xref: /linux/drivers/gpu/drm/i915/display/intel_cx0_phy.c (revision ffe8ac927d935d7d4a0bd9ac94afd705df79982b)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/log2.h>
7 #include <linux/math64.h>
8 
9 #include <drm/drm_print.h>
10 
11 #include "i915_utils.h"
12 #include "intel_alpm.h"
13 #include "intel_cx0_phy.h"
14 #include "intel_cx0_phy_regs.h"
15 #include "intel_ddi.h"
16 #include "intel_ddi_buf_trans.h"
17 #include "intel_de.h"
18 #include "intel_display_types.h"
19 #include "intel_dp.h"
20 #include "intel_hdmi.h"
21 #include "intel_panel.h"
22 #include "intel_psr.h"
23 #include "intel_snps_hdmi_pll.h"
24 #include "intel_tc.h"
25 
26 #define MB_WRITE_COMMITTED      true
27 #define MB_WRITE_UNCOMMITTED    false
28 
29 #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
30 	for ((__lane) = 0; (__lane) < 2; (__lane)++) \
31 		for_each_if((__lane_mask) & BIT(__lane))
32 
33 #define INTEL_CX0_LANE0		BIT(0)
34 #define INTEL_CX0_LANE1		BIT(1)
35 #define INTEL_CX0_BOTH_LANES	(INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
36 
intel_encoder_is_c10phy(struct intel_encoder * encoder)37 bool intel_encoder_is_c10phy(struct intel_encoder *encoder)
38 {
39 	struct intel_display *display = to_intel_display(encoder);
40 	enum phy phy = intel_encoder_to_phy(encoder);
41 
42 	/* PTL doesn't have a PHY connected to PORT B; as such,
43 	 * there will never be a case where PTL uses PHY B.
44 	 * WCL uses PORT A and B with the C10 PHY.
45 	 * Reusing the condition for WCL and extending it for PORT B
46 	 * should not cause any issues for PTL.
47 	 */
48 	if (display->platform.pantherlake && phy < PHY_C)
49 		return true;
50 
51 	if ((display->platform.lunarlake || display->platform.meteorlake) && phy < PHY_C)
52 		return true;
53 
54 	return false;
55 }
56 
lane_mask_to_lane(u8 lane_mask)57 static int lane_mask_to_lane(u8 lane_mask)
58 {
59 	if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
60 		    hweight8(lane_mask) != 1))
61 		return 0;
62 
63 	return ilog2(lane_mask);
64 }
65 
intel_cx0_get_owned_lane_mask(struct intel_encoder * encoder)66 static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder)
67 {
68 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
69 
70 	if (!intel_tc_port_in_dp_alt_mode(dig_port))
71 		return INTEL_CX0_BOTH_LANES;
72 
73 	/*
74 	 * In DP-alt with pin assignment D, only PHY lane 0 is owned
75 	 * by display and lane 1 is owned by USB.
76 	 */
77 	return intel_tc_port_max_lane_count(dig_port) > 2
78 		? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
79 }
80 
81 static void
assert_dc_off(struct intel_display * display)82 assert_dc_off(struct intel_display *display)
83 {
84 	bool enabled;
85 
86 	enabled = intel_display_power_is_enabled(display, POWER_DOMAIN_DC_OFF);
87 	drm_WARN_ON(display->drm, !enabled);
88 }
89 
intel_cx0_program_msgbus_timer(struct intel_encoder * encoder)90 static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder)
91 {
92 	struct intel_display *display = to_intel_display(encoder);
93 	int lane;
94 
95 	for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane)
96 		intel_de_rmw(display,
97 			     XELPDP_PORT_MSGBUS_TIMER(display, encoder->port, lane),
98 			     XELPDP_PORT_MSGBUS_TIMER_VAL_MASK,
99 			     XELPDP_PORT_MSGBUS_TIMER_VAL);
100 }
101 
102 /*
103  * Prepare HW for CX0 phy transactions.
104  *
105  * It is required that PSR and DC5/6 are disabled before any CX0 message
106  * bus transaction is executed.
107  *
108  * We also do the msgbus timer programming here to ensure that the timer
109  * is already programmed before any access to the msgbus.
110  */
intel_cx0_phy_transaction_begin(struct intel_encoder * encoder)111 static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
112 {
113 	struct intel_display *display = to_intel_display(encoder);
114 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
115 	intel_wakeref_t wakeref;
116 
117 	intel_psr_pause(intel_dp);
118 	wakeref = intel_display_power_get(display, POWER_DOMAIN_DC_OFF);
119 	intel_cx0_program_msgbus_timer(encoder);
120 
121 	return wakeref;
122 }
123 
intel_cx0_phy_transaction_end(struct intel_encoder * encoder,intel_wakeref_t wakeref)124 static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
125 {
126 	struct intel_display *display = to_intel_display(encoder);
127 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
128 
129 	intel_psr_resume(intel_dp);
130 	intel_display_power_put(display, POWER_DOMAIN_DC_OFF, wakeref);
131 }
132 
intel_clear_response_ready_flag(struct intel_encoder * encoder,int lane)133 static void intel_clear_response_ready_flag(struct intel_encoder *encoder,
134 					    int lane)
135 {
136 	struct intel_display *display = to_intel_display(encoder);
137 
138 	intel_de_rmw(display,
139 		     XELPDP_PORT_P2M_MSGBUS_STATUS(display, encoder->port, lane),
140 		     0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
141 }
142 
intel_cx0_bus_reset(struct intel_encoder * encoder,int lane)143 static void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane)
144 {
145 	struct intel_display *display = to_intel_display(encoder);
146 	enum port port = encoder->port;
147 	enum phy phy = intel_encoder_to_phy(encoder);
148 
149 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
150 		       XELPDP_PORT_M2P_TRANSACTION_RESET);
151 
152 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
153 				    XELPDP_PORT_M2P_TRANSACTION_RESET,
154 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
155 		drm_err_once(display->drm,
156 			     "Failed to bring PHY %c to idle.\n",
157 			     phy_name(phy));
158 		return;
159 	}
160 
161 	intel_clear_response_ready_flag(encoder, lane);
162 }
163 
intel_cx0_wait_for_ack(struct intel_encoder * encoder,int command,int lane,u32 * val)164 static int intel_cx0_wait_for_ack(struct intel_encoder *encoder,
165 				  int command, int lane, u32 *val)
166 {
167 	struct intel_display *display = to_intel_display(encoder);
168 	enum port port = encoder->port;
169 	enum phy phy = intel_encoder_to_phy(encoder);
170 
171 	if (intel_de_wait_custom(display,
172 				 XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane),
173 				 XELPDP_PORT_P2M_RESPONSE_READY,
174 				 XELPDP_PORT_P2M_RESPONSE_READY,
175 				 XELPDP_MSGBUS_TIMEOUT_FAST_US,
176 				 XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
177 		drm_dbg_kms(display->drm,
178 			    "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
179 			    phy_name(phy), *val);
180 
181 		if (!(intel_de_read(display, XELPDP_PORT_MSGBUS_TIMER(display, port, lane)) &
182 		      XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT))
183 			drm_dbg_kms(display->drm,
184 				    "PHY %c Hardware did not detect a timeout\n",
185 				    phy_name(phy));
186 
187 		intel_cx0_bus_reset(encoder, lane);
188 		return -ETIMEDOUT;
189 	}
190 
191 	if (*val & XELPDP_PORT_P2M_ERROR_SET) {
192 		drm_dbg_kms(display->drm,
193 			    "PHY %c Error occurred during %s command. Status: 0x%x\n",
194 			    phy_name(phy),
195 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
196 		intel_cx0_bus_reset(encoder, lane);
197 		return -EINVAL;
198 	}
199 
200 	if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
201 		drm_dbg_kms(display->drm,
202 			    "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n",
203 			    phy_name(phy),
204 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
205 		intel_cx0_bus_reset(encoder, lane);
206 		return -EINVAL;
207 	}
208 
209 	return 0;
210 }
211 
__intel_cx0_read_once(struct intel_encoder * encoder,int lane,u16 addr)212 static int __intel_cx0_read_once(struct intel_encoder *encoder,
213 				 int lane, u16 addr)
214 {
215 	struct intel_display *display = to_intel_display(encoder);
216 	enum port port = encoder->port;
217 	enum phy phy = intel_encoder_to_phy(encoder);
218 	int ack;
219 	u32 val;
220 
221 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
222 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
223 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
224 		drm_dbg_kms(display->drm,
225 			    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
226 		intel_cx0_bus_reset(encoder, lane);
227 		return -ETIMEDOUT;
228 	}
229 
230 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
231 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
232 		       XELPDP_PORT_M2P_COMMAND_READ |
233 		       XELPDP_PORT_M2P_ADDRESS(addr));
234 
235 	ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
236 	if (ack < 0)
237 		return ack;
238 
239 	intel_clear_response_ready_flag(encoder, lane);
240 
241 	/*
242 	 * FIXME: Workaround to let HW to settle
243 	 * down and let the message bus to end up
244 	 * in a known state
245 	 */
246 	if (DISPLAY_VER(display) < 30)
247 		intel_cx0_bus_reset(encoder, lane);
248 
249 	return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
250 }
251 
__intel_cx0_read(struct intel_encoder * encoder,int lane,u16 addr)252 static u8 __intel_cx0_read(struct intel_encoder *encoder,
253 			   int lane, u16 addr)
254 {
255 	struct intel_display *display = to_intel_display(encoder);
256 	enum phy phy = intel_encoder_to_phy(encoder);
257 	int i, status;
258 
259 	assert_dc_off(display);
260 
261 	/* 3 tries is assumed to be enough to read successfully */
262 	for (i = 0; i < 3; i++) {
263 		status = __intel_cx0_read_once(encoder, lane, addr);
264 
265 		if (status >= 0)
266 			return status;
267 	}
268 
269 	drm_err_once(display->drm,
270 		     "PHY %c Read %04x failed after %d retries.\n",
271 		     phy_name(phy), addr, i);
272 
273 	return 0;
274 }
275 
intel_cx0_read(struct intel_encoder * encoder,u8 lane_mask,u16 addr)276 static u8 intel_cx0_read(struct intel_encoder *encoder,
277 			 u8 lane_mask, u16 addr)
278 {
279 	int lane = lane_mask_to_lane(lane_mask);
280 
281 	return __intel_cx0_read(encoder, lane, addr);
282 }
283 
__intel_cx0_write_once(struct intel_encoder * encoder,int lane,u16 addr,u8 data,bool committed)284 static int __intel_cx0_write_once(struct intel_encoder *encoder,
285 				  int lane, u16 addr, u8 data, bool committed)
286 {
287 	struct intel_display *display = to_intel_display(encoder);
288 	enum port port = encoder->port;
289 	enum phy phy = intel_encoder_to_phy(encoder);
290 	int ack;
291 	u32 val;
292 
293 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
294 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
295 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
296 		drm_dbg_kms(display->drm,
297 			    "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
298 		intel_cx0_bus_reset(encoder, lane);
299 		return -ETIMEDOUT;
300 	}
301 
302 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
303 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
304 		       (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
305 				    XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
306 		       XELPDP_PORT_M2P_DATA(data) |
307 		       XELPDP_PORT_M2P_ADDRESS(addr));
308 
309 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
310 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
311 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
312 		drm_dbg_kms(display->drm,
313 			    "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
314 		intel_cx0_bus_reset(encoder, lane);
315 		return -ETIMEDOUT;
316 	}
317 
318 	if (committed) {
319 		ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
320 		if (ack < 0)
321 			return ack;
322 	} else if ((intel_de_read(display, XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane)) &
323 		    XELPDP_PORT_P2M_ERROR_SET)) {
324 		drm_dbg_kms(display->drm,
325 			    "PHY %c Error occurred during write command.\n", phy_name(phy));
326 		intel_cx0_bus_reset(encoder, lane);
327 		return -EINVAL;
328 	}
329 
330 	intel_clear_response_ready_flag(encoder, lane);
331 
332 	/*
333 	 * FIXME: Workaround to let HW to settle
334 	 * down and let the message bus to end up
335 	 * in a known state
336 	 */
337 	if (DISPLAY_VER(display) < 30)
338 		intel_cx0_bus_reset(encoder, lane);
339 
340 	return 0;
341 }
342 
__intel_cx0_write(struct intel_encoder * encoder,int lane,u16 addr,u8 data,bool committed)343 static void __intel_cx0_write(struct intel_encoder *encoder,
344 			      int lane, u16 addr, u8 data, bool committed)
345 {
346 	struct intel_display *display = to_intel_display(encoder);
347 	enum phy phy = intel_encoder_to_phy(encoder);
348 	int i, status;
349 
350 	assert_dc_off(display);
351 
352 	/* 3 tries is assumed to be enough to write successfully */
353 	for (i = 0; i < 3; i++) {
354 		status = __intel_cx0_write_once(encoder, lane, addr, data, committed);
355 
356 		if (status == 0)
357 			return;
358 	}
359 
360 	drm_err_once(display->drm,
361 		     "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
362 }
363 
intel_cx0_write(struct intel_encoder * encoder,u8 lane_mask,u16 addr,u8 data,bool committed)364 static void intel_cx0_write(struct intel_encoder *encoder,
365 			    u8 lane_mask, u16 addr, u8 data, bool committed)
366 {
367 	int lane;
368 
369 	for_each_cx0_lane_in_mask(lane_mask, lane)
370 		__intel_cx0_write(encoder, lane, addr, data, committed);
371 }
372 
intel_c20_sram_write(struct intel_encoder * encoder,int lane,u16 addr,u16 data)373 static void intel_c20_sram_write(struct intel_encoder *encoder,
374 				 int lane, u16 addr, u16 data)
375 {
376 	struct intel_display *display = to_intel_display(encoder);
377 
378 	assert_dc_off(display);
379 
380 	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
381 	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
382 
383 	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
384 	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
385 }
386 
intel_c20_sram_read(struct intel_encoder * encoder,int lane,u16 addr)387 static u16 intel_c20_sram_read(struct intel_encoder *encoder,
388 			       int lane, u16 addr)
389 {
390 	struct intel_display *display = to_intel_display(encoder);
391 	u16 val;
392 
393 	assert_dc_off(display);
394 
395 	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
396 	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
397 
398 	val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H);
399 	val <<= 8;
400 	val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L);
401 
402 	return val;
403 }
404 
__intel_cx0_rmw(struct intel_encoder * encoder,int lane,u16 addr,u8 clear,u8 set,bool committed)405 static void __intel_cx0_rmw(struct intel_encoder *encoder,
406 			    int lane, u16 addr, u8 clear, u8 set, bool committed)
407 {
408 	u8 old, val;
409 
410 	old = __intel_cx0_read(encoder, lane, addr);
411 	val = (old & ~clear) | set;
412 
413 	if (val != old)
414 		__intel_cx0_write(encoder, lane, addr, val, committed);
415 }
416 
intel_cx0_rmw(struct intel_encoder * encoder,u8 lane_mask,u16 addr,u8 clear,u8 set,bool committed)417 static void intel_cx0_rmw(struct intel_encoder *encoder,
418 			  u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
419 {
420 	u8 lane;
421 
422 	for_each_cx0_lane_in_mask(lane_mask, lane)
423 		__intel_cx0_rmw(encoder, lane, addr, clear, set, committed);
424 }
425 
intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state * crtc_state)426 static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
427 {
428 	if (intel_crtc_has_dp_encoder(crtc_state)) {
429 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
430 		    (crtc_state->port_clock == 540000 ||
431 		     crtc_state->port_clock == 810000))
432 			return 5;
433 		else
434 			return 4;
435 	} else {
436 		return 5;
437 	}
438 }
439 
intel_c10_get_tx_term_ctl(const struct intel_crtc_state * crtc_state)440 static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
441 {
442 	if (intel_crtc_has_dp_encoder(crtc_state)) {
443 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
444 		    (crtc_state->port_clock == 540000 ||
445 		     crtc_state->port_clock == 810000))
446 			return 5;
447 		else
448 			return 2;
449 	} else {
450 		return 6;
451 	}
452 }
453 
intel_cx0_phy_set_signal_levels(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)454 void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
455 				     const struct intel_crtc_state *crtc_state)
456 {
457 	struct intel_display *display = to_intel_display(encoder);
458 	const struct intel_ddi_buf_trans *trans;
459 	u8 owned_lane_mask;
460 	intel_wakeref_t wakeref;
461 	int n_entries, ln;
462 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
463 
464 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
465 		return;
466 
467 	owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
468 
469 	wakeref = intel_cx0_phy_transaction_begin(encoder);
470 
471 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
472 	if (drm_WARN_ON_ONCE(display->drm, !trans)) {
473 		intel_cx0_phy_transaction_end(encoder, wakeref);
474 		return;
475 	}
476 
477 	if (intel_encoder_is_c10phy(encoder)) {
478 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
479 			      0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
480 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3),
481 			      C10_CMN3_TXVBOOST_MASK,
482 			      C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
483 			      MB_WRITE_UNCOMMITTED);
484 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1),
485 			      C10_TX1_TERMCTL_MASK,
486 			      C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
487 			      MB_WRITE_COMMITTED);
488 	}
489 
490 	for (ln = 0; ln < crtc_state->lane_count; ln++) {
491 		int level = intel_ddi_level(encoder, crtc_state, ln);
492 		int lane = ln / 2;
493 		int tx = ln % 2;
494 		u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
495 
496 		if (!(lane_mask & owned_lane_mask))
497 			continue;
498 
499 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0),
500 			      C10_PHY_OVRD_LEVEL_MASK,
501 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
502 			      MB_WRITE_COMMITTED);
503 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1),
504 			      C10_PHY_OVRD_LEVEL_MASK,
505 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
506 			      MB_WRITE_COMMITTED);
507 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2),
508 			      C10_PHY_OVRD_LEVEL_MASK,
509 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
510 			      MB_WRITE_COMMITTED);
511 	}
512 
513 	/* Write Override enables in 0xD71 */
514 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD,
515 		      0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
516 		      MB_WRITE_COMMITTED);
517 
518 	if (intel_encoder_is_c10phy(encoder))
519 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
520 			      0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
521 
522 	intel_cx0_phy_transaction_end(encoder, wakeref);
523 }
524 
525 /*
526  * Basic DP link rates with 38.4 MHz reference clock.
