1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2023 Intel Corporation
4 */
5
6 #include <linux/log2.h>
7 #include <linux/math64.h>
8
9 #include <drm/drm_print.h>
10
11 #include "i915_utils.h"
12 #include "intel_alpm.h"
13 #include "intel_cx0_phy.h"
14 #include "intel_cx0_phy_regs.h"
15 #include "intel_ddi.h"
16 #include "intel_ddi_buf_trans.h"
17 #include "intel_de.h"
18 #include "intel_display_types.h"
19 #include "intel_dp.h"
20 #include "intel_hdmi.h"
21 #include "intel_panel.h"
22 #include "intel_psr.h"
23 #include "intel_snps_hdmi_pll.h"
24 #include "intel_tc.h"
25
26 #define MB_WRITE_COMMITTED true
27 #define MB_WRITE_UNCOMMITTED false
28
29 #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
30 for ((__lane) = 0; (__lane) < 2; (__lane)++) \
31 for_each_if((__lane_mask) & BIT(__lane))
32
33 #define INTEL_CX0_LANE0 BIT(0)
34 #define INTEL_CX0_LANE1 BIT(1)
35 #define INTEL_CX0_BOTH_LANES (INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
36
intel_encoder_is_c10phy(struct intel_encoder * encoder)37 bool intel_encoder_is_c10phy(struct intel_encoder *encoder)
38 {
39 struct intel_display *display = to_intel_display(encoder);
40 enum phy phy = intel_encoder_to_phy(encoder);
41
42 /* PTL doesn't have a PHY connected to PORT B; as such,
43 * there will never be a case where PTL uses PHY B.
44 * WCL uses PORT A and B with the C10 PHY.
45 * Reusing the condition for WCL and extending it for PORT B
46 * should not cause any issues for PTL.
47 */
48 if (display->platform.pantherlake && phy < PHY_C)
49 return true;
50
51 if ((display->platform.lunarlake || display->platform.meteorlake) && phy < PHY_C)
52 return true;
53
54 return false;
55 }
56
lane_mask_to_lane(u8 lane_mask)57 static int lane_mask_to_lane(u8 lane_mask)
58 {
59 if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
60 hweight8(lane_mask) != 1))
61 return 0;
62
63 return ilog2(lane_mask);
64 }
65
intel_cx0_get_owned_lane_mask(struct intel_encoder * encoder)66 static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder)
67 {
68 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
69
70 if (!intel_tc_port_in_dp_alt_mode(dig_port))
71 return INTEL_CX0_BOTH_LANES;
72
73 /*
74 * In DP-alt with pin assignment D, only PHY lane 0 is owned
75 * by display and lane 1 is owned by USB.
76 */
77 return intel_tc_port_max_lane_count(dig_port) > 2
78 ? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
79 }
80
81 static void
assert_dc_off(struct intel_display * display)82 assert_dc_off(struct intel_display *display)
83 {
84 bool enabled;
85
86 enabled = intel_display_power_is_enabled(display, POWER_DOMAIN_DC_OFF);
87 drm_WARN_ON(display->drm, !enabled);
88 }
89
intel_cx0_program_msgbus_timer(struct intel_encoder * encoder)90 static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder)
91 {
92 struct intel_display *display = to_intel_display(encoder);
93 int lane;
94
95 for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane)
96 intel_de_rmw(display,
97 XELPDP_PORT_MSGBUS_TIMER(display, encoder->port, lane),
98 XELPDP_PORT_MSGBUS_TIMER_VAL_MASK,
99 XELPDP_PORT_MSGBUS_TIMER_VAL);
100 }
101
102 /*
103 * Prepare HW for CX0 phy transactions.
104 *
105 * It is required that PSR and DC5/6 are disabled before any CX0 message
106 * bus transaction is executed.
107 *
108 * We also do the msgbus timer programming here to ensure that the timer
109 * is already programmed before any access to the msgbus.
110 */
intel_cx0_phy_transaction_begin(struct intel_encoder * encoder)111 static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
112 {
113 struct intel_display *display = to_intel_display(encoder);
114 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
115 intel_wakeref_t wakeref;
116
117 intel_psr_pause(intel_dp);
118 wakeref = intel_display_power_get(display, POWER_DOMAIN_DC_OFF);
119 intel_cx0_program_msgbus_timer(encoder);
120
121 return wakeref;
122 }
123
intel_cx0_phy_transaction_end(struct intel_encoder * encoder,intel_wakeref_t wakeref)124 static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
125 {
126 struct intel_display *display = to_intel_display(encoder);
127 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
128
129 intel_psr_resume(intel_dp);
130 intel_display_power_put(display, POWER_DOMAIN_DC_OFF, wakeref);
131 }
132
intel_clear_response_ready_flag(struct intel_encoder * encoder,int lane)133 static void intel_clear_response_ready_flag(struct intel_encoder *encoder,
134 int lane)
135 {
136 struct intel_display *display = to_intel_display(encoder);
137
138 intel_de_rmw(display,
139 XELPDP_PORT_P2M_MSGBUS_STATUS(display, encoder->port, lane),
140 0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
141 }
142
intel_cx0_bus_reset(struct intel_encoder * encoder,int lane)143 static void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane)
144 {
145 struct intel_display *display = to_intel_display(encoder);
146 enum port port = encoder->port;
147 enum phy phy = intel_encoder_to_phy(encoder);
148
149 intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
150 XELPDP_PORT_M2P_TRANSACTION_RESET);
151
152 if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
153 XELPDP_PORT_M2P_TRANSACTION_RESET,
154 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
155 drm_err_once(display->drm,
156 "Failed to bring PHY %c to idle.\n",
157 phy_name(phy));
158 return;
159 }
160
161 intel_clear_response_ready_flag(encoder, lane);
162 }
163
intel_cx0_wait_for_ack(struct intel_encoder * encoder,int command,int lane,u32 * val)164 static int intel_cx0_wait_for_ack(struct intel_encoder *encoder,
165 int command, int lane, u32 *val)
166 {
167 struct intel_display *display = to_intel_display(encoder);
168 enum port port = encoder->port;
169 enum phy phy = intel_encoder_to_phy(encoder);
170
171 if (intel_de_wait_custom(display,
172 XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane),
173 XELPDP_PORT_P2M_RESPONSE_READY,
174 XELPDP_PORT_P2M_RESPONSE_READY,
175 XELPDP_MSGBUS_TIMEOUT_FAST_US,
176 XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
177 drm_dbg_kms(display->drm,
178 "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
179 phy_name(phy), *val);
180
181 if (!(intel_de_read(display, XELPDP_PORT_MSGBUS_TIMER(display, port, lane)) &
182 XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT))
183 drm_dbg_kms(display->drm,
184 "PHY %c Hardware did not detect a timeout\n",
185 phy_name(phy));
186
187 intel_cx0_bus_reset(encoder, lane);
188 return -ETIMEDOUT;
189 }
190
191 if (*val & XELPDP_PORT_P2M_ERROR_SET) {
192 drm_dbg_kms(display->drm,
193 "PHY %c Error occurred during %s command. Status: 0x%x\n",
194 phy_name(phy),
195 command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
196 intel_cx0_bus_reset(encoder, lane);
197 return -EINVAL;
198 }
199
200 if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
201 drm_dbg_kms(display->drm,
202 "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n",
203 phy_name(phy),
204 command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
205 intel_cx0_bus_reset(encoder, lane);
206 return -EINVAL;
207 }
208
209 return 0;
210 }
211
__intel_cx0_read_once(struct intel_encoder * encoder,int lane,u16 addr)212 static int __intel_cx0_read_once(struct intel_encoder *encoder,
213 int lane, u16 addr)
214 {
215 struct intel_display *display = to_intel_display(encoder);
216 enum port port = encoder->port;
217 enum phy phy = intel_encoder_to_phy(encoder);
218 int ack;
219 u32 val;
220
221 if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
222 XELPDP_PORT_M2P_TRANSACTION_PENDING,
223 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
224 drm_dbg_kms(display->drm,
225 "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
226 intel_cx0_bus_reset(encoder, lane);
227 return -ETIMEDOUT;
228 }
229
230 intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
231 XELPDP_PORT_M2P_TRANSACTION_PENDING |
232 XELPDP_PORT_M2P_COMMAND_READ |
233 XELPDP_PORT_M2P_ADDRESS(addr));
234
235 ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
236 if (ack < 0)
237 return ack;
238
239 intel_clear_response_ready_flag(encoder, lane);
240
241 /*
242 * FIXME: Workaround to let HW to settle
243 * down and let the message bus to end up
244 * in a known state
245 */
246 if (DISPLAY_VER(display) < 30)
247 intel_cx0_bus_reset(encoder, lane);
248
249 return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
250 }
251
__intel_cx0_read(struct intel_encoder * encoder,int lane,u16 addr)252 static u8 __intel_cx0_read(struct intel_encoder *encoder,
253 int lane, u16 addr)
254 {
255 struct intel_display *display = to_intel_display(encoder);
256 enum phy phy = intel_encoder_to_phy(encoder);
257 int i, status;
258
259 assert_dc_off(display);
260
261 /* 3 tries is assumed to be enough to read successfully */
262 for (i = 0; i < 3; i++) {
263 status = __intel_cx0_read_once(encoder, lane, addr);
264
265 if (status >= 0)
266 return status;
267 }
268
269 drm_err_once(display->drm,
270 "PHY %c Read %04x failed after %d retries.\n",
271 phy_name(phy), addr, i);
272
273 return 0;
274 }
275
intel_cx0_read(struct intel_encoder * encoder,u8 lane_mask,u16 addr)276 static u8 intel_cx0_read(struct intel_encoder *encoder,
277 u8 lane_mask, u16 addr)
278 {
279 int lane = lane_mask_to_lane(lane_mask);
280
281 return __intel_cx0_read(encoder, lane, addr);
282 }
283
__intel_cx0_write_once(struct intel_encoder * encoder,int lane,u16 addr,u8 data,bool committed)284 static int __intel_cx0_write_once(struct intel_encoder *encoder,
285 int lane, u16 addr, u8 data, bool committed)
286 {
287 struct intel_display *display = to_intel_display(encoder);
288 enum port port = encoder->port;
289 enum phy phy = intel_encoder_to_phy(encoder);
290 int ack;
291 u32 val;
292
293 if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
294 XELPDP_PORT_M2P_TRANSACTION_PENDING,
295 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
296 drm_dbg_kms(display->drm,
297 "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
298 intel_cx0_bus_reset(encoder, lane);
299 return -ETIMEDOUT;
300 }
301
302 intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
303 XELPDP_PORT_M2P_TRANSACTION_PENDING |
304 (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
305 XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
306 XELPDP_PORT_M2P_DATA(data) |
307 XELPDP_PORT_M2P_ADDRESS(addr));
308
309 if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
310 XELPDP_PORT_M2P_TRANSACTION_PENDING,
311 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
312 drm_dbg_kms(display->drm,
313 "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
314 intel_cx0_bus_reset(encoder, lane);
315 return -ETIMEDOUT;
316 }
317
318 if (committed) {
319 ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
320 if (ack < 0)
321 return ack;
322 } else if ((intel_de_read(display, XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane)) &
323 XELPDP_PORT_P2M_ERROR_SET)) {
324 drm_dbg_kms(display->drm,
325 "PHY %c Error occurred during write command.\n", phy_name(phy));
326 intel_cx0_bus_reset(encoder, lane);
327 return -EINVAL;
328 }
329
330 intel_clear_response_ready_flag(encoder, lane);
331
332 /*
333 * FIXME: Workaround to let HW to settle
334 * down and let the message bus to end up
335 * in a known state
336 */
337 if (DISPLAY_VER(display) < 30)
338 intel_cx0_bus_reset(encoder, lane);
339
340 return 0;
341 }
342
__intel_cx0_write(struct intel_encoder * encoder,int lane,u16 addr,u8 data,bool committed)343 static void __intel_cx0_write(struct intel_encoder *encoder,
344 int lane, u16 addr, u8 data, bool committed)
345 {
346 struct intel_display *display = to_intel_display(encoder);
347 enum phy phy = intel_encoder_to_phy(encoder);
348 int i, status;
349
350 assert_dc_off(display);
351
352 /* 3 tries is assumed to be enough to write successfully */
353 for (i = 0; i < 3; i++) {
354 status = __intel_cx0_write_once(encoder, lane, addr, data, committed);
355
356 if (status == 0)
357 return;
358 }
359
360 drm_err_once(display->drm,
361 "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
362 }
363
intel_cx0_write(struct intel_encoder * encoder,u8 lane_mask,u16 addr,u8 data,bool committed)364 static void intel_cx0_write(struct intel_encoder *encoder,
365 u8 lane_mask, u16 addr, u8 data, bool committed)
366 {
367 int lane;
368
369 for_each_cx0_lane_in_mask(lane_mask, lane)
370 __intel_cx0_write(encoder, lane, addr, data, committed);
371 }
372
intel_c20_sram_write(struct intel_encoder * encoder,int lane,u16 addr,u16 data)373 static void intel_c20_sram_write(struct intel_encoder *encoder,
374 int lane, u16 addr, u16 data)
375 {
376 struct intel_display *display = to_intel_display(encoder);
377
378 assert_dc_off(display);
379
380 intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
381 intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
382
383 intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
384 intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
385 }
386
intel_c20_sram_read(struct intel_encoder * encoder,int lane,u16 addr)387 static u16 intel_c20_sram_read(struct intel_encoder *encoder,
388 int lane, u16 addr)
389 {
390 struct intel_display *display = to_intel_display(encoder);
391 u16 val;
392
393 assert_dc_off(display);
394
395 intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
396 intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
397
398 val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H);
399 val <<= 8;
400 val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L);
401
402 return val;
403 }
404
__intel_cx0_rmw(struct intel_encoder * encoder,int lane,u16 addr,u8 clear,u8 set,bool committed)405 static void __intel_cx0_rmw(struct intel_encoder *encoder,
406 int lane, u16 addr, u8 clear, u8 set, bool committed)
407 {
408 u8 old, val;
409
410 old = __intel_cx0_read(encoder, lane, addr);
411 val = (old & ~clear) | set;
412
413 if (val != old)
414 __intel_cx0_write(encoder, lane, addr, val, committed);
415 }
416
intel_cx0_rmw(struct intel_encoder * encoder,u8 lane_mask,u16 addr,u8 clear,u8 set,bool committed)417 static void intel_cx0_rmw(struct intel_encoder *encoder,
418 u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
419 {
420 u8 lane;
421
422 for_each_cx0_lane_in_mask(lane_mask, lane)
423 __intel_cx0_rmw(encoder, lane, addr, clear, set, committed);
424 }
425
intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state * crtc_state)426 static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
427 {
428 if (intel_crtc_has_dp_encoder(crtc_state)) {
429 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
430 (crtc_state->port_clock == 540000 ||
431 crtc_state->port_clock == 810000))
432 return 5;
433 else
434 return 4;
435 } else {
436 return 5;
437 }
438 }
439
intel_c10_get_tx_term_ctl(const struct intel_crtc_state * crtc_state)440 static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
441 {
442 if (intel_crtc_has_dp_encoder(crtc_state)) {
443 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
444 (crtc_state->port_clock == 540000 ||
445 crtc_state->port_clock == 810000))
446 return 5;
447 else
448 return 2;
449 } else {
450 return 6;
451 }
452 }
453
intel_cx0_phy_set_signal_levels(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)454 void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
455 const struct intel_crtc_state *crtc_state)
456 {
457 struct intel_display *display = to_intel_display(encoder);
458 const struct intel_ddi_buf_trans *trans;
459 u8 owned_lane_mask;
460 intel_wakeref_t wakeref;
461 int n_entries, ln;
462 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
463
464 if (intel_tc_port_in_tbt_alt_mode(dig_port))
465 return;
466
467 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
468
469 wakeref = intel_cx0_phy_transaction_begin(encoder);
470
471 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
472 if (drm_WARN_ON_ONCE(display->drm, !trans)) {
473 intel_cx0_phy_transaction_end(encoder, wakeref);
474 return;
475 }
476
477 if (intel_encoder_is_c10phy(encoder)) {
478 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
479 0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
480 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3),
481 C10_CMN3_TXVBOOST_MASK,
482 C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
483 MB_WRITE_UNCOMMITTED);
484 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1),
485 C10_TX1_TERMCTL_MASK,
486 C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
487 MB_WRITE_COMMITTED);
488 }
489
490 for (ln = 0; ln < crtc_state->lane_count; ln++) {
491 int level = intel_ddi_level(encoder, crtc_state, ln);
492 int lane = ln / 2;
493 int tx = ln % 2;
494 u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
495
496 if (!(lane_mask & owned_lane_mask))
497 continue;
498
499 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0),
500 C10_PHY_OVRD_LEVEL_MASK,
501 C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
502 MB_WRITE_COMMITTED);
503 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1),
504 C10_PHY_OVRD_LEVEL_MASK,
505 C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
506 MB_WRITE_COMMITTED);
507 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2),
508 C10_PHY_OVRD_LEVEL_MASK,
509 C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
510 MB_WRITE_COMMITTED);
511 }
512
513 /* Write Override enables in 0xD71 */
514 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD,
515 0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
516 MB_WRITE_COMMITTED);
517
518 if (intel_encoder_is_c10phy(encoder))
519 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
520 0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
521
522 intel_cx0_phy_transaction_end(encoder, wakeref);
523 }
524
525 /*
526 * Basic DP link rates with 38.4 MHz reference clock.
