1 /*
2 * Copyright © 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <linux/debugfs.h>
29 #include <linux/firmware.h>
30
31 #include <drm/display/drm_dp_helper.h>
32 #include <drm/display/drm_dsc_helper.h>
33 #include <drm/drm_edid.h>
34 #include <drm/drm_fixed.h>
35
36 #include "soc/intel_rom.h"
37
38 #include "i915_drv.h"
39 #include "intel_display.h"
40 #include "intel_display_core.h"
41 #include "intel_display_rpm.h"
42 #include "intel_display_types.h"
43 #include "intel_gmbus.h"
44
45 #define _INTEL_BIOS_PRIVATE
46 #include "intel_vbt_defs.h"
47
48 /**
49 * DOC: Video BIOS Table (VBT)
50 *
51 * The Video BIOS Table, or VBT, provides platform and board specific
52 * configuration information to the driver that is not discoverable or available
53 * through other means. The configuration is mostly related to display
54 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
55 * the PCI ROM.
56 *
57 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
58 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
59 * contain the actual configuration information. The VBT Header, and thus the
60 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
61 * BDB Header. The data blocks are concatenated after the BDB Header. The data
62 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
63 * data. (Block 53, the MIPI Sequence Block is an exception.)
64 *
65 * The driver parses the VBT during load. The relevant information is stored in
66 * driver private data for ease of use, and the actual VBT is not read after
67 * that.
68 */
69
70 /* Wrapper for VBT child device config */
71 struct intel_bios_encoder_data {
72 struct intel_display *display;
73
74 struct child_device_config child;
75 struct dsc_compression_parameters_entry *dsc;
76 struct list_head node;
77 };
78
79 #define TARGET_ADDR1 0x70
80 #define TARGET_ADDR2 0x72
81
82 /* Get BDB block size given a pointer to Block ID. */
_get_blocksize(const u8 * block_base)83 static u32 _get_blocksize(const u8 *block_base)
84 {
85 /* The MIPI Sequence Block v3+ has a separate size field. */
86 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
87 return *((const u32 *)(block_base + 4));
88 else
89 return *((const u16 *)(block_base + 1));
90 }
91
92 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
get_blocksize(const void * block_data)93 static u32 get_blocksize(const void *block_data)
94 {
95 return _get_blocksize(block_data - 3);
96 }
97
98 static const void *
find_raw_section(const void * _bdb,enum bdb_block_id section_id)99 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
100 {
101 const struct bdb_header *bdb = _bdb;
102 const u8 *base = _bdb;
103 int index = 0;
104 u32 total, current_size;
105 enum bdb_block_id current_id;
106
107 /* skip to first section */
108 index += bdb->header_size;
109 total = bdb->bdb_size;
110
111 /* walk the sections looking for section_id */
112 while (index + 3 < total) {
113 current_id = *(base + index);
114 current_size = _get_blocksize(base + index);
115 index += 3;
116
117 if (index + current_size > total)
118 return NULL;
119
120 if (current_id == section_id)
121 return base + index;
122
123 index += current_size;
124 }
125
126 return NULL;
127 }
128
129 /*
130 * Offset from the start of BDB to the start of the
131 * block data (just past the block header).
132 */
raw_block_offset(const void * bdb,enum bdb_block_id section_id)133 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
134 {
135 const void *block;
136
137 block = find_raw_section(bdb, section_id);
138 if (!block)
139 return 0;
140
141 return block - bdb;
142 }
143
144 struct bdb_block_entry {
145 struct list_head node;
146 enum bdb_block_id section_id;
147 u8 data[];
148 };
149
150 static const void *
bdb_find_section(struct intel_display * display,enum bdb_block_id section_id)151 bdb_find_section(struct intel_display *display,
152 enum bdb_block_id section_id)
153 {
154 struct bdb_block_entry *entry;
155
156 list_for_each_entry(entry, &display->vbt.bdb_blocks, node) {
157 if (entry->section_id == section_id)
158 return entry->data + 3;
159 }
160
161 return NULL;
162 }
163
164 static const struct {
165 enum bdb_block_id section_id;
166 size_t min_size;
167 } bdb_blocks[] = {
168 { .section_id = BDB_GENERAL_FEATURES,
169 .min_size = sizeof(struct bdb_general_features), },
170 { .section_id = BDB_GENERAL_DEFINITIONS,
171 .min_size = sizeof(struct bdb_general_definitions), },
172 { .section_id = BDB_PSR,
173 .min_size = sizeof(struct bdb_psr), },
174 { .section_id = BDB_DRIVER_FEATURES,
175 .min_size = sizeof(struct bdb_driver_features), },
176 { .section_id = BDB_SDVO_LVDS_OPTIONS,
177 .min_size = sizeof(struct bdb_sdvo_lvds_options), },
178 { .section_id = BDB_SDVO_LVDS_DTD,
179 .min_size = sizeof(struct bdb_sdvo_lvds_dtd), },
180 { .section_id = BDB_EDP,
181 .min_size = sizeof(struct bdb_edp), },
182 { .section_id = BDB_LFP_OPTIONS,
183 .min_size = sizeof(struct bdb_lfp_options), },
184 /*
185 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS,
186 * so keep the two ordered.
