1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include <linux/debugfs.h>
7
8 #include <drm/drm_blend.h>
9 #include <drm/drm_file.h>
10 #include <drm/drm_print.h>
11
12 #include "soc/intel_dram.h"
13 #include "i915_reg.h"
14 #include "i915_utils.h"
15 #include "i9xx_wm.h"
16 #include "intel_atomic.h"
17 #include "intel_bw.h"
18 #include "intel_cdclk.h"
19 #include "intel_crtc.h"
20 #include "intel_cursor_regs.h"
21 #include "intel_de.h"
22 #include "intel_display.h"
23 #include "intel_display_power.h"
24 #include "intel_display_regs.h"
25 #include "intel_display_rpm.h"
26 #include "intel_display_types.h"
27 #include "intel_fb.h"
28 #include "intel_fixed.h"
29 #include "intel_flipq.h"
30 #include "intel_pcode.h"
31 #include "intel_plane.h"
32 #include "intel_wm.h"
33 #include "skl_universal_plane_regs.h"
34 #include "skl_watermark.h"
35 #include "skl_watermark_regs.h"
36
37 struct intel_dbuf_state {
38 struct intel_global_state base;
39
40 struct skl_ddb_entry ddb[I915_MAX_PIPES];
41 unsigned int weight[I915_MAX_PIPES];
42 u8 slices[I915_MAX_PIPES];
43 u8 enabled_slices;
44 u8 active_pipes;
45 u8 mdclk_cdclk_ratio;
46 bool joined_mbus;
47 };
48
49 #define to_intel_dbuf_state(global_state) \
50 container_of_const((global_state), struct intel_dbuf_state, base)
51
52 #define intel_atomic_get_old_dbuf_state(state) \
53 to_intel_dbuf_state(intel_atomic_get_old_global_obj_state(state, &to_intel_display(state)->dbuf.obj))
54 #define intel_atomic_get_new_dbuf_state(state) \
55 to_intel_dbuf_state(intel_atomic_get_new_global_obj_state(state, &to_intel_display(state)->dbuf.obj))
56
57 static void skl_sagv_disable(struct intel_display *display);
58
59 /* Stores plane specific WM parameters */
60 struct skl_wm_params {
61 bool x_tiled, y_tiled;
62 bool rc_surface;
63 bool is_planar;
64 u32 width;
65 u8 cpp;
66 u32 plane_pixel_rate;
67 u32 y_min_scanlines;
68 u32 plane_bytes_per_line;
69 uint_fixed_16_16_t plane_blocks_per_line;
70 uint_fixed_16_16_t y_tile_minimum;
71 u32 linetime_us;
72 u32 dbuf_block_size;
73 };
74
intel_enabled_dbuf_slices_mask(struct intel_display * display)75 u8 intel_enabled_dbuf_slices_mask(struct intel_display *display)
76 {
77 u8 enabled_slices = 0;
78 enum dbuf_slice slice;
79
80 for_each_dbuf_slice(display, slice) {
81 if (intel_de_read(display, DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
82 enabled_slices |= BIT(slice);
83 }
84
85 return enabled_slices;
86 }
87
88 /*
89 * FIXME: We still don't have the proper code detect if we need to apply the WA,
90 * so assume we'll always need it in order to avoid underruns.
91 */
skl_needs_memory_bw_wa(struct intel_display * display)92 static bool skl_needs_memory_bw_wa(struct intel_display *display)
93 {
94 return DISPLAY_VER(display) == 9;
95 }
96
97 bool
intel_has_sagv(struct intel_display * display)98 intel_has_sagv(struct intel_display *display)
99 {
100 return HAS_SAGV(display) && display->sagv.status != I915_SAGV_NOT_CONTROLLED;
101 }
102
103 static u32
intel_sagv_block_time(struct intel_display * display)104 intel_sagv_block_time(struct intel_display *display)
105 {
106 if (DISPLAY_VER(display) >= 14) {
107 u32 val;
108
109 val = intel_de_read(display, MTL_LATENCY_SAGV);
110
111 return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val);
112 } else if (DISPLAY_VER(display) >= 12) {
113 u32 val = 0;
114 int ret;
115
116 ret = intel_pcode_read(display->drm,
117 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
118 &val, NULL);
119 if (ret) {
120 drm_dbg_kms(display->drm, "Couldn't read SAGV block time!\n");
121 return 0;
122 }
123
124 return val;
125 } else if (DISPLAY_VER(display) == 11) {
126 return 10;
127 } else if (HAS_SAGV(display)) {
128 return 30;
129 } else {
130 return 0;
131 }
132 }
133
intel_sagv_init(struct intel_display * display)134 static void intel_sagv_init(struct intel_display *display)
135 {
136 if (!HAS_SAGV(display))
137 display->sagv.status = I915_SAGV_NOT_CONTROLLED;
138
139 /*
140 * Probe to see if we have working SAGV control.
141 * For icl+ this was already determined by intel_bw_init_hw().
142 */
143 if (DISPLAY_VER(display) < 11)
144 skl_sagv_disable(display);
145
146 drm_WARN_ON(display->drm, display->sagv.status == I915_SAGV_UNKNOWN);
147
148 display->sagv.block_time_us = intel_sagv_block_time(display);
149
150 drm_dbg_kms(display->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
151 str_yes_no(intel_has_sagv(display)), display->sagv.block_time_us);
152
153 /* avoid overflow when adding with wm0 latency/etc. */
154 if (drm_WARN(display->drm, display->sagv.block_time_us > U16_MAX,
155 "Excessive SAGV block time %u, ignoring\n",
156 display->sagv.block_time_us))
157 display->sagv.block_time_us = 0;
158
159 if (!intel_has_sagv(display))
160 display->sagv.block_time_us = 0;
161 }
162
163 /*
164 * SAGV dynamically adjusts the system agent voltage and clock frequencies
165 * depending on power and performance requirements. The display engine access
166 * to system memory is blocked during the adjustment time. Because of the
167 * blocking time, having this enabled can cause full system hangs and/or pipe
168 * underruns if we don't meet all of the following requirements:
169 *
170 * - <= 1 pipe enabled
171 * - All planes can enable watermarks for latencies >= SAGV engine block time
172 * - We're not using an interlaced display configuration
173 */
skl_sagv_enable(struct intel_display * display)174 static void skl_sagv_enable(struct intel_display *display)
175 {
176 int ret;
177
178 if (!intel_has_sagv(display))
179 return;
180
181 if (display->sagv.status == I915_SAGV_ENABLED)
182 return;
183
184 drm_dbg_kms(display->drm, "Enabling SAGV\n");
185 ret = intel_pcode_write(display->drm, GEN9_PCODE_SAGV_CONTROL,
186 GEN9_SAGV_ENABLE);
187
188 /* We don't need to wait for SAGV when enabling */
189
190 /*
191 * Some skl systems, pre-release machines in particular,
192 * don't actually have SAGV.
193 */
194 if (display->platform.skylake && ret == -ENXIO) {
195 drm_dbg(display->drm, "No SAGV found on system, ignoring\n");
196 display->sagv.status = I915_SAGV_NOT_CONTROLLED;
197 return;
198 } else if (ret < 0) {
199 drm_err(display->drm, "Failed to enable SAGV\n");
200 return;
201 }
202
203 display->sagv.status = I915_SAGV_ENABLED;
204 }
205
skl_sagv_disable(struct intel_display * display)206 static void skl_sagv_disable(struct intel_display *display)
207 {
208 int ret;
209
210 if (!intel_has_sagv(display))
211 return;
212
213 if (display->sagv.status == I915_SAGV_DISABLED)
214 return;
215
216 drm_dbg_kms(display->drm, "Disabling SAGV\n");
217 /* bspec says to keep retrying for at least 1 ms */
218 ret = intel_pcode_request(display->drm, GEN9_PCODE_SAGV_CONTROL,
219 GEN9_SAGV_DISABLE,
220 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED, 1);
221 /*
222 * Some skl systems, pre-release machines in particular,
223 * don't actually have SAGV.
224 */
225 if (display->platform.skylake && ret == -ENXIO) {
226 drm_dbg(display->drm, "No SAGV found on system, ignoring\n");
227 display->sagv.status = I915_SAGV_NOT_CONTROLLED;
228 return;
229 } else if (ret < 0) {
230 drm_err(display->drm, "Failed to disable SAGV (%d)\n", ret);
231 return;
232 }
233
234 display->sagv.status = I915_SAGV_DISABLED;
235 }
236
skl_sagv_pre_plane_update(struct intel_atomic_state * state)237 static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
238 {
239 struct intel_display *display = to_intel_display(state);
240 const struct intel_bw_state *new_bw_state =
241 intel_atomic_get_new_bw_state(state);
242
243 if (!new_bw_state)
244 return;
245
246 if (!intel_bw_can_enable_sagv(display, new_bw_state))
247 skl_sagv_disable(display);
248 }
249
skl_sagv_post_plane_update(struct intel_atomic_state * state)250 static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
251 {
252 struct intel_display *display = to_intel_display(state);
253 const struct intel_bw_state *new_bw_state =
254 intel_atomic_get_new_bw_state(state);
255
256 if (!new_bw_state)
257 return;
258
259 if (intel_bw_can_enable_sagv(display, new_bw_state))
260 skl_sagv_enable(display);
261 }
262
intel_sagv_pre_plane_update(struct intel_atomic_state * state)263 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
264 {
265 struct intel_display *display = to_intel_display(state);
266
267 /*
268 * Just return if we can't control SAGV or don't have it.
269 * This is different from situation when we have SAGV but just can't
270 * afford it due to DBuf limitation - in case if SAGV is completely
271 * disabled in a BIOS, we are not even allowed to send a PCode request,
272 * as it will throw an error. So have to check it here.
273 */
274 if (!intel_has_sagv(display))
275 return;
276
277 if (DISPLAY_VER(display) >= 11)
278 icl_sagv_pre_plane_update(state);
279 else
280 skl_sagv_pre_plane_update(state);
281 }
282
intel_sagv_post_plane_update(struct intel_atomic_state * state)283 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
284 {
285 struct intel_display *display = to_intel_display(state);
286
287 /*
288 * Just return if we can't control SAGV or don't have it.
289 * This is different from situation when we have SAGV but just can't
290 * afford it due to DBuf limitation - in case if SAGV is completely
291 * disabled in a BIOS, we are not even allowed to send a PCode request,
292 * as it will throw an error. So have to check it here.
293 */
294 if (!intel_has_sagv(display))
295 return;
296
297 if (DISPLAY_VER(display) >= 11)
298 icl_sagv_post_plane_update(state);
299 else
300 skl_sagv_post_plane_update(state);
301 }
302
skl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)303 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
304 {
305 struct intel_display *display = to_intel_display(crtc_state);
306 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
307 enum plane_id plane_id;
308 int max_level = INT_MAX;
309
310 if (!intel_has_sagv(display))
311 return false;
312
313 if (!crtc_state->hw.active)
314 return true;
315
316 if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
317 return false;
318
319 for_each_plane_id_on_crtc(crtc, plane_id) {
320 const struct skl_plane_wm *wm =
321 &crtc_state->wm.skl.optimal.planes[plane_id];
322 int level;
323
324 /* Skip this plane if it's not enabled */
325 if (!wm->wm[0].enable)
326 continue;
327
328 /* Find the highest enabled wm level for this plane */
329 for (level = display->wm.num_levels - 1;
330 !wm->wm[level].enable; --level)
331 { }
332
333 /* Highest common enabled wm level for all planes */
334 max_level = min(level, max_level);
335 }
336
337 /* No enabled planes? */
338 if (max_level == INT_MAX)
339 return true;
340
341 for_each_plane_id_on_crtc(crtc, plane_id) {
342 const struct skl_plane_wm *wm =
343 &crtc_state->wm.skl.optimal.planes[plane_id];
344
345 /*
346 * All enabled planes must have enabled a common wm level that
347 * can tolerate memory latencies higher than sagv_block_time_us
348 */
349 if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
350 return false;
351 }
352
353 return true;
354 }
355
tgl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)356 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
357 {
358 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
359 enum plane_id plane_id;
360
361 if (!crtc_state->hw.active)
362 return true;
363
364 for_each_plane_id_on_crtc(crtc, plane_id) {
365 const struct skl_plane_wm *wm =
366 &crtc_state->wm.skl.optimal.planes[plane_id];
367
368 if (wm->wm[0].enable && !wm->sagv.wm0.enable)
369 return false;
370 }
371
372 return true;
373 }
374
intel_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)375 bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
376 {
377 struct intel_display *display = to_intel_display(crtc_state);
378
379 if (!display->params.enable_sagv)
380 return false;
381
382 /*
383 * SAGV is initially forced off because its current
384 * state can't be queried from pcode. Allow SAGV to
385 * be enabled upon the first real commit.
386 */
387 if (crtc_state->inherited)
388 return false;
389
390 if (DISPLAY_VER(display) >= 12)
391 return tgl_crtc_can_enable_sagv(crtc_state);
392 else
393 return skl_crtc_can_enable_sagv(crtc_state);
394 }
395
skl_ddb_entry_init(struct skl_ddb_entry * entry,u16 start,u16 end)396 static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
397 u16 start, u16 end)
398 {
399 entry->start = start;
400 entry->end = end;
401
402 return end;
403 }
404
intel_dbuf_slice_size(struct intel_display * display)405 static int intel_dbuf_slice_size(struct intel_display *display)
406 {
407 return DISPLAY_INFO(display)->dbuf.size /
408 hweight8(DISPLAY_INFO(display)->dbuf.slice_mask);
409 }
410
411 static void
skl_ddb_entry_for_slices(struct intel_display * display,u8 slice_mask,struct skl_ddb_entry * ddb)412 skl_ddb_entry_for_slices(struct intel_display *display, u8 slice_mask,
413 struct skl_ddb_entry *ddb)
414 {
415 int slice_size = intel_dbuf_slice_size(display);
416
417 if (!slice_mask) {
418 ddb->start = 0;
419 ddb->end = 0;
420 return;
421 }
422
423 ddb->start = (ffs(slice_mask) - 1) * slice_size;
424 ddb->end = fls(slice_mask) * slice_size;
425
426 WARN_ON(ddb->start >= ddb->end);
427 WARN_ON(ddb->end > DISPLAY_INFO(display)->dbuf.size);
428 }
429
mbus_ddb_offset(struct intel_display * display,u8 slice_mask)430 static unsigned int mbus_ddb_offset(struct intel_display *display, u8 slice_mask)
431 {
432 struct skl_ddb_entry ddb;
433
434 if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
435 slice_mask = BIT(DBUF_S1);
436 else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
437 slice_mask = BIT(DBUF_S3);
438
439 skl_ddb_entry_for_slices(display, slice_mask, &ddb);
440
441 return ddb.start;
442 }
443
skl_ddb_dbuf_slice_mask(struct intel_display * display,const struct skl_ddb_entry * entry)444 u32 skl_ddb_dbuf_slice_mask(struct intel_display *display,
445 const struct skl_ddb_entry *entry)
446 {
447 int slice_size = intel_dbuf_slice_size(display);
448 enum dbuf_slice start_slice, end_slice;
449 u8 slice_mask = 0;
450
451 if (!skl_ddb_entry_size(entry))
452 return 0;
453
454 start_slice = entry->start / slice_size;
455 end_slice = (entry->end - 1) / slice_size;
456
457 /*
458 * Per plane DDB entry can in a really worst case be on multiple slices
459 * but single entry is anyway contiguous.
460 */
461 while (start_slice <= end_slice) {
462 slice_mask |= BIT(start_slice);
463 start_slice++;
464 }
465
466 return slice_mask;
467 }
468
intel_crtc_ddb_weight(const struct intel_crtc_state * crtc_state)469 static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
470 {
471 const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
472 int hdisplay, vdisplay;
473
474 if (!crtc_state->hw.active)
475 return 0;
476
477 /*
478 * Watermark/ddb requirement highly depends upon width of the
479 * framebuffer, So instead of allocating DDB equally among pipes
480 * distribute DDB based on resolution/width of the display.
481 */
482 drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
483
484 return hdisplay;
485 }
486
intel_crtc_dbuf_weights(const struct intel_dbuf_state * dbuf_state,enum pipe for_pipe,unsigned int * weight_start,unsigned int * weight_end,unsigned int * weight_total)487 static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
488 enum pipe for_pipe,
489 unsigned int *weight_start,
490 unsigned int *weight_end,
491 unsigned int *weight_total)
492 {
493 struct intel_display *display = to_intel_display(dbuf_state->base.state->base.dev);
494 enum pipe pipe;
495
496 *weight_start = 0;
497 *weight_end = 0;
498 *weight_total = 0;
499
500 for_each_pipe(display, pipe) {
501 int weight = dbuf_state->weight[pipe];
502
503 /*
504 * Do not account pipes using other slice sets
505 * luckily as of current BSpec slice sets do not partially
506 * intersect(pipes share either same one slice or same slice set
507 * i.e no partial intersection), so it is enough to check for
508 * equality for now.