527 * Note: The tables below are with SSC. In non-ssc
528 * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
529 * programmed 0.
530 */
531
532 static const struct intel_c10pll_state mtl_c10_dp_rbr = {
533 .clock = 162000,
534 .tx = 0x10,
535 .cmn = 0x21,
536 .pll[0] = 0xB4,
537 .pll[1] = 0,
538 .pll[2] = 0x30,
539 .pll[3] = 0x1,
540 .pll[4] = 0x26,
541 .pll[5] = 0x0C,
542 .pll[6] = 0x98,
543 .pll[7] = 0x46,
544 .pll[8] = 0x1,
545 .pll[9] = 0x1,
546 .pll[10] = 0,
547 .pll[11] = 0,
548 .pll[12] = 0xC0,
549 .pll[13] = 0,
550 .pll[14] = 0,
551 .pll[15] = 0x2,
552 .pll[16] = 0x84,
553 .pll[17] = 0x4F,
554 .pll[18] = 0xE5,
555 .pll[19] = 0x23,
556 };
557
558 static const struct intel_c10pll_state mtl_c10_edp_r216 = {
559 .clock = 216000,
560 .tx = 0x10,
561 .cmn = 0x21,
562 .pll[0] = 0x4,
563 .pll[1] = 0,
564 .pll[2] = 0xA2,
565 .pll[3] = 0x1,
566 .pll[4] = 0x33,
567 .pll[5] = 0x10,
568 .pll[6] = 0x75,
569 .pll[7] = 0xB3,
570 .pll[8] = 0x1,
571 .pll[9] = 0x1,
572 .pll[10] = 0,
573 .pll[11] = 0,
574 .pll[12] = 0,
575 .pll[13] = 0,
576 .pll[14] = 0,
577 .pll[15] = 0x2,
578 .pll[16] = 0x85,
579 .pll[17] = 0x0F,
580 .pll[18] = 0xE6,
581 .pll[19] = 0x23,
582 };
583
584 static const struct intel_c10pll_state mtl_c10_edp_r243 = {
585 .clock = 243000,
586 .tx = 0x10,
587 .cmn = 0x21,
588 .pll[0] = 0x34,
589 .pll[1] = 0,
590 .pll[2] = 0xDA,
591 .pll[3] = 0x1,
592 .pll[4] = 0x39,
593 .pll[5] = 0x12,
594 .pll[6] = 0xE3,
595 .pll[7] = 0xE9,
596 .pll[8] = 0x1,
597 .pll[9] = 0x1,
598 .pll[10] = 0,
599 .pll[11] = 0,
600 .pll[12] = 0x20,
601 .pll[13] = 0,
602 .pll[14] = 0,
603 .pll[15] = 0x2,
604 .pll[16] = 0x85,
605 .pll[17] = 0x8F,
606 .pll[18] = 0xE6,
607 .pll[19] = 0x23,
608 };
609
610 static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
611 .clock = 270000,
612 .tx = 0x10,
613 .cmn = 0x21,
614 .pll[0] = 0xF4,
615 .pll[1] = 0,
616 .pll[2] = 0xF8,
617 .pll[3] = 0x0,
618 .pll[4] = 0x20,
619 .pll[5] = 0x0A,
620 .pll[6] = 0x29,
621 .pll[7] = 0x10,
622 .pll[8] = 0x1, /* Verify */
623 .pll[9] = 0x1,
624 .pll[10] = 0,
625 .pll[11] = 0,
626 .pll[12] = 0xA0,
627 .pll[13] = 0,
628 .pll[14] = 0,
629 .pll[15] = 0x1,
630 .pll[16] = 0x84,
631 .pll[17] = 0x4F,
632 .pll[18] = 0xE5,
633 .pll[19] = 0x23,
634 };
635
636 static const struct intel_c10pll_state mtl_c10_edp_r324 = {
637 .clock = 324000,
638 .tx = 0x10,
639 .cmn = 0x21,
640 .pll[0] = 0xB4,
641 .pll[1] = 0,
642 .pll[2] = 0x30,
643 .pll[3] = 0x1,
644 .pll[4] = 0x26,
645 .pll[5] = 0x0C,
646 .pll[6] = 0x98,
647 .pll[7] = 0x46,
648 .pll[8] = 0x1,
649 .pll[9] = 0x1,
650 .pll[10] = 0,
651 .pll[11] = 0,
652 .pll[12] = 0xC0,
653 .pll[13] = 0,
654 .pll[14] = 0,
655 .pll[15] = 0x1,
656 .pll[16] = 0x85,
657 .pll[17] = 0x4F,
658 .pll[18] = 0xE6,
659 .pll[19] = 0x23,
660 };
661
662 static const struct intel_c10pll_state mtl_c10_edp_r432 = {
663 .clock = 432000,
664 .tx = 0x10,
665 .cmn = 0x21,
666 .pll[0] = 0x4,
667 .pll[1] = 0,
668 .pll[2] = 0xA2,
669 .pll[3] = 0x1,
670 .pll[4] = 0x33,
671 .pll[5] = 0x10,
672 .pll[6] = 0x75,
673 .pll[7] = 0xB3,
674 .pll[8] = 0x1,
675 .pll[9] = 0x1,
676 .pll[10] = 0,
677 .pll[11] = 0,
678 .pll[12] = 0,
679 .pll[13] = 0,
680 .pll[14] = 0,
681 .pll[15] = 0x1,
682 .pll[16] = 0x85,
683 .pll[17] = 0x0F,
684 .pll[18] = 0xE6,
685 .pll[19] = 0x23,
686 };
687
688 static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
689 .clock = 540000,
690 .tx = 0x10,
691 .cmn = 0x21,
692 .pll[0] = 0xF4,
693 .pll[1] = 0,
694 .pll[2] = 0xF8,
695 .pll[3] = 0,
696 .pll[4] = 0x20,
697 .pll[5] = 0x0A,
698 .pll[6] = 0x29,
699 .pll[7] = 0x10,
700 .pll[8] = 0x1,
701 .pll[9] = 0x1,
702 .pll[10] = 0,
703 .pll[11] = 0,
704 .pll[12] = 0xA0,
705 .pll[13] = 0,
706 .pll[14] = 0,
707 .pll[15] = 0,
708 .pll[16] = 0x84,
709 .pll[17] = 0x4F,
710 .pll[18] = 0xE5,
711 .pll[19] = 0x23,
712 };
713
714 static const struct intel_c10pll_state mtl_c10_edp_r675 = {
715 .clock = 675000,
716 .tx = 0x10,
717 .cmn = 0x21,
718 .pll[0] = 0xB4,
719 .pll[1] = 0,
720 .pll[2] = 0x3E,
721 .pll[3] = 0x1,
722 .pll[4] = 0xA8,
723 .pll[5] = 0x0C,
724 .pll[6] = 0x33,
725 .pll[7] = 0x54,
726 .pll[8] = 0x1,
727 .pll[9] = 0x1,
728 .pll[10] = 0,
729 .pll[11] = 0,
730 .pll[12] = 0xC8,
731 .pll[13] = 0,
732 .pll[14] = 0,
733 .pll[15] = 0,
734 .pll[16] = 0x85,
735 .pll[17] = 0x8F,
736 .pll[18] = 0xE6,
737 .pll[19] = 0x23,
738 };
739
740 static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
741 .clock = 810000,
742 .tx = 0x10,
743 .cmn = 0x21,
744 .pll[0] = 0x34,
745 .pll[1] = 0,
746 .pll[2] = 0x84,
747 .pll[3] = 0x1,
748 .pll[4] = 0x30,
749 .pll[5] = 0x0F,
750 .pll[6] = 0x3D,
751 .pll[7] = 0x98,
752 .pll[8] = 0x1,
753 .pll[9] = 0x1,
754 .pll[10] = 0,
755 .pll[11] = 0,
756 .pll[12] = 0xF0,
757 .pll[13] = 0,
758 .pll[14] = 0,
759 .pll[15] = 0,
760 .pll[16] = 0x84,
761 .pll[17] = 0x0F,
762 .pll[18] = 0xE5,
763 .pll[19] = 0x23,
764 };
765
766 static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
767 &mtl_c10_dp_rbr,
768 &mtl_c10_dp_hbr1,
769 &mtl_c10_dp_hbr2,
770 &mtl_c10_dp_hbr3,
771 NULL,
772 };
773
774 static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
775 &mtl_c10_dp_rbr,
776 &mtl_c10_edp_r216,
777 &mtl_c10_edp_r243,
778 &mtl_c10_dp_hbr1,
779 &mtl_c10_edp_r324,
780 &mtl_c10_edp_r432,
781 &mtl_c10_dp_hbr2,
782 &mtl_c10_edp_r675,
783 &mtl_c10_dp_hbr3,
784 NULL,
785 };
786
787 /* C20 basic DP 1.4 tables */
788 static const struct intel_c20pll_state mtl_c20_dp_rbr = {
789 .clock = 162000,
790 .tx = { 0xbe88, /* tx cfg0 */
791 0x5800, /* tx cfg1 */
792 0x0000, /* tx cfg2 */
793 },
794 .cmn = {0x0500, /* cmn cfg0*/
795 0x0005, /* cmn cfg1 */
796 0x0000, /* cmn cfg2 */
797 0x0000, /* cmn cfg3 */
798 },
799 .mpllb = { 0x50a8, /* mpllb cfg0 */
800 0x2120, /* mpllb cfg1 */
801 0xcd9a, /* mpllb cfg2 */
802 0xbfc1, /* mpllb cfg3 */
803 0x5ab8, /* mpllb cfg4 */
804 0x4c34, /* mpllb cfg5 */
805 0x2000, /* mpllb cfg6 */
806 0x0001, /* mpllb cfg7 */
807 0x6000, /* mpllb cfg8 */
808 0x0000, /* mpllb cfg9 */
809 0x0000, /* mpllb cfg10 */
810 },
811 };
812
813 static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
814 .clock = 270000,
815 .tx = { 0xbe88, /* tx cfg0 */
816 0x4800, /* tx cfg1 */
817 0x0000, /* tx cfg2 */
818 },
819 .cmn = {0x0500, /* cmn cfg0*/
820 0x0005, /* cmn cfg1 */
821 0x0000, /* cmn cfg2 */
822 0x0000, /* cmn cfg3 */
823 },
824 .mpllb = { 0x308c, /* mpllb cfg0 */
825 0x2110, /* mpllb cfg1 */
826 0xcc9c, /* mpllb cfg2 */
827 0xbfc1, /* mpllb cfg3 */
828 0x4b9a, /* mpllb cfg4 */
829 0x3f81, /* mpllb cfg5 */
830 0x2000, /* mpllb cfg6 */
831 0x0001, /* mpllb cfg7 */
832 0x5000, /* mpllb cfg8 */
833 0x0000, /* mpllb cfg9 */
834 0x0000, /* mpllb cfg10 */
835 },
836 };
837
838 static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
839 .clock = 540000,
840 .tx = { 0xbe88, /* tx cfg0 */
841 0x4800, /* tx cfg1 */
842 0x0000, /* tx cfg2 */
843 },
844 .cmn = {0x0500, /* cmn cfg0*/
845 0x0005, /* cmn cfg1 */
846 0x0000, /* cmn cfg2 */
847 0x0000, /* cmn cfg3 */
848 },
849 .mpllb = { 0x108c, /* mpllb cfg0 */
850 0x2108, /* mpllb cfg1 */
851 0xcc9c, /* mpllb cfg2 */
852 0xbfc1, /* mpllb cfg3 */
853 0x4b9a, /* mpllb cfg4 */
854 0x3f81, /* mpllb cfg5 */
855 0x2000, /* mpllb cfg6 */
856 0x0001, /* mpllb cfg7 */
857 0x5000, /* mpllb cfg8 */
858 0x0000, /* mpllb cfg9 */
859 0x0000, /* mpllb cfg10 */
860 },
861 };
862
863 static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
864 .clock = 810000,
865 .tx = { 0xbe88, /* tx cfg0 */
866 0x4800, /* tx cfg1 */
867 0x0000, /* tx cfg2 */
868 },
869 .cmn = {0x0500, /* cmn cfg0*/
870 0x0005, /* cmn cfg1 */
871 0x0000, /* cmn cfg2 */
872 0x0000, /* cmn cfg3 */
873 },
874 .mpllb = { 0x10d2, /* mpllb cfg0 */
875 0x2108, /* mpllb cfg1 */
876 0x8d98, /* mpllb cfg2 */
877 0xbfc1, /* mpllb cfg3 */
878 0x7166, /* mpllb cfg4 */
879 0x5f42, /* mpllb cfg5 */
880 0x2000, /* mpllb cfg6 */
881 0x0001, /* mpllb cfg7 */
882 0x7800, /* mpllb cfg8 */
883 0x0000, /* mpllb cfg9 */
884 0x0000, /* mpllb cfg10 */
885 },
886 };
887
888 /* C20 basic DP 2.0 tables */
889 static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
890 .clock = 1000000, /* 10 Gbps */
891 .tx = { 0xbe21, /* tx cfg0 */
892 0xe800, /* tx cfg1 */
893 0x0000, /* tx cfg2 */
894 },
895 .cmn = {0x0700, /* cmn cfg0*/
896 0x0005, /* cmn cfg1 */
897 0x0000, /* cmn cfg2 */
898 0x0000, /* cmn cfg3 */
899 },
900 .mplla = { 0x3104, /* mplla cfg0 */
901 0xd105, /* mplla cfg1 */
902 0xc025, /* mplla cfg2 */
903 0xc025, /* mplla cfg3 */
904 0x8c00, /* mplla cfg4 */
905 0x759a, /* mplla cfg5 */
906 0x4000, /* mplla cfg6 */
907 0x0003, /* mplla cfg7 */
908 0x3555, /* mplla cfg8 */
909 0x0001, /* mplla cfg9 */
910 },
911 };
912
913 static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
914 .clock = 1350000, /* 13.5 Gbps */
915 .tx = { 0xbea0, /* tx cfg0 */
916 0x4800, /* tx cfg1 */
917 0x0000, /* tx cfg2 */
918 },
919 .cmn = {0x0500, /* cmn cfg0*/
920 0x0005, /* cmn cfg1 */
921 0x0000, /* cmn cfg2 */
922 0x0000, /* cmn cfg3 */
923 },
924 .mpllb = { 0x015f, /* mpllb cfg0 */
925 0x2205, /* mpllb cfg1 */
926 0x1b17, /* mpllb cfg2 */
927 0xffc1, /* mpllb cfg3 */
928 0xe100, /* mpllb cfg4 */
929 0xbd00, /* mpllb cfg5 */
930 0x2000, /* mpllb cfg6 */
931 0x0001, /* mpllb cfg7 */
932 0x4800, /* mpllb cfg8 */
933 0x0000, /* mpllb cfg9 */
934 0x0000, /* mpllb cfg10 */
935 },
936 };
937
938 static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
939 .clock = 2000000, /* 20 Gbps */
940 .tx = { 0xbe20, /* tx cfg0 */
941 0x4800, /* tx cfg1 */
942 0x0000, /* tx cfg2 */
943 },
944 .cmn = {0x0500, /* cmn cfg0*/
945 0x0005, /* cmn cfg1 */
946 0x0000, /* cmn cfg2 */
947 0x0000, /* cmn cfg3 */
948 },
949 .mplla = { 0x3104, /* mplla cfg0 */
950 0xd105, /* mplla cfg1 */
951 0x9217, /* mplla cfg2 */
952 0x9217, /* mplla cfg3 */
953 0x8c00, /* mplla cfg4 */
954 0x759a, /* mplla cfg5 */
955 0x4000, /* mplla cfg6 */
956 0x0003, /* mplla cfg7 */
957 0x3555, /* mplla cfg8 */
958 0x0001, /* mplla cfg9 */
959 },
960 };
961
962 static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
963 &mtl_c20_dp_rbr,
964 &mtl_c20_dp_hbr1,
965 &mtl_c20_dp_hbr2,
966 &mtl_c20_dp_hbr3,
967 &mtl_c20_dp_uhbr10,
968 &mtl_c20_dp_uhbr13_5,
969 &mtl_c20_dp_uhbr20,
970 NULL,
971 };
972
973 /*
974 * eDP link rates with 38.4 MHz reference clock.
