xref: /linux/drivers/gpu/drm/i915/display/intel_dsb.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  *
5  */
6 
7 #include <drm/drm_print.h>
8 #include <drm/drm_vblank.h>
9 
10 #include "i915_utils.h"
11 #include "intel_crtc.h"
12 #include "intel_de.h"
13 #include "intel_display_regs.h"
14 #include "intel_display_rpm.h"
15 #include "intel_display_types.h"
16 #include "intel_dsb.h"
17 #include "intel_dsb_buffer.h"
18 #include "intel_dsb_regs.h"
19 #include "intel_vblank.h"
20 #include "intel_vrr.h"
21 #include "skl_watermark.h"
22 
23 #define CACHELINE_BYTES 64
24 
25 struct intel_dsb {
26 	enum intel_dsb_id id;
27 
28 	struct intel_dsb_buffer dsb_buf;
29 	struct intel_crtc *crtc;
30 
31 	/*
32 	 * maximum number of dwords the buffer will hold.
33 	 */
34 	unsigned int size;
35 
36 	/*
37 	 * free_pos will point the first free dword and
38 	 * help in calculating tail of command buffer.
39 	 */
40 	unsigned int free_pos;
41 
42 	/*
43 	 * Previously emitted DSB instruction. Used to
44 	 * identify/adjust the instruction for indexed
45 	 * register writes.
46 	 */
47 	u32 ins[2];
48 
49 	/*
50 	 * Start of the previously emitted DSB instruction.
51 	 * Used to adjust the instruction for indexed
52 	 * register writes.
53 	 */
54 	unsigned int ins_start_offset;
55 
56 	u32 chicken;
57 	int hw_dewake_scanline;
58 };
59 
60 /**
61  * DOC: DSB
62  *
63  * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
64  * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
65  * engine that can be programmed to download the DSB from memory.
66  * It allows driver to batch submit display HW programming. This helps to
67  * reduce loading time and CPU activity, thereby making the context switch
68  * faster. DSB Support added from Gen12 Intel graphics based platform.
69  *
70  * DSB's can access only the pipe, plane, and transcoder Data Island Packet
71  * registers.
72  *
73  * DSB HW can support only register writes (both indexed and direct MMIO
74  * writes). There are no registers reads possible with DSB HW engine.
75  */
76 
77 /* DSB opcodes. */
78 #define DSB_OPCODE_SHIFT		24
79 #define DSB_OPCODE_NOOP			0x0
80 #define DSB_OPCODE_MMIO_WRITE		0x1
81 #define   DSB_BYTE_EN			0xf
82 #define   DSB_BYTE_EN_SHIFT		20
83 #define   DSB_REG_VALUE_MASK		0xfffff
84 #define DSB_OPCODE_WAIT_USEC		0x2
85 #define DSB_OPCODE_WAIT_SCANLINE	0x3
86 #define DSB_OPCODE_WAIT_VBLANKS		0x4
87 #define DSB_OPCODE_WAIT_DSL_IN		0x5
88 #define DSB_OPCODE_WAIT_DSL_OUT		0x6
89 #define   DSB_SCANLINE_UPPER_SHIFT	20
90 #define   DSB_SCANLINE_LOWER_SHIFT	0
91 #define DSB_OPCODE_INTERRUPT		0x7
92 #define DSB_OPCODE_INDEXED_WRITE	0x9
93 /* see DSB_REG_VALUE_MASK */
94 #define DSB_OPCODE_POLL			0xA
95 /* see DSB_REG_VALUE_MASK */
96 #define DSB_OPCODE_GOSUB		0xC /* ptl+ */
97 #define   DSB_GOSUB_HEAD_SHIFT		26
98 #define   DSB_GOSUB_TAIL_SHIFT		0
99 #define   DSB_GOSUB_CONVERT_ADDR(x)	((x) >> 6)
100 
pre_commit_is_vrr_active(struct intel_atomic_state * state,struct intel_crtc * crtc)101 static bool pre_commit_is_vrr_active(struct intel_atomic_state *state,
102 				     struct intel_crtc *crtc)
103 {
104 	const struct intel_crtc_state *old_crtc_state =
105 		intel_atomic_get_old_crtc_state(state, crtc);
106 	const struct intel_crtc_state *new_crtc_state =
107 		intel_atomic_get_new_crtc_state(state, crtc);
108 
109 	/* VRR will be enabled afterwards, if necessary */
110 	if (intel_crtc_needs_modeset(new_crtc_state))
111 		return false;
112 
113 	/* VRR will have been disabled during intel_pre_plane_update() */
114 	return old_crtc_state->vrr.enable && !intel_crtc_vrr_disabling(state, crtc);
115 }
116 
dsb_vblank_delay(struct intel_atomic_state * state,struct intel_crtc * crtc)117 static int dsb_vblank_delay(struct intel_atomic_state *state,
118 			    struct intel_crtc *crtc)
119 {
120 	const struct intel_crtc_state *crtc_state =
121 		intel_pre_commit_crtc_state(state, crtc);
122 
123 	if (pre_commit_is_vrr_active(state, crtc))
124 		/*
125 		 * When the push is sent during vblank it will trigger
126 		 * on the next scanline, hence we have up to one extra
127 		 * scanline until the delayed vblank occurs after
128 		 * TRANS_PUSH has been written.