527  * Note: The tables below are with SSC. In non-ssc
528  * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
529  * programmed 0.
530  */
531 
532 static const struct intel_c10pll_state mtl_c10_dp_rbr = {
533 	.clock = 162000,
534 	.tx = 0x10,
535 	.cmn = 0x21,
536 	.pll[0] = 0xB4,
537 	.pll[1] = 0,
538 	.pll[2] = 0x30,
539 	.pll[3] = 0x1,
540 	.pll[4] = 0x26,
541 	.pll[5] = 0x0C,
542 	.pll[6] = 0x98,
543 	.pll[7] = 0x46,
544 	.pll[8] = 0x1,
545 	.pll[9] = 0x1,
546 	.pll[10] = 0,
547 	.pll[11] = 0,
548 	.pll[12] = 0xC0,
549 	.pll[13] = 0,
550 	.pll[14] = 0,
551 	.pll[15] = 0x2,
552 	.pll[16] = 0x84,
553 	.pll[17] = 0x4F,
554 	.pll[18] = 0xE5,
555 	.pll[19] = 0x23,
556 };
557 
558 static const struct intel_c10pll_state mtl_c10_edp_r216 = {
559 	.clock = 216000,
560 	.tx = 0x10,
561 	.cmn = 0x21,
562 	.pll[0] = 0x4,
563 	.pll[1] = 0,
564 	.pll[2] = 0xA2,
565 	.pll[3] = 0x1,
566 	.pll[4] = 0x33,
567 	.pll[5] = 0x10,
568 	.pll[6] = 0x75,
569 	.pll[7] = 0xB3,
570 	.pll[8] = 0x1,
571 	.pll[9] = 0x1,
572 	.pll[10] = 0,
573 	.pll[11] = 0,
574 	.pll[12] = 0,
575 	.pll[13] = 0,
576 	.pll[14] = 0,
577 	.pll[15] = 0x2,
578 	.pll[16] = 0x85,
579 	.pll[17] = 0x0F,
580 	.pll[18] = 0xE6,
581 	.pll[19] = 0x23,
582 };
583 
584 static const struct intel_c10pll_state mtl_c10_edp_r243 = {
585 	.clock = 243000,
586 	.tx = 0x10,
587 	.cmn = 0x21,
588 	.pll[0] = 0x34,
589 	.pll[1] = 0,
590 	.pll[2] = 0xDA,
591 	.pll[3] = 0x1,
592 	.pll[4] = 0x39,
593 	.pll[5] = 0x12,
594 	.pll[6] = 0xE3,
595 	.pll[7] = 0xE9,
596 	.pll[8] = 0x1,
597 	.pll[9] = 0x1,
598 	.pll[10] = 0,
599 	.pll[11] = 0,
600 	.pll[12] = 0x20,
601 	.pll[13] = 0,
602 	.pll[14] = 0,
603 	.pll[15] = 0x2,
604 	.pll[16] = 0x85,
605 	.pll[17] = 0x8F,
606 	.pll[18] = 0xE6,
607 	.pll[19] = 0x23,
608 };
609 
610 static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
611 	.clock = 270000,
612 	.tx = 0x10,
613 	.cmn = 0x21,
614 	.pll[0] = 0xF4,
615 	.pll[1] = 0,
616 	.pll[2] = 0xF8,
617 	.pll[3] = 0x0,
618 	.pll[4] = 0x20,
619 	.pll[5] = 0x0A,
620 	.pll[6] = 0x29,
621 	.pll[7] = 0x10,
622 	.pll[8] = 0x1,   /* Verify */
623 	.pll[9] = 0x1,
624 	.pll[10] = 0,
625 	.pll[11] = 0,
626 	.pll[12] = 0xA0,
627 	.pll[13] = 0,
628 	.pll[14] = 0,
629 	.pll[15] = 0x1,
630 	.pll[16] = 0x84,
631 	.pll[17] = 0x4F,
632 	.pll[18] = 0xE5,
633 	.pll[19] = 0x23,
634 };
635 
636 static const struct intel_c10pll_state mtl_c10_edp_r324 = {
637 	.clock = 324000,
638 	.tx = 0x10,
639 	.cmn = 0x21,
640 	.pll[0] = 0xB4,
641 	.pll[1] = 0,
642 	.pll[2] = 0x30,
643 	.pll[3] = 0x1,
644 	.pll[4] = 0x26,
645 	.pll[5] = 0x0C,
646 	.pll[6] = 0x98,
647 	.pll[7] = 0x46,
648 	.pll[8] = 0x1,
649 	.pll[9] = 0x1,
650 	.pll[10] = 0,
651 	.pll[11] = 0,
652 	.pll[12] = 0xC0,
653 	.pll[13] = 0,
654 	.pll[14] = 0,
655 	.pll[15] = 0x1,
656 	.pll[16] = 0x85,
657 	.pll[17] = 0x4F,
658 	.pll[18] = 0xE6,
659 	.pll[19] = 0x23,
660 };
661 
662 static const struct intel_c10pll_state mtl_c10_edp_r432 = {
663 	.clock = 432000,
664 	.tx = 0x10,
665 	.cmn = 0x21,
666 	.pll[0] = 0x4,
667 	.pll[1] = 0,
668 	.pll[2] = 0xA2,
669 	.pll[3] = 0x1,
670 	.pll[4] = 0x33,
671 	.pll[5] = 0x10,
672 	.pll[6] = 0x75,
673 	.pll[7] = 0xB3,
674 	.pll[8] = 0x1,
675 	.pll[9] = 0x1,
676 	.pll[10] = 0,
677 	.pll[11] = 0,
678 	.pll[12] = 0,
679 	.pll[13] = 0,
680 	.pll[14] = 0,
681 	.pll[15] = 0x1,
682 	.pll[16] = 0x85,
683 	.pll[17] = 0x0F,
684 	.pll[18] = 0xE6,
685 	.pll[19] = 0x23,
686 };
687 
688 static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
689 	.clock = 540000,
690 	.tx = 0x10,
691 	.cmn = 0x21,
692 	.pll[0] = 0xF4,
693 	.pll[1] = 0,
694 	.pll[2] = 0xF8,
695 	.pll[3] = 0,
696 	.pll[4] = 0x20,
697 	.pll[5] = 0x0A,
698 	.pll[6] = 0x29,
699 	.pll[7] = 0x10,
700 	.pll[8] = 0x1,
701 	.pll[9] = 0x1,
702 	.pll[10] = 0,
703 	.pll[11] = 0,
704 	.pll[12] = 0xA0,
705 	.pll[13] = 0,
706 	.pll[14] = 0,
707 	.pll[15] = 0,
708 	.pll[16] = 0x84,
709 	.pll[17] = 0x4F,
710 	.pll[18] = 0xE5,
711 	.pll[19] = 0x23,
712 };
713 
714 static const struct intel_c10pll_state mtl_c10_edp_r675 = {
715 	.clock = 675000,
716 	.tx = 0x10,
717 	.cmn = 0x21,
718 	.pll[0] = 0xB4,
719 	.pll[1] = 0,
720 	.pll[2] = 0x3E,
721 	.pll[3] = 0x1,
722 	.pll[4] = 0xA8,
723 	.pll[5] = 0x0C,
724 	.pll[6] = 0x33,
725 	.pll[7] = 0x54,
726 	.pll[8] = 0x1,
727 	.pll[9] = 0x1,
728 	.pll[10] = 0,
729 	.pll[11] = 0,
730 	.pll[12] = 0xC8,
731 	.pll[13] = 0,
732 	.pll[14] = 0,
733 	.pll[15] = 0,
734 	.pll[16] = 0x85,
735 	.pll[17] = 0x8F,
736 	.pll[18] = 0xE6,
737 	.pll[19] = 0x23,
738 };
739 
740 static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
741 	.clock = 810000,
742 	.tx = 0x10,
743 	.cmn = 0x21,
744 	.pll[0] = 0x34,
745 	.pll[1] = 0,
746 	.pll[2] = 0x84,
747 	.pll[3] = 0x1,
748 	.pll[4] = 0x30,
749 	.pll[5] = 0x0F,
750 	.pll[6] = 0x3D,
751 	.pll[7] = 0x98,
752 	.pll[8] = 0x1,
753 	.pll[9] = 0x1,
754 	.pll[10] = 0,
755 	.pll[11] = 0,
756 	.pll[12] = 0xF0,
757 	.pll[13] = 0,
758 	.pll[14] = 0,
759 	.pll[15] = 0,
760 	.pll[16] = 0x84,
761 	.pll[17] = 0x0F,
762 	.pll[18] = 0xE5,
763 	.pll[19] = 0x23,
764 };
765 
766 static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
767 	&mtl_c10_dp_rbr,
768 	&mtl_c10_dp_hbr1,
769 	&mtl_c10_dp_hbr2,
770 	&mtl_c10_dp_hbr3,
771 	NULL,
772 };
773 
774 static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
775 	&mtl_c10_dp_rbr,
776 	&mtl_c10_edp_r216,
777 	&mtl_c10_edp_r243,
778 	&mtl_c10_dp_hbr1,
779 	&mtl_c10_edp_r324,
780 	&mtl_c10_edp_r432,
781 	&mtl_c10_dp_hbr2,
782 	&mtl_c10_edp_r675,
783 	&mtl_c10_dp_hbr3,
784 	NULL,
785 };
786 
787 /* C20 basic DP 1.4 tables */
788 static const struct intel_c20pll_state mtl_c20_dp_rbr = {
789 	.clock = 162000,
790 	.tx = {	0xbe88, /* tx cfg0 */
791 		0x5800, /* tx cfg1 */
792 		0x0000, /* tx cfg2 */
793 		},
794 	.cmn = {0x0500, /* cmn cfg0*/
795 		0x0005, /* cmn cfg1 */
796 		0x0000, /* cmn cfg2 */
797 		0x0000, /* cmn cfg3 */
798 		},
799 	.mpllb = { 0x50a8,	/* mpllb cfg0 */
800 		0x2120,		/* mpllb cfg1 */
801 		0xcd9a,		/* mpllb cfg2 */
802 		0xbfc1,		/* mpllb cfg3 */
803 		0x5ab8,         /* mpllb cfg4 */
804 		0x4c34,         /* mpllb cfg5 */
805 		0x2000,		/* mpllb cfg6 */
806 		0x0001,		/* mpllb cfg7 */
807 		0x6000,		/* mpllb cfg8 */
808 		0x0000,		/* mpllb cfg9 */
809 		0x0000,		/* mpllb cfg10 */
810 		},
811 };
812 
813 static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
814 	.clock = 270000,
815 	.tx = {	0xbe88, /* tx cfg0 */
816 		0x4800, /* tx cfg1 */
817 		0x0000, /* tx cfg2 */
818 		},
819 	.cmn = {0x0500, /* cmn cfg0*/
820 		0x0005, /* cmn cfg1 */
821 		0x0000, /* cmn cfg2 */
822 		0x0000, /* cmn cfg3 */
823 		},
824 	.mpllb = { 0x308c,	/* mpllb cfg0 */
825 		0x2110,		/* mpllb cfg1 */
826 		0xcc9c,		/* mpllb cfg2 */
827 		0xbfc1,		/* mpllb cfg3 */
828 		0x4b9a,         /* mpllb cfg4 */
829 		0x3f81,         /* mpllb cfg5 */
830 		0x2000,		/* mpllb cfg6 */
831 		0x0001,		/* mpllb cfg7 */
832 		0x5000,		/* mpllb cfg8 */
833 		0x0000,		/* mpllb cfg9 */
834 		0x0000,		/* mpllb cfg10 */
835 		},
836 };
837 
838 static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
839 	.clock = 540000,
840 	.tx = {	0xbe88, /* tx cfg0 */
841 		0x4800, /* tx cfg1 */
842 		0x0000, /* tx cfg2 */
843 		},
844 	.cmn = {0x0500, /* cmn cfg0*/
845 		0x0005, /* cmn cfg1 */
846 		0x0000, /* cmn cfg2 */
847 		0x0000, /* cmn cfg3 */
848 		},
849 	.mpllb = { 0x108c,	/* mpllb cfg0 */
850 		0x2108,		/* mpllb cfg1 */
851 		0xcc9c,		/* mpllb cfg2 */
852 		0xbfc1,		/* mpllb cfg3 */
853 		0x4b9a,         /* mpllb cfg4 */
854 		0x3f81,         /* mpllb cfg5 */
855 		0x2000,		/* mpllb cfg6 */
856 		0x0001,		/* mpllb cfg7 */
857 		0x5000,		/* mpllb cfg8 */
858 		0x0000,		/* mpllb cfg9 */
859 		0x0000,		/* mpllb cfg10 */
860 		},
861 };
862 
863 static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
864 	.clock = 810000,
865 	.tx = {	0xbe88, /* tx cfg0 */
866 		0x4800, /* tx cfg1 */
867 		0x0000, /* tx cfg2 */
868 		},
869 	.cmn = {0x0500, /* cmn cfg0*/
870 		0x0005, /* cmn cfg1 */
871 		0x0000, /* cmn cfg2 */
872 		0x0000, /* cmn cfg3 */
873 		},
874 	.mpllb = { 0x10d2,	/* mpllb cfg0 */
875 		0x2108,		/* mpllb cfg1 */
876 		0x8d98,		/* mpllb cfg2 */
877 		0xbfc1,		/* mpllb cfg3 */
878 		0x7166,         /* mpllb cfg4 */
879 		0x5f42,         /* mpllb cfg5 */
880 		0x2000,		/* mpllb cfg6 */
881 		0x0001,		/* mpllb cfg7 */
882 		0x7800,		/* mpllb cfg8 */
883 		0x0000,		/* mpllb cfg9 */
884 		0x0000,		/* mpllb cfg10 */
885 		},
886 };
887 
888 /* C20 basic DP 2.0 tables */
889 static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
890 	.clock = 1000000, /* 10 Gbps */
891 	.tx = {	0xbe21, /* tx cfg0 */
892 		0xe800, /* tx cfg1 */
893 		0x0000, /* tx cfg2 */
894 		},
895 	.cmn = {0x0700, /* cmn cfg0*/
896 		0x0005, /* cmn cfg1 */
897 		0x0000, /* cmn cfg2 */
898 		0x0000, /* cmn cfg3 */
899 		},
900 	.mplla = { 0x3104,	/* mplla cfg0 */
901 		0xd105,		/* mplla cfg1 */
902 		0xc025,		/* mplla cfg2 */
903 		0xc025,		/* mplla cfg3 */
904 		0x8c00,		/* mplla cfg4 */
905 		0x759a,		/* mplla cfg5 */
906 		0x4000,		/* mplla cfg6 */
907 		0x0003,		/* mplla cfg7 */
908 		0x3555,		/* mplla cfg8 */
909 		0x0001,		/* mplla cfg9 */
910 		},
911 };
912 
913 static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
914 	.clock = 1350000, /* 13.5 Gbps */
915 	.tx = {	0xbea0, /* tx cfg0 */
916 		0x4800, /* tx cfg1 */
917 		0x0000, /* tx cfg2 */
918 		},
919 	.cmn = {0x0500, /* cmn cfg0*/
920 		0x0005, /* cmn cfg1 */
921 		0x0000, /* cmn cfg2 */
922 		0x0000, /* cmn cfg3 */
923 		},
924 	.mpllb = { 0x015f,	/* mpllb cfg0 */
925 		0x2205,		/* mpllb cfg1 */
926 		0x1b17,		/* mpllb cfg2 */
927 		0xffc1,		/* mpllb cfg3 */
928 		0xe100,		/* mpllb cfg4 */
929 		0xbd00,		/* mpllb cfg5 */
930 		0x2000,		/* mpllb cfg6 */
931 		0x0001,		/* mpllb cfg7 */
932 		0x4800,		/* mpllb cfg8 */
933 		0x0000,		/* mpllb cfg9 */
934 		0x0000,		/* mpllb cfg10 */
935 		},
936 };
937 
938 static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
939 	.clock = 2000000, /* 20 Gbps */
940 	.tx = {	0xbe20, /* tx cfg0 */
941 		0x4800, /* tx cfg1 */
942 		0x0000, /* tx cfg2 */
943 		},
944 	.cmn = {0x0500, /* cmn cfg0*/
945 		0x0005, /* cmn cfg1 */
946 		0x0000, /* cmn cfg2 */
947 		0x0000, /* cmn cfg3 */
948 		},
949 	.mplla = { 0x3104,	/* mplla cfg0 */
950 		0xd105,		/* mplla cfg1 */
951 		0x9217,		/* mplla cfg2 */
952 		0x9217,		/* mplla cfg3 */
953 		0x8c00,		/* mplla cfg4 */
954 		0x759a,		/* mplla cfg5 */
955 		0x4000,		/* mplla cfg6 */
956 		0x0003,		/* mplla cfg7 */
957 		0x3555,		/* mplla cfg8 */
958 		0x0001,		/* mplla cfg9 */
959 		},
960 };
961 
962 static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
963 	&mtl_c20_dp_rbr,
964 	&mtl_c20_dp_hbr1,
965 	&mtl_c20_dp_hbr2,
966 	&mtl_c20_dp_hbr3,
967 	&mtl_c20_dp_uhbr10,
968 	&mtl_c20_dp_uhbr13_5,
969 	&mtl_c20_dp_uhbr20,
970 	NULL,
971 };
972 
973 /*
974  * eDP link rates with 38.4 MHz reference clock.