975 */
976
977 static const struct intel_c20pll_state xe2hpd_c20_edp_r216 = {
978 .clock = 216000,
979 .tx = { 0xbe88,
980 0x4800,
981 0x0000,
982 },
983 .cmn = { 0x0500,
984 0x0005,
985 0x0000,
986 0x0000,
987 },
988 .mpllb = { 0x50e1,
989 0x2120,
990 0x8e18,
991 0xbfc1,
992 0x9000,
993 0x78f6,
994 0x0000,
995 0x0000,
996 0x0000,
997 0x0000,
998 0x0000,
999 },
1000 };
1001
1002 static const struct intel_c20pll_state xe2hpd_c20_edp_r243 = {
1003 .clock = 243000,
1004 .tx = { 0xbe88,
1005 0x4800,
1006 0x0000,
1007 },
1008 .cmn = { 0x0500,
1009 0x0005,
1010 0x0000,
1011 0x0000,
1012 },
1013 .mpllb = { 0x50fd,
1014 0x2120,
1015 0x8f18,
1016 0xbfc1,
1017 0xa200,
1018 0x8814,
1019 0x2000,
1020 0x0001,
1021 0x1000,
1022 0x0000,
1023 0x0000,
1024 },
1025 };
1026
1027 static const struct intel_c20pll_state xe2hpd_c20_edp_r324 = {
1028 .clock = 324000,
1029 .tx = { 0xbe88,
1030 0x4800,
1031 0x0000,
1032 },
1033 .cmn = { 0x0500,
1034 0x0005,
1035 0x0000,
1036 0x0000,
1037 },
1038 .mpllb = { 0x30a8,
1039 0x2110,
1040 0xcd9a,
1041 0xbfc1,
1042 0x6c00,
1043 0x5ab8,
1044 0x2000,
1045 0x0001,
1046 0x6000,
1047 0x0000,
1048 0x0000,
1049 },
1050 };
1051
1052 static const struct intel_c20pll_state xe2hpd_c20_edp_r432 = {
1053 .clock = 432000,
1054 .tx = { 0xbe88,
1055 0x4800,
1056 0x0000,
1057 },
1058 .cmn = { 0x0500,
1059 0x0005,
1060 0x0000,
1061 0x0000,
1062 },
1063 .mpllb = { 0x30e1,
1064 0x2110,
1065 0x8e18,
1066 0xbfc1,
1067 0x9000,
1068 0x78f6,
1069 0x0000,
1070 0x0000,
1071 0x0000,
1072 0x0000,
1073 0x0000,
1074 },
1075 };
1076
1077 static const struct intel_c20pll_state xe2hpd_c20_edp_r675 = {
1078 .clock = 675000,
1079 .tx = { 0xbe88,
1080 0x4800,
1081 0x0000,
1082 },
1083 .cmn = { 0x0500,
1084 0x0005,
1085 0x0000,
1086 0x0000,
1087 },
1088 .mpllb = { 0x10af,
1089 0x2108,
1090 0xce1a,
1091 0xbfc1,
1092 0x7080,
1093 0x5e80,
1094 0x2000,
1095 0x0001,
1096 0x6400,
1097 0x0000,
1098 0x0000,
1099 },
1100 };
1101
1102 static const struct intel_c20pll_state * const xe2hpd_c20_edp_tables[] = {
1103 &mtl_c20_dp_rbr,
1104 &xe2hpd_c20_edp_r216,
1105 &xe2hpd_c20_edp_r243,
1106 &mtl_c20_dp_hbr1,
1107 &xe2hpd_c20_edp_r324,
1108 &xe2hpd_c20_edp_r432,
1109 &mtl_c20_dp_hbr2,
1110 &xe2hpd_c20_edp_r675,
1111 &mtl_c20_dp_hbr3,
1112 NULL,
1113 };
1114
1115 static const struct intel_c20pll_state xe2hpd_c20_dp_uhbr13_5 = {
1116 .clock = 1350000, /* 13.5 Gbps */
1117 .tx = { 0xbea0, /* tx cfg0 */
1118 0x4800, /* tx cfg1 */
1119 0x0000, /* tx cfg2 */
1120 },
1121 .cmn = {0x0500, /* cmn cfg0*/
1122 0x0005, /* cmn cfg1 */
1123 0x0000, /* cmn cfg2 */
1124 0x0000, /* cmn cfg3 */
1125 },
1126 .mpllb = { 0x015f, /* mpllb cfg0 */
1127 0x2205, /* mpllb cfg1 */
1128 0x1b17, /* mpllb cfg2 */
1129 0xffc1, /* mpllb cfg3 */
1130 0xbd00, /* mpllb cfg4 */
1131 0x9ec3, /* mpllb cfg5 */
1132 0x2000, /* mpllb cfg6 */
1133 0x0001, /* mpllb cfg7 */
1134 0x4800, /* mpllb cfg8 */
1135 0x0000, /* mpllb cfg9 */
1136 0x0000, /* mpllb cfg10 */
1137 },
1138 };
1139
1140 static const struct intel_c20pll_state * const xe2hpd_c20_dp_tables[] = {
1141 &mtl_c20_dp_rbr,
1142 &mtl_c20_dp_hbr1,
1143 &mtl_c20_dp_hbr2,
1144 &mtl_c20_dp_hbr3,
1145 &mtl_c20_dp_uhbr10,
1146 &xe2hpd_c20_dp_uhbr13_5,
1147 NULL,
1148 };
1149
1150 static const struct intel_c20pll_state * const xe3lpd_c20_dp_edp_tables[] = {
1151 &mtl_c20_dp_rbr,
1152 &xe2hpd_c20_edp_r216,
1153 &xe2hpd_c20_edp_r243,
1154 &mtl_c20_dp_hbr1,
1155 &xe2hpd_c20_edp_r324,
1156 &xe2hpd_c20_edp_r432,
1157 &mtl_c20_dp_hbr2,
1158 &xe2hpd_c20_edp_r675,
1159 &mtl_c20_dp_hbr3,
1160 &mtl_c20_dp_uhbr10,
1161 &xe2hpd_c20_dp_uhbr13_5,
1162 &mtl_c20_dp_uhbr20,
1163 NULL,
1164 };
1165
1166 /*
1167 * HDMI link rates with 38.4 MHz reference clock.
1168 */
1169
1170 static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
1171 .clock = 25200,
1172 .tx = 0x10,
1173 .cmn = 0x1,
1174 .pll[0] = 0x4,
1175 .pll[1] = 0,
1176 .pll[2] = 0xB2,
1177 .pll[3] = 0,
1178 .pll[4] = 0,
1179 .pll[5] = 0,
1180 .pll[6] = 0,
1181 .pll[7] = 0,
1182 .pll[8] = 0x20,
1183 .pll[9] = 0x1,
1184 .pll[10] = 0,
1185 .pll[11] = 0,
1186 .pll[12] = 0,
1187 .pll[13] = 0,
1188 .pll[14] = 0,
1189 .pll[15] = 0xD,
1190 .pll[16] = 0x6,
1191 .pll[17] = 0x8F,
1192 .pll[18] = 0x84,
1193 .pll[19] = 0x23,
1194 };
1195
1196 static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
1197 .clock = 27000,
1198 .tx = 0x10,
1199 .cmn = 0x1,
1200 .pll[0] = 0x34,
1201 .pll[1] = 0,
1202 .pll[2] = 0xC0,
1203 .pll[3] = 0,
1204 .pll[4] = 0,
1205 .pll[5] = 0,
1206 .pll[6] = 0,
1207 .pll[7] = 0,
1208 .pll[8] = 0x20,
1209 .pll[9] = 0x1,
1210 .pll[10] = 0,
1211 .pll[11] = 0,
1212 .pll[12] = 0x80,
1213 .pll[13] = 0,
1214 .pll[14] = 0,
1215 .pll[15] = 0xD,
1216 .pll[16] = 0x6,
1217 .pll[17] = 0xCF,
1218 .pll[18] = 0x84,
1219 .pll[19] = 0x23,
1220 };
1221
1222 static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
1223 .clock = 74250,
1224 .tx = 0x10,
1225 .cmn = 0x1,
1226 .pll[0] = 0xF4,
1227 .pll[1] = 0,
1228 .pll[2] = 0x7A,
1229 .pll[3] = 0,
1230 .pll[4] = 0,
1231 .pll[5] = 0,
1232 .pll[6] = 0,
1233 .pll[7] = 0,
1234 .pll[8] = 0x20,
1235 .pll[9] = 0x1,
1236 .pll[10] = 0,
1237 .pll[11] = 0,
1238 .pll[12] = 0x58,
1239 .pll[13] = 0,
1240 .pll[14] = 0,
1241 .pll[15] = 0xB,
1242 .pll[16] = 0x6,
1243 .pll[17] = 0xF,
1244 .pll[18] = 0x85,
1245 .pll[19] = 0x23,
1246 };
1247
1248 static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
1249 .clock = 148500,
1250 .tx = 0x10,
1251 .cmn = 0x1,
1252 .pll[0] = 0xF4,
1253 .pll[1] = 0,
1254 .pll[2] = 0x7A,
1255 .pll[3] = 0,
1256 .pll[4] = 0,
1257 .pll[5] = 0,
1258 .pll[6] = 0,
1259 .pll[7] = 0,
1260 .pll[8] = 0x20,
1261 .pll[9] = 0x1,
1262 .pll[10] = 0,
1263 .pll[11] = 0,
1264 .pll[12] = 0x58,
1265 .pll[13] = 0,
1266 .pll[14] = 0,
1267 .pll[15] = 0xA,
1268 .pll[16] = 0x6,
1269 .pll[17] = 0xF,
1270 .pll[18] = 0x85,
1271 .pll[19] = 0x23,
1272 };
1273
1274 static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
1275 .clock = 594000,
1276 .tx = 0x10,
1277 .cmn = 0x1,
1278 .pll[0] = 0xF4,
1279 .pll[1] = 0,
1280 .pll[2] = 0x7A,
1281 .pll[3] = 0,
1282 .pll[4] = 0,
1283 .pll[5] = 0,
1284 .pll[6] = 0,
1285 .pll[7] = 0,
1286 .pll[8] = 0x20,
1287 .pll[9] = 0x1,
1288 .pll[10] = 0,
1289 .pll[11] = 0,
1290 .pll[12] = 0x58,
1291 .pll[13] = 0,
1292 .pll[14] = 0,
1293 .pll[15] = 0x8,
1294 .pll[16] = 0x6,
1295 .pll[17] = 0xF,
1296 .pll[18] = 0x85,
1297 .pll[19] = 0x23,
1298 };
1299
1300 /* Precomputed C10 HDMI PLL tables */
1301 static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1302 .clock = 27027,
1303 .tx = 0x10,
1304 .cmn = 0x1,
1305 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1306 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1307 .pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1308 .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1309 };
1310
1311 static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1312 .clock = 28320,
1313 .tx = 0x10,
1314 .cmn = 0x1,
1315 .pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1316 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1317 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1318 .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1319 };
1320
1321 static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1322 .clock = 30240,
1323 .tx = 0x10,
1324 .cmn = 0x1,
1325 .pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1326 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1327 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1328 .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1329 };
1330
1331 static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1332 .clock = 31500,
1333 .tx = 0x10,
1334 .cmn = 0x1,
1335 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1336 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1337 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1338 .pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1339 };
1340
1341 static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1342 .clock = 36000,
1343 .tx = 0x10,
1344 .cmn = 0x1,
1345 .pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1346 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1347 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1348 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1349 };
1350
1351 static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1352 .clock = 40000,
1353 .tx = 0x10,
1354 .cmn = 0x1,
1355 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1356 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1357 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1358 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1359 };
1360
1361 static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1362 .clock = 49500,
1363 .tx = 0x10,
1364 .cmn = 0x1,
1365 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1366 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1367 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1368 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1369 };
1370
1371 static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1372 .clock = 50000,
1373 .tx = 0x10,
1374 .cmn = 0x1,
1375 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1376 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1377 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1378 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1379 };
1380
1381 static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1382 .clock = 57284,
1383 .tx = 0x10,
1384 .cmn = 0x1,
1385 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1386 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1387 .pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1388 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1389 };
1390
1391 static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1392 .clock = 58000,
1393 .tx = 0x10,
1394 .cmn = 0x1,
1395 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1396 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1397 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1398 .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1399 };
1400
1401 static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1402 .clock = 65000,
1403 .tx = 0x10,
1404 .cmn = 0x1,
1405 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1406 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1407 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1408 .pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1409 };
1410
1411 static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1412 .clock = 71000,
1413 .tx = 0x10,
1414 .cmn = 0x1,
1415 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1416 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1417 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1418 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1419 };
1420
1421 static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1422 .clock = 74176,
1423 .tx = 0x10,
1424 .cmn = 0x1,
1425 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1426 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1427 .pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1428 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1429 };
1430
1431 static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1432 .clock = 75000,
1433 .tx = 0x10,
1434 .cmn = 0x1,
1435 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1436 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1437 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1438 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1439 };
1440
1441 static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1442 .clock = 78750,
1443 .tx = 0x10,
1444 .cmn = 0x1,
1445 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1446 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1447 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1448 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1449 };
1450
1451 static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1452 .clock = 85500,
1453 .tx = 0x10,
1454 .cmn = 0x1,
1455 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1456 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1457 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1458 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1459 };
1460
1461 static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1462 .clock = 88750,
1463 .tx = 0x10,
1464 .cmn = 0x1,
1465 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1466 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1467 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1468 .pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1469 };
1470
1471 static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1472 .clock = 106500,
1473 .tx = 0x10,
1474 .cmn = 0x1,
1475 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1476 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1477 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1478 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1479 };
1480
1481 static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1482 .clock = 108000,
1483 .tx = 0x10,
1484 .cmn = 0x1,
1485 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1486 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1487 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1488 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1489 };
1490
1491 static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1492 .clock = 115500,
1493 .tx = 0x10,
1494 .cmn = 0x1,
1495 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1496 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1497 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1498 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1499 };
1500
1501 static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1502 .clock = 119000,
1503 .tx = 0x10,
1504 .cmn = 0x1,
1505 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1506 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1507 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1508 .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1509 };
1510
1511 static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1512 .clock = 135000,
1513 .tx = 0x10,
1514 .cmn = 0x1,
1515 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1516 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1517 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1518 .pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1519 };
1520
1521 static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1522 .clock = 138500,
1523 .tx = 0x10,
1524 .cmn = 0x1,
1525 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1526 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1527 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1528 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1529 };