509 */
510 if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
511 continue;
512
513 *weight_total += weight;
514 if (pipe < for_pipe) {
515 *weight_start += weight;
516 *weight_end += weight;
517 } else if (pipe == for_pipe) {
518 *weight_end += weight;
519 }
520 }
521 }
522
523 static int
skl_crtc_allocate_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)524 skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
525 {
526 struct intel_display *display = to_intel_display(crtc);
527 unsigned int weight_total, weight_start, weight_end;
528 const struct intel_dbuf_state *old_dbuf_state =
529 intel_atomic_get_old_dbuf_state(state);
530 struct intel_dbuf_state *new_dbuf_state =
531 intel_atomic_get_new_dbuf_state(state);
532 struct intel_crtc_state *crtc_state;
533 struct skl_ddb_entry ddb_slices;
534 enum pipe pipe = crtc->pipe;
535 unsigned int mbus_offset = 0;
536 u32 ddb_range_size;
537 u32 dbuf_slice_mask;
538 u32 start, end;
539 int ret;
540
541 if (new_dbuf_state->weight[pipe] == 0) {
542 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
543 goto out;
544 }
545
546 dbuf_slice_mask = new_dbuf_state->slices[pipe];
547
548 skl_ddb_entry_for_slices(display, dbuf_slice_mask, &ddb_slices);
549 mbus_offset = mbus_ddb_offset(display, dbuf_slice_mask);
550 ddb_range_size = skl_ddb_entry_size(&ddb_slices);
551
552 intel_crtc_dbuf_weights(new_dbuf_state, pipe,
553 &weight_start, &weight_end, &weight_total);
554
555 start = ddb_range_size * weight_start / weight_total;
556 end = ddb_range_size * weight_end / weight_total;
557
558 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
559 ddb_slices.start - mbus_offset + start,
560 ddb_slices.start - mbus_offset + end);
561
562 out:
563 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
564 skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
565 &new_dbuf_state->ddb[pipe]))
566 return 0;
567
568 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
569 if (ret)
570 return ret;
571
572 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
573 if (IS_ERR(crtc_state))
574 return PTR_ERR(crtc_state);
575
576 /*
577 * Used for checking overlaps, so we need absolute
578 * offsets instead of MBUS relative offsets.
579 */
580 crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
581 crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
582
583 drm_dbg_kms(display->drm,
584 "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
585 crtc->base.base.id, crtc->base.name,
586 old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
587 old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
588 new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
589 old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
590
591 return 0;
592 }
593
594 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
595 int width, const struct drm_format_info *format,
596 u64 modifier, unsigned int rotation,
597 u32 plane_pixel_rate, struct skl_wm_params *wp,
598 int color_plane, unsigned int pan_x);
599
600 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
601 struct intel_plane *plane,
602 int level,
603 unsigned int latency,
604 const struct skl_wm_params *wp,
605 const struct skl_wm_level *result_prev,
606 struct skl_wm_level *result /* out */);
607
skl_wm_latency(struct intel_display * display,int level,const struct skl_wm_params * wp)608 static unsigned int skl_wm_latency(struct intel_display *display, int level,
609 const struct skl_wm_params *wp)
610 {
611 unsigned int latency = display->wm.skl_latency[level];
612
613 if (latency == 0)
614 return 0;
615
616 /*
617 * WaIncreaseLatencyIPCEnabled: kbl,cfl
618 * Display WA #1141: kbl,cfl
619 */
620 if ((display->platform.kabylake || display->platform.coffeelake ||
621 display->platform.cometlake) && skl_watermark_ipc_enabled(display))
622 latency += 4;
623
624 if (skl_needs_memory_bw_wa(display) && wp && wp->x_tiled)
625 latency += 15;
626
627 return latency;
628 }
629
630 static unsigned int
skl_cursor_allocation(const struct intel_crtc_state * crtc_state,int num_active)631 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
632 int num_active)
633 {
634 struct intel_display *display = to_intel_display(crtc_state);
635 struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
636 struct skl_wm_level wm = {};
637 int ret, min_ddb_alloc = 0;
638 struct skl_wm_params wp;
639 int level;
640
641 ret = skl_compute_wm_params(crtc_state, 256,
642 drm_format_info(DRM_FORMAT_ARGB8888),
643 DRM_FORMAT_MOD_LINEAR,
644 DRM_MODE_ROTATE_0,
645 crtc_state->pixel_rate, &wp, 0, 0);
646 drm_WARN_ON(display->drm, ret);
647
648 for (level = 0; level < display->wm.num_levels; level++) {
649 unsigned int latency = skl_wm_latency(display, level, &wp);
650
651 skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
652 if (wm.min_ddb_alloc == U16_MAX)
653 break;
654
655 min_ddb_alloc = wm.min_ddb_alloc;
656 }
657
658 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
659 }
660
skl_ddb_entry_init_from_hw(struct skl_ddb_entry * entry,u32 reg)661 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
662 {
663 skl_ddb_entry_init(entry,
664 REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
665 REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
666 if (entry->end)
667 entry->end++;
668 }
669
670 static void
skl_ddb_get_hw_plane_state(struct intel_display * display,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_entry * ddb,struct skl_ddb_entry * ddb_y,u16 * min_ddb,u16 * interim_ddb)671 skl_ddb_get_hw_plane_state(struct intel_display *display,
672 const enum pipe pipe,
673 const enum plane_id plane_id,
674 struct skl_ddb_entry *ddb,
675 struct skl_ddb_entry *ddb_y,
676 u16 *min_ddb, u16 *interim_ddb)
677 {
678 u32 val;
679
680 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
681 if (plane_id == PLANE_CURSOR) {
682 val = intel_de_read(display, CUR_BUF_CFG(pipe));
683 skl_ddb_entry_init_from_hw(ddb, val);
684 return;
685 }
686
687 val = intel_de_read(display, PLANE_BUF_CFG(pipe, plane_id));
688 skl_ddb_entry_init_from_hw(ddb, val);
689
690 if (DISPLAY_VER(display) >= 30) {
691 val = intel_de_read(display, PLANE_MIN_BUF_CFG(pipe, plane_id));
692
693 *min_ddb = REG_FIELD_GET(PLANE_MIN_DBUF_BLOCKS_MASK, val);
694 *interim_ddb = REG_FIELD_GET(PLANE_INTERIM_DBUF_BLOCKS_MASK, val);
695 }
696
697 if (DISPLAY_VER(display) >= 11)
698 return;
699
700 val = intel_de_read(display, PLANE_NV12_BUF_CFG(pipe, plane_id));
701 skl_ddb_entry_init_from_hw(ddb_y, val);
702 }
703
skl_pipe_ddb_get_hw_state(struct intel_crtc * crtc,struct skl_ddb_entry * ddb,struct skl_ddb_entry * ddb_y,u16 * min_ddb,u16 * interim_ddb)704 static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
705 struct skl_ddb_entry *ddb,
706 struct skl_ddb_entry *ddb_y,
707 u16 *min_ddb, u16 *interim_ddb)
708 {
709 struct intel_display *display = to_intel_display(crtc);
710 enum intel_display_power_domain power_domain;
711 enum pipe pipe = crtc->pipe;
712 intel_wakeref_t wakeref;
713 enum plane_id plane_id;
714
715 power_domain = POWER_DOMAIN_PIPE(pipe);
716 wakeref = intel_display_power_get_if_enabled(display, power_domain);
717 if (!wakeref)
718 return;
719
720 for_each_plane_id_on_crtc(crtc, plane_id)
721 skl_ddb_get_hw_plane_state(display, pipe,
722 plane_id,
723 &ddb[plane_id],
724 &ddb_y[plane_id],
725 &min_ddb[plane_id],
726 &interim_ddb[plane_id]);
727
728 intel_display_power_put(display, power_domain, wakeref);
729 }
730
731 struct dbuf_slice_conf_entry {
732 u8 active_pipes;
733 u8 dbuf_mask[I915_MAX_PIPES];
734 bool join_mbus;
735 };
736
737 /*
738 * Table taken from Bspec 12716
739 * Pipes do have some preferred DBuf slice affinity,
740 * plus there are some hardcoded requirements on how
741 * those should be distributed for multipipe scenarios.
742 * For more DBuf slices algorithm can get even more messy
743 * and less readable, so decided to use a table almost
744 * as is from BSpec itself - that way it is at least easier
745 * to compare, change and check.
746 */
747 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
748 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
749 {
750 {
751 .active_pipes = BIT(PIPE_A),
752 .dbuf_mask = {
753 [PIPE_A] = BIT(DBUF_S1),
754 },
755 },
756 {
757 .active_pipes = BIT(PIPE_B),
758 .dbuf_mask = {
759 [PIPE_B] = BIT(DBUF_S1),
760 },
761 },
762 {
763 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
764 .dbuf_mask = {
765 [PIPE_A] = BIT(DBUF_S1),
766 [PIPE_B] = BIT(DBUF_S2),
767 },
768 },
769 {
770 .active_pipes = BIT(PIPE_C),
771 .dbuf_mask = {
772 [PIPE_C] = BIT(DBUF_S2),
773 },
774 },
775 {
776 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
777 .dbuf_mask = {
778 [PIPE_A] = BIT(DBUF_S1),
779 [PIPE_C] = BIT(DBUF_S2),
780 },
781 },
782 {
783 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
784 .dbuf_mask = {
785 [PIPE_B] = BIT(DBUF_S1),
786 [PIPE_C] = BIT(DBUF_S2),
787 },
788 },
789 {
790 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
791 .dbuf_mask = {
792 [PIPE_A] = BIT(DBUF_S1),
793 [PIPE_B] = BIT(DBUF_S1),
794 [PIPE_C] = BIT(DBUF_S2),
795 },
796 },
797 {}
798 };
799
800 /*
801 * Table taken from Bspec 49255
802 * Pipes do have some preferred DBuf slice affinity,
803 * plus there are some hardcoded requirements on how
804 * those should be distributed for multipipe scenarios.
805 * For more DBuf slices algorithm can get even more messy
806 * and less readable, so decided to use a table almost
807 * as is from BSpec itself - that way it is at least easier
808 * to compare, change and check.
809 */
810 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
811 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
812 {
813 {
814 .active_pipes = BIT(PIPE_A),
815 .dbuf_mask = {
816 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
817 },
818 },
819 {
820 .active_pipes = BIT(PIPE_B),
821 .dbuf_mask = {
822 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
823 },
824 },
825 {
826 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
827 .dbuf_mask = {
828 [PIPE_A] = BIT(DBUF_S2),
829 [PIPE_B] = BIT(DBUF_S1),
830 },
831 },
832 {
833 .active_pipes = BIT(PIPE_C),
834 .dbuf_mask = {
835 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
836 },
837 },
838 {
839 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
840 .dbuf_mask = {
841 [PIPE_A] = BIT(DBUF_S1),
842 [PIPE_C] = BIT(DBUF_S2),
843 },
844 },
845 {
846 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
847 .dbuf_mask = {
848 [PIPE_B] = BIT(DBUF_S1),
849 [PIPE_C] = BIT(DBUF_S2),
850 },
851 },
852 {
853 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
854 .dbuf_mask = {
855 [PIPE_A] = BIT(DBUF_S1),
856 [PIPE_B] = BIT(DBUF_S1),
857 [PIPE_C] = BIT(DBUF_S2),
858 },
859 },
860 {
861 .active_pipes = BIT(PIPE_D),
862 .dbuf_mask = {
863 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
864 },
865 },
866 {
867 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
868 .dbuf_mask = {
869 [PIPE_A] = BIT(DBUF_S1),
870 [PIPE_D] = BIT(DBUF_S2),
871 },
872 },
873 {
874 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
875 .dbuf_mask = {
876 [PIPE_B] = BIT(DBUF_S1),
877 [PIPE_D] = BIT(DBUF_S2),
878 },
879 },
880 {
881 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
882 .dbuf_mask = {
883 [PIPE_A] = BIT(DBUF_S1),
884 [PIPE_B] = BIT(DBUF_S1),
885 [PIPE_D] = BIT(DBUF_S2),
886 },
887 },
888 {
889 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
890 .dbuf_mask = {
891 [PIPE_C] = BIT(DBUF_S1),
892 [PIPE_D] = BIT(DBUF_S2),
893 },
894 },
895 {
896 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
897 .dbuf_mask = {
898 [PIPE_A] = BIT(DBUF_S1),
899 [PIPE_C] = BIT(DBUF_S2),
900 [PIPE_D] = BIT(DBUF_S2),
901 },
902 },
903 {
904 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
905 .dbuf_mask = {
906 [PIPE_B] = BIT(DBUF_S1),
907 [PIPE_C] = BIT(DBUF_S2),
908 [PIPE_D] = BIT(DBUF_S2),
909 },
910 },
911 {
912 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
913 .dbuf_mask = {
914 [PIPE_A] = BIT(DBUF_S1),
915 [PIPE_B] = BIT(DBUF_S1),
916 [PIPE_C] = BIT(DBUF_S2),
917 [PIPE_D] = BIT(DBUF_S2),
918 },
919 },
920 {}
921 };
922
923 static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
924 {
925 .active_pipes = BIT(PIPE_A),
926 .dbuf_mask = {
927 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
928 },
929 },
930 {
931 .active_pipes = BIT(PIPE_B),
932 .dbuf_mask = {
933 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
934 },
935 },
936 {
937 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
938 .dbuf_mask = {
939 [PIPE_A] = BIT(DBUF_S1),
940 [PIPE_B] = BIT(DBUF_S2),
941 },
942 },
943 {
944 .active_pipes = BIT(PIPE_C),
945 .dbuf_mask = {
946 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
947 },
948 },
949 {
950 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
951 .dbuf_mask = {
952 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
953 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
954 },
955 },
956 {
957 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
958 .dbuf_mask = {
959 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
960 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
961 },
962 },
963 {
964 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
965 .dbuf_mask = {
966 [PIPE_A] = BIT(DBUF_S1),
967 [PIPE_B] = BIT(DBUF_S2),
968 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
969 },
970 },
971 {
972 .active_pipes = BIT(PIPE_D),
973 .dbuf_mask = {
974 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
975 },
976 },
977 {
978 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
979 .dbuf_mask = {
980 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
981 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
982 },
983 },
984 {
985 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
986 .dbuf_mask = {
987 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
988 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
989 },
990 },
991 {
992 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
993 .dbuf_mask = {
994 [PIPE_A] = BIT(DBUF_S1),
995 [PIPE_B] = BIT(DBUF_S2),
996 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
997 },
998 },
999 {
1000 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1001 .dbuf_mask = {
1002 [PIPE_C] = BIT(DBUF_S3),
1003 [PIPE_D] = BIT(DBUF_S4),
1004 },
1005 },
1006 {
1007 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1008 .dbuf_mask = {
1009 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1010 [PIPE_C] = BIT(DBUF_S3),
1011 [PIPE_D] = BIT(DBUF_S4),
1012 },
1013 },
1014 {
1015 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1016 .dbuf_mask = {
1017 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1018 [PIPE_C] = BIT(DBUF_S3),
1019 [PIPE_D] = BIT(DBUF_S4),
1020 },
1021 },
1022 {
1023 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1024 .dbuf_mask = {
1025 [PIPE_A] = BIT(DBUF_S1),
1026 [PIPE_B] = BIT(DBUF_S2),
1027 [PIPE_C] = BIT(DBUF_S3),
1028 [PIPE_D] = BIT(DBUF_S4),
1029 },
1030 },
1031 {}
1032 };
1033
1034 static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
1035 /*
1036 * Keep the join_mbus cases first so check_mbus_joined()
1037 * will prefer them over the !join_mbus cases.
1038 */
1039 {
1040 .active_pipes = BIT(PIPE_A),
1041 .dbuf_mask = {
1042 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1043 },
1044 .join_mbus = true,
1045 },
1046 {
1047 .active_pipes = BIT(PIPE_B),
1048 .dbuf_mask = {
1049 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1050 },
1051 .join_mbus = true,
1052 },
1053 {
1054 .active_pipes = BIT(PIPE_A),
1055 .dbuf_mask = {
1056 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1057 },
1058 .join_mbus = false,
1059 },
1060 {
1061 .active_pipes = BIT(PIPE_B),
1062 .dbuf_mask = {
1063 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1064 },
1065 .join_mbus = false,
1066 },
1067 {
1068 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1069 .dbuf_mask = {
1070 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1071 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1072 },
1073 },
1074 {
1075 .active_pipes = BIT(PIPE_C),
1076 .dbuf_mask = {
1077 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1078 },
1079 },
1080 {
1081 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1082 .dbuf_mask = {
1083 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1084 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1085 },
1086 },
1087 {
1088 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1089 .dbuf_mask = {
1090 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1091 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1092 },
1093 },
1094 {
1095 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1096 .dbuf_mask = {
1097 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1098 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1099 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1100 },
1101 },
1102 {
1103 .active_pipes = BIT(PIPE_D),
1104 .dbuf_mask = {
1105 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1106 },
1107 },
1108 {
1109 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1110 .dbuf_mask = {
1111 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1112 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1113 },
1114 },
1115 {
1116 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1117 .dbuf_mask = {
1118 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1119 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1120 },
1121 },
1122 {
1123 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1124 .dbuf_mask = {
1125 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1126 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1127 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1128 },
1129 },
1130 {
1131 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1132 .dbuf_mask = {
1133 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1134 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1135 },
1136 },
1137 {
1138 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1139 .dbuf_mask = {
1140 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1141 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1142 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1143 },
1144 },
1145 {
1146 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1147 .dbuf_mask = {
1148 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1149 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1150 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1151 },
1152 },
1153 {
1154 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1155 .dbuf_mask = {
1156 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1157 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1158 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1159 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1160 },
1161 },
1162 {}
1163
1164 };
1165
check_mbus_joined(u8 active_pipes,const struct dbuf_slice_conf_entry * dbuf_slices)1166 static bool check_mbus_joined(u8 active_pipes,
1167 const struct dbuf_slice_conf_entry *dbuf_slices)
1168 {
1169 int i;
1170
1171 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1172 if (dbuf_slices[i].active_pipes == active_pipes)
1173 return dbuf_slices[i].join_mbus;
1174 }
1175 return false;
1176 }
1177
adlp_check_mbus_joined(u8 active_pipes)1178 static bool adlp_check_mbus_joined(u8 active_pipes)
1179 {
1180 return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
1181 }
1182
compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus,const struct dbuf_slice_conf_entry * dbuf_slices)1183 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
1184 const struct dbuf_slice_conf_entry *dbuf_slices)
1185 {
1186 int i;
1187
1188 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1189 if (dbuf_slices[i].active_pipes == active_pipes &&
1190 dbuf_slices[i].join_mbus == join_mbus)
1191 return dbuf_slices[i].dbuf_mask[pipe];
1192 }
1193 return 0;
1194 }
1195
1196 /*
1197 * This function finds an entry with same enabled pipe configuration and
1198 * returns correspondent DBuf slice mask as stated in BSpec for particular
1199 * platform.