975  */
976 
977 static const struct intel_c20pll_state xe2hpd_c20_edp_r216 = {
978 	.clock = 216000,
979 	.tx = { 0xbe88,
980 		0x4800,
981 		0x0000,
982 		},
983 	.cmn = { 0x0500,
984 		 0x0005,
985 		 0x0000,
986 		 0x0000,
987 		},
988 	.mpllb = { 0x50e1,
989 		   0x2120,
990 		   0x8e18,
991 		   0xbfc1,
992 		   0x9000,
993 		   0x78f6,
994 		   0x0000,
995 		   0x0000,
996 		   0x0000,
997 		   0x0000,
998 		   0x0000,
999 		  },
1000 };
1001 
1002 static const struct intel_c20pll_state xe2hpd_c20_edp_r243 = {
1003 	.clock = 243000,
1004 	.tx = { 0xbe88,
1005 		0x4800,
1006 		0x0000,
1007 		},
1008 	.cmn = { 0x0500,
1009 		 0x0005,
1010 		 0x0000,
1011 		 0x0000,
1012 		},
1013 	.mpllb = { 0x50fd,
1014 		   0x2120,
1015 		   0x8f18,
1016 		   0xbfc1,
1017 		   0xa200,
1018 		   0x8814,
1019 		   0x2000,
1020 		   0x0001,
1021 		   0x1000,
1022 		   0x0000,
1023 		   0x0000,
1024 		  },
1025 };
1026 
1027 static const struct intel_c20pll_state xe2hpd_c20_edp_r324 = {
1028 	.clock = 324000,
1029 	.tx = { 0xbe88,
1030 		0x4800,
1031 		0x0000,
1032 		},
1033 	.cmn = { 0x0500,
1034 		 0x0005,
1035 		 0x0000,
1036 		 0x0000,
1037 		},
1038 	.mpllb = { 0x30a8,
1039 		   0x2110,
1040 		   0xcd9a,
1041 		   0xbfc1,
1042 		   0x6c00,
1043 		   0x5ab8,
1044 		   0x2000,
1045 		   0x0001,
1046 		   0x6000,
1047 		   0x0000,
1048 		   0x0000,
1049 		  },
1050 };
1051 
1052 static const struct intel_c20pll_state xe2hpd_c20_edp_r432 = {
1053 	.clock = 432000,
1054 	.tx = { 0xbe88,
1055 		0x4800,
1056 		0x0000,
1057 		},
1058 	.cmn = { 0x0500,
1059 		 0x0005,
1060 		 0x0000,
1061 		 0x0000,
1062 		},
1063 	.mpllb = { 0x30e1,
1064 		   0x2110,
1065 		   0x8e18,
1066 		   0xbfc1,
1067 		   0x9000,
1068 		   0x78f6,
1069 		   0x0000,
1070 		   0x0000,
1071 		   0x0000,
1072 		   0x0000,
1073 		   0x0000,
1074 		  },
1075 };
1076 
1077 static const struct intel_c20pll_state xe2hpd_c20_edp_r675 = {
1078 	.clock = 675000,
1079 	.tx = { 0xbe88,
1080 		0x4800,
1081 		0x0000,
1082 		},
1083 	.cmn = { 0x0500,
1084 		 0x0005,
1085 		 0x0000,
1086 		 0x0000,
1087 		},
1088 	.mpllb = { 0x10af,
1089 		   0x2108,
1090 		   0xce1a,
1091 		   0xbfc1,
1092 		   0x7080,
1093 		   0x5e80,
1094 		   0x2000,
1095 		   0x0001,
1096 		   0x6400,
1097 		   0x0000,
1098 		   0x0000,
1099 		  },
1100 };
1101 
1102 static const struct intel_c20pll_state * const xe2hpd_c20_edp_tables[] = {
1103 	&mtl_c20_dp_rbr,
1104 	&xe2hpd_c20_edp_r216,
1105 	&xe2hpd_c20_edp_r243,
1106 	&mtl_c20_dp_hbr1,
1107 	&xe2hpd_c20_edp_r324,
1108 	&xe2hpd_c20_edp_r432,
1109 	&mtl_c20_dp_hbr2,
1110 	&xe2hpd_c20_edp_r675,
1111 	&mtl_c20_dp_hbr3,
1112 	NULL,
1113 };
1114 
1115 static const struct intel_c20pll_state xe2hpd_c20_dp_uhbr13_5 = {
1116 	.clock = 1350000, /* 13.5 Gbps */
1117 	.tx = {	0xbea0, /* tx cfg0 */
1118 		0x4800, /* tx cfg1 */
1119 		0x0000, /* tx cfg2 */
1120 		},
1121 	.cmn = {0x0500, /* cmn cfg0*/
1122 		0x0005, /* cmn cfg1 */
1123 		0x0000, /* cmn cfg2 */
1124 		0x0000, /* cmn cfg3 */
1125 		},
1126 	.mpllb = { 0x015f,	/* mpllb cfg0 */
1127 		0x2205,		/* mpllb cfg1 */
1128 		0x1b17,		/* mpllb cfg2 */
1129 		0xffc1,		/* mpllb cfg3 */
1130 		0xbd00,		/* mpllb cfg4 */
1131 		0x9ec3,		/* mpllb cfg5 */
1132 		0x2000,		/* mpllb cfg6 */
1133 		0x0001,		/* mpllb cfg7 */
1134 		0x4800,		/* mpllb cfg8 */
1135 		0x0000,		/* mpllb cfg9 */
1136 		0x0000,		/* mpllb cfg10 */
1137 		},
1138 };
1139 
1140 static const struct intel_c20pll_state * const xe2hpd_c20_dp_tables[] = {
1141 	&mtl_c20_dp_rbr,
1142 	&mtl_c20_dp_hbr1,
1143 	&mtl_c20_dp_hbr2,
1144 	&mtl_c20_dp_hbr3,
1145 	&mtl_c20_dp_uhbr10,
1146 	&xe2hpd_c20_dp_uhbr13_5,
1147 	NULL,
1148 };
1149 
1150 static const struct intel_c20pll_state * const xe3lpd_c20_dp_edp_tables[] = {
1151 	&mtl_c20_dp_rbr,
1152 	&xe2hpd_c20_edp_r216,
1153 	&xe2hpd_c20_edp_r243,
1154 	&mtl_c20_dp_hbr1,
1155 	&xe2hpd_c20_edp_r324,
1156 	&xe2hpd_c20_edp_r432,
1157 	&mtl_c20_dp_hbr2,
1158 	&xe2hpd_c20_edp_r675,
1159 	&mtl_c20_dp_hbr3,
1160 	&mtl_c20_dp_uhbr10,
1161 	&xe2hpd_c20_dp_uhbr13_5,
1162 	&mtl_c20_dp_uhbr20,
1163 	NULL,
1164 };
1165 
1166 /*
1167  * HDMI link rates with 38.4 MHz reference clock.
1168  */
1169 
1170 static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
1171 	.clock = 25200,
1172 	.tx = 0x10,
1173 	.cmn = 0x1,
1174 	.pll[0] = 0x4,
1175 	.pll[1] = 0,
1176 	.pll[2] = 0xB2,
1177 	.pll[3] = 0,
1178 	.pll[4] = 0,
1179 	.pll[5] = 0,
1180 	.pll[6] = 0,
1181 	.pll[7] = 0,
1182 	.pll[8] = 0x20,
1183 	.pll[9] = 0x1,
1184 	.pll[10] = 0,
1185 	.pll[11] = 0,
1186 	.pll[12] = 0,
1187 	.pll[13] = 0,
1188 	.pll[14] = 0,
1189 	.pll[15] = 0xD,
1190 	.pll[16] = 0x6,
1191 	.pll[17] = 0x8F,
1192 	.pll[18] = 0x84,
1193 	.pll[19] = 0x23,
1194 };
1195 
1196 static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
1197 	.clock = 27000,
1198 	.tx = 0x10,
1199 	.cmn = 0x1,
1200 	.pll[0] = 0x34,
1201 	.pll[1] = 0,
1202 	.pll[2] = 0xC0,
1203 	.pll[3] = 0,
1204 	.pll[4] = 0,
1205 	.pll[5] = 0,
1206 	.pll[6] = 0,
1207 	.pll[7] = 0,
1208 	.pll[8] = 0x20,
1209 	.pll[9] = 0x1,
1210 	.pll[10] = 0,
1211 	.pll[11] = 0,
1212 	.pll[12] = 0x80,
1213 	.pll[13] = 0,
1214 	.pll[14] = 0,
1215 	.pll[15] = 0xD,
1216 	.pll[16] = 0x6,
1217 	.pll[17] = 0xCF,
1218 	.pll[18] = 0x84,
1219 	.pll[19] = 0x23,
1220 };
1221 
1222 static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
1223 	.clock = 74250,
1224 	.tx = 0x10,
1225 	.cmn = 0x1,
1226 	.pll[0] = 0xF4,
1227 	.pll[1] = 0,
1228 	.pll[2] = 0x7A,
1229 	.pll[3] = 0,
1230 	.pll[4] = 0,
1231 	.pll[5] = 0,
1232 	.pll[6] = 0,
1233 	.pll[7] = 0,
1234 	.pll[8] = 0x20,
1235 	.pll[9] = 0x1,
1236 	.pll[10] = 0,
1237 	.pll[11] = 0,
1238 	.pll[12] = 0x58,
1239 	.pll[13] = 0,
1240 	.pll[14] = 0,
1241 	.pll[15] = 0xB,
1242 	.pll[16] = 0x6,
1243 	.pll[17] = 0xF,
1244 	.pll[18] = 0x85,
1245 	.pll[19] = 0x23,
1246 };
1247 
1248 static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
1249 	.clock = 148500,
1250 	.tx = 0x10,
1251 	.cmn = 0x1,
1252 	.pll[0] = 0xF4,
1253 	.pll[1] = 0,
1254 	.pll[2] = 0x7A,
1255 	.pll[3] = 0,
1256 	.pll[4] = 0,
1257 	.pll[5] = 0,
1258 	.pll[6] = 0,
1259 	.pll[7] = 0,
1260 	.pll[8] = 0x20,
1261 	.pll[9] = 0x1,
1262 	.pll[10] = 0,
1263 	.pll[11] = 0,
1264 	.pll[12] = 0x58,
1265 	.pll[13] = 0,
1266 	.pll[14] = 0,
1267 	.pll[15] = 0xA,
1268 	.pll[16] = 0x6,
1269 	.pll[17] = 0xF,
1270 	.pll[18] = 0x85,
1271 	.pll[19] = 0x23,
1272 };
1273 
1274 static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
1275 	.clock = 594000,
1276 	.tx = 0x10,
1277 	.cmn = 0x1,
1278 	.pll[0] = 0xF4,
1279 	.pll[1] = 0,
1280 	.pll[2] = 0x7A,
1281 	.pll[3] = 0,
1282 	.pll[4] = 0,
1283 	.pll[5] = 0,
1284 	.pll[6] = 0,
1285 	.pll[7] = 0,
1286 	.pll[8] = 0x20,
1287 	.pll[9] = 0x1,
1288 	.pll[10] = 0,
1289 	.pll[11] = 0,
1290 	.pll[12] = 0x58,
1291 	.pll[13] = 0,
1292 	.pll[14] = 0,
1293 	.pll[15] = 0x8,
1294 	.pll[16] = 0x6,
1295 	.pll[17] = 0xF,
1296 	.pll[18] = 0x85,
1297 	.pll[19] = 0x23,
1298 };
1299 
1300 /* Precomputed C10 HDMI PLL tables */
1301 static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1302 	.clock = 27027,
1303 	.tx = 0x10,
1304 	.cmn = 0x1,
1305 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1306 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1307 	.pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1308 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1309 };
1310 
1311 static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1312 	.clock = 28320,
1313 	.tx = 0x10,
1314 	.cmn = 0x1,
1315 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1316 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1317 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1318 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1319 };
1320 
1321 static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1322 	.clock = 30240,
1323 	.tx = 0x10,
1324 	.cmn = 0x1,
1325 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1326 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1327 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1328 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1329 };
1330 
1331 static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1332 	.clock = 31500,
1333 	.tx = 0x10,
1334 	.cmn = 0x1,
1335 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1336 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1337 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1338 	.pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1339 };
1340 
1341 static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1342 	.clock = 36000,
1343 	.tx = 0x10,
1344 	.cmn = 0x1,
1345 	.pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1346 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1347 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1348 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1349 };
1350 
1351 static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1352 	.clock = 40000,
1353 	.tx = 0x10,
1354 	.cmn = 0x1,
1355 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1356 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1357 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1358 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1359 };
1360 
1361 static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1362 	.clock = 49500,
1363 	.tx = 0x10,
1364 	.cmn = 0x1,
1365 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1366 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1367 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1368 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1369 };
1370 
1371 static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1372 	.clock = 50000,
1373 	.tx = 0x10,
1374 	.cmn = 0x1,
1375 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1376 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1377 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1378 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1379 };
1380 
1381 static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1382 	.clock = 57284,
1383 	.tx = 0x10,
1384 	.cmn = 0x1,
1385 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1386 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1387 	.pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1388 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1389 };
1390 
1391 static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1392 	.clock = 58000,
1393 	.tx = 0x10,
1394 	.cmn = 0x1,
1395 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1396 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1397 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1398 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1399 };
1400 
1401 static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1402 	.clock = 65000,
1403 	.tx = 0x10,
1404 	.cmn = 0x1,
1405 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1406 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1407 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1408 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1409 };
1410 
1411 static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1412 	.clock = 71000,
1413 	.tx = 0x10,
1414 	.cmn = 0x1,
1415 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1416 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1417 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1418 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1419 };
1420 
1421 static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1422 	.clock = 74176,
1423 	.tx = 0x10,
1424 	.cmn = 0x1,
1425 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1426 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1427 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1428 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1429 };
1430 
1431 static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1432 	.clock = 75000,
1433 	.tx = 0x10,
1434 	.cmn = 0x1,
1435 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1436 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1437 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1438 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1439 };
1440 
1441 static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1442 	.clock = 78750,
1443 	.tx = 0x10,
1444 	.cmn = 0x1,
1445 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1446 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1447 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1448 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1449 };
1450 
1451 static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1452 	.clock = 85500,
1453 	.tx = 0x10,
1454 	.cmn = 0x1,
1455 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1456 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1457 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1458 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1459 };
1460 
1461 static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1462 	.clock = 88750,
1463 	.tx = 0x10,
1464 	.cmn = 0x1,
1465 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1466 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1467 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1468 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1469 };
1470 
1471 static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1472 	.clock = 106500,
1473 	.tx = 0x10,
1474 	.cmn = 0x1,
1475 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1476 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1477 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1478 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1479 };
1480 
1481 static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1482 	.clock = 108000,
1483 	.tx = 0x10,
1484 	.cmn = 0x1,
1485 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1486 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1487 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1488 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1489 };
1490 
1491 static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1492 	.clock = 115500,
1493 	.tx = 0x10,
1494 	.cmn = 0x1,
1495 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1496 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1497 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1498 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1499 };
1500 
1501 static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1502 	.clock = 119000,
1503 	.tx = 0x10,
1504 	.cmn = 0x1,
1505 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1506 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1507 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1508 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1509 };
1510 
1511 static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1512 	.clock = 135000,
1513 	.tx = 0x10,
1514 	.cmn = 0x1,
1515 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1516 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1517 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1518 	.pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1519 };
1520 
1521 static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1522 	.clock = 138500,
1523 	.tx = 0x10,
1524 	.cmn = 0x1,
1525 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1526 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1527 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1528 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1529 };
1530 
1531 static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1532 	.clock = 147160,