1530
1531 static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1532 .clock = 147160,
1533 .tx = 0x10,
1534 .cmn = 0x1,
1535 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1536 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1537 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1538 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1539 };
1540
1541 static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1542 .clock = 148352,
1543 .tx = 0x10,
1544 .cmn = 0x1,
1545 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1546 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1547 .pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1548 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1549 };
1550
1551 static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1552 .clock = 154000,
1553 .tx = 0x10,
1554 .cmn = 0x1,
1555 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1556 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1557 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1558 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1559 };
1560
1561 static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1562 .clock = 162000,
1563 .tx = 0x10,
1564 .cmn = 0x1,
1565 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1566 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1567 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1568 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1569 };
1570
1571 static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1572 .clock = 167000,
1573 .tx = 0x10,
1574 .cmn = 0x1,
1575 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1576 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1577 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1578 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1579 };
1580
1581 static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1582 .clock = 197802,
1583 .tx = 0x10,
1584 .cmn = 0x1,
1585 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1586 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1587 .pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1588 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1589 };
1590
1591 static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1592 .clock = 198000,
1593 .tx = 0x10,
1594 .cmn = 0x1,
1595 .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1596 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1597 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1598 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1599 };
1600
1601 static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1602 .clock = 209800,
1603 .tx = 0x10,
1604 .cmn = 0x1,
1605 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1606 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1607 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1608 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1609 };
1610
1611 static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1612 .clock = 241500,
1613 .tx = 0x10,
1614 .cmn = 0x1,
1615 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1616 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1617 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1618 .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1619 };
1620
1621 static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1622 .clock = 262750,
1623 .tx = 0x10,
1624 .cmn = 0x1,
1625 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1626 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1627 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1628 .pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1629 };
1630
1631 static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1632 .clock = 268500,
1633 .tx = 0x10,
1634 .cmn = 0x1,
1635 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1636 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1637 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1638 .pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1639 };
1640
1641 static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1642 .clock = 296703,
1643 .tx = 0x10,
1644 .cmn = 0x1,
1645 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1646 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1647 .pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1648 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1649 };
1650
1651 static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1652 .clock = 297000,
1653 .tx = 0x10,
1654 .cmn = 0x1,
1655 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1656 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1657 .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1658 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1659 };
1660
1661 static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1662 .clock = 319750,
1663 .tx = 0x10,
1664 .cmn = 0x1,
1665 .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1666 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1667 .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1668 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1669 };
1670
1671 static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1672 .clock = 497750,
1673 .tx = 0x10,
1674 .cmn = 0x1,
1675 .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1676 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1677 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1678 .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1679 };
1680
1681 static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1682 .clock = 592000,
1683 .tx = 0x10,
1684 .cmn = 0x1,
1685 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1686 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1687 .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1688 .pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1689 };
1690
1691 static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1692 .clock = 593407,
1693 .tx = 0x10,
1694 .cmn = 0x1,
1695 .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1696 .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1697 .pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1698 .pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1699 };
1700
1701 static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1702 &mtl_c10_hdmi_25_2, /* Consolidated Table */
1703 &mtl_c10_hdmi_27_0, /* Consolidated Table */
1704 &mtl_c10_hdmi_27027,
1705 &mtl_c10_hdmi_28320,
1706 &mtl_c10_hdmi_30240,
1707 &mtl_c10_hdmi_31500,
1708 &mtl_c10_hdmi_36000,
1709 &mtl_c10_hdmi_40000,
1710 &mtl_c10_hdmi_49500,
1711 &mtl_c10_hdmi_50000,
1712 &mtl_c10_hdmi_57284,
1713 &mtl_c10_hdmi_58000,
1714 &mtl_c10_hdmi_65000,
1715 &mtl_c10_hdmi_71000,
1716 &mtl_c10_hdmi_74176,
1717 &mtl_c10_hdmi_74_25, /* Consolidated Table */
1718 &mtl_c10_hdmi_75000,
1719 &mtl_c10_hdmi_78750,
1720 &mtl_c10_hdmi_85500,
1721 &mtl_c10_hdmi_88750,
1722 &mtl_c10_hdmi_106500,
1723 &mtl_c10_hdmi_108000,
1724 &mtl_c10_hdmi_115500,
1725 &mtl_c10_hdmi_119000,
1726 &mtl_c10_hdmi_135000,
1727 &mtl_c10_hdmi_138500,
1728 &mtl_c10_hdmi_147160,
1729 &mtl_c10_hdmi_148352,
1730 &mtl_c10_hdmi_148_5, /* Consolidated Table */
1731 &mtl_c10_hdmi_154000,
1732 &mtl_c10_hdmi_162000,
1733 &mtl_c10_hdmi_167000,
1734 &mtl_c10_hdmi_197802,
1735 &mtl_c10_hdmi_198000,
1736 &mtl_c10_hdmi_209800,
1737 &mtl_c10_hdmi_241500,
1738 &mtl_c10_hdmi_262750,
1739 &mtl_c10_hdmi_268500,
1740 &mtl_c10_hdmi_296703,
1741 &mtl_c10_hdmi_297000,
1742 &mtl_c10_hdmi_319750,
1743 &mtl_c10_hdmi_497750,
1744 &mtl_c10_hdmi_592000,
1745 &mtl_c10_hdmi_593407,
1746 &mtl_c10_hdmi_594, /* Consolidated Table */
1747 NULL,
1748 };
1749
1750 static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1751 .clock = 25175,
1752 .tx = { 0xbe88, /* tx cfg0 */
1753 0x9800, /* tx cfg1 */
1754 0x0000, /* tx cfg2 */
1755 },
1756 .cmn = { 0x0500, /* cmn cfg0*/
1757 0x0005, /* cmn cfg1 */
1758 0x0000, /* cmn cfg2 */
1759 0x0000, /* cmn cfg3 */
1760 },
1761 .mpllb = { 0xa0d2, /* mpllb cfg0 */
1762 0x7d80, /* mpllb cfg1 */
1763 0x0906, /* mpllb cfg2 */
1764 0xbe40, /* mpllb cfg3 */
1765 0x0000, /* mpllb cfg4 */
1766 0x0000, /* mpllb cfg5 */
1767 0x0200, /* mpllb cfg6 */
1768 0x0001, /* mpllb cfg7 */
1769 0x0000, /* mpllb cfg8 */
1770 0x0000, /* mpllb cfg9 */
1771 0x0001, /* mpllb cfg10 */
1772 },
1773 };
1774
1775 static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1776 .clock = 27000,
1777 .tx = { 0xbe88, /* tx cfg0 */
1778 0x9800, /* tx cfg1 */
1779 0x0000, /* tx cfg2 */
1780 },
1781 .cmn = { 0x0500, /* cmn cfg0*/
1782 0x0005, /* cmn cfg1 */
1783 0x0000, /* cmn cfg2 */
1784 0x0000, /* cmn cfg3 */
1785 },
1786 .mpllb = { 0xa0e0, /* mpllb cfg0 */
1787 0x7d80, /* mpllb cfg1 */
1788 0x0906, /* mpllb cfg2 */
1789 0xbe40, /* mpllb cfg3 */
1790 0x0000, /* mpllb cfg4 */
1791 0x0000, /* mpllb cfg5 */
1792 0x2200, /* mpllb cfg6 */
1793 0x0001, /* mpllb cfg7 */
1794 0x8000, /* mpllb cfg8 */
1795 0x0000, /* mpllb cfg9 */
1796 0x0001, /* mpllb cfg10 */
1797 },
1798 };
1799
1800 static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1801 .clock = 74250,
1802 .tx = { 0xbe88, /* tx cfg0 */
1803 0x9800, /* tx cfg1 */
1804 0x0000, /* tx cfg2 */
1805 },
1806 .cmn = { 0x0500, /* cmn cfg0*/
1807 0x0005, /* cmn cfg1 */
1808 0x0000, /* cmn cfg2 */
1809 0x0000, /* cmn cfg3 */
1810 },
1811 .mpllb = { 0x609a, /* mpllb cfg0 */
1812 0x7d40, /* mpllb cfg1 */
1813 0xca06, /* mpllb cfg2 */
1814 0xbe40, /* mpllb cfg3 */
1815 0x0000, /* mpllb cfg4 */
1816 0x0000, /* mpllb cfg5 */
1817 0x2200, /* mpllb cfg6 */
1818 0x0001, /* mpllb cfg7 */
1819 0x5800, /* mpllb cfg8 */
1820 0x0000, /* mpllb cfg9 */
1821 0x0001, /* mpllb cfg10 */
1822 },
1823 };
1824
1825 static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1826 .clock = 148500,
1827 .tx = { 0xbe88, /* tx cfg0 */
1828 0x9800, /* tx cfg1 */
1829 0x0000, /* tx cfg2 */
1830 },
1831 .cmn = { 0x0500, /* cmn cfg0*/
1832 0x0005, /* cmn cfg1 */
1833 0x0000, /* cmn cfg2 */
1834 0x0000, /* cmn cfg3 */
1835 },
1836 .mpllb = { 0x409a, /* mpllb cfg0 */
1837 0x7d20, /* mpllb cfg1 */
1838 0xca06, /* mpllb cfg2 */
1839 0xbe40, /* mpllb cfg3 */
1840 0x0000, /* mpllb cfg4 */
1841 0x0000, /* mpllb cfg5 */
1842 0x2200, /* mpllb cfg6 */
1843 0x0001, /* mpllb cfg7 */
1844 0x5800, /* mpllb cfg8 */
1845 0x0000, /* mpllb cfg9 */
1846 0x0001, /* mpllb cfg10 */
1847 },
1848 };
1849
1850 static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1851 .clock = 594000,
1852 .tx = { 0xbe88, /* tx cfg0 */
1853 0x9800, /* tx cfg1 */
1854 0x0000, /* tx cfg2 */
1855 },
1856 .cmn = { 0x0500, /* cmn cfg0*/
1857 0x0005, /* cmn cfg1 */
1858 0x0000, /* cmn cfg2 */
1859 0x0000, /* cmn cfg3 */
1860 },
1861 .mpllb = { 0x009a, /* mpllb cfg0 */
1862 0x7d08, /* mpllb cfg1 */
1863 0xca06, /* mpllb cfg2 */
1864 0xbe40, /* mpllb cfg3 */
1865 0x0000, /* mpllb cfg4 */
1866 0x0000, /* mpllb cfg5 */
1867 0x2200, /* mpllb cfg6 */
1868 0x0001, /* mpllb cfg7 */
1869 0x5800, /* mpllb cfg8 */
1870 0x0000, /* mpllb cfg9 */
1871 0x0001, /* mpllb cfg10 */
1872 },
1873 };
1874
1875 static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1876 .clock = 3000000,
1877 .tx = { 0xbe98, /* tx cfg0 */
1878 0x8800, /* tx cfg1 */
1879 0x0000, /* tx cfg2 */
1880 },
1881 .cmn = { 0x0500, /* cmn cfg0*/
1882 0x0005, /* cmn cfg1 */
1883 0x0000, /* cmn cfg2 */
1884 0x0000, /* cmn cfg3 */
1885 },
1886 .mpllb = { 0x309c, /* mpllb cfg0 */
1887 0x2110, /* mpllb cfg1 */
1888 0xca06, /* mpllb cfg2 */
1889 0xbe40, /* mpllb cfg3 */
1890 0x0000, /* mpllb cfg4 */
1891 0x0000, /* mpllb cfg5 */
1892 0x2200, /* mpllb cfg6 */
1893 0x0001, /* mpllb cfg7 */
1894 0x2000, /* mpllb cfg8 */
1895 0x0000, /* mpllb cfg9 */
1896 0x0004, /* mpllb cfg10 */
1897 },
1898 };
1899
1900 static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1901 .clock = 6000000,
1902 .tx = { 0xbe98, /* tx cfg0 */
1903 0x8800, /* tx cfg1 */
1904 0x0000, /* tx cfg2 */
1905 },
1906 .cmn = { 0x0500, /* cmn cfg0*/
1907 0x0005, /* cmn cfg1 */
1908 0x0000, /* cmn cfg2 */
1909 0x0000, /* cmn cfg3 */
1910 },
1911 .mpllb = { 0x109c, /* mpllb cfg0 */
1912 0x2108, /* mpllb cfg1 */
1913 0xca06, /* mpllb cfg2 */
1914 0xbe40, /* mpllb cfg3 */
1915 0x0000, /* mpllb cfg4 */
1916 0x0000, /* mpllb cfg5 */
1917 0x2200, /* mpllb cfg6 */
1918 0x0001, /* mpllb cfg7 */
1919 0x2000, /* mpllb cfg8 */
1920 0x0000, /* mpllb cfg9 */
1921 0x0004, /* mpllb cfg10 */
1922 },
1923 };
1924
1925 static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1926 .clock = 8000000,
1927 .tx = { 0xbe98, /* tx cfg0 */
1928 0x8800, /* tx cfg1 */
1929 0x0000, /* tx cfg2 */
1930 },
1931 .cmn = { 0x0500, /* cmn cfg0*/
1932 0x0005, /* cmn cfg1 */
1933 0x0000, /* cmn cfg2 */
1934 0x0000, /* cmn cfg3 */
1935 },
1936 .mpllb = { 0x10d0, /* mpllb cfg0 */
1937 0x2108, /* mpllb cfg1 */
1938 0x4a06, /* mpllb cfg2 */
1939 0xbe40, /* mpllb cfg3 */
1940 0x0000, /* mpllb cfg4 */
1941 0x0000, /* mpllb cfg5 */
1942 0x2200, /* mpllb cfg6 */
1943 0x0003, /* mpllb cfg7 */
1944 0x2aaa, /* mpllb cfg8 */
1945 0x0002, /* mpllb cfg9 */
1946 0x0004, /* mpllb cfg10 */
1947 },
1948 };
1949
1950 static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1951 .clock = 10000000,
1952 .tx = { 0xbe98, /* tx cfg0 */
1953 0x8800, /* tx cfg1 */
1954 0x0000, /* tx cfg2 */
1955 },
1956 .cmn = { 0x0500, /* cmn cfg0*/
1957 0x0005, /* cmn cfg1 */
1958 0x0000, /* cmn cfg2 */
1959 0x0000, /* cmn cfg3 */
1960 },
1961 .mpllb = { 0x1104, /* mpllb cfg0 */
1962 0x2108, /* mpllb cfg1 */
1963 0x0a06, /* mpllb cfg2 */
1964 0xbe40, /* mpllb cfg3 */
1965 0x0000, /* mpllb cfg4 */
1966 0x0000, /* mpllb cfg5 */
1967 0x2200, /* mpllb cfg6 */
1968 0x0003, /* mpllb cfg7 */
1969 0x3555, /* mpllb cfg8 */
1970 0x0001, /* mpllb cfg9 */
1971 0x0004, /* mpllb cfg10 */
1972 },
1973 };
1974
1975 static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1976 .clock = 12000000,
1977 .tx = { 0xbe98, /* tx cfg0 */
1978 0x8800, /* tx cfg1 */
1979 0x0000, /* tx cfg2 */
1980 },
1981 .cmn = { 0x0500, /* cmn cfg0*/
1982 0x0005, /* cmn cfg1 */
1983 0x0000, /* cmn cfg2 */
1984 0x0000, /* cmn cfg3 */
1985 },
1986 .mpllb = { 0x1138, /* mpllb cfg0 */
1987 0x2108, /* mpllb cfg1 */
1988 0x5486, /* mpllb cfg2 */
1989 0xfe40, /* mpllb cfg3 */
1990 0x0000, /* mpllb cfg4 */
1991 0x0000, /* mpllb cfg5 */
1992 0x2200, /* mpllb cfg6 */
1993 0x0001, /* mpllb cfg7 */
1994 0x4000, /* mpllb cfg8 */
1995 0x0000, /* mpllb cfg9 */
1996 0x0004, /* mpllb cfg10 */
1997 },
1998 };
1999
2000 static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
2001 &mtl_c20_hdmi_25_175,
2002 &mtl_c20_hdmi_27_0,
2003 &mtl_c20_hdmi_74_25,
2004 &mtl_c20_hdmi_148_5,
2005 &mtl_c20_hdmi_594,
2006 &mtl_c20_hdmi_300,
2007 &mtl_c20_hdmi_600,
2008 &mtl_c20_hdmi_800,