129 		 */
130 		return intel_vrr_vblank_delay(crtc_state) + 1;
131 	else
132 		return intel_mode_vblank_delay(&crtc_state->hw.adjusted_mode);
133 }
134 
dsb_vtotal(struct intel_atomic_state * state,struct intel_crtc * crtc)135 static int dsb_vtotal(struct intel_atomic_state *state,
136 		      struct intel_crtc *crtc)
137 {
138 	const struct intel_crtc_state *crtc_state =
139 		intel_pre_commit_crtc_state(state, crtc);
140 
141 	if (pre_commit_is_vrr_active(state, crtc))
142 		return intel_vrr_vmax_vtotal(crtc_state);
143 	else
144 		return intel_mode_vtotal(&crtc_state->hw.adjusted_mode);
145 }
146 
dsb_dewake_scanline_start(struct intel_atomic_state * state,struct intel_crtc * crtc)147 static int dsb_dewake_scanline_start(struct intel_atomic_state *state,
148 				     struct intel_crtc *crtc)
149 {
150 	struct intel_display *display = to_intel_display(state);
151 	const struct intel_crtc_state *crtc_state =
152 		intel_pre_commit_crtc_state(state, crtc);
153 	unsigned int latency = skl_watermark_max_latency(display, 0);
154 
155 	return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode) -
156 		intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, latency);
157 }
158 
dsb_dewake_scanline_end(struct intel_atomic_state * state,struct intel_crtc * crtc)159 static int dsb_dewake_scanline_end(struct intel_atomic_state *state,
160 				   struct intel_crtc *crtc)
161 {
162 	const struct intel_crtc_state *crtc_state =
163 		intel_pre_commit_crtc_state(state, crtc);
164 
165 	return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode);
166 }
167 
dsb_scanline_to_hw(struct intel_atomic_state * state,struct intel_crtc * crtc,int scanline)168 static int dsb_scanline_to_hw(struct intel_atomic_state *state,
169 			      struct intel_crtc *crtc, int scanline)
170 {
171 	const struct intel_crtc_state *crtc_state =
172 		intel_pre_commit_crtc_state(state, crtc);
173 	int vtotal = dsb_vtotal(state, crtc);
174 
175 	return (scanline + vtotal - intel_crtc_scanline_offset(crtc_state)) % vtotal;
176 }
177 
178 /*
179  * Bspec suggests that we should always set DSB_SKIP_WAITS_EN. We have approach
180  * different from what is explained in Bspec on how flip is considered being
181  * complete. We are waiting for vblank in DSB and generate interrupt when it
182  * happens and this interrupt is considered as indication of completion -> we
183  * definitely do not want to skip vblank wait. We also have concern what comes
184  * to skipping vblank evasion. I.e. arming registers are latched before we have
185  * managed writing them. Due to these reasons we are not setting
186  * DSB_SKIP_WAITS_EN.
187  */
dsb_chicken(struct intel_atomic_state * state,struct intel_crtc * crtc)188 static u32 dsb_chicken(struct intel_atomic_state *state,
189 		       struct intel_crtc *crtc)
190 {
191 	if (pre_commit_is_vrr_active(state, crtc))
192 		return DSB_CTRL_WAIT_SAFE_WINDOW |
193 			DSB_CTRL_NO_WAIT_VBLANK |
194 			DSB_INST_WAIT_SAFE_WINDOW |
195 			DSB_INST_NO_WAIT_VBLANK;
196 	else
197 		return 0;
198 }
199 
assert_dsb_has_room(struct intel_dsb * dsb)200 static bool assert_dsb_has_room(struct intel_dsb *dsb)
201 {
202 	struct intel_crtc *crtc = dsb->crtc;
203 	struct intel_display *display = to_intel_display(crtc->base.dev);
204 
205 	/* each instruction is 2 dwords */
206 	return !drm_WARN(display->drm, dsb->free_pos > dsb->size - 2,
207 			 "[CRTC:%d:%s] DSB %d buffer overflow\n",
208 			 crtc->base.base.id, crtc->base.name, dsb->id);
209 }
210 
assert_dsb_tail_is_aligned(struct intel_dsb * dsb)211 static bool assert_dsb_tail_is_aligned(struct intel_dsb *dsb)
212 {
213 	struct intel_crtc *crtc = dsb->crtc;
214 	struct intel_display *display = to_intel_display(crtc->base.dev);
215 
216 	return !drm_WARN_ON(display->drm,
217 			    !IS_ALIGNED(dsb->free_pos * 4, CACHELINE_BYTES));
218 }
219 
intel_dsb_dump(struct intel_dsb * dsb)220 static void intel_dsb_dump(struct intel_dsb *dsb)
221 {
222 	struct intel_crtc *crtc = dsb->crtc;
223 	struct intel_display *display = to_intel_display(crtc->base.dev);
224 	int i;
225 
226 	drm_dbg_kms(display->drm, "[CRTC:%d:%s] DSB %d commands {\n",
227 		    crtc->base.base.id, crtc->base.name, dsb->id);
228 	for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4)
229 		drm_dbg_kms(display->drm,
230 			    " 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4,
231 			    intel_dsb_buffer_read(&dsb->dsb_buf, i),
232 			    intel_dsb_buffer_read(&dsb->dsb_buf, i + 1),
233 			    intel_dsb_buffer_read(&dsb->dsb_buf, i + 2),
234 			    intel_dsb_buffer_read(&dsb->dsb_buf, i + 3));
235 	drm_dbg_kms(display->drm, "}\n");
236 }
237 
is_dsb_busy(struct intel_display * display,enum pipe pipe,enum intel_dsb_id dsb_id)238 static bool is_dsb_busy(struct intel_display *display, enum pipe pipe,
239 			enum intel_dsb_id dsb_id)
240 {
241 	return intel_de_read_fw(display, DSB_CTRL(pipe, dsb_id)) & DSB_STATUS_BUSY;
242 }
243 
intel_dsb_size(struct intel_dsb * dsb)244 unsigned int intel_dsb_size(struct intel_dsb *dsb)
245 {
246 	return dsb->free_pos * 4;
247 }
248 
intel_dsb_head(struct intel_dsb * dsb)249 unsigned int intel_dsb_head(struct intel_dsb *dsb)
250 {
251 	return intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf);
252 }
253 
intel_dsb_tail(struct intel_dsb * dsb)254 static unsigned int intel_dsb_tail(struct intel_dsb *dsb)
255 {
256 	return intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + intel_dsb_size(dsb);
257 }
258 
intel_dsb_ins_align(struct intel_dsb * dsb)259 static void intel_dsb_ins_align(struct intel_dsb *dsb)
260 {
261 	/*
262 	 * Every instruction should be 8 byte aligned.