1200 */
icl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1201 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1202 {
1203 /*
1204 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
1205 * required calculating "pipe ratio" in order to determine
1206 * if one or two slices can be used for single pipe configurations
1207 * as additional constraint to the existing table.
1208 * However based on recent info, it should be not "pipe ratio"
1209 * but rather ratio between pixel_rate and cdclk with additional
1210 * constants, so for now we are using only table until this is
1211 * clarified. Also this is the reason why crtc_state param is
1212 * still here - we will need it once those additional constraints
1213 * pop up.
1214 */
1215 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1216 icl_allowed_dbufs);
1217 }
1218
tgl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1219 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1220 {
1221 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1222 tgl_allowed_dbufs);
1223 }
1224
adlp_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1225 static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1226 {
1227 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1228 adlp_allowed_dbufs);
1229 }
1230
dg2_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1231 static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1232 {
1233 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1234 dg2_allowed_dbufs);
1235 }
1236
skl_compute_dbuf_slices(struct intel_crtc * crtc,u8 active_pipes,bool join_mbus)1237 static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
1238 {
1239 struct intel_display *display = to_intel_display(crtc);
1240 enum pipe pipe = crtc->pipe;
1241
1242 if (display->platform.dg2)
1243 return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1244 else if (DISPLAY_VER(display) >= 13)
1245 return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1246 else if (DISPLAY_VER(display) == 12)
1247 return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1248 else if (DISPLAY_VER(display) == 11)
1249 return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1250 /*
1251 * For anything else just return one slice yet.
1252 * Should be extended for other platforms.
1253 */
1254 return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
1255 }
1256
1257 static bool
use_minimal_wm0_only(const struct intel_crtc_state * crtc_state,struct intel_plane * plane)1258 use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
1259 struct intel_plane *plane)
1260 {
1261 struct intel_display *display = to_intel_display(plane);
1262
1263 /* Xe3+ are auto minimum DDB capble. So don't force minimal wm0 */
1264 return IS_DISPLAY_VER(display, 13, 20) &&
1265 crtc_state->uapi.async_flip &&
1266 plane->async_flip;
1267 }
1268
1269 unsigned int
skl_plane_relative_data_rate(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,int width,int height,int cpp)1270 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
1271 struct intel_plane *plane, int width, int height,
1272 int cpp)
1273 {
1274 /*
1275 * We calculate extra ddb based on ratio plane rate/total data rate
1276 * in case, in some cases we should not allocate extra ddb for the plane,
1277 * so do not count its data rate, if this is the case.
1278 */
1279 if (use_minimal_wm0_only(crtc_state, plane))
1280 return 0;
1281
1282 return width * height * cpp;
1283 }
1284
1285 static u64
skl_total_relative_data_rate(const struct intel_crtc_state * crtc_state)1286 skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
1287 {
1288 struct intel_display *display = to_intel_display(crtc_state);
1289 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1290 enum plane_id plane_id;
1291 u64 data_rate = 0;
1292
1293 for_each_plane_id_on_crtc(crtc, plane_id) {
1294 if (plane_id == PLANE_CURSOR)
1295 continue;
1296
1297 data_rate += crtc_state->rel_data_rate[plane_id];
1298
1299 if (DISPLAY_VER(display) < 11)
1300 data_rate += crtc_state->rel_data_rate_y[plane_id];
1301 }
1302
1303 return data_rate;
1304 }
1305
1306 const struct skl_wm_level *
skl_plane_wm_level(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id,int level)1307 skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
1308 enum plane_id plane_id,
1309 int level)
1310 {
1311 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1312
1313 if (level == 0 && pipe_wm->use_sagv_wm)
1314 return &wm->sagv.wm0;
1315
1316 return &wm->wm[level];
1317 }
1318
1319 const struct skl_wm_level *
skl_plane_trans_wm(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id)1320 skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
1321 enum plane_id plane_id)
1322 {
1323 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1324
1325 if (pipe_wm->use_sagv_wm)
1326 return &wm->sagv.trans_wm;
1327
1328 return &wm->trans_wm;
1329 }
1330
1331 /*
1332 * We only disable the watermarks for each plane if
1333 * they exceed the ddb allocation of said plane. This
1334 * is done so that we don't end up touching cursor
1335 * watermarks needlessly when some other plane reduces
1336 * our max possible watermark level.
1337 *
1338 * Bspec has this to say about the PLANE_WM enable bit:
1339 * "All the watermarks at this level for all enabled
1340 * planes must be enabled before the level will be used."
1341 * So this is actually safe to do.
1342 */
1343 static void
skl_check_wm_level(struct skl_wm_level * wm,const struct skl_ddb_entry * ddb)1344 skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
1345 {
1346 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
1347 memset(wm, 0, sizeof(*wm));
1348 }
1349
1350 static void
skl_check_nv12_wm_level(struct skl_wm_level * wm,struct skl_wm_level * uv_wm,const struct skl_ddb_entry * ddb_y,const struct skl_ddb_entry * ddb)1351 skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
1352 const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
1353 {
1354 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
1355 uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1356 memset(wm, 0, sizeof(*wm));
1357 memset(uv_wm, 0, sizeof(*uv_wm));
1358 }
1359 }
1360
skl_need_wm_copy_wa(struct intel_display * display,int level,const struct skl_plane_wm * wm)1361 static bool skl_need_wm_copy_wa(struct intel_display *display, int level,
1362 const struct skl_plane_wm *wm)
1363 {
1364 /*
1365 * Wa_1408961008:icl, ehl
1366 * Wa_14012656716:tgl, adl
1367 * Wa_14017887344:icl
1368 * Wa_14017868169:adl, tgl
1369 * Due to some power saving optimizations, different subsystems
1370 * like PSR, might still use even disabled wm level registers,
1371 * for "reference", so lets keep at least the values sane.
1372 * Considering amount of WA requiring us to do similar things, was
1373 * decided to simply do it for all of the platforms, as those wm
1374 * levels are disabled, this isn't going to do harm anyway.
1375 */
1376 return level > 0 && !wm->wm[level].enable;
1377 }
1378
1379 struct skl_plane_ddb_iter {
1380 u64 data_rate;
1381 u16 start, size;
1382 };
1383
1384 static void
skl_allocate_plane_ddb(struct skl_plane_ddb_iter * iter,struct skl_ddb_entry * ddb,const struct skl_wm_level * wm,u64 data_rate)1385 skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
1386 struct skl_ddb_entry *ddb,
1387 const struct skl_wm_level *wm,
1388 u64 data_rate)
1389 {
1390 u16 size, extra = 0;
1391
1392 if (data_rate) {
1393 extra = min_t(u16, iter->size,
1394 DIV64_U64_ROUND_UP(iter->size * data_rate,
1395 iter->data_rate));
1396 iter->size -= extra;
1397 iter->data_rate -= data_rate;
1398 }
1399
1400 /*
1401 * Keep ddb entry of all disabled planes explicitly zeroed
1402 * to avoid skl_ddb_add_affected_planes() adding them to
1403 * the state when other planes change their allocations.
1404 */
1405 size = wm->min_ddb_alloc + extra;
1406 if (size)
1407 iter->start = skl_ddb_entry_init(ddb, iter->start,
1408 iter->start + size);
1409 }
1410
1411 static int
skl_crtc_allocate_plane_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)1412 skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
1413 struct intel_crtc *crtc)
1414 {
1415 struct intel_crtc_state *crtc_state =
1416 intel_atomic_get_new_crtc_state(state, crtc);
1417 const struct intel_dbuf_state *dbuf_state =
1418 intel_atomic_get_new_dbuf_state(state);
1419 const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
1420 struct intel_display *display = to_intel_display(state);
1421 int num_active = hweight8(dbuf_state->active_pipes);
1422 struct skl_plane_ddb_iter iter;
1423 enum plane_id plane_id;
1424 u16 cursor_size;
1425 u32 blocks;
1426 int level;
1427
1428 /* Clear the partitioning for disabled planes. */
1429 memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
1430 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
1431 memset(crtc_state->wm.skl.plane_min_ddb, 0,
1432 sizeof(crtc_state->wm.skl.plane_min_ddb));
1433 memset(crtc_state->wm.skl.plane_interim_ddb, 0,
1434 sizeof(crtc_state->wm.skl.plane_interim_ddb));
1435
1436 if (!crtc_state->hw.active)
1437 return 0;
1438
1439 iter.start = alloc->start;
1440 iter.size = skl_ddb_entry_size(alloc);
1441 if (iter.size == 0)
1442 return 0;
1443
1444 /* Allocate fixed number of blocks for cursor. */
1445 cursor_size = skl_cursor_allocation(crtc_state, num_active);
1446 iter.size -= cursor_size;
1447 skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
1448 alloc->end - cursor_size, alloc->end);
1449
1450 iter.data_rate = skl_total_relative_data_rate(crtc_state);
1451
1452 /*
1453 * Find the highest watermark level for which we can satisfy the block
1454 * requirement of active planes.
1455 */
1456 for (level = display->wm.num_levels - 1; level >= 0; level--) {
1457 blocks = 0;
1458 for_each_plane_id_on_crtc(crtc, plane_id) {
1459 const struct skl_plane_wm *wm =
1460 &crtc_state->wm.skl.optimal.planes[plane_id];
1461
1462 if (plane_id == PLANE_CURSOR) {
1463 const struct skl_ddb_entry *ddb =
1464 &crtc_state->wm.skl.plane_ddb[plane_id];
1465
1466 if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1467 drm_WARN_ON(display->drm,
1468 wm->wm[level].min_ddb_alloc != U16_MAX);
1469 blocks = U32_MAX;
1470 break;
1471 }
1472 continue;
1473 }
1474
1475 blocks += wm->wm[level].min_ddb_alloc;
1476 blocks += wm->uv_wm[level].min_ddb_alloc;
1477 }
1478
1479 if (blocks <= iter.size) {
1480 iter.size -= blocks;
1481 break;
1482 }
1483 }
1484
1485 if (level < 0) {
1486 drm_dbg_kms(display->drm,
1487 "Requested display configuration exceeds system DDB limitations");
1488 drm_dbg_kms(display->drm, "minimum required %d/%d\n",
1489 blocks, iter.size);
1490 return -EINVAL;
1491 }
1492
1493 /* avoid the WARN later when we don't allocate any extra DDB */
1494 if (iter.data_rate == 0)
1495 iter.size = 0;
1496
1497 /*
1498 * Grant each plane the blocks it requires at the highest achievable
1499 * watermark level, plus an extra share of the leftover blocks
1500 * proportional to its relative data rate.
1501 */
1502 for_each_plane_id_on_crtc(crtc, plane_id) {
1503 struct skl_ddb_entry *ddb =
1504 &crtc_state->wm.skl.plane_ddb[plane_id];
1505 struct skl_ddb_entry *ddb_y =
1506 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1507 u16 *min_ddb = &crtc_state->wm.skl.plane_min_ddb[plane_id];
1508 u16 *interim_ddb =
1509 &crtc_state->wm.skl.plane_interim_ddb[plane_id];
1510 const struct skl_plane_wm *wm =
1511 &crtc_state->wm.skl.optimal.planes[plane_id];
1512
1513 if (plane_id == PLANE_CURSOR)
1514 continue;
1515
1516 if (DISPLAY_VER(display) < 11 &&
1517 crtc_state->nv12_planes & BIT(plane_id)) {
1518 skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
1519 crtc_state->rel_data_rate_y[plane_id]);
1520 skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
1521 crtc_state->rel_data_rate[plane_id]);
1522 } else {
1523 skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
1524 crtc_state->rel_data_rate[plane_id]);
1525 }
1526
1527 if (DISPLAY_VER(display) >= 30) {
1528 *min_ddb = wm->wm[0].min_ddb_alloc;
1529 *interim_ddb = wm->sagv.wm0.min_ddb_alloc;
1530 }
1531 }
1532 drm_WARN_ON(display->drm, iter.size != 0 || iter.data_rate != 0);
1533
1534 /*
1535 * When we calculated watermark values we didn't know how high
1536 * of a level we'd actually be able to hit, so we just marked
1537 * all levels as "enabled." Go back now and disable the ones
1538 * that aren't actually possible.
1539 */
1540 for (level++; level < display->wm.num_levels; level++) {
1541 for_each_plane_id_on_crtc(crtc, plane_id) {
1542 const struct skl_ddb_entry *ddb =
1543 &crtc_state->wm.skl.plane_ddb[plane_id];
1544 const struct skl_ddb_entry *ddb_y =
1545 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1546 struct skl_plane_wm *wm =
1547 &crtc_state->wm.skl.optimal.planes[plane_id];
1548
1549 if (DISPLAY_VER(display) < 11 &&
1550 crtc_state->nv12_planes & BIT(plane_id))
1551 skl_check_nv12_wm_level(&wm->wm[level],
1552 &wm->uv_wm[level],
1553 ddb_y, ddb);
1554 else
1555 skl_check_wm_level(&wm->wm[level], ddb);
1556
1557 if (skl_need_wm_copy_wa(display, level, wm)) {
1558 wm->wm[level].blocks = wm->wm[level - 1].blocks;
1559 wm->wm[level].lines = wm->wm[level - 1].lines;
1560 wm->wm[level].ignore_lines = wm->wm[level - 1].ignore_lines;
1561 }
1562 }
1563 }
1564
1565 /*
1566 * Go back and disable the transition and SAGV watermarks
1567 * if it turns out we don't have enough DDB blocks for them.
1568 */
1569 for_each_plane_id_on_crtc(crtc, plane_id) {
1570 const struct skl_ddb_entry *ddb =
1571 &crtc_state->wm.skl.plane_ddb[plane_id];
1572 const struct skl_ddb_entry *ddb_y =
1573 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1574 u16 *interim_ddb =
1575 &crtc_state->wm.skl.plane_interim_ddb[plane_id];
1576 struct skl_plane_wm *wm =
1577 &crtc_state->wm.skl.optimal.planes[plane_id];
1578
1579 if (DISPLAY_VER(display) < 11 &&
1580 crtc_state->nv12_planes & BIT(plane_id)) {
1581 skl_check_wm_level(&wm->trans_wm, ddb_y);
1582 } else {
1583 WARN_ON(skl_ddb_entry_size(ddb_y));
1584
1585 skl_check_wm_level(&wm->trans_wm, ddb);
1586 }
1587
1588 skl_check_wm_level(&wm->sagv.wm0, ddb);
1589 if (DISPLAY_VER(display) >= 30)
1590 *interim_ddb = wm->sagv.wm0.min_ddb_alloc;
1591
1592 skl_check_wm_level(&wm->sagv.trans_wm, ddb);
1593 }
1594
1595 return 0;
1596 }
1597
1598 /*
1599 * The max latency should be 257 (max the punit can code is 255 and we add 2us
1600 * for the read latency) and cpp should always be <= 8, so that
1601 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
1602 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
1603 */
1604 static uint_fixed_16_16_t
skl_wm_method1(struct intel_display * display,u32 pixel_rate,u8 cpp,u32 latency,u32 dbuf_block_size)1605 skl_wm_method1(struct intel_display *display, u32 pixel_rate,
1606 u8 cpp, u32 latency, u32 dbuf_block_size)
1607 {
1608 u32 wm_intermediate_val;
1609 uint_fixed_16_16_t ret;
1610
1611 if (latency == 0)
1612 return FP_16_16_MAX;
1613
1614 wm_intermediate_val = latency * pixel_rate * cpp;
1615 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
1616
1617 if (DISPLAY_VER(display) >= 10)
1618 ret = add_fixed16_u32(ret, 1);
1619
1620 return ret;
1621 }
1622
1623 static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate,u32 pipe_htotal,u32 latency,uint_fixed_16_16_t plane_blocks_per_line)1624 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
1625 uint_fixed_16_16_t plane_blocks_per_line)
1626 {
1627 u32 wm_intermediate_val;
1628 uint_fixed_16_16_t ret;
1629
1630 if (latency == 0)
1631 return FP_16_16_MAX;
1632
1633 wm_intermediate_val = latency * pixel_rate;
1634 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
1635 pipe_htotal * 1000);
1636 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
1637 return ret;
1638 }
1639
1640 static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state * crtc_state)1641 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
1642 {
1643 struct intel_display *display = to_intel_display(crtc_state);
1644 u32 pixel_rate;
1645 u32 crtc_htotal;
1646 uint_fixed_16_16_t linetime_us;
1647
1648 if (!crtc_state->hw.active)
1649 return u32_to_fixed16(0);
1650
1651 pixel_rate = crtc_state->pixel_rate;
1652
1653 if (drm_WARN_ON(display->drm, pixel_rate == 0))
1654 return u32_to_fixed16(0);
1655
1656 crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
1657 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
1658
1659 return linetime_us;
1660 }
1661
1662 static int
skl_compute_wm_params(const struct intel_crtc_state * crtc_state,int width,const struct drm_format_info * format,u64 modifier,unsigned int rotation,u32 plane_pixel_rate,struct skl_wm_params * wp,int color_plane,unsigned int pan_x)1663 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
1664 int width, const struct drm_format_info *format,
1665 u64 modifier, unsigned int rotation,
1666 u32 plane_pixel_rate, struct skl_wm_params *wp,
1667 int color_plane, unsigned int pan_x)
1668 {
1669 struct intel_display *display = to_intel_display(crtc_state);
1670 u32 interm_pbpl;
1671
1672 /* only planar format has two planes */
1673 if (color_plane == 1 &&
1674 !intel_format_info_is_yuv_semiplanar(format, modifier)) {
1675 drm_dbg_kms(display->drm,
1676 "Non planar format have single plane\n");
1677 return -EINVAL;
1678 }
1679
1680 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
1681 wp->y_tiled = modifier != I915_FORMAT_MOD_X_TILED &&
1682 intel_fb_is_tiled_modifier(modifier);
1683 wp->rc_surface = intel_fb_is_ccs_modifier(modifier);
1684 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
1685
1686 wp->width = width;
1687 if (color_plane == 1 && wp->is_planar)
1688 wp->width /= 2;
1689
1690 wp->cpp = format->cpp[color_plane];
1691 wp->plane_pixel_rate = plane_pixel_rate;
1692
1693 if (DISPLAY_VER(display) >= 11 &&
1694 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
1695 wp->dbuf_block_size = 256;
1696 else
1697 wp->dbuf_block_size = 512;
1698
1699 if (drm_rotation_90_or_270(rotation)) {
1700 switch (wp->cpp) {
1701 case 1:
1702 wp->y_min_scanlines = 16;
1703 break;
1704 case 2:
1705 wp->y_min_scanlines = 8;
1706 break;
1707 case 4:
1708 wp->y_min_scanlines = 4;
1709 break;
1710 default:
1711 MISSING_CASE(wp->cpp);
1712 return -EINVAL;
1713 }
1714 } else {
1715 wp->y_min_scanlines = 4;
1716 }
1717
1718 if (skl_needs_memory_bw_wa(display))
1719 wp->y_min_scanlines *= 2;
1720
1721 wp->plane_bytes_per_line = wp->width * wp->cpp;
1722 if (wp->y_tiled) {
1723 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
1724 wp->y_min_scanlines,
1725 wp->dbuf_block_size);
1726
1727 if (DISPLAY_VER(display) >= 30)
1728 interm_pbpl += (pan_x != 0);
1729 else if (DISPLAY_VER(display) >= 10)
1730 interm_pbpl++;
1731
1732 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
1733 wp->y_min_scanlines);
1734 } else {
1735 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
1736 wp->dbuf_block_size);
1737
1738 if (!wp->x_tiled || DISPLAY_VER(display) >= 10)
1739 interm_pbpl++;
1740
1741 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
1742 }
1743
1744 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
1745 wp->plane_blocks_per_line);
1746
1747 wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state));
1748
1749 return 0;
1750 }
1751
1752 static int
skl_compute_plane_wm_params(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct skl_wm_params * wp,int color_plane)1753 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
1754 const struct intel_plane_state *plane_state,
1755 struct skl_wm_params *wp, int color_plane)
1756 {
1757 const struct drm_framebuffer *fb = plane_state->hw.fb;
1758 int width;
1759
1760 /*
1761 * Src coordinates are already rotated by 270 degrees for
1762 * the 90/270 degree plane rotation cases (to match the
1763 * GTT mapping), hence no need to account for rotation here.