2009 &mtl_c20_hdmi_1000,
2010 &mtl_c20_hdmi_1200,
2011 NULL,
2012 };
2013
2014 static const struct intel_c10pll_state * const *
intel_c10pll_tables_get(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2015 intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
2016 struct intel_encoder *encoder)
2017 {
2018 if (intel_crtc_has_dp_encoder(crtc_state)) {
2019 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2020 return mtl_c10_edp_tables;
2021 else
2022 return mtl_c10_dp_tables;
2023 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2024 return mtl_c10_hdmi_tables;
2025 }
2026
2027 MISSING_CASE(encoder->type);
2028 return NULL;
2029 }
2030
intel_cx0pll_update_ssc(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state,bool is_dp)2031 static void intel_cx0pll_update_ssc(struct intel_encoder *encoder,
2032 struct intel_cx0pll_state *pll_state, bool is_dp)
2033 {
2034 struct intel_display *display = to_intel_display(encoder);
2035
2036 if (is_dp) {
2037 if (intel_panel_use_ssc(display)) {
2038 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2039 pll_state->ssc_enabled =
2040 (intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
2041 }
2042 }
2043 }
2044
intel_c10pll_update_pll(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state)2045 static void intel_c10pll_update_pll(struct intel_encoder *encoder,
2046 struct intel_cx0pll_state *pll_state)
2047 {
2048 struct intel_display *display = to_intel_display(encoder);
2049 int i;
2050
2051 if (pll_state->ssc_enabled)
2052 return;
2053
2054 drm_WARN_ON(display->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
2055 for (i = 4; i < 9; i++)
2056 pll_state->c10.pll[i] = 0;
2057 }
2058
intel_c10pll_calc_state_from_table(struct intel_encoder * encoder,const struct intel_c10pll_state * const * tables,bool is_dp,int port_clock,struct intel_cx0pll_state * pll_state)2059 static int intel_c10pll_calc_state_from_table(struct intel_encoder *encoder,
2060 const struct intel_c10pll_state * const *tables,
2061 bool is_dp, int port_clock,
2062 struct intel_cx0pll_state *pll_state)
2063 {
2064 int i;
2065
2066 for (i = 0; tables[i]; i++) {
2067 if (port_clock == tables[i]->clock) {
2068 pll_state->c10 = *tables[i];
2069 intel_cx0pll_update_ssc(encoder, pll_state, is_dp);
2070 intel_c10pll_update_pll(encoder, pll_state);
2071 pll_state->use_c10 = true;
2072
2073 return 0;
2074 }
2075 }
2076
2077 return -EINVAL;
2078 }
2079
intel_c10pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2080 static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
2081 struct intel_encoder *encoder)
2082 {
2083 const struct intel_c10pll_state * const *tables;
2084 int err;
2085
2086 tables = intel_c10pll_tables_get(crtc_state, encoder);
2087 if (!tables)
2088 return -EINVAL;
2089
2090 err = intel_c10pll_calc_state_from_table(encoder, tables,
2091 intel_crtc_has_dp_encoder(crtc_state),
2092 crtc_state->port_clock,
2093 &crtc_state->dpll_hw_state.cx0pll);
2094
2095 if (err == 0 || !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
2096 return err;
2097
2098 /* For HDMI PLLs try SNPS PHY algorithm, if there are no precomputed tables */
2099 intel_snps_hdmi_pll_compute_c10pll(&crtc_state->dpll_hw_state.cx0pll.c10,
2100 crtc_state->port_clock);
2101 intel_c10pll_update_pll(encoder,
2102 &crtc_state->dpll_hw_state.cx0pll);
2103 crtc_state->dpll_hw_state.cx0pll.use_c10 = true;
2104
2105 return 0;
2106 }
2107
intel_c10pll_readout_hw_state(struct intel_encoder * encoder,struct intel_c10pll_state * pll_state)2108 static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
2109 struct intel_c10pll_state *pll_state)
2110 {
2111 u8 lane = INTEL_CX0_LANE0;
2112 intel_wakeref_t wakeref;
2113 int i;
2114
2115 wakeref = intel_cx0_phy_transaction_begin(encoder);
2116
2117 /*
2118 * According to C10 VDR Register programming Sequence we need
2119 * to do this to read PHY internal registers from MsgBus.
2120 */
2121 intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1),
2122 0, C10_VDR_CTRL_MSGBUS_ACCESS,
2123 MB_WRITE_COMMITTED);
2124
2125 for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2126 pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i));
2127
2128 pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0));
2129 pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0));
2130
2131 intel_cx0_phy_transaction_end(encoder, wakeref);
2132 }
2133
intel_c10_pll_program(struct intel_display * display,struct intel_encoder * encoder,const struct intel_c10pll_state * pll_state)2134 static void intel_c10_pll_program(struct intel_display *display,
2135 struct intel_encoder *encoder,
2136 const struct intel_c10pll_state *pll_state)
2137 {
2138 int i;
2139
2140 intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
2141 0, C10_VDR_CTRL_MSGBUS_ACCESS,
2142 MB_WRITE_COMMITTED);
2143
2144 /* Program the pll values only for the master lane */
2145 for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2146 intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
2147 pll_state->pll[i],
2148 (i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
2149
2150 intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
2151 intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
2152
2153 /* Custom width needs to be programmed to 0 for both the phy lanes */
2154 intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
2155 C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
2156 MB_WRITE_COMMITTED);
2157 intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
2158 0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
2159 MB_WRITE_COMMITTED);
2160 }
2161
intel_c10pll_dump_hw_state(struct intel_display * display,const struct intel_c10pll_state * hw_state)2162 static void intel_c10pll_dump_hw_state(struct intel_display *display,
2163 const struct intel_c10pll_state *hw_state)
2164 {
2165 bool fracen;
2166 int i;
2167 unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2168 unsigned int multiplier, tx_clk_div;
2169
2170 fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
2171 drm_dbg_kms(display->drm, "c10pll_hw_state: fracen: %s, ",
2172 str_yes_no(fracen));
2173
2174 if (fracen) {
2175 frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
2176 frac_rem = hw_state->pll[14] << 8 | hw_state->pll[13];
2177 frac_den = hw_state->pll[10] << 8 | hw_state->pll[9];
2178 drm_dbg_kms(display->drm, "quot: %u, rem: %u, den: %u,\n",
2179 frac_quot, frac_rem, frac_den);
2180 }
2181
2182 multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
2183 hw_state->pll[2]) / 2 + 16;
2184 tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
2185 drm_dbg_kms(display->drm,
2186 "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
2187
2188 drm_dbg_kms(display->drm, "c10pll_rawhw_state:");
2189 drm_dbg_kms(display->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx,
2190 hw_state->cmn);
2191
2192 BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
2193 for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
2194 drm_dbg_kms(display->drm,
2195 "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
2196 i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
2197 i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
2198 }
2199
2200 /*
2201 * Some ARLs SoCs have the same drm PCI IDs, so need a helper to differentiate based
2202 * on the host bridge device ID to get the correct txx_mics value.
2203 */
is_arrowlake_s_by_host_bridge(void)2204 static bool is_arrowlake_s_by_host_bridge(void)
2205 {
2206 struct pci_dev *pdev = NULL;
2207 u16 host_bridge_pci_dev_id;
2208
2209 while ((pdev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, pdev)))
2210 host_bridge_pci_dev_id = pdev->device;
2211
2212 return pdev && IS_ARROWLAKE_S_BY_HOST_BRIDGE_ID(host_bridge_pci_dev_id);
2213 }
2214
intel_c20_hdmi_tmds_tx_cgf_1(struct intel_crtc_state * crtc_state)2215 static u16 intel_c20_hdmi_tmds_tx_cgf_1(struct intel_crtc_state *crtc_state)
2216 {
2217 struct intel_display *display = to_intel_display(crtc_state);
2218 u16 tx_misc;
2219 u16 tx_dcc_cal_dac_ctrl_range = 8;
2220 u16 tx_term_ctrl = 2;
2221
2222 if (DISPLAY_VER(display) >= 20) {
2223 tx_misc = 5;
2224 tx_term_ctrl = 4;
2225 } else if (display->platform.battlemage) {
2226 tx_misc = 0;
2227 } else if (display->platform.meteorlake_u ||
2228 is_arrowlake_s_by_host_bridge()) {
2229 tx_misc = 3;
2230 } else {
2231 tx_misc = 7;
2232 }
2233
2234 return (C20_PHY_TX_MISC(tx_misc) |
2235 C20_PHY_TX_DCC_CAL_RANGE(tx_dcc_cal_dac_ctrl_range) |
2236 C20_PHY_TX_DCC_BYPASS | C20_PHY_TX_TERM_CTL(tx_term_ctrl));
2237 }
2238
intel_c20_compute_hdmi_tmds_pll(struct intel_crtc_state * crtc_state)2239 static int intel_c20_compute_hdmi_tmds_pll(struct intel_crtc_state *crtc_state)
2240 {
2241 struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2242 u64 datarate;
2243 u64 mpll_tx_clk_div;
2244 u64 vco_freq_shift;
2245 u64 vco_freq;
2246 u64 multiplier;
2247 u64 mpll_multiplier;
2248 u64 mpll_fracn_quot;
2249 u64 mpll_fracn_rem;
2250 u8 mpllb_ana_freq_vco;
2251 u8 mpll_div_multiplier;
2252
2253 if (crtc_state->port_clock < 25175 || crtc_state->port_clock > 600000)
2254 return -EINVAL;
2255
2256 datarate = ((u64)crtc_state->port_clock * 1000) * 10;
2257 mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
2258 vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
2259 vco_freq = (datarate << vco_freq_shift) >> 8;
2260 multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
2261 mpll_multiplier = 2 * (multiplier >> 32);
2262
2263 mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
2264 mpll_fracn_rem = multiplier & 0xFFFF;
2265
2266 mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
2267 datarate), 255);
2268
2269 if (vco_freq <= DATARATE_3000000000)
2270 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
2271 else if (vco_freq <= DATARATE_3500000000)
2272 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
2273 else if (vco_freq <= DATARATE_4000000000)
2274 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
2275 else
2276 mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
2277
2278 pll_state->clock = crtc_state->port_clock;
2279 pll_state->tx[0] = 0xbe88;
2280 pll_state->tx[1] = intel_c20_hdmi_tmds_tx_cgf_1(crtc_state);
2281 pll_state->tx[2] = 0x0000;
2282 pll_state->cmn[0] = 0x0500;
2283 pll_state->cmn[1] = 0x0005;
2284 pll_state->cmn[2] = 0x0000;
2285 pll_state->cmn[3] = 0x0000;
2286 pll_state->mpllb[0] = (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
2287 MPLL_MULTIPLIER(mpll_multiplier));
2288 pll_state->mpllb[1] = (CAL_DAC_CODE(CAL_DAC_CODE_31) |
2289 WORD_CLK_DIV |
2290 MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
2291 pll_state->mpllb[2] = (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
2292 CP_PROP(CP_PROP_20) |
2293 CP_INT(CP_INT_6));
2294 pll_state->mpllb[3] = (V2I(V2I_2) |
2295 CP_PROP_GS(CP_PROP_GS_30) |
2296 CP_INT_GS(CP_INT_GS_28));
2297 pll_state->mpllb[4] = 0x0000;
2298 pll_state->mpllb[5] = 0x0000;
2299 pll_state->mpllb[6] = (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
2300 pll_state->mpllb[7] = MPLL_FRACN_DEN;
2301 pll_state->mpllb[8] = mpll_fracn_quot;
2302 pll_state->mpllb[9] = mpll_fracn_rem;
2303 pll_state->mpllb[10] = HDMI_DIV(HDMI_DIV_1);
2304
2305 return 0;
2306 }
2307
2308 static const struct intel_c20pll_state * const *
intel_c20_pll_tables_get(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2309 intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2310 struct intel_encoder *encoder)
2311 {
2312 struct intel_display *display = to_intel_display(crtc_state);
2313
2314 if (intel_crtc_has_dp_encoder(crtc_state)) {
2315 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) {
2316 if (DISPLAY_RUNTIME_INFO(display)->edp_typec_support)
2317 return xe3lpd_c20_dp_edp_tables;
2318 if (DISPLAY_VERx100(display) == 1401)
2319 return xe2hpd_c20_edp_tables;
2320 }
2321
2322 if (DISPLAY_VER(display) >= 30)
2323 return xe3lpd_c20_dp_edp_tables;
2324 else if (DISPLAY_VERx100(display) == 1401)
2325 return xe2hpd_c20_dp_tables;
2326 else
2327 return mtl_c20_dp_tables;
2328
2329 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2330 return mtl_c20_hdmi_tables;
2331 }
2332
2333 MISSING_CASE(encoder->type);
2334 return NULL;
2335 }
2336
intel_c20pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2337 static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2338 struct intel_encoder *encoder)
2339 {
2340 const struct intel_c20pll_state * const *tables;
2341 int i;
2342
2343 /* try computed C20 HDMI tables before using consolidated tables */
2344 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2345 if (intel_c20_compute_hdmi_tmds_pll(crtc_state) == 0)
2346 return 0;
2347 }
2348
2349 tables = intel_c20_pll_tables_get(crtc_state, encoder);
2350 if (!tables)
2351 return -EINVAL;
2352
2353 for (i = 0; tables[i]; i++) {
2354 if (crtc_state->port_clock == tables[i]->clock) {
2355 crtc_state->dpll_hw_state.cx0pll.c20 = *tables[i];
2356 intel_cx0pll_update_ssc(encoder,
2357 &crtc_state->dpll_hw_state.cx0pll,
2358 intel_crtc_has_dp_encoder(crtc_state));
2359 crtc_state->dpll_hw_state.cx0pll.use_c10 = false;
2360 return 0;
2361 }
2362 }
2363
2364 return -EINVAL;
2365 }
2366
intel_cx0pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2367 int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2368 struct intel_encoder *encoder)
2369 {
2370 if (intel_encoder_is_c10phy(encoder))
2371 return intel_c10pll_calc_state(crtc_state, encoder);
2372 return intel_c20pll_calc_state(crtc_state, encoder);
2373 }
2374
intel_c20phy_use_mpllb(const struct intel_c20pll_state * state)2375 static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state)
2376 {
2377 return state->tx[0] & C20_PHY_USE_MPLLB;
2378 }
2379
intel_c20pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_c20pll_state * pll_state)2380 static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2381 const struct intel_c20pll_state *pll_state)
2382 {
2383 unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2384 unsigned int multiplier, refclk = 38400;
2385 unsigned int tx_clk_div;
2386 unsigned int ref_clk_mpllb_div;
2387 unsigned int fb_clk_div4_en;
2388 unsigned int ref, vco;
2389 unsigned int tx_rate_mult;
2390 unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2391
2392 if (intel_c20phy_use_mpllb(pll_state)) {
2393 tx_rate_mult = 1;
2394 frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2395 frac_quot = pll_state->mpllb[8];
2396 frac_rem = pll_state->mpllb[9];
2397 frac_den = pll_state->mpllb[7];
2398 multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2399 tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2400 ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2401 fb_clk_div4_en = 0;
2402 } else {
2403 tx_rate_mult = 2;
