wm result.
4338  *
4339  * If any calculated watermark values is larger than the maximum value that
4340  * can be programmed into the associated watermark register, that watermark
4341  * must be disabled.
4342  */
ironlake_check_srwm(struct drm_device * dev,int level,int fbc_wm,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)4343 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4344 				int fbc_wm, int display_wm, int cursor_wm,
4345 				const struct intel_watermark_params *display,
4346 				const struct intel_watermark_params *cursor)
4347 {
4348 	struct drm_i915_private *dev_priv = dev->dev_private;
4349 
4350 	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4351 		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4352 
4353 	if (fbc_wm > SNB_FBC_MAX_SRWM) {
4354 		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4355 			      fbc_wm, SNB_FBC_MAX_SRWM, level);
4356 
4357 		/* fbc has it's own way to disable FBC WM */
4358 		I915_WRITE(DISP_ARB_CTL,
4359 			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4360 		return false;
4361 	}
4362 
4363 	if (display_wm > display->max_wm) {
4364 		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4365 			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
4366 		return false;
4367 	}
4368 
4369 	if (cursor_wm > cursor->max_wm) {
4370 		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4371 			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4372 		return false;
4373 	}
4374 
4375 	if (!(fbc_wm || display_wm || cursor_wm)) {
4376 		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4377 		return false;
4378 	}
4379 
4380 	return true;
4381 }
4382 
4383 /*
4384  * Compute watermark values of WM[1-3],
4385  */
ironlake_compute_srwm(struct drm_device * dev,int level,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * fbc_wm,int * display_wm,int * cursor_wm)4386 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4387 				  int latency_ns,
4388 				  const struct intel_watermark_params *display,
4389 				  const struct intel_watermark_params *cursor,
4390 				  int *fbc_wm, int *display_wm, int *cursor_wm)
4391 {
4392 	struct drm_crtc *crtc;
4393 	unsigned long line_time_us;
4394 	int hdisplay, htotal, pixel_size, clock;
4395 	int line_count, line_size;
4396 	int small, large;
4397 	int entries;
4398 
4399 	if (!latency_ns) {
4400 		*fbc_wm = *display_wm = *cursor_wm = 0;
4401 		return false;
4402 	}
4403 
4404 	crtc = intel_get_crtc_for_plane(dev, plane);
4405 	hdisplay = crtc->mode.hdisplay;
4406 	htotal = crtc->mode.htotal;
4407 	clock = crtc->mode.clock;
4408 	pixel_size = crtc->fb->bits_per_pixel / 8;
4409 
4410 	line_time_us = (htotal * 1000) / clock;
4411 	line_count = (latency_ns / line_time_us + 1000) / 1000;
4412 	line_size = hdisplay * pixel_size;
4413 
4414 	/* Use the minimum of the small and large buffer method for primary */
4415 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4416 	large = line_count * line_size;
4417 
4418 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4419 	*display_wm = entries + display->guard_size;
4420 
4421 	/*
4422 	 * Spec says:
4423 	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4424 	 */
4425 	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4426 
4427 	/* calculate the self-refresh watermark for display cursor */
4428 	entries = line_count * pixel_size * 64;
4429 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4430 	*cursor_wm = entries + cursor->guard_size;
4431 
4432 	return ironlake_check_srwm(dev, level,
4433 				   *fbc_wm, *display_wm, *cursor_wm,
4434 				   display, cursor);
4435 }
4436 
ironlake_update_wm(struct drm_device * dev)4437 static void ironlake_update_wm(struct drm_device *dev)
4438 {
4439 	struct drm_i915_private *dev_priv = dev->dev_private;
4440 	int fbc_wm, plane_wm, cursor_wm;
4441 	unsigned int enabled;
4442 
4443 	enabled = 0;
4444 	if (g4x_compute_wm0(dev, 0,
4445 			    &ironlake_display_wm_info,
4446 			    ILK_LP0_PLANE_LATENCY,
4447 			    &ironlake_cursor_wm_info,
4448 			    ILK_LP0_CURSOR_LATENCY,
4449 			    &plane_wm, &cursor_wm)) {
4450 		I915_WRITE(WM0_PIPEA_ILK,
4451 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4452 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4453 			      " plane %d, " "cursor: %d\n",
4454 			      plane_wm, cursor_wm);
4455 		enabled |= 1;
4456 	}
4457 
4458 	if (g4x_compute_wm0(dev, 1,
4459 			    &ironlake_display_wm_info,
4460 			    ILK_LP0_PLANE_LATENCY,
4461 			    &ironlake_cursor_wm_info,
4462 			    ILK_LP0_CURSOR_LATENCY,
4463 			    &plane_wm, &cursor_wm)) {
4464 		I915_WRITE(WM0_PIPEB_ILK,
4465 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4466 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4467 			      " plane %d, cursor: %d\n",
4468 			      plane_wm, cursor_wm);
4469 		enabled |= 2;
4470 	}
4471 
4472 	/*
4473 	 * Calculate and update the self-refresh watermark only when one
4474 	 * display plane is used.
4475 	 */
4476 	I915_WRITE(WM3_LP_ILK, 0);
4477 	I915_WRITE(WM2_LP_ILK, 0);
4478 	I915_WRITE(WM1_LP_ILK, 0);
4479 
4480 	if (!single_plane_enabled(enabled))
4481 		return;
4482 	enabled = ffs(enabled) - 1;
4483 
4484 	/* WM1 */
4485 	if (!ironlake_compute_srwm(dev, 1, enabled,
4486 				   ILK_READ_WM1_LATENCY() * 500,
4487 				   &ironlake_display_srwm_info,
4488 				   &ironlake_cursor_srwm_info,
4489 				   &fbc_wm, &plane_wm, &cursor_wm))
4490 		return;
4491 
4492 	I915_WRITE(WM1_LP_ILK,
4493 		   WM1_LP_SR_EN |
4494 		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4495 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
4496 		   (plane_wm << WM1_LP_SR_SHIFT) |
4497 		   cursor_wm);
4498 
4499 	/* WM2 */
4500 	if (!ironlake_compute_srwm(dev, 2, enabled,
4501 				   ILK_READ_WM2_LATENCY() * 500,
4502 				   &ironlake_display_srwm_info,
4503 				   &ironlake_cursor_srwm_info,
4504 				   &fbc_wm, &plane_wm, &cursor_wm))
4505 		return;
4506 
4507 	I915_WRITE(WM2_LP_ILK,
4508 		   WM2_LP_EN |
4509 		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4510 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
4511 		   (plane_wm << WM1_LP_SR_SHIFT) |
4512 		   cursor_wm);
4513 
4514 	/*
4515 	 * WM3 is unsupported on ILK, probably because we don't have latency
4516 	 * data for that power state
4517 	 */
4518 }
4519 
sandybridge_update_wm(struct drm_device * dev)4520 void sandybridge_update_wm(struct drm_device *dev)
4521 {
4522 	struct drm_i915_private *dev_priv = dev->dev_private;
4523 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
4524 	int fbc_wm, plane_wm, cursor_wm;
4525 	unsigned int enabled;
4526 
4527 	enabled = 0;
4528 	if (g4x_compute_wm0(dev, 0,
4529 			    &sandybridge_display_wm_info, latency,
4530 			    &sandybridge_cursor_wm_info, latency,
4531 			    &plane_wm, &cursor_wm)) {
4532 		I915_WRITE(WM0_PIPEA_ILK,
4533 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4534 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4535 			      " plane %d, " "cursor: %d\n",
4536 			      plane_wm, cursor_wm);
4537 		enabled |= 1;
4538 	}
4539 
4540 	if (g4x_compute_wm0(dev, 1,
4541 			    &sandybridge_display_wm_info, latency,
4542 			    &sandybridge_cursor_wm_info, latency,
4543 			    &plane_wm, &cursor_wm)) {
4544 		I915_WRITE(WM0_PIPEB_ILK,
4545 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4546 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4547 			      " plane %d, cursor: %d\n",
4548 			      plane_wm, cursor_wm);
4549 		enabled |= 2;
4550 	}
4551 
4552 	/* IVB has 3 pipes */
4553 	if (IS_IVYBRIDGE(dev) &&
4554 	    g4x_compute_wm0(dev, 2,
4555 			    &sandybridge_display_wm_info, latency,
4556 			    &sandybridge_cursor_wm_info, latency,
4557 			    &plane_wm, &cursor_wm)) {
4558 		I915_WRITE(WM0_PIPEC_IVB,
4559 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4560 		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4561 			      " plane %d, cursor: %d\n",
4562 			      plane_wm, cursor_wm);
4563 		enabled |= 3;
4564 	}
4565 
4566 	/*
4567 	 * Calculate and update the self-refresh watermark only when one
4568 	 * display plane is used.
4569 	 *
4570 	 * SNB support 3 levels of watermark.
4571 	 *
4572 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4573 	 * and disabled in the descending order
4574 	 *
4575 	 */
4576 	I915_WRITE(WM3_LP_ILK, 0);
4577 	I915_WRITE(WM2_LP_ILK, 0);
4578 	I915_WRITE(WM1_LP_ILK, 0);
4579 
4580 	if (!single_plane_enabled(enabled) ||
4581 	    dev_priv->sprite_scaling_enabled)
4582 		return;
4583 	enabled = ffs(enabled) - 1;
4584 
4585 	/* WM1 */
4586 	if (!ironlake_compute_srwm(dev, 1, enabled,
4587 				   SNB_READ_WM1_LATENCY() * 500,
4588 				   &sandybridge_display_srwm_info,
4589 				   &sandybridge_cursor_srwm_info,
4590 				   &fbc_wm, &plane_wm, &cursor_wm))
4591 		return;
4592 
4593 	I915_WRITE(WM1_LP_ILK,
4594 		   WM1_LP_SR_EN |
4595 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4596 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
4597 		   (plane_wm << WM1_LP_SR_SHIFT) |
4598 		   cursor_wm);
4599 
4600 	/* WM2 */
4601 	if (!ironlake_compute_srwm(dev, 2, enabled,
4602 				   SNB_READ_WM2_LATENCY() * 500,
4603 				   &sandybridge_display_srwm_info,
4604 				   &sandybridge_cursor_srwm_info,
4605 				   &fbc_wm, &plane_wm, &cursor_wm))
4606 		return;
4607 
4608 	I915_WRITE(WM2_LP_ILK,
4609 		   WM2_LP_EN |
4610 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4611 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
4612 		   (plane_wm << WM1_LP_SR_SHIFT) |
4613 		   cursor_wm);
4614 
4615 	/* WM3 */
4616 	if (!ironlake_compute_srwm(dev, 3, enabled,
4617 				   SNB_READ_WM3_LATENCY() * 500,
4618 				   &sandybridge_display_srwm_info,
4619 				   &sandybridge_cursor_srwm_info,
4620 				   &fbc_wm, &plane_wm, &cursor_wm))
4621 		return;
4622 
4623 	I915_WRITE(WM3_LP_ILK,
4624 		   WM3_LP_EN |
4625 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4626 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
4627 		   (plane_wm << WM1_LP_SR_SHIFT) |
4628 		   cursor_wm);
4629 }
4630 
4631 static bool
sandybridge_compute_sprite_wm(struct drm_device * dev,int plane,uint32_t sprite_width,int pixel_size,const struct intel_watermark_params * display,int display_latency_ns,int * sprite_wm)4632 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4633 			      uint32_t sprite_width, int pixel_size,
4634 			      const struct intel_watermark_params *display,
4635 			      int display_latency_ns, int *sprite_wm)
4636 {
4637 	struct drm_crtc *crtc;
4638 	int clock;
4639 	int entries, tlb_miss;
4640 
4641 	crtc = intel_get_crtc_for_plane(dev, plane);
4642 	if (crtc->fb == NULL || !crtc->enabled) {
4643 		*sprite_wm = display->guard_size;
4644 		return false;
4645 	}
4646 
4647 	clock = crtc->mode.clock;
4648 
4649 	/* Use the small buffer method to calculate the sprite watermark */
4650 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4651 	tlb_miss = display->fifo_size*display->cacheline_size -
4652 		sprite_width * 8;
4653 	if (tlb_miss > 0)
4654 		entries += tlb_miss;
4655 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
4656 	*sprite_wm = entries + display->guard_size;
4657 	if (*sprite_wm > (int)display->max_wm)
4658 		*sprite_wm = display->max_wm;
4659 
4660 	return true;
4661 }
4662 
4663 static bool
sandybridge_compute_sprite_srwm(struct drm_device * dev,int plane,uint32_t sprite_width,int pixel_size,const struct intel_watermark_params * display,int latency_ns,int * sprite_wm)4664 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4665 				uint32_t sprite_width, int pixel_size,
4666 				const struct intel_watermark_params *display,
4667 				int latency_ns, int *sprite_wm)
4668 {
4669 	struct drm_crtc *crtc;
4670 	unsigned long line_time_us;
4671 	int clock;
4672 	int line_count, line_size;
4673 	int small, large;
4674 	int entries;
4675 
4676 	if (!latency_ns) {
4677 		*sprite_wm = 0;
4678 		return false;
4679 	}
4680 
4681 	crtc = intel_get_crtc_for_plane(dev, plane);
4682 	clock = crtc->mode.clock;
4683 	if (!clock) {
4684 		*sprite_wm = 0;
4685 		return false;
4686 	}
4687 
4688 	line_time_us = (sprite_width * 1000) / clock;
4689 	if (!line_time_us) {
4690 		*sprite_wm = 0;
4691 		return false;
4692 	}
4693 
4694 	line_count = (latency_ns / line_time_us + 1000) / 1000;
4695 	line_size = sprite_width * pixel_size;
4696 
4697 	/* Use the minimum of the small and large buffer method for primary */
4698 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4699 	large = line_count * line_size;
4700 
4701 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4702 	*sprite_wm = entries + display->guard_size;
4703 
4704 	return *sprite_wm > 0x3ff ? false : true;
4705 }
4706 
sandybridge_update_sprite_wm(struct drm_device * dev,int pipe,uint32_t sprite_width,int pixel_size)4707 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4708 					 uint32_t sprite_width, int pixel_size)
4709 {
4710 	struct drm_i915_private *dev_priv = dev->dev_private;
4711 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
4712 	int sprite_wm, reg;
4713 	int ret;
4714 
4715 	switch (pipe) {
4716 	case 0:
4717 		reg = WM0_PIPEA_ILK;
4718 		break;
4719 	case 1:
4720 		reg = WM0_PIPEB_ILK;
4721 		break;
4722 	case 2:
4723 		reg = WM0_PIPEC_IVB;
4724 		break;
4725 	default:
4726 		return; /* bad pipe */
4727 	}
4728 
4729 	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4730 					    &sandybridge_display_wm_info,
4731 					    latency, &sprite_wm);
4732 	if (!ret) {
4733 		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4734 			      pipe);
4735 		return;
4736 	}
4737 
4738 	I915_WRITE(reg, I915_READ(reg) | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4739 	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4740 
4741 
4742 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4743 					      pixel_size,
4744 					      &sandybridge_display_srwm_info,
4745 					      SNB_READ_WM1_LATENCY() * 500,
4746 					      &sprite_wm);
4747 	if (!ret) {
4748 		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4749 			      pipe);
4750 		return;
4751 	}
4752 	I915_WRITE(WM1S_LP_ILK, sprite_wm);
4753 
4754 	/* Only IVB has two more LP watermarks for sprite */
4755 	if (!IS_IVYBRIDGE(dev))
4756 		return;
4757 
4758 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4759 					      pixel_size,
4760 					      &sandybridge_display_srwm_info,
4761 					      SNB_READ_WM2_LATENCY() * 500,
4762 					      &sprite_wm);
4763 	if (!ret) {
4764 		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4765 			      pipe);
4766 		return;
4767 	}
4768 	I915_WRITE(WM2S_LP_IVB, sprite_wm);
4769 
4770 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4771 					      pixel_size,
4772 					      &sandybridge_display_srwm_info,
4773 					      SNB_READ_WM3_LATENCY() * 500,
4774 					      &sprite_wm);
4775 	if (!ret) {
4776 		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4777 			      pipe);
4778 		return;
4779 	}
4780 	I915_WRITE(WM3S_LP_IVB, sprite_wm);
4781 }
4782 
4783 /**
4784  * intel_update_watermarks - update FIFO watermark values based on current modes
4785  *
4786  * Calculate watermark values for the various WM regs based on current mode
4787  * and plane configuration.
4788  *
4789  * There are several cases to deal with here:
4790  *   - normal (i.e. non-self-refresh)
4791  *   - self-refresh (SR) mode
4792  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4793  *   - lines are small relative to FIFO size (buffer can hold more than 2
4794  *     lines), so need to account for TLB latency
4795  *
4796  *   The normal calculation is:
4797  *     watermark = dotclock * bytes per pixel * latency
4798  *   where latency is platform & configuration dependent (we assume pessimal
4799  *   values here).
4800  *
4801  *   The SR calculation is:
4802  *     watermark = (trunc(latency/line time)+1) * surface width *
4803  *       bytes per pixel
4804  *   where
4805  *     line time = htotal / dotclock
4806  *     surface width = hdisplay for normal plane and 64 for cursor
4807  *   and latency is assumed to be high, as above.
4808  *
4809  * The final value programmed to the register should always be rounded up,
4810  * and include an extra 2 entries to account for clock crossings.
4811  *
4812  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4813  * to set the non-SR watermarks to 8.
4814  */
intel_update_watermarks(struct drm_device * dev)4815 static void intel_update_watermarks(struct drm_device *dev)
4816 {
4817 	struct drm_i915_private *dev_priv = dev->dev_private;
4818 
4819 	if (dev_priv->display.update_wm)
4820 		dev_priv->display.update_wm(dev);
4821 }
4822 
intel_update_sprite_watermarks(struct drm_device * dev,int pipe,uint32_t sprite_width,int pixel_size)4823 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4824 				    uint32_t sprite_width, int pixel_size)
4825 {
4826 	struct drm_i915_private *dev_priv = dev->dev_private;
4827 
4828 	if (dev_priv->display.update_sprite_wm)
4829 		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4830 						   pixel_size);
4831 }
4832 
intel_panel_use_ssc(struct drm_i915_private * dev_priv)4833 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4834 {
4835 	if (i915_panel_use_ssc >= 0)
4836 		return i915_panel_use_ssc != 0;
4837 	return dev_priv->lvds_use_ssc
4838 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4839 }
4840 
4841 /**
4842  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4843  * @crtc: CRTC structure
4844  * @mode: requested mode
4845  *
4846  * A pipe may be connected to one or more outputs.  Based on the depth of the
4847  * attached framebuffer, choose a good color depth to use on the pipe.
4848  *
4849  * If possible, match the pipe depth to the fb depth.  In some cases, this
4850  * isn't ideal, because the connected output supports a lesser or restricted
4851  * set of depths.  Resolve that here:
4852  *    LVDS typically supports only 6bpc, so clamp down in that case
4853  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4854  *    Displays may support a restricted set as well, check EDID and clamp as
4855  *      appropriate.
4856  *    DP may want to dither down to 6bpc to fit larger modes
4857  *
4858  * RETURNS:
4859  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4860  * true if they don't match).
4861  */
intel_choose_pipe_bpp_dither(struct drm_crtc * crtc,unsigned int * pipe_bpp,struct drm_display_mode * mode)4862 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4863 					 unsigned int *pipe_bpp,
4864 					 struct drm_display_mode *mode)
4865 {
4866 	struct drm_device *dev = crtc->dev;
4867 	struct drm_i915_private *dev_priv = dev->dev_private;
4868 	struct drm_encoder *encoder;
4869 	struct drm_connector *connector;
4870 	unsigned int display_bpc = UINT_MAX, bpc;
4871 
4872 	/* Walk the encoders & connectors on this crtc, get min bpc */
4873 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4874 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4875 
4876 		if (encoder->crtc != crtc)
4877 			continue;
4878 
4879 		if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4880 			unsigned int lvds_bpc;
4881 
4882 			if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4883 			    LVDS_A3_POWER_UP)
4884 				lvds_bpc = 8;
4885 			else
4886 				lvds_bpc = 6;
4887 
4888 			if (lvds_bpc < display_bpc) {
4889 				DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4890 				display_bpc = lvds_bpc;
4891 			}
4892 			continue;
4893 		}
4894 
4895 		if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4896 			/* Use VBT settings if we have an eDP panel */
4897 			unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4898 
4899 			if (edp_bpc < display_bpc) {
4900 				DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4901 				display_bpc = edp_bpc;
4902 			}
4903 			continue;
4904 		}
4905 
4906 		/* Not one of the known troublemakers, check the EDID */
4907 		list_for_each_entry(connector, &dev->mode_config.connector_list,
4908 				    head) {
4909 			if (connector->encoder != encoder)
4910 				continue;
4911 
4912 			/* Don't use an invalid EDID bpc value */
4913 			if (connector->display_info.bpc &&
4914 			    connector->display_info.bpc < display_bpc) {
4915 				DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4916 				display_bpc = connector->display_info.bpc;
4917 			}
4918 		}
4919 
4920 		/*
4921 		 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4922 		 * through, clamp it down.  (Note: >12bpc will be caught below.)
4923 		 */
4924 		if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4925 			if (display_bpc > 8 && display_bpc < 12) {
4926 				DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4927 				display_bpc = 12;
4928 			} else {
4929 				DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4930 				display_bpc = 8;
4931 			}
4932 		}
4933 	}
4934 
4935 	if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4936 		DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4937 		display_bpc = 6;
4938 	}
4939 
4940 	/*
4941 	 * We could just drive the pipe at the highest bpc all the time and
4942 	 * enable dithering as needed, but that costs bandwidth.  So choose
4943 	 * the minimum value that expresses the full color range of the fb but
4944 	 * also stays within the max display bpc discovered above.