263 	 *
264 	 * The only way to get unaligned free_pos is via
265 	 * intel_dsb_reg_write_indexed() which already
266 	 * makes sure the next dword is zeroed, so no need
267 	 * to clear it here.
268 	 */
269 	dsb->free_pos = ALIGN(dsb->free_pos, 2);
270 }
271 
intel_dsb_emit(struct intel_dsb * dsb,u32 ldw,u32 udw)272 static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw)
273 {
274 	if (!assert_dsb_has_room(dsb))
275 		return;
276 
277 	intel_dsb_ins_align(dsb);
278 
279 	dsb->ins_start_offset = dsb->free_pos;
280 	dsb->ins[0] = ldw;
281 	dsb->ins[1] = udw;
282 
283 	intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[0]);
284 	intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[1]);
285 }
286 
intel_dsb_prev_ins_is_write(struct intel_dsb * dsb,u32 opcode,i915_reg_t reg)287 static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb,
288 					u32 opcode, i915_reg_t reg)
289 {
290 	u32 prev_opcode, prev_reg;
291 
292 	/*
293 	 * Nothing emitted yet? Must check before looking
294 	 * at the actual data since i915_gem_object_create_internal()
295 	 * does *not* give you zeroed memory!
296 	 */
297 	if (dsb->free_pos == 0)
298 		return false;
299 
300 	prev_opcode = dsb->ins[1] & ~DSB_REG_VALUE_MASK;
301 	prev_reg =  dsb->ins[1] & DSB_REG_VALUE_MASK;
302 
303 	return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg);
304 }
305 
intel_dsb_prev_ins_is_indexed_write(struct intel_dsb * dsb,i915_reg_t reg)306 static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg)
307 {
308 	return intel_dsb_prev_ins_is_write(dsb,
309 					   DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT,
310 					   reg);
311 }
312 
313 /**
314  * intel_dsb_reg_write_indexed() - Emit indexed register write to the DSB context
315  * @dsb: DSB context
316  * @reg: register address.
317  * @val: value.
318  *
319  * This function is used for writing register-value pair in command
320  * buffer of DSB.
321  *
322  * Note that indexed writes are slower than normal MMIO writes
323  * for a small number (less than 5 or so) of writes to the same
324  * register.
325  */
intel_dsb_reg_write_indexed(struct intel_dsb * dsb,i915_reg_t reg,u32 val)326 void intel_dsb_reg_write_indexed(struct intel_dsb *dsb,
327 				 i915_reg_t reg, u32 val)
328 {
329 	/*
330 	 * For example the buffer will look like below for 3 dwords for auto
331 	 * increment register:
332 	 * +--------------------------------------------------------+
333 	 * | size = 3 | offset &| value1 | value2 | value3 | zero   |
334 	 * |          | opcode  |        |        |        |        |
335 	 * +--------------------------------------------------------+
336 	 * +          +         +        +        +        +        +
337 	 * 0          4         8        12       16       20       24
338 	 * Byte
339 	 *
340 	 * As every instruction is 8 byte aligned the index of dsb instruction
341 	 * will start always from even number while dealing with u32 array. If
342 	 * we are writing odd no of dwords, Zeros will be added in the end for
343 	 * padding.
344 	 */
345 	if (!intel_dsb_prev_ins_is_indexed_write(dsb, reg))
346 		intel_dsb_emit(dsb, 0, /* count */
347 			       (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) |
348 			       i915_mmio_reg_offset(reg));
349 
350 	if (!assert_dsb_has_room(dsb))
351 		return;
352 
353 	/* Update the count */
354 	dsb->ins[0]++;
355 	intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 0,
356 			       dsb->ins[0]);
357 
358 	intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val);
359 	/* if number of data words is odd, then the last dword should be 0.*/
360 	if (dsb->free_pos & 0x1)
361 		intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0);
362 }
363 
intel_dsb_reg_write(struct intel_dsb * dsb,i915_reg_t reg,u32 val)364 void intel_dsb_reg_write(struct intel_dsb *dsb,
365 			 i915_reg_t reg, u32 val)
366 {
367 	intel_dsb_emit(dsb, val,
368 		       (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
369 		       (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
370 		       i915_mmio_reg_offset(reg));
371 }
372 
intel_dsb_mask_to_byte_en(u32 mask)373 static u32 intel_dsb_mask_to_byte_en(u32 mask)