187 */
188 { .section_id = BDB_LFP_DATA_PTRS,
189 .min_size = sizeof(struct bdb_lfp_data_ptrs), },
190 { .section_id = BDB_LFP_DATA,
191 .min_size = 0, /* special case */ },
192 { .section_id = BDB_LFP_BACKLIGHT,
193 .min_size = sizeof(struct bdb_lfp_backlight), },
194 { .section_id = BDB_LFP_POWER,
195 .min_size = sizeof(struct bdb_lfp_power), },
196 { .section_id = BDB_MIPI_CONFIG,
197 .min_size = sizeof(struct bdb_mipi_config), },
198 { .section_id = BDB_MIPI_SEQUENCE,
199 .min_size = sizeof(struct bdb_mipi_sequence) },
200 { .section_id = BDB_COMPRESSION_PARAMETERS,
201 .min_size = sizeof(struct bdb_compression_parameters), },
202 { .section_id = BDB_GENERIC_DTD,
203 .min_size = sizeof(struct bdb_generic_dtd), },
204 };
205
lfp_data_min_size(struct intel_display * display)206 static size_t lfp_data_min_size(struct intel_display *display)
207 {
208 const struct bdb_lfp_data_ptrs *ptrs;
209 size_t size;
210
211 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
212 if (!ptrs)
213 return 0;
214
215 size = sizeof(struct bdb_lfp_data);
216 if (ptrs->panel_name.table_size)
217 size = max(size, ptrs->panel_name.offset +
218 sizeof(struct bdb_lfp_data_tail));
219
220 return size;
221 }
222
validate_lfp_data_ptrs(const void * bdb,const struct bdb_lfp_data_ptrs * ptrs)223 static bool validate_lfp_data_ptrs(const void *bdb,
224 const struct bdb_lfp_data_ptrs *ptrs)
225 {
226 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
227 int data_block_size, lfp_data_size;
228 const void *data_block;
229 int i;
230
231 data_block = find_raw_section(bdb, BDB_LFP_DATA);
232 if (!data_block)
233 return false;
234
235 data_block_size = get_blocksize(data_block);
236 if (data_block_size == 0)
237 return false;
238
239 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
240 if (ptrs->num_entries != 3)
241 return false;
242
243 fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
244 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
245 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
246 panel_name_size = ptrs->panel_name.table_size;
247
248 /* fp_timing has variable size */
249 if (fp_timing_size < 32 ||
250 dvo_timing_size != sizeof(struct bdb_edid_dtd) ||
251 panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id))
252 return false;
253
254 /* panel_name is not present in old VBTs */
255 if (panel_name_size != 0 &&
256 panel_name_size != sizeof(struct bdb_edid_product_name))
257 return false;
258
259 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
260 if (16 * lfp_data_size > data_block_size)
261 return false;
262
263 /* make sure the table entries have uniform size */
264 for (i = 1; i < 16; i++) {
265 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
266 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
267 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
268 return false;
269
270 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
271 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
272 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
273 return false;
274 }
275
276 /*
277 * Except for vlv/chv machines all real VBTs seem to have 6
278 * unaccounted bytes in the fp_timing table. And it doesn't
279 * appear to be a really intentional hole as the fp_timing
280 * 0xffff terminator is always within those 6 missing bytes.