4945 	 */
4946 
4947 	switch (crtc->fb->depth) {
4948 	case 8:
4949 		bpc = 8; /* since we go through a colormap */
4950 		break;
4951 	case 15:
4952 	case 16:
4953 		bpc = 6; /* min is 18bpp */
4954 		break;
4955 	case 24:
4956 		bpc = 8;
4957 		break;
4958 	case 30:
4959 		bpc = 10;
4960 		break;
4961 	case 48:
4962 		bpc = 12;
4963 		break;
4964 	default:
4965 		DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4966 		bpc = min((unsigned int)8, display_bpc);
4967 		break;
4968 	}
4969 
4970 	display_bpc = min(display_bpc, bpc);
4971 
4972 	DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4973 		      bpc, display_bpc);
4974 
4975 	*pipe_bpp = display_bpc * 3;
4976 
4977 	return display_bpc != bpc;
4978 }
4979 
i9xx_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode,int x,int y,struct drm_framebuffer * old_fb)4980 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4981 			      struct drm_display_mode *mode,
4982 			      struct drm_display_mode *adjusted_mode,
4983 			      int x, int y,
4984 			      struct drm_framebuffer *old_fb)
4985 {
4986 	struct drm_device *dev = crtc->dev;
4987 	struct drm_i915_private *dev_priv = dev->dev_private;
4988 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4989 	int pipe = intel_crtc->pipe;
4990 	int plane = intel_crtc->plane;
4991 	int refclk, num_connectors = 0;
4992 	intel_clock_t clock, reduced_clock;
4993 	u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4994 	bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4995 	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4996 	struct drm_mode_config *mode_config = &dev->mode_config;
4997 	struct intel_encoder *encoder;
4998 	const intel_limit_t *limit;
4999 	int ret;
5000 	u32 temp;
5001 	u32 lvds_sync = 0;
5002 
5003 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5004 		if (encoder->base.crtc != crtc)
5005 			continue;
5006 
5007 		switch (encoder->type) {
5008 		case INTEL_OUTPUT_LVDS:
5009 			is_lvds = true;
5010 			break;
5011 		case INTEL_OUTPUT_SDVO:
5012 		case INTEL_OUTPUT_HDMI:
5013 			is_sdvo = true;
5014 			if (encoder->needs_tv_clock)
5015 				is_tv = true;
5016 			break;
5017 		case INTEL_OUTPUT_DVO:
5018 			is_dvo = true;
5019 			break;
5020 		case INTEL_OUTPUT_TVOUT:
5021 			is_tv = true;
5022 			break;
5023 		case INTEL_OUTPUT_ANALOG:
5024 			is_crt = true;
5025 			break;
5026 		case INTEL_OUTPUT_DISPLAYPORT:
5027 			is_dp = true;
5028 			break;
5029 		}
5030 
5031 		num_connectors++;
5032 	}
5033 
5034 	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5035 		refclk = dev_priv->lvds_ssc_freq * 1000;
5036 		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5037 			      refclk / 1000);
5038 	} else if (!IS_GEN2(dev)) {
5039 		refclk = 96000;
5040 	} else {
5041 		refclk = 48000;
5042 	}
5043 
5044 	/*
5045 	 * Returns a set of divisors for the desired target clock with the given
5046 	 * refclk, or FALSE.  The returned values represent the clock equation:
5047 	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5048 	 */
5049 	limit = intel_limit(crtc, refclk);
5050 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5051 	if (!ok) {
5052 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
5053 		return -EINVAL;
5054 	}
5055 
5056 	/* Ensure that the cursor is valid for the new mode before changing... */
5057 	intel_crtc_update_cursor(crtc, true);
5058 
5059 	if (is_lvds && dev_priv->lvds_downclock_avail) {
5060 		has_reduced_clock = limit->find_pll(limit, crtc,
5061 						    dev_priv->lvds_downclock,
5062 						    refclk,
5063 						    &reduced_clock);
5064 		if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5065 			/*
5066 			 * If the different P is found, it means that we can't
5067 			 * switch the display clock by using the FP0/FP1.
5068 			 * In such case we will disable the LVDS downclock
5069 			 * feature.
5070 			 */
5071 			DRM_DEBUG_KMS("Different P is found for "
5072 				      "LVDS clock/downclock\n");
5073 			has_reduced_clock = 0;
5074 		}
5075 	}
5076 	/* SDVO TV has fixed PLL values depend on its clock range,
5077 	   this mirrors vbios setting. */
5078 	if (is_sdvo && is_tv) {
5079 		if (adjusted_mode->clock >= 100000
5080 		    && adjusted_mode->clock < 140500) {
5081 			clock.p1 = 2;
5082 			clock.p2 = 10;
5083 			clock.n = 3;
5084 			clock.m1 = 16;
5085 			clock.m2 = 8;
5086 		} else if (adjusted_mode->clock >= 140500
5087 			   && adjusted_mode->clock <= 200000) {
5088 			clock.p1 = 1;
5089 			clock.p2 = 10;
5090 			clock.n = 6;
5091 			clock.m1 = 12;
5092 			clock.m2 = 8;
5093 		}
5094 	}
5095 
5096 	if (IS_PINEVIEW(dev)) {
5097 		fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
5098 		if (has_reduced_clock)
5099 			fp2 = (1 << reduced_clock.n) << 16 |
5100 				reduced_clock.m1 << 8 | reduced_clock.m2;
5101 	} else {
5102 		fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5103 		if (has_reduced_clock)
5104 			fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5105 				reduced_clock.m2;
5106 	}
5107 
5108 	dpll = DPLL_VGA_MODE_DIS;
5109 
5110 	if (!IS_GEN2(dev)) {
5111 		if (is_lvds)
5112 			dpll |= DPLLB_MODE_LVDS;
5113 		else
5114 			dpll |= DPLLB_MODE_DAC_SERIAL;
5115 		if (is_sdvo) {
5116 			int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5117 			if (pixel_multiplier > 1) {
5118 				if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5119 					dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5120 			}
5121 			dpll |= DPLL_DVO_HIGH_SPEED;
5122 		}
5123 		if (is_dp)
5124 			dpll |= DPLL_DVO_HIGH_SPEED;
5125 
5126 		/* compute bitmask from p1 value */
5127 		if (IS_PINEVIEW(dev))
5128 			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5129 		else {
5130 			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5131 			if (IS_G4X(dev) && has_reduced_clock)
5132 				dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5133 		}
5134 		switch (clock.p2) {
5135 		case 5:
5136 			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5137 			break;
5138 		case 7:
5139 			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5140 			break;
5141 		case 10:
5142 			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5143 			break;
5144 		case 14:
5145 			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5146 			break;
5147 		}
5148 		if (INTEL_INFO(dev)->gen >= 4)
5149 			dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5150 	} else {
5151 		if (is_lvds) {
5152 			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5153 		} else {
5154 			if (clock.p1 == 2)
5155 				dpll |= PLL_P1_DIVIDE_BY_TWO;
5156 			else
5157 				dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5158 			if (clock.p2 == 4)
5159 				dpll |= PLL_P2_DIVIDE_BY_4;
5160 		}
5161 	}
5162 
5163 	if (is_sdvo && is_tv)
5164 		dpll |= PLL_REF_INPUT_TVCLKINBC;
5165 	else if (is_tv)
5166 		/* XXX: just matching BIOS for now */
5167 		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
5168 		dpll |= 3;
5169 	else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5170 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5171 	else
5172 		dpll |= PLL_REF_INPUT_DREFCLK;
5173 
5174 	/* setup pipeconf */
5175 	pipeconf = I915_READ(PIPECONF(pipe));
5176 
5177 	/* Set up the display plane register */
5178 	dspcntr = DISPPLANE_GAMMA_ENABLE;
5179 
5180 	/* Ironlake's plane is forced to pipe, bit 24 is to
5181 	   enable color space conversion */
5182 	if (pipe == 0)
5183 		dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5184 	else
5185 		dspcntr |= DISPPLANE_SEL_PIPE_B;
5186 
5187 	if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5188 		/* Enable pixel doubling when the dot clock is > 90% of the (display)
5189 		 * core speed.
5190 		 *
5191 		 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5192 		 * pipe == 0 check?
5193 		 */
5194 		if (mode->clock >
5195 		    dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5196 			pipeconf |= PIPECONF_DOUBLE_WIDE;
5197 		else
5198 			pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5199 	}
5200 
5201 	/* default to 8bpc */
5202 	pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5203 	if (is_dp) {
5204 		if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5205 			pipeconf |= PIPECONF_BPP_6 |
5206 				    PIPECONF_DITHER_EN |
5207 				    PIPECONF_DITHER_TYPE_SP;
5208 		}
5209 	}
5210 
5211 	dpll |= DPLL_VCO_ENABLE;
5212 
5213 	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5214 	drm_mode_debug_printmodeline(mode);
5215 
5216 	I915_WRITE(FP0(pipe), fp);
5217 	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5218 
5219 	POSTING_READ(DPLL(pipe));
5220 	udelay(150);
5221 
5222 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
5223 	 * This is an exception to the general rule that mode_set doesn't turn
5224 	 * things on.
5225 	 */
5226 	if (is_lvds) {
5227 		temp = I915_READ(LVDS);
5228 		temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5229 		if (pipe == 1) {
5230 			temp |= LVDS_PIPEB_SELECT;
5231 		} else {
5232 			temp &= ~LVDS_PIPEB_SELECT;
5233 		}
5234 		/* set the corresponsding LVDS_BORDER bit */
5235 		temp |= dev_priv->lvds_border_bits;
5236 		/* Set the B0-B3 data pairs corresponding to whether we're going to
5237 		 * set the DPLLs for dual-channel mode or not.
5238 		 */
5239 		if (clock.p2 == 7)
5240 			temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5241 		else
5242 			temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5243 
5244 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5245 		 * appropriately here, but we need to look more thoroughly into how
5246 		 * panels behave in the two modes.
5247 		 */
5248 		/* set the dithering flag on LVDS as needed */
5249 		if (INTEL_INFO(dev)->gen >= 4) {
5250 			if (dev_priv->lvds_dither)
5251 				temp |= LVDS_ENABLE_DITHER;
5252 			else
5253 				temp &= ~LVDS_ENABLE_DITHER;
5254 		}
5255 		if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5256 			lvds_sync |= LVDS_HSYNC_POLARITY;
5257 		if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5258 			lvds_sync |= LVDS_VSYNC_POLARITY;
5259 		if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5260 		    != lvds_sync) {
5261 			char flags[2] = "-+";
5262 			DRM_INFO("Changing LVDS panel from "
5263 				 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5264 				 flags[!(temp & LVDS_HSYNC_POLARITY)],
5265 				 flags[!(temp & LVDS_VSYNC_POLARITY)],
5266 				 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5267 				 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5268 			temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5269 			temp |= lvds_sync;
5270 		}
5271 		I915_WRITE(LVDS, temp);
5272 	}
5273 
5274 	if (is_dp) {
5275 		intel_dp_set_m_n(crtc, mode, adjusted_mode);
5276 	}
5277 
5278 	I915_WRITE(DPLL(pipe), dpll);
5279 
5280 	/* Wait for the clocks to stabilize. */
5281 	POSTING_READ(DPLL(pipe));
5282 	udelay(150);
5283 
5284 	if (INTEL_INFO(dev)->gen >= 4) {
5285 		temp = 0;
5286 		if (is_sdvo) {
5287 			temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5288 			if (temp > 1)
5289 				temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5290 			else
5291 				temp = 0;
5292 		}
5293 		I915_WRITE(DPLL_MD(pipe), temp);
5294 	} else {
5295 		/* The pixel multiplier can only be updated once the
5296 		 * DPLL is enabled and the clocks are stable.
5297 		 *
5298 		 * So write it again.
5299 		 */
5300 		I915_WRITE(DPLL(pipe), dpll);
5301 	}
5302 
5303 	intel_crtc->lowfreq_avail = false;
5304 	if (is_lvds && has_reduced_clock && i915_powersave) {
5305 		I915_WRITE(FP1(pipe), fp2);
5306 		intel_crtc->lowfreq_avail = true;
5307 		if (HAS_PIPE_CXSR(dev)) {
5308 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5309 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5310 		}
5311 	} else {
5312 		I915_WRITE(FP1(pipe), fp);
5313 		if (HAS_PIPE_CXSR(dev)) {
5314 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5315 			pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5316 		}
5317 	}
5318 
5319 	pipeconf &= ~PIPECONF_INTERLACE_MASK;
5320 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5321 		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5322 		/* the chip adds 2 halflines automatically */
5323 		adjusted_mode->crtc_vdisplay -= 1;
5324 		adjusted_mode->crtc_vtotal -= 1;
5325 		adjusted_mode->crtc_vblank_start -= 1;
5326 		adjusted_mode->crtc_vblank_end -= 1;
5327 		adjusted_mode->crtc_vsync_end -= 1;
5328 		adjusted_mode->crtc_vsync_start -= 1;
5329 	} else
5330 		pipeconf |= PIPECONF_PROGRESSIVE;
5331 
5332 	I915_WRITE(HTOTAL(pipe),
5333 		   (adjusted_mode->crtc_hdisplay - 1) |
5334 		   ((adjusted_mode->crtc_htotal - 1) << 16));
5335 	I915_WRITE(HBLANK(pipe),
5336 		   (adjusted_mode->crtc_hblank_start - 1) |
5337 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
5338 	I915_WRITE(HSYNC(pipe),
5339 		   (adjusted_mode->crtc_hsync_start - 1) |
5340 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
5341 
5342 	I915_WRITE(VTOTAL(pipe),
5343 		   (adjusted_mode->crtc_vdisplay - 1) |
5344 		   ((adjusted_mode->crtc_vtotal - 1) << 16));
5345 	I915_WRITE(VBLANK(pipe),
5346 		   (adjusted_mode->crtc_vblank_start - 1) |
5347 		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
5348 	I915_WRITE(VSYNC(pipe),
5349 		   (adjusted_mode->crtc_vsync_start - 1) |
5350 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
5351 
5352 	/* pipesrc and dspsize control the size that is scaled from,
5353 	 * which should always be the user's requested size.
5354 	 */
5355 	I915_WRITE(DSPSIZE(plane),
5356 		   ((mode->vdisplay - 1) << 16) |
5357 		   (mode->hdisplay - 1));
5358 	I915_WRITE(DSPPOS(plane), 0);
5359 	I915_WRITE(PIPESRC(pipe),
5360 		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5361 
5362 	I915_WRITE(PIPECONF(pipe), pipeconf);
5363 	POSTING_READ(PIPECONF(pipe));
5364 	intel_enable_pipe(dev_priv, pipe, false);
5365 
5366 	intel_wait_for_vblank(dev, pipe);
5367 
5368 	I915_WRITE(DSPCNTR(plane), dspcntr);
5369 	POSTING_READ(DSPCNTR(plane));
5370 	intel_enable_plane(dev_priv, plane, pipe);
5371 
5372 	ret = intel_pipe_set_base(crtc, x, y, old_fb);
5373 
5374 	intel_update_watermarks(dev);
5375 
5376 	return ret;
5377 }
5378 
5379 /*
5380  * Initialize reference clocks when the driver loads
5381  */
ironlake_init_pch_refclk(struct drm_device * dev)5382 void ironlake_init_pch_refclk(struct drm_device *dev)
5383 {
5384 	struct drm_i915_private *dev_priv = dev->dev_private;
5385 	struct drm_mode_config *mode_config = &dev->mode_config;
5386 	struct intel_encoder *encoder;
5387 	u32 temp;
5388 	bool has_lvds = false;
5389 	bool has_cpu_edp = false;
5390 	bool has_pch_edp = false;
5391 	bool has_panel = false;
5392 	bool has_ck505 = false;
5393 	bool can_ssc = false;
5394 
5395 	/* We need to take the global config into account */
5396 	list_for_each_entry(encoder, &mode_config->encoder_list,
5397 			    base.head) {
5398 		switch (encoder->type) {
5399 		case INTEL_OUTPUT_LVDS:
5400 			has_panel = true;
5401 			has_lvds = true;
5402 			break;
5403 		case INTEL_OUTPUT_EDP:
5404 			has_panel = true;
5405 			if (intel_encoder_is_pch_edp(&encoder->base))
5406 				has_pch_edp = true;
5407 			else
5408 				has_cpu_edp = true;
5409 			break;
5410 		}
5411 	}
5412 
5413 	if (HAS_PCH_IBX(dev)) {
5414 		has_ck505 = dev_priv->display_clock_mode;
5415 		can_ssc = has_ck505;
5416 	} else {
5417 		has_ck505 = false;
5418 		can_ssc = true;
5419 	}
5420 
5421 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5422 		      has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5423 		      has_ck505);
5424 
5425 	/* Ironlake: try to setup display ref clock before DPLL
5426 	 * enabling. This is only under driver's control after
5427 	 * PCH B stepping, previous chipset stepping should be
5428 	 * ignoring this setting.
5429 	 */
5430 	temp = I915_READ(PCH_DREF_CONTROL);
5431 	/* Always enable nonspread source */
5432 	temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5433 
5434 	if (has_ck505)
5435 		temp |= DREF_NONSPREAD_CK505_ENABLE;
5436 	else
5437 		temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5438 
5439 	if (has_panel) {
5440 		temp &= ~DREF_SSC_SOURCE_MASK;
5441 		temp |= DREF_SSC_SOURCE_ENABLE;
5442 
5443 		/* SSC must be turned on before enabling the CPU output  */
5444 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5445 			DRM_DEBUG_KMS("Using SSC on panel\n");
5446 			temp |= DREF_SSC1_ENABLE;
5447 		}
5448 
5449 		/* Get SSC going before enabling the outputs */
5450 		I915_WRITE(PCH_DREF_CONTROL, temp);
5451 		POSTING_READ(PCH_DREF_CONTROL);
5452 		udelay(200);
5453 
5454 		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5455 
5456 		/* Enable CPU source on CPU attached eDP */
5457 		if (has_cpu_edp) {
5458 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5459 				DRM_DEBUG_KMS("Using SSC on eDP\n");
5460 				temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5461 			}
5462 			else
5463 				temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5464 		} else
5465 			temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5466 
5467 		I915_WRITE(PCH_DREF_CONTROL, temp);
5468 		POSTING_READ(PCH_DREF_CONTROL);
5469 		udelay(200);
5470 	} else {
5471 		DRM_DEBUG_KMS("Disabling SSC entirely\n");
5472 
5473 		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5474 
5475 		/* Turn off CPU output */
5476 		temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5477 
5478 		I915_WRITE(PCH_DREF_CONTROL, temp);
5479 		POSTING_READ(PCH_DREF_CONTROL);
5480 		udelay(200);
5481 
5482 		/* Turn off the SSC source */
5483 		temp &= ~DREF_SSC_SOURCE_MASK;
5484 		temp |= DREF_SSC_SOURCE_DISABLE;
5485 
5486 		/* Turn off SSC1 */
5487 		temp &= ~ DREF_SSC1_ENABLE;
5488 
5489 		I915_WRITE(PCH_DREF_CONTROL, temp);
5490 		POSTING_READ(PCH_DREF_CONTROL);
5491 		udelay(200);
5492 	}
5493 }
5494 
ironlake_get_refclk(struct drm_crtc * crtc)5495 static int ironlake_get_refclk(struct drm_crtc *crtc)
5496 {
5497 	struct drm_device *dev = crtc->dev;
5498 	struct drm_i915_private *dev_priv = dev->dev_private;
5499 	struct intel_encoder *encoder;
5500 	struct drm_mode_config *mode_config = &dev->mode_config;
5501 	struct intel_encoder *edp_encoder = NULL;
5502 	int num_connectors = 0;
5503 	bool is_lvds = false;
5504 
5505 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5506 		if (encoder->base.crtc != crtc)
5507 			continue;
5508 
5509 		switch (encoder->type) {
5510 		case INTEL_OUTPUT_LVDS:
5511 			is_lvds = true;
5512 			break;
5513 		case INTEL_OUTPUT_EDP:
5514 			edp_encoder = encoder;
5515 			break;
5516 		}
5517 		num_connectors++;
5518 	}
5519 
5520 	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5521 		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5522 			      dev_priv->lvds_ssc_freq);
5523 		return dev_priv->lvds_ssc_freq * 1000;
5524 	}
5525 
5526 	return 120000;
5527 }
5528 
ironlake_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode,int x,int y,struct drm_framebuffer * old_fb)5529 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5530 				  struct drm_display_mode *mode,
5531 				  struct drm_display_mode *adjusted_mode,
5532 				  int x, int y,
5533 				  struct drm_framebuffer *old_fb)
5534 {
5535 	struct drm_device *dev = crtc->dev;
5536 	struct drm_i915_private *dev_priv = dev->dev_private;
5537 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5538 	int pipe = intel_crtc->pipe;
5539 	int plane = intel_crtc->plane;
5540 	int refclk, num_connectors = 0;
5541 	intel_clock_t clock, reduced_clock;
5542 	u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5543 	bool ok, has_reduced_clock = false, is_sdvo = false;
5544 	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5545 	struct intel_encoder *has_edp_encoder = NULL;
5546 	struct drm_mode_config *mode_config = &dev->mode_config;
5547 	struct intel_encoder *encoder;
5548 	const intel_limit_t *limit;
5549 	int ret;
5550 	struct fdi_m_n m_n = {0};
5551 	u32 temp;
5552 	u32 lvds_sync = 0;
5553 	int target_clock, pixel_multiplier, lane, link_bw, factor;
5554 	unsigned int pipe_bpp;
5555 	bool dither;
5556 
5557 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5558 		if (encoder->base.crtc != crtc)
5559 			continue;
5560 
5561 		switch (encoder->type) {
5562 		case INTEL_OUTPUT_LVDS:
5563 			is_lvds = true;
5564 			break;
5565 		case INTEL_OUTPUT_SDVO:
5566 		case INTEL_OUTPUT_HDMI:
5567 			is_sdvo = true;
5568 			if (encoder->needs_tv_clock)
5569 				is_tv = true;
5570 			break;
5571 		case INTEL_OUTPUT_TVOUT:
5572 			is_tv = true;
5573 			break;
5574 		case INTEL_OUTPUT_ANALOG:
5575 			is_crt = true;
5576 			break;
5577 		case INTEL_OUTPUT_DISPLAYPORT:
5578 			is_dp = true;
5579 			break;
5580 		case INTEL_OUTPUT_EDP:
5581 			has_edp_encoder = encoder;
5582 			break;
5583 		}
5584 
5585 		num_connectors++;
5586 	}
5587 
5588 	refclk = ironlake_get_refclk(crtc);
5589 
5590 	/*
5591 	 * Returns a set of divisors for the desired target clock with the given
5592 	 * refclk, or FALSE.  The returned values represent the clock equation:
5593 	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5594 	 */
5595 	limit = intel_limit(crtc, refclk);
5596 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5597 	if (!ok) {
5598 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
5599 		return -EINVAL;
5600 	}
5601 
5602 	/* Ensure that the cursor is valid for the new mode before changing... */
5603 	intel_crtc_update_cursor(crtc, true);
5604 
5605 	if (is_lvds && dev_priv->lvds_downclock_avail) {
5606 		has_reduced_clock = limit->find_pll(limit, crtc,
5607 						    dev_priv->lvds_downclock,
5608 						    refclk,
5609 						    &reduced_clock);
5610 		if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5611 			/*
5612 			 * If the different P is found, it means that we can't
5613 			 * switch the display clock by using the FP0/FP1.