374 {
375 	return (!!(mask & 0xff000000) << 3 |
376 		!!(mask & 0x00ff0000) << 2 |
377 		!!(mask & 0x0000ff00) << 1 |
378 		!!(mask & 0x000000ff) << 0);
379 }
380 
381 /* Note: mask implemented via byte enables! */
intel_dsb_reg_write_masked(struct intel_dsb * dsb,i915_reg_t reg,u32 mask,u32 val)382 void intel_dsb_reg_write_masked(struct intel_dsb *dsb,
383 				i915_reg_t reg, u32 mask, u32 val)
384 {
385 	intel_dsb_emit(dsb, val,
386 		       (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
387 		       (intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) |
388 		       i915_mmio_reg_offset(reg));
389 }
390 
intel_dsb_noop(struct intel_dsb * dsb,int count)391 void intel_dsb_noop(struct intel_dsb *dsb, int count)
392 {
393 	int i;
394 
395 	for (i = 0; i < count; i++)
396 		intel_dsb_emit(dsb, 0,
397 			       DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT);
398 }
399 
intel_dsb_nonpost_start(struct intel_dsb * dsb)400 void intel_dsb_nonpost_start(struct intel_dsb *dsb)
401 {
402 	struct intel_crtc *crtc = dsb->crtc;
403 	enum pipe pipe = crtc->pipe;
404 
405 	intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
406 				   DSB_NON_POSTED, DSB_NON_POSTED);
407 	intel_dsb_noop(dsb, 4);
408 }
409 
intel_dsb_nonpost_end(struct intel_dsb * dsb)410 void intel_dsb_nonpost_end(struct intel_dsb *dsb)
411 {
412 	struct intel_crtc *crtc = dsb->crtc;
413 	enum pipe pipe = crtc->pipe;
414 
415 	intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
416 				   DSB_NON_POSTED, 0);
417 	intel_dsb_noop(dsb, 4);
418 }
419 
intel_dsb_interrupt(struct intel_dsb * dsb)420 void intel_dsb_interrupt(struct intel_dsb *dsb)
421 {
422 	intel_dsb_emit(dsb, 0,
423 		       DSB_OPCODE_INTERRUPT << DSB_OPCODE_SHIFT);
424 }
425 
intel_dsb_wait_usec(struct intel_dsb * dsb,int count)426 void intel_dsb_wait_usec(struct intel_dsb *dsb, int count)
427 {
428 	/* +1 to make sure we never wait less time than asked for */
429 	intel_dsb_emit(dsb, count + 1,
430 		       DSB_OPCODE_WAIT_USEC << DSB_OPCODE_SHIFT);
431 }
432 
intel_dsb_wait_vblanks(struct intel_dsb * dsb,int count)433 void intel_dsb_wait_vblanks(struct intel_dsb *dsb, int count)
434 {
435 	intel_dsb_emit(dsb, count,
436 		       DSB_OPCODE_WAIT_VBLANKS << DSB_OPCODE_SHIFT);
437 }
438 
intel_dsb_emit_wait_dsl(struct intel_dsb * dsb,u32 opcode,int lower,int upper)439 static void intel_dsb_emit_wait_dsl(struct intel_dsb *dsb,
440 				    u32 opcode, int lower, int upper)
441 {
442 	u64 window = ((u64)upper << DSB_SCANLINE_UPPER_SHIFT) |
443 		((u64)lower << DSB_SCANLINE_LOWER_SHIFT);
444 
445 	intel_dsb_emit(dsb, lower_32_bits(window),
446 		       (opcode << DSB_OPCODE_SHIFT) |
447 		       upper_32_bits(window));
448 }
449 
intel_dsb_wait_dsl(struct intel_atomic_state * state,struct intel_dsb * dsb,int lower_in,int upper_in,int lower_out,int upper_out)450 static void intel_dsb_wait_dsl(struct intel_atomic_state *state,
451 			       struct intel_dsb *dsb,
452 			       int lower_in, int upper_in,
453 			       int lower_out, int upper_out)
454 {
455 	struct intel_crtc *crtc = dsb->crtc;
456 
457 	lower_in = dsb_scanline_to_hw(state, crtc, lower_in);
458 	upper_in = dsb_scanline_to_hw(state, crtc, upper_in);
459 
460 	lower_out = dsb_scanline_to_hw(state, crtc, lower_out);
461 	upper_out = dsb_scanline_to_hw(state, crtc, upper_out);
462 
463 	if (upper_in >= lower_in)
464 		intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_IN,
465 					lower_in, upper_in);
466 	else if (upper_out >= lower_out)
467 		intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT,
468 					lower_out, upper_out);
469 	else
470 		drm_WARN_ON(crtc->base.dev, 1); /* assert_dsl_ok() should have caught it already */
471 }
472 
assert_dsl_ok(struct intel_atomic_state * state,struct intel_dsb * dsb,int start,int end)473 static void assert_dsl_ok(struct intel_atomic_state *state,
474 			  struct intel_dsb *dsb,
475 			  int start, int end)
476 {
477 	struct intel_crtc *crtc = dsb->crtc;
478 	int vtotal = dsb_vtotal(state, crtc);
479 
480 	/*
481 	 * Waiting for the entire frame doesn't make sense,
482 	 * (IN==don't wait, OUT=wait forever).