281 */
282 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
283 fp_timing_size += 6;
284
285 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
286 return false;
287
288 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
289 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
290 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
291 return false;
292
293 /* make sure the tables fit inside the data block */
294 for (i = 0; i < 16; i++) {
295 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
296 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
297 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
298 return false;
299 }
300
301 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
302 return false;
303
304 /* make sure fp_timing terminators are present at expected locations */
305 for (i = 0; i < 16; i++) {
306 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
307 fp_timing_size - 2;
308
309 if (*t != 0xffff)
310 return false;
311 }
312
313 return true;
314 }
315
316 /* make the data table offsets relative to the data block */
fixup_lfp_data_ptrs(const void * bdb,void * ptrs_block)317 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
318 {
319 struct bdb_lfp_data_ptrs *ptrs = ptrs_block;
320 u32 offset;
321 int i;
322
323 offset = raw_block_offset(bdb, BDB_LFP_DATA);
324
325 for (i = 0; i < 16; i++) {
326 if (ptrs->ptr[i].fp_timing.offset < offset ||
327 ptrs->ptr[i].dvo_timing.offset < offset ||
328 ptrs->ptr[i].panel_pnp_id.offset < offset)
329 return false;
330
331 ptrs->ptr[i].fp_timing.offset -= offset;
332 ptrs->ptr[i].dvo_timing.offset -= offset;
333 ptrs->ptr[i].panel_pnp_id.offset -= offset;
334 }
335
336 if (ptrs->panel_name.table_size) {
337 if (ptrs->panel_name.offset < offset)
338 return false;
339
340 ptrs->panel_name.offset -= offset;
341 }
342
343 return validate_lfp_data_ptrs(bdb, ptrs);
344 }
345
make_lfp_data_ptr(struct lfp_data_ptr_table * table,int table_size,int total_size)346 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table,
347 int table_size, int total_size)
348 {
349 if (total_size < table_size)
350 return total_size;
351
352 table->table_size = table_size;
353 table->offset = total_size - table_size;
354
355 return total_size - table_size;
356 }
357
next_lfp_data_ptr(struct lfp_data_ptr_table * next,const struct lfp_data_ptr_table * prev,int size)358 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next,
359 const struct lfp_data_ptr_table *prev,
360 int size)
361 {
362 next->table_size = prev->table_size;
363 next->offset = prev->offset + size;
364 }
365
generate_lfp_data_ptrs(struct intel_display * display,const void * bdb)366 static void *generate_lfp_data_ptrs(struct intel_display *display,
367 const void *bdb)
368 {
369 int i, size, table_size, block_size, offset, fp_timing_size;
370 struct bdb_lfp_data_ptrs *ptrs;
371 const void *block;
372 void *ptrs_block;
373
374 /*
375 * The hardcoded fp_timing_size is only valid for
376 * modernish VBTs. All older VBTs definitely should
377 * include block 41 and thus we don't need to
378 * generate one.
379 */
380 if (display->vbt.version < 155)
381 return NULL;
382
383 fp_timing_size = 38;
384
385 block = find_raw_section(bdb, BDB_LFP_DATA);
386 if (!block)
387 return NULL;
388
389 drm_dbg_kms(display->drm, "Generating LFP data table pointers\n");
390
391 block_size = get_blocksize(block);
392
393 size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
394 sizeof(struct bdb_edid_pnp_id);
395 if (size * 16 > block_size)
396 return NULL;
397
398 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
399 if (!ptrs_block)
400 return NULL;
401
402 *(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS;
403 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
404 ptrs = ptrs_block + 3;
405
406 table_size = sizeof(struct bdb_edid_pnp_id);
407 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
408
409 table_size = sizeof(struct bdb_edid_dtd);
410 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
411
412 table_size = fp_timing_size;
413 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
414
415 if (ptrs->ptr[0].fp_timing.table_size)
416 ptrs->num_entries++;
417 if (ptrs->ptr[0].dvo_timing.table_size)
418 ptrs->num_entries++;
419 if (ptrs->ptr[0].panel_pnp_id.table_size)
420 ptrs->num_entries++;
421
422 if (size != 0 || ptrs->num_entries != 3) {
423 kfree(ptrs_block);
424 return NULL;
425 }
426
427 size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
428 sizeof(struct bdb_edid_pnp_id);
429 for (i = 1; i < 16; i++) {
430 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
431 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