5614 			 * In such case we will disable the LVDS downclock
5615 			 * feature.
5616 			 */
5617 			DRM_DEBUG_KMS("Different P is found for "
5618 				      "LVDS clock/downclock\n");
5619 			has_reduced_clock = 0;
5620 		}
5621 	}
5622 	/* SDVO TV has fixed PLL values depend on its clock range,
5623 	   this mirrors vbios setting. */
5624 	if (is_sdvo && is_tv) {
5625 		if (adjusted_mode->clock >= 100000
5626 		    && adjusted_mode->clock < 140500) {
5627 			clock.p1 = 2;
5628 			clock.p2 = 10;
5629 			clock.n = 3;
5630 			clock.m1 = 16;
5631 			clock.m2 = 8;
5632 		} else if (adjusted_mode->clock >= 140500
5633 			   && adjusted_mode->clock <= 200000) {
5634 			clock.p1 = 1;
5635 			clock.p2 = 10;
5636 			clock.n = 6;
5637 			clock.m1 = 12;
5638 			clock.m2 = 8;
5639 		}
5640 	}
5641 
5642 	/* FDI link */
5643 	pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5644 	lane = 0;
5645 	/* CPU eDP doesn't require FDI link, so just set DP M/N
5646 	   according to current link config */
5647 	if (has_edp_encoder &&
5648 	    !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5649 		target_clock = mode->clock;
5650 		intel_edp_link_config(has_edp_encoder,
5651 				      &lane, &link_bw);
5652 	} else {
5653 		/* [e]DP over FDI requires target mode clock
5654 		   instead of link clock */
5655 		if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5656 			target_clock = mode->clock;
5657 		else
5658 			target_clock = adjusted_mode->clock;
5659 
5660 		/* FDI is a binary signal running at ~2.7GHz, encoding
5661 		 * each output octet as 10 bits. The actual frequency
5662 		 * is stored as a divider into a 100MHz clock, and the
5663 		 * mode pixel clock is stored in units of 1KHz.
5664 		 * Hence the bw of each lane in terms of the mode signal
5665 		 * is:
5666 		 */
5667 		link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5668 	}
5669 
5670 	/* determine panel color depth */
5671 	temp = I915_READ(PIPECONF(pipe));
5672 	temp &= ~PIPE_BPC_MASK;
5673 	dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5674 	switch (pipe_bpp) {
5675 	case 18:
5676 		temp |= PIPE_6BPC;
5677 		break;
5678 	case 24:
5679 		temp |= PIPE_8BPC;
5680 		break;
5681 	case 30:
5682 		temp |= PIPE_10BPC;
5683 		break;
5684 	case 36:
5685 		temp |= PIPE_12BPC;
5686 		break;
5687 	default:
5688 		WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5689 			pipe_bpp);
5690 		temp |= PIPE_8BPC;
5691 		pipe_bpp = 24;
5692 		break;
5693 	}
5694 
5695 	intel_crtc->bpp = pipe_bpp;
5696 	I915_WRITE(PIPECONF(pipe), temp);
5697 
5698 	if (!lane) {
5699 		/*
5700 		 * Account for spread spectrum to avoid
5701 		 * oversubscribing the link. Max center spread
5702 		 * is 2.5%; use 5% for safety's sake.
5703 		 */
5704 		u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5705 		lane = bps / (link_bw * 8) + 1;
5706 	}
5707 
5708 	intel_crtc->fdi_lanes = lane;
5709 
5710 	if (pixel_multiplier > 1)
5711 		link_bw *= pixel_multiplier;
5712 	ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5713 			     &m_n);
5714 
5715 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5716 	if (has_reduced_clock)
5717 		fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5718 			reduced_clock.m2;
5719 
5720 	/* Enable autotuning of the PLL clock (if permissible) */
5721 	factor = 21;
5722 	if (is_lvds) {
5723 		if ((intel_panel_use_ssc(dev_priv) &&
5724 		     dev_priv->lvds_ssc_freq == 100) ||
5725 		    (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5726 			factor = 25;
5727 	} else if (is_sdvo && is_tv)
5728 		factor = 20;
5729 
5730 	if (clock.m < factor * clock.n)
5731 		fp |= FP_CB_TUNE;
5732 
5733 	dpll = 0;
5734 
5735 	if (is_lvds)
5736 		dpll |= DPLLB_MODE_LVDS;
5737 	else
5738 		dpll |= DPLLB_MODE_DAC_SERIAL;
5739 	if (is_sdvo) {
5740 		int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5741 		if (pixel_multiplier > 1) {
5742 			dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5743 		}
5744 		dpll |= DPLL_DVO_HIGH_SPEED;
5745 	}
5746 	if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5747 		dpll |= DPLL_DVO_HIGH_SPEED;
5748 
5749 	/* compute bitmask from p1 value */
5750 	dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5751 	/* also FPA1 */
5752 	dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5753 
5754 	switch (clock.p2) {
5755 	case 5:
5756 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5757 		break;
5758 	case 7:
5759 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5760 		break;
5761 	case 10:
5762 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5763 		break;
5764 	case 14:
5765 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5766 		break;
5767 	}
5768 
5769 	if (is_sdvo && is_tv)
5770 		dpll |= PLL_REF_INPUT_TVCLKINBC;
5771 	else if (is_tv)
5772 		/* XXX: just matching BIOS for now */
5773 		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
5774 		dpll |= 3;
5775 	else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5776 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5777 	else
5778 		dpll |= PLL_REF_INPUT_DREFCLK;
5779 
5780 	/* setup pipeconf */
5781 	pipeconf = I915_READ(PIPECONF(pipe));
5782 
5783 	/* Set up the display plane register */
5784 	dspcntr = DISPPLANE_GAMMA_ENABLE;
5785 
5786 	DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5787 	drm_mode_debug_printmodeline(mode);
5788 
5789 	/* PCH eDP needs FDI, but CPU eDP does not */
5790 	if (!intel_crtc->no_pll) {
5791 		if (!has_edp_encoder ||
5792 		    intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5793 			I915_WRITE(PCH_FP0(pipe), fp);
5794 			I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5795 
5796 			POSTING_READ(PCH_DPLL(pipe));
5797 			udelay(150);
5798 		}
5799 	} else {
5800 		if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5801 		    fp == I915_READ(PCH_FP0(0))) {
5802 			intel_crtc->use_pll_a = true;
5803 			DRM_DEBUG_KMS("using pipe a dpll\n");
5804 		} else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5805 			   fp == I915_READ(PCH_FP0(1))) {
5806 			intel_crtc->use_pll_a = false;
5807 			DRM_DEBUG_KMS("using pipe b dpll\n");
5808 		} else {
5809 			DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5810 			return -EINVAL;
5811 		}
5812 	}
5813 
5814 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
5815 	 * This is an exception to the general rule that mode_set doesn't turn
5816 	 * things on.
5817 	 */
5818 	if (is_lvds) {
5819 		temp = I915_READ(PCH_LVDS);
5820 		temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5821 		if (HAS_PCH_CPT(dev)) {
5822 			temp &= ~PORT_TRANS_SEL_MASK;
5823 			temp |= PORT_TRANS_SEL_CPT(pipe);
5824 		} else {
5825 			if (pipe == 1)
5826 				temp |= LVDS_PIPEB_SELECT;
5827 			else
5828 				temp &= ~LVDS_PIPEB_SELECT;
5829 		}
5830 
5831 		/* set the corresponsding LVDS_BORDER bit */
5832 		temp |= dev_priv->lvds_border_bits;
5833 		/* Set the B0-B3 data pairs corresponding to whether we're going to
5834 		 * set the DPLLs for dual-channel mode or not.
5835 		 */
5836 		if (clock.p2 == 7)
5837 			temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5838 		else
5839 			temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5840 
5841 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5842 		 * appropriately here, but we need to look more thoroughly into how
5843 		 * panels behave in the two modes.
5844 		 */
5845 		if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5846 			lvds_sync |= LVDS_HSYNC_POLARITY;
5847 		if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5848 			lvds_sync |= LVDS_VSYNC_POLARITY;
5849 		if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5850 		    != lvds_sync) {
5851 			char flags[2] = "-+";
5852 			DRM_INFO("Changing LVDS panel from "
5853 				 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5854 				 flags[!(temp & LVDS_HSYNC_POLARITY)],
5855 				 flags[!(temp & LVDS_VSYNC_POLARITY)],
5856 				 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5857 				 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5858 			temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5859 			temp |= lvds_sync;
5860 		}
5861 		I915_WRITE(PCH_LVDS, temp);
5862 	}
5863 
5864 	pipeconf &= ~PIPECONF_DITHER_EN;
5865 	pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5866 	if ((is_lvds && dev_priv->lvds_dither) || dither) {
5867 		pipeconf |= PIPECONF_DITHER_EN;
5868 		pipeconf |= PIPECONF_DITHER_TYPE_SP;
5869 	}
5870 	if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5871 		intel_dp_set_m_n(crtc, mode, adjusted_mode);
5872 	} else {
5873 		/* For non-DP output, clear any trans DP clock recovery setting.*/
5874 		I915_WRITE(TRANSDATA_M1(pipe), 0);
5875 		I915_WRITE(TRANSDATA_N1(pipe), 0);
5876 		I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5877 		I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5878 	}
5879 
5880 	if (!intel_crtc->no_pll &&
5881 	    (!has_edp_encoder ||
5882 	     intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5883 		I915_WRITE(PCH_DPLL(pipe), dpll);
5884 
5885 		/* Wait for the clocks to stabilize. */
5886 		POSTING_READ(PCH_DPLL(pipe));
5887 		udelay(150);
5888 
5889 		/* The pixel multiplier can only be updated once the
5890 		 * DPLL is enabled and the clocks are stable.
5891 		 *
5892 		 * So write it again.
5893 		 */
5894 		I915_WRITE(PCH_DPLL(pipe), dpll);
5895 	}
5896 
5897 	intel_crtc->lowfreq_avail = false;
5898 	if (!intel_crtc->no_pll) {
5899 		if (is_lvds && has_reduced_clock && i915_powersave) {
5900 			I915_WRITE(PCH_FP1(pipe), fp2);
5901 			intel_crtc->lowfreq_avail = true;
5902 			if (HAS_PIPE_CXSR(dev)) {
5903 				DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5904 				pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5905 			}
5906 		} else {
5907 			I915_WRITE(PCH_FP1(pipe), fp);
5908 			if (HAS_PIPE_CXSR(dev)) {
5909 				DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5910 				pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5911 			}
5912 		}
5913 	}
5914 
5915 	pipeconf &= ~PIPECONF_INTERLACE_MASK;
5916 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5917 		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5918 		/* the chip adds 2 halflines automatically */
5919 		adjusted_mode->crtc_vdisplay -= 1;
5920 		adjusted_mode->crtc_vtotal -= 1;
5921 		adjusted_mode->crtc_vblank_start -= 1;
5922 		adjusted_mode->crtc_vblank_end -= 1;
5923 		adjusted_mode->crtc_vsync_end -= 1;
5924 		adjusted_mode->crtc_vsync_start -= 1;
5925 	} else
5926 		pipeconf |= PIPECONF_PROGRESSIVE;
5927 
5928 	I915_WRITE(HTOTAL(pipe),
5929 		   (adjusted_mode->crtc_hdisplay - 1) |
5930 		   ((adjusted_mode->crtc_htotal - 1) << 16));
5931 	I915_WRITE(HBLANK(pipe),
5932 		   (adjusted_mode->crtc_hblank_start - 1) |
5933 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
5934 	I915_WRITE(HSYNC(pipe),
5935 		   (adjusted_mode->crtc_hsync_start - 1) |
5936 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
5937 
5938 	I915_WRITE(VTOTAL(pipe),
5939 		   (adjusted_mode->crtc_vdisplay - 1) |
5940 		   ((adjusted_mode->crtc_vtotal - 1) << 16));
5941 	I915_WRITE(VBLANK(pipe),
5942 		   (adjusted_mode->crtc_vblank_start - 1) |
5943 		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
5944 	I915_WRITE(VSYNC(pipe),
5945 		   (adjusted_mode->crtc_vsync_start - 1) |
5946 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
5947 
5948 	/* pipesrc controls the size that is scaled from, which should
5949 	 * always be the user's requested size.
5950 	 */
5951 	I915_WRITE(PIPESRC(pipe),
5952 		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5953 
5954 	I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5955 	I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5956 	I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5957 	I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5958 
5959 	if (has_edp_encoder &&
5960 	    !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5961 		ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5962 	}
5963 
5964 	I915_WRITE(PIPECONF(pipe), pipeconf);
5965 	POSTING_READ(PIPECONF(pipe));
5966 
5967 	intel_wait_for_vblank(dev, pipe);
5968 
5969 	if (IS_GEN5(dev)) {
5970 		/* enable address swizzle for tiling buffer */
5971 		temp = I915_READ(DISP_ARB_CTL);
5972 		I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5973 	}
5974 
5975 	I915_WRITE(DSPCNTR(plane), dspcntr);
5976 	POSTING_READ(DSPCNTR(plane));
5977 
5978 	ret = intel_pipe_set_base(crtc, x, y, old_fb);
5979 
5980 	intel_update_watermarks(dev);
5981 
5982 	return ret;
5983 }
5984 
intel_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode,int x,int y,struct drm_framebuffer * old_fb)5985 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5986 			       struct drm_display_mode *mode,
5987 			       struct drm_display_mode *adjusted_mode,
5988 			       int x, int y,
5989 			       struct drm_framebuffer *old_fb)
5990 {
5991 	struct drm_device *dev = crtc->dev;
5992 	struct drm_i915_private *dev_priv = dev->dev_private;
5993 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5994 	int pipe = intel_crtc->pipe;
5995 	int ret;
5996 
5997 	drm_vblank_pre_modeset(dev, pipe);
5998 
5999 	ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6000 					      x, y, old_fb);
6001 	drm_vblank_post_modeset(dev, pipe);
6002 
6003 	if (ret)
6004 		intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6005 	else
6006 		intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6007 
6008 	return ret;
6009 }
6010 
intel_eld_uptodate(struct drm_connector * connector,int reg_eldv,uint32_t bits_eldv,int reg_elda,uint32_t bits_elda,int reg_edid)6011 static bool intel_eld_uptodate(struct drm_connector *connector,
6012 			       int reg_eldv, uint32_t bits_eldv,
6013 			       int reg_elda, uint32_t bits_elda,
6014 			       int reg_edid)
6015 {
6016 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6017 	uint8_t *eld = connector->eld;
6018 	uint32_t i;
6019 
6020 	i = I915_READ(reg_eldv);
6021 	i &= bits_eldv;
6022 
6023 	if (!eld[0])
6024 		return !i;
6025 
6026 	if (!i)
6027 		return false;
6028 
6029 	i = I915_READ(reg_elda);
6030 	i &= ~bits_elda;
6031 	I915_WRITE(reg_elda, i);
6032 
6033 	for (i = 0; i < eld[2]; i++)
6034 		if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6035 			return false;
6036 
6037 	return true;
6038 }
6039 
g4x_write_eld(struct drm_connector * connector,struct drm_crtc * crtc)6040 static void g4x_write_eld(struct drm_connector *connector,
6041 			  struct drm_crtc *crtc)
6042 {
6043 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6044 	uint8_t *eld = connector->eld;
6045 	uint32_t eldv;
6046 	uint32_t len;
6047 	uint32_t i;
6048 
6049 	i = I915_READ(G4X_AUD_VID_DID);
6050 
6051 	if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6052 		eldv = G4X_ELDV_DEVCL_DEVBLC;
6053 	else
6054 		eldv = G4X_ELDV_DEVCTG;
6055 
6056 	if (intel_eld_uptodate(connector,
6057 			       G4X_AUD_CNTL_ST, eldv,
6058 			       G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6059 			       G4X_HDMIW_HDMIEDID))
6060 		return;
6061 
6062 	i = I915_READ(G4X_AUD_CNTL_ST);
6063 	i &= ~(eldv | G4X_ELD_ADDR);
6064 	len = (i >> 9) & 0x1f;		/* ELD buffer size */
6065 	I915_WRITE(G4X_AUD_CNTL_ST, i);
6066 
6067 	if (!eld[0])
6068 		return;
6069 
6070 	len = min_t(uint8_t, eld[2], len);
6071 	DRM_DEBUG_DRIVER("ELD size %d\n", len);
6072 	for (i = 0; i < len; i++)
6073 		I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6074 
6075 	i = I915_READ(G4X_AUD_CNTL_ST);
6076 	i |= eldv;
6077 	I915_WRITE(G4X_AUD_CNTL_ST, i);
6078 }
6079 
ironlake_write_eld(struct drm_connector * connector,struct drm_crtc * crtc)6080 static void ironlake_write_eld(struct drm_connector *connector,
6081 				     struct drm_crtc *crtc)
6082 {
6083 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6084 	uint8_t *eld = connector->eld;
6085 	uint32_t eldv;
6086 	uint32_t i;
6087 	int len;
6088 	int hdmiw_hdmiedid;
6089 	int aud_cntl_st;
6090 	int aud_cntrl_st2;
6091 
6092 	if (HAS_PCH_IBX(connector->dev)) {
6093 		hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6094 		aud_cntl_st = IBX_AUD_CNTL_ST_A;
6095 		aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6096 	} else {
6097 		hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6098 		aud_cntl_st = CPT_AUD_CNTL_ST_A;
6099 		aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6100 	}
6101 
6102 	i = to_intel_crtc(crtc)->pipe;
6103 	hdmiw_hdmiedid += i * 0x100;
6104 	aud_cntl_st += i * 0x100;
6105 
6106 	DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6107 
6108 	i = I915_READ(aud_cntl_st);
6109 	i = (i >> 29) & 0x3;		/* DIP_Port_Select, 0x1 = PortB */
6110 	if (!i) {
6111 		DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6112 		/* operate blindly on all ports */
6113 		eldv = IBX_ELD_VALIDB;
6114 		eldv |= IBX_ELD_VALIDB << 4;
6115 		eldv |= IBX_ELD_VALIDB << 8;
6116 	} else {
6117 		DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6118 		eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6119 	}
6120 
6121 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6122 		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6123 		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
6124 	}
6125 
6126 	if (intel_eld_uptodate(connector,
6127 			       aud_cntrl_st2, eldv,
6128 			       aud_cntl_st, IBX_ELD_ADDRESS,
6129 			       hdmiw_hdmiedid))
6130 		return;
6131 
6132 	i = I915_READ(aud_cntrl_st2);
6133 	i &= ~eldv;
6134 	I915_WRITE(aud_cntrl_st2, i);
6135 
6136 	if (!eld[0])
6137 		return;
6138 
6139 	i = I915_READ(aud_cntl_st);
6140 	i &= ~IBX_ELD_ADDRESS;
6141 	I915_WRITE(aud_cntl_st, i);
6142 
6143 	len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */
6144 	DRM_DEBUG_DRIVER("ELD size %d\n", len);
6145 	for (i = 0; i < len; i++)
6146 		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6147 
6148 	i = I915_READ(aud_cntrl_st2);
6149 	i |= eldv;
6150 	I915_WRITE(aud_cntrl_st2, i);
6151 }
6152 
intel_write_eld(struct drm_encoder * encoder,struct drm_display_mode * mode)6153 void intel_write_eld(struct drm_encoder *encoder,
6154 		     struct drm_display_mode *mode)
6155 {
6156 	struct drm_crtc *crtc = encoder->crtc;
6157 	struct drm_connector *connector;
6158 	struct drm_device *dev = encoder->dev;
6159 	struct drm_i915_private *dev_priv = dev->dev_private;
6160 
6161 	connector = drm_select_eld(encoder, mode);
6162 	if (!connector)
6163 		return;
6164 
6165 	DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6166 			 connector->base.id,
6167 			 drm_get_connector_name(connector),
6168 			 connector->encoder->base.id,
6169 			 drm_get_encoder_name(connector->encoder));
6170 
6171 	connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6172 
6173 	if (dev_priv->display.write_eld)
6174 		dev_priv->display.write_eld(connector, crtc);
6175 }
6176 
6177 /** Loads the palette/gamma unit for the CRTC with the prepared values */
intel_crtc_load_lut(struct drm_crtc * crtc)6178 void intel_crtc_load_lut(struct drm_crtc *crtc)
6179 {
6180 	struct drm_device *dev = crtc->dev;
6181 	struct drm_i915_private *dev_priv = dev->dev_private;
6182 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6183 	int palreg = PALETTE(intel_crtc->pipe);
6184 	int i;
6185 
6186 	/* The clocks have to be on to load the palette. */
6187 	if (!crtc->enabled || !intel_crtc->active)
6188 		return;
6189 
6190 	/* use legacy palette for Ironlake */
6191 	if (HAS_PCH_SPLIT(dev))
6192 		palreg = LGC_PALETTE(intel_crtc->pipe);
6193 
6194 	for (i = 0; i < 256; i++) {
6195 		I915_WRITE(palreg + 4 * i,
6196 			   (intel_crtc->lut_r[i] << 16) |
6197 			   (intel_crtc->lut_g[i] << 8) |
6198 			   intel_crtc->lut_b[i]);
6199 	}
6200 }
6201 
i845_update_cursor(struct drm_crtc * crtc,u32 base)6202 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6203 {
6204 	struct drm_device *dev = crtc->dev;
6205 	struct drm_i915_private *dev_priv = dev->dev_private;
6206 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6207 	bool visible = base != 0;
6208 	u32 cntl;
6209 
6210 	if (intel_crtc->cursor_visible == visible)
6211 		return;
6212 
6213 	cntl = I915_READ(_CURACNTR);
6214 	if (visible) {
6215 		/* On these chipsets we can only modify the base whilst
6216 		 * the cursor is disabled.