483 	 */
484 	drm_WARN(crtc->base.dev, (end - start + vtotal) % vtotal == vtotal - 1,
485 		 "[CRTC:%d:%s] DSB %d bad scanline window wait: %d-%d (vt=%d)\n",
486 		 crtc->base.base.id, crtc->base.name, dsb->id,
487 		 start, end, vtotal);
488 }
489 
intel_dsb_wait_scanline_in(struct intel_atomic_state * state,struct intel_dsb * dsb,int start,int end)490 void intel_dsb_wait_scanline_in(struct intel_atomic_state *state,
491 				struct intel_dsb *dsb,
492 				int start, int end)
493 {
494 	assert_dsl_ok(state, dsb, start, end);
495 
496 	intel_dsb_wait_dsl(state, dsb,
497 			   start, end,
498 			   end + 1, start - 1);
499 }
500 
intel_dsb_wait_scanline_out(struct intel_atomic_state * state,struct intel_dsb * dsb,int start,int end)501 void intel_dsb_wait_scanline_out(struct intel_atomic_state *state,
502 				 struct intel_dsb *dsb,
503 				 int start, int end)
504 {
505 	assert_dsl_ok(state, dsb, start, end);
506 
507 	intel_dsb_wait_dsl(state, dsb,
508 			   end + 1, start - 1,
509 			   start, end);
510 }
511 
intel_dsb_poll(struct intel_dsb * dsb,i915_reg_t reg,u32 mask,u32 val,int wait_us,int count)512 void intel_dsb_poll(struct intel_dsb *dsb,
513 		    i915_reg_t reg, u32 mask, u32 val,
514 		    int wait_us, int count)
515 {
516 	struct intel_crtc *crtc = dsb->crtc;
517 	enum pipe pipe = crtc->pipe;
518 
519 	intel_dsb_reg_write(dsb, DSB_POLLMASK(pipe, dsb->id), mask);
520 	intel_dsb_reg_write(dsb, DSB_POLLFUNC(pipe, dsb->id),
521 			    DSB_POLL_ENABLE |
522 			    DSB_POLL_WAIT(wait_us) | DSB_POLL_COUNT(count));
523 
524 	intel_dsb_noop(dsb, 5);
525 
526 	intel_dsb_emit(dsb, val,
527 		       (DSB_OPCODE_POLL << DSB_OPCODE_SHIFT) |
528 		       i915_mmio_reg_offset(reg));
529 }
530 
intel_dsb_align_tail(struct intel_dsb * dsb)531 static void intel_dsb_align_tail(struct intel_dsb *dsb)
532 {
533 	u32 aligned_tail, tail;
534 
535 	intel_dsb_ins_align(dsb);
536 
537 	tail = dsb->free_pos * 4;
538 	aligned_tail = ALIGN(tail, CACHELINE_BYTES);
539 
540 	if (aligned_tail > tail)
541 		intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0,
542 					aligned_tail - tail);
543 
544 	dsb->free_pos = aligned_tail / 4;
545 }
546 
intel_dsb_gosub_align(struct intel_dsb * dsb)547 static void intel_dsb_gosub_align(struct intel_dsb *dsb)
548 {
549 	u32 aligned_tail, tail;
550 
551 	intel_dsb_ins_align(dsb);
552 
553 	tail = dsb->free_pos * 4;
554 	aligned_tail = ALIGN(tail, CACHELINE_BYTES);
555 
556 	/*
557 	 * Wa_16024917128
558 	 * "Ensure GOSUB is not placed in cacheline QW slot 6 or 7 (numbered 0-7)"
559 	 */
560 	if (aligned_tail - tail <= 2 * 8)
561 		intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0,
562 					aligned_tail - tail);
563 
564 	dsb->free_pos = aligned_tail / 4;
565 }
566 
intel_dsb_gosub(struct intel_dsb * dsb,struct intel_dsb * sub_dsb)567 void intel_dsb_gosub(struct intel_dsb *dsb,
568 		     struct intel_dsb *sub_dsb)
569 {
570 	struct intel_crtc *crtc = dsb->crtc;
571 	struct intel_display *display = to_intel_display(crtc->base.dev);
572 	unsigned int head, tail;
573 	u64 head_tail;
574 
575 	if (drm_WARN_ON(display->drm, dsb->id != sub_dsb->id))
576 		return;
577 
578 	if (!assert_dsb_tail_is_aligned(sub_dsb))
579 		return;
580 
581 	intel_dsb_gosub_align(dsb);
582 
583 	head = intel_dsb_head(sub_dsb);
584 	tail = intel_dsb_tail(sub_dsb);
585 
586 	/*
587 	 * The GOSUB instruction has the following memory layout.
588 	 *
589 	 * +------------------------------------------------------------+
590 	 * |  Opcode  |   Rsvd    |      Head Ptr     |     Tail Ptr    |
591 	 * |   0x0c   |           |                   |                 |
592 	 * +------------------------------------------------------------+
593 	 * |<- 8bits->|<- 4bits ->|<--   26bits    -->|<--  26bits   -->|
594 	 *
595 	 * We have only 26 bits each to represent the head and  tail
596 	 * pointers even though the addresses itself are of 32 bit. However, this
597 	 * is not a problem because the addresses are 64 bit aligned and therefore
598 	 * the last 6 bits are always Zero's. Therefore, we right shift the address
599 	 * by 6 before embedding it into the GOSUB instruction.
600 	 */
601 
602 	head_tail = ((u64)(DSB_GOSUB_CONVERT_ADDR(head)) << DSB_GOSUB_HEAD_SHIFT) |
603 		((u64)(DSB_GOSUB_CONVERT_ADDR(tail)) << DSB_GOSUB_TAIL_SHIFT);
604 
605 	intel_dsb_emit(dsb, lower_32_bits(head_tail),
606 		       (DSB_OPCODE_GOSUB << DSB_OPCODE_SHIFT) |
607 		       upper_32_bits(head_tail));
608 
609 	/*
610 	 * "NOTE: the instructions within the cacheline
611 	 *  FOLLOWING the GOSUB instruction must be NOPs."
612 	 */
613 	intel_dsb_align_tail(dsb);
614 }
615 
intel_dsb_gosub_finish(struct intel_dsb * dsb)616 void intel_dsb_gosub_finish(struct intel_dsb *dsb)
617 {
618 	intel_dsb_align_tail(dsb);
619 
620 	/*
621 	 * Wa_16024917128
622 	 * "Ensure that all subroutines called by GOSUB end with a cacheline of NOPs"
623 	 */
624 	intel_dsb_noop(dsb, 8);
625 
626 	intel_dsb_buffer_flush_map(&dsb->dsb_buf);
627 }
628 
intel_dsb_finish(struct intel_dsb * dsb)629 void intel_dsb_finish(struct intel_dsb *dsb)
630 {
631 	intel_dsb_align_tail(dsb);
632 
633 	intel_dsb_buffer_flush_map(&dsb->dsb_buf);
634 }
635 
dsb_error_int_status(struct intel_display * display)636 static u32 dsb_error_int_status(struct intel_display *display)
637 {
638 	u32 errors;
639 
640 	errors = DSB_GTT_FAULT_INT_STATUS |
641 		DSB_RSPTIMEOUT_INT_STATUS |
642 		DSB_POLL_ERR_INT_STATUS;
643 
644 	/*
645 	 * All the non-existing status bits operate as
646 	 * normal r/w bits, so any attempt to clear them
647 	 * will just end up setting them. Never do that so
648 	 * we won't mistake them for actual error interrupts.