1764 */
1765 width = drm_rect_width(&plane_state->uapi.src) >> 16;
1766
1767 return skl_compute_wm_params(crtc_state, width,
1768 fb->format, fb->modifier,
1769 plane_state->hw.rotation,
1770 intel_plane_pixel_rate(crtc_state, plane_state),
1771 wp, color_plane,
1772 plane_state->uapi.src.x1);
1773 }
1774
skl_wm_has_lines(struct intel_display * display,int level)1775 static bool skl_wm_has_lines(struct intel_display *display, int level)
1776 {
1777 if (DISPLAY_VER(display) >= 10)
1778 return true;
1779
1780 /* The number of lines are ignored for the level 0 watermark. */
1781 return level > 0;
1782 }
1783
skl_wm_max_lines(struct intel_display * display)1784 static int skl_wm_max_lines(struct intel_display *display)
1785 {
1786 if (DISPLAY_VER(display) >= 13)
1787 return 255;
1788 else
1789 return 31;
1790 }
1791
xe3_auto_min_alloc_capable(struct intel_plane * plane,int level)1792 static bool xe3_auto_min_alloc_capable(struct intel_plane *plane, int level)
1793 {
1794 struct intel_display *display = to_intel_display(plane);
1795
1796 return DISPLAY_VER(display) >= 30 && level == 0 && plane->id != PLANE_CURSOR;
1797 }
1798
skl_compute_plane_wm(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,int level,unsigned int latency,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)1799 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
1800 struct intel_plane *plane,
1801 int level,
1802 unsigned int latency,
1803 const struct skl_wm_params *wp,
1804 const struct skl_wm_level *result_prev,
1805 struct skl_wm_level *result /* out */)
1806 {
1807 struct intel_display *display = to_intel_display(crtc_state);
1808 uint_fixed_16_16_t method1, method2;
1809 uint_fixed_16_16_t selected_result;
1810 u32 blocks, lines, min_ddb_alloc = 0;
1811
1812 if (latency == 0 ||
1813 (use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
1814 /* reject it */
1815 result->min_ddb_alloc = U16_MAX;
1816 return;
1817 }
1818
1819 method1 = skl_wm_method1(display, wp->plane_pixel_rate,
1820 wp->cpp, latency, wp->dbuf_block_size);
1821 method2 = skl_wm_method2(wp->plane_pixel_rate,
1822 crtc_state->hw.pipe_mode.crtc_htotal,
1823 latency,
1824 wp->plane_blocks_per_line);
1825
1826 if (wp->y_tiled) {
1827 selected_result = max_fixed16(method2, wp->y_tile_minimum);
1828 } else {
1829 if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
1830 wp->dbuf_block_size < 1) &&
1831 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
1832 selected_result = method2;
1833 } else if (latency >= wp->linetime_us) {
1834 if (DISPLAY_VER(display) == 9)
1835 selected_result = min_fixed16(method1, method2);
1836 else
1837 selected_result = method2;
1838 } else {
1839 selected_result = method1;
1840 }
1841 }
1842
1843 blocks = fixed16_to_u32_round_up(selected_result);
1844 if (DISPLAY_VER(display) < 30)
1845 blocks++;
1846
1847 /*
1848 * Lets have blocks at minimum equivalent to plane_blocks_per_line
1849 * as there will be at minimum one line for lines configuration. This
1850 * is a work around for FIFO underruns observed with resolutions like
1851 * 4k 60 Hz in single channel DRAM configurations.
1852 *
1853 * As per the Bspec 49325, if the ddb allocation can hold at least
1854 * one plane_blocks_per_line, we should have selected method2 in
1855 * the above logic. Assuming that modern versions have enough dbuf
1856 * and method2 guarantees blocks equivalent to at least 1 line,
1857 * select the blocks as plane_blocks_per_line.
1858 *
1859 * TODO: Revisit the logic when we have better understanding on DRAM
1860 * channels' impact on the level 0 memory latency and the relevant
1861 * wm calculations.
1862 */
1863 if (skl_wm_has_lines(display, level))
1864 blocks = max(blocks,
1865 fixed16_to_u32_round_up(wp->plane_blocks_per_line));
1866 lines = div_round_up_fixed16(selected_result,
1867 wp->plane_blocks_per_line);
1868
1869 if (DISPLAY_VER(display) == 9) {
1870 /* Display WA #1125: skl,bxt,kbl */
1871 if (level == 0 && wp->rc_surface)
1872 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1873
1874 /* Display WA #1126: skl,bxt,kbl */
1875 if (level >= 1 && level <= 7) {
1876 if (wp->y_tiled) {
1877 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1878 lines += wp->y_min_scanlines;
1879 } else {
1880 blocks++;
1881 }
1882
1883 /*
1884 * Make sure result blocks for higher latency levels are
1885 * at least as high as level below the current level.
1886 * Assumption in DDB algorithm optimization for special
1887 * cases. Also covers Display WA #1125 for RC.
1888 */
1889 if (result_prev->blocks > blocks)
1890 blocks = result_prev->blocks;
1891 }
1892 }
1893
1894 if (DISPLAY_VER(display) >= 11) {
1895 if (wp->y_tiled) {
1896 int extra_lines;
1897
1898 if (lines % wp->y_min_scanlines == 0)
1899 extra_lines = wp->y_min_scanlines;
1900 else
1901 extra_lines = wp->y_min_scanlines * 2 -
1902 lines % wp->y_min_scanlines;
1903
1904 min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
1905 wp->plane_blocks_per_line);
1906 } else {
1907 min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
1908 }
1909 }
1910
1911 if (!skl_wm_has_lines(display, level))
1912 lines = 0;
1913
1914 if (lines > skl_wm_max_lines(display)) {
1915 /* reject it */
1916 result->min_ddb_alloc = U16_MAX;
1917 return;
1918 }
1919
1920 /*
1921 * If lines is valid, assume we can use this watermark level
1922 * for now. We'll come back and disable it after we calculate the
1923 * DDB allocation if it turns out we don't actually have enough
1924 * blocks to satisfy it.
1925 */
1926 result->blocks = blocks;
1927 result->lines = lines;
1928 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
1929 result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
1930 result->enable = true;
1931 result->auto_min_alloc_wm_enable = xe3_auto_min_alloc_capable(plane, level);
1932
1933 if (DISPLAY_VER(display) < 12 && display->sagv.block_time_us)
1934 result->can_sagv = latency >= display->sagv.block_time_us;
1935 }
1936
1937 static void
skl_compute_wm_levels(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,const struct skl_wm_params * wm_params,struct skl_wm_level * levels)1938 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
1939 struct intel_plane *plane,
1940 const struct skl_wm_params *wm_params,
1941 struct skl_wm_level *levels)
1942 {
1943 struct intel_display *display = to_intel_display(crtc_state);
1944 struct skl_wm_level *result_prev = &levels[0];
1945 int level;
1946
1947 for (level = 0; level < display->wm.num_levels; level++) {
1948 struct skl_wm_level *result = &levels[level];
1949 unsigned int latency = skl_wm_latency(display, level, wm_params);
1950
1951 skl_compute_plane_wm(crtc_state, plane, level, latency,
1952 wm_params, result_prev, result);
1953
1954 result_prev = result;
1955 }
1956 }
1957
tgl_compute_sagv_wm(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,const struct skl_wm_params * wm_params,struct skl_plane_wm * plane_wm)1958 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
1959 struct intel_plane *plane,
1960 const struct skl_wm_params *wm_params,
1961 struct skl_plane_wm *plane_wm)
1962 {
1963 struct intel_display *display = to_intel_display(crtc_state);
1964 struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
1965 struct skl_wm_level *levels = plane_wm->wm;
1966 unsigned int latency = 0;
1967
1968 if (display->sagv.block_time_us)
1969 latency = display->sagv.block_time_us +
1970 skl_wm_latency(display, 0, wm_params);
1971
1972 skl_compute_plane_wm(crtc_state, plane, 0, latency,
1973 wm_params, &levels[0],
1974 sagv_wm);
1975 }
1976
skl_compute_transition_wm(struct intel_display * display,struct skl_wm_level * trans_wm,const struct skl_wm_level * wm0,const struct skl_wm_params * wp)1977 static void skl_compute_transition_wm(struct intel_display *display,
1978 struct skl_wm_level *trans_wm,
1979 const struct skl_wm_level *wm0,
1980 const struct skl_wm_params *wp)
1981 {
1982 u16 trans_min, trans_amount, trans_y_tile_min;
1983 u16 wm0_blocks, trans_offset, blocks;
1984
1985 /* Transition WM don't make any sense if ipc is disabled */
1986 if (!skl_watermark_ipc_enabled(display))
1987 return;
1988
1989 /*
1990 * WaDisableTWM:skl,kbl,cfl,bxt
1991 * Transition WM are not recommended by HW team for GEN9
1992 */
1993 if (DISPLAY_VER(display) == 9)
1994 return;
1995
1996 if (DISPLAY_VER(display) >= 11)
1997 trans_min = 4;
1998 else
1999 trans_min = 14;
2000
2001 /* Display WA #1140: glk,cnl */
2002 if (DISPLAY_VER(display) == 10)
2003 trans_amount = 0;
2004 else
2005 trans_amount = 10; /* This is configurable amount */
2006
2007 trans_offset = trans_min + trans_amount;
2008
2009 /*
2010 * The spec asks for Selected Result Blocks for wm0 (the real value),
2011 * not Result Blocks (the integer value). Pay attention to the capital
2012 * letters. The value wm_l0->blocks is actually Result Blocks, but
2013 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
2014 * and since we later will have to get the ceiling of the sum in the
2015 * transition watermarks calculation, we can just pretend Selected
2016 * Result Blocks is Result Blocks minus 1 and it should work for the
2017 * current platforms.
2018 */
2019 wm0_blocks = wm0->blocks - 1;
2020
2021 if (wp->y_tiled) {
2022 trans_y_tile_min =
2023 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
2024 blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
2025 } else {
2026 blocks = wm0_blocks + trans_offset;
2027 }
2028 blocks++;
2029
2030 /*
2031 * Just assume we can enable the transition watermark. After
2032 * computing the DDB we'll come back and disable it if that
2033 * assumption turns out to be false.