1533 	.tx = 0x10,
1534 	.cmn = 0x1,
1535 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1536 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1537 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1538 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1539 };
1540 
1541 static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1542 	.clock = 148352,
1543 	.tx = 0x10,
1544 	.cmn = 0x1,
1545 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1546 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1547 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1548 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1549 };
1550 
1551 static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1552 	.clock = 154000,
1553 	.tx = 0x10,
1554 	.cmn = 0x1,
1555 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1556 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1557 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1558 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1559 };
1560 
1561 static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1562 	.clock = 162000,
1563 	.tx = 0x10,
1564 	.cmn = 0x1,
1565 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1566 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1567 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1568 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1569 };
1570 
1571 static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1572 	.clock = 167000,
1573 	.tx = 0x10,
1574 	.cmn = 0x1,
1575 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1576 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1577 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1578 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1579 };
1580 
1581 static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1582 	.clock = 197802,
1583 	.tx = 0x10,
1584 	.cmn = 0x1,
1585 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1586 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1587 	.pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1588 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1589 };
1590 
1591 static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1592 	.clock = 198000,
1593 	.tx = 0x10,
1594 	.cmn = 0x1,
1595 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1596 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1597 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1598 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1599 };
1600 
1601 static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1602 	.clock = 209800,
1603 	.tx = 0x10,
1604 	.cmn = 0x1,
1605 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1606 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1607 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1608 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1609 };
1610 
1611 static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1612 	.clock = 241500,
1613 	.tx = 0x10,
1614 	.cmn = 0x1,
1615 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1616 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1617 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1618 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1619 };
1620 
1621 static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1622 	.clock = 262750,
1623 	.tx = 0x10,
1624 	.cmn = 0x1,
1625 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1626 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1627 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1628 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1629 };
1630 
1631 static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1632 	.clock = 268500,
1633 	.tx = 0x10,
1634 	.cmn = 0x1,
1635 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1636 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1637 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1638 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1639 };
1640 
1641 static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1642 	.clock = 296703,
1643 	.tx = 0x10,
1644 	.cmn = 0x1,
1645 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1646 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1647 	.pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1648 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1649 };
1650 
1651 static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1652 	.clock = 297000,
1653 	.tx = 0x10,
1654 	.cmn = 0x1,
1655 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1656 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1657 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1658 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1659 };
1660 
1661 static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1662 	.clock = 319750,
1663 	.tx = 0x10,
1664 	.cmn = 0x1,
1665 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1666 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1667 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1668 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1669 };
1670 
1671 static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1672 	.clock = 497750,
1673 	.tx = 0x10,
1674 	.cmn = 0x1,
1675 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1676 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1677 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1678 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1679 };
1680 
1681 static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1682 	.clock = 592000,
1683 	.tx = 0x10,
1684 	.cmn = 0x1,
1685 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1686 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1687 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1688 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1689 };
1690 
1691 static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1692 	.clock = 593407,
1693 	.tx = 0x10,
1694 	.cmn = 0x1,
1695 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1696 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1697 	.pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1698 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1699 };
1700 
1701 static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1702 	&mtl_c10_hdmi_25_2, /* Consolidated Table */
1703 	&mtl_c10_hdmi_27_0, /* Consolidated Table */
1704 	&mtl_c10_hdmi_27027,
1705 	&mtl_c10_hdmi_28320,
1706 	&mtl_c10_hdmi_30240,
1707 	&mtl_c10_hdmi_31500,
1708 	&mtl_c10_hdmi_36000,
1709 	&mtl_c10_hdmi_40000,
1710 	&mtl_c10_hdmi_49500,
1711 	&mtl_c10_hdmi_50000,
1712 	&mtl_c10_hdmi_57284,
1713 	&mtl_c10_hdmi_58000,
1714 	&mtl_c10_hdmi_65000,
1715 	&mtl_c10_hdmi_71000,
1716 	&mtl_c10_hdmi_74176,
1717 	&mtl_c10_hdmi_74_25, /* Consolidated Table */
1718 	&mtl_c10_hdmi_75000,
1719 	&mtl_c10_hdmi_78750,
1720 	&mtl_c10_hdmi_85500,
1721 	&mtl_c10_hdmi_88750,
1722 	&mtl_c10_hdmi_106500,
1723 	&mtl_c10_hdmi_108000,
1724 	&mtl_c10_hdmi_115500,
1725 	&mtl_c10_hdmi_119000,
1726 	&mtl_c10_hdmi_135000,
1727 	&mtl_c10_hdmi_138500,
1728 	&mtl_c10_hdmi_147160,
1729 	&mtl_c10_hdmi_148352,
1730 	&mtl_c10_hdmi_148_5, /* Consolidated Table */
1731 	&mtl_c10_hdmi_154000,
1732 	&mtl_c10_hdmi_162000,
1733 	&mtl_c10_hdmi_167000,
1734 	&mtl_c10_hdmi_197802,
1735 	&mtl_c10_hdmi_198000,
1736 	&mtl_c10_hdmi_209800,
1737 	&mtl_c10_hdmi_241500,
1738 	&mtl_c10_hdmi_262750,
1739 	&mtl_c10_hdmi_268500,
1740 	&mtl_c10_hdmi_296703,
1741 	&mtl_c10_hdmi_297000,
1742 	&mtl_c10_hdmi_319750,
1743 	&mtl_c10_hdmi_497750,
1744 	&mtl_c10_hdmi_592000,
1745 	&mtl_c10_hdmi_593407,
1746 	&mtl_c10_hdmi_594, /* Consolidated Table */
1747 	NULL,
1748 };
1749 
1750 static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1751 	.clock = 25175,
1752 	.tx = {  0xbe88, /* tx cfg0 */
1753 		  0x9800, /* tx cfg1 */
1754 		  0x0000, /* tx cfg2 */
1755 		},
1756 	.cmn = { 0x0500, /* cmn cfg0*/
1757 		  0x0005, /* cmn cfg1 */
1758 		  0x0000, /* cmn cfg2 */
1759 		  0x0000, /* cmn cfg3 */
1760 		},
1761 	.mpllb = { 0xa0d2,	/* mpllb cfg0 */
1762 		   0x7d80,	/* mpllb cfg1 */
1763 		   0x0906,	/* mpllb cfg2 */
1764 		   0xbe40,	/* mpllb cfg3 */
1765 		   0x0000,	/* mpllb cfg4 */
1766 		   0x0000,	/* mpllb cfg5 */
1767 		   0x0200,	/* mpllb cfg6 */
1768 		   0x0001,	/* mpllb cfg7 */
1769 		   0x0000,	/* mpllb cfg8 */
1770 		   0x0000,	/* mpllb cfg9 */
1771 		   0x0001,	/* mpllb cfg10 */
1772 		},
1773 };
1774 
1775 static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1776 	.clock = 27000,
1777 	.tx = {  0xbe88, /* tx cfg0 */
1778 		  0x9800, /* tx cfg1 */
1779 		  0x0000, /* tx cfg2 */
1780 		},
1781 	.cmn = { 0x0500, /* cmn cfg0*/
1782 		  0x0005, /* cmn cfg1 */
1783 		  0x0000, /* cmn cfg2 */
1784 		  0x0000, /* cmn cfg3 */
1785 		},
1786 	.mpllb = { 0xa0e0,	/* mpllb cfg0 */
1787 		   0x7d80,	/* mpllb cfg1 */
1788 		   0x0906,	/* mpllb cfg2 */
1789 		   0xbe40,	/* mpllb cfg3 */
1790 		   0x0000,	/* mpllb cfg4 */
1791 		   0x0000,	/* mpllb cfg5 */
1792 		   0x2200,	/* mpllb cfg6 */
1793 		   0x0001,	/* mpllb cfg7 */
1794 		   0x8000,	/* mpllb cfg8 */
1795 		   0x0000,	/* mpllb cfg9 */
1796 		   0x0001,	/* mpllb cfg10 */
1797 		},
1798 };
1799 
1800 static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1801 	.clock = 74250,
1802 	.tx = {  0xbe88, /* tx cfg0 */
1803 		  0x9800, /* tx cfg1 */
1804 		  0x0000, /* tx cfg2 */
1805 		},
1806 	.cmn = { 0x0500, /* cmn cfg0*/
1807 		  0x0005, /* cmn cfg1 */
1808 		  0x0000, /* cmn cfg2 */
1809 		  0x0000, /* cmn cfg3 */
1810 		},
1811 	.mpllb = { 0x609a,	/* mpllb cfg0 */
1812 		   0x7d40,	/* mpllb cfg1 */
1813 		   0xca06,	/* mpllb cfg2 */
1814 		   0xbe40,	/* mpllb cfg3 */
1815 		   0x0000,	/* mpllb cfg4 */
1816 		   0x0000,	/* mpllb cfg5 */
1817 		   0x2200,	/* mpllb cfg6 */
1818 		   0x0001,	/* mpllb cfg7 */
1819 		   0x5800,	/* mpllb cfg8 */
1820 		   0x0000,	/* mpllb cfg9 */
1821 		   0x0001,	/* mpllb cfg10 */
1822 		},
1823 };
1824 
1825 static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1826 	.clock = 148500,
1827 	.tx = {  0xbe88, /* tx cfg0 */
1828 		  0x9800, /* tx cfg1 */
1829 		  0x0000, /* tx cfg2 */
1830 		},
1831 	.cmn = { 0x0500, /* cmn cfg0*/
1832 		  0x0005, /* cmn cfg1 */
1833 		  0x0000, /* cmn cfg2 */
1834 		  0x0000, /* cmn cfg3 */
1835 		},
1836 	.mpllb = { 0x409a,	/* mpllb cfg0 */
1837 		   0x7d20,	/* mpllb cfg1 */
1838 		   0xca06,	/* mpllb cfg2 */
1839 		   0xbe40,	/* mpllb cfg3 */
1840 		   0x0000,	/* mpllb cfg4 */
1841 		   0x0000,	/* mpllb cfg5 */
1842 		   0x2200,	/* mpllb cfg6 */
1843 		   0x0001,	/* mpllb cfg7 */
1844 		   0x5800,	/* mpllb cfg8 */
1845 		   0x0000,	/* mpllb cfg9 */
1846 		   0x0001,	/* mpllb cfg10 */
1847 		},
1848 };
1849 
1850 static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1851 	.clock = 594000,
1852 	.tx = {  0xbe88, /* tx cfg0 */
1853 		  0x9800, /* tx cfg1 */
1854 		  0x0000, /* tx cfg2 */
1855 		},
1856 	.cmn = { 0x0500, /* cmn cfg0*/
1857 		  0x0005, /* cmn cfg1 */
1858 		  0x0000, /* cmn cfg2 */
1859 		  0x0000, /* cmn cfg3 */
1860 		},
1861 	.mpllb = { 0x009a,	/* mpllb cfg0 */
1862 		   0x7d08,	/* mpllb cfg1 */
1863 		   0xca06,	/* mpllb cfg2 */
1864 		   0xbe40,	/* mpllb cfg3 */
1865 		   0x0000,	/* mpllb cfg4 */
1866 		   0x0000,	/* mpllb cfg5 */
1867 		   0x2200,	/* mpllb cfg6 */
1868 		   0x0001,	/* mpllb cfg7 */
1869 		   0x5800,	/* mpllb cfg8 */
1870 		   0x0000,	/* mpllb cfg9 */
1871 		   0x0001,	/* mpllb cfg10 */
1872 		},
1873 };
1874 
1875 static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1876 	.clock = 3000000,
1877 	.tx = {  0xbe98, /* tx cfg0 */
1878 		  0x8800, /* tx cfg1 */
1879 		  0x0000, /* tx cfg2 */
1880 		},
1881 	.cmn = { 0x0500, /* cmn cfg0*/
1882 		  0x0005, /* cmn cfg1 */
1883 		  0x0000, /* cmn cfg2 */
1884 		  0x0000, /* cmn cfg3 */
1885 		},
1886 	.mpllb = { 0x309c,	/* mpllb cfg0 */
1887 		   0x2110,	/* mpllb cfg1 */
1888 		   0xca06,	/* mpllb cfg2 */
1889 		   0xbe40,	/* mpllb cfg3 */
1890 		   0x0000,	/* mpllb cfg4 */
1891 		   0x0000,	/* mpllb cfg5 */
1892 		   0x2200,	/* mpllb cfg6 */
1893 		   0x0001,	/* mpllb cfg7 */
1894 		   0x2000,	/* mpllb cfg8 */
1895 		   0x0000,	/* mpllb cfg9 */
1896 		   0x0004,	/* mpllb cfg10 */
1897 		},
1898 };
1899 
1900 static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1901 	.clock = 6000000,
1902 	.tx = {  0xbe98, /* tx cfg0 */
1903 		  0x8800, /* tx cfg1 */
1904 		  0x0000, /* tx cfg2 */
1905 		},
1906 	.cmn = { 0x0500, /* cmn cfg0*/
1907 		  0x0005, /* cmn cfg1 */
1908 		  0x0000, /* cmn cfg2 */
1909 		  0x0000, /* cmn cfg3 */
1910 		},
1911 	.mpllb = { 0x109c,	/* mpllb cfg0 */
1912 		   0x2108,	/* mpllb cfg1 */
1913 		   0xca06,	/* mpllb cfg2 */
1914 		   0xbe40,	/* mpllb cfg3 */
1915 		   0x0000,	/* mpllb cfg4 */
1916 		   0x0000,	/* mpllb cfg5 */
1917 		   0x2200,	/* mpllb cfg6 */
1918 		   0x0001,	/* mpllb cfg7 */
1919 		   0x2000,	/* mpllb cfg8 */
1920 		   0x0000,	/* mpllb cfg9 */
1921 		   0x0004,	/* mpllb cfg10 */
1922 		},
1923 };
1924 
1925 static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1926 	.clock = 8000000,
1927 	.tx = {  0xbe98, /* tx cfg0 */
1928 		  0x8800, /* tx cfg1 */
1929 		  0x0000, /* tx cfg2 */
1930 		},
1931 	.cmn = { 0x0500, /* cmn cfg0*/
1932 		  0x0005, /* cmn cfg1 */
1933 		  0x0000, /* cmn cfg2 */
1934 		  0x0000, /* cmn cfg3 */
1935 		},
1936 	.mpllb = { 0x10d0,	/* mpllb cfg0 */
1937 		   0x2108,	/* mpllb cfg1 */
1938 		   0x4a06,	/* mpllb cfg2 */
1939 		   0xbe40,	/* mpllb cfg3 */
1940 		   0x0000,	/* mpllb cfg4 */
1941 		   0x0000,	/* mpllb cfg5 */
1942 		   0x2200,	/* mpllb cfg6 */
1943 		   0x0003,	/* mpllb cfg7 */
1944 		   0x2aaa,	/* mpllb cfg8 */
1945 		   0x0002,	/* mpllb cfg9 */
1946 		   0x0004,	/* mpllb cfg10 */
1947 		},
1948 };
1949 
1950 static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1951 	.clock = 10000000,
1952 	.tx = {  0xbe98, /* tx cfg0 */
1953 		  0x8800, /* tx cfg1 */
1954 		  0x0000, /* tx cfg2 */
1955 		},
1956 	.cmn = { 0x0500, /* cmn cfg0*/
1957 		  0x0005, /* cmn cfg1 */
1958 		  0x0000, /* cmn cfg2 */
1959 		  0x0000, /* cmn cfg3 */
1960 		},
1961 	.mpllb = { 0x1104,	/* mpllb cfg0 */
1962 		   0x2108,	/* mpllb cfg1 */
1963 		   0x0a06,	/* mpllb cfg2 */
1964 		   0xbe40,	/* mpllb cfg3 */
1965 		   0x0000,	/* mpllb cfg4 */
1966 		   0x0000,	/* mpllb cfg5 */
1967 		   0x2200,	/* mpllb cfg6 */
1968 		   0x0003,	/* mpllb cfg7 */
1969 		   0x3555,	/* mpllb cfg8 */
1970 		   0x0001,	/* mpllb cfg9 */
1971 		   0x0004,	/* mpllb cfg10 */
1972 		},
1973 };
1974 
1975 static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1976 	.clock = 12000000,
1977 	.tx = {  0xbe98, /* tx cfg0 */
1978 		  0x8800, /* tx cfg1 */
1979 		  0x0000, /* tx cfg2 */
1980 		},
1981 	.cmn = { 0x0500, /* cmn cfg0*/
1982 		  0x0005, /* cmn cfg1 */
1983 		  0x0000, /* cmn cfg2 */
1984 		  0x0000, /* cmn cfg3 */
1985 		},
1986 	.mpllb = { 0x1138,	/* mpllb cfg0 */
1987 		   0x2108,	/* mpllb cfg1 */
1988 		   0x5486,	/* mpllb cfg2 */
1989 		   0xfe40,	/* mpllb cfg3 */
1990 		   0x0000,	/* mpllb cfg4 */
1991 		   0x0000,	/* mpllb cfg5 */
1992 		   0x2200,	/* mpllb cfg6 */
1993 		   0x0001,	/* mpllb cfg7 */
1994 		   0x4000,	/* mpllb cfg8 */
1995 		   0x0000,	/* mpllb cfg9 */
1996 		   0x0004,	/* mpllb cfg10 */
1997 		},
1998 };
1999 
2000 static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
2001 	&mtl_c20_hdmi_25_175,
2002 	&mtl_c20_hdmi_27_0,
2003 	&mtl_c20_hdmi_74_25,
2004 	&mtl_c20_hdmi_148_5,
2005 	&mtl_c20_hdmi_594,
2006 	&mtl_c20_hdmi_300,
2007 	&mtl_c20_hdmi_600,
2008 	&mtl_c20_hdmi_800,
2009 	&mtl_c20_hdmi_1000,
2010 	&mtl_c20_hdmi_1200,