649 	 */
650 	if (DISPLAY_VER(display) >= 14)
651 		errors |= DSB_ATS_FAULT_INT_STATUS;
652 
653 	if (DISPLAY_VER(display) >= 30)
654 		errors |= DSB_GOSUB_INT_STATUS;
655 
656 	return errors;
657 }
658 
dsb_error_int_en(struct intel_display * display)659 static u32 dsb_error_int_en(struct intel_display *display)
660 {
661 	u32 errors;
662 
663 	errors = DSB_GTT_FAULT_INT_EN |
664 		DSB_RSPTIMEOUT_INT_EN |
665 		DSB_POLL_ERR_INT_EN;
666 
667 	if (DISPLAY_VER(display) >= 14)
668 		errors |= DSB_ATS_FAULT_INT_EN;
669 
670 	/*
671 	 * Wa_16024917128
672 	 * "Disable nested GOSUB interrupt (DSB_INTERRUPT bit 21)"
673 	 */
674 	if (0 && DISPLAY_VER(display) >= 30)
675 		errors |= DSB_GOSUB_INT_EN;
676 
677 	return errors;
678 }
679 
680 /*
681  * FIXME calibrate these sensibly, ideally compute based on
682  * the number of regisetrs to be written. But that requires
683  * measuring the actual DSB execution speed on each platform
684  * (and the speed also depends on CDCLK and memory clock)...
685  */
intel_dsb_noarm_exec_time_us(void)686 static int intel_dsb_noarm_exec_time_us(void)
687 {
688 	return 80;
689 }
690 
intel_dsb_arm_exec_time_us(void)691 static int intel_dsb_arm_exec_time_us(void)
692 {
693 	return 20;
694 }
695 
intel_dsb_exec_time_us(void)696 int intel_dsb_exec_time_us(void)
697 {
698 	return intel_dsb_noarm_exec_time_us() +
699 		intel_dsb_arm_exec_time_us();
700 }
701 
intel_dsb_vblank_evade(struct intel_atomic_state * state,struct intel_dsb * dsb)702 void intel_dsb_vblank_evade(struct intel_atomic_state *state,
703 			    struct intel_dsb *dsb)
704 {
705 	struct intel_crtc *crtc = dsb->crtc;
706 	const struct intel_crtc_state *crtc_state =
707 		intel_pre_commit_crtc_state(state, crtc);
708 	int latency = intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode,
709 					       intel_dsb_arm_exec_time_us());
710 	int start, end;
711 
712 	/*
713 	 * PIPEDSL is reading as 0 when in SRDENT(PSR1) or DEEP_SLEEP(PSR2). On
714 	 * wake-up scanline counting starts from vblank_start - 1. We don't know
715 	 * if wake-up is already ongoing when evasion starts. In worst case
716 	 * PIPEDSL could start reading valid value right after checking the
717 	 * scanline. In this scenario we wouldn't have enough time to write all
718 	 * registers. To tackle this evade scanline 0 as well. As a drawback we
719 	 * have 1 frame delay in flip when waking up.
720 	 */
721 	if (crtc_state->has_psr)
722 		intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT, 0, 0);
723 
724 	if (pre_commit_is_vrr_active(state, crtc)) {
725 		int vblank_delay = intel_vrr_vblank_delay(crtc_state);
726 
727 		end = intel_vrr_vmin_vblank_start(crtc_state);
728 		start = end - vblank_delay - latency;
729 		intel_dsb_wait_scanline_out(state, dsb, start, end);
730 
731 		end = intel_vrr_vmax_vblank_start(crtc_state);
732 		start = end - vblank_delay - latency;
733 		intel_dsb_wait_scanline_out(state, dsb, start, end);
734 	} else {
735 		int vblank_delay = intel_mode_vblank_delay(&crtc_state->hw.adjusted_mode);
736 
737 		end = intel_mode_vblank_start(&crtc_state->hw.adjusted_mode);
738 		start = end - vblank_delay - latency;
739 		intel_dsb_wait_scanline_out(state, dsb, start, end);
740 	}
741 }
742 
_intel_dsb_chain(struct intel_atomic_state * state,struct intel_dsb * dsb,struct intel_dsb * chained_dsb,u32 ctrl)743 static void _intel_dsb_chain(struct intel_atomic_state *state,
744 			     struct intel_dsb *dsb,
745 			     struct intel_dsb *chained_dsb,
746 			     u32 ctrl)
747 {
748 	struct intel_display *display = to_intel_display(state->base.dev);
749 	struct intel_crtc *crtc = dsb->crtc;
750 	enum pipe pipe = crtc->pipe;
751 
752 	if (drm_WARN_ON(display->drm, dsb->id == chained_dsb->id))
753 		return;
754 
755 	if (!assert_dsb_tail_is_aligned(chained_dsb))
756 		return;
757 
758 	intel_dsb_reg_write(dsb, DSB_CTRL(pipe, chained_dsb->id),
759 			    ctrl | DSB_ENABLE);
760 
761 	intel_dsb_reg_write(dsb, DSB_CHICKEN(pipe, chained_dsb->id),
762 			    dsb_chicken(state, crtc));
763 
764 	intel_dsb_reg_write(dsb, DSB_INTERRUPT(pipe, chained_dsb->id),
765 			    dsb_error_int_status(display) | DSB_PROG_INT_STATUS |
766 			    dsb_error_int_en(display) | DSB_PROG_INT_EN);
767 
768 	if (ctrl & DSB_WAIT_FOR_VBLANK) {
769 		int dewake_scanline = dsb_dewake_scanline_start(state, crtc);
770 		int hw_dewake_scanline = dsb_scanline_to_hw(state, crtc, dewake_scanline);
771 
772 		intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id),
773 				    DSB_ENABLE_DEWAKE |
774 				    DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline));
775 	} else {
776 		intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id), 0);
777 	}
778 
779 	intel_dsb_reg_write(dsb, DSB_HEAD(pipe, chained_dsb->id),
780 			    intel_dsb_head(chained_dsb));
781 
782 	intel_dsb_reg_write(dsb, DSB_TAIL(pipe, chained_dsb->id),
783 			    intel_dsb_tail(chained_dsb));
784 
785 	if (ctrl & DSB_WAIT_FOR_VBLANK) {
786 		/*
787 		 * Keep DEwake alive via the first DSB, in
788 		 * case we're already past dewake_scanline,
789 		 * and thus DSB_ENABLE_DEWAKE on the second
790 		 * DSB won't do its job.