6217 		 */
6218 		I915_WRITE(_CURABASE, base);
6219 
6220 		cntl &= ~(CURSOR_FORMAT_MASK);
6221 		/* XXX width must be 64, stride 256 => 0x00 << 28 */
6222 		cntl |= CURSOR_ENABLE |
6223 			CURSOR_GAMMA_ENABLE |
6224 			CURSOR_FORMAT_ARGB;
6225 	} else
6226 		cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6227 	I915_WRITE(_CURACNTR, cntl);
6228 
6229 	intel_crtc->cursor_visible = visible;
6230 }
6231 
i9xx_update_cursor(struct drm_crtc * crtc,u32 base)6232 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6233 {
6234 	struct drm_device *dev = crtc->dev;
6235 	struct drm_i915_private *dev_priv = dev->dev_private;
6236 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6237 	int pipe = intel_crtc->pipe;
6238 	bool visible = base != 0;
6239 
6240 	if (intel_crtc->cursor_visible != visible) {
6241 		uint32_t cntl = I915_READ(CURCNTR(pipe));
6242 		if (base) {
6243 			cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6244 			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6245 			cntl |= pipe << 28; /* Connect to correct pipe */
6246 		} else {
6247 			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6248 			cntl |= CURSOR_MODE_DISABLE;
6249 		}
6250 		I915_WRITE(CURCNTR(pipe), cntl);
6251 
6252 		intel_crtc->cursor_visible = visible;
6253 	}
6254 	/* and commit changes on next vblank */
6255 	I915_WRITE(CURBASE(pipe), base);
6256 }
6257 
ivb_update_cursor(struct drm_crtc * crtc,u32 base)6258 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6259 {
6260 	struct drm_device *dev = crtc->dev;
6261 	struct drm_i915_private *dev_priv = dev->dev_private;
6262 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6263 	int pipe = intel_crtc->pipe;
6264 	bool visible = base != 0;
6265 
6266 	if (intel_crtc->cursor_visible != visible) {
6267 		uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6268 		if (base) {
6269 			cntl &= ~CURSOR_MODE;
6270 			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6271 		} else {
6272 			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6273 			cntl |= CURSOR_MODE_DISABLE;
6274 		}
6275 		I915_WRITE(CURCNTR_IVB(pipe), cntl);
6276 
6277 		intel_crtc->cursor_visible = visible;
6278 	}
6279 	/* and commit changes on next vblank */
6280 	I915_WRITE(CURBASE_IVB(pipe), base);
6281 }
6282 
6283 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
intel_crtc_update_cursor(struct drm_crtc * crtc,bool on)6284 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6285 				     bool on)
6286 {
6287 	struct drm_device *dev = crtc->dev;
6288 	struct drm_i915_private *dev_priv = dev->dev_private;
6289 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6290 	int pipe = intel_crtc->pipe;
6291 	int x = intel_crtc->cursor_x;
6292 	int y = intel_crtc->cursor_y;
6293 	u32 base, pos;
6294 	bool visible;
6295 
6296 	pos = 0;
6297 
6298 	if (on && crtc->enabled && crtc->fb) {
6299 		base = intel_crtc->cursor_addr;
6300 		if (x > (int) crtc->fb->width)
6301 			base = 0;
6302 
6303 		if (y > (int) crtc->fb->height)
6304 			base = 0;
6305 	} else
6306 		base = 0;
6307 
6308 	if (x < 0) {
6309 		if (x + intel_crtc->cursor_width < 0)
6310 			base = 0;
6311 
6312 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6313 		x = -x;
6314 	}
6315 	pos |= x << CURSOR_X_SHIFT;
6316 
6317 	if (y < 0) {
6318 		if (y + intel_crtc->cursor_height < 0)
6319 			base = 0;
6320 
6321 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6322 		y = -y;
6323 	}
6324 	pos |= y << CURSOR_Y_SHIFT;
6325 
6326 	visible = base != 0;
6327 	if (!visible && !intel_crtc->cursor_visible)
6328 		return;
6329 
6330 	if (IS_IVYBRIDGE(dev)) {
6331 		I915_WRITE(CURPOS_IVB(pipe), pos);
6332 		ivb_update_cursor(crtc, base);
6333 	} else {
6334 		I915_WRITE(CURPOS(pipe), pos);
6335 		if (IS_845G(dev) || IS_I865G(dev))
6336 			i845_update_cursor(crtc, base);
6337 		else
6338 			i9xx_update_cursor(crtc, base);
6339 	}
6340 
6341 	if (visible)
6342 		intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6343 }
6344 
intel_crtc_cursor_set(struct drm_crtc * crtc,struct drm_file * file,uint32_t handle,uint32_t width,uint32_t height)6345 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6346 				 struct drm_file *file,
6347 				 uint32_t handle,
6348 				 uint32_t width, uint32_t height)
6349 {
6350 	struct drm_device *dev = crtc->dev;
6351 	struct drm_i915_private *dev_priv = dev->dev_private;
6352 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6353 	struct drm_i915_gem_object *obj;
6354 	uint32_t addr;
6355 	int ret;
6356 
6357 	DRM_DEBUG_KMS("\n");
6358 
6359 	/* if we want to turn off the cursor ignore width and height */
6360 	if (!handle) {
6361 		DRM_DEBUG_KMS("cursor off\n");
6362 		addr = 0;
6363 		obj = NULL;
6364 		mutex_lock(&dev->struct_mutex);
6365 		goto finish;
6366 	}
6367 
6368 	/* Currently we only support 64x64 cursors */
6369 	if (width != 64 || height != 64) {
6370 		DRM_ERROR("we currently only support 64x64 cursors\n");
6371 		return -EINVAL;
6372 	}
6373 
6374 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6375 	if (&obj->base == NULL)
6376 		return -ENOENT;
6377 
6378 	if (obj->base.size < width * height * 4) {
6379 		DRM_ERROR("buffer is to small\n");
6380 		ret = -ENOMEM;
6381 		goto fail;
6382 	}
6383 
6384 	/* we only need to pin inside GTT if cursor is non-phy */
6385 	mutex_lock(&dev->struct_mutex);
6386 	if (!dev_priv->info->cursor_needs_physical) {
6387 		if (obj->tiling_mode) {
6388 			DRM_ERROR("cursor cannot be tiled\n");
6389 			ret = -EINVAL;
6390 			goto fail_locked;
6391 		}
6392 
6393 		ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6394 		if (ret) {
6395 			DRM_ERROR("failed to move cursor bo into the GTT\n");
6396 			goto fail_locked;
6397 		}
6398 
6399 		ret = i915_gem_object_put_fence(obj);
6400 		if (ret) {
6401 			DRM_ERROR("failed to release fence for cursor");
6402 			goto fail_unpin;
6403 		}
6404 
6405 		addr = obj->gtt_offset;
6406 	} else {
6407 		int align = IS_I830(dev) ? 16 * 1024 : 256;
6408 		ret = i915_gem_attach_phys_object(dev, obj,
6409 						  (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6410 						  align);
6411 		if (ret) {
6412 			DRM_ERROR("failed to attach phys object\n");
6413 			goto fail_locked;
6414 		}
6415 		addr = obj->phys_obj->handle->busaddr;
6416 	}
6417 
6418 	if (IS_GEN2(dev))
6419 		I915_WRITE(CURSIZE, (height << 12) | width);
6420 
6421  finish:
6422 	if (intel_crtc->cursor_bo) {
6423 		if (dev_priv->info->cursor_needs_physical) {
6424 			if (intel_crtc->cursor_bo != obj)
6425 				i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6426 		} else
6427 			i915_gem_object_unpin(intel_crtc->cursor_bo);
6428 		drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6429 	}
6430 
6431 	mutex_unlock(&dev->struct_mutex);
6432 
6433 	intel_crtc->cursor_addr = addr;
6434 	intel_crtc->cursor_bo = obj;
6435 	intel_crtc->cursor_width = width;
6436 	intel_crtc->cursor_height = height;
6437 
6438 	intel_crtc_update_cursor(crtc, true);
6439 
6440 	return 0;
6441 fail_unpin:
6442 	i915_gem_object_unpin(obj);
6443 fail_locked:
6444 	mutex_unlock(&dev->struct_mutex);
6445 fail:
6446 	drm_gem_object_unreference_unlocked(&obj->base);
6447 	return ret;
6448 }
6449 
intel_crtc_cursor_move(struct drm_crtc * crtc,int x,int y)6450 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6451 {
6452 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6453 
6454 	intel_crtc->cursor_x = x;
6455 	intel_crtc->cursor_y = y;
6456 
6457 	intel_crtc_update_cursor(crtc, true);
6458 
6459 	return 0;
6460 }
6461 
6462 /** Sets the color ramps on behalf of RandR */
intel_crtc_fb_gamma_set(struct drm_crtc * crtc,u16 red,u16 green,u16 blue,int regno)6463 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6464 				 u16 blue, int regno)
6465 {
6466 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6467 
6468 	intel_crtc->lut_r[regno] = red >> 8;
6469 	intel_crtc->lut_g[regno] = green >> 8;
6470 	intel_crtc->lut_b[regno] = blue >> 8;
6471 }
6472 
intel_crtc_fb_gamma_get(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,int regno)6473 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6474 			     u16 *blue, int regno)
6475 {
6476 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6477 
6478 	*red = intel_crtc->lut_r[regno] << 8;
6479 	*green = intel_crtc->lut_g[regno] << 8;
6480 	*blue = intel_crtc->lut_b[regno] << 8;
6481 }
6482 
intel_crtc_gamma_set(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,uint32_t start,uint32_t size)6483 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6484 				 u16 *blue, uint32_t start, uint32_t size)
6485 {
6486 	int end = (start + size > 256) ? 256 : start + size, i;
6487 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6488 
6489 	for (i = start; i < end; i++) {
6490 		intel_crtc->lut_r[i] = red[i] >> 8;
6491 		intel_crtc->lut_g[i] = green[i] >> 8;
6492 		intel_crtc->lut_b[i] = blue[i] >> 8;
6493 	}
6494 
6495 	intel_crtc_load_lut(crtc);
6496 }
6497 
6498 /**
6499  * Get a pipe with a simple mode set on it for doing load-based monitor
6500  * detection.
6501  *
6502  * It will be up to the load-detect code to adjust the pipe as appropriate for
6503  * its requirements.  The pipe will be connected to no other encoders.
6504  *
6505  * Currently this code will only succeed if there is a pipe with no encoders
6506  * configured for it.  In the future, it could choose to temporarily disable
6507  * some outputs to free up a pipe for its use.
6508  *
6509  * \return crtc, or NULL if no pipes are available.
6510  */
6511 
6512 /* VESA 640x480x72Hz mode to set on the pipe */
6513 static struct drm_display_mode load_detect_mode = {
6514 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6515 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6516 };
6517 
6518 static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)6519 intel_framebuffer_create(struct drm_device *dev,
6520 			 struct drm_mode_fb_cmd2 *mode_cmd,
6521 			 struct drm_i915_gem_object *obj)
6522 {
6523 	struct intel_framebuffer *intel_fb;
6524 	int ret;
6525 
6526 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6527 	if (!intel_fb) {
6528 		drm_gem_object_unreference_unlocked(&obj->base);
6529 		return ERR_PTR(-ENOMEM);
6530 	}
6531 
6532 	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6533 	if (ret) {
6534 		drm_gem_object_unreference_unlocked(&obj->base);
6535 		kfree(intel_fb);
6536 		return ERR_PTR(ret);
6537 	}
6538 
6539 	return &intel_fb->base;
6540 }
6541 
6542 static u32
intel_framebuffer_pitch_for_width(int width,int bpp)6543 intel_framebuffer_pitch_for_width(int width, int bpp)
6544 {
6545 	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6546 	return ALIGN(pitch, 64);
6547 }
6548 
6549 static u32
intel_framebuffer_size_for_mode(struct drm_display_mode * mode,int bpp)6550 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6551 {
6552 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6553 	return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6554 }
6555 
6556 static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device * dev,struct drm_display_mode * mode,int depth,int bpp)6557 intel_framebuffer_create_for_mode(struct drm_device *dev,
6558 				  struct drm_display_mode *mode,
6559 				  int depth, int bpp)
6560 {
6561 	struct drm_i915_gem_object *obj;
6562 	struct drm_mode_fb_cmd2 mode_cmd;
6563 
6564 	obj = i915_gem_alloc_object(dev,
6565 				    intel_framebuffer_size_for_mode(mode, bpp));
6566 	if (obj == NULL)
6567 		return ERR_PTR(-ENOMEM);
6568 
6569 	mode_cmd.width = mode->hdisplay;
6570 	mode_cmd.height = mode->vdisplay;
6571 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6572 								bpp);
6573 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6574 
6575 	return intel_framebuffer_create(dev, &mode_cmd, obj);
6576 }
6577 
6578 static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device * dev,struct drm_display_mode * mode)6579 mode_fits_in_fbdev(struct drm_device *dev,
6580 		   struct drm_display_mode *mode)
6581 {
6582 	struct drm_i915_private *dev_priv = dev->dev_private;
6583 	struct drm_i915_gem_object *obj;
6584 	struct drm_framebuffer *fb;
6585 
6586 	if (dev_priv->fbdev == NULL)
6587 		return NULL;
6588 
6589 	obj = dev_priv->fbdev->ifb.obj;
6590 	if (obj == NULL)
6591 		return NULL;
6592 
6593 	fb = &dev_priv->fbdev->ifb.base;
6594 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6595 							       fb->bits_per_pixel))
6596 		return NULL;
6597 
6598 	if (obj->base.size < mode->vdisplay * fb->pitches[0])
6599 		return NULL;
6600 
6601 	return fb;
6602 }
6603 
intel_get_load_detect_pipe(struct intel_encoder * intel_encoder,struct drm_connector * connector,struct drm_display_mode * mode,struct intel_load_detect_pipe * old)6604 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6605 				struct drm_connector *connector,
6606 				struct drm_display_mode *mode,
6607 				struct intel_load_detect_pipe *old)
6608 {
6609 	struct intel_crtc *intel_crtc;
6610 	struct drm_crtc *possible_crtc;
6611 	struct drm_encoder *encoder = &intel_encoder->base;
6612 	struct drm_crtc *crtc = NULL;
6613 	struct drm_device *dev = encoder->dev;
6614 	struct drm_framebuffer *old_fb;
6615 	int i = -1;
6616 
6617 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6618 		      connector->base.id, drm_get_connector_name(connector),
6619 		      encoder->base.id, drm_get_encoder_name(encoder));
6620 
6621 	/*
6622 	 * Algorithm gets a little messy:
6623 	 *
6624 	 *   - if the connector already has an assigned crtc, use it (but make
6625 	 *     sure it's on first)
6626 	 *
6627 	 *   - try to find the first unused crtc that can drive this connector,
6628 	 *     and use that if we find one
6629 	 */
6630 
6631 	/* See if we already have a CRTC for this connector */
6632 	if (encoder->crtc) {
6633 		crtc = encoder->crtc;
6634 
6635 		intel_crtc = to_intel_crtc(crtc);
6636 		old->dpms_mode = intel_crtc->dpms_mode;
6637 		old->load_detect_temp = false;
6638 
6639 		/* Make sure the crtc and connector are running */
6640 		if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6641 			struct drm_encoder_helper_funcs *encoder_funcs;
6642 			struct drm_crtc_helper_funcs *crtc_funcs;
6643 
6644 			crtc_funcs = crtc->helper_private;
6645 			crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6646 
6647 			encoder_funcs = encoder->helper_private;
6648 			encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6649 		}
6650 
6651 		return true;
6652 	}
6653 
6654 	/* Find an unused one (if possible) */
6655 	list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6656 		i++;
6657 		if (!(encoder->possible_crtcs & (1 << i)))
6658 			continue;
6659 		if (!possible_crtc->enabled) {
6660 			crtc = possible_crtc;
6661 			break;
6662 		}
6663 	}
6664 
6665 	/*
6666 	 * If we didn't find an unused CRTC, don't use any.
6667 	 */
6668 	if (!crtc) {
6669 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
6670 		return false;
6671 	}
6672 
6673 	encoder->crtc = crtc;
6674 	connector->encoder = encoder;
6675 
6676 	intel_crtc = to_intel_crtc(crtc);
6677 	old->dpms_mode = intel_crtc->dpms_mode;
6678 	old->load_detect_temp = true;
6679 	old->release_fb = NULL;
6680 
6681 	if (!mode)
6682 		mode = &load_detect_mode;
6683 
6684 	old_fb = crtc->fb;
6685 
6686 	/* We need a framebuffer large enough to accommodate all accesses
6687 	 * that the plane may generate whilst we perform load detection.
6688 	 * We can not rely on the fbcon either being present (we get called
6689 	 * during its initialisation to detect all boot displays, or it may
6690 	 * not even exist) or that it is large enough to satisfy the
6691 	 * requested mode.
6692 	 */
6693 	crtc->fb = mode_fits_in_fbdev(dev, mode);
6694 	if (crtc->fb == NULL) {
6695 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6696 		crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6697 		old->release_fb = crtc->fb;
6698 	} else
6699 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6700 	if (IS_ERR(crtc->fb)) {
6701 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6702 		crtc->fb = old_fb;
6703 		return false;
6704 	}
6705 
6706 	if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6707 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6708 		if (old->release_fb)
6709 			old->release_fb->funcs->destroy(old->release_fb);
6710 		crtc->fb = old_fb;
6711 		return false;
6712 	}
6713 
6714 	/* let the connector get through one full cycle before testing */
6715 	intel_wait_for_vblank(dev, intel_crtc->pipe);
6716 
6717 	return true;
6718 }
6719 
intel_release_load_detect_pipe(struct intel_encoder * intel_encoder,struct drm_connector * connector,struct intel_load_detect_pipe * old)6720 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6721 				    struct drm_connector *connector,
6722 				    struct intel_load_detect_pipe *old)
6723 {
6724 	struct drm_encoder *encoder = &intel_encoder->base;
6725 	struct drm_device *dev = encoder->dev;
6726 	struct drm_crtc *crtc = encoder->crtc;
6727 	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6728 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6729 
6730 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6731 		      connector->base.id, drm_get_connector_name(connector),
6732 		      encoder->base.id, drm_get_encoder_name(encoder));
6733 
6734 	if (old->load_detect_temp) {
6735 		connector->encoder = NULL;
6736 		drm_helper_disable_unused_functions(dev);
6737 
6738 		if (old->release_fb)
6739 			old->release_fb->funcs->destroy(old->release_fb);
6740 
6741 		return;
6742 	}
6743 
6744 	/* Switch crtc and encoder back off if necessary */
6745 	if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6746 		encoder_funcs->dpms(encoder, old->dpms_mode);
6747 		crtc_funcs->dpms(crtc, old->dpms_mode);
6748 	}
6749 }
6750 
6751 /* Returns the clock of the currently programmed mode of the given pipe. */
intel_crtc_clock_get(struct drm_device * dev,struct drm_crtc * crtc)6752 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6753 {
6754 	struct drm_i915_private *dev_priv = dev->dev_private;
6755 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6756 	int pipe = intel_crtc->pipe;
6757 	u32 dpll = I915_READ(DPLL(pipe));
6758 	u32 fp;
6759 	intel_clock_t clock;
6760 
6761 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6762 		fp = I915_READ(FP0(pipe));
6763 	else
6764 		fp = I915_READ(FP1(pipe));
6765 
6766 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6767 	if (IS_PINEVIEW(dev)) {
6768 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6769 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6770 	} else {
6771 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6772 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6773 	}
6774 
6775 	if (!IS_GEN2(dev)) {
6776 		if (IS_PINEVIEW(dev))
6777 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6778 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6779 		else
6780 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6781 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
6782 
6783 		switch (dpll & DPLL_MODE_MASK) {
6784 		case DPLLB_MODE_DAC_SERIAL:
6785 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6786 				5 : 10;
6787 			break;
6788 		case DPLLB_MODE_LVDS:
6789 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6790 				7 : 14;
6791 			break;
6792 		default:
6793 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6794 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
6795 			return 0;
6796 		}
6797 
6798 		/* XXX: Handle the 100Mhz refclk */
6799 		intel_clock(dev, 96000, &clock);
6800 	} else {
6801 		bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6802 
6803 		if (is_lvds) {
6804 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6805 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
6806 			clock.p2 = 14;
6807 
6808 			if ((dpll & PLL_REF_INPUT_MASK) ==
6809 			    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6810 				/* XXX: might not be 66MHz */
6811 				intel_clock(dev, 66000, &clock);
6812 			} else
6813 				intel_clock(dev, 48000, &clock);
6814 		} else {
6815 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
6816 				clock.p1 = 2;
6817 			else {
6818 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6819 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6820 			}
6821 			if (dpll & PLL_P2_DIVIDE_BY_4)
6822 				clock.p2 = 4;
6823 			else
6824 				clock.p2 = 2;
6825 
6826 			intel_clock(dev, 48000, &clock);
6827 		}
6828 	}
6829 
6830 	/* XXX: It would be nice to validate the clocks, but we can't reuse
6831 	 * i830PllIsValid() because it relies on the xf86_config connector
6832 	 * configuration being accurate, which it isn't necessarily.