2404 frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2405 frac_quot = pll_state->mplla[8];
2406 frac_rem = pll_state->mplla[9];
2407 frac_den = pll_state->mplla[7];
2408 multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2409 tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2410 ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2411 fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2412 }
2413
2414 if (frac_en)
2415 frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2416 else
2417 frac = 0;
2418
2419 ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2420 vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2421
2422 return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2423 }
2424
intel_c20pll_readout_hw_state(struct intel_encoder * encoder,struct intel_c20pll_state * pll_state)2425 static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2426 struct intel_c20pll_state *pll_state)
2427 {
2428 struct intel_display *display = to_intel_display(encoder);
2429 bool cntx;
2430 intel_wakeref_t wakeref;
2431 int i;
2432
2433 wakeref = intel_cx0_phy_transaction_begin(encoder);
2434
2435 /* 1. Read current context selection */
2436 cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2437
2438 /* Read Tx configuration */
2439 for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2440 if (cntx)
2441 pll_state->tx[i] = intel_c20_sram_read(encoder,
2442 INTEL_CX0_LANE0,
2443 PHY_C20_B_TX_CNTX_CFG(display, i));
2444 else
2445 pll_state->tx[i] = intel_c20_sram_read(encoder,
2446 INTEL_CX0_LANE0,
2447 PHY_C20_A_TX_CNTX_CFG(display, i));
2448 }
2449
2450 /* Read common configuration */
2451 for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2452 if (cntx)
2453 pll_state->cmn[i] = intel_c20_sram_read(encoder,
2454 INTEL_CX0_LANE0,
2455 PHY_C20_B_CMN_CNTX_CFG(display, i));
2456 else
2457 pll_state->cmn[i] = intel_c20_sram_read(encoder,
2458 INTEL_CX0_LANE0,
2459 PHY_C20_A_CMN_CNTX_CFG(display, i));
2460 }
2461
2462 if (intel_c20phy_use_mpllb(pll_state)) {
2463 /* MPLLB configuration */
2464 for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2465 if (cntx)
2466 pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2467 INTEL_CX0_LANE0,
2468 PHY_C20_B_MPLLB_CNTX_CFG(display, i));
2469 else
2470 pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2471 INTEL_CX0_LANE0,
2472 PHY_C20_A_MPLLB_CNTX_CFG(display, i));
2473 }
2474 } else {
2475 /* MPLLA configuration */
2476 for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2477 if (cntx)
2478 pll_state->mplla[i] = intel_c20_sram_read(encoder,
2479 INTEL_CX0_LANE0,
2480 PHY_C20_B_MPLLA_CNTX_CFG(display, i));
2481 else
2482 pll_state->mplla[i] = intel_c20_sram_read(encoder,
2483 INTEL_CX0_LANE0,
2484 PHY_C20_A_MPLLA_CNTX_CFG(display, i));
2485 }
2486 }
2487
2488 pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state);
2489
2490 intel_cx0_phy_transaction_end(encoder, wakeref);
2491 }
2492
intel_c20pll_dump_hw_state(struct intel_display * display,const struct intel_c20pll_state * hw_state)2493 static void intel_c20pll_dump_hw_state(struct intel_display *display,
2494 const struct intel_c20pll_state *hw_state)
2495 {
2496 int i;
2497
2498 drm_dbg_kms(display->drm, "c20pll_hw_state:\n");
2499 drm_dbg_kms(display->drm,
2500 "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2501 hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2502 drm_dbg_kms(display->drm,
2503 "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2504 hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2505
2506 if (intel_c20phy_use_mpllb(hw_state)) {
2507 for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2508 drm_dbg_kms(display->drm, "mpllb[%d] = 0x%.4x\n", i,
2509 hw_state->mpllb[i]);
2510 } else {
2511 for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2512 drm_dbg_kms(display->drm, "mplla[%d] = 0x%.4x\n", i,
2513 hw_state->mplla[i]);
2514 }
2515 }
2516
intel_cx0pll_dump_hw_state(struct intel_display * display,const struct intel_cx0pll_state * hw_state)2517 void intel_cx0pll_dump_hw_state(struct intel_display *display,
2518 const struct intel_cx0pll_state *hw_state)
2519 {
2520 if (hw_state->use_c10)
2521 intel_c10pll_dump_hw_state(display, &hw_state->c10);
2522 else
2523 intel_c20pll_dump_hw_state(display, &hw_state->c20);
2524 }
2525
intel_c20_get_dp_rate(u32 clock)2526 static u8 intel_c20_get_dp_rate(u32 clock)
2527 {
2528 switch (clock) {
2529 case 162000: /* 1.62 Gbps DP1.4 */
2530 return 0;
2531 case 270000: /* 2.7 Gbps DP1.4 */
2532 return 1;
2533 case 540000: /* 5.4 Gbps DP 1.4 */
2534 return 2;
2535 case 810000: /* 8.1 Gbps DP1.4 */
2536 return 3;
2537 case 216000: /* 2.16 Gbps eDP */
2538 return 4;
2539 case 243000: /* 2.43 Gbps eDP */
2540 return 5;
2541 case 324000: /* 3.24 Gbps eDP */
2542 return 6;
2543 case 432000: /* 4.32 Gbps eDP */
2544 return 7;
2545 case 1000000: /* 10 Gbps DP2.0 */
2546 return 8;
2547 case 1350000: /* 13.5 Gbps DP2.0 */
2548 return 9;
2549 case 2000000: /* 20 Gbps DP2.0 */
2550 return 10;
2551 case 648000: /* 6.48 Gbps eDP*/
2552 return 11;
2553 case 675000: /* 6.75 Gbps eDP*/
2554 return 12;
2555 default:
2556 MISSING_CASE(clock);
2557 return 0;
2558 }
2559 }
2560
intel_c20_get_hdmi_rate(u32 clock)2561 static u8 intel_c20_get_hdmi_rate(u32 clock)
2562 {
2563 if (clock >= 25175 && clock <= 600000)
2564 return 0;
2565
2566 switch (clock) {
2567 case 300000: /* 3 Gbps */
2568 case 600000: /* 6 Gbps */
2569 case 1200000: /* 12 Gbps */
2570 return 1;
2571 case 800000: /* 8 Gbps */
2572 return 2;
2573 case 1000000: /* 10 Gbps */
2574 return 3;
2575 default:
2576 MISSING_CASE(clock);
2577 return 0;
2578 }
2579 }
2580
is_dp2(u32 clock)2581 static bool is_dp2(u32 clock)
2582 {
2583 /* DP2.0 clock rates */
2584 if (clock == 1000000 || clock == 1350000 || clock == 2000000)
2585 return true;
2586
2587 return false;
2588 }
2589
is_hdmi_frl(u32 clock)2590 static bool is_hdmi_frl(u32 clock)
2591 {
2592 switch (clock) {
2593 case 300000: /* 3 Gbps */
2594 case 600000: /* 6 Gbps */
2595 case 800000: /* 8 Gbps */
2596 case 1000000: /* 10 Gbps */
2597 case 1200000: /* 12 Gbps */
2598 return true;
2599 default:
2600 return false;
2601 }
2602 }
2603
intel_c20_protocol_switch_valid(struct intel_encoder * encoder)2604 static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2605 {
2606 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2607
2608 /* banks should not be cleared for DPALT/USB4/TBT modes */
2609 /* TODO: optimize re-calibration in legacy mode */
2610 return intel_tc_port_in_legacy_mode(intel_dig_port);
2611 }
2612
intel_get_c20_custom_width(u32 clock,bool dp)2613 static int intel_get_c20_custom_width(u32 clock, bool dp)
2614 {
2615 if (dp && is_dp2(clock))
2616 return 2;
2617 else if (is_hdmi_frl(clock))
2618 return 1;
2619 else
2620 return 0;
2621 }
2622
intel_c20_pll_program(struct intel_display * display,struct intel_encoder * encoder,const struct intel_c20pll_state * pll_state,bool is_dp,int port_clock)2623 static void intel_c20_pll_program(struct intel_display *display,
2624 struct intel_encoder *encoder,
2625 const struct intel_c20pll_state *pll_state,
2626 bool is_dp, int port_clock)
2627 {
2628 u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2629 bool cntx;
2630 int i;
2631
2632 /* 1. Read current context selection */
2633 cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
2634
2635 /*
2636 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2637 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2638 * Protocol switch is only applicable for MPLLA
2639 */
2640 if (intel_c20_protocol_switch_valid(encoder)) {
2641 for (i = 0; i < 4; i++)
2642 intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2643 usleep_range(4000, 4100);
2644 }
2645
2646 /* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2647 /* 3.1 Tx configuration */
2648 for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2649 if (cntx)
2650 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2651 PHY_C20_A_TX_CNTX_CFG(display, i),
2652 pll_state->tx[i]);
2653 else
2654 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2655 PHY_C20_B_TX_CNTX_CFG(display, i),
2656 pll_state->tx[i]);
2657 }
2658
2659 /* 3.2 common configuration */
2660 for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2661 if (cntx)
2662 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2663 PHY_C20_A_CMN_CNTX_CFG(display, i),
2664 pll_state->cmn[i]);
2665 else
2666 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2667 PHY_C20_B_CMN_CNTX_CFG(display, i),
2668 pll_state->cmn[i]);
2669 }
2670
2671 /* 3.3 mpllb or mplla configuration */
2672 if (intel_c20phy_use_mpllb(pll_state)) {
2673 for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2674 if (cntx)
2675 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2676 PHY_C20_A_MPLLB_CNTX_CFG(display, i),
2677 pll_state->mpllb[i]);
2678 else
2679 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2680 PHY_C20_B_MPLLB_CNTX_CFG(display, i),
2681 pll_state->mpllb[i]);
2682 }
2683 } else {
2684 for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2685 if (cntx)
2686 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2687 PHY_C20_A_MPLLA_CNTX_CFG(display, i),
2688 pll_state->mplla[i]);
2689 else
2690 intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2691 PHY_C20_B_MPLLA_CNTX_CFG(display, i),
2692 pll_state->mplla[i]);
2693 }
2694 }
2695
2696 /* 4. Program custom width to match the link protocol */
2697 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_WIDTH,
2698 PHY_C20_CUSTOM_WIDTH_MASK,
2699 PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(port_clock, is_dp)),
2700 MB_WRITE_COMMITTED);
2701
2702 /* 5. For DP or 6. For HDMI */
2703 if (is_dp) {
2704 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2705 BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
2706 BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(port_clock)),
2707 MB_WRITE_COMMITTED);
2708 } else {
2709 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2710 BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
2711 is_hdmi_frl(port_clock) ? BIT(7) : 0,
2712 MB_WRITE_COMMITTED);
2713
2714 intel_cx0_write(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2715 intel_c20_get_hdmi_rate(port_clock),
2716 MB_WRITE_COMMITTED);
2717 }
2718
2719 /*
2720 * 7. Write Vendor specific registers to toggle context setting to load
2721 * the updated programming toggle context bit
2722 */
2723 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2724 BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
2725 }
2726
intel_c10pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_c10pll_state * pll_state)2727 static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2728 const struct intel_c10pll_state *pll_state)
2729 {
2730 unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2731 unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2732 int tmpclk = 0;
2733
2734 if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2735 frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2736 frac_rem = pll_state->pll[14] << 8 | pll_state->pll[13];
2737 frac_den = pll_state->pll[10] << 8 | pll_state->pll[9];
2738 }
2739
2740 multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2741 pll_state->pll[2]) / 2 + 16;
2742
2743 tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2744 hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2745
2746 tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2747 DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2748 10 << (tx_clk_div + 16));
2749 tmpclk *= (hdmi_div ? 2 : 1);
2750
2751 return tmpclk;
2752 }
2753
intel_program_port_clock_ctl(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state,bool is_dp,int port_clock,bool lane_reversal)2754 static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2755 const struct intel_cx0pll_state *pll_state,
2756 bool is_dp, int port_clock,
2757 bool lane_reversal)
2758 {
2759 struct intel_display *display = to_intel_display(encoder);
2760 u32 val = 0;
2761
2762 intel_de_rmw(display, XELPDP_PORT_BUF_CTL1(display, encoder->port),
2763 XELPDP_PORT_REVERSAL,
2764 lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2765
2766 if (lane_reversal)
2767 val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2768
2769 val |= XELPDP_FORWARD_CLOCK_UNGATE;
2770
2771 if (!is_dp && is_hdmi_frl(port_clock))
2772 val |= XELPDP_DDI_CLOCK_SELECT_PREP(display, XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2773 else
2774 val |= XELPDP_DDI_CLOCK_SELECT_PREP(display, XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2775
2776 /* TODO: HDMI FRL */
2777 /* DP2.0 10G and 20G rates enable MPLLA*/
2778 if (port_clock == 1000000 || port_clock == 2000000)
2779 val |= pll_state->ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2780 else
2781 val |= pll_state->ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2782
2783 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
2784 XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2785 XELPDP_DDI_CLOCK_SELECT_MASK(display) | XELPDP_SSC_ENABLE_PLLA |
2786 XELPDP_SSC_ENABLE_PLLB, val);
2787 }
2788
intel_cx0_get_powerdown_update(u8 lane_mask)2789 static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2790 {
2791 u32 val = 0;
2792 int lane = 0;
2793
2794 for_each_cx0_lane_in_mask(lane_mask, lane)
2795 val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2796
2797 return val;
2798 }
2799
intel_cx0_get_powerdown_state(u8 lane_mask,u8 state)2800 static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2801 {
2802 u32 val = 0;
2803 int lane = 0;
2804
2805 for_each_cx0_lane_in_mask(lane_mask, lane)
2806 val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2807
2808 return val;
2809 }
2810
intel_cx0_powerdown_change_sequence(struct intel_encoder * encoder,u8 lane_mask,u8 state)2811 static void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder,
2812 u8 lane_mask, u8 state)
2813 {
2814 struct intel_display *display = to_intel_display(encoder);
2815 enum port port = encoder->port;
2816 enum phy phy = intel_encoder_to_phy(encoder);
2817 i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(display, port);
2818 int lane;
2819
2820 intel_de_rmw(display, buf_ctl2_reg,
2821 intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2822 intel_cx0_get_powerdown_state(lane_mask, state));
2823
2824 /* Wait for pending transactions.*/
2825 for_each_cx0_lane_in_mask(lane_mask, lane)
2826 if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
2827 XELPDP_PORT_M2P_TRANSACTION_PENDING,
2828 XELPDP_MSGBUS_TIMEOUT_SLOW)) {
2829 drm_dbg_kms(display->drm,
2830 "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2831 phy_name(phy));
2832 intel_cx0_bus_reset(encoder, lane);
2833 }
2834
2835 intel_de_rmw(display, buf_ctl2_reg,