2011 	NULL,
2012 };
2013 
2014 static const struct intel_c10pll_state * const *
intel_c10pll_tables_get(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2015 intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
2016 			struct intel_encoder *encoder)
2017 {
2018 	if (intel_crtc_has_dp_encoder(crtc_state)) {
2019 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2020 			return mtl_c10_edp_tables;
2021 		else
2022 			return mtl_c10_dp_tables;
2023 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2024 		return mtl_c10_hdmi_tables;
2025 	}
2026 
2027 	MISSING_CASE(encoder->type);
2028 	return NULL;
2029 }
2030 
intel_cx0pll_update_ssc(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state,bool is_dp)2031 static void intel_cx0pll_update_ssc(struct intel_encoder *encoder,
2032 				    struct intel_cx0pll_state *pll_state, bool is_dp)
2033 {
2034 	struct intel_display *display = to_intel_display(encoder);
2035 
2036 	if (is_dp) {
2037 		if (intel_panel_use_ssc(display)) {
2038 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2039 			pll_state->ssc_enabled =
2040 				(intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
2041 		}
2042 	}
2043 }
2044 
intel_c10pll_update_pll(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state)2045 static void intel_c10pll_update_pll(struct intel_encoder *encoder,
2046 				    struct intel_cx0pll_state *pll_state)
2047 {
2048 	struct intel_display *display = to_intel_display(encoder);
2049 	int i;
2050 
2051 	if (pll_state->ssc_enabled)
2052 		return;
2053 
2054 	drm_WARN_ON(display->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
2055 	for (i = 4; i < 9; i++)
2056 		pll_state->c10.pll[i] = 0;
2057 }
2058 
intel_c10pll_calc_state_from_table(struct intel_encoder * encoder,const struct intel_c10pll_state * const * tables,bool is_dp,int port_clock,struct intel_cx0pll_state * pll_state)2059 static int intel_c10pll_calc_state_from_table(struct intel_encoder *encoder,
2060 					      const struct intel_c10pll_state * const *tables,
2061 					      bool is_dp, int port_clock,
2062 					      struct intel_cx0pll_state *pll_state)
2063 {
2064 	int i;
2065 
2066 	for (i = 0; tables[i]; i++) {
2067 		if (port_clock == tables[i]->clock) {
2068 			pll_state->c10 = *tables[i];
2069 			intel_cx0pll_update_ssc(encoder, pll_state, is_dp);
2070 			intel_c10pll_update_pll(encoder, pll_state);
2071 			pll_state->use_c10 = true;
2072 
2073 			return 0;
2074 		}
2075 	}
2076 
2077 	return -EINVAL;
2078 }
2079 
intel_c10pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2080 static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
2081 				   struct intel_encoder *encoder)
2082 {
2083 	const struct intel_c10pll_state * const *tables;
2084 	int err;
2085 
2086 	tables = intel_c10pll_tables_get(crtc_state, encoder);
2087 	if (!tables)
2088 		return -EINVAL;
2089 
2090 	err = intel_c10pll_calc_state_from_table(encoder, tables,
2091 						 intel_crtc_has_dp_encoder(crtc_state),
2092 						 crtc_state->port_clock,
2093 						 &crtc_state->dpll_hw_state.cx0pll);
2094 
2095 	if (err == 0 || !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
2096 		return err;
2097 
2098 	/* For HDMI PLLs try SNPS PHY algorithm, if there are no precomputed tables */
2099 	intel_snps_hdmi_pll_compute_c10pll(&crtc_state->dpll_hw_state.cx0pll.c10,
2100 					   crtc_state->port_clock);
2101 	intel_c10pll_update_pll(encoder,
2102 				&crtc_state->dpll_hw_state.cx0pll);
2103 	crtc_state->dpll_hw_state.cx0pll.use_c10 = true;
2104 
2105 	return 0;
2106 }
2107 
intel_c10pll_readout_hw_state(struct intel_encoder * encoder,struct intel_c10pll_state * pll_state)2108 static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
2109 					  struct intel_c10pll_state *pll_state)
2110 {
2111 	u8 lane = INTEL_CX0_LANE0;
2112 	intel_wakeref_t wakeref;
2113 	int i;
2114 
2115 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2116 
2117 	/*
2118 	 * According to C10 VDR Register programming Sequence we need
2119 	 * to do this to read PHY internal registers from MsgBus.
2120 	 */
2121 	intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1),
2122 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
2123 		      MB_WRITE_COMMITTED);
2124 
2125 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2126 		pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i));
2127 
2128 	pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0));
2129 	pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0));
2130 
2131 	intel_cx0_phy_transaction_end(encoder, wakeref);
2132 }
2133 
intel_c10_pll_program(struct intel_display * display,struct intel_encoder * encoder,const struct intel_c10pll_state * pll_state)2134 static void intel_c10_pll_program(struct intel_display *display,
2135 				  struct intel_encoder *encoder,
2136 				  const struct intel_c10pll_state *pll_state)
2137 {
2138 	int i;
2139 
2140 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
2141 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
2142 		      MB_WRITE_COMMITTED);
2143 
2144 	/* Program the pll values only for the master lane */
2145 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2146 		intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
2147 				pll_state->pll[i],
2148 				(i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
2149 
2150 	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
2151 	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
2152 
2153 	/* Custom width needs to be programmed to 0 for both the phy lanes */
2154 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
2155 		      C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
2156 		      MB_WRITE_COMMITTED);
2157 	intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
2158 		      0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
2159 		      MB_WRITE_COMMITTED);
2160 }
2161 
intel_c10pll_dump_hw_state(struct intel_display * display,const struct intel_c10pll_state * hw_state)2162 static void intel_c10pll_dump_hw_state(struct intel_display *display,
2163 				       const struct intel_c10pll_state *hw_state)
2164 {
2165 	bool fracen;
2166 	int i;
2167 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2168 	unsigned int multiplier, tx_clk_div;
2169 
2170 	fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
2171 	drm_dbg_kms(display->drm, "c10pll_hw_state: fracen: %s, ",
2172 		    str_yes_no(fracen));
2173 
2174 	if (fracen) {
2175 		frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
2176 		frac_rem =  hw_state->pll[14] << 8 | hw_state->pll[13];
2177 		frac_den =  hw_state->pll[10] << 8 | hw_state->pll[9];
2178 		drm_dbg_kms(display->drm, "quot: %u, rem: %u, den: %u,\n",
2179 			    frac_quot, frac_rem, frac_den);
2180 	}
2181 
2182 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
2183 		      hw_state->pll[2]) / 2 + 16;
2184 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
2185 	drm_dbg_kms(display->drm,
2186 		    "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
2187 
2188 	drm_dbg_kms(display->drm, "c10pll_rawhw_state:");
2189 	drm_dbg_kms(display->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx,
2190 		    hw_state->cmn);
2191 
2192 	BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
2193 	for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
2194 		drm_dbg_kms(display->drm,
2195 			    "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
2196 			    i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
2197 			    i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
2198 }
2199 
2200 /*
2201  * Some ARLs SoCs have the same drm PCI IDs, so need a helper to differentiate based
2202  * on the host bridge device ID to get the correct txx_mics value.
2203  */
is_arrowlake_s_by_host_bridge(void)2204 static bool is_arrowlake_s_by_host_bridge(void)
2205 {
2206 	struct pci_dev *pdev = NULL;
2207 	u16 host_bridge_pci_dev_id;
2208 
2209 	while ((pdev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, pdev)))
2210 		host_bridge_pci_dev_id = pdev->device;
2211 
2212 	return pdev && IS_ARROWLAKE_S_BY_HOST_BRIDGE_ID(host_bridge_pci_dev_id);
2213 }
2214 
intel_c20_hdmi_tmds_tx_cgf_1(struct intel_crtc_state * crtc_state)2215 static u16 intel_c20_hdmi_tmds_tx_cgf_1(struct intel_crtc_state *crtc_state)
2216 {
2217 	struct intel_display *display = to_intel_display(crtc_state);
2218 	u16 tx_misc;
2219 	u16 tx_dcc_cal_dac_ctrl_range = 8;
2220 	u16 tx_term_ctrl = 2;
2221 
2222 	if (DISPLAY_VER(display) >= 20) {
2223 		tx_misc = 5;
2224 		tx_term_ctrl = 4;
2225 	} else if (display->platform.battlemage) {
2226 		tx_misc = 0;
2227 	} else if (display->platform.meteorlake_u ||
2228 		   is_arrowlake_s_by_host_bridge()) {
2229 		tx_misc = 3;
2230 	} else {
2231 		tx_misc = 7;
2232 	}
2233 
2234 	return (C20_PHY_TX_MISC(tx_misc) |
2235 		C20_PHY_TX_DCC_CAL_RANGE(tx_dcc_cal_dac_ctrl_range) |
2236 		C20_PHY_TX_DCC_BYPASS | C20_PHY_TX_TERM_CTL(tx_term_ctrl));
2237 }
2238 
intel_c20_compute_hdmi_tmds_pll(struct intel_crtc_state * crtc_state)2239 static int intel_c20_compute_hdmi_tmds_pll(struct intel_crtc_state *crtc_state)
2240 {
2241 	struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2242 	u64 datarate;
2243 	u64 mpll_tx_clk_div;
2244 	u64 vco_freq_shift;
2245 	u64 vco_freq;
2246 	u64 multiplier;
2247 	u64 mpll_multiplier;
2248 	u64 mpll_fracn_quot;
2249 	u64 mpll_fracn_rem;
2250 	u8  mpllb_ana_freq_vco;
2251 	u8  mpll_div_multiplier;
2252 
2253 	if (crtc_state->port_clock < 25175 || crtc_state->port_clock > 600000)
2254 		return -EINVAL;
2255 
2256 	datarate = ((u64)crtc_state->port_clock * 1000) * 10;
2257 	mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
2258 	vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
2259 	vco_freq = (datarate << vco_freq_shift) >> 8;
2260 	multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
2261 	mpll_multiplier = 2 * (multiplier >> 32);
2262 
2263 	mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
2264 	mpll_fracn_rem  = multiplier & 0xFFFF;
2265 
2266 	mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
2267 						  datarate), 255);
2268 
2269 	if (vco_freq <= DATARATE_3000000000)
2270 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
2271 	else if (vco_freq <= DATARATE_3500000000)
2272 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
2273 	else if (vco_freq <= DATARATE_4000000000)
2274 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
2275 	else
2276 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
2277 
2278 	pll_state->clock	= crtc_state->port_clock;
2279 	pll_state->tx[0]	= 0xbe88;
2280 	pll_state->tx[1]	= intel_c20_hdmi_tmds_tx_cgf_1(crtc_state);
2281 	pll_state->tx[2]	= 0x0000;
2282 	pll_state->cmn[0]	= 0x0500;
2283 	pll_state->cmn[1]	= 0x0005;
2284 	pll_state->cmn[2]	= 0x0000;
2285 	pll_state->cmn[3]	= 0x0000;
2286 	pll_state->mpllb[0]	= (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
2287 				   MPLL_MULTIPLIER(mpll_multiplier));
2288 	pll_state->mpllb[1]	= (CAL_DAC_CODE(CAL_DAC_CODE_31) |
2289 				   WORD_CLK_DIV |
2290 				   MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
2291 	pll_state->mpllb[2]	= (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
2292 				   CP_PROP(CP_PROP_20) |
2293 				   CP_INT(CP_INT_6));
2294 	pll_state->mpllb[3]	= (V2I(V2I_2) |
2295 				   CP_PROP_GS(CP_PROP_GS_30) |
2296 				   CP_INT_GS(CP_INT_GS_28));
2297 	pll_state->mpllb[4]	= 0x0000;
2298 	pll_state->mpllb[5]	= 0x0000;
2299 	pll_state->mpllb[6]	= (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
2300 	pll_state->mpllb[7]	= MPLL_FRACN_DEN;
2301 	pll_state->mpllb[8]	= mpll_fracn_quot;
2302 	pll_state->mpllb[9]	= mpll_fracn_rem;
2303 	pll_state->mpllb[10]	= HDMI_DIV(HDMI_DIV_1);
2304 
2305 	return 0;
2306 }
2307 
2308 static const struct intel_c20pll_state * const *
intel_c20_pll_tables_get(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2309 intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2310 			 struct intel_encoder *encoder)
2311 {
2312 	struct intel_display *display = to_intel_display(crtc_state);
2313 
2314 	if (intel_crtc_has_dp_encoder(crtc_state)) {
2315 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) {
2316 			if (DISPLAY_RUNTIME_INFO(display)->edp_typec_support)
2317 				return xe3lpd_c20_dp_edp_tables;
2318 			if (DISPLAY_VERx100(display) == 1401)
2319 				return xe2hpd_c20_edp_tables;
2320 		}
2321 
2322 		if (DISPLAY_VER(display) >= 30)
2323 			return xe3lpd_c20_dp_edp_tables;
2324 		else if (DISPLAY_VERx100(display) == 1401)
2325 			return xe2hpd_c20_dp_tables;
2326 		else
2327 			return mtl_c20_dp_tables;
2328 
2329 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2330 		return mtl_c20_hdmi_tables;
2331 	}
2332 
2333 	MISSING_CASE(encoder->type);
2334 	return NULL;
2335 }
2336 
intel_c20pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2337 static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2338 				   struct intel_encoder *encoder)
2339 {
2340 	const struct intel_c20pll_state * const *tables;
2341 	int i;
2342 
2343 	/* try computed C20 HDMI tables before using consolidated tables */
2344 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2345 		if (intel_c20_compute_hdmi_tmds_pll(crtc_state) == 0)
2346 			return 0;
2347 	}
2348 
2349 	tables = intel_c20_pll_tables_get(crtc_state, encoder);
2350 	if (!tables)
2351 		return -EINVAL;
2352 
2353 	for (i = 0; tables[i]; i++) {
2354 		if (crtc_state->port_clock == tables[i]->clock) {
2355 			crtc_state->dpll_hw_state.cx0pll.c20 = *tables[i];
2356 			intel_cx0pll_update_ssc(encoder,
2357 						&crtc_state->dpll_hw_state.cx0pll,
2358 						intel_crtc_has_dp_encoder(crtc_state));
2359 			crtc_state->dpll_hw_state.cx0pll.use_c10 = false;
2360 			return 0;
2361 		}
2362 	}
2363 
2364 	return -EINVAL;
2365 }
2366 
intel_cx0pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2367 int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2368 			    struct intel_encoder *encoder)
2369 {
2370 	if (intel_encoder_is_c10phy(encoder))
2371 		return intel_c10pll_calc_state(crtc_state, encoder);
2372 	return intel_c20pll_calc_state(crtc_state, encoder);
2373 }
2374 
intel_c20phy_use_mpllb(const struct intel_c20pll_state * state)2375 static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state)
2376 {
2377 	return state->tx[0] & C20_PHY_USE_MPLLB;
2378 }
2379 
intel_c20pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_c20pll_state * pll_state)2380 static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2381 					const struct intel_c20pll_state *pll_state)
2382 {
2383 	unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2384 	unsigned int multiplier, refclk = 38400;
2385 	unsigned int tx_clk_div;
2386 	unsigned int ref_clk_mpllb_div;
2387 	unsigned int fb_clk_div4_en;
2388 	unsigned int ref, vco;
2389 	unsigned int tx_rate_mult;
2390 	unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2391 
2392 	if (intel_c20phy_use_mpllb(pll_state)) {
2393 		tx_rate_mult = 1;
2394 		frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2395 		frac_quot = pll_state->mpllb[8];
2396 		frac_rem =  pll_state->mpllb[9];
2397 		frac_den =  pll_state->mpllb[7];
2398 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2399 		tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2400 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2401 		fb_clk_div4_en = 0;
2402 	} else {
2403 		tx_rate_mult = 2;
2404 		frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2405 		frac_quot = pll_state->mplla[8];
2406 		frac_rem =  pll_state->mplla[9];
2407 		frac_den =  pll_state->mplla[7];