6833 	 */
6834 
6835 	return clock.dot;
6836 }
6837 
6838 /** Returns the currently programmed mode of the given pipe. */
intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)6839 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6840 					     struct drm_crtc *crtc)
6841 {
6842 	struct drm_i915_private *dev_priv = dev->dev_private;
6843 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6844 	int pipe = intel_crtc->pipe;
6845 	struct drm_display_mode *mode;
6846 	int htot = I915_READ(HTOTAL(pipe));
6847 	int hsync = I915_READ(HSYNC(pipe));
6848 	int vtot = I915_READ(VTOTAL(pipe));
6849 	int vsync = I915_READ(VSYNC(pipe));
6850 
6851 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6852 	if (!mode)
6853 		return NULL;
6854 
6855 	mode->clock = intel_crtc_clock_get(dev, crtc);
6856 	mode->hdisplay = (htot & 0xffff) + 1;
6857 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6858 	mode->hsync_start = (hsync & 0xffff) + 1;
6859 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6860 	mode->vdisplay = (vtot & 0xffff) + 1;
6861 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6862 	mode->vsync_start = (vsync & 0xffff) + 1;
6863 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6864 
6865 	drm_mode_set_name(mode);
6866 	drm_mode_set_crtcinfo(mode, 0);
6867 
6868 	return mode;
6869 }
6870 
6871 #define GPU_IDLE_TIMEOUT 500 /* ms */
6872 
6873 /* When this timer fires, we've been idle for awhile */
intel_gpu_idle_timer(unsigned long arg)6874 static void intel_gpu_idle_timer(unsigned long arg)
6875 {
6876 	struct drm_device *dev = (struct drm_device *)arg;
6877 	drm_i915_private_t *dev_priv = dev->dev_private;
6878 
6879 	if (!list_empty(&dev_priv->mm.active_list)) {
6880 		/* Still processing requests, so just re-arm the timer. */
6881 		mod_timer(&dev_priv->idle_timer, jiffies +
6882 			  msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6883 		return;
6884 	}
6885 
6886 	dev_priv->busy = false;
6887 	queue_work(dev_priv->wq, &dev_priv->idle_work);
6888 }
6889 
6890 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6891 
intel_crtc_idle_timer(unsigned long arg)6892 static void intel_crtc_idle_timer(unsigned long arg)
6893 {
6894 	struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6895 	struct drm_crtc *crtc = &intel_crtc->base;
6896 	drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6897 	struct intel_framebuffer *intel_fb;
6898 
6899 	intel_fb = to_intel_framebuffer(crtc->fb);
6900 	if (intel_fb && intel_fb->obj->active) {
6901 		/* The framebuffer is still being accessed by the GPU. */
6902 		mod_timer(&intel_crtc->idle_timer, jiffies +
6903 			  msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6904 		return;
6905 	}
6906 
6907 	intel_crtc->busy = false;
6908 	queue_work(dev_priv->wq, &dev_priv->idle_work);
6909 }
6910 
intel_increase_pllclock(struct drm_crtc * crtc)6911 static void intel_increase_pllclock(struct drm_crtc *crtc)
6912 {
6913 	struct drm_device *dev = crtc->dev;
6914 	drm_i915_private_t *dev_priv = dev->dev_private;
6915 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6916 	int pipe = intel_crtc->pipe;
6917 	int dpll_reg = DPLL(pipe);
6918 	int dpll;
6919 
6920 	if (HAS_PCH_SPLIT(dev))
6921 		return;
6922 
6923 	if (!dev_priv->lvds_downclock_avail)
6924 		return;
6925 
6926 	dpll = I915_READ(dpll_reg);
6927 	if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6928 		DRM_DEBUG_DRIVER("upclocking LVDS\n");
6929 
6930 		/* Unlock panel regs */
6931 		I915_WRITE(PP_CONTROL,
6932 			   I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6933 
6934 		dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6935 		I915_WRITE(dpll_reg, dpll);
6936 		intel_wait_for_vblank(dev, pipe);
6937 
6938 		dpll = I915_READ(dpll_reg);
6939 		if (dpll & DISPLAY_RATE_SELECT_FPA1)
6940 			DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6941 
6942 		/* ...and lock them again */
6943 		I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6944 	}
6945 
6946 	/* Schedule downclock */
6947 	mod_timer(&intel_crtc->idle_timer, jiffies +
6948 		  msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6949 }
6950 
intel_decrease_pllclock(struct drm_crtc * crtc)6951 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6952 {
6953 	struct drm_device *dev = crtc->dev;
6954 	drm_i915_private_t *dev_priv = dev->dev_private;
6955 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6956 	int pipe = intel_crtc->pipe;
6957 	int dpll_reg = DPLL(pipe);
6958 	int dpll = I915_READ(dpll_reg);
6959 
6960 	if (HAS_PCH_SPLIT(dev))
6961 		return;
6962 
6963 	if (!dev_priv->lvds_downclock_avail)
6964 		return;
6965 
6966 	/*
6967 	 * Since this is called by a timer, we should never get here in
6968 	 * the manual case.
6969 	 */
6970 	if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6971 		DRM_DEBUG_DRIVER("downclocking LVDS\n");
6972 
6973 		/* Unlock panel regs */
6974 		I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6975 			   PANEL_UNLOCK_REGS);
6976 
6977 		dpll |= DISPLAY_RATE_SELECT_FPA1;
6978 		I915_WRITE(dpll_reg, dpll);
6979 		intel_wait_for_vblank(dev, pipe);
6980 		dpll = I915_READ(dpll_reg);
6981 		if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6982 			DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6983 
6984 		/* ...and lock them again */
6985 		I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6986 	}
6987 
6988 }
6989 
6990 /**
6991  * intel_idle_update - adjust clocks for idleness
6992  * @work: work struct
6993  *
6994  * Either the GPU or display (or both) went idle.  Check the busy status
6995  * here and adjust the CRTC and GPU clocks as necessary.
6996  */
intel_idle_update(struct work_struct * work)6997 static void intel_idle_update(struct work_struct *work)
6998 {
6999 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7000 						    idle_work);
7001 	struct drm_device *dev = dev_priv->dev;
7002 	struct drm_crtc *crtc;
7003 	struct intel_crtc *intel_crtc;
7004 
7005 	if (!i915_powersave)
7006 		return;
7007 
7008 	mutex_lock(&dev->struct_mutex);
7009 
7010 	i915_update_gfx_val(dev_priv);
7011 
7012 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7013 		/* Skip inactive CRTCs */
7014 		if (!crtc->fb)
7015 			continue;
7016 
7017 		intel_crtc = to_intel_crtc(crtc);
7018 		if (!intel_crtc->busy)
7019 			intel_decrease_pllclock(crtc);
7020 	}
7021 
7022 
7023 	mutex_unlock(&dev->struct_mutex);
7024 }
7025 
7026 /**
7027  * intel_mark_busy - mark the GPU and possibly the display busy
7028  * @dev: drm device
7029  * @obj: object we're operating on
7030  *
7031  * Callers can use this function to indicate that the GPU is busy processing
7032  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
7033  * buffer), we'll also mark the display as busy, so we know to increase its
7034  * clock frequency.
7035  */
intel_mark_busy(struct drm_device * dev,struct drm_i915_gem_object * obj)7036 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7037 {
7038 	drm_i915_private_t *dev_priv = dev->dev_private;
7039 	struct drm_crtc *crtc = NULL;
7040 	struct intel_framebuffer *intel_fb;
7041 	struct intel_crtc *intel_crtc;
7042 
7043 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
7044 		return;
7045 
7046 	if (!dev_priv->busy)
7047 		dev_priv->busy = true;
7048 	else
7049 		mod_timer(&dev_priv->idle_timer, jiffies +
7050 			  msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7051 
7052 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7053 		if (!crtc->fb)
7054 			continue;
7055 
7056 		intel_crtc = to_intel_crtc(crtc);
7057 		intel_fb = to_intel_framebuffer(crtc->fb);
7058 		if (intel_fb->obj == obj) {
7059 			if (!intel_crtc->busy) {
7060 				/* Non-busy -> busy, upclock */
7061 				intel_increase_pllclock(crtc);
7062 				intel_crtc->busy = true;
7063 			} else {
7064 				/* Busy -> busy, put off timer */
7065 				mod_timer(&intel_crtc->idle_timer, jiffies +
7066 					  msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7067 			}
7068 		}
7069 	}
7070 }
7071 
intel_crtc_destroy(struct drm_crtc * crtc)7072 static void intel_crtc_destroy(struct drm_crtc *crtc)
7073 {
7074 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7075 	struct drm_device *dev = crtc->dev;
7076 	struct intel_unpin_work *work;
7077 	unsigned long flags;
7078 
7079 	spin_lock_irqsave(&dev->event_lock, flags);
7080 	work = intel_crtc->unpin_work;
7081 	intel_crtc->unpin_work = NULL;
7082 	spin_unlock_irqrestore(&dev->event_lock, flags);
7083 
7084 	if (work) {
7085 		cancel_work_sync(&work->work);
7086 		kfree(work);
7087 	}
7088 
7089 	drm_crtc_cleanup(crtc);
7090 
7091 	kfree(intel_crtc);
7092 }
7093 
intel_unpin_work_fn(struct work_struct * __work)7094 static void intel_unpin_work_fn(struct work_struct *__work)
7095 {
7096 	struct intel_unpin_work *work =
7097 		container_of(__work, struct intel_unpin_work, work);
7098 
7099 	mutex_lock(&work->dev->struct_mutex);
7100 	i915_gem_object_unpin(work->old_fb_obj);
7101 	drm_gem_object_unreference(&work->pending_flip_obj->base);
7102 	drm_gem_object_unreference(&work->old_fb_obj->base);
7103 
7104 	intel_update_fbc(work->dev);
7105 	mutex_unlock(&work->dev->struct_mutex);
7106 	kfree(work);
7107 }
7108 
do_intel_finish_page_flip(struct drm_device * dev,struct drm_crtc * crtc)7109 static void do_intel_finish_page_flip(struct drm_device *dev,
7110 				      struct drm_crtc *crtc)
7111 {
7112 	drm_i915_private_t *dev_priv = dev->dev_private;
7113 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7114 	struct intel_unpin_work *work;
7115 	struct drm_i915_gem_object *obj;
7116 	struct drm_pending_vblank_event *e;
7117 	struct timeval tnow, tvbl;
7118 	unsigned long flags;
7119 
7120 	/* Ignore early vblank irqs */
7121 	if (intel_crtc == NULL)
7122 		return;
7123 
7124 	do_gettimeofday(&tnow);
7125 
7126 	spin_lock_irqsave(&dev->event_lock, flags);
7127 	work = intel_crtc->unpin_work;
7128 	if (work == NULL || !work->pending) {
7129 		spin_unlock_irqrestore(&dev->event_lock, flags);
7130 		return;
7131 	}
7132 
7133 	intel_crtc->unpin_work = NULL;
7134 
7135 	if (work->event) {
7136 		e = work->event;
7137 		e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7138 
7139 		/* Called before vblank count and timestamps have
7140 		 * been updated for the vblank interval of flip
7141 		 * completion? Need to increment vblank count and
7142 		 * add one videorefresh duration to returned timestamp
7143 		 * to account for this. We assume this happened if we
7144 		 * get called over 0.9 frame durations after the last
7145 		 * timestamped vblank.
7146 		 *
7147 		 * This calculation can not be used with vrefresh rates
7148 		 * below 5Hz (10Hz to be on the safe side) without
7149 		 * promoting to 64 integers.
7150 		 */
7151 		if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7152 		    9 * crtc->framedur_ns) {
7153 			e->event.sequence++;
7154 			tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7155 					     crtc->framedur_ns);
7156 		}
7157 
7158 		e->event.tv_sec = tvbl.tv_sec;
7159 		e->event.tv_usec = tvbl.tv_usec;
7160 
7161 		list_add_tail(&e->base.link,
7162 			      &e->base.file_priv->event_list);
7163 		wake_up_interruptible(&e->base.file_priv->event_wait);
7164 	}
7165 
7166 	drm_vblank_put(dev, intel_crtc->pipe);
7167 
7168 	spin_unlock_irqrestore(&dev->event_lock, flags);
7169 
7170 	obj = work->old_fb_obj;
7171 
7172 	atomic_clear_mask(1 << intel_crtc->plane,
7173 			  &obj->pending_flip.counter);
7174 	if (atomic_read(&obj->pending_flip) == 0)
7175 		wake_up(&dev_priv->pending_flip_queue);
7176 
7177 	schedule_work(&work->work);
7178 
7179 	trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7180 }
7181 
intel_finish_page_flip(struct drm_device * dev,int pipe)7182 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7183 {
7184 	drm_i915_private_t *dev_priv = dev->dev_private;
7185 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7186 
7187 	do_intel_finish_page_flip(dev, crtc);
7188 }
7189 
intel_finish_page_flip_plane(struct drm_device * dev,int plane)7190 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7191 {
7192 	drm_i915_private_t *dev_priv = dev->dev_private;
7193 	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7194 
7195 	do_intel_finish_page_flip(dev, crtc);
7196 }
7197 
intel_prepare_page_flip(struct drm_device * dev,int plane)7198 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7199 {
7200 	drm_i915_private_t *dev_priv = dev->dev_private;
7201 	struct intel_crtc *intel_crtc =
7202 		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7203 	unsigned long flags;
7204 
7205 	spin_lock_irqsave(&dev->event_lock, flags);
7206 	if (intel_crtc->unpin_work) {
7207 		if ((++intel_crtc->unpin_work->pending) > 1)
7208 			DRM_ERROR("Prepared flip multiple times\n");
7209 	} else {
7210 		DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7211 	}
7212 	spin_unlock_irqrestore(&dev->event_lock, flags);
7213 }
7214 
intel_gen2_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj)7215 static int intel_gen2_queue_flip(struct drm_device *dev,
7216 				 struct drm_crtc *crtc,
7217 				 struct drm_framebuffer *fb,
7218 				 struct drm_i915_gem_object *obj)
7219 {
7220 	struct drm_i915_private *dev_priv = dev->dev_private;
7221 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7222 	unsigned long offset;
7223 	u32 flip_mask;
7224 	int ret;
7225 
7226 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7227 	if (ret)
7228 		goto out;
7229 
7230 	/* Offset into the new buffer for cases of shared fbs between CRTCs */
7231 	offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7232 
7233 	ret = BEGIN_LP_RING(6);
7234 	if (ret)
7235 		goto out;
7236 
7237 	/* Can't queue multiple flips, so wait for the previous
7238 	 * one to finish before executing the next.
7239 	 */
7240 	if (intel_crtc->plane)
7241 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7242 	else
7243 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7244 	OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7245 	OUT_RING(MI_NOOP);
7246 	OUT_RING(MI_DISPLAY_FLIP |
7247 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7248 	OUT_RING(fb->pitches[0]);
7249 	OUT_RING(obj->gtt_offset + offset);
7250 	OUT_RING(MI_NOOP);
7251 	ADVANCE_LP_RING();
7252 out:
7253 	return ret;
7254 }
7255 
intel_gen3_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj)7256 static int intel_gen3_queue_flip(struct drm_device *dev,
7257 				 struct drm_crtc *crtc,
7258 				 struct drm_framebuffer *fb,
7259 				 struct drm_i915_gem_object *obj)
7260 {
7261 	struct drm_i915_private *dev_priv = dev->dev_private;
7262 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7263 	unsigned long offset;
7264 	u32 flip_mask;
7265 	int ret;
7266 
7267 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7268 	if (ret)
7269 		goto out;
7270 
7271 	/* Offset into the new buffer for cases of shared fbs between CRTCs */
7272 	offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7273 
7274 	ret = BEGIN_LP_RING(6);
7275 	if (ret)
7276 		goto out;
7277 
7278 	if (intel_crtc->plane)
7279 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7280 	else
7281 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7282 	OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7283 	OUT_RING(MI_NOOP);
7284 	OUT_RING(MI_DISPLAY_FLIP_I915 |
7285 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7286 	OUT_RING(fb->pitches[0]);
7287 	OUT_RING(obj->gtt_offset + offset);
7288 	OUT_RING(MI_NOOP);
7289 
7290 	ADVANCE_LP_RING();
7291 out:
7292 	return ret;
7293 }
7294 
intel_gen4_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj)7295 static int intel_gen4_queue_flip(struct drm_device *dev,
7296 				 struct drm_crtc *crtc,
7297 				 struct drm_framebuffer *fb,
7298 				 struct drm_i915_gem_object *obj)
7299 {
7300 	struct drm_i915_private *dev_priv = dev->dev_private;
7301 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7302 	uint32_t pf, pipesrc;
7303 	int ret;
7304 
7305 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7306 	if (ret)
7307 		goto out;
7308 
7309 	ret = BEGIN_LP_RING(4);
7310 	if (ret)
7311 		goto out;
7312 
7313 	/* i965+ uses the linear or tiled offsets from the
7314 	 * Display Registers (which do not change across a page-flip)
7315 	 * so we need only reprogram the base address.
7316 	 */
7317 	OUT_RING(MI_DISPLAY_FLIP |
7318 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7319 	OUT_RING(fb->pitches[0]);
7320 	OUT_RING(obj->gtt_offset | obj->tiling_mode);
7321 
7322 	/* XXX Enabling the panel-fitter across page-flip is so far
7323 	 * untested on non-native modes, so ignore it for now.
7324 	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7325 	 */
7326 	pf = 0;
7327 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7328 	OUT_RING(pf | pipesrc);
7329 	ADVANCE_LP_RING();
7330 out:
7331 	return ret;
7332 }
7333 
intel_gen6_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj)7334 static int intel_gen6_queue_flip(struct drm_device *dev,
7335 				 struct drm_crtc *crtc,
7336 				 struct drm_framebuffer *fb,
7337 				 struct drm_i915_gem_object *obj)
7338 {
7339 	struct drm_i915_private *dev_priv = dev->dev_private;
7340 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7341 	uint32_t pf, pipesrc;
7342 	int ret;
7343 
7344 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7345 	if (ret)
7346 		goto out;
7347 
7348 	ret = BEGIN_LP_RING(4);
7349 	if (ret)
7350 		goto out;
7351 
7352 	OUT_RING(MI_DISPLAY_FLIP |
7353 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7354 	OUT_RING(fb->pitches[0] | obj->tiling_mode);
7355 	OUT_RING(obj->gtt_offset);
7356 
7357 	pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7358 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7359 	OUT_RING(pf | pipesrc);
7360 	ADVANCE_LP_RING();
7361 out:
7362 	return ret;
7363 }
7364 
7365 /*
7366  * On gen7 we currently use the blit ring because (in early silicon at least)
7367  * the render ring doesn't give us interrpts for page flip completion, which
7368  * means clients will hang after the first flip is queued.  Fortunately the
7369  * blit ring generates interrupts properly, so use it instead.
7370  */
intel_gen7_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj)7371 static int intel_gen7_queue_flip(struct drm_device *dev,
7372 				 struct drm_crtc *crtc,
7373 				 struct drm_framebuffer *fb,
7374 				 struct drm_i915_gem_object *obj)
7375 {
7376 	struct drm_i915_private *dev_priv = dev->dev_private;
7377 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7378 	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7379 	int ret;
7380 
7381 	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7382 	if (ret)
7383 		goto out;
7384 
7385 	ret = intel_ring_begin(ring, 4);
7386 	if (ret)
7387 		goto out;
7388 
7389 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7390 	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7391 	intel_ring_emit(ring, (obj->gtt_offset));
7392 	intel_ring_emit(ring, (MI_NOOP));
7393 	intel_ring_advance(ring);
7394 out:
7395 	return ret;
7396 }
7397 
intel_default_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj)7398 static int intel_default_queue_flip(struct drm_device *dev,
7399 				    struct drm_crtc *crtc,
7400 				    struct drm_framebuffer *fb,
7401 				    struct drm_i915_gem_object *obj)
7402 {
7403 	return -ENODEV;
7404 }
7405 
intel_crtc_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event)7406 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7407 				struct drm_framebuffer *fb,
7408 				struct drm_pending_vblank_event *event)
7409 {
7410 	struct drm_device *dev = crtc->dev;
7411 	struct drm_i915_private *dev_priv = dev->dev_private;
7412 	struct intel_framebuffer *intel_fb;
7413 	struct drm_i915_gem_object *obj;
7414 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7415 	struct intel_unpin_work *work;
7416 	unsigned long flags;
7417 	int ret;
7418 
7419 	work = kzalloc(sizeof *work, GFP_KERNEL);
7420 	if (work == NULL)
7421 		return -ENOMEM;
7422 
7423 	work->event = event;
7424 	work->dev = crtc->dev;
7425 	intel_fb = to_intel_framebuffer(crtc->fb);
7426 	work->old_fb_obj = intel_fb->obj;
7427 	INIT_WORK(&work->work, intel_unpin_work_fn);
7428 
7429 	ret = drm_vblank_get(dev, intel_crtc->pipe);
7430 	if (ret)
7431 		goto free_work;
7432 
7433 	/* We borrow the event spin lock for protecting unpin_work */
7434 	spin_lock_irqsave(&dev->event_lock, flags);
7435 	if (intel_crtc->unpin_work) {
7436 		spin_unlock_irqrestore(&dev->event_lock, flags);
7437 		kfree(work);
7438 		drm_vblank_put(dev, intel_crtc->pipe);
7439 
7440 		DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7441 		return -EBUSY;
7442 	}
7443 	intel_crtc->unpin_work = work;
7444 	spin_unlock_irqrestore(&dev->event_lock, flags);
7445 
7446 	intel_fb = to_intel_framebuffer(fb);
7447 	obj = intel_fb->obj;
7448 
7449 	mutex_lock(&dev->struct_mutex);
7450 
7451 	/* Reference the objects for the scheduled work. */
7452 	drm_gem_object_reference(&work->old_fb_obj->base);
7453 	drm_gem_object_reference(&obj->base);
7454 
7455 	crtc->fb = fb;
7456 
7457 	work->pending_flip_obj = obj;
7458 
7459 	work->enable_stall_check = true;
7460 
7461 	/* Block clients from rendering to the new back buffer until
7462 	 * the flip occurs and the object is no longer visible.