2836 intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2837 intel_cx0_get_powerdown_update(lane_mask));
2838
2839 /* Update Timeout Value */
2840 if (intel_de_wait_custom(display, buf_ctl2_reg,
2841 intel_cx0_get_powerdown_update(lane_mask), 0,
2842 XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
2843 drm_warn(display->drm,
2844 "PHY %c failed to bring out of Lane reset after %dus.\n",
2845 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2846 }
2847
intel_cx0_setup_powerdown(struct intel_encoder * encoder)2848 static void intel_cx0_setup_powerdown(struct intel_encoder *encoder)
2849 {
2850 struct intel_display *display = to_intel_display(encoder);
2851 enum port port = encoder->port;
2852
2853 intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
2854 XELPDP_POWER_STATE_READY_MASK,
2855 XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
2856 intel_de_rmw(display, XELPDP_PORT_BUF_CTL3(display, port),
2857 XELPDP_POWER_STATE_ACTIVE_MASK |
2858 XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2859 XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
2860 XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2861 }
2862
intel_cx0_get_pclk_refclk_request(u8 lane_mask)2863 static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2864 {
2865 u32 val = 0;
2866 int lane = 0;
2867
2868 for_each_cx0_lane_in_mask(lane_mask, lane)
2869 val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2870
2871 return val;
2872 }
2873
intel_cx0_get_pclk_refclk_ack(u8 lane_mask)2874 static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2875 {
2876 u32 val = 0;
2877 int lane = 0;
2878
2879 for_each_cx0_lane_in_mask(lane_mask, lane)
2880 val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2881
2882 return val;
2883 }
2884
intel_cx0_phy_lane_reset(struct intel_encoder * encoder,bool lane_reversal)2885 static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder,
2886 bool lane_reversal)
2887 {
2888 struct intel_display *display = to_intel_display(encoder);
2889 enum port port = encoder->port;
2890 enum phy phy = intel_encoder_to_phy(encoder);
2891 u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2892 u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
2893 u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES
2894 ? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
2895 : XELPDP_LANE_PIPE_RESET(0);
2896 u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES
2897 ? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2898 XELPDP_LANE_PHY_CURRENT_STATUS(1))
2899 : XELPDP_LANE_PHY_CURRENT_STATUS(0);
2900
2901 if (intel_de_wait_custom(display, XELPDP_PORT_BUF_CTL1(display, port),
2902 XELPDP_PORT_BUF_SOC_PHY_READY,
2903 XELPDP_PORT_BUF_SOC_PHY_READY,
2904 XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
2905 drm_warn(display->drm,
2906 "PHY %c failed to bring out of SOC reset after %dus.\n",
2907 phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
2908
2909 intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset,
2910 lane_pipe_reset);
2911
2912 if (intel_de_wait_custom(display, XELPDP_PORT_BUF_CTL2(display, port),
2913 lane_phy_current_status, lane_phy_current_status,
2914 XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
2915 drm_warn(display->drm,
2916 "PHY %c failed to bring out of Lane reset after %dus.\n",
2917 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2918
2919 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
2920 intel_cx0_get_pclk_refclk_request(owned_lane_mask),
2921 intel_cx0_get_pclk_refclk_request(lane_mask));
2922
2923 if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, port),
2924 intel_cx0_get_pclk_refclk_ack(owned_lane_mask),
2925 intel_cx0_get_pclk_refclk_ack(lane_mask),
2926 XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
2927 drm_warn(display->drm,
2928 "PHY %c failed to request refclk after %dus.\n",
2929 phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
2930
2931 intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2932 CX0_P2_STATE_RESET);
2933 intel_cx0_setup_powerdown(encoder);
2934
2935 intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset, 0);
2936
2937 if (intel_de_wait_for_clear(display, XELPDP_PORT_BUF_CTL2(display, port),
2938 lane_phy_current_status,
2939 XELPDP_PORT_RESET_END_TIMEOUT))
2940 drm_warn(display->drm,
2941 "PHY %c failed to bring out of Lane reset after %dms.\n",
2942 phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
2943 }
2944
intel_cx0_program_phy_lane(struct intel_encoder * encoder,int lane_count,bool lane_reversal)2945 static void intel_cx0_program_phy_lane(struct intel_encoder *encoder, int lane_count,
2946 bool lane_reversal)
2947 {
2948 int i;
2949 u8 disables;
2950 bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2951 u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2952
2953 if (intel_encoder_is_c10phy(encoder))
2954 intel_cx0_rmw(encoder, owned_lane_mask,
2955 PHY_C10_VDR_CONTROL(1), 0,
2956 C10_VDR_CTRL_MSGBUS_ACCESS,
2957 MB_WRITE_COMMITTED);
2958
2959 if (lane_reversal)
2960 disables = REG_GENMASK8(3, 0) >> lane_count;
2961 else
2962 disables = REG_GENMASK8(3, 0) << lane_count;
2963
2964 if (dp_alt_mode && lane_count == 1) {
2965 disables &= ~REG_GENMASK8(1, 0);
2966 disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1);
2967 }
2968
2969 for (i = 0; i < 4; i++) {
2970 int tx = i % 2 + 1;
2971 u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
2972
2973 if (!(owned_lane_mask & lane_mask))
2974 continue;
2975
2976 intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2),
2977 CONTROL2_DISABLE_SINGLE_TX,
2978 disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0,
2979 MB_WRITE_COMMITTED);
2980 }
2981
2982 if (intel_encoder_is_c10phy(encoder))
2983 intel_cx0_rmw(encoder, owned_lane_mask,
2984 PHY_C10_VDR_CONTROL(1), 0,
2985 C10_VDR_CTRL_UPDATE_CFG,
2986 MB_WRITE_COMMITTED);
2987 }
2988
intel_cx0_get_pclk_pll_request(u8 lane_mask)2989 static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2990 {
2991 u32 val = 0;
2992 int lane = 0;
2993
2994 for_each_cx0_lane_in_mask(lane_mask, lane)
2995 val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2996
2997 return val;
2998 }
2999
intel_cx0_get_pclk_pll_ack(u8 lane_mask)3000 static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
3001 {
3002 u32 val = 0;
3003 int lane = 0;
3004
3005 for_each_cx0_lane_in_mask(lane_mask, lane)
3006 val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
3007
3008 return val;
3009 }
3010
__intel_cx0pll_enable(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state,bool is_dp,int port_clock,int lane_count)3011 static void __intel_cx0pll_enable(struct intel_encoder *encoder,
3012 const struct intel_cx0pll_state *pll_state,
3013 bool is_dp, int port_clock, int lane_count)
3014 {
3015 struct intel_display *display = to_intel_display(encoder);
3016 enum phy phy = intel_encoder_to_phy(encoder);
3017 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3018 bool lane_reversal = dig_port->lane_reversal;
3019 u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
3020 INTEL_CX0_LANE0;
3021 intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3022
3023 /*
3024 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3025 * clock muxes, gating and SSC
3026 */
3027 intel_program_port_clock_ctl(encoder, pll_state, is_dp, port_clock, lane_reversal);
3028
3029 /* 2. Bring PHY out of reset. */
3030 intel_cx0_phy_lane_reset(encoder, lane_reversal);
3031
3032 /*
3033 * 3. Change Phy power state to Ready.
3034 * TODO: For DP alt mode use only one lane.
3035 */
3036 intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3037 CX0_P2_STATE_READY);
3038
3039 /*
3040 * 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000.
3041 * (This is done inside intel_cx0_phy_transaction_begin(), since we would need
3042 * the right timer thresholds for readouts too.)
3043 */
3044
3045 /* 5. Program PHY internal PLL internal registers. */
3046 if (intel_encoder_is_c10phy(encoder))
3047 intel_c10_pll_program(display, encoder, &pll_state->c10);
3048 else
3049 intel_c20_pll_program(display, encoder, &pll_state->c20, is_dp, port_clock);
3050
3051 /*
3052 * 6. Program the enabled and disabled owned PHY lane
3053 * transmitters over message bus
3054 */
3055 intel_cx0_program_phy_lane(encoder, lane_count, lane_reversal);
3056
3057 /*
3058 * 7. Follow the Display Voltage Frequency Switching - Sequence
3059 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3060 */
3061
3062 /*
3063 * 8. Program DDI_CLK_VALFREQ to match intended DDI
3064 * clock frequency.
3065 */
3066 intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), port_clock);
3067
3068 /*
3069 * 9. Set PORT_CLOCK_CTL register PCLK PLL Request
3070 * LN<Lane for maxPCLK> to "1" to enable PLL.
3071 */
3072 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3073 intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
3074 intel_cx0_get_pclk_pll_request(maxpclk_lane));
3075
3076 /* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
3077 if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3078 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
3079 intel_cx0_get_pclk_pll_ack(maxpclk_lane),
3080 XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
3081 drm_warn(display->drm, "Port %c PLL not locked after %dus.\n",
3082 phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
3083
3084 /*
3085 * 11. Follow the Display Voltage Frequency Switching Sequence After
3086 * Frequency Change. We handle this step in bxt_set_cdclk().
3087 */
3088
3089 /* TODO: enable TBT-ALT mode */
3090 intel_cx0_phy_transaction_end(encoder, wakeref);
3091 }
3092
intel_cx0pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3093 static void intel_cx0pll_enable(struct intel_encoder *encoder,
3094 const struct intel_crtc_state *crtc_state)
3095 {
3096 __intel_cx0pll_enable(encoder, &crtc_state->dpll_hw_state.cx0pll,
3097 intel_crtc_has_dp_encoder(crtc_state),
3098 crtc_state->port_clock, crtc_state->lane_count);
3099 }
3100
intel_mtl_tbt_calc_port_clock(struct intel_encoder * encoder)3101 int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
3102 {
3103 struct intel_display *display = to_intel_display(encoder);
3104 u32 clock, val;
3105
3106 val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3107
3108 clock = XELPDP_DDI_CLOCK_SELECT_GET(display, val);
3109
3110 drm_WARN_ON(display->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
3111 drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
3112 drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_ACK));
3113
3114 switch (clock) {
3115 case XELPDP_DDI_CLOCK_SELECT_TBT_162:
3116 return 162000;
3117 case XELPDP_DDI_CLOCK_SELECT_TBT_270:
3118 return 270000;
3119 case XELPDP_DDI_CLOCK_SELECT_TBT_540:
3120 return 540000;
3121 case XELPDP_DDI_CLOCK_SELECT_TBT_810:
3122 return 810000;
3123 case XELPDP_DDI_CLOCK_SELECT_TBT_312_5:
3124 return 1000000;
3125 case XELPDP_DDI_CLOCK_SELECT_TBT_625:
3126 return 2000000;
3127 default:
3128 MISSING_CASE(clock);
3129 return 162000;
3130 }
3131 }
3132
intel_mtl_tbt_clock_select(struct intel_display * display,int clock)3133 static int intel_mtl_tbt_clock_select(struct intel_display *display,
3134 int clock)
3135 {
3136 switch (clock) {
3137 case 162000:
3138 return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3139 case 270000:
3140 return XELPDP_DDI_CLOCK_SELECT_TBT_270;
3141 case 540000:
3142 return XELPDP_DDI_CLOCK_SELECT_TBT_540;
3143 case 810000:
3144 return XELPDP_DDI_CLOCK_SELECT_TBT_810;
3145 case 1000000:
3146 if (DISPLAY_VER(display) < 30) {
3147 drm_WARN_ON(display->drm, "UHBR10 not supported for the platform\n");
3148 return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3149 }
3150 return XELPDP_DDI_CLOCK_SELECT_TBT_312_5;
3151 case 2000000:
3152 if (DISPLAY_VER(display) < 30) {
3153 drm_WARN_ON(display->drm, "UHBR20 not supported for the platform\n");
3154 return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3155 }
3156 return XELPDP_DDI_CLOCK_SELECT_TBT_625;
3157 default:
3158 MISSING_CASE(clock);
3159 return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3160 }
3161 }
3162
intel_mtl_tbt_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3163 static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
3164 const struct intel_crtc_state *crtc_state)
3165 {
3166 struct intel_display *display = to_intel_display(encoder);
3167 enum phy phy = intel_encoder_to_phy(encoder);
3168 u32 val = 0;
3169 u32 mask;
3170
3171 /*
3172 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3173 * clock muxes, gating and SSC
3174 */
3175
3176 mask = XELPDP_DDI_CLOCK_SELECT_MASK(display);
3177 val |= XELPDP_DDI_CLOCK_SELECT_PREP(display,
3178 intel_mtl_tbt_clock_select(display, crtc_state->port_clock));
3179
3180 mask |= XELPDP_FORWARD_CLOCK_UNGATE;
3181 val |= XELPDP_FORWARD_CLOCK_UNGATE;
3182
3183 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3184 mask, val);
3185
3186 /* 2. Read back PORT_CLOCK_CTL REGISTER */
3187 val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3188
3189 /*
3190 * 3. Follow the Display Voltage Frequency Switching - Sequence
3191 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3192 */
3193
3194 /*
3195 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
3196 */
3197 val |= XELPDP_TBT_CLOCK_REQUEST;
3198 intel_de_write(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port), val);
3199
3200 /* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
3201 if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3202 XELPDP_TBT_CLOCK_ACK,
3203 XELPDP_TBT_CLOCK_ACK,
3204 100, 0, NULL))
3205 drm_warn(display->drm,
3206 "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
3207 encoder->base.base.id, encoder->base.name, phy_name(phy));
3208
3209 /*
3210 * 6. Follow the Display Voltage Frequency Switching Sequence After
3211 * Frequency Change. We handle this step in bxt_set_cdclk().
3212 */
3213
3214 /*
3215 * 7. Program DDI_CLK_VALFREQ to match intended DDI
3216 * clock frequency.
3217 */
3218 intel_de_write(display, DDI_CLK_VALFREQ(encoder->port),
3219 crtc_state->port_clock);
3220 }
3221
intel_mtl_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3222 void intel_mtl_pll_enable(struct intel_encoder *encoder,
3223 const struct intel_crtc_state *crtc_state)
3224 {
3225 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3226
3227 if (intel_tc_port_in_tbt_alt_mode(dig_port))
3228 intel_mtl_tbt_pll_enable(encoder, crtc_state);
3229 else
3230 intel_cx0pll_enable(encoder, crtc_state);
3231 }
3232
3233 /*
3234 * According to HAS we need to enable MAC Transmitting LFPS in the "PHY Common
3235 * Control 0" PIPE register in case of AUX Less ALPM is going to be used. This
3236 * function is doing that and is called by link retrain sequence.