2034 */
2035 trans_wm->blocks = blocks;
2036 trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
2037 trans_wm->enable = true;
2038 }
2039
skl_build_plane_wm_single(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct intel_plane * plane,int color_plane)2040 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
2041 const struct intel_plane_state *plane_state,
2042 struct intel_plane *plane, int color_plane)
2043 {
2044 struct intel_display *display = to_intel_display(crtc_state);
2045 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2046 struct skl_wm_params wm_params;
2047 int ret;
2048
2049 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2050 &wm_params, color_plane);
2051 if (ret)
2052 return ret;
2053
2054 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
2055
2056 skl_compute_transition_wm(display, &wm->trans_wm,
2057 &wm->wm[0], &wm_params);
2058
2059 if (DISPLAY_VER(display) >= 12) {
2060 tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
2061
2062 skl_compute_transition_wm(display, &wm->sagv.trans_wm,
2063 &wm->sagv.wm0, &wm_params);
2064 }
2065
2066 return 0;
2067 }
2068
skl_build_plane_wm_uv(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct intel_plane * plane)2069 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
2070 const struct intel_plane_state *plane_state,
2071 struct intel_plane *plane)
2072 {
2073 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2074 struct skl_wm_params wm_params;
2075 int ret;
2076
2077 wm->is_planar = true;
2078
2079 /* uv plane watermarks must also be validated for NV12/Planar */
2080 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2081 &wm_params, 1);
2082 if (ret)
2083 return ret;
2084
2085 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
2086
2087 return 0;
2088 }
2089
skl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)2090 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
2091 const struct intel_plane_state *plane_state)
2092 {
2093 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2094 enum plane_id plane_id = plane->id;
2095 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2096 const struct drm_framebuffer *fb = plane_state->hw.fb;
2097 int ret;
2098
2099 memset(wm, 0, sizeof(*wm));
2100
2101 if (!intel_wm_plane_visible(crtc_state, plane_state))
2102 return 0;
2103
2104 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2105 plane, 0);
2106 if (ret)
2107 return ret;
2108
2109 if (fb->format->is_yuv && fb->format->num_planes > 1) {
2110 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
2111 plane);
2112 if (ret)
2113 return ret;
2114 }
2115
2116 return 0;
2117 }
2118
icl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)2119 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
2120 const struct intel_plane_state *plane_state)
2121 {
2122 struct intel_display *display = to_intel_display(plane_state);
2123 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2124 enum plane_id plane_id = plane->id;
2125 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2126 int ret;
2127
2128 /* Watermarks calculated on UV plane */
2129 if (plane_state->is_y_plane)
2130 return 0;
2131
2132 memset(wm, 0, sizeof(*wm));
2133
2134 if (plane_state->planar_linked_plane) {
2135 const struct drm_framebuffer *fb = plane_state->hw.fb;
2136
2137 drm_WARN_ON(display->drm,
2138 !intel_wm_plane_visible(crtc_state, plane_state));
2139 drm_WARN_ON(display->drm, !fb->format->is_yuv ||
2140 fb->format->num_planes == 1);
2141
2142 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2143 plane_state->planar_linked_plane, 0);
2144 if (ret)
2145 return ret;
2146
2147 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2148 plane, 1);
2149 if (ret)
2150 return ret;
2151 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
2152 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2153 plane, 0);
2154 if (ret)
2155 return ret;
2156 }
2157
2158 return 0;
2159 }
2160
2161 static int
cdclk_prefill_adjustment(const struct intel_crtc_state * crtc_state)2162 cdclk_prefill_adjustment(const struct intel_crtc_state *crtc_state)
2163 {
2164 struct intel_display *display = to_intel_display(crtc_state);
2165 struct intel_atomic_state *state =
2166 to_intel_atomic_state(crtc_state->uapi.state);
2167 const struct intel_cdclk_state *cdclk_state;
2168
2169 cdclk_state = intel_atomic_get_cdclk_state(state);
2170 if (IS_ERR(cdclk_state)) {
2171 drm_WARN_ON(display->drm, PTR_ERR(cdclk_state));
2172 return 1;
2173 }
2174
2175 return min(1, DIV_ROUND_UP(crtc_state->pixel_rate,
2176 2 * intel_cdclk_logical(cdclk_state)));
2177 }
2178
2179 static int
dsc_prefill_latency(const struct intel_crtc_state * crtc_state)2180 dsc_prefill_latency(const struct intel_crtc_state *crtc_state)
2181 {
2182 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2183 const struct intel_crtc_scaler_state *scaler_state =
2184 &crtc_state->scaler_state;
2185 int linetime = DIV_ROUND_UP(1000 * crtc_state->hw.adjusted_mode.htotal,
2186 crtc_state->hw.adjusted_mode.clock);
2187 int num_scaler_users = hweight32(scaler_state->scaler_users);
2188 int chroma_downscaling_factor =
2189 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ? 2 : 1;
2190 u32 dsc_prefill_latency = 0;
2191
2192 if (!crtc_state->dsc.compression_enable ||
2193 !num_scaler_users ||
2194 num_scaler_users > crtc->num_scalers)
2195 return dsc_prefill_latency;
2196
2197 dsc_prefill_latency = DIV_ROUND_UP(15 * linetime * chroma_downscaling_factor, 10);
2198
2199 for (int i = 0; i < num_scaler_users; i++) {
2200 u64 hscale_k, vscale_k;
2201
2202 hscale_k = max(1000, mul_u32_u32(scaler_state->scalers[i].hscale, 1000) >> 16);
2203 vscale_k = max(1000, mul_u32_u32(scaler_state->scalers[i].vscale, 1000) >> 16);
2204 dsc_prefill_latency = DIV_ROUND_UP_ULL(dsc_prefill_latency * hscale_k * vscale_k,
2205 1000000);
2206 }
2207
2208 dsc_prefill_latency *= cdclk_prefill_adjustment(crtc_state);
2209
2210 return intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, dsc_prefill_latency);
2211 }
2212
2213 static int
scaler_prefill_latency(const struct intel_crtc_state * crtc_state)2214 scaler_prefill_latency(const struct intel_crtc_state *crtc_state)
2215 {
2216 const struct intel_crtc_scaler_state *scaler_state =
2217 &crtc_state->scaler_state;
2218 int num_scaler_users = hweight32(scaler_state->scaler_users);
2219 int scaler_prefill_latency = 0;
2220 int linetime = DIV_ROUND_UP(1000 * crtc_state->hw.adjusted_mode.htotal,
2221 crtc_state->hw.adjusted_mode.clock);
2222
2223 if (!num_scaler_users)
2224 return scaler_prefill_latency;
2225
2226 scaler_prefill_latency = 4 * linetime;
2227
2228 if (num_scaler_users > 1) {
2229 u64 hscale_k = max(1000, mul_u32_u32(scaler_state->scalers[0].hscale, 1000) >> 16);
2230 u64 vscale_k = max(1000, mul_u32_u32(scaler_state->scalers[0].vscale, 1000) >> 16);
2231 int chroma_downscaling_factor =
2232 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ? 2 : 1;
2233 int latency;
2234
2235 latency = DIV_ROUND_UP_ULL((4 * linetime * hscale_k * vscale_k *
2236 chroma_downscaling_factor), 1000000);
2237 scaler_prefill_latency += latency;
2238 }
2239
2240 scaler_prefill_latency *= cdclk_prefill_adjustment(crtc_state);
2241
2242 return intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, scaler_prefill_latency);
2243 }
2244
2245 static bool
skl_is_vblank_too_short(const struct intel_crtc_state * crtc_state,int wm0_lines,int latency)2246 skl_is_vblank_too_short(const struct intel_crtc_state *crtc_state,
2247 int wm0_lines, int latency)
2248 {
2249 const struct drm_display_mode *adjusted_mode =
2250 &crtc_state->hw.adjusted_mode;
2251
2252 return crtc_state->framestart_delay +
2253 intel_usecs_to_scanlines(adjusted_mode, latency) +
2254 scaler_prefill_latency(crtc_state) +
2255 dsc_prefill_latency(crtc_state) +
2256 wm0_lines >
2257 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start;
2258 }
2259
skl_max_wm0_lines(const struct intel_crtc_state * crtc_state)2260 static int skl_max_wm0_lines(const struct intel_crtc_state *crtc_state)
2261 {
2262 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2263 enum plane_id plane_id;
2264 int wm0_lines = 0;
2265
2266 for_each_plane_id_on_crtc(crtc, plane_id) {
2267 const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
2268
2269 /* FIXME what about !skl_wm_has_lines() platforms? */
2270 wm0_lines = max_t(int, wm0_lines, wm->wm[0].lines);
2271 }
2272
2273 return wm0_lines;
2274 }
2275
skl_max_wm_level_for_vblank(struct intel_crtc_state * crtc_state,int wm0_lines)2276 static int skl_max_wm_level_for_vblank(struct intel_crtc_state *crtc_state,
2277 int wm0_lines)
2278 {
2279 struct intel_display *display = to_intel_display(crtc_state);
2280 int level;
2281
2282 for (level = display->wm.num_levels - 1; level >= 0; level--) {
2283 int latency;
2284
2285 /* FIXME should we care about the latency w/a's? */
2286 latency = skl_wm_latency(display, level, NULL);
2287 if (latency == 0)
2288 continue;
2289
2290 /* FIXME is it correct to use 0 latency for wm0 here? */
2291 if (level == 0)
2292 latency = 0;
2293
2294 if (!skl_is_vblank_too_short(crtc_state, wm0_lines, latency))
2295 return level;
2296 }
2297
2298 return -EINVAL;
2299 }
2300
skl_wm_check_vblank(struct intel_crtc_state * crtc_state)2301 static int skl_wm_check_vblank(struct intel_crtc_state *crtc_state)
2302 {
2303 struct intel_display *display = to_intel_display(crtc_state);
2304 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2305 int wm0_lines, level;
2306
2307 if (!crtc_state->hw.active)
2308 return 0;
2309
2310 wm0_lines = skl_max_wm0_lines(crtc_state);
2311
2312 level = skl_max_wm_level_for_vblank(crtc_state, wm0_lines);
2313 if (level < 0)
2314 return level;
2315
2316 /*
2317 * PSR needs to toggle LATENCY_REPORTING_REMOVED_PIPE_*
2318 * based on whether we're limited by the vblank duration.
2319 */
2320 crtc_state->wm_level_disabled = level < display->wm.num_levels - 1;
2321
2322 for (level++; level < display->wm.num_levels; level++) {
2323 enum plane_id plane_id;
2324
2325 for_each_plane_id_on_crtc(crtc, plane_id) {
2326 struct skl_plane_wm *wm =
2327 &crtc_state->wm.skl.optimal.planes[plane_id];
2328
2329 /*
2330 * FIXME just clear enable or flag the entire
2331 * thing as bad via min_ddb_alloc=U16_MAX?
2332 */
2333 wm->wm[level].enable = false;
2334 wm->uv_wm[level].enable = false;
2335 }
2336 }
2337
2338 if (DISPLAY_VER(display) >= 12 &&
2339 display->sagv.block_time_us &&
2340 skl_is_vblank_too_short(crtc_state, wm0_lines,
2341 display->sagv.block_time_us)) {
2342 enum plane_id plane_id;
2343
2344 for_each_plane_id_on_crtc(crtc, plane_id) {
2345 struct skl_plane_wm *wm =
2346 &crtc_state->wm.skl.optimal.planes[plane_id];
2347
2348 wm->sagv.wm0.enable = false;
2349 wm->sagv.trans_wm.enable = false;
2350 }
2351 }
2352
2353 return 0;
2354 }
2355
skl_build_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2356 static int skl_build_pipe_wm(struct intel_atomic_state *state,
2357 struct intel_crtc *crtc)
2358 {
2359 struct intel_display *display = to_intel_display(crtc);
2360 struct intel_crtc_state *crtc_state =
2361 intel_atomic_get_new_crtc_state(state, crtc);
2362 const struct intel_plane_state *plane_state;
2363 struct intel_plane *plane;
2364 int ret, i;
2365
2366 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
2367 /*
2368 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
2369 * instead but we don't populate that correctly for NV12 Y
2370 * planes so for now hack this.
2371 */
2372 if (plane->pipe != crtc->pipe)
2373 continue;
2374
2375 if (DISPLAY_VER(display) >= 11)
2376 ret = icl_build_plane_wm(crtc_state, plane_state);
2377 else
2378 ret = skl_build_plane_wm(crtc_state, plane_state);
2379 if (ret)
2380 return ret;
2381 }
2382
2383 crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
2384
2385 return skl_wm_check_vblank(crtc_state);
2386 }
2387
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)2388 static bool skl_wm_level_equals(const struct skl_wm_level *l1,
2389 const struct skl_wm_level *l2)
2390 {
2391 return l1->enable == l2->enable &&
2392 l1->ignore_lines == l2->ignore_lines &&
2393 l1->lines == l2->lines &&
2394 l1->blocks == l2->blocks &&
2395 l1->auto_min_alloc_wm_enable == l2->auto_min_alloc_wm_enable;
2396 }
2397
skl_plane_wm_equals(struct intel_display * display,const struct skl_plane_wm * wm1,const struct skl_plane_wm * wm2)2398 static bool skl_plane_wm_equals(struct intel_display *display,
2399 const struct skl_plane_wm *wm1,
2400 const struct skl_plane_wm *wm2)
2401 {
2402 int level;
2403
2404 for (level = 0; level < display->wm.num_levels; level++) {
2405 /*
2406 * We don't check uv_wm as the hardware doesn't actually
2407 * use it. It only gets used for calculating the required
2408 * ddb allocation.
2409 */
2410 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
2411 return false;
2412 }
2413
2414 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
2415 skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
2416 skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
2417 }
2418
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)2419 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
2420 const struct skl_ddb_entry *b)
2421 {
2422 return a->start < b->end && b->start < a->end;
2423 }
2424
skl_ddb_entry_union(struct skl_ddb_entry * a,const struct skl_ddb_entry * b)2425 static void skl_ddb_entry_union(struct skl_ddb_entry *a,
2426 const struct skl_ddb_entry *b)
2427 {
2428 if (a->end && b->end) {
2429 a->start = min(a->start, b->start);
2430 a->end = max(a->end, b->end);
2431 } else if (b->end) {
2432 a->start = b->start;
2433 a->end = b->end;
2434 }
2435 }
2436
skl_ddb_allocation_overlaps(const struct skl_ddb_entry * ddb,const struct skl_ddb_entry * entries,int num_entries,int ignore_idx)2437 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
2438 const struct skl_ddb_entry *entries,
2439 int num_entries, int ignore_idx)
2440 {
2441 int i;
2442
2443 for (i = 0; i < num_entries; i++) {
2444 if (i != ignore_idx &&
2445 skl_ddb_entries_overlap(ddb, &entries[i]))
2446 return true;
2447 }
2448
2449 return false;
2450 }
2451
2452 static int
skl_ddb_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)2453 skl_ddb_add_affected_planes(struct intel_atomic_state *state,
2454 struct intel_crtc *crtc)
2455 {
2456 struct intel_display *display = to_intel_display(state);
2457 const struct intel_crtc_state *old_crtc_state =
2458 intel_atomic_get_old_crtc_state(state, crtc);
2459 struct intel_crtc_state *new_crtc_state =
2460 intel_atomic_get_new_crtc_state(state, crtc);
2461 struct intel_plane *plane;
2462
2463 for_each_intel_plane_on_crtc(display->drm, crtc, plane) {
2464 struct intel_plane_state *plane_state;
2465 enum plane_id plane_id = plane->id;
2466
2467 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
2468 &new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
2469 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
2470 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
2471 continue;
2472
2473 if (new_crtc_state->do_async_flip) {
2474 drm_dbg_kms(display->drm, "[PLANE:%d:%s] Can't change DDB during async flip\n",
2475 plane->base.base.id, plane->base.name);
2476 return -EINVAL;
2477 }
2478
2479 plane_state = intel_atomic_get_plane_state(state, plane);
2480 if (IS_ERR(plane_state))
2481 return PTR_ERR(plane_state);
2482
2483 new_crtc_state->update_planes |= BIT(plane_id);
2484 new_crtc_state->async_flip_planes = 0;
2485 new_crtc_state->do_async_flip = false;
2486 }
2487
2488 return 0;
2489 }
2490
intel_dbuf_enabled_slices(const struct intel_dbuf_state * dbuf_state)2491 static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
2492 {
2493 struct intel_display *display = to_intel_display(dbuf_state->base.state->base.dev);
2494 u8 enabled_slices;
2495 enum pipe pipe;
2496
2497 /*
2498 * FIXME: For now we always enable slice S1 as per
2499 * the Bspec display initialization sequence.
2500 */
2501 enabled_slices = BIT(DBUF_S1);
2502
2503 for_each_pipe(display, pipe)
2504 enabled_slices |= dbuf_state->slices[pipe];
2505
2506 return enabled_slices;
2507 }
2508
2509 static int
skl_compute_ddb(struct intel_atomic_state * state)2510 skl_compute_ddb(struct intel_atomic_state *state)
2511 {
2512 struct intel_display *display = to_intel_display(state);
2513 const struct intel_dbuf_state *old_dbuf_state;
2514 struct intel_dbuf_state *new_dbuf_state = NULL;
2515 struct intel_crtc_state *new_crtc_state;
2516 struct intel_crtc *crtc;
2517 int ret, i;
2518
2519 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2520 new_dbuf_state = intel_atomic_get_dbuf_state(state);
2521 if (IS_ERR(new_dbuf_state))
2522 return PTR_ERR(new_dbuf_state);
2523
2524 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
2525 break;
2526 }
2527
2528 if (!new_dbuf_state)
2529 return 0;
2530
2531 new_dbuf_state->active_pipes =
2532 intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
2533
2534 if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
2535 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2536 if (ret)
2537 return ret;
2538 }
2539
2540 if (HAS_MBUS_JOINING(display)) {
2541 new_dbuf_state->joined_mbus =
2542 adlp_check_mbus_joined(new_dbuf_state->active_pipes);
2543
2544 if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2545 ret = intel_cdclk_state_set_joined_mbus(state, new_dbuf_state->joined_mbus);
2546 if (ret)
2547 return ret;
2548 }
2549 }
2550
2551 for_each_intel_crtc(display->drm, crtc) {
2552 enum pipe pipe = crtc->pipe;
2553
2554 new_dbuf_state->slices[pipe] =
2555 skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
2556 new_dbuf_state->joined_mbus);
2557
2558 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
2559 continue;
2560
2561 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2562 if (ret)
2563 return ret;
2564 }
2565
2566 new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
2567
2568 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
2569 old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2570 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
2571 if (ret)
2572 return ret;
2573
2574 drm_dbg_kms(display->drm,
2575 "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
2576 old_dbuf_state->enabled_slices,
2577 new_dbuf_state->enabled_slices,
2578 DISPLAY_INFO(display)->dbuf.slice_mask,
2579 str_yes_no(old_dbuf_state->joined_mbus),
2580 str_yes_no(new_dbuf_state->joined_mbus));
2581 }
2582
2583 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2584 enum pipe pipe = crtc->pipe;
2585
2586 new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
2587
2588 if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
2589 continue;
2590
2591 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2592 if (ret)
2593 return ret;
2594 }
2595
2596 for_each_intel_crtc(display->drm, crtc) {
2597 ret = skl_crtc_allocate_ddb(state, crtc);
2598 if (ret)
2599 return ret;
2600 }
2601
2602 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2603 ret = skl_crtc_allocate_plane_ddb(state, crtc);
2604 if (ret)
2605 return ret;
2606
2607 ret = skl_ddb_add_affected_planes(state, crtc);
2608 if (ret)
2609 return ret;
2610 }
2611
2612 return 0;
2613 }
2614
enast(bool enable)2615 static char enast(bool enable)
2616 {
2617 return enable ? '*' : ' ';
2618 }
2619
2620 static noinline_for_stack void
skl_print_plane_changes(struct intel_display * display,struct intel_plane * plane,const struct skl_plane_wm * old_wm,const struct skl_plane_wm * new_wm)2621 skl_print_plane_changes(struct intel_display *display,
2622 struct intel_plane *plane,
2623 const struct skl_plane_wm *old_wm,
2624 const struct skl_plane_wm *new_wm)
2625 {
2626 drm_dbg_kms(display->drm,
2627 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
2628 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
2629 plane->base.base.id, plane->base.name,
2630 enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
2631 enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
2632 enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
2633 enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
2634 enast(old_wm->trans_wm.enable),
2635 enast(old_wm->sagv.wm0.enable),
2636 enast(old_wm->sagv.trans_wm.enable),
2637 enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
2638 enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
2639 enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
2640 enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
2641 enast(new_wm->trans_wm.enable),
2642 enast(new_wm->sagv.wm0.enable),
2643 enast(new_wm->sagv.trans_wm.enable));
2644
2645 drm_dbg_kms(display->drm,
2646 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
2647 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
2648 plane->base.base.id, plane->base.name,
2649 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
2650 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
2651 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
2652 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
2653 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
2654 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
2655 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
2656 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
2657 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
2658 enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
2659 enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
2660 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
2661 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
2662 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
2663 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
2664 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
2665 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
2666 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
2667 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
2668 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
2669 enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
2670 enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
2671
2672 drm_dbg_kms(display->drm,
2673 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2674 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2675 plane->base.base.id, plane->base.name,
2676 old_wm->wm[0].blocks, old_wm->wm[1].blocks,
2677 old_wm->wm[2].blocks, old_wm->wm[3].blocks,
2678 old_wm->wm[4].blocks, old_wm->wm[5].blocks,
2679 old_wm->wm[6].blocks, old_wm->wm[7].blocks,
2680 old_wm->trans_wm.blocks,
2681 old_wm->sagv.wm0.blocks,
2682 old_wm->sagv.trans_wm.blocks,
2683 new_wm->wm[0].blocks, new_wm->wm[1].blocks,
2684 new_wm->wm[2].blocks, new_wm->wm[3].blocks,
2685 new_wm->wm[4].blocks, new_wm->wm[5].blocks,
2686 new_wm->wm[6].blocks, new_wm->wm[7].blocks,
2687 new_wm->trans_wm.blocks,
2688 new_wm->sagv.wm0.blocks,
2689 new_wm->sagv.trans_wm.blocks);
2690
2691 drm_dbg_kms(display->drm,
2692 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2693 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2694 plane->base.base.id, plane->base.name,
2695 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
2696 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
2697 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
2698 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
2699 old_wm->trans_wm.min_ddb_alloc,
2700 old_wm->sagv.wm0.min_ddb_alloc,
2701 old_wm->sagv.trans_wm.min_ddb_alloc,
2702 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
2703 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
2704 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
2705 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
2706 new_wm->trans_wm.min_ddb_alloc,
2707 new_wm->sagv.wm0.min_ddb_alloc,
2708 new_wm->sagv.trans_wm.min_ddb_alloc);
2709 }
2710
2711 static void
skl_print_wm_changes(struct intel_atomic_state * state)2712 skl_print_wm_changes(struct intel_atomic_state *state)
2713 {
2714 struct intel_display *display = to_intel_display(state);
2715 const struct intel_crtc_state *old_crtc_state;
2716 const struct intel_crtc_state *new_crtc_state;
2717 struct intel_plane *plane;
2718 struct intel_crtc *crtc;
2719 int i;
2720
2721 if (!drm_debug_enabled(DRM_UT_KMS))
2722 return;
2723
2724 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2725 new_crtc_state, i) {
2726 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
2727
2728 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
2729 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
2730
2731 for_each_intel_plane_on_crtc(display->drm, crtc, plane) {
2732 enum plane_id plane_id = plane->id;
2733 const struct skl_ddb_entry *old, *new;
2734
2735 old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
2736 new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
2737
2738 if (skl_ddb_entry_equal(old, new))
2739 continue;
2740 drm_dbg_kms(display->drm,
2741 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
2742 plane->base.base.id, plane->base.name,
2743 old->start, old->end, new->start, new->end,
2744 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
2745 }
2746
2747 for_each_intel_plane_on_crtc(display->drm, crtc, plane) {
2748 enum plane_id plane_id = plane->id;
2749 const struct skl_plane_wm *old_wm, *new_wm;
2750
2751 old_wm = &old_pipe_wm->planes[plane_id];
2752 new_wm = &new_pipe_wm->planes[plane_id];
2753
2754 if (skl_plane_wm_equals(display, old_wm, new_wm))
2755 continue;
2756
2757 skl_print_plane_changes(display, plane, old_wm, new_wm);
2758 }
2759 }
2760 }
2761
skl_plane_selected_wm_equals(struct intel_plane * plane,const struct skl_pipe_wm * old_pipe_wm,const struct skl_pipe_wm * new_pipe_wm)2762 static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
2763 const struct skl_pipe_wm *old_pipe_wm,
2764 const struct skl_pipe_wm *new_pipe_wm)
2765 {
2766 struct intel_display *display = to_intel_display(plane);
2767 int level;
2768
2769 for (level = 0; level < display->wm.num_levels; level++) {
2770 /*
2771 * We don't check uv_wm as the hardware doesn't actually
2772 * use it. It only gets used for calculating the required
2773 * ddb allocation.