7463 	 */
7464 	atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7465 
7466 	ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7467 	if (ret)
7468 		goto cleanup_pending;
7469 
7470 	intel_disable_fbc(dev);
7471 	mutex_unlock(&dev->struct_mutex);
7472 
7473 	trace_i915_flip_request(intel_crtc->plane, obj);
7474 
7475 	return 0;
7476 
7477 cleanup_pending:
7478 	atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7479 	drm_gem_object_unreference(&work->old_fb_obj->base);
7480 	drm_gem_object_unreference(&obj->base);
7481 	mutex_unlock(&dev->struct_mutex);
7482 
7483 	spin_lock_irqsave(&dev->event_lock, flags);
7484 	intel_crtc->unpin_work = NULL;
7485 	spin_unlock_irqrestore(&dev->event_lock, flags);
7486 
7487 	drm_vblank_put(dev, intel_crtc->pipe);
7488 free_work:
7489 	kfree(work);
7490 
7491 	return ret;
7492 }
7493 
intel_sanitize_modesetting(struct drm_device * dev,int pipe,int plane)7494 static void intel_sanitize_modesetting(struct drm_device *dev,
7495 				       int pipe, int plane)
7496 {
7497 	struct drm_i915_private *dev_priv = dev->dev_private;
7498 	u32 reg, val;
7499 
7500 	if (HAS_PCH_SPLIT(dev))
7501 		return;
7502 
7503 	/* Who knows what state these registers were left in by the BIOS or
7504 	 * grub?
7505 	 *
7506 	 * If we leave the registers in a conflicting state (e.g. with the
7507 	 * display plane reading from the other pipe than the one we intend
7508 	 * to use) then when we attempt to teardown the active mode, we will
7509 	 * not disable the pipes and planes in the correct order -- leaving
7510 	 * a plane reading from a disabled pipe and possibly leading to
7511 	 * undefined behaviour.
7512 	 */
7513 
7514 	reg = DSPCNTR(plane);
7515 	val = I915_READ(reg);
7516 
7517 	if ((val & DISPLAY_PLANE_ENABLE) == 0)
7518 		return;
7519 	if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7520 		return;
7521 
7522 	/* This display plane is active and attached to the other CPU pipe. */
7523 	pipe = !pipe;
7524 
7525 	/* Disable the plane and wait for it to stop reading from the pipe. */
7526 	intel_disable_plane(dev_priv, plane, pipe);
7527 	intel_disable_pipe(dev_priv, pipe);
7528 }
7529 
intel_crtc_reset(struct drm_crtc * crtc)7530 static void intel_crtc_reset(struct drm_crtc *crtc)
7531 {
7532 	struct drm_device *dev = crtc->dev;
7533 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7534 
7535 	/* Reset flags back to the 'unknown' status so that they
7536 	 * will be correctly set on the initial modeset.
7537 	 */
7538 	intel_crtc->dpms_mode = -1;
7539 
7540 	/* We need to fix up any BIOS configuration that conflicts with
7541 	 * our expectations.
7542 	 */
7543 	intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7544 }
7545 
7546 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7547 	.dpms = intel_crtc_dpms,
7548 	.mode_fixup = intel_crtc_mode_fixup,
7549 	.mode_set = intel_crtc_mode_set,
7550 	.mode_set_base = intel_pipe_set_base,
7551 	.mode_set_base_atomic = intel_pipe_set_base_atomic,
7552 	.load_lut = intel_crtc_load_lut,
7553 	.disable = intel_crtc_disable,
7554 };
7555 
7556 static const struct drm_crtc_funcs intel_crtc_funcs = {
7557 	.reset = intel_crtc_reset,
7558 	.cursor_set = intel_crtc_cursor_set,
7559 	.cursor_move = intel_crtc_cursor_move,
7560 	.gamma_set = intel_crtc_gamma_set,
7561 	.set_config = drm_crtc_helper_set_config,
7562 	.destroy = intel_crtc_destroy,
7563 	.page_flip = intel_crtc_page_flip,
7564 };
7565 
intel_crtc_init(struct drm_device * dev,int pipe)7566 static void intel_crtc_init(struct drm_device *dev, int pipe)
7567 {
7568 	drm_i915_private_t *dev_priv = dev->dev_private;
7569 	struct intel_crtc *intel_crtc;
7570 	int i;
7571 
7572 	intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7573 	if (intel_crtc == NULL)
7574 		return;
7575 
7576 	drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7577 
7578 	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7579 	for (i = 0; i < 256; i++) {
7580 		intel_crtc->lut_r[i] = i;
7581 		intel_crtc->lut_g[i] = i;
7582 		intel_crtc->lut_b[i] = i;
7583 	}
7584 
7585 	/* Swap pipes & planes for FBC on pre-965 */
7586 	intel_crtc->pipe = pipe;
7587 	intel_crtc->plane = pipe;
7588 	if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7589 		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7590 		intel_crtc->plane = !pipe;
7591 	}
7592 
7593 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7594 	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7595 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7596 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7597 
7598 	intel_crtc_reset(&intel_crtc->base);
7599 	intel_crtc->active = true; /* force the pipe off on setup_init_config */
7600 	intel_crtc->bpp = 24; /* default for pre-Ironlake */
7601 
7602 	if (HAS_PCH_SPLIT(dev)) {
7603 		if (pipe == 2 && IS_IVYBRIDGE(dev))
7604 			intel_crtc->no_pll = true;
7605 		intel_helper_funcs.prepare = ironlake_crtc_prepare;
7606 		intel_helper_funcs.commit = ironlake_crtc_commit;
7607 	} else {
7608 		intel_helper_funcs.prepare = i9xx_crtc_prepare;
7609 		intel_helper_funcs.commit = i9xx_crtc_commit;
7610 	}
7611 
7612 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7613 
7614 	intel_crtc->busy = false;
7615 
7616 	setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7617 		    (unsigned long)intel_crtc);
7618 }
7619 
intel_get_pipe_from_crtc_id(struct drm_device * dev,void * data,struct drm_file * file)7620 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7621 				struct drm_file *file)
7622 {
7623 	drm_i915_private_t *dev_priv = dev->dev_private;
7624 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7625 	struct drm_mode_object *drmmode_obj;
7626 	struct intel_crtc *crtc;
7627 
7628 	if (!dev_priv) {
7629 		DRM_ERROR("called with no initialization\n");
7630 		return -EINVAL;
7631 	}
7632 
7633 	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7634 			DRM_MODE_OBJECT_CRTC);
7635 
7636 	if (!drmmode_obj) {
7637 		DRM_ERROR("no such CRTC id\n");
7638 		return -EINVAL;
7639 	}
7640 
7641 	crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7642 	pipe_from_crtc_id->pipe = crtc->pipe;
7643 
7644 	return 0;
7645 }
7646 
intel_encoder_clones(struct drm_device * dev,int type_mask)7647 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7648 {
7649 	struct intel_encoder *encoder;
7650 	int index_mask = 0;
7651 	int entry = 0;
7652 
7653 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7654 		if (type_mask & encoder->clone_mask)
7655 			index_mask |= (1 << entry);
7656 		entry++;
7657 	}
7658 
7659 	return index_mask;
7660 }
7661 
has_edp_a(struct drm_device * dev)7662 static bool has_edp_a(struct drm_device *dev)
7663 {
7664 	struct drm_i915_private *dev_priv = dev->dev_private;
7665 
7666 	if (!IS_MOBILE(dev))
7667 		return false;
7668 
7669 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7670 		return false;
7671 
7672 	if (IS_GEN5(dev) &&
7673 	    (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7674 		return false;
7675 
7676 	return true;
7677 }
7678 
intel_setup_outputs(struct drm_device * dev)7679 static void intel_setup_outputs(struct drm_device *dev)
7680 {
7681 	struct drm_i915_private *dev_priv = dev->dev_private;
7682 	struct intel_encoder *encoder;
7683 	bool dpd_is_edp = false;
7684 	bool has_lvds = false;
7685 
7686 	if (IS_MOBILE(dev) && !IS_I830(dev))
7687 		has_lvds = intel_lvds_init(dev);
7688 	if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7689 		/* disable the panel fitter on everything but LVDS */
7690 		I915_WRITE(PFIT_CONTROL, 0);
7691 	}
7692 
7693 	if (HAS_PCH_SPLIT(dev)) {
7694 		dpd_is_edp = intel_dpd_is_edp(dev);
7695 
7696 		if (has_edp_a(dev))
7697 			intel_dp_init(dev, DP_A);
7698 
7699 		if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7700 			intel_dp_init(dev, PCH_DP_D);
7701 	}
7702 
7703 	intel_crt_init(dev);
7704 
7705 	if (HAS_PCH_SPLIT(dev)) {
7706 		int found;
7707 
7708 		if (I915_READ(HDMIB) & PORT_DETECTED) {
7709 			/* PCH SDVOB multiplex with HDMIB */
7710 			found = intel_sdvo_init(dev, PCH_SDVOB);
7711 			if (!found)
7712 				intel_hdmi_init(dev, HDMIB);
7713 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7714 				intel_dp_init(dev, PCH_DP_B);
7715 		}
7716 
7717 		if (I915_READ(HDMIC) & PORT_DETECTED)
7718 			intel_hdmi_init(dev, HDMIC);
7719 
7720 		if (I915_READ(HDMID) & PORT_DETECTED)
7721 			intel_hdmi_init(dev, HDMID);
7722 
7723 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
7724 			intel_dp_init(dev, PCH_DP_C);
7725 
7726 		if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7727 			intel_dp_init(dev, PCH_DP_D);
7728 
7729 	} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7730 		bool found = false;
7731 
7732 		if (I915_READ(SDVOB) & SDVO_DETECTED) {
7733 			DRM_DEBUG_KMS("probing SDVOB\n");
7734 			found = intel_sdvo_init(dev, SDVOB);
7735 			if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7736 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7737 				intel_hdmi_init(dev, SDVOB);
7738 			}
7739 
7740 			if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7741 				DRM_DEBUG_KMS("probing DP_B\n");
7742 				intel_dp_init(dev, DP_B);
7743 			}
7744 		}
7745 
7746 		/* Before G4X SDVOC doesn't have its own detect register */
7747 
7748 		if (I915_READ(SDVOB) & SDVO_DETECTED) {
7749 			DRM_DEBUG_KMS("probing SDVOC\n");
7750 			found = intel_sdvo_init(dev, SDVOC);
7751 		}
7752 
7753 		if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7754 
7755 			if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7756 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7757 				intel_hdmi_init(dev, SDVOC);
7758 			}
7759 			if (SUPPORTS_INTEGRATED_DP(dev)) {
7760 				DRM_DEBUG_KMS("probing DP_C\n");
7761 				intel_dp_init(dev, DP_C);
7762 			}
7763 		}
7764 
7765 		if (SUPPORTS_INTEGRATED_DP(dev) &&
7766 		    (I915_READ(DP_D) & DP_DETECTED)) {
7767 			DRM_DEBUG_KMS("probing DP_D\n");
7768 			intel_dp_init(dev, DP_D);
7769 		}
7770 	} else if (IS_GEN2(dev))
7771 		intel_dvo_init(dev);
7772 
7773 	if (SUPPORTS_TV(dev))
7774 		intel_tv_init(dev);
7775 
7776 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7777 		encoder->base.possible_crtcs = encoder->crtc_mask;
7778 		encoder->base.possible_clones =
7779 			intel_encoder_clones(dev, encoder->clone_mask);
7780 	}
7781 
7782 	/* disable all the possible outputs/crtcs before entering KMS mode */
7783 	drm_helper_disable_unused_functions(dev);
7784 
7785 	if (HAS_PCH_SPLIT(dev))
7786 		ironlake_init_pch_refclk(dev);
7787 }
7788 
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)7789 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7790 {
7791 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7792 
7793 	drm_framebuffer_cleanup(fb);
7794 	drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7795 
7796 	kfree(intel_fb);
7797 }
7798 
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)7799 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7800 						struct drm_file *file,
7801 						unsigned int *handle)
7802 {
7803 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7804 	struct drm_i915_gem_object *obj = intel_fb->obj;
7805 
7806 	return drm_gem_handle_create(file, &obj->base, handle);
7807 }
7808 
7809 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7810 	.destroy = intel_user_framebuffer_destroy,
7811 	.create_handle = intel_user_framebuffer_create_handle,
7812 };
7813 
intel_framebuffer_init(struct drm_device * dev,struct intel_framebuffer * intel_fb,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)7814 int intel_framebuffer_init(struct drm_device *dev,
7815 			   struct intel_framebuffer *intel_fb,
7816 			   struct drm_mode_fb_cmd2 *mode_cmd,
7817 			   struct drm_i915_gem_object *obj)
7818 {
7819 	int ret;
7820 
7821 	if (obj->tiling_mode == I915_TILING_Y)
7822 		return -EINVAL;
7823 
7824 	if (mode_cmd->pitches[0] & 63)
7825 		return -EINVAL;
7826 
7827 	switch (mode_cmd->pixel_format) {
7828 	case DRM_FORMAT_RGB332:
7829 	case DRM_FORMAT_RGB565:
7830 	case DRM_FORMAT_XRGB8888:
7831 	case DRM_FORMAT_XBGR8888:
7832 	case DRM_FORMAT_ARGB8888:
7833 	case DRM_FORMAT_XRGB2101010:
7834 	case DRM_FORMAT_ARGB2101010:
7835 		/* RGB formats are common across chipsets */
7836 		break;
7837 	case DRM_FORMAT_YUYV:
7838 	case DRM_FORMAT_UYVY:
7839 	case DRM_FORMAT_YVYU:
7840 	case DRM_FORMAT_VYUY:
7841 		break;
7842 	default:
7843 		DRM_ERROR("unsupported pixel format\n");
7844 		return -EINVAL;
7845 	}
7846 
7847 	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7848 	if (ret) {
7849 		DRM_ERROR("framebuffer init failed %d\n", ret);
7850 		return ret;
7851 	}
7852 
7853 	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7854 	intel_fb->obj = obj;
7855 	return 0;
7856 }
7857 
7858 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,struct drm_mode_fb_cmd2 * mode_cmd)7859 intel_user_framebuffer_create(struct drm_device *dev,
7860 			      struct drm_file *filp,
7861 			      struct drm_mode_fb_cmd2 *mode_cmd)
7862 {
7863 	struct drm_i915_gem_object *obj;
7864 
7865 	obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7866 						mode_cmd->handles[0]));
7867 	if (&obj->base == NULL)
7868 		return ERR_PTR(-ENOENT);
7869 
7870 	return intel_framebuffer_create(dev, mode_cmd, obj);
7871 }
7872 
7873 static const struct drm_mode_config_funcs intel_mode_funcs = {
7874 	.fb_create = intel_user_framebuffer_create,
7875 	.output_poll_changed = intel_fb_output_poll_changed,
7876 };
7877 
7878 static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device * dev)7879 intel_alloc_context_page(struct drm_device *dev)
7880 {
7881 	struct drm_i915_gem_object *ctx;
7882 	int ret;
7883 
7884 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7885 
7886 	ctx = i915_gem_alloc_object(dev, 4096);
7887 	if (!ctx) {
7888 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7889 		return NULL;
7890 	}
7891 
7892 	ret = i915_gem_object_pin(ctx, 4096, true);
7893 	if (ret) {
7894 		DRM_ERROR("failed to pin power context: %d\n", ret);
7895 		goto err_unref;
7896 	}
7897 
7898 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7899 	if (ret) {
7900 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7901 		goto err_unpin;
7902 	}
7903 
7904 	return ctx;
7905 
7906 err_unpin:
7907 	i915_gem_object_unpin(ctx);
7908 err_unref:
7909 	drm_gem_object_unreference(&ctx->base);
7910 	mutex_unlock(&dev->struct_mutex);
7911 	return NULL;
7912 }
7913 
ironlake_set_drps(struct drm_device * dev,u8 val)7914 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7915 {
7916 	struct drm_i915_private *dev_priv = dev->dev_private;
7917 	u16 rgvswctl;
7918 
7919 	rgvswctl = I915_READ16(MEMSWCTL);
7920 	if (rgvswctl & MEMCTL_CMD_STS) {
7921 		DRM_DEBUG("gpu busy, RCS change rejected\n");
7922 		return false; /* still busy with another command */
7923 	}
7924 
7925 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7926 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7927 	I915_WRITE16(MEMSWCTL, rgvswctl);
7928 	POSTING_READ16(MEMSWCTL);
7929 
7930 	rgvswctl |= MEMCTL_CMD_STS;
7931 	I915_WRITE16(MEMSWCTL, rgvswctl);
7932 
7933 	return true;
7934 }
7935 
ironlake_enable_drps(struct drm_device * dev)7936 void ironlake_enable_drps(struct drm_device *dev)
7937 {
7938 	struct drm_i915_private *dev_priv = dev->dev_private;
7939 	u32 rgvmodectl = I915_READ(MEMMODECTL);
7940 	u8 fmax, fmin, fstart, vstart;
7941 
7942 	/* Enable temp reporting */
7943 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7944 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7945 
7946 	/* 100ms RC evaluation intervals */
7947 	I915_WRITE(RCUPEI, 100000);
7948 	I915_WRITE(RCDNEI, 100000);
7949 
7950 	/* Set max/min thresholds to 90ms and 80ms respectively */
7951 	I915_WRITE(RCBMAXAVG, 90000);
7952 	I915_WRITE(RCBMINAVG, 80000);
7953 
7954 	I915_WRITE(MEMIHYST, 1);
7955 
7956 	/* Set up min, max, and cur for interrupt handling */
7957 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7958 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7959 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7960 		MEMMODE_FSTART_SHIFT;
7961 
7962 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7963 		PXVFREQ_PX_SHIFT;
7964 
7965 	dev_priv->fmax = fmax; /* IPS callback will increase this */
7966 	dev_priv->fstart = fstart;
7967 
7968 	dev_priv->max_delay = fstart;
7969 	dev_priv->min_delay = fmin;
7970 	dev_priv->cur_delay = fstart;
7971 
7972 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7973 			 fmax, fmin, fstart);
7974 
7975 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7976 
7977 	/*
7978 	 * Interrupts will be enabled in ironlake_irq_postinstall
7979 	 */
7980 
7981 	I915_WRITE(VIDSTART, vstart);
7982 	POSTING_READ(VIDSTART);
7983 
7984 	rgvmodectl |= MEMMODE_SWMODE_EN;
7985 	I915_WRITE(MEMMODECTL, rgvmodectl);
7986 
7987 	if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7988 		DRM_ERROR("stuck trying to change perf mode\n");
7989 	msleep(1);
7990 
7991 	ironlake_set_drps(dev, fstart);
7992 
7993 	dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7994 		I915_READ(0x112e0);
7995 	dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7996 	dev_priv->last_count2 = I915_READ(0x112f4);
7997 	getrawmonotonic(&dev_priv->last_time2);
7998 }
7999 
ironlake_disable_drps(struct drm_device * dev)8000 void ironlake_disable_drps(struct drm_device *dev)
8001 {
8002 	struct drm_i915_private *dev_priv = dev->dev_private;
8003 	u16 rgvswctl = I915_READ16(MEMSWCTL);
8004 
8005 	/* Ack interrupts, disable EFC interrupt */
8006 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8007 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8008 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8009 	I915_WRITE(DEIIR, DE_PCU_EVENT);
8010 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8011 
8012 	/* Go back to the starting frequency */
8013 	ironlake_set_drps(dev, dev_priv->fstart);
8014 	msleep(1);
8015 	rgvswctl |= MEMCTL_CMD_STS;
8016 	I915_WRITE(MEMSWCTL, rgvswctl);
8017 	msleep(1);
8018 
8019 }
8020 
gen6_set_rps(struct drm_device * dev,u8 val)8021 void gen6_set_rps(struct drm_device *dev, u8 val)
8022 {
8023 	struct drm_i915_private *dev_priv = dev->dev_private;
8024 	u32 swreq;
8025 
8026 	swreq = (val & 0x3ff) << 25;
8027 	I915_WRITE(GEN6_RPNSWREQ, swreq);
8028 }
8029 
gen6_disable_rps(struct drm_device * dev)8030 void gen6_disable_rps(struct drm_device *dev)
8031 {
8032 	struct drm_i915_private *dev_priv = dev->dev_private;
8033 
8034 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8035 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8036 	I915_WRITE(GEN6_PMIER, 0);
8037 	/* Complete PM interrupt masking here doesn't race with the rps work
8038 	 * item again unmasking PM interrupts because that is using a different
8039 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8040 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8041 
8042 	spin_lock_irq(&dev_priv->rps_lock);
8043 	dev_priv->pm_iir = 0;
8044 	spin_unlock_irq(&dev_priv->rps_lock);
8045 
8046 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8047 }
8048 
intel_pxfreq(u32 vidfreq)8049 static unsigned long intel_pxfreq(u32 vidfreq)
8050 {
8051 	unsigned long freq;
8052 	int div = (vidfreq & 0x3f0000) >> 16;
8053 	int post = (vidfreq & 0x3000) >> 12;
8054 	int pre = (vidfreq & 0x7);
8055 
8056 	if (!pre)
8057 		return 0;
8058 
8059 	freq = ((div * 133333) / ((1<<post) * pre));
8060 
8061 	return freq;
8062 }
8063 
intel_init_emon(struct drm_device * dev)8064 void intel_init_emon(struct drm_device *dev)
8065 {
8066 	struct drm_i915_private *dev_priv = dev->dev_private;
8067 	u32 lcfuse;
8068 	u8 pxw[16];
8069 	int i;
8070 
8071 	/* Disable to program */
8072 	I915_WRITE(ECR, 0);
8073 	POSTING_READ(ECR);
8074 
8075 	/* Program energy weights for various events */
8076 	I915_WRITE(SDEW, 0x15040d00);
8077 	I915_WRITE(CSIEW0, 0x007f0000);
8078 	I915_WRITE(CSIEW1, 0x1e220004);
8079 	I915_WRITE(CSIEW2, 0x04000004);
8080 
8081 	for (i = 0; i < 5; i++)
8082 		I915_WRITE(PEW + (i * 4), 0);
8083 	for (i = 0; i < 3; i++)
8084 		I915_WRITE(DEW + (i * 4), 0);
8085 
8086 	/* Program P-state weights to account for frequency power adjustment */
8087 	for (i = 0; i < 16; i++) {
8088 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8089 		unsigned long freq = intel_pxfreq(pxvidfreq);
8090 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8091 			PXVFREQ_PX_SHIFT;
8092 		unsigned long val;
8093 
8094 		val = vid * vid;
8095 		val *= (freq / 1000);
8096 		val *= 255;
8097 		val /= (127*127*900);
8098 		if (val > 0xff)
8099 			DRM_ERROR("bad pxval: %ld\n", val);
8100 		pxw[i] = val;
8101 	}
8102 	/* Render standby states get 0 weight */
8103 	pxw[14] = 0;
8104 	pxw[15] = 0;
8105 
8106 	for (i = 0; i < 4; i++) {
8107 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8108 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8109 		I915_WRITE(PXW + (i * 4), val);
8110 	}
8111 
8112 	/* Adjust magic regs to magic values (more experimental results) */
8113 	I915_WRITE(OGW0, 0);
8114 	I915_WRITE(OGW1, 0);
8115 	I915_WRITE(EG0, 0x00007f00);
8116 	I915_WRITE(EG1, 0x0000000e);
8117 	I915_WRITE(EG2, 0x000e0000);
8118 	I915_WRITE(EG3, 0x68000300);
8119 	I915_WRITE(EG4, 0x42000000);
8120 	I915_WRITE(EG5, 0x00140031);
8121 	I915_WRITE(EG6, 0);
8122 	I915_WRITE(EG7, 0);
8123 
8124 	for (i = 0; i < 8; i++)
8125 		I915_WRITE(PXWL + (i * 4), 0);
8126 
8127 	/* Enable PMON + select events */
8128 	I915_WRITE(ECR, 0x80000019);
8129 
8130 	lcfuse = I915_READ(LCFUSE02);
8131 
8132 	dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8133 }
8134 
intel_enable_rc6(struct drm_device * dev)8135 static bool intel_enable_rc6(struct drm_device *dev)
8136 {
8137 	/*
8138 	 * Respect the kernel parameter if it is set
8139 	 */
8140 	if (i915_enable_rc6 >= 0)
8141 		return i915_enable_rc6;
8142 
8143 	/*
8144 	 * Disable RC6 on Ironlake
8145 	 */
8146 	if (INTEL_INFO(dev)->gen == 5)
8147 		return 0;
8148 
8149 	/*
8150 	 * Disable rc6 on Sandybridge
8151 	 */
8152 	if (INTEL_INFO(dev)->gen == 6) {
8153 		DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
8154 		return 0;
8155 	}
8156 	DRM_DEBUG_DRIVER("RC6 enabled\n");
8157 	return 1;
8158 }
8159 
gen6_enable_rps(struct drm_i915_private * dev_priv)8160 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8161 {
8162 	u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8163 	u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8164 	u32 pcu_mbox, rc6_mask = 0;
8165 	int cur_freq, min_freq, max_freq;
8166 	int i;
8167 
8168 	/* Here begins a magic sequence of register writes to enable
8169 	 * auto-downclocking.