2408 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2409 		tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2410 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2411 		fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2412 	}
2413 
2414 	if (frac_en)
2415 		frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2416 	else
2417 		frac = 0;
2418 
2419 	ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2420 	vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2421 
2422 	return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2423 }
2424 
intel_c20pll_readout_hw_state(struct intel_encoder * encoder,struct intel_c20pll_state * pll_state)2425 static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2426 					  struct intel_c20pll_state *pll_state)
2427 {
2428 	struct intel_display *display = to_intel_display(encoder);
2429 	bool cntx;
2430 	intel_wakeref_t wakeref;
2431 	int i;
2432 
2433 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2434 
2435 	/* 1. Read current context selection */
2436 	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2437 
2438 	/* Read Tx configuration */
2439 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2440 		if (cntx)
2441 			pll_state->tx[i] = intel_c20_sram_read(encoder,
2442 							       INTEL_CX0_LANE0,
2443 							       PHY_C20_B_TX_CNTX_CFG(display, i));
2444 		else
2445 			pll_state->tx[i] = intel_c20_sram_read(encoder,
2446 							       INTEL_CX0_LANE0,
2447 							       PHY_C20_A_TX_CNTX_CFG(display, i));
2448 	}
2449 
2450 	/* Read common configuration */
2451 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2452 		if (cntx)
2453 			pll_state->cmn[i] = intel_c20_sram_read(encoder,
2454 								INTEL_CX0_LANE0,
2455 								PHY_C20_B_CMN_CNTX_CFG(display, i));
2456 		else
2457 			pll_state->cmn[i] = intel_c20_sram_read(encoder,
2458 								INTEL_CX0_LANE0,
2459 								PHY_C20_A_CMN_CNTX_CFG(display, i));
2460 	}
2461 
2462 	if (intel_c20phy_use_mpllb(pll_state)) {
2463 		/* MPLLB configuration */
2464 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2465 			if (cntx)
2466 				pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2467 									  INTEL_CX0_LANE0,
2468 									  PHY_C20_B_MPLLB_CNTX_CFG(display, i));
2469 			else
2470 				pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2471 									  INTEL_CX0_LANE0,
2472 									  PHY_C20_A_MPLLB_CNTX_CFG(display, i));
2473 		}
2474 	} else {
2475 		/* MPLLA configuration */
2476 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2477 			if (cntx)
2478 				pll_state->mplla[i] = intel_c20_sram_read(encoder,
2479 									  INTEL_CX0_LANE0,
2480 									  PHY_C20_B_MPLLA_CNTX_CFG(display, i));
2481 			else
2482 				pll_state->mplla[i] = intel_c20_sram_read(encoder,
2483 									  INTEL_CX0_LANE0,
2484 									  PHY_C20_A_MPLLA_CNTX_CFG(display, i));
2485 		}
2486 	}
2487 
2488 	pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state);
2489 
2490 	intel_cx0_phy_transaction_end(encoder, wakeref);
2491 }
2492 
intel_c20pll_dump_hw_state(struct intel_display * display,const struct intel_c20pll_state * hw_state)2493 static void intel_c20pll_dump_hw_state(struct intel_display *display,
2494 				       const struct intel_c20pll_state *hw_state)
2495 {
2496 	int i;
2497 
2498 	drm_dbg_kms(display->drm, "c20pll_hw_state:\n");
2499 	drm_dbg_kms(display->drm,
2500 		    "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2501 		    hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2502 	drm_dbg_kms(display->drm,
2503 		    "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2504 		    hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2505 
2506 	if (intel_c20phy_use_mpllb(hw_state)) {
2507 		for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2508 			drm_dbg_kms(display->drm, "mpllb[%d] = 0x%.4x\n", i,
2509 				    hw_state->mpllb[i]);
2510 	} else {
2511 		for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2512 			drm_dbg_kms(display->drm, "mplla[%d] = 0x%.4x\n", i,
2513 				    hw_state->mplla[i]);
2514 	}
2515 }
2516 
intel_cx0pll_dump_hw_state(struct intel_display * display,const struct intel_cx0pll_state * hw_state)2517 void intel_cx0pll_dump_hw_state(struct intel_display *display,
2518 				const struct intel_cx0pll_state *hw_state)
2519 {
2520 	if (hw_state->use_c10)
2521 		intel_c10pll_dump_hw_state(display, &hw_state->c10);
2522 	else
2523 		intel_c20pll_dump_hw_state(display, &hw_state->c20);
2524 }
2525 
intel_c20_get_dp_rate(u32 clock)2526 static u8 intel_c20_get_dp_rate(u32 clock)
2527 {
2528 	switch (clock) {
2529 	case 162000: /* 1.62 Gbps DP1.4 */
2530 		return 0;
2531 	case 270000: /* 2.7 Gbps DP1.4 */
2532 		return 1;
2533 	case 540000: /* 5.4 Gbps DP 1.4 */
2534 		return 2;
2535 	case 810000: /* 8.1 Gbps DP1.4 */
2536 		return 3;
2537 	case 216000: /* 2.16 Gbps eDP */
2538 		return 4;
2539 	case 243000: /* 2.43 Gbps eDP */
2540 		return 5;
2541 	case 324000: /* 3.24 Gbps eDP */
2542 		return 6;
2543 	case 432000: /* 4.32 Gbps eDP */
2544 		return 7;
2545 	case 1000000: /* 10 Gbps DP2.0 */
2546 		return 8;
2547 	case 1350000: /* 13.5 Gbps DP2.0 */
2548 		return 9;
2549 	case 2000000: /* 20 Gbps DP2.0 */
2550 		return 10;
2551 	case 648000: /* 6.48 Gbps eDP*/
2552 		return 11;
2553 	case 675000: /* 6.75 Gbps eDP*/
2554 		return 12;
2555 	default:
2556 		MISSING_CASE(clock);
2557 		return 0;
2558 	}
2559 }
2560 
intel_c20_get_hdmi_rate(u32 clock)2561 static u8 intel_c20_get_hdmi_rate(u32 clock)
2562 {
2563 	if (clock >= 25175 && clock <= 600000)
2564 		return 0;
2565 
2566 	switch (clock) {
2567 	case 300000: /* 3 Gbps */
2568 	case 600000: /* 6 Gbps */
2569 	case 1200000: /* 12 Gbps */
2570 		return 1;
2571 	case 800000: /* 8 Gbps */
2572 		return 2;
2573 	case 1000000: /* 10 Gbps */
2574 		return 3;
2575 	default:
2576 		MISSING_CASE(clock);
2577 		return 0;
2578 	}
2579 }
2580 
is_dp2(u32 clock)2581 static bool is_dp2(u32 clock)
2582 {
2583 	/* DP2.0 clock rates */
2584 	if (clock == 1000000 || clock == 1350000 || clock  == 2000000)
2585 		return true;
2586 
2587 	return false;
2588 }
2589 
is_hdmi_frl(u32 clock)2590 static bool is_hdmi_frl(u32 clock)
2591 {
2592 	switch (clock) {
2593 	case 300000: /* 3 Gbps */
2594 	case 600000: /* 6 Gbps */
2595 	case 800000: /* 8 Gbps */
2596 	case 1000000: /* 10 Gbps */
2597 	case 1200000: /* 12 Gbps */
2598 		return true;
2599 	default:
2600 		return false;
2601 	}
2602 }
2603 
intel_c20_protocol_switch_valid(struct intel_encoder * encoder)2604 static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2605 {
2606 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2607 
2608 	/* banks should not be cleared for DPALT/USB4/TBT modes */
2609 	/* TODO: optimize re-calibration in legacy mode */
2610 	return intel_tc_port_in_legacy_mode(intel_dig_port);
2611 }
2612 
intel_get_c20_custom_width(u32 clock,bool dp)2613 static int intel_get_c20_custom_width(u32 clock, bool dp)
2614 {
2615 	if (dp && is_dp2(clock))
2616 		return 2;
2617 	else if (is_hdmi_frl(clock))
2618 		return 1;
2619 	else
2620 		return 0;
2621 }
2622 
intel_c20_pll_program(struct intel_display * display,struct intel_encoder * encoder,const struct intel_c20pll_state * pll_state,bool is_dp,int port_clock)2623 static void intel_c20_pll_program(struct intel_display *display,
2624 				  struct intel_encoder *encoder,
2625 				  const struct intel_c20pll_state *pll_state,
2626 				  bool is_dp, int port_clock)
2627 {
2628 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2629 	bool cntx;
2630 	int i;
2631 
2632 	/* 1. Read current context selection */
2633 	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
2634 
2635 	/*
2636 	 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2637 	 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2638 	 * Protocol switch is only applicable for MPLLA
2639 	 */
2640 	if (intel_c20_protocol_switch_valid(encoder)) {
2641 		for (i = 0; i < 4; i++)
2642 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2643 		usleep_range(4000, 4100);
2644 	}
2645 
2646 	/* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2647 	/* 3.1 Tx configuration */
2648 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2649 		if (cntx)
2650 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2651 					     PHY_C20_A_TX_CNTX_CFG(display, i),
2652 					     pll_state->tx[i]);
2653 		else
2654 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2655 					     PHY_C20_B_TX_CNTX_CFG(display, i),
2656 					     pll_state->tx[i]);
2657 	}
2658 
2659 	/* 3.2 common configuration */
2660 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2661 		if (cntx)
2662 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2663 					     PHY_C20_A_CMN_CNTX_CFG(display, i),
2664 					     pll_state->cmn[i]);
2665 		else
2666 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2667 					     PHY_C20_B_CMN_CNTX_CFG(display, i),
2668 					     pll_state->cmn[i]);
2669 	}
2670 
2671 	/* 3.3 mpllb or mplla configuration */
2672 	if (intel_c20phy_use_mpllb(pll_state)) {
2673 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2674 			if (cntx)
2675 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2676 						     PHY_C20_A_MPLLB_CNTX_CFG(display, i),
2677 						     pll_state->mpllb[i]);
2678 			else
2679 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2680 						     PHY_C20_B_MPLLB_CNTX_CFG(display, i),
2681 						     pll_state->mpllb[i]);
2682 		}
2683 	} else {
2684 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2685 			if (cntx)
2686 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2687 						     PHY_C20_A_MPLLA_CNTX_CFG(display, i),
2688 						     pll_state->mplla[i]);
2689 			else
2690 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2691 						     PHY_C20_B_MPLLA_CNTX_CFG(display, i),
2692 						     pll_state->mplla[i]);
2693 		}
2694 	}
2695 
2696 	/* 4. Program custom width to match the link protocol */
2697 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_WIDTH,
2698 		      PHY_C20_CUSTOM_WIDTH_MASK,
2699 		      PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(port_clock, is_dp)),
2700 		      MB_WRITE_COMMITTED);
2701 
2702 	/* 5. For DP or 6. For HDMI */
2703 	if (is_dp) {
2704 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2705 			      BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
2706 			      BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(port_clock)),
2707 			      MB_WRITE_COMMITTED);
2708 	} else {
2709 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2710 			      BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
2711 			      is_hdmi_frl(port_clock) ? BIT(7) : 0,
2712 			      MB_WRITE_COMMITTED);
2713 
2714 		intel_cx0_write(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2715 				intel_c20_get_hdmi_rate(port_clock),
2716 				MB_WRITE_COMMITTED);
2717 	}
2718 
2719 	/*
2720 	 * 7. Write Vendor specific registers to toggle context setting to load
2721 	 * the updated programming toggle context bit
2722 	 */
2723 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2724 		      BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
2725 }
2726 
intel_c10pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_c10pll_state * pll_state)2727 static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2728 					const struct intel_c10pll_state *pll_state)
2729 {
2730 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2731 	unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2732 	int tmpclk = 0;
2733 
2734 	if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2735 		frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2736 		frac_rem =  pll_state->pll[14] << 8 | pll_state->pll[13];
2737 		frac_den =  pll_state->pll[10] << 8 | pll_state->pll[9];
2738 	}
2739 
2740 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2741 		      pll_state->pll[2]) / 2 + 16;
2742 
2743 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2744 	hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2745 
2746 	tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2747 				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2748 				     10 << (tx_clk_div + 16));
2749 	tmpclk *= (hdmi_div ? 2 : 1);
2750 
2751 	return tmpclk;
2752 }
2753 
intel_program_port_clock_ctl(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state,bool is_dp,int port_clock,bool lane_reversal)2754 static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2755 					 const struct intel_cx0pll_state *pll_state,
2756 					 bool is_dp, int port_clock,
2757 					 bool lane_reversal)
2758 {
2759 	struct intel_display *display = to_intel_display(encoder);
2760 	u32 val = 0;
2761 
2762 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL1(display, encoder->port),
2763 		     XELPDP_PORT_REVERSAL,
2764 		     lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2765 
2766 	if (lane_reversal)
2767 		val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2768 
2769 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2770 
2771 	if (!is_dp && is_hdmi_frl(port_clock))
2772 		val |= XELPDP_DDI_CLOCK_SELECT_PREP(display, XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2773 	else
2774 		val |= XELPDP_DDI_CLOCK_SELECT_PREP(display, XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2775 
2776 	/* TODO: HDMI FRL */
2777 	/* DP2.0 10G and 20G rates enable MPLLA*/
2778 	if (port_clock == 1000000 || port_clock == 2000000)
2779 		val |= pll_state->ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2780 	else
2781 		val |= pll_state->ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2782 
2783 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
2784 		     XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2785 		     XELPDP_DDI_CLOCK_SELECT_MASK(display) | XELPDP_SSC_ENABLE_PLLA |
2786 		     XELPDP_SSC_ENABLE_PLLB, val);
2787 }
2788 
intel_cx0_get_powerdown_update(u8 lane_mask)2789 static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2790 {
2791 	u32 val = 0;
2792 	int lane = 0;
2793 
2794 	for_each_cx0_lane_in_mask(lane_mask, lane)
2795 		val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2796 
2797 	return val;
2798 }
2799 
intel_cx0_get_powerdown_state(u8 lane_mask,u8 state)2800 static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2801 {
2802 	u32 val = 0;
2803 	int lane = 0;
2804 
2805 	for_each_cx0_lane_in_mask(lane_mask, lane)
2806 		val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2807 
2808 	return val;
2809 }
2810 
intel_cx0_powerdown_change_sequence(struct intel_encoder * encoder,u8 lane_mask,u8 state)2811 static void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder,
2812 						u8 lane_mask, u8 state)
2813 {
2814 	struct intel_display *display = to_intel_display(encoder);
2815 	enum port port = encoder->port;
2816 	enum phy phy = intel_encoder_to_phy(encoder);
2817 	i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(display, port);
2818 	int lane;
2819 
2820 	intel_de_rmw(display, buf_ctl2_reg,
2821 		     intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2822 		     intel_cx0_get_powerdown_state(lane_mask, state));
2823 
2824 	/* Wait for pending transactions.*/
2825 	for_each_cx0_lane_in_mask(lane_mask, lane)
2826 		if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
2827 					    XELPDP_PORT_M2P_TRANSACTION_PENDING,
2828 					    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
2829 			drm_dbg_kms(display->drm,
2830 				    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2831 				    phy_name(phy));
2832 			intel_cx0_bus_reset(encoder, lane);