3237 */
intel_lnl_mac_transmit_lfps(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3238 void intel_lnl_mac_transmit_lfps(struct intel_encoder *encoder,
3239 const struct intel_crtc_state *crtc_state)
3240 {
3241 struct intel_display *display = to_intel_display(encoder);
3242 intel_wakeref_t wakeref;
3243 int i;
3244 u8 owned_lane_mask;
3245
3246 if (DISPLAY_VER(display) < 20 ||
3247 !intel_alpm_is_alpm_aux_less(enc_to_intel_dp(encoder), crtc_state))
3248 return;
3249
3250 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
3251
3252 wakeref = intel_cx0_phy_transaction_begin(encoder);
3253
3254 if (intel_encoder_is_c10phy(encoder))
3255 intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1), 0,
3256 C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
3257
3258 for (i = 0; i < 4; i++) {
3259 int tx = i % 2 + 1;
3260 u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
3261
3262 if (!(owned_lane_mask & lane_mask))
3263 continue;
3264
3265 intel_cx0_rmw(encoder, lane_mask, PHY_CMN1_CONTROL(tx, 0),
3266 CONTROL0_MAC_TRANSMIT_LFPS,
3267 CONTROL0_MAC_TRANSMIT_LFPS, MB_WRITE_COMMITTED);
3268 }
3269
3270 intel_cx0_phy_transaction_end(encoder, wakeref);
3271 }
3272
cx0_power_control_disable_val(struct intel_encoder * encoder)3273 static u8 cx0_power_control_disable_val(struct intel_encoder *encoder)
3274 {
3275 struct intel_display *display = to_intel_display(encoder);
3276
3277 if (intel_encoder_is_c10phy(encoder))
3278 return CX0_P2PG_STATE_DISABLE;
3279
3280 if ((display->platform.battlemage && encoder->port == PORT_A) ||
3281 (DISPLAY_VER(display) >= 30 && encoder->type == INTEL_OUTPUT_EDP))
3282 return CX0_P2PG_STATE_DISABLE;
3283
3284 return CX0_P4PG_STATE_DISABLE;
3285 }
3286
intel_cx0pll_disable(struct intel_encoder * encoder)3287 static void intel_cx0pll_disable(struct intel_encoder *encoder)
3288 {
3289 struct intel_display *display = to_intel_display(encoder);
3290 enum phy phy = intel_encoder_to_phy(encoder);
3291 intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3292
3293 /* 1. Change owned PHY lane power to Disable state. */
3294 intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3295 cx0_power_control_disable_val(encoder));
3296
3297 /*
3298 * 2. Follow the Display Voltage Frequency Switching Sequence Before
3299 * Frequency Change. We handle this step in bxt_set_cdclk().
3300 */
3301
3302 /*
3303 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
3304 * to "0" to disable PLL.
3305 */
3306 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3307 intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
3308 intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
3309
3310 /* 4. Program DDI_CLK_VALFREQ to 0. */
3311 intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3312
3313 /*
3314 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
3315 */
3316 if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3317 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
3318 intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
3319 XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
3320 drm_warn(display->drm,
3321 "Port %c PLL not unlocked after %dus.\n",
3322 phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
3323
3324 /*
3325 * 6. Follow the Display Voltage Frequency Switching Sequence After
3326 * Frequency Change. We handle this step in bxt_set_cdclk().
3327 */
3328
3329 /* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
3330 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3331 XELPDP_DDI_CLOCK_SELECT_MASK(display), 0);
3332 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3333 XELPDP_FORWARD_CLOCK_UNGATE, 0);
3334
3335 intel_cx0_phy_transaction_end(encoder, wakeref);
3336 }
3337
intel_cx0_pll_is_enabled(struct intel_encoder * encoder)3338 static bool intel_cx0_pll_is_enabled(struct intel_encoder *encoder)
3339 {
3340 struct intel_display *display = to_intel_display(encoder);
3341 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3342 u8 lane = dig_port->lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
3343
3344 return intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port)) &
3345 intel_cx0_get_pclk_pll_request(lane);
3346 }
3347
intel_mtl_tbt_pll_disable(struct intel_encoder * encoder)3348 static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
3349 {
3350 struct intel_display *display = to_intel_display(encoder);
3351 enum phy phy = intel_encoder_to_phy(encoder);
3352
3353 /*
3354 * 1. Follow the Display Voltage Frequency Switching Sequence Before
3355 * Frequency Change. We handle this step in bxt_set_cdclk().
3356 */
3357
3358 /*
3359 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
3360 */
3361 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3362 XELPDP_TBT_CLOCK_REQUEST, 0);
3363
3364 /* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
3365 if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3366 XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
3367 drm_warn(display->drm,
3368 "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
3369 encoder->base.base.id, encoder->base.name, phy_name(phy));
3370
3371 /*
3372 * 4. Follow the Display Voltage Frequency Switching Sequence After
3373 * Frequency Change. We handle this step in bxt_set_cdclk().
3374 */
3375
3376 /*
3377 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
3378 */
3379 intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3380 XELPDP_DDI_CLOCK_SELECT_MASK(display) |
3381 XELPDP_FORWARD_CLOCK_UNGATE, 0);
3382
3383 /* 6. Program DDI_CLK_VALFREQ to 0. */
3384 intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3385 }
3386
intel_mtl_pll_disable(struct intel_encoder * encoder)3387 void intel_mtl_pll_disable(struct intel_encoder *encoder)
3388 {
3389 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3390
3391 if (intel_tc_port_in_tbt_alt_mode(dig_port))
3392 intel_mtl_tbt_pll_disable(encoder);
3393 else
3394 intel_cx0pll_disable(encoder);
3395 }
3396
3397 enum icl_port_dpll_id
intel_mtl_port_pll_type(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3398 intel_mtl_port_pll_type(struct intel_encoder *encoder,
3399 const struct intel_crtc_state *crtc_state)
3400 {
3401 struct intel_display *display = to_intel_display(encoder);
3402 u32 val, clock;
3403
3404 /*
3405 * TODO: Determine the PLL type from the SW state, once MTL PLL
3406 * handling is done via the standard shared DPLL framework.
3407 */
3408 val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3409 clock = XELPDP_DDI_CLOCK_SELECT_GET(display, val);
3410
3411 if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
3412 clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
3413 return ICL_PORT_DPLL_MG_PHY;
3414 else
3415 return ICL_PORT_DPLL_DEFAULT;
3416 }
3417
intel_c10pll_state_verify(const struct intel_crtc_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder,struct intel_c10pll_state * mpllb_hw_state)3418 static void intel_c10pll_state_verify(const struct intel_crtc_state *state,
3419 struct intel_crtc *crtc,
3420 struct intel_encoder *encoder,
3421 struct intel_c10pll_state *mpllb_hw_state)
3422 {
3423 struct intel_display *display = to_intel_display(state);
3424 const struct intel_c10pll_state *mpllb_sw_state = &state->dpll_hw_state.cx0pll.c10;
3425 int i;
3426
3427 for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3428 u8 expected = mpllb_sw_state->pll[i];
3429
3430 INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->pll[i] != expected,
3431 "[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3432 crtc->base.base.id, crtc->base.name, i,
3433 expected, mpllb_hw_state->pll[i]);
3434 }
3435
3436 INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->tx != mpllb_sw_state->tx,
3437 "[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3438 crtc->base.base.id, crtc->base.name,
3439 mpllb_sw_state->tx, mpllb_hw_state->tx);
3440
3441 INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->cmn != mpllb_sw_state->cmn,
3442 "[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3443 crtc->base.base.id, crtc->base.name,
3444 mpllb_sw_state->cmn, mpllb_hw_state->cmn);
3445 }
3446
intel_cx0pll_readout_hw_state(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state)3447 void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder,
3448 struct intel_cx0pll_state *pll_state)
3449 {
3450 pll_state->use_c10 = false;
3451
3452 pll_state->tbt_mode = intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder));
3453 if (pll_state->tbt_mode)
3454 return;
3455
3456 if (intel_encoder_is_c10phy(encoder)) {
3457 intel_c10pll_readout_hw_state(encoder, &pll_state->c10);
3458 pll_state->use_c10 = true;
3459 } else {
3460 intel_c20pll_readout_hw_state(encoder, &pll_state->c20);
3461 }
3462 }
3463
mtl_compare_hw_state_c10(const struct intel_c10pll_state * a,const struct intel_c10pll_state * b)3464 static bool mtl_compare_hw_state_c10(const struct intel_c10pll_state *a,
3465 const struct intel_c10pll_state *b)
3466 {
3467 if (a->tx != b->tx)
3468 return false;
3469
3470 if (a->cmn != b->cmn)
3471 return false;
3472
3473 if (memcmp(&a->pll, &b->pll, sizeof(a->pll)) != 0)
3474 return false;
3475
3476 return true;
3477 }
3478
mtl_compare_hw_state_c20(const struct intel_c20pll_state * a,const struct intel_c20pll_state * b)3479 static bool mtl_compare_hw_state_c20(const struct intel_c20pll_state *a,
3480 const struct intel_c20pll_state *b)
3481 {
3482 if (memcmp(&a->tx, &b->tx, sizeof(a->tx)) != 0)
3483 return false;
3484
3485 if (memcmp(&a->cmn, &b->cmn, sizeof(a->cmn)) != 0)
3486 return false;
3487
3488 if (a->tx[0] & C20_PHY_USE_MPLLB) {
3489 if (memcmp(&a->mpllb, &b->mpllb, sizeof(a->mpllb)) != 0)
3490 return false;
3491 } else {
3492 if (memcmp(&a->mplla, &b->mplla, sizeof(a->mplla)) != 0)
3493 return false;
3494 }
3495
3496 return true;
3497 }
3498
intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state * a,const struct intel_cx0pll_state * b)3499 bool intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state *a,
3500 const struct intel_cx0pll_state *b)
3501 {
3502 if (a->tbt_mode || b->tbt_mode)
3503 return true;
3504
3505 if (a->use_c10 != b->use_c10)
3506 return false;
3507
3508 if (a->use_c10)
3509 return mtl_compare_hw_state_c10(&a->c10,
3510 &b->c10);
3511 else
3512 return mtl_compare_hw_state_c20(&a->c20,
3513 &b->c20);
3514 }
3515
intel_cx0pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state)3516 int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder,
3517 const struct intel_cx0pll_state *pll_state)
3518 {
3519 if (intel_encoder_is_c10phy(encoder))
3520 return intel_c10pll_calc_port_clock(encoder, &pll_state->c10);
3521
3522 return intel_c20pll_calc_port_clock(encoder, &pll_state->c20);
3523 }
3524
intel_c20pll_state_verify(const struct intel_crtc_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder,struct intel_c20pll_state * mpll_hw_state)3525 static void intel_c20pll_state_verify(const struct intel_crtc_state *state,
3526 struct intel_crtc *crtc,
3527 struct intel_encoder *encoder,
3528 struct intel_c20pll_state *mpll_hw_state)
3529 {
3530 struct intel_display *display = to_intel_display(state);
3531 const struct intel_c20pll_state *mpll_sw_state = &state->dpll_hw_state.cx0pll.c20;
3532 bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state);
3533 bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state);
3534 int clock = intel_c20pll_calc_port_clock(encoder, mpll_sw_state);
3535 int i;
3536
3537 INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->clock != clock,
3538 "[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)",
3539 crtc->base.base.id, crtc->base.name,
3540 mpll_sw_state->clock, mpll_hw_state->clock);
3541
3542 INTEL_DISPLAY_STATE_WARN(display, sw_use_mpllb != hw_use_mpllb,
3543 "[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)",
3544 crtc->base.base.id, crtc->base.name,
3545 sw_use_mpllb, hw_use_mpllb);
3546
3547 if (hw_use_mpllb) {
3548 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) {
3549 INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i],
3550 "[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)",
3551 crtc->base.base.id, crtc->base.name, i,
3552 mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]);
3553 }
3554 } else {
3555 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) {
3556 INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i],
3557 "[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)",
3558 crtc->base.base.id, crtc->base.name, i,
3559 mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]);
3560 }
3561 }
3562
3563 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) {
3564 INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->tx[i] != mpll_sw_state->tx[i],
3565 "[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)",
3566 crtc->base.base.id, crtc->base.name, i,
3567 mpll_sw_state->tx[i], mpll_hw_state->tx[i]);
3568 }
3569
3570 for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) {
3571 INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i],
3572 "[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)",
3573 crtc->base.base.id, crtc->base.name, i,
3574 mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]);
3575 }
3576 }
3577
intel_cx0pll_state_verify(struct intel_atomic_state * state,struct intel_crtc * crtc)3578 void intel_cx0pll_state_verify(struct intel_atomic_state *state,
3579 struct intel_crtc *crtc)
3580 {
3581 struct intel_display *display = to_intel_display(state);
3582 const struct intel_crtc_state *new_crtc_state =
3583 intel_atomic_get_new_crtc_state(state, crtc);
3584 struct intel_encoder *encoder;
3585 struct intel_cx0pll_state mpll_hw_state = {};
3586
3587 if (DISPLAY_VER(display) < 14)
3588 return;
3589
3590 if (!new_crtc_state->hw.active)
3591 return;
3592
3593 /* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3594 if (!intel_crtc_needs_modeset(new_crtc_state) &&
3595 !intel_crtc_needs_fastset(new_crtc_state))
3596 return;
3597
3598 encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3599 intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state);
3600
3601 if (mpll_hw_state.tbt_mode)
3602 return;
3603
3604 if (intel_encoder_is_c10phy(encoder))
3605 intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10);
3606 else
3607 intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20);
3608 }
3609
3610 /*
3611 * WA 14022081154
3612 * The dedicated display PHYs reset to a power state that blocks S0ix, increasing idle
3613 * system power. After a system reset (cold boot, S3/4/5, warm reset) if a dedicated
3614 * PHY is not being brought up shortly, use these steps to move the PHY to the lowest
3615 * power state to save power. For PTL the workaround is needed only for port A. Port B
3616 * is not connected.
3617 *
3618 * 1. Follow the PLL Enable Sequence, using any valid frequency such as DP 1.62 GHz.
3619 * This brings lanes out of reset and enables the PLL to allow powerdown to be moved
3620 * to the Disable state.
3621 * 2. Follow PLL Disable Sequence. This moves powerdown to the Disable state and disables the PLL.
3622 */
intel_cx0_pll_power_save_wa(struct intel_display * display)3623 void intel_cx0_pll_power_save_wa(struct intel_display *display)
3624 {
3625 struct intel_encoder *encoder;
3626
3627 if (DISPLAY_VER(display) != 30)
3628 return;
3629
3630 for_each_intel_encoder(display->drm, encoder) {
3631 struct intel_cx0pll_state pll_state = {};
3632 int port_clock = 162000;
3633
3634 if (!intel_encoder_is_dig_port(encoder))
3635 continue;
3636
3637 if (!intel_encoder_is_c10phy(encoder))
3638 continue;
3639
3640 if (intel_cx0_pll_is_enabled(encoder))
3641 continue;
3642
3643 if (intel_c10pll_calc_state_from_table(encoder,
3644 mtl_c10_edp_tables,
3645 true, port_clock,
3646 &pll_state) < 0) {
3647 drm_WARN_ON(display->drm,
3648 "Unable to calc C10 state from the tables\n");
3649 continue;
3650 }
3651
3652 drm_dbg_kms(display->drm,
3653 "[ENCODER:%d:%s] Applying power saving workaround on disabled PLL\n",
3654 encoder->base.base.id, encoder->base.name);
3655
3656 __intel_cx0pll_enable(encoder, &pll_state, true, port_clock, 4);
3657 intel_cx0pll_disable(encoder);
3658 }
3659 }
3660