8170 	 *
8171 	 * Perhaps there might be some value in exposing these to
8172 	 * userspace...
8173 	 */
8174 	I915_WRITE(GEN6_RC_STATE, 0);
8175 	mutex_lock(&dev_priv->dev->struct_mutex);
8176 	gen6_gt_force_wake_get(dev_priv);
8177 
8178 	/* disable the counters and set deterministic thresholds */
8179 	I915_WRITE(GEN6_RC_CONTROL, 0);
8180 
8181 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8182 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8183 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8184 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8185 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8186 
8187 	for (i = 0; i < I915_NUM_RINGS; i++)
8188 		I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8189 
8190 	I915_WRITE(GEN6_RC_SLEEP, 0);
8191 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8192 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8193 	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8194 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8195 
8196 	if (intel_enable_rc6(dev_priv->dev))
8197 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE |
8198 			((IS_GEN7(dev_priv->dev)) ? GEN6_RC_CTL_RC6p_ENABLE : 0);
8199 
8200 	I915_WRITE(GEN6_RC_CONTROL,
8201 		   rc6_mask |
8202 		   GEN6_RC_CTL_EI_MODE(1) |
8203 		   GEN6_RC_CTL_HW_ENABLE);
8204 
8205 	I915_WRITE(GEN6_RPNSWREQ,
8206 		   GEN6_FREQUENCY(10) |
8207 		   GEN6_OFFSET(0) |
8208 		   GEN6_AGGRESSIVE_TURBO);
8209 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
8210 		   GEN6_FREQUENCY(12));
8211 
8212 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8213 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8214 		   18 << 24 |
8215 		   6 << 16);
8216 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8217 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8218 	I915_WRITE(GEN6_RP_UP_EI, 100000);
8219 	I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8220 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8221 	I915_WRITE(GEN6_RP_CONTROL,
8222 		   GEN6_RP_MEDIA_TURBO |
8223 		   GEN6_RP_MEDIA_HW_MODE |
8224 		   GEN6_RP_MEDIA_IS_GFX |
8225 		   GEN6_RP_ENABLE |
8226 		   GEN6_RP_UP_BUSY_AVG |
8227 		   GEN6_RP_DOWN_IDLE_CONT);
8228 
8229 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8230 		     500))
8231 		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8232 
8233 	I915_WRITE(GEN6_PCODE_DATA, 0);
8234 	I915_WRITE(GEN6_PCODE_MAILBOX,
8235 		   GEN6_PCODE_READY |
8236 		   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8237 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8238 		     500))
8239 		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8240 
8241 	min_freq = (rp_state_cap & 0xff0000) >> 16;
8242 	max_freq = rp_state_cap & 0xff;
8243 	cur_freq = (gt_perf_status & 0xff00) >> 8;
8244 
8245 	/* Check for overclock support */
8246 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8247 		     500))
8248 		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8249 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8250 	pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8251 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8252 		     500))
8253 		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8254 	if (pcu_mbox & (1<<31)) { /* OC supported */
8255 		max_freq = pcu_mbox & 0xff;
8256 		DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8257 	}
8258 
8259 	/* In units of 100MHz */
8260 	dev_priv->max_delay = max_freq;
8261 	dev_priv->min_delay = min_freq;
8262 	dev_priv->cur_delay = cur_freq;
8263 
8264 	/* requires MSI enabled */
8265 	I915_WRITE(GEN6_PMIER,
8266 		   GEN6_PM_MBOX_EVENT |
8267 		   GEN6_PM_THERMAL_EVENT |
8268 		   GEN6_PM_RP_DOWN_TIMEOUT |
8269 		   GEN6_PM_RP_UP_THRESHOLD |
8270 		   GEN6_PM_RP_DOWN_THRESHOLD |
8271 		   GEN6_PM_RP_UP_EI_EXPIRED |
8272 		   GEN6_PM_RP_DOWN_EI_EXPIRED);
8273 	spin_lock_irq(&dev_priv->rps_lock);
8274 	WARN_ON(dev_priv->pm_iir != 0);
8275 	I915_WRITE(GEN6_PMIMR, 0);
8276 	spin_unlock_irq(&dev_priv->rps_lock);
8277 	/* enable all PM interrupts */
8278 	I915_WRITE(GEN6_PMINTRMSK, 0);
8279 
8280 	gen6_gt_force_wake_put(dev_priv);
8281 	mutex_unlock(&dev_priv->dev->struct_mutex);
8282 }
8283 
gen6_update_ring_freq(struct drm_i915_private * dev_priv)8284 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8285 {
8286 	int min_freq = 15;
8287 	int gpu_freq, ia_freq, max_ia_freq;
8288 	int scaling_factor = 180;
8289 
8290 	max_ia_freq = cpufreq_quick_get_max(0);
8291 	/*
8292 	 * Default to measured freq if none found, PCU will ensure we don't go
8293 	 * over
8294 	 */
8295 	if (!max_ia_freq)
8296 		max_ia_freq = tsc_khz;
8297 
8298 	/* Convert from kHz to MHz */
8299 	max_ia_freq /= 1000;
8300 
8301 	mutex_lock(&dev_priv->dev->struct_mutex);
8302 
8303 	/*
8304 	 * For each potential GPU frequency, load a ring frequency we'd like
8305 	 * to use for memory access.  We do this by specifying the IA frequency
8306 	 * the PCU should use as a reference to determine the ring frequency.
8307 	 */
8308 	for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8309 	     gpu_freq--) {
8310 		int diff = dev_priv->max_delay - gpu_freq;
8311 
8312 		/*
8313 		 * For GPU frequencies less than 750MHz, just use the lowest
8314 		 * ring freq.
8315 		 */
8316 		if (gpu_freq < min_freq)
8317 			ia_freq = 800;
8318 		else
8319 			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8320 		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8321 
8322 		I915_WRITE(GEN6_PCODE_DATA,
8323 			   (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8324 			   gpu_freq);
8325 		I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8326 			   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8327 		if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8328 			      GEN6_PCODE_READY) == 0, 10)) {
8329 			DRM_ERROR("pcode write of freq table timed out\n");
8330 			continue;
8331 		}
8332 	}
8333 
8334 	mutex_unlock(&dev_priv->dev->struct_mutex);
8335 }
8336 
ironlake_init_clock_gating(struct drm_device * dev)8337 static void ironlake_init_clock_gating(struct drm_device *dev)
8338 {
8339 	struct drm_i915_private *dev_priv = dev->dev_private;
8340 	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8341 
8342 	/* Required for FBC */
8343 	dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8344 		DPFCRUNIT_CLOCK_GATE_DISABLE |
8345 		DPFDUNIT_CLOCK_GATE_DISABLE;
8346 	/* Required for CxSR */
8347 	dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8348 
8349 	I915_WRITE(PCH_3DCGDIS0,
8350 		   MARIUNIT_CLOCK_GATE_DISABLE |
8351 		   SVSMUNIT_CLOCK_GATE_DISABLE);
8352 	I915_WRITE(PCH_3DCGDIS1,
8353 		   VFMUNIT_CLOCK_GATE_DISABLE);
8354 
8355 	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8356 
8357 	/*
8358 	 * According to the spec the following bits should be set in
8359 	 * order to enable memory self-refresh
8360 	 * The bit 22/21 of 0x42004
8361 	 * The bit 5 of 0x42020
8362 	 * The bit 15 of 0x45000
8363 	 */
8364 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8365 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
8366 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8367 	I915_WRITE(ILK_DSPCLK_GATE,
8368 		   (I915_READ(ILK_DSPCLK_GATE) |
8369 		    ILK_DPARB_CLK_GATE));
8370 	I915_WRITE(DISP_ARB_CTL,
8371 		   (I915_READ(DISP_ARB_CTL) |
8372 		    DISP_FBC_WM_DIS));
8373 	I915_WRITE(WM3_LP_ILK, 0);
8374 	I915_WRITE(WM2_LP_ILK, 0);
8375 	I915_WRITE(WM1_LP_ILK, 0);
8376 
8377 	/*
8378 	 * Based on the document from hardware guys the following bits
8379 	 * should be set unconditionally in order to enable FBC.
8380 	 * The bit 22 of 0x42000
8381 	 * The bit 22 of 0x42004
8382 	 * The bit 7,8,9 of 0x42020.
8383 	 */
8384 	if (IS_IRONLAKE_M(dev)) {
8385 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
8386 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
8387 			   ILK_FBCQ_DIS);
8388 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
8389 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
8390 			   ILK_DPARB_GATE);
8391 		I915_WRITE(ILK_DSPCLK_GATE,
8392 			   I915_READ(ILK_DSPCLK_GATE) |
8393 			   ILK_DPFC_DIS1 |
8394 			   ILK_DPFC_DIS2 |
8395 			   ILK_CLK_FBC);
8396 	}
8397 
8398 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8399 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8400 		   ILK_ELPIN_409_SELECT);
8401 	I915_WRITE(_3D_CHICKEN2,
8402 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8403 		   _3D_CHICKEN2_WM_READ_PIPELINED);
8404 }
8405 
gen6_init_clock_gating(struct drm_device * dev)8406 static void gen6_init_clock_gating(struct drm_device *dev)
8407 {
8408 	struct drm_i915_private *dev_priv = dev->dev_private;
8409 	int pipe;
8410 	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8411 
8412 	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8413 
8414 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8415 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8416 		   ILK_ELPIN_409_SELECT);
8417 
8418 	I915_WRITE(WM3_LP_ILK, 0);
8419 	I915_WRITE(WM2_LP_ILK, 0);
8420 	I915_WRITE(WM1_LP_ILK, 0);
8421 
8422 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8423 	 * gating disable must be set.  Failure to set it results in
8424 	 * flickering pixels due to Z write ordering failures after
8425 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
8426 	 * Sanctuary and Tropics, and apparently anything else with
8427 	 * alpha test or pixel discard.
8428 	 *
8429 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
8430 	 * but we didn't debug actual testcases to find it out.
8431 	 */
8432 	I915_WRITE(GEN6_UCGCTL2,
8433 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8434 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8435 
8436 	/*
8437 	 * According to the spec the following bits should be
8438 	 * set in order to enable memory self-refresh and fbc:
8439 	 * The bit21 and bit22 of 0x42000
8440 	 * The bit21 and bit22 of 0x42004
8441 	 * The bit5 and bit7 of 0x42020
8442 	 * The bit14 of 0x70180
8443 	 * The bit14 of 0x71180
8444 	 */
8445 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
8446 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
8447 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8448 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8449 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8450 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8451 	I915_WRITE(ILK_DSPCLK_GATE,
8452 		   I915_READ(ILK_DSPCLK_GATE) |
8453 		   ILK_DPARB_CLK_GATE  |
8454 		   ILK_DPFD_CLK_GATE);
8455 
8456 	for_each_pipe(pipe) {
8457 		I915_WRITE(DSPCNTR(pipe),
8458 			   I915_READ(DSPCNTR(pipe)) |
8459 			   DISPPLANE_TRICKLE_FEED_DISABLE);
8460 		intel_flush_display_plane(dev_priv, pipe);
8461 	}
8462 }
8463 
ivybridge_init_clock_gating(struct drm_device * dev)8464 static void ivybridge_init_clock_gating(struct drm_device *dev)
8465 {
8466 	struct drm_i915_private *dev_priv = dev->dev_private;
8467 	int pipe;
8468 	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8469 
8470 	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8471 
8472 	I915_WRITE(WM3_LP_ILK, 0);
8473 	I915_WRITE(WM2_LP_ILK, 0);
8474 	I915_WRITE(WM1_LP_ILK, 0);
8475 
8476 	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8477 	 * This implements the WaDisableRCZUnitClockGating workaround.
8478 	 */
8479 	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8480 
8481 	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8482 
8483 	I915_WRITE(IVB_CHICKEN3,
8484 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8485 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
8486 
8487 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8488 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8489 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8490 
8491 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8492 	I915_WRITE(GEN7_L3CNTLREG1,
8493 			GEN7_WA_FOR_GEN7_L3_CONTROL);
8494 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8495 			GEN7_WA_L3_CHICKEN_MODE);
8496 
8497 	/* This is required by WaCatErrorRejectionIssue */
8498 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8499 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8500 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8501 
8502 	for_each_pipe(pipe) {
8503 		I915_WRITE(DSPCNTR(pipe),
8504 			   I915_READ(DSPCNTR(pipe)) |
8505 			   DISPPLANE_TRICKLE_FEED_DISABLE);
8506 		intel_flush_display_plane(dev_priv, pipe);
8507 	}
8508 }
8509 
g4x_init_clock_gating(struct drm_device * dev)8510 static void g4x_init_clock_gating(struct drm_device *dev)
8511 {
8512 	struct drm_i915_private *dev_priv = dev->dev_private;
8513 	uint32_t dspclk_gate;
8514 
8515 	I915_WRITE(RENCLK_GATE_D1, 0);
8516 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8517 		   GS_UNIT_CLOCK_GATE_DISABLE |
8518 		   CL_UNIT_CLOCK_GATE_DISABLE);
8519 	I915_WRITE(RAMCLK_GATE_D, 0);
8520 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8521 		OVRUNIT_CLOCK_GATE_DISABLE |
8522 		OVCUNIT_CLOCK_GATE_DISABLE;
8523 	if (IS_GM45(dev))
8524 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8525 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8526 }
8527 
crestline_init_clock_gating(struct drm_device * dev)8528 static void crestline_init_clock_gating(struct drm_device *dev)
8529 {
8530 	struct drm_i915_private *dev_priv = dev->dev_private;
8531 
8532 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8533 	I915_WRITE(RENCLK_GATE_D2, 0);
8534 	I915_WRITE(DSPCLK_GATE_D, 0);
8535 	I915_WRITE(RAMCLK_GATE_D, 0);
8536 	I915_WRITE16(DEUC, 0);
8537 }
8538 
broadwater_init_clock_gating(struct drm_device * dev)8539 static void broadwater_init_clock_gating(struct drm_device *dev)
8540 {
8541 	struct drm_i915_private *dev_priv = dev->dev_private;
8542 
8543 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8544 		   I965_RCC_CLOCK_GATE_DISABLE |
8545 		   I965_RCPB_CLOCK_GATE_DISABLE |
8546 		   I965_ISC_CLOCK_GATE_DISABLE |
8547 		   I965_FBC_CLOCK_GATE_DISABLE);
8548 	I915_WRITE(RENCLK_GATE_D2, 0);
8549 }
8550 
gen3_init_clock_gating(struct drm_device * dev)8551 static void gen3_init_clock_gating(struct drm_device *dev)
8552 {
8553 	struct drm_i915_private *dev_priv = dev->dev_private;
8554 	u32 dstate = I915_READ(D_STATE);
8555 
8556 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8557 		DSTATE_DOT_CLOCK_GATING;
8558 	I915_WRITE(D_STATE, dstate);
8559 }
8560 
i85x_init_clock_gating(struct drm_device * dev)8561 static void i85x_init_clock_gating(struct drm_device *dev)
8562 {
8563 	struct drm_i915_private *dev_priv = dev->dev_private;
8564 
8565 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8566 }
8567 
i830_init_clock_gating(struct drm_device * dev)8568 static void i830_init_clock_gating(struct drm_device *dev)
8569 {
8570 	struct drm_i915_private *dev_priv = dev->dev_private;
8571 
8572 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8573 }
8574 
ibx_init_clock_gating(struct drm_device * dev)8575 static void ibx_init_clock_gating(struct drm_device *dev)
8576 {
8577 	struct drm_i915_private *dev_priv = dev->dev_private;
8578 
8579 	/*
8580 	 * On Ibex Peak and Cougar Point, we need to disable clock
8581 	 * gating for the panel power sequencer or it will fail to
8582 	 * start up when no ports are active.
8583 	 */
8584 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8585 }
8586 
cpt_init_clock_gating(struct drm_device * dev)8587 static void cpt_init_clock_gating(struct drm_device *dev)
8588 {
8589 	struct drm_i915_private *dev_priv = dev->dev_private;
8590 	int pipe;
8591 
8592 	/*
8593 	 * On Ibex Peak and Cougar Point, we need to disable clock
8594 	 * gating for the panel power sequencer or it will fail to
8595 	 * start up when no ports are active.
8596 	 */
8597 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8598 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8599 		   DPLS_EDP_PPS_FIX_DIS);
8600 	/* Without this, mode sets may fail silently on FDI */
8601 	for_each_pipe(pipe)
8602 		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8603 }
8604 
ironlake_teardown_rc6(struct drm_device * dev)8605 static void ironlake_teardown_rc6(struct drm_device *dev)
8606 {
8607 	struct drm_i915_private *dev_priv = dev->dev_private;
8608 
8609 	if (dev_priv->renderctx) {
8610 		i915_gem_object_unpin(dev_priv->renderctx);
8611 		drm_gem_object_unreference(&dev_priv->renderctx->base);
8612 		dev_priv->renderctx = NULL;
8613 	}
8614 
8615 	if (dev_priv->pwrctx) {
8616 		i915_gem_object_unpin(dev_priv->pwrctx);
8617 		drm_gem_object_unreference(&dev_priv->pwrctx->base);
8618 		dev_priv->pwrctx = NULL;
8619 	}
8620 }
8621 
ironlake_disable_rc6(struct drm_device * dev)8622 static void ironlake_disable_rc6(struct drm_device *dev)
8623 {
8624 	struct drm_i915_private *dev_priv = dev->dev_private;
8625 
8626 	if (I915_READ(PWRCTXA)) {
8627 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8628 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8629 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8630 			 50);
8631 
8632 		I915_WRITE(PWRCTXA, 0);
8633 		POSTING_READ(PWRCTXA);
8634 
8635 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8636 		POSTING_READ(RSTDBYCTL);
8637 	}
8638 
8639 	ironlake_teardown_rc6(dev);
8640 }
8641 
ironlake_setup_rc6(struct drm_device * dev)8642 static int ironlake_setup_rc6(struct drm_device *dev)
8643 {
8644 	struct drm_i915_private *dev_priv = dev->dev_private;
8645 
8646 	if (dev_priv->renderctx == NULL)
8647 		dev_priv->renderctx = intel_alloc_context_page(dev);
8648 	if (!dev_priv->renderctx)
8649 		return -ENOMEM;
8650 
8651 	if (dev_priv->pwrctx == NULL)
8652 		dev_priv->pwrctx = intel_alloc_context_page(dev);
8653 	if (!dev_priv->pwrctx) {
8654 		ironlake_teardown_rc6(dev);
8655 		return -ENOMEM;
8656 	}
8657 
8658 	return 0;
8659 }
8660 
ironlake_enable_rc6(struct drm_device * dev)8661 void ironlake_enable_rc6(struct drm_device *dev)
8662 {
8663 	struct drm_i915_private *dev_priv = dev->dev_private;
8664 	int ret;
8665 
8666 	/* rc6 disabled by default due to repeated reports of hanging during
8667 	 * boot and resume.
8668 	 */
8669 	if (!intel_enable_rc6(dev))
8670 		return;
8671 
8672 	mutex_lock(&dev->struct_mutex);
8673 	ret = ironlake_setup_rc6(dev);
8674 	if (ret) {
8675 		mutex_unlock(&dev->struct_mutex);
8676 		return;
8677 	}
8678 
8679 	/*
8680 	 * GPU can automatically power down the render unit if given a page
8681 	 * to save state.