2833 		}
2834 
2835 	intel_de_rmw(display, buf_ctl2_reg,
2836 		     intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2837 		     intel_cx0_get_powerdown_update(lane_mask));
2838 
2839 	/* Update Timeout Value */
2840 	if (intel_de_wait_custom(display, buf_ctl2_reg,
2841 				 intel_cx0_get_powerdown_update(lane_mask), 0,
2842 				 XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
2843 		drm_warn(display->drm,
2844 			 "PHY %c failed to bring out of Lane reset after %dus.\n",
2845 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2846 }
2847 
intel_cx0_setup_powerdown(struct intel_encoder * encoder)2848 static void intel_cx0_setup_powerdown(struct intel_encoder *encoder)
2849 {
2850 	struct intel_display *display = to_intel_display(encoder);
2851 	enum port port = encoder->port;
2852 
2853 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
2854 		     XELPDP_POWER_STATE_READY_MASK,
2855 		     XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
2856 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL3(display, port),
2857 		     XELPDP_POWER_STATE_ACTIVE_MASK |
2858 		     XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2859 		     XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
2860 		     XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2861 }
2862 
intel_cx0_get_pclk_refclk_request(u8 lane_mask)2863 static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2864 {
2865 	u32 val = 0;
2866 	int lane = 0;
2867 
2868 	for_each_cx0_lane_in_mask(lane_mask, lane)
2869 		val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2870 
2871 	return val;
2872 }
2873 
intel_cx0_get_pclk_refclk_ack(u8 lane_mask)2874 static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2875 {
2876 	u32 val = 0;
2877 	int lane = 0;
2878 
2879 	for_each_cx0_lane_in_mask(lane_mask, lane)
2880 		val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2881 
2882 	return val;
2883 }
2884 
intel_cx0_phy_lane_reset(struct intel_encoder * encoder,bool lane_reversal)2885 static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder,
2886 				     bool lane_reversal)
2887 {
2888 	struct intel_display *display = to_intel_display(encoder);
2889 	enum port port = encoder->port;
2890 	enum phy phy = intel_encoder_to_phy(encoder);
2891 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2892 	u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
2893 	u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES
2894 				? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
2895 				: XELPDP_LANE_PIPE_RESET(0);
2896 	u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES
2897 					? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2898 					   XELPDP_LANE_PHY_CURRENT_STATUS(1))
2899 					: XELPDP_LANE_PHY_CURRENT_STATUS(0);
2900 
2901 	if (intel_de_wait_custom(display, XELPDP_PORT_BUF_CTL1(display, port),
2902 				 XELPDP_PORT_BUF_SOC_PHY_READY,
2903 				 XELPDP_PORT_BUF_SOC_PHY_READY,
2904 				 XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
2905 		drm_warn(display->drm,
2906 			 "PHY %c failed to bring out of SOC reset after %dus.\n",
2907 			 phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
2908 
2909 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset,
2910 		     lane_pipe_reset);
2911 
2912 	if (intel_de_wait_custom(display, XELPDP_PORT_BUF_CTL2(display, port),
2913 				 lane_phy_current_status, lane_phy_current_status,
2914 				 XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
2915 		drm_warn(display->drm,
2916 			 "PHY %c failed to bring out of Lane reset after %dus.\n",
2917 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2918 
2919 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
2920 		     intel_cx0_get_pclk_refclk_request(owned_lane_mask),
2921 		     intel_cx0_get_pclk_refclk_request(lane_mask));
2922 
2923 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, port),
2924 				 intel_cx0_get_pclk_refclk_ack(owned_lane_mask),
2925 				 intel_cx0_get_pclk_refclk_ack(lane_mask),
2926 				 XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
2927 		drm_warn(display->drm,
2928 			 "PHY %c failed to request refclk after %dus.\n",
2929 			 phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
2930 
2931 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2932 					    CX0_P2_STATE_RESET);
2933 	intel_cx0_setup_powerdown(encoder);
2934 
2935 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset, 0);
2936 
2937 	if (intel_de_wait_for_clear(display, XELPDP_PORT_BUF_CTL2(display, port),
2938 				    lane_phy_current_status,
2939 				    XELPDP_PORT_RESET_END_TIMEOUT))
2940 		drm_warn(display->drm,
2941 			 "PHY %c failed to bring out of Lane reset after %dms.\n",
2942 			 phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
2943 }
2944 
intel_cx0_program_phy_lane(struct intel_encoder * encoder,int lane_count,bool lane_reversal)2945 static void intel_cx0_program_phy_lane(struct intel_encoder *encoder, int lane_count,
2946 				       bool lane_reversal)
2947 {
2948 	int i;
2949 	u8 disables;
2950 	bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2951 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2952 
2953 	if (intel_encoder_is_c10phy(encoder))
2954 		intel_cx0_rmw(encoder, owned_lane_mask,
2955 			      PHY_C10_VDR_CONTROL(1), 0,
2956 			      C10_VDR_CTRL_MSGBUS_ACCESS,
2957 			      MB_WRITE_COMMITTED);
2958 
2959 	if (lane_reversal)
2960 		disables = REG_GENMASK8(3, 0) >> lane_count;
2961 	else
2962 		disables = REG_GENMASK8(3, 0) << lane_count;
2963 
2964 	if (dp_alt_mode && lane_count == 1) {
2965 		disables &= ~REG_GENMASK8(1, 0);
2966 		disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1);
2967 	}
2968 
2969 	for (i = 0; i < 4; i++) {
2970 		int tx = i % 2 + 1;
2971 		u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
2972 
2973 		if (!(owned_lane_mask & lane_mask))
2974 			continue;
2975 
2976 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2),
2977 			      CONTROL2_DISABLE_SINGLE_TX,
2978 			      disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0,
2979 			      MB_WRITE_COMMITTED);
2980 	}
2981 
2982 	if (intel_encoder_is_c10phy(encoder))
2983 		intel_cx0_rmw(encoder, owned_lane_mask,
2984 			      PHY_C10_VDR_CONTROL(1), 0,
2985 			      C10_VDR_CTRL_UPDATE_CFG,
2986 			      MB_WRITE_COMMITTED);
2987 }
2988 
intel_cx0_get_pclk_pll_request(u8 lane_mask)2989 static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2990 {
2991 	u32 val = 0;
2992 	int lane = 0;
2993 
2994 	for_each_cx0_lane_in_mask(lane_mask, lane)
2995 		val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2996 
2997 	return val;
2998 }
2999 
intel_cx0_get_pclk_pll_ack(u8 lane_mask)3000 static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
3001 {
3002 	u32 val = 0;
3003 	int lane = 0;
3004 
3005 	for_each_cx0_lane_in_mask(lane_mask, lane)
3006 		val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
3007 
3008 	return val;
3009 }
3010 
__intel_cx0pll_enable(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state,bool is_dp,int port_clock,int lane_count)3011 static void __intel_cx0pll_enable(struct intel_encoder *encoder,
3012 				  const struct intel_cx0pll_state *pll_state,
3013 				  bool is_dp, int port_clock, int lane_count)
3014 {
3015 	struct intel_display *display = to_intel_display(encoder);
3016 	enum phy phy = intel_encoder_to_phy(encoder);
3017 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3018 	bool lane_reversal = dig_port->lane_reversal;
3019 	u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
3020 					  INTEL_CX0_LANE0;
3021 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3022 
3023 	/*
3024 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3025 	 * clock muxes, gating and SSC
3026 	 */
3027 	intel_program_port_clock_ctl(encoder, pll_state, is_dp, port_clock, lane_reversal);
3028 
3029 	/* 2. Bring PHY out of reset. */
3030 	intel_cx0_phy_lane_reset(encoder, lane_reversal);
3031 
3032 	/*
3033 	 * 3. Change Phy power state to Ready.
3034 	 * TODO: For DP alt mode use only one lane.
3035 	 */
3036 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3037 					    CX0_P2_STATE_READY);
3038 
3039 	/*
3040 	 * 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000.
3041 	 *    (This is done inside intel_cx0_phy_transaction_begin(), since we would need
3042 	 *    the right timer thresholds for readouts too.)
3043 	 */
3044 
3045 	/* 5. Program PHY internal PLL internal registers. */
3046 	if (intel_encoder_is_c10phy(encoder))
3047 		intel_c10_pll_program(display, encoder, &pll_state->c10);
3048 	else
3049 		intel_c20_pll_program(display, encoder, &pll_state->c20, is_dp, port_clock);
3050 
3051 	/*
3052 	 * 6. Program the enabled and disabled owned PHY lane
3053 	 * transmitters over message bus
3054 	 */
3055 	intel_cx0_program_phy_lane(encoder, lane_count, lane_reversal);
3056 
3057 	/*
3058 	 * 7. Follow the Display Voltage Frequency Switching - Sequence
3059 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3060 	 */
3061 
3062 	/*
3063 	 * 8. Program DDI_CLK_VALFREQ to match intended DDI
3064 	 * clock frequency.
3065 	 */
3066 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), port_clock);
3067 
3068 	/*
3069 	 * 9. Set PORT_CLOCK_CTL register PCLK PLL Request
3070 	 * LN<Lane for maxPCLK> to "1" to enable PLL.
3071 	 */
3072 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3073 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
3074 		     intel_cx0_get_pclk_pll_request(maxpclk_lane));
3075 
3076 	/* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
3077 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3078 				 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
3079 				 intel_cx0_get_pclk_pll_ack(maxpclk_lane),
3080 				 XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
3081 		drm_warn(display->drm, "Port %c PLL not locked after %dus.\n",
3082 			 phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
3083 
3084 	/*
3085 	 * 11. Follow the Display Voltage Frequency Switching Sequence After
3086 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3087 	 */
3088 
3089 	/* TODO: enable TBT-ALT mode */
3090 	intel_cx0_phy_transaction_end(encoder, wakeref);
3091 }
3092 
intel_cx0pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3093 static void intel_cx0pll_enable(struct intel_encoder *encoder,
3094 				const struct intel_crtc_state *crtc_state)
3095 {
3096 	__intel_cx0pll_enable(encoder, &crtc_state->dpll_hw_state.cx0pll,
3097 			      intel_crtc_has_dp_encoder(crtc_state),
3098 			      crtc_state->port_clock, crtc_state->lane_count);
3099 }
3100 
intel_mtl_tbt_calc_port_clock(struct intel_encoder * encoder)3101 int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
3102 {
3103 	struct intel_display *display = to_intel_display(encoder);
3104 	u32 clock, val;
3105 
3106 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3107 
3108 	clock = XELPDP_DDI_CLOCK_SELECT_GET(display, val);
3109 
3110 	drm_WARN_ON(display->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
3111 	drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
3112 	drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_ACK));
3113 
3114 	switch (clock) {
3115 	case XELPDP_DDI_CLOCK_SELECT_TBT_162:
3116 		return 162000;
3117 	case XELPDP_DDI_CLOCK_SELECT_TBT_270:
3118 		return 270000;
3119 	case XELPDP_DDI_CLOCK_SELECT_TBT_540:
3120 		return 540000;
3121 	case XELPDP_DDI_CLOCK_SELECT_TBT_810:
3122 		return 810000;
3123 	case XELPDP_DDI_CLOCK_SELECT_TBT_312_5:
3124 		return 1000000;
3125 	case XELPDP_DDI_CLOCK_SELECT_TBT_625:
3126 		return 2000000;
3127 	default:
3128 		MISSING_CASE(clock);
3129 		return 162000;
3130 	}
3131 }
3132 
intel_mtl_tbt_clock_select(struct intel_display * display,int clock)3133 static int intel_mtl_tbt_clock_select(struct intel_display *display,
3134 				      int clock)
3135 {
3136 	switch (clock) {
3137 	case 162000:
3138 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3139 	case 270000:
3140 		return XELPDP_DDI_CLOCK_SELECT_TBT_270;
3141 	case 540000:
3142 		return XELPDP_DDI_CLOCK_SELECT_TBT_540;
3143 	case 810000:
3144 		return XELPDP_DDI_CLOCK_SELECT_TBT_810;
3145 	case 1000000:
3146 		if (DISPLAY_VER(display) < 30) {
3147 			drm_WARN_ON(display->drm, "UHBR10 not supported for the platform\n");
3148 			return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3149 		}
3150 		return XELPDP_DDI_CLOCK_SELECT_TBT_312_5;
3151 	case 2000000:
3152 		if (DISPLAY_VER(display) < 30) {
3153 			drm_WARN_ON(display->drm, "UHBR20 not supported for the platform\n");
3154 			return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3155 		}
3156 		return XELPDP_DDI_CLOCK_SELECT_TBT_625;
3157 	default:
3158 		MISSING_CASE(clock);
3159 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3160 	}
3161 }
3162 
intel_mtl_tbt_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3163 static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
3164 				     const struct intel_crtc_state *crtc_state)
3165 {
3166 	struct intel_display *display = to_intel_display(encoder);
3167 	enum phy phy = intel_encoder_to_phy(encoder);
3168 	u32 val = 0;
3169 	u32 mask;
3170 
3171 	/*
3172 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3173 	 * clock muxes, gating and SSC
3174 	 */
3175 
3176 	mask = XELPDP_DDI_CLOCK_SELECT_MASK(display);
3177 	val |= XELPDP_DDI_CLOCK_SELECT_PREP(display,
3178 					    intel_mtl_tbt_clock_select(display, crtc_state->port_clock));
3179 
3180 	mask |= XELPDP_FORWARD_CLOCK_UNGATE;
3181 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
3182 
3183 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3184 		     mask, val);
3185 
3186 	/* 2. Read back PORT_CLOCK_CTL REGISTER */
3187 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3188 
3189 	/*
3190 	 * 3. Follow the Display Voltage Frequency Switching - Sequence
3191 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3192 	 */
3193 
3194 	/*
3195 	 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
3196 	 */
3197 	val |= XELPDP_TBT_CLOCK_REQUEST;
3198 	intel_de_write(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port), val);
3199 
3200 	/* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
3201 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3202 				 XELPDP_TBT_CLOCK_ACK,
3203 				 XELPDP_TBT_CLOCK_ACK,
3204 				 100, 0, NULL))
3205 		drm_warn(display->drm,
3206 			 "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
3207 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
3208 
3209 	/*
3210 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
3211 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3212 	 */
3213 
3214 	/*
3215 	 * 7. Program DDI_CLK_VALFREQ to match intended DDI
3216 	 * clock frequency.
3217 	 */
3218 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port),
3219 		       crtc_state->port_clock);
3220 }
3221 
intel_mtl_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3222 void intel_mtl_pll_enable(struct intel_encoder *encoder,
3223 			  const struct intel_crtc_state *crtc_state)
3224 {
3225 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3226 
3227 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
3228 		intel_mtl_tbt_pll_enable(encoder, crtc_state);
3229 	else
3230 		intel_cx0pll_enable(encoder, crtc_state);
3231 }
3232 
3233 /*
3234  * According to HAS we need to enable MAC Transmitting LFPS in the "PHY Common
3235  * Control 0" PIPE register in case of AUX Less ALPM is going to be used. This
3236  * function is doing that and is called by link retrain sequence.