2774 */
2775 if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
2776 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
2777 return false;
2778 }
2779
2780 if (HAS_HW_SAGV_WM(display)) {
2781 const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
2782 const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
2783
2784 if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
2785 !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
2786 return false;
2787 }
2788
2789 return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
2790 skl_plane_trans_wm(new_pipe_wm, plane->id));
2791 }
2792
2793 /*
2794 * To make sure the cursor watermark registers are always consistent
2795 * with our computed state the following scenario needs special
2796 * treatment:
2797 *
2798 * 1. enable cursor
2799 * 2. move cursor entirely offscreen
2800 * 3. disable cursor
2801 *
2802 * Step 2. does call .disable_plane() but does not zero the watermarks
2803 * (since we consider an offscreen cursor still active for the purposes
2804 * of watermarks). Step 3. would not normally call .disable_plane()
2805 * because the actual plane visibility isn't changing, and we don't
2806 * deallocate the cursor ddb until the pipe gets disabled. So we must
2807 * force step 3. to call .disable_plane() to update the watermark
2808 * registers properly.
2809 *
2810 * Other planes do not suffer from this issues as their watermarks are
2811 * calculated based on the actual plane visibility. The only time this
2812 * can trigger for the other planes is during the initial readout as the
2813 * default value of the watermarks registers is not zero.
2814 */
skl_wm_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)2815 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
2816 struct intel_crtc *crtc)
2817 {
2818 struct intel_display *display = to_intel_display(state);
2819 const struct intel_crtc_state *old_crtc_state =
2820 intel_atomic_get_old_crtc_state(state, crtc);
2821 struct intel_crtc_state *new_crtc_state =
2822 intel_atomic_get_new_crtc_state(state, crtc);
2823 struct intel_plane *plane;
2824
2825 for_each_intel_plane_on_crtc(display->drm, crtc, plane) {
2826 struct intel_plane_state *plane_state;
2827 enum plane_id plane_id = plane->id;
2828
2829 /*
2830 * Force a full wm update for every plane on modeset.
2831 * Required because the reset value of the wm registers
2832 * is non-zero, whereas we want all disabled planes to
2833 * have zero watermarks. So if we turn off the relevant
2834 * power well the hardware state will go out of sync
2835 * with the software state.
2836 */
2837 if (!intel_crtc_needs_modeset(new_crtc_state) &&
2838 skl_plane_selected_wm_equals(plane,
2839 &old_crtc_state->wm.skl.optimal,
2840 &new_crtc_state->wm.skl.optimal))
2841 continue;
2842
2843 if (new_crtc_state->do_async_flip) {
2844 drm_dbg_kms(display->drm, "[PLANE:%d:%s] Can't change watermarks during async flip\n",
2845 plane->base.base.id, plane->base.name);
2846 return -EINVAL;
2847 }
2848
2849 plane_state = intel_atomic_get_plane_state(state, plane);
2850 if (IS_ERR(plane_state))
2851 return PTR_ERR(plane_state);
2852
2853 new_crtc_state->update_planes |= BIT(plane_id);
2854 new_crtc_state->async_flip_planes = 0;
2855 new_crtc_state->do_async_flip = false;
2856 }
2857
2858 return 0;
2859 }
2860
pkgc_max_linetime(struct intel_atomic_state * state)2861 static int pkgc_max_linetime(struct intel_atomic_state *state)
2862 {
2863 struct intel_display *display = to_intel_display(state);
2864 const struct intel_crtc_state *crtc_state;
2865 struct intel_crtc *crtc;
2866 int i, max_linetime;
2867
2868 /*
2869 * Apparenty the hardware uses WM_LINETIME internally for
2870 * this stuff, compute everything based on that.
2871 */
2872 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2873 display->pkgc.disable[crtc->pipe] = crtc_state->vrr.enable;
2874 display->pkgc.linetime[crtc->pipe] = DIV_ROUND_UP(crtc_state->linetime, 8);
2875 }
2876
2877 max_linetime = 0;
2878 for_each_intel_crtc(display->drm, crtc) {
2879 if (display->pkgc.disable[crtc->pipe])
2880 return 0;
2881
2882 max_linetime = max(display->pkgc.linetime[crtc->pipe], max_linetime);
2883 }
2884
2885 return max_linetime;
2886 }
2887
2888 void
intel_program_dpkgc_latency(struct intel_atomic_state * state)2889 intel_program_dpkgc_latency(struct intel_atomic_state *state)
2890 {
2891 struct intel_display *display = to_intel_display(state);
2892 int max_linetime, latency, added_wake_time = 0;
2893
2894 if (DISPLAY_VER(display) < 20)
2895 return;
2896
2897 mutex_lock(&display->wm.wm_mutex);
2898
2899 latency = skl_watermark_max_latency(display, 1);
2900
2901 /* FIXME runtime changes to enable_flipq are racy */
2902 if (display->params.enable_flipq)
2903 added_wake_time = intel_flipq_exec_time_us(display);
2904
2905 /*
2906 * Wa_22020432604
2907 * "PKG_C_LATENCY Added Wake Time field is not working"
2908 */
2909 if (latency && IS_DISPLAY_VER(display, 20, 30)) {
2910 latency += added_wake_time;
2911 added_wake_time = 0;
2912 }
2913
2914 max_linetime = pkgc_max_linetime(state);
2915
2916 if (max_linetime == 0 || latency == 0) {
2917 latency = REG_FIELD_GET(LNL_PKG_C_LATENCY_MASK,
2918 LNL_PKG_C_LATENCY_MASK);
2919 added_wake_time = 0;
2920 } else {
2921 /*
2922 * Wa_22020299601
2923 * "Increase the latency programmed in PKG_C_LATENCY Pkg C Latency to be a
2924 * multiple of the pipeline time from WM_LINETIME"
2925 */
2926 latency = roundup(latency, max_linetime);
2927 }
2928
2929 intel_de_write(display, LNL_PKG_C_LATENCY,
2930 REG_FIELD_PREP(LNL_ADDED_WAKE_TIME_MASK, added_wake_time) |
2931 REG_FIELD_PREP(LNL_PKG_C_LATENCY_MASK, latency));
2932
2933 mutex_unlock(&display->wm.wm_mutex);
2934 }
2935
2936 static int
skl_compute_wm(struct intel_atomic_state * state)2937 skl_compute_wm(struct intel_atomic_state *state)
2938 {
2939 struct intel_display *display = to_intel_display(state);
2940 struct intel_crtc *crtc;
2941 struct intel_crtc_state __maybe_unused *new_crtc_state;
2942 int ret, i;
2943
2944 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2945 ret = skl_build_pipe_wm(state, crtc);
2946 if (ret)
2947 return ret;
2948 }
2949
2950 ret = skl_compute_ddb(state);
2951 if (ret)
2952 return ret;
2953
2954 /*
2955 * skl_compute_ddb() will have adjusted the final watermarks
2956 * based on how much ddb is available. Now we can actually
2957 * check if the final watermarks changed.
2958 */
2959 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2960 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
2961
2962 /*
2963 * We store use_sagv_wm in the crtc state rather than relying on
2964 * that bw state since we have no convenient way to get at the
2965 * latter from the plane commit hooks (especially in the legacy
2966 * cursor case).
2967 *
2968 * drm_atomic_check_only() gets upset if we pull more crtcs
2969 * into the state, so we have to calculate this based on the
2970 * individual intel_crtc_can_enable_sagv() rather than
2971 * the overall intel_bw_can_enable_sagv(). Otherwise the
2972 * crtcs not included in the commit would not switch to the
2973 * SAGV watermarks when we are about to enable SAGV, and that
2974 * would lead to underruns. This does mean extra power draw
2975 * when only a subset of the crtcs are blocking SAGV as the
2976 * other crtcs can't be allowed to use the more optimal
2977 * normal (ie. non-SAGV) watermarks.
2978 */
2979 pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(display) &&
2980 DISPLAY_VER(display) >= 12 &&
2981 intel_crtc_can_enable_sagv(new_crtc_state);
2982
2983 ret = skl_wm_add_affected_planes(state, crtc);
2984 if (ret)
2985 return ret;
2986 }
2987
2988 skl_print_wm_changes(state);
2989
2990 return 0;
2991 }
2992
skl_wm_level_from_reg_val(struct intel_display * display,u32 val,struct skl_wm_level * level)2993 static void skl_wm_level_from_reg_val(struct intel_display *display,
2994 u32 val, struct skl_wm_level *level)
2995 {
2996 level->enable = val & PLANE_WM_EN;
2997 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
2998 level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
2999 level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
3000 level->auto_min_alloc_wm_enable = DISPLAY_VER(display) >= 30 ?
3001 val & PLANE_WM_AUTO_MIN_ALLOC_EN : 0;
3002 }
3003
skl_pipe_wm_get_hw_state(struct intel_crtc * crtc,struct skl_pipe_wm * out)3004 static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
3005 struct skl_pipe_wm *out)
3006 {
3007 struct intel_display *display = to_intel_display(crtc);
3008 enum pipe pipe = crtc->pipe;
3009 enum plane_id plane_id;
3010 int level;
3011 u32 val;
3012
3013 for_each_plane_id_on_crtc(crtc, plane_id) {
3014 struct skl_plane_wm *wm = &out->planes[plane_id];
3015
3016 for (level = 0; level < display->wm.num_levels; level++) {
3017 if (plane_id != PLANE_CURSOR)
3018 val = intel_de_read(display, PLANE_WM(pipe, plane_id, level));
3019 else
3020 val = intel_de_read(display, CUR_WM(pipe, level));
3021
3022 skl_wm_level_from_reg_val(display, val, &wm->wm[level]);
3023 }
3024
3025 if (plane_id != PLANE_CURSOR)
3026 val = intel_de_read(display, PLANE_WM_TRANS(pipe, plane_id));
3027 else
3028 val = intel_de_read(display, CUR_WM_TRANS(pipe));
3029
3030 skl_wm_level_from_reg_val(display, val, &wm->trans_wm);
3031
3032 if (HAS_HW_SAGV_WM(display)) {
3033 if (plane_id != PLANE_CURSOR)
3034 val = intel_de_read(display, PLANE_WM_SAGV(pipe, plane_id));
3035 else
3036 val = intel_de_read(display, CUR_WM_SAGV(pipe));
3037
3038 skl_wm_level_from_reg_val(display, val, &wm->sagv.wm0);
3039
3040 if (plane_id != PLANE_CURSOR)
3041 val = intel_de_read(display, PLANE_WM_SAGV_TRANS(pipe, plane_id));
3042 else
3043 val = intel_de_read(display, CUR_WM_SAGV_TRANS(pipe));
3044
3045 skl_wm_level_from_reg_val(display, val, &wm->sagv.trans_wm);
3046 } else if (DISPLAY_VER(display) >= 12) {
3047 wm->sagv.wm0 = wm->wm[0];
3048 wm->sagv.trans_wm = wm->trans_wm;
3049 }
3050 }
3051 }
3052
skl_wm_get_hw_state(struct intel_display * display)3053 static void skl_wm_get_hw_state(struct intel_display *display)
3054 {
3055 struct intel_dbuf_state *dbuf_state =
3056 to_intel_dbuf_state(display->dbuf.obj.state);
3057 struct intel_crtc *crtc;
3058
3059 if (HAS_MBUS_JOINING(display))
3060 dbuf_state->joined_mbus = intel_de_read(display, MBUS_CTL) & MBUS_JOIN;
3061
3062 dbuf_state->mdclk_cdclk_ratio = intel_mdclk_cdclk_ratio(display, &display->cdclk.hw);
3063 dbuf_state->active_pipes = 0;
3064
3065 for_each_intel_crtc(display->drm, crtc) {
3066 struct intel_crtc_state *crtc_state =
3067 to_intel_crtc_state(crtc->base.state);
3068 enum pipe pipe = crtc->pipe;
3069 unsigned int mbus_offset;
3070 enum plane_id plane_id;
3071 u8 slices;
3072
3073 memset(&crtc_state->wm.skl.optimal, 0,
3074 sizeof(crtc_state->wm.skl.optimal));
3075 if (crtc_state->hw.active) {
3076 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
3077 dbuf_state->active_pipes |= BIT(pipe);
3078 }
3079 crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
3080
3081 memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
3082
3083 for_each_plane_id_on_crtc(crtc, plane_id) {
3084 struct skl_ddb_entry *ddb =
3085 &crtc_state->wm.skl.plane_ddb[plane_id];
3086 struct skl_ddb_entry *ddb_y =
3087 &crtc_state->wm.skl.plane_ddb_y[plane_id];
3088 u16 *min_ddb =
3089 &crtc_state->wm.skl.plane_min_ddb[plane_id];
3090 u16 *interim_ddb =
3091 &crtc_state->wm.skl.plane_interim_ddb[plane_id];
3092
3093 if (!crtc_state->hw.active)
3094 continue;
3095
3096 skl_ddb_get_hw_plane_state(display, crtc->pipe,
3097 plane_id, ddb, ddb_y,
3098 min_ddb, interim_ddb);
3099
3100 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
3101 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
3102 }
3103
3104 dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
3105
3106 /*
3107 * Used for checking overlaps, so we need absolute
3108 * offsets instead of MBUS relative offsets.
3109 */
3110 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3111 dbuf_state->joined_mbus);
3112 mbus_offset = mbus_ddb_offset(display, slices);
3113 crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
3114 crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
3115
3116 /* The slices actually used by the planes on the pipe */
3117 dbuf_state->slices[pipe] =
3118 skl_ddb_dbuf_slice_mask(display, &crtc_state->wm.skl.ddb);
3119
3120 drm_dbg_kms(display->drm,
3121 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
3122 crtc->base.base.id, crtc->base.name,
3123 dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
3124 dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
3125 str_yes_no(dbuf_state->joined_mbus));
3126 }
3127
3128 dbuf_state->enabled_slices = display->dbuf.enabled_slices;
3129 }
3130
skl_watermark_ipc_enabled(struct intel_display * display)3131 bool skl_watermark_ipc_enabled(struct intel_display *display)
3132 {
3133 return display->wm.ipc_enabled;
3134 }
3135
skl_watermark_ipc_update(struct intel_display * display)3136 void skl_watermark_ipc_update(struct intel_display *display)
3137 {
3138 if (!HAS_IPC(display))
3139 return;
3140
3141 intel_de_rmw(display, DISP_ARB_CTL2, DISP_IPC_ENABLE,
3142 skl_watermark_ipc_enabled(display) ? DISP_IPC_ENABLE : 0);
3143 }
3144
skl_watermark_ipc_can_enable(struct intel_display * display)3145 static bool skl_watermark_ipc_can_enable(struct intel_display *display)
3146 {
3147 /* Display WA #0477 WaDisableIPC: skl */
3148 if (display->platform.skylake)
3149 return false;
3150
3151 /* Display WA #1141: SKL:all KBL:all CFL */
3152 if (display->platform.kabylake ||
3153 display->platform.coffeelake ||
3154 display->platform.cometlake) {
3155 const struct dram_info *dram_info = intel_dram_info(display->drm);
3156
3157 return dram_info->symmetric_memory;
3158 }
3159
3160 return true;
3161 }
3162
skl_watermark_ipc_init(struct intel_display * display)3163 void skl_watermark_ipc_init(struct intel_display *display)
3164 {
3165 if (!HAS_IPC(display))
3166 return;
3167
3168 display->wm.ipc_enabled = skl_watermark_ipc_can_enable(display);
3169
3170 skl_watermark_ipc_update(display);
3171 }
3172
3173 static void
adjust_wm_latency(struct intel_display * display,u16 wm[],int num_levels,int read_latency)3174 adjust_wm_latency(struct intel_display *display,
3175 u16 wm[], int num_levels, int read_latency)
3176 {
3177 const struct dram_info *dram_info = intel_dram_info(display->drm);
3178 int i, level;
3179
3180 /*
3181 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
3182 * need to be disabled. We make sure to sanitize the values out
3183 * of the punit to satisfy this requirement.