791 		 */
792 		intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(pipe, dsb->id),
793 					   DSB_FORCE_DEWAKE, DSB_FORCE_DEWAKE);
794 
795 		intel_dsb_wait_scanline_out(state, dsb,
796 					    dsb_dewake_scanline_start(state, crtc),
797 					    dsb_dewake_scanline_end(state, crtc));
798 
799 		/*
800 		 * DSB_FORCE_DEWAKE remains active even after DSB is
801 		 * disabled, so make sure to clear it.
802 		 */
803 		intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id),
804 					   DSB_FORCE_DEWAKE, 0);
805 	}
806 }
807 
intel_dsb_chain(struct intel_atomic_state * state,struct intel_dsb * dsb,struct intel_dsb * chained_dsb,bool wait_for_vblank)808 void intel_dsb_chain(struct intel_atomic_state *state,
809 		     struct intel_dsb *dsb,
810 		     struct intel_dsb *chained_dsb,
811 		     bool wait_for_vblank)
812 {
813 	_intel_dsb_chain(state, dsb, chained_dsb,
814 			 wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0);
815 }
816 
intel_dsb_wait_vblank_delay(struct intel_atomic_state * state,struct intel_dsb * dsb)817 void intel_dsb_wait_vblank_delay(struct intel_atomic_state *state,
818 				 struct intel_dsb *dsb)
819 {
820 	struct intel_crtc *crtc = dsb->crtc;
821 	const struct intel_crtc_state *crtc_state =
822 		intel_pre_commit_crtc_state(state, crtc);
823 	int usecs = intel_scanlines_to_usecs(&crtc_state->hw.adjusted_mode,
824 					     dsb_vblank_delay(state, crtc));
825 
826 	intel_dsb_wait_usec(dsb, usecs);
827 }
828 
829 /**
830  * intel_dsb_commit() - Trigger workload execution of DSB.
831  * @dsb: DSB context
832  *
833  * This function is used to do actual write to hardware using DSB.
834  */
intel_dsb_commit(struct intel_dsb * dsb)835 void intel_dsb_commit(struct intel_dsb *dsb)
836 {
837 	struct intel_crtc *crtc = dsb->crtc;
838 	struct intel_display *display = to_intel_display(crtc->base.dev);
839 	enum pipe pipe = crtc->pipe;
840 
841 	if (!assert_dsb_tail_is_aligned(dsb))
842 		return;
843 
844 	if (is_dsb_busy(display, pipe, dsb->id)) {
845 		drm_err(display->drm, "[CRTC:%d:%s] DSB %d is busy\n",
846 			crtc->base.base.id, crtc->base.name, dsb->id);
847 		return;
848 	}
849 
850 	intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id),
851 			  DSB_ENABLE);
852 
853 	intel_de_write_fw(display, DSB_CHICKEN(pipe, dsb->id),
854 			  dsb->chicken);
855 
856 	intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id),
857 			  dsb_error_int_status(display) | DSB_PROG_INT_STATUS |
858 			  dsb_error_int_en(display) | DSB_PROG_INT_EN);
859 
860 	intel_de_write_fw(display, DSB_PMCTRL(pipe, dsb->id), 0);
861 
862 	intel_de_write_fw(display, DSB_HEAD(pipe, dsb->id),
863 			  intel_dsb_head(dsb));
864 
865 	intel_de_write_fw(display, DSB_TAIL(pipe, dsb->id),
866 			  intel_dsb_tail(dsb));
867 }
868 
intel_dsb_wait(struct intel_dsb * dsb)869 void intel_dsb_wait(struct intel_dsb *dsb)
870 {
871 	struct intel_crtc *crtc = dsb->crtc;
872 	struct intel_display *display = to_intel_display(crtc->base.dev);
873 	enum pipe pipe = crtc->pipe;
874 
875 	if (wait_for(!is_dsb_busy(display, pipe, dsb->id), 1)) {
876 		u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf);
877 
878 		intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id),
879 				  DSB_ENABLE | DSB_HALT);
880 
881 		drm_err(display->drm,
882 			"[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n",
883 			crtc->base.base.id, crtc->base.name, dsb->id,
884 			intel_de_read_fw(display, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset,
885 			intel_de_read_fw(display, DSB_HEAD(pipe, dsb->id)) - offset,
886 			intel_de_read_fw(display, DSB_TAIL(pipe, dsb->id)) - offset);
887 
888 		intel_dsb_dump(dsb);
889 	}
890 
891 	/* Attempt to reset it */
892 	dsb->free_pos = 0;
893 	dsb->ins_start_offset = 0;
894 	dsb->ins[0] = 0;
895 	dsb->ins[1] = 0;
896 
897 	intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 0);
898 
899 	intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id),
900 			  dsb_error_int_status(display) | DSB_PROG_INT_STATUS);
901 }
902 
903 /**
904  * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
905  * @state: the atomic state
906  * @crtc: the CRTC
907  * @dsb_id: the DSB engine to use
908  * @max_cmds: number of commands we need to fit into command buffer
909  *
910  * This function prepare the command buffer which is used to store dsb
911  * instructions with data.