3237  */
intel_lnl_mac_transmit_lfps(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3238 void intel_lnl_mac_transmit_lfps(struct intel_encoder *encoder,
3239 				 const struct intel_crtc_state *crtc_state)
3240 {
3241 	struct intel_display *display = to_intel_display(encoder);
3242 	intel_wakeref_t wakeref;
3243 	int i;
3244 	u8 owned_lane_mask;
3245 
3246 	if (DISPLAY_VER(display) < 20 ||
3247 	    !intel_alpm_is_alpm_aux_less(enc_to_intel_dp(encoder), crtc_state))
3248 		return;
3249 
3250 	owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
3251 
3252 	wakeref = intel_cx0_phy_transaction_begin(encoder);
3253 
3254 	if (intel_encoder_is_c10phy(encoder))
3255 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1), 0,
3256 			      C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
3257 
3258 	for (i = 0; i < 4; i++) {
3259 		int tx = i % 2 + 1;
3260 		u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
3261 
3262 		if (!(owned_lane_mask & lane_mask))
3263 			continue;
3264 
3265 		intel_cx0_rmw(encoder, lane_mask, PHY_CMN1_CONTROL(tx, 0),
3266 			      CONTROL0_MAC_TRANSMIT_LFPS,
3267 			      CONTROL0_MAC_TRANSMIT_LFPS, MB_WRITE_COMMITTED);
3268 	}
3269 
3270 	intel_cx0_phy_transaction_end(encoder, wakeref);
3271 }
3272 
cx0_power_control_disable_val(struct intel_encoder * encoder)3273 static u8 cx0_power_control_disable_val(struct intel_encoder *encoder)
3274 {
3275 	struct intel_display *display = to_intel_display(encoder);
3276 
3277 	if (intel_encoder_is_c10phy(encoder))
3278 		return CX0_P2PG_STATE_DISABLE;
3279 
3280 	if ((display->platform.battlemage && encoder->port == PORT_A) ||
3281 	    (DISPLAY_VER(display) >= 30 && encoder->type == INTEL_OUTPUT_EDP))
3282 		return CX0_P2PG_STATE_DISABLE;
3283 
3284 	return CX0_P4PG_STATE_DISABLE;
3285 }
3286 
intel_cx0pll_disable(struct intel_encoder * encoder)3287 static void intel_cx0pll_disable(struct intel_encoder *encoder)
3288 {
3289 	struct intel_display *display = to_intel_display(encoder);
3290 	enum phy phy = intel_encoder_to_phy(encoder);
3291 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3292 
3293 	/* 1. Change owned PHY lane power to Disable state. */
3294 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3295 					    cx0_power_control_disable_val(encoder));
3296 
3297 	/*
3298 	 * 2. Follow the Display Voltage Frequency Switching Sequence Before
3299 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3300 	 */
3301 
3302 	/*
3303 	 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
3304 	 * to "0" to disable PLL.
3305 	 */
3306 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3307 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
3308 		     intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
3309 
3310 	/* 4. Program DDI_CLK_VALFREQ to 0. */
3311 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3312 
3313 	/*
3314 	 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
3315 	 */
3316 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3317 				 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
3318 				 intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
3319 				 XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
3320 		drm_warn(display->drm,
3321 			 "Port %c PLL not unlocked after %dus.\n",
3322 			 phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
3323 
3324 	/*
3325 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
3326 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3327 	 */
3328 
3329 	/* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
3330 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3331 		     XELPDP_DDI_CLOCK_SELECT_MASK(display), 0);
3332 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3333 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
3334 
3335 	intel_cx0_phy_transaction_end(encoder, wakeref);
3336 }
3337 
intel_cx0_pll_is_enabled(struct intel_encoder * encoder)3338 static bool intel_cx0_pll_is_enabled(struct intel_encoder *encoder)
3339 {
3340 	struct intel_display *display = to_intel_display(encoder);
3341 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3342 	u8 lane = dig_port->lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
3343 
3344 	return intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port)) &
3345 			     intel_cx0_get_pclk_pll_request(lane);
3346 }
3347 
intel_mtl_tbt_pll_disable(struct intel_encoder * encoder)3348 static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
3349 {
3350 	struct intel_display *display = to_intel_display(encoder);
3351 	enum phy phy = intel_encoder_to_phy(encoder);
3352 
3353 	/*
3354 	 * 1. Follow the Display Voltage Frequency Switching Sequence Before
3355 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3356 	 */
3357 
3358 	/*
3359 	 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
3360 	 */
3361 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3362 		     XELPDP_TBT_CLOCK_REQUEST, 0);
3363 
3364 	/* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
3365 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3366 				 XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
3367 		drm_warn(display->drm,
3368 			 "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
3369 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
3370 
3371 	/*
3372 	 * 4. Follow the Display Voltage Frequency Switching Sequence After
3373 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3374 	 */
3375 
3376 	/*
3377 	 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
3378 	 */
3379 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3380 		     XELPDP_DDI_CLOCK_SELECT_MASK(display) |
3381 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
3382 
3383 	/* 6. Program DDI_CLK_VALFREQ to 0. */
3384 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3385 }
3386 
intel_mtl_pll_disable(struct intel_encoder * encoder)3387 void intel_mtl_pll_disable(struct intel_encoder *encoder)
3388 {
3389 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3390 
3391 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
3392 		intel_mtl_tbt_pll_disable(encoder);
3393 	else
3394 		intel_cx0pll_disable(encoder);
3395 }
3396 
3397 enum icl_port_dpll_id
intel_mtl_port_pll_type(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3398 intel_mtl_port_pll_type(struct intel_encoder *encoder,
3399 			const struct intel_crtc_state *crtc_state)
3400 {
3401 	struct intel_display *display = to_intel_display(encoder);
3402 	u32 val, clock;
3403 
3404 	/*
3405 	 * TODO: Determine the PLL type from the SW state, once MTL PLL
3406 	 * handling is done via the standard shared DPLL framework.
3407 	 */
3408 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3409 	clock = XELPDP_DDI_CLOCK_SELECT_GET(display, val);
3410 
3411 	if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
3412 	    clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
3413 		return ICL_PORT_DPLL_MG_PHY;
3414 	else
3415 		return ICL_PORT_DPLL_DEFAULT;
3416 }
3417 
intel_c10pll_state_verify(const struct intel_crtc_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder,struct intel_c10pll_state * mpllb_hw_state)3418 static void intel_c10pll_state_verify(const struct intel_crtc_state *state,
3419 				      struct intel_crtc *crtc,
3420 				      struct intel_encoder *encoder,
3421 				      struct intel_c10pll_state *mpllb_hw_state)
3422 {
3423 	struct intel_display *display = to_intel_display(state);
3424 	const struct intel_c10pll_state *mpllb_sw_state = &state->dpll_hw_state.cx0pll.c10;
3425 	int i;
3426 
3427 	for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3428 		u8 expected = mpllb_sw_state->pll[i];
3429 
3430 		INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->pll[i] != expected,
3431 					 "[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3432 					 crtc->base.base.id, crtc->base.name, i,
3433 					 expected, mpllb_hw_state->pll[i]);
3434 	}
3435 
3436 	INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->tx != mpllb_sw_state->tx,
3437 				 "[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3438 				 crtc->base.base.id, crtc->base.name,
3439 				 mpllb_sw_state->tx, mpllb_hw_state->tx);
3440 
3441 	INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->cmn != mpllb_sw_state->cmn,
3442 				 "[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3443 				 crtc->base.base.id, crtc->base.name,
3444 				 mpllb_sw_state->cmn, mpllb_hw_state->cmn);
3445 }
3446 
intel_cx0pll_readout_hw_state(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state)3447 void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder,
3448 				   struct intel_cx0pll_state *pll_state)
3449 {
3450 	pll_state->use_c10 = false;
3451 
3452 	pll_state->tbt_mode = intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder));
3453 	if (pll_state->tbt_mode)
3454 		return;
3455 
3456 	if (intel_encoder_is_c10phy(encoder)) {
3457 		intel_c10pll_readout_hw_state(encoder, &pll_state->c10);
3458 		pll_state->use_c10 = true;
3459 	} else {
3460 		intel_c20pll_readout_hw_state(encoder, &pll_state->c20);
3461 	}
3462 }
3463 
mtl_compare_hw_state_c10(const struct intel_c10pll_state * a,const struct intel_c10pll_state * b)3464 static bool mtl_compare_hw_state_c10(const struct intel_c10pll_state *a,
3465 				     const struct intel_c10pll_state *b)
3466 {
3467 	if (a->tx != b->tx)
3468 		return false;
3469 
3470 	if (a->cmn != b->cmn)
3471 		return false;
3472 
3473 	if (memcmp(&a->pll, &b->pll, sizeof(a->pll)) != 0)
3474 		return false;
3475 
3476 	return true;
3477 }
3478 
mtl_compare_hw_state_c20(const struct intel_c20pll_state * a,const struct intel_c20pll_state * b)3479 static bool mtl_compare_hw_state_c20(const struct intel_c20pll_state *a,
3480 				     const struct intel_c20pll_state *b)
3481 {
3482 	if (memcmp(&a->tx, &b->tx, sizeof(a->tx)) != 0)
3483 		return false;
3484 
3485 	if (memcmp(&a->cmn, &b->cmn, sizeof(a->cmn)) != 0)
3486 		return false;
3487 
3488 	if (a->tx[0] & C20_PHY_USE_MPLLB) {
3489 		if (memcmp(&a->mpllb, &b->mpllb, sizeof(a->mpllb)) != 0)
3490 			return false;
3491 	} else {
3492 		if (memcmp(&a->mplla, &b->mplla, sizeof(a->mplla)) != 0)
3493 			return false;
3494 	}
3495 
3496 	return true;
3497 }
3498 
intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state * a,const struct intel_cx0pll_state * b)3499 bool intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state *a,
3500 				   const struct intel_cx0pll_state *b)
3501 {
3502 	if (a->tbt_mode || b->tbt_mode)
3503 		return true;
3504 
3505 	if (a->use_c10 != b->use_c10)
3506 		return false;
3507 
3508 	if (a->use_c10)
3509 		return mtl_compare_hw_state_c10(&a->c10,
3510 						&b->c10);
3511 	else
3512 		return mtl_compare_hw_state_c20(&a->c20,
3513 						&b->c20);
3514 }
3515 
intel_cx0pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state)3516 int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder,
3517 				 const struct intel_cx0pll_state *pll_state)
3518 {
3519 	if (intel_encoder_is_c10phy(encoder))
3520 		return intel_c10pll_calc_port_clock(encoder, &pll_state->c10);
3521 
3522 	return intel_c20pll_calc_port_clock(encoder, &pll_state->c20);
3523 }
3524 
intel_c20pll_state_verify(const struct intel_crtc_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder,struct intel_c20pll_state * mpll_hw_state)3525 static void intel_c20pll_state_verify(const struct intel_crtc_state *state,
3526 				      struct intel_crtc *crtc,
3527 				      struct intel_encoder *encoder,
3528 				      struct intel_c20pll_state *mpll_hw_state)
3529 {
3530 	struct intel_display *display = to_intel_display(state);
3531 	const struct intel_c20pll_state *mpll_sw_state = &state->dpll_hw_state.cx0pll.c20;
3532 	bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state);
3533 	bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state);
3534 	int clock = intel_c20pll_calc_port_clock(encoder, mpll_sw_state);
3535 	int i;
3536 
3537 	INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->clock != clock,
3538 				 "[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)",
3539 				 crtc->base.base.id, crtc->base.name,
3540 				 mpll_sw_state->clock, mpll_hw_state->clock);
3541 
3542 	INTEL_DISPLAY_STATE_WARN(display, sw_use_mpllb != hw_use_mpllb,
3543 				 "[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)",
3544 				 crtc->base.base.id, crtc->base.name,
3545 				 sw_use_mpllb, hw_use_mpllb);
3546 
3547 	if (hw_use_mpllb) {
3548 		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) {
3549 			INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i],
3550 						 "[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)",
3551 						 crtc->base.base.id, crtc->base.name, i,
3552 						 mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]);
3553 		}
3554 	} else {
3555 		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) {
3556 			INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i],
3557 						 "[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)",
3558 						 crtc->base.base.id, crtc->base.name, i,
3559 						 mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]);
3560 		}
3561 	}
3562 
3563 	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) {
3564 		INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->tx[i] != mpll_sw_state->tx[i],
3565 					 "[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)",
3566 					 crtc->base.base.id, crtc->base.name, i,
3567 					 mpll_sw_state->tx[i], mpll_hw_state->tx[i]);
3568 	}
3569 
3570 	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) {
3571 		INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i],
3572 					 "[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)",
3573 					 crtc->base.base.id, crtc->base.name, i,
3574 					 mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]);
3575 	}
3576 }
3577 
intel_cx0pll_state_verify(struct intel_atomic_state * state,struct intel_crtc * crtc)3578 void intel_cx0pll_state_verify(struct intel_atomic_state *state,
3579 			       struct intel_crtc *crtc)
3580 {
3581 	struct intel_display *display = to_intel_display(state);
3582 	const struct intel_crtc_state *new_crtc_state =
3583 		intel_atomic_get_new_crtc_state(state, crtc);
3584 	struct intel_encoder *encoder;
3585 	struct intel_cx0pll_state mpll_hw_state = {};
3586 
3587 	if (DISPLAY_VER(display) < 14)
3588 		return;
3589 
3590 	if (!new_crtc_state->hw.active)
3591 		return;
3592 
3593 	/* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3594 	if (!intel_crtc_needs_modeset(new_crtc_state) &&
3595 	    !intel_crtc_needs_fastset(new_crtc_state))
3596 		return;
3597 
3598 	encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3599 	intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state);
3600 
3601 	if (mpll_hw_state.tbt_mode)
3602 		return;
3603 
3604 	if (intel_encoder_is_c10phy(encoder))
3605 		intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10);
3606 	else
3607 		intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20);
3608 }
3609 
3610 /*
3611  * WA 14022081154
3612  * The dedicated display PHYs reset to a power state that blocks S0ix, increasing idle
3613  * system power. After a system reset (cold boot, S3/4/5, warm reset) if a dedicated
3614  * PHY is not being brought up shortly, use these steps to move the PHY to the lowest
3615  * power state to save power. For PTL the workaround is needed only for port A. Port B
3616  * is not connected.
3617  *
3618  * 1. Follow the PLL Enable Sequence, using any valid frequency such as DP 1.62 GHz.
3619  *    This brings lanes out of reset and enables the PLL to allow powerdown to be moved
3620  *    to the Disable state.
3621  * 2. Follow PLL Disable Sequence. This moves powerdown to the Disable state and disables the PLL.
3622  */
intel_cx0_pll_power_save_wa(struct intel_display * display)3623 void intel_cx0_pll_power_save_wa(struct intel_display *display)
3624 {
3625 	struct intel_encoder *encoder;
3626 
3627 	if (DISPLAY_VER(display) != 30)
3628 		return;
3629 
3630 	for_each_intel_encoder(display->drm, encoder) {
3631 		struct intel_cx0pll_state pll_state = {};
3632 		int port_clock = 162000;
3633 
3634 		if (!intel_encoder_is_dig_port(encoder))
3635 			continue;
3636 
3637 		if (!intel_encoder_is_c10phy(encoder))
3638 			continue;
3639 
3640 		if (intel_cx0_pll_is_enabled(encoder))
3641 			continue;
3642 
3643 		if (intel_c10pll_calc_state_from_table(encoder,
3644 						       mtl_c10_edp_tables,
3645 						       true, port_clock,
3646 						       &pll_state) < 0) {
3647 			drm_WARN_ON(display->drm,
3648 				    "Unable to calc C10 state from the tables\n");
3649 			continue;
3650 		}
3651 
3652 		drm_dbg_kms(display->drm,
3653 			    "[ENCODER:%d:%s] Applying power saving workaround on disabled PLL\n",
3654 			    encoder->base.base.id, encoder->base.name);
3655 
3656 		__intel_cx0pll_enable(encoder, &pll_state, true, port_clock, 4);
3657 		intel_cx0pll_disable(encoder);
3658 	}
3659 }
3660