8682 	 */
8683 	ret = BEGIN_LP_RING(6);
8684 	if (ret) {
8685 		ironlake_teardown_rc6(dev);
8686 		mutex_unlock(&dev->struct_mutex);
8687 		return;
8688 	}
8689 
8690 	OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8691 	OUT_RING(MI_SET_CONTEXT);
8692 	OUT_RING(dev_priv->renderctx->gtt_offset |
8693 		 MI_MM_SPACE_GTT |
8694 		 MI_SAVE_EXT_STATE_EN |
8695 		 MI_RESTORE_EXT_STATE_EN |
8696 		 MI_RESTORE_INHIBIT);
8697 	OUT_RING(MI_SUSPEND_FLUSH);
8698 	OUT_RING(MI_NOOP);
8699 	OUT_RING(MI_FLUSH);
8700 	ADVANCE_LP_RING();
8701 
8702 	/*
8703 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8704 	 * does an implicit flush, combined with MI_FLUSH above, it should be
8705 	 * safe to assume that renderctx is valid
8706 	 */
8707 	ret = intel_wait_ring_idle(LP_RING(dev_priv));
8708 	if (ret) {
8709 		DRM_ERROR("failed to enable ironlake power power savings\n");
8710 		ironlake_teardown_rc6(dev);
8711 		mutex_unlock(&dev->struct_mutex);
8712 		return;
8713 	}
8714 
8715 	I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8716 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8717 	mutex_unlock(&dev->struct_mutex);
8718 }
8719 
intel_init_clock_gating(struct drm_device * dev)8720 void intel_init_clock_gating(struct drm_device *dev)
8721 {
8722 	struct drm_i915_private *dev_priv = dev->dev_private;
8723 
8724 	dev_priv->display.init_clock_gating(dev);
8725 
8726 	if (dev_priv->display.init_pch_clock_gating)
8727 		dev_priv->display.init_pch_clock_gating(dev);
8728 }
8729 
8730 /* Set up chip specific display functions */
intel_init_display(struct drm_device * dev)8731 static void intel_init_display(struct drm_device *dev)
8732 {
8733 	struct drm_i915_private *dev_priv = dev->dev_private;
8734 
8735 	/* We always want a DPMS function */
8736 	if (HAS_PCH_SPLIT(dev)) {
8737 		dev_priv->display.dpms = ironlake_crtc_dpms;
8738 		dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8739 		dev_priv->display.update_plane = ironlake_update_plane;
8740 	} else {
8741 		dev_priv->display.dpms = i9xx_crtc_dpms;
8742 		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8743 		dev_priv->display.update_plane = i9xx_update_plane;
8744 	}
8745 
8746 	if (I915_HAS_FBC(dev)) {
8747 		if (HAS_PCH_SPLIT(dev)) {
8748 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8749 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
8750 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
8751 		} else if (IS_GM45(dev)) {
8752 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8753 			dev_priv->display.enable_fbc = g4x_enable_fbc;
8754 			dev_priv->display.disable_fbc = g4x_disable_fbc;
8755 		} else if (IS_CRESTLINE(dev)) {
8756 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8757 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
8758 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
8759 		}
8760 		/* 855GM needs testing */
8761 	}
8762 
8763 	/* Returns the core display clock speed */
8764 	if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8765 		dev_priv->display.get_display_clock_speed =
8766 			i945_get_display_clock_speed;
8767 	else if (IS_I915G(dev))
8768 		dev_priv->display.get_display_clock_speed =
8769 			i915_get_display_clock_speed;
8770 	else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8771 		dev_priv->display.get_display_clock_speed =
8772 			i9xx_misc_get_display_clock_speed;
8773 	else if (IS_I915GM(dev))
8774 		dev_priv->display.get_display_clock_speed =
8775 			i915gm_get_display_clock_speed;
8776 	else if (IS_I865G(dev))
8777 		dev_priv->display.get_display_clock_speed =
8778 			i865_get_display_clock_speed;
8779 	else if (IS_I85X(dev))
8780 		dev_priv->display.get_display_clock_speed =
8781 			i855_get_display_clock_speed;
8782 	else /* 852, 830 */
8783 		dev_priv->display.get_display_clock_speed =
8784 			i830_get_display_clock_speed;
8785 
8786 	/* For FIFO watermark updates */
8787 	if (HAS_PCH_SPLIT(dev)) {
8788 		dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8789 		dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8790 
8791 		/* IVB configs may use multi-threaded forcewake */
8792 		if (IS_IVYBRIDGE(dev)) {
8793 			u32	ecobus;
8794 
8795 			/* A small trick here - if the bios hasn't configured MT forcewake,
8796 			 * and if the device is in RC6, then force_wake_mt_get will not wake
8797 			 * the device and the ECOBUS read will return zero. Which will be
8798 			 * (correctly) interpreted by the test below as MT forcewake being
8799 			 * disabled.
8800 			 */
8801 			mutex_lock(&dev->struct_mutex);
8802 			__gen6_gt_force_wake_mt_get(dev_priv);
8803 			ecobus = I915_READ_NOTRACE(ECOBUS);
8804 			__gen6_gt_force_wake_mt_put(dev_priv);
8805 			mutex_unlock(&dev->struct_mutex);
8806 
8807 			if (ecobus & FORCEWAKE_MT_ENABLE) {
8808 				DRM_DEBUG_KMS("Using MT version of forcewake\n");
8809 				dev_priv->display.force_wake_get =
8810 					__gen6_gt_force_wake_mt_get;
8811 				dev_priv->display.force_wake_put =
8812 					__gen6_gt_force_wake_mt_put;
8813 			}
8814 		}
8815 
8816 		if (HAS_PCH_IBX(dev))
8817 			dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8818 		else if (HAS_PCH_CPT(dev))
8819 			dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8820 
8821 		if (IS_GEN5(dev)) {
8822 			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8823 				dev_priv->display.update_wm = ironlake_update_wm;
8824 			else {
8825 				DRM_DEBUG_KMS("Failed to get proper latency. "
8826 					      "Disable CxSR\n");
8827 				dev_priv->display.update_wm = NULL;
8828 			}
8829 			dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8830 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8831 			dev_priv->display.write_eld = ironlake_write_eld;
8832 		} else if (IS_GEN6(dev)) {
8833 			if (SNB_READ_WM0_LATENCY()) {
8834 				dev_priv->display.update_wm = sandybridge_update_wm;
8835 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8836 			} else {
8837 				DRM_DEBUG_KMS("Failed to read display plane latency. "
8838 					      "Disable CxSR\n");
8839 				dev_priv->display.update_wm = NULL;
8840 			}
8841 			dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8842 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8843 			dev_priv->display.write_eld = ironlake_write_eld;
8844 		} else if (IS_IVYBRIDGE(dev)) {
8845 			/* FIXME: detect B0+ stepping and use auto training */
8846 			dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8847 			if (SNB_READ_WM0_LATENCY()) {
8848 				dev_priv->display.update_wm = sandybridge_update_wm;
8849 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8850 			} else {
8851 				DRM_DEBUG_KMS("Failed to read display plane latency. "
8852 					      "Disable CxSR\n");
8853 				dev_priv->display.update_wm = NULL;
8854 			}
8855 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8856 			dev_priv->display.write_eld = ironlake_write_eld;
8857 		} else
8858 			dev_priv->display.update_wm = NULL;
8859 	} else if (IS_PINEVIEW(dev)) {
8860 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8861 					    dev_priv->is_ddr3,
8862 					    dev_priv->fsb_freq,
8863 					    dev_priv->mem_freq)) {
8864 			DRM_INFO("failed to find known CxSR latency "
8865 				 "(found ddr%s fsb freq %d, mem freq %d), "
8866 				 "disabling CxSR\n",
8867 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8868 				 dev_priv->fsb_freq, dev_priv->mem_freq);
8869 			/* Disable CxSR and never update its watermark again */
8870 			pineview_disable_cxsr(dev);
8871 			dev_priv->display.update_wm = NULL;
8872 		} else
8873 			dev_priv->display.update_wm = pineview_update_wm;
8874 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8875 	} else if (IS_G4X(dev)) {
8876 		dev_priv->display.write_eld = g4x_write_eld;
8877 		dev_priv->display.update_wm = g4x_update_wm;
8878 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8879 	} else if (IS_GEN4(dev)) {
8880 		dev_priv->display.update_wm = i965_update_wm;
8881 		if (IS_CRESTLINE(dev))
8882 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8883 		else if (IS_BROADWATER(dev))
8884 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8885 	} else if (IS_GEN3(dev)) {
8886 		dev_priv->display.update_wm = i9xx_update_wm;
8887 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8888 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8889 	} else if (IS_I865G(dev)) {
8890 		dev_priv->display.update_wm = i830_update_wm;
8891 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8892 		dev_priv->display.get_fifo_size = i830_get_fifo_size;
8893 	} else if (IS_I85X(dev)) {
8894 		dev_priv->display.update_wm = i9xx_update_wm;
8895 		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8896 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8897 	} else {
8898 		dev_priv->display.update_wm = i830_update_wm;
8899 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
8900 		if (IS_845G(dev))
8901 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8902 		else
8903 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8904 	}
8905 
8906 	/* Default just returns -ENODEV to indicate unsupported */
8907 	dev_priv->display.queue_flip = intel_default_queue_flip;
8908 
8909 	switch (INTEL_INFO(dev)->gen) {
8910 	case 2:
8911 		dev_priv->display.queue_flip = intel_gen2_queue_flip;
8912 		break;
8913 
8914 	case 3:
8915 		dev_priv->display.queue_flip = intel_gen3_queue_flip;
8916 		break;
8917 
8918 	case 4:
8919 	case 5:
8920 		dev_priv->display.queue_flip = intel_gen4_queue_flip;
8921 		break;
8922 
8923 	case 6:
8924 		dev_priv->display.queue_flip = intel_gen6_queue_flip;
8925 		break;
8926 	case 7:
8927 		dev_priv->display.queue_flip = intel_gen7_queue_flip;
8928 		break;
8929 	}
8930 }
8931 
8932 /*
8933  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8934  * resume, or other times.  This quirk makes sure that's the case for
8935  * affected systems.
8936  */
quirk_pipea_force(struct drm_device * dev)8937 static void quirk_pipea_force(struct drm_device *dev)
8938 {
8939 	struct drm_i915_private *dev_priv = dev->dev_private;
8940 
8941 	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8942 	DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8943 }
8944 
8945 /*
8946  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8947  */
quirk_ssc_force_disable(struct drm_device * dev)8948 static void quirk_ssc_force_disable(struct drm_device *dev)
8949 {
8950 	struct drm_i915_private *dev_priv = dev->dev_private;
8951 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8952 }
8953 
8954 struct intel_quirk {
8955 	int device;
8956 	int subsystem_vendor;
8957 	int subsystem_device;
8958 	void (*hook)(struct drm_device *dev);
8959 };
8960 
8961 struct intel_quirk intel_quirks[] = {
8962 	/* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8963 	{ 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8964 	/* HP Mini needs pipe A force quirk (LP: #322104) */
8965 	{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8966 
8967 	/* Thinkpad R31 needs pipe A force quirk */
8968 	{ 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8969 	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8970 	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8971 
8972 	/* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8973 	{ 0x3577,  0x1014, 0x0513, quirk_pipea_force },
8974 	/* ThinkPad X40 needs pipe A force quirk */
8975 
8976 	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8977 	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8978 
8979 	/* 855 & before need to leave pipe A & dpll A up */
8980 	{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8981 	{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8982 
8983 	/* Lenovo U160 cannot use SSC on LVDS */
8984 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8985 
8986 	/* Sony Vaio Y cannot use SSC on LVDS */
8987 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8988 };
8989 
intel_init_quirks(struct drm_device * dev)8990 static void intel_init_quirks(struct drm_device *dev)
8991 {
8992 	struct pci_dev *d = dev->pdev;
8993 	int i;
8994 
8995 	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8996 		struct intel_quirk *q = &intel_quirks[i];
8997 
8998 		if (d->device == q->device &&
8999 		    (d->subsystem_vendor == q->subsystem_vendor ||
9000 		     q->subsystem_vendor == PCI_ANY_ID) &&
9001 		    (d->subsystem_device == q->subsystem_device ||
9002 		     q->subsystem_device == PCI_ANY_ID))
9003 			q->hook(dev);
9004 	}
9005 }
9006 
9007 /* Disable the VGA plane that we never use */
i915_disable_vga(struct drm_device * dev)9008 static void i915_disable_vga(struct drm_device *dev)
9009 {
9010 	struct drm_i915_private *dev_priv = dev->dev_private;
9011 	u8 sr1;
9012 	u32 vga_reg;
9013 
9014 	if (HAS_PCH_SPLIT(dev))
9015 		vga_reg = CPU_VGACNTRL;
9016 	else
9017 		vga_reg = VGACNTRL;
9018 
9019 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9020 	outb(1, VGA_SR_INDEX);
9021 	sr1 = inb(VGA_SR_DATA);
9022 	outb(sr1 | 1<<5, VGA_SR_DATA);
9023 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9024 	udelay(300);
9025 
9026 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9027 	POSTING_READ(vga_reg);
9028 }
9029 
intel_modeset_init(struct drm_device * dev)9030 void intel_modeset_init(struct drm_device *dev)
9031 {
9032 	struct drm_i915_private *dev_priv = dev->dev_private;
9033 	int i, ret;
9034 
9035 	drm_mode_config_init(dev);
9036 
9037 	dev->mode_config.min_width = 0;
9038 	dev->mode_config.min_height = 0;
9039 
9040 	dev->mode_config.funcs = (void *)&intel_mode_funcs;
9041 
9042 	intel_init_quirks(dev);
9043 
9044 	intel_init_display(dev);
9045 
9046 	if (IS_GEN2(dev)) {
9047 		dev->mode_config.max_width = 2048;
9048 		dev->mode_config.max_height = 2048;
9049 	} else if (IS_GEN3(dev)) {
9050 		dev->mode_config.max_width = 4096;
9051 		dev->mode_config.max_height = 4096;
9052 	} else {
9053 		dev->mode_config.max_width = 8192;
9054 		dev->mode_config.max_height = 8192;
9055 	}
9056 	dev->mode_config.fb_base = dev->agp->base;
9057 
9058 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
9059 		      dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9060 
9061 	for (i = 0; i < dev_priv->num_pipe; i++) {
9062 		intel_crtc_init(dev, i);
9063 		ret = intel_plane_init(dev, i);
9064 		if (ret)
9065 			DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9066 	}
9067 
9068 	/* Just disable it once at startup */
9069 	i915_disable_vga(dev);
9070 	intel_setup_outputs(dev);
9071 
9072 	intel_init_clock_gating(dev);
9073 
9074 	if (IS_IRONLAKE_M(dev)) {
9075 		ironlake_enable_drps(dev);
9076 		intel_init_emon(dev);
9077 	}
9078 
9079 	if (IS_GEN6(dev) || IS_GEN7(dev)) {
9080 		gen6_enable_rps(dev_priv);
9081 		gen6_update_ring_freq(dev_priv);
9082 	}
9083 
9084 	INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9085 	setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9086 		    (unsigned long)dev);
9087 }
9088 
intel_modeset_gem_init(struct drm_device * dev)9089 void intel_modeset_gem_init(struct drm_device *dev)
9090 {
9091 	if (IS_IRONLAKE_M(dev))
9092 		ironlake_enable_rc6(dev);
9093 
9094 	intel_setup_overlay(dev);
9095 }
9096 
intel_modeset_cleanup(struct drm_device * dev)9097 void intel_modeset_cleanup(struct drm_device *dev)
9098 {
9099 	struct drm_i915_private *dev_priv = dev->dev_private;
9100 	struct drm_crtc *crtc;
9101 	struct intel_crtc *intel_crtc;
9102 
9103 	drm_kms_helper_poll_fini(dev);
9104 	mutex_lock(&dev->struct_mutex);
9105 
9106 	intel_unregister_dsm_handler();
9107 
9108 
9109 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9110 		/* Skip inactive CRTCs */
9111 		if (!crtc->fb)
9112 			continue;
9113 
9114 		intel_crtc = to_intel_crtc(crtc);
9115 		intel_increase_pllclock(crtc);
9116 	}
9117 
9118 	intel_disable_fbc(dev);
9119 
9120 	if (IS_IRONLAKE_M(dev))
9121 		ironlake_disable_drps(dev);
9122 	if (IS_GEN6(dev) || IS_GEN7(dev))
9123 		gen6_disable_rps(dev);
9124 
9125 	if (IS_IRONLAKE_M(dev))
9126 		ironlake_disable_rc6(dev);
9127 
9128 	mutex_unlock(&dev->struct_mutex);
9129 
9130 	/* Disable the irq before mode object teardown, for the irq might
9131 	 * enqueue unpin/hotplug work. */
9132 	drm_irq_uninstall(dev);
9133 	cancel_work_sync(&dev_priv->hotplug_work);
9134 	cancel_work_sync(&dev_priv->rps_work);
9135 
9136 	/* flush any delayed tasks or pending work */
9137 	flush_scheduled_work();
9138 
9139 	/* Shut off idle work before the crtcs get freed. */
9140 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9141 		intel_crtc = to_intel_crtc(crtc);
9142 		del_timer_sync(&intel_crtc->idle_timer);
9143 	}
9144 	del_timer_sync(&dev_priv->idle_timer);
9145 	cancel_work_sync(&dev_priv->idle_work);
9146 
9147 	drm_mode_config_cleanup(dev);
9148 }
9149 
9150 /*
9151  * Return which encoder is currently attached for connector.
9152  */
intel_best_encoder(struct drm_connector * connector)9153 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9154 {
9155 	return &intel_attached_encoder(connector)->base;
9156 }
9157 
intel_connector_attach_encoder(struct intel_connector * connector,struct intel_encoder * encoder)9158 void intel_connector_attach_encoder(struct intel_connector *connector,
9159 				    struct intel_encoder *encoder)
9160 {
9161 	connector->encoder = encoder;
9162 	drm_mode_connector_attach_encoder(&connector->base,
9163 					  &encoder->base);
9164 }
9165 
9166 /*
9167  * set vga decode state - true == enable VGA decode
9168  */
intel_modeset_vga_set_state(struct drm_device * dev,bool state)9169 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9170 {
9171 	struct drm_i915_private *dev_priv = dev->dev_private;
9172 	u16 gmch_ctrl;
9173 
9174 	pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9175 	if (state)
9176 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9177 	else
9178 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9179 	pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9180 	return 0;
9181 }
9182 
9183 #ifdef CONFIG_DEBUG_FS
9184 #include <linux/seq_file.h>
9185 
9186 struct intel_display_error_state {
9187 	struct intel_cursor_error_state {
9188 		u32 control;
9189 		u32 position;
9190 		u32 base;
9191 		u32 size;
9192 	} cursor[2];
9193 
9194 	struct intel_pipe_error_state {
9195 		u32 conf;
9196 		u32 source;
9197 
9198 		u32 htotal;
9199 		u32 hblank;
9200 		u32 hsync;
9201 		u32 vtotal;
9202 		u32 vblank;
9203 		u32 vsync;
9204 	} pipe[2];
9205 
9206 	struct intel_plane_error_state {
9207 		u32 control;
9208 		u32 stride;
9209 		u32 size;
9210 		u32 pos;
9211 		u32 addr;
9212 		u32 surface;
9213 		u32 tile_offset;
9214 	} plane[2];
9215 };
9216 
9217 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device * dev)9218 intel_display_capture_error_state(struct drm_device *dev)
9219 {
9220 	drm_i915_private_t *dev_priv = dev->dev_private;
9221 	struct intel_display_error_state *error;
9222 	int i;
9223 
9224 	error = kmalloc(sizeof(*error), GFP_ATOMIC);
9225 	if (error == NULL)
9226 		return NULL;
9227 
9228 	for (i = 0; i < 2; i++) {
9229 		error->cursor[i].control = I915_READ(CURCNTR(i));
9230 		error->cursor[i].position = I915_READ(CURPOS(i));
9231 		error->cursor[i].base = I915_READ(CURBASE(i));
9232 
9233 		error->plane[i].control = I915_READ(DSPCNTR(i));
9234 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9235 		error->plane[i].size = I915_READ(DSPSIZE(i));
9236 		error->plane[i].pos = I915_READ(DSPPOS(i));
9237 		error->plane[i].addr = I915_READ(DSPADDR(i));
9238 		if (INTEL_INFO(dev)->gen >= 4) {
9239 			error->plane[i].surface = I915_READ(DSPSURF(i));
9240 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9241 		}
9242 
9243 		error->pipe[i].conf = I915_READ(PIPECONF(i));
9244 		error->pipe[i].source = I915_READ(PIPESRC(i));
9245 		error->pipe[i].htotal = I915_READ(HTOTAL(i));
9246 		error->pipe[i].hblank = I915_READ(HBLANK(i));
9247 		error->pipe[i].hsync = I915_READ(HSYNC(i));
9248 		error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9249 		error->pipe[i].vblank = I915_READ(VBLANK(i));
9250 		error->pipe[i].vsync = I915_READ(VSYNC(i));
9251 	}
9252 
9253 	return error;
9254 }
9255 
9256 void
intel_display_print_error_state(struct seq_file * m,struct drm_device * dev,struct intel_display_error_state * error)9257 intel_display_print_error_state(struct seq_file *m,
9258 				struct drm_device *dev,
9259 				struct intel_display_error_state *error)
9260 {
9261 	int i;
9262 
9263 	for (i = 0; i < 2; i++) {
9264 		seq_printf(m, "Pipe [%d]:\n", i);
9265 		seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9266 		seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9267 		seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9268 		seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9269 		seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9270 		seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9271 		seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9272 		seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9273 
9274 		seq_printf(m, "Plane [%d]:\n", i);
9275 		seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9276 		seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9277 		seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9278 		seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9279 		seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9280 		if (INTEL_INFO(dev)->gen >= 4) {
9281 			seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9282 			seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9283 		}
9284 
9285 		seq_printf(m, "Cursor [%d]:\n", i);
9286 		seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9287 		seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9288 		seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9289 	}
9290 }
9291 #endif
9292