3184 */
3185 for (level = 1; level < num_levels; level++) {
3186 if (wm[level] == 0) {
3187 for (i = level + 1; i < num_levels; i++)
3188 wm[i] = 0;
3189
3190 num_levels = level;
3191 break;
3192 }
3193 }
3194
3195 /*
3196 * WaWmMemoryReadLatency
3197 *
3198 * punit doesn't take into account the read latency so we need
3199 * to add proper adjustment to each valid level we retrieve
3200 * from the punit when level 0 response data is 0us.
3201 */
3202 if (wm[0] == 0) {
3203 for (level = 0; level < num_levels; level++)
3204 wm[level] += read_latency;
3205 }
3206
3207 /*
3208 * WA Level-0 adjustment for 16GB DIMMs: SKL+
3209 * If we could not get dimm info enable this WA to prevent from
3210 * any underrun. If not able to get Dimm info assume 16GB dimm
3211 * to avoid any underrun.
3212 */
3213 if (!display->platform.dg2 && dram_info->wm_lv_0_adjust_needed)
3214 wm[0] += 1;
3215 }
3216
mtl_read_wm_latency(struct intel_display * display,u16 wm[])3217 static void mtl_read_wm_latency(struct intel_display *display, u16 wm[])
3218 {
3219 int num_levels = display->wm.num_levels;
3220 u32 val;
3221
3222 val = intel_de_read(display, MTL_LATENCY_LP0_LP1);
3223 wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3224 wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3225
3226 val = intel_de_read(display, MTL_LATENCY_LP2_LP3);
3227 wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3228 wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3229
3230 val = intel_de_read(display, MTL_LATENCY_LP4_LP5);
3231 wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3232 wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3233
3234 adjust_wm_latency(display, wm, num_levels, 6);
3235 }
3236
skl_read_wm_latency(struct intel_display * display,u16 wm[])3237 static void skl_read_wm_latency(struct intel_display *display, u16 wm[])
3238 {
3239 int num_levels = display->wm.num_levels;
3240 int read_latency = DISPLAY_VER(display) >= 12 ? 3 : 2;
3241 int mult = display->platform.dg2 ? 2 : 1;
3242 u32 val;
3243 int ret;
3244
3245 /* read the first set of memory latencies[0:3] */
3246 val = 0; /* data0 to be programmed to 0 for first set */
3247 ret = intel_pcode_read(display->drm, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3248 if (ret) {
3249 drm_err(display->drm, "SKL Mailbox read error = %d\n", ret);
3250 return;
3251 }
3252
3253 wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3254 wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3255 wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3256 wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3257
3258 /* read the second set of memory latencies[4:7] */
3259 val = 1; /* data0 to be programmed to 1 for second set */
3260 ret = intel_pcode_read(display->drm, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3261 if (ret) {
3262 drm_err(display->drm, "SKL Mailbox read error = %d\n", ret);
3263 return;
3264 }
3265
3266 wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3267 wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3268 wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3269 wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3270
3271 adjust_wm_latency(display, wm, num_levels, read_latency);
3272 }
3273
skl_setup_wm_latency(struct intel_display * display)3274 static void skl_setup_wm_latency(struct intel_display *display)
3275 {
3276 if (HAS_HW_SAGV_WM(display))
3277 display->wm.num_levels = 6;
3278 else
3279 display->wm.num_levels = 8;
3280
3281 if (DISPLAY_VER(display) >= 14)
3282 mtl_read_wm_latency(display, display->wm.skl_latency);
3283 else
3284 skl_read_wm_latency(display, display->wm.skl_latency);
3285
3286 intel_print_wm_latency(display, "Gen9 Plane", display->wm.skl_latency);
3287 }
3288
intel_dbuf_duplicate_state(struct intel_global_obj * obj)3289 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
3290 {
3291 struct intel_dbuf_state *dbuf_state;
3292
3293 dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
3294 if (!dbuf_state)
3295 return NULL;
3296
3297 return &dbuf_state->base;
3298 }
3299
intel_dbuf_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)3300 static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
3301 struct intel_global_state *state)
3302 {
3303 kfree(state);
3304 }
3305
3306 static const struct intel_global_state_funcs intel_dbuf_funcs = {
3307 .atomic_duplicate_state = intel_dbuf_duplicate_state,
3308 .atomic_destroy_state = intel_dbuf_destroy_state,
3309 };
3310
3311 struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state * state)3312 intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
3313 {
3314 struct intel_display *display = to_intel_display(state);
3315 struct intel_global_state *dbuf_state;
3316
3317 dbuf_state = intel_atomic_get_global_obj_state(state, &display->dbuf.obj);
3318 if (IS_ERR(dbuf_state))
3319 return ERR_CAST(dbuf_state);
3320
3321 return to_intel_dbuf_state(dbuf_state);
3322 }
3323
intel_dbuf_init(struct intel_display * display)3324 int intel_dbuf_init(struct intel_display *display)
3325 {
3326 struct intel_dbuf_state *dbuf_state;
3327
3328 dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
3329 if (!dbuf_state)
3330 return -ENOMEM;
3331
3332 intel_atomic_global_obj_init(display, &display->dbuf.obj,
3333 &dbuf_state->base, &intel_dbuf_funcs);
3334
3335 return 0;
3336 }
3337
xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe,u8 active_pipes)3338 static bool xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe, u8 active_pipes)
3339 {
3340 switch (pipe) {
3341 case PIPE_A:
3342 case PIPE_D:
3343 active_pipes &= BIT(PIPE_A) | BIT(PIPE_D);
3344 break;
3345 case PIPE_B:
3346 case PIPE_C:
3347 active_pipes &= BIT(PIPE_B) | BIT(PIPE_C);
3348 break;
3349 default: /* to suppress compiler warning */
3350 MISSING_CASE(pipe);
3351 return false;
3352 }
3353
3354 return is_power_of_2(active_pipes);
3355 }
3356
pipe_mbus_dbox_ctl(const struct intel_crtc * crtc,const struct intel_dbuf_state * dbuf_state)3357 static u32 pipe_mbus_dbox_ctl(const struct intel_crtc *crtc,
3358 const struct intel_dbuf_state *dbuf_state)
3359 {
3360 struct intel_display *display = to_intel_display(crtc);
3361 u32 val = 0;
3362
3363 if (DISPLAY_VER(display) >= 14)
3364 val |= MBUS_DBOX_I_CREDIT(2);
3365
3366 if (DISPLAY_VER(display) >= 12) {
3367 val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
3368 val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
3369 val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
3370 }
3371
3372 if (DISPLAY_VER(display) >= 14)
3373 val |= dbuf_state->joined_mbus ?
3374 MBUS_DBOX_A_CREDIT(12) : MBUS_DBOX_A_CREDIT(8);
3375 else if (display->platform.alderlake_p)
3376 /* Wa_22010947358:adl-p */
3377 val |= dbuf_state->joined_mbus ?
3378 MBUS_DBOX_A_CREDIT(6) : MBUS_DBOX_A_CREDIT(4);
3379 else
3380 val |= MBUS_DBOX_A_CREDIT(2);
3381
3382 if (DISPLAY_VER(display) >= 14) {
3383 val |= MBUS_DBOX_B_CREDIT(0xA);
3384 } else if (display->platform.alderlake_p) {
3385 val |= MBUS_DBOX_BW_CREDIT(2);
3386 val |= MBUS_DBOX_B_CREDIT(8);
3387 } else if (DISPLAY_VER(display) >= 12) {
3388 val |= MBUS_DBOX_BW_CREDIT(2);
3389 val |= MBUS_DBOX_B_CREDIT(12);
3390 } else {
3391 val |= MBUS_DBOX_BW_CREDIT(1);
3392 val |= MBUS_DBOX_B_CREDIT(8);
3393 }
3394
3395 if (DISPLAY_VERx100(display) == 1400) {
3396 if (xelpdp_is_only_pipe_per_dbuf_bank(crtc->pipe, dbuf_state->active_pipes))
3397 val |= MBUS_DBOX_BW_8CREDITS_MTL;
3398 else
3399 val |= MBUS_DBOX_BW_4CREDITS_MTL;
3400 }
3401
3402 return val;
3403 }
3404
pipe_mbus_dbox_ctl_update(struct intel_display * display,const struct intel_dbuf_state * dbuf_state)3405 static void pipe_mbus_dbox_ctl_update(struct intel_display *display,
3406 const struct intel_dbuf_state *dbuf_state)
3407 {
3408 struct intel_crtc *crtc;
3409
3410 for_each_intel_crtc_in_pipe_mask(display->drm, crtc, dbuf_state->active_pipes)
3411 intel_de_write(display, PIPE_MBUS_DBOX_CTL(crtc->pipe),
3412 pipe_mbus_dbox_ctl(crtc, dbuf_state));
3413 }
3414
intel_mbus_dbox_update(struct intel_atomic_state * state)3415 static void intel_mbus_dbox_update(struct intel_atomic_state *state)
3416 {
3417 struct intel_display *display = to_intel_display(state);
3418 const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
3419
3420 if (DISPLAY_VER(display) < 11)
3421 return;
3422
3423 new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
3424 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
3425 if (!new_dbuf_state ||
3426 (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
3427 new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
3428 return;
3429
3430 pipe_mbus_dbox_ctl_update(display, new_dbuf_state);
3431 }
3432
intel_dbuf_state_set_mdclk_cdclk_ratio(struct intel_atomic_state * state,int ratio)3433 int intel_dbuf_state_set_mdclk_cdclk_ratio(struct intel_atomic_state *state,
3434 int ratio)
3435 {
3436 struct intel_dbuf_state *dbuf_state;
3437
3438 dbuf_state = intel_atomic_get_dbuf_state(state);
3439 if (IS_ERR(dbuf_state))
3440 return PTR_ERR(dbuf_state);
3441
3442 dbuf_state->mdclk_cdclk_ratio = ratio;
3443
3444 return intel_atomic_lock_global_state(&dbuf_state->base);
3445 }
3446
intel_dbuf_mdclk_cdclk_ratio_update(struct intel_display * display,int ratio,bool joined_mbus)3447 void intel_dbuf_mdclk_cdclk_ratio_update(struct intel_display *display,
3448 int ratio, bool joined_mbus)
3449 {
3450 enum dbuf_slice slice;
3451
3452 if (!HAS_MBUS_JOINING(display))
3453 return;
3454
3455 if (DISPLAY_VER(display) >= 20)
3456 intel_de_rmw(display, MBUS_CTL, MBUS_TRANSLATION_THROTTLE_MIN_MASK,
3457 MBUS_TRANSLATION_THROTTLE_MIN(ratio - 1));
3458
3459 if (joined_mbus)
3460 ratio *= 2;
3461
3462 drm_dbg_kms(display->drm, "Updating dbuf ratio to %d (mbus joined: %s)\n",
3463 ratio, str_yes_no(joined_mbus));
3464
3465 for_each_dbuf_slice(display, slice)
3466 intel_de_rmw(display, DBUF_CTL_S(slice),
3467 DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
3468 DBUF_MIN_TRACKER_STATE_SERVICE(ratio - 1));
3469 }
3470
intel_dbuf_mdclk_min_tracker_update(struct intel_atomic_state * state)3471 static void intel_dbuf_mdclk_min_tracker_update(struct intel_atomic_state *state)
3472 {
3473 struct intel_display *display = to_intel_display(state);
3474 const struct intel_dbuf_state *old_dbuf_state =
3475 intel_atomic_get_old_dbuf_state(state);
3476 const struct intel_dbuf_state *new_dbuf_state =
3477 intel_atomic_get_new_dbuf_state(state);
3478 int mdclk_cdclk_ratio;
3479
3480 if (intel_cdclk_is_decreasing_later(state)) {
3481 /* cdclk/mdclk will be changed later by intel_set_cdclk_post_plane_update() */
3482 mdclk_cdclk_ratio = old_dbuf_state->mdclk_cdclk_ratio;
3483 } else {
3484 /* cdclk/mdclk already changed by intel_set_cdclk_pre_plane_update() */
3485 mdclk_cdclk_ratio = new_dbuf_state->mdclk_cdclk_ratio;
3486 }
3487
3488 intel_dbuf_mdclk_cdclk_ratio_update(display, mdclk_cdclk_ratio,
3489 new_dbuf_state->joined_mbus);
3490 }
3491
intel_mbus_joined_pipe(struct intel_atomic_state * state,const struct intel_dbuf_state * dbuf_state)3492 static enum pipe intel_mbus_joined_pipe(struct intel_atomic_state *state,
3493 const struct intel_dbuf_state *dbuf_state)
3494 {
3495 struct intel_display *display = to_intel_display(state);
3496 enum pipe pipe = ffs(dbuf_state->active_pipes) - 1;
3497 const struct intel_crtc_state *new_crtc_state;
3498 struct intel_crtc *crtc;
3499
3500 drm_WARN_ON(display->drm, !dbuf_state->joined_mbus);
3501 drm_WARN_ON(display->drm, !is_power_of_2(dbuf_state->active_pipes));
3502
3503 crtc = intel_crtc_for_pipe(display, pipe);
3504 new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
3505
3506 if (new_crtc_state && !intel_crtc_needs_modeset(new_crtc_state))
3507 return pipe;
3508 else
3509 return INVALID_PIPE;
3510 }
3511
mbus_ctl_join_update(struct intel_display * display,const struct intel_dbuf_state * dbuf_state,enum pipe pipe)3512 static void mbus_ctl_join_update(struct intel_display *display,
3513 const struct intel_dbuf_state *dbuf_state,
3514 enum pipe pipe)
3515 {
3516 u32 mbus_ctl;
3517
3518 if (dbuf_state->joined_mbus)
3519 mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN;
3520 else
3521 mbus_ctl = MBUS_HASHING_MODE_2x2;
3522
3523 if (pipe != INVALID_PIPE)
3524 mbus_ctl |= MBUS_JOIN_PIPE_SELECT(pipe);
3525 else
3526 mbus_ctl |= MBUS_JOIN_PIPE_SELECT_NONE;
3527
3528 intel_de_rmw(display, MBUS_CTL,
3529 MBUS_HASHING_MODE_MASK | MBUS_JOIN |
3530 MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
3531 }
3532
intel_dbuf_mbus_join_update(struct intel_atomic_state * state,enum pipe pipe)3533 static void intel_dbuf_mbus_join_update(struct intel_atomic_state *state,
3534 enum pipe pipe)
3535 {
3536 struct intel_display *display = to_intel_display(state);
3537 const struct intel_dbuf_state *old_dbuf_state =
3538 intel_atomic_get_old_dbuf_state(state);
3539 const struct intel_dbuf_state *new_dbuf_state =
3540 intel_atomic_get_new_dbuf_state(state);
3541
3542 drm_dbg_kms(display->drm, "Changing mbus joined: %s -> %s (pipe: %c)\n",
3543 str_yes_no(old_dbuf_state->joined_mbus),
3544 str_yes_no(new_dbuf_state->joined_mbus),
3545 pipe != INVALID_PIPE ? pipe_name(pipe) : '*');
3546
3547 mbus_ctl_join_update(display, new_dbuf_state, pipe);
3548 }
3549
intel_dbuf_mbus_pre_ddb_update(struct intel_atomic_state * state)3550 void intel_dbuf_mbus_pre_ddb_update(struct intel_atomic_state *state)
3551 {
3552 const struct intel_dbuf_state *new_dbuf_state =
3553 intel_atomic_get_new_dbuf_state(state);
3554 const struct intel_dbuf_state *old_dbuf_state =
3555 intel_atomic_get_old_dbuf_state(state);
3556
3557 if (!new_dbuf_state)
3558 return;
3559
3560 if (!old_dbuf_state->joined_mbus && new_dbuf_state->joined_mbus) {
3561 enum pipe pipe = intel_mbus_joined_pipe(state, new_dbuf_state);
3562
3563 WARN_ON(!new_dbuf_state->base.changed);
3564
3565 intel_dbuf_mbus_join_update(state, pipe);
3566 intel_mbus_dbox_update(state);
3567 intel_dbuf_mdclk_min_tracker_update(state);
3568 }
3569 }
3570
intel_dbuf_mbus_post_ddb_update(struct intel_atomic_state * state)3571 void intel_dbuf_mbus_post_ddb_update(struct intel_atomic_state *state)
3572 {
3573 struct intel_display *display = to_intel_display(state);
3574 const struct intel_dbuf_state *new_dbuf_state =
3575 intel_atomic_get_new_dbuf_state(state);
3576 const struct intel_dbuf_state *old_dbuf_state =
3577 intel_atomic_get_old_dbuf_state(state);
3578
3579 if (!new_dbuf_state)
3580 return;
3581
3582 if (old_dbuf_state->joined_mbus && !new_dbuf_state->joined_mbus) {
3583 enum pipe pipe = intel_mbus_joined_pipe(state, old_dbuf_state);
3584
3585 WARN_ON(!new_dbuf_state->base.changed);
3586
3587 intel_dbuf_mdclk_min_tracker_update(state);
3588 intel_mbus_dbox_update(state);
3589 intel_dbuf_mbus_join_update(state, pipe);
3590
3591 if (pipe != INVALID_PIPE) {
3592 struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
3593
3594 intel_crtc_wait_for_next_vblank(crtc);
3595 }
3596 } else if (old_dbuf_state->joined_mbus == new_dbuf_state->joined_mbus &&
3597 old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
3598 WARN_ON(!new_dbuf_state->base.changed);
3599
3600 intel_dbuf_mdclk_min_tracker_update(state);
3601 intel_mbus_dbox_update(state);
3602 }
3603
3604 }
3605
intel_dbuf_pre_plane_update(struct intel_atomic_state * state)3606 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
3607 {
3608 struct intel_display *display = to_intel_display(state);
3609 const struct intel_dbuf_state *new_dbuf_state =
3610 intel_atomic_get_new_dbuf_state(state);
3611 const struct intel_dbuf_state *old_dbuf_state =