912  *
913  * Returns:
914  * DSB context, NULL on failure
915  */
intel_dsb_prepare(struct intel_atomic_state * state,struct intel_crtc * crtc,enum intel_dsb_id dsb_id,unsigned int max_cmds)916 struct intel_dsb *intel_dsb_prepare(struct intel_atomic_state *state,
917 				    struct intel_crtc *crtc,
918 				    enum intel_dsb_id dsb_id,
919 				    unsigned int max_cmds)
920 {
921 	struct intel_display *display = to_intel_display(state);
922 	struct ref_tracker *wakeref;
923 	struct intel_dsb *dsb;
924 	unsigned int size;
925 
926 	if (!HAS_DSB(display))
927 		return NULL;
928 
929 	if (!display->params.enable_dsb)
930 		return NULL;
931 
932 	dsb = kzalloc(sizeof(*dsb), GFP_KERNEL);
933 	if (!dsb)
934 		goto out;
935 
936 	wakeref = intel_display_rpm_get(display);
937 
938 	/* ~1 qword per instruction, full cachelines */
939 	size = ALIGN(max_cmds * 8, CACHELINE_BYTES);
940 
941 	if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size))
942 		goto out_put_rpm;
943 
944 	intel_display_rpm_put(display, wakeref);
945 
946 	dsb->id = dsb_id;
947 	dsb->crtc = crtc;
948 	dsb->size = size / 4; /* in dwords */
949 
950 	dsb->chicken = dsb_chicken(state, crtc);
951 	dsb->hw_dewake_scanline =
952 		dsb_scanline_to_hw(state, crtc, dsb_dewake_scanline_start(state, crtc));
953 
954 	return dsb;
955 
956 out_put_rpm:
957 	intel_display_rpm_put(display, wakeref);
958 	kfree(dsb);
959 out:
960 	drm_info_once(display->drm,
961 		      "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n",
962 		      crtc->base.base.id, crtc->base.name, dsb_id);
963 
964 	return NULL;
965 }
966 
967 /**
968  * intel_dsb_cleanup() - To cleanup DSB context.
969  * @dsb: DSB context
970  *
971  * This function cleanup the DSB context by unpinning and releasing
972  * the VMA object associated with it.
973  */
intel_dsb_cleanup(struct intel_dsb * dsb)974 void intel_dsb_cleanup(struct intel_dsb *dsb)
975 {
976 	intel_dsb_buffer_cleanup(&dsb->dsb_buf);
977 	kfree(dsb);
978 }
979 
intel_dsb_irq_handler(struct intel_display * display,enum pipe pipe,enum intel_dsb_id dsb_id)980 void intel_dsb_irq_handler(struct intel_display *display,
981 			   enum pipe pipe, enum intel_dsb_id dsb_id)
982 {
983 	struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
984 	u32 tmp, errors;
985 
986 	tmp = intel_de_read_fw(display, DSB_INTERRUPT(pipe, dsb_id));
987 	intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb_id), tmp);
988 
989 	if (tmp & DSB_PROG_INT_STATUS) {
990 		spin_lock(&display->drm->event_lock);
991 
992 		if (crtc->dsb_event) {
993 			/*
994 			 * Update vblank counter/timestamp in case it
995 			 * hasn't been done yet for this frame.
996 			 */
997 			drm_crtc_accurate_vblank_count(&crtc->base);
998 
999 			drm_crtc_send_vblank_event(&crtc->base, crtc->dsb_event);
1000 			crtc->dsb_event = NULL;
1001 		}
1002 
1003 		spin_unlock(&display->drm->event_lock);
1004 	}
1005 
1006 	errors = tmp & dsb_error_int_status(display);
1007 	if (errors & DSB_ATS_FAULT_INT_STATUS)
1008 		drm_err(display->drm, "[CRTC:%d:%s] DSB %d ATS fault\n",
1009 			crtc->base.base.id, crtc->base.name, dsb_id);
1010 	if (errors & DSB_GTT_FAULT_INT_STATUS)
1011 		drm_err(display->drm, "[CRTC:%d:%s] DSB %d GTT fault\n",
1012 			crtc->base.base.id, crtc->base.name, dsb_id);
1013 	if (errors & DSB_RSPTIMEOUT_INT_STATUS)
1014 		drm_err(display->drm, "[CRTC:%d:%s] DSB %d response timeout\n",
1015 			crtc->base.base.id, crtc->base.name, dsb_id);
1016 	if (errors & DSB_POLL_ERR_INT_STATUS)
1017 		drm_err(display->drm, "[CRTC:%d:%s] DSB %d poll error\n",
1018 			crtc->base.base.id, crtc->base.name, dsb_id);
1019 	if (errors & DSB_GOSUB_INT_STATUS)
1020 		drm_err(display->drm, "[CRTC:%d:%s] DSB %d GOSUB programming error\n",
1021 			crtc->base.base.id, crtc->base.name, dsb_id);
1022 }
1023