432 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
433 }
434
435 table_size = sizeof(struct bdb_edid_product_name);
436
437 if (16 * (size + table_size) <= block_size) {
438 ptrs->panel_name.table_size = table_size;
439 ptrs->panel_name.offset = size * 16;
440 }
441
442 offset = block - bdb;
443
444 for (i = 0; i < 16; i++) {
445 ptrs->ptr[i].fp_timing.offset += offset;
446 ptrs->ptr[i].dvo_timing.offset += offset;
447 ptrs->ptr[i].panel_pnp_id.offset += offset;
448 }
449
450 if (ptrs->panel_name.table_size)
451 ptrs->panel_name.offset += offset;
452
453 return ptrs_block;
454 }
455
456 static void
init_bdb_block(struct intel_display * display,const void * bdb,enum bdb_block_id section_id,size_t min_size)457 init_bdb_block(struct intel_display *display,
458 const void *bdb, enum bdb_block_id section_id,
459 size_t min_size)
460 {
461 struct bdb_block_entry *entry;
462 void *temp_block = NULL;
463 const void *block;
464 size_t block_size;
465
466 block = find_raw_section(bdb, section_id);
467
468 /* Modern VBTs lack the LFP data table pointers block, make one up */
469 if (!block && section_id == BDB_LFP_DATA_PTRS) {
470 temp_block = generate_lfp_data_ptrs(display, bdb);
471 if (temp_block)
472 block = temp_block + 3;
473 }
474 if (!block)
475 return;
476
477 drm_WARN(display->drm, min_size == 0,
478 "Block %d min_size is zero\n", section_id);
479
480 block_size = get_blocksize(block);
481
482 /*
483 * Version number and new block size are considered
484 * part of the header for MIPI sequenece block v3+.
485 */
486 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
487 block_size += 5;
488
489 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
490 GFP_KERNEL);
491 if (!entry) {
492 kfree(temp_block);
493 return;
494 }
495
496 entry->section_id = section_id;
497 memcpy(entry->data, block - 3, block_size + 3);
498
499 kfree(temp_block);
500
501 drm_dbg_kms(display->drm,
502 "Found BDB block %d (size %zu, min size %zu)\n",
503 section_id, block_size, min_size);
504
505 if (section_id == BDB_LFP_DATA_PTRS &&
506 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
507 drm_err(display->drm,
508 "VBT has malformed LFP data table pointers\n");
509 kfree(entry);
510 return;
511 }
512
513 list_add_tail(&entry->node, &display->vbt.bdb_blocks);
514 }
515
init_bdb_blocks(struct intel_display * display,const void * bdb)516 static void init_bdb_blocks(struct intel_display *display,
517 const void *bdb)
518 {
519 int i;
520
521 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
522 enum bdb_block_id section_id = bdb_blocks[i].section_id;
523 size_t min_size = bdb_blocks[i].min_size;
524
525 if (section_id == BDB_LFP_DATA)
526 min_size = lfp_data_min_size(display);
527
528 init_bdb_block(display, bdb, section_id, min_size);
529 }
530 }
531
532 static void
fill_detail_timing_data(struct intel_display * display,struct drm_display_mode * panel_fixed_mode,const struct bdb_edid_dtd * dvo_timing)533 fill_detail_timing_data(struct intel_display *display,
534 struct drm_display_mode *panel_fixed_mode,
535 const struct bdb_edid_dtd *dvo_timing)
536 {
537 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
538 dvo_timing->hactive_lo;
539 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
540 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
541 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
542 ((dvo_timing->hsync_pulse_width_hi << 8) |
543 dvo_timing->hsync_pulse_width_lo);
544 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
545 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
546
547 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
548 dvo_timing->vactive_lo;
549 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
550 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
551 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
552 ((dvo_timing->vsync_pulse_width_hi << 4) |
553 dvo_timing->vsync_pulse_width_lo);
554 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
555 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
556 panel_fixed_mode->clock = dvo_timing->clock * 10;
557 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
558
559 if (dvo_timing->hsync_positive)
560 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
561 else
562 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
563
564 if (dvo_timing->vsync_positive)
565 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
566 else
567 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
568
569 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
570 dvo_timing->himage_lo;
571 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
572 dvo_timing->vimage_lo;
573