3612 intel_atomic_get_old_dbuf_state(state);
3613 u8 old_slices, new_slices;
3614
3615 if (!new_dbuf_state)
3616 return;
3617
3618 old_slices = old_dbuf_state->enabled_slices;
3619 new_slices = old_dbuf_state->enabled_slices | new_dbuf_state->enabled_slices;
3620
3621 if (old_slices == new_slices)
3622 return;
3623
3624 WARN_ON(!new_dbuf_state->base.changed);
3625
3626 gen9_dbuf_slices_update(display, new_slices);
3627 }
3628
intel_dbuf_post_plane_update(struct intel_atomic_state * state)3629 void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
3630 {
3631 struct intel_display *display = to_intel_display(state);
3632 const struct intel_dbuf_state *new_dbuf_state =
3633 intel_atomic_get_new_dbuf_state(state);
3634 const struct intel_dbuf_state *old_dbuf_state =
3635 intel_atomic_get_old_dbuf_state(state);
3636 u8 old_slices, new_slices;
3637
3638 if (!new_dbuf_state)
3639 return;
3640
3641 old_slices = old_dbuf_state->enabled_slices | new_dbuf_state->enabled_slices;
3642 new_slices = new_dbuf_state->enabled_slices;
3643
3644 if (old_slices == new_slices)
3645 return;
3646
3647 WARN_ON(!new_dbuf_state->base.changed);
3648
3649 gen9_dbuf_slices_update(display, new_slices);
3650 }
3651
intel_dbuf_num_enabled_slices(const struct intel_dbuf_state * dbuf_state)3652 int intel_dbuf_num_enabled_slices(const struct intel_dbuf_state *dbuf_state)
3653 {
3654 return hweight8(dbuf_state->enabled_slices);
3655 }
3656
intel_dbuf_num_active_pipes(const struct intel_dbuf_state * dbuf_state)3657 int intel_dbuf_num_active_pipes(const struct intel_dbuf_state *dbuf_state)
3658 {
3659 return hweight8(dbuf_state->active_pipes);
3660 }
3661
intel_dbuf_pmdemand_needs_update(struct intel_atomic_state * state)3662 bool intel_dbuf_pmdemand_needs_update(struct intel_atomic_state *state)
3663 {
3664 struct intel_display *display = to_intel_display(state);
3665 const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
3666
3667 new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
3668 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
3669
3670 if (new_dbuf_state &&
3671 new_dbuf_state->active_pipes != old_dbuf_state->active_pipes)
3672 return true;
3673
3674 if (DISPLAY_VER(display) < 30) {
3675 if (new_dbuf_state &&
3676 new_dbuf_state->enabled_slices !=
3677 old_dbuf_state->enabled_slices)
3678 return true;
3679 }
3680
3681 return false;
3682 }
3683
skl_mbus_sanitize(struct intel_display * display)3684 static void skl_mbus_sanitize(struct intel_display *display)
3685 {
3686 struct intel_dbuf_state *dbuf_state =
3687 to_intel_dbuf_state(display->dbuf.obj.state);
3688
3689 if (!HAS_MBUS_JOINING(display))
3690 return;
3691
3692 if (!dbuf_state->joined_mbus ||
3693 adlp_check_mbus_joined(dbuf_state->active_pipes))
3694 return;
3695
3696 drm_dbg_kms(display->drm, "Disabling redundant MBUS joining (active pipes 0x%x)\n",
3697 dbuf_state->active_pipes);
3698
3699 dbuf_state->joined_mbus = false;
3700 intel_dbuf_mdclk_cdclk_ratio_update(display,
3701 dbuf_state->mdclk_cdclk_ratio,
3702 dbuf_state->joined_mbus);
3703 pipe_mbus_dbox_ctl_update(display, dbuf_state);
3704 mbus_ctl_join_update(display, dbuf_state, INVALID_PIPE);
3705 }
3706
skl_dbuf_is_misconfigured(struct intel_display * display)3707 static bool skl_dbuf_is_misconfigured(struct intel_display *display)
3708 {
3709 const struct intel_dbuf_state *dbuf_state =
3710 to_intel_dbuf_state(display->dbuf.obj.state);
3711 struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
3712 struct intel_crtc *crtc;
3713
3714 for_each_intel_crtc(display->drm, crtc) {
3715 const struct intel_crtc_state *crtc_state =
3716 to_intel_crtc_state(crtc->base.state);
3717
3718 entries[crtc->pipe] = crtc_state->wm.skl.ddb;
3719 }
3720
3721 for_each_intel_crtc(display->drm, crtc) {
3722 const struct intel_crtc_state *crtc_state =
3723 to_intel_crtc_state(crtc->base.state);
3724 u8 slices;
3725
3726 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3727 dbuf_state->joined_mbus);
3728 if (dbuf_state->slices[crtc->pipe] & ~slices)
3729 return true;
3730
3731 if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
3732 I915_MAX_PIPES, crtc->pipe))
3733 return true;
3734 }
3735
3736 return false;
3737 }
3738
skl_dbuf_sanitize(struct intel_display * display)3739 static void skl_dbuf_sanitize(struct intel_display *display)
3740 {
3741 struct intel_crtc *crtc;
3742
3743 /*
3744 * On TGL/RKL (at least) the BIOS likes to assign the planes
3745 * to the wrong DBUF slices. This will cause an infinite loop
3746 * in skl_commit_modeset_enables() as it can't find a way to
3747 * transition between the old bogus DBUF layout to the new
3748 * proper DBUF layout without DBUF allocation overlaps between
3749 * the planes (which cannot be allowed or else the hardware
3750 * may hang). If we detect a bogus DBUF layout just turn off
3751 * all the planes so that skl_commit_modeset_enables() can
3752 * simply ignore them.
3753 */
3754 if (!skl_dbuf_is_misconfigured(display))
3755 return;
3756
3757 drm_dbg_kms(display->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
3758
3759 for_each_intel_crtc(display->drm, crtc) {
3760 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
3761 const struct intel_plane_state *plane_state =
3762 to_intel_plane_state(plane->base.state);
3763 struct intel_crtc_state *crtc_state =
3764 to_intel_crtc_state(crtc->base.state);
3765
3766 if (plane_state->uapi.visible)
3767 intel_plane_disable_noatomic(crtc, plane);
3768
3769 drm_WARN_ON(display->drm, crtc_state->active_planes != 0);
3770
3771 memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
3772 }
3773 }
3774
skl_wm_sanitize(struct intel_display * display)3775 static void skl_wm_sanitize(struct intel_display *display)
3776 {
3777 skl_mbus_sanitize(display);
3778 skl_dbuf_sanitize(display);
3779 }
3780
skl_wm_crtc_disable_noatomic(struct intel_crtc * crtc)3781 void skl_wm_crtc_disable_noatomic(struct intel_crtc *crtc)
3782 {
3783 struct intel_display *display = to_intel_display(crtc);
3784 struct intel_crtc_state *crtc_state =
3785 to_intel_crtc_state(crtc->base.state);
3786 struct intel_dbuf_state *dbuf_state =
3787 to_intel_dbuf_state(display->dbuf.obj.state);
3788 enum pipe pipe = crtc->pipe;
3789
3790 if (DISPLAY_VER(display) < 9)
3791 return;
3792
3793 dbuf_state->active_pipes &= ~BIT(pipe);
3794
3795 dbuf_state->weight[pipe] = 0;
3796 dbuf_state->slices[pipe] = 0;
3797
3798 memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
3799
3800 memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
3801 }
3802
skl_wm_plane_disable_noatomic(struct intel_crtc * crtc,struct intel_plane * plane)3803 void skl_wm_plane_disable_noatomic(struct intel_crtc *crtc,
3804 struct intel_plane *plane)
3805 {
3806 struct intel_display *display = to_intel_display(crtc);
3807 struct intel_crtc_state *crtc_state =
3808 to_intel_crtc_state(crtc->base.state);
3809
3810 if (DISPLAY_VER(display) < 9)
3811 return;
3812
3813 skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[plane->id], 0, 0);
3814 skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[plane->id], 0, 0);
3815
3816 crtc_state->wm.skl.plane_min_ddb[plane->id] = 0;
3817 crtc_state->wm.skl.plane_interim_ddb[plane->id] = 0;
3818
3819 memset(&crtc_state->wm.skl.raw.planes[plane->id], 0,
3820 sizeof(crtc_state->wm.skl.raw.planes[plane->id]));
3821 memset(&crtc_state->wm.skl.optimal.planes[plane->id], 0,
3822 sizeof(crtc_state->wm.skl.optimal.planes[plane->id]));
3823 }
3824
intel_wm_state_verify(struct intel_atomic_state * state,struct intel_crtc * crtc)3825 void intel_wm_state_verify(struct intel_atomic_state *state,
3826 struct intel_crtc *crtc)
3827 {
3828 struct intel_display *display = to_intel_display(state);
3829 const struct intel_crtc_state *new_crtc_state =
3830 intel_atomic_get_new_crtc_state(state, crtc);
3831 struct skl_hw_state {
3832 struct skl_ddb_entry ddb[I915_MAX_PLANES];
3833 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
3834 u16 min_ddb[I915_MAX_PLANES];
3835 u16 interim_ddb[I915_MAX_PLANES];
3836 struct skl_pipe_wm wm;
3837 } *hw;
3838 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal;
3839 struct intel_plane *plane;
3840 u8 hw_enabled_slices;
3841 int level;
3842
3843 if (DISPLAY_VER(display) < 9 || !new_crtc_state->hw.active)
3844 return;
3845
3846 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3847 if (!hw)
3848 return;
3849
3850 skl_pipe_wm_get_hw_state(crtc, &hw->wm);
3851
3852 skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y, hw->min_ddb, hw->interim_ddb);
3853
3854 hw_enabled_slices = intel_enabled_dbuf_slices_mask(display);
3855
3856 if (DISPLAY_VER(display) >= 11 &&
3857 hw_enabled_slices != display->dbuf.enabled_slices)
3858 drm_err(display->drm,
3859 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
3860 display->dbuf.enabled_slices,
3861 hw_enabled_slices);
3862
3863 for_each_intel_plane_on_crtc(display->drm, crtc, plane) {
3864 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
3865 const struct skl_wm_level *hw_wm_level, *sw_wm_level;
3866
3867 /* Watermarks */
3868 for (level = 0; level < display->wm.num_levels; level++) {
3869 hw_wm_level = &hw->wm.planes[plane->id].wm[level];
3870 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level);
3871
3872 if (skl_wm_level_equals(hw_wm_level, sw_wm_level))
3873 continue;
3874
3875 drm_err(display->drm,
3876 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3877 plane->base.base.id, plane->base.name, level,
3878 sw_wm_level->enable,
3879 sw_wm_level->blocks,
3880 sw_wm_level->lines,
3881 hw_wm_level->enable,
3882 hw_wm_level->blocks,
3883 hw_wm_level->lines);
3884 }
3885
3886 hw_wm_level = &hw->wm.planes[plane->id].trans_wm;
3887 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id);
3888
3889 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3890 drm_err(display->drm,
3891 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3892 plane->base.base.id, plane->base.name,
3893 sw_wm_level->enable,
3894 sw_wm_level->blocks,
3895 sw_wm_level->lines,
3896 hw_wm_level->enable,
3897 hw_wm_level->blocks,
3898 hw_wm_level->lines);
3899 }
3900
3901 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0;
3902 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0;
3903
3904 if (HAS_HW_SAGV_WM(display) &&
3905 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3906 drm_err(display->drm,
3907 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3908 plane->base.base.id, plane->base.name,
3909 sw_wm_level->enable,
3910 sw_wm_level->blocks,
3911 sw_wm_level->lines,
3912 hw_wm_level->enable,
3913 hw_wm_level->blocks,
3914 hw_wm_level->lines);
3915 }
3916
3917 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm;
3918 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm;
3919
3920 if (HAS_HW_SAGV_WM(display) &&
3921 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3922 drm_err(display->drm,
3923 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3924 plane->base.base.id, plane->base.name,
3925 sw_wm_level->enable,
3926 sw_wm_level->blocks,
3927 sw_wm_level->lines,
3928 hw_wm_level->enable,
3929 hw_wm_level->blocks,
3930 hw_wm_level->lines);
3931 }
3932
3933 /* DDB */
3934 hw_ddb_entry = &hw->ddb[PLANE_CURSOR];
3935 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR];
3936
3937 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
3938 drm_err(display->drm,
3939 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n",
3940 plane->base.base.id, plane->base.name,
3941 sw_ddb_entry->start, sw_ddb_entry->end,
3942 hw_ddb_entry->start, hw_ddb_entry->end);
3943 }
3944 }
3945
3946 kfree(hw);
3947 }
3948
3949 static const struct intel_wm_funcs skl_wm_funcs = {
3950 .compute_global_watermarks = skl_compute_wm,
3951 .get_hw_state = skl_wm_get_hw_state,
3952 .sanitize = skl_wm_sanitize,
3953 };
3954
skl_wm_init(struct intel_display * display)3955 void skl_wm_init(struct intel_display *display)
3956 {
3957 intel_sagv_init(display);
3958
3959 skl_setup_wm_latency(display);
3960
3961 display->funcs.wm = &skl_wm_funcs;
3962 }
3963
skl_watermark_ipc_status_show(struct seq_file * m,void * data)3964 static int skl_watermark_ipc_status_show(struct seq_file *m, void *data)
3965 {
3966 struct intel_display *display = m->private;
3967
3968 seq_printf(m, "Isochronous Priority Control: %s\n",
3969 str_yes_no(skl_watermark_ipc_enabled(display)));
3970 return 0;
3971 }
3972
skl_watermark_ipc_status_open(struct inode * inode,struct file * file)3973 static int skl_watermark_ipc_status_open(struct inode *inode, struct file *file)
3974 {
3975 struct intel_display *display = inode->i_private;
3976
3977 return single_open(file, skl_watermark_ipc_status_show, display);
3978 }
3979
skl_watermark_ipc_status_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp)3980 static ssize_t skl_watermark_ipc_status_write(struct file *file,
3981 const char __user *ubuf,
3982 size_t len, loff_t *offp)
3983 {
3984 struct seq_file *m = file->private_data;
3985 struct intel_display *display = m->private;
3986 bool enable;
3987 int ret;
3988
3989 ret = kstrtobool_from_user(ubuf, len, &enable);
3990 if (ret < 0)
3991 return ret;
3992
3993 with_intel_display_rpm(display) {
3994 if (!skl_watermark_ipc_enabled(display) && enable)
3995 drm_info(display->drm,
3996 "Enabling IPC: WM will be proper only after next commit\n");
3997 display->wm.ipc_enabled = enable;
3998 skl_watermark_ipc_update(display);
3999 }
4000
4001 return len;
4002 }
4003
4004 static const struct file_operations skl_watermark_ipc_status_fops = {
4005 .owner = THIS_MODULE,
4006 .open = skl_watermark_ipc_status_open,
4007 .read = seq_read,
4008 .llseek = seq_lseek,
4009 .release = single_release,
4010 .write = skl_watermark_ipc_status_write
4011 };
4012
intel_sagv_status_show(struct seq_file * m,void * unused)4013 static int intel_sagv_status_show(struct seq_file *m, void *unused)
4014 {
4015 struct intel_display *display = m->private;
4016 static const char * const sagv_status[] = {
4017 [I915_SAGV_UNKNOWN] = "unknown",
4018 [I915_SAGV_DISABLED] = "disabled",
4019 [I915_SAGV_ENABLED] = "enabled",
4020 [I915_SAGV_NOT_CONTROLLED] = "not controlled",
4021 };
4022
4023 seq_printf(m, "SAGV available: %s\n", str_yes_no(intel_has_sagv(display)));
4024 seq_printf(m, "SAGV modparam: %s\n",
4025 str_enabled_disabled(display->params.enable_sagv));
4026 seq_printf(m, "SAGV status: %s\n", sagv_status[display->sagv.status]);
4027 seq_printf(m, "SAGV block time: %d usec\n", display->sagv.block_time_us);
4028
4029 return 0;
4030 }
4031
4032 DEFINE_SHOW_ATTRIBUTE(intel_sagv_status);
4033
skl_watermark_debugfs_register(struct intel_display * display)4034 void skl_watermark_debugfs_register(struct intel_display *display)
4035 {
4036 struct drm_minor *minor = display->drm->primary;
4037
4038 if (HAS_IPC(display))
4039 debugfs_create_file("i915_ipc_status", 0644, minor->debugfs_root,
4040 display, &skl_watermark_ipc_status_fops);
4041
4042 if (HAS_SAGV(display))
4043 debugfs_create_file("i915_sagv_status", 0444, minor->debugfs_root,
4044 display, &intel_sagv_status_fops);
4045 }
4046
skl_watermark_max_latency(struct intel_display * display,int initial_wm_level)4047 unsigned int skl_watermark_max_latency(struct intel_display *display, int initial_wm_level)
4048 {
4049 int level;
4050
4051 for (level = display->wm.num_levels - 1; level >= initial_wm_level; level--) {
4052 unsigned int latency = skl_wm_latency(display, level, NULL);
4053
4054 if (latency)
4055 return latency;
4056 }
4057
4058 return 0;
4059 }
4060