574 /* Some VBTs have bogus h/vsync_end values */
575 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
576 drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n",
577 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
578 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
579 }
580 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
581 drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n",
582 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
583 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
584 }
585
586 drm_mode_set_name(panel_fixed_mode);
587 }
588
589 static const struct bdb_edid_dtd *
get_lfp_dvo_timing(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)590 get_lfp_dvo_timing(const struct bdb_lfp_data *data,
591 const struct bdb_lfp_data_ptrs *ptrs,
592 int index)
593 {
594 return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
595 }
596
597 static const struct fp_timing *
get_lfp_fp_timing(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)598 get_lfp_fp_timing(const struct bdb_lfp_data *data,
599 const struct bdb_lfp_data_ptrs *ptrs,
600 int index)
601 {
602 return (const void *)data + ptrs->ptr[index].fp_timing.offset;
603 }
604
605 static const struct drm_edid_product_id *
get_lfp_pnp_id(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)606 get_lfp_pnp_id(const struct bdb_lfp_data *data,
607 const struct bdb_lfp_data_ptrs *ptrs,
608 int index)
609 {
610 /* These two are supposed to have the same layout in memory. */
611 BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id));
612
613 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
614 }
615
616 static const struct bdb_lfp_data_tail *
get_lfp_data_tail(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs)617 get_lfp_data_tail(const struct bdb_lfp_data *data,
618 const struct bdb_lfp_data_ptrs *ptrs)
619 {
620 if (ptrs->panel_name.table_size)
621 return (const void *)data + ptrs->panel_name.offset;
622 else
623 return NULL;
624 }
625
opregion_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)626 static int opregion_get_panel_type(struct intel_display *display,
627 const struct intel_bios_encoder_data *devdata,
628 const struct drm_edid *drm_edid, bool use_fallback)
629 {
630 return intel_opregion_get_panel_type(display);
631 }
632
vbt_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)633 static int vbt_get_panel_type(struct intel_display *display,
634 const struct intel_bios_encoder_data *devdata,
635 const struct drm_edid *drm_edid, bool use_fallback)
636 {
637 const struct bdb_lfp_options *lfp_options;
638
639 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
640 if (!lfp_options)
641 return -1;
642
643 if (lfp_options->panel_type > 0xf &&
644 lfp_options->panel_type != 0xff) {
645 drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n",
646 lfp_options->panel_type);
647 return -1;
648 }
649
650 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
651 return lfp_options->panel_type2;
652
653 drm_WARN_ON(display->drm,
654 devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
655
656 return lfp_options->panel_type;
657 }
658
pnpid_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)659 static int pnpid_get_panel_type(struct intel_display *display,
660 const struct intel_bios_encoder_data *devdata,
661 const struct drm_edid *drm_edid, bool use_fallback)
662 {
663 const struct bdb_lfp_data *data;
664 const struct bdb_lfp_data_ptrs *ptrs;
665 struct drm_edid_product_id product_id, product_id_nodate;
666 struct drm_printer p;
667 int i, best = -1;
668
669 if (!drm_edid)
670 return -1;
671
672 drm_edid_get_product_id(drm_edid, &product_id);
673
674 product_id_nodate = product_id;
675 product_id_nodate.week_of_manufacture = 0;
676 product_id_nodate.year_of_manufacture = 0;
677
678 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID");
679 drm_edid_print_product_id(&p, &product_id, true);
680
681 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
682 if (!ptrs)
683 return -1;
684
685 data = bdb_find_section(display, BDB_LFP_DATA);
686 if (!data)
687 return -1;
688
689 for (i = 0; i < 16; i++) {
690 const struct drm_edid_product_id *vbt_id =
691 get_lfp_pnp_id(data, ptrs, i);
692
693 /* full match? */
694 if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id)))
695 return i;
696
697 /*
698 * Accept a match w/o date if no full match is found,
699 * and the VBT entry does not specify a date.
700 */
701 if (best < 0 &&
702 !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id)))
703 best = i;
704 }
705
706 return best;
707 }
708
fallback_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)709 static int fallback_get_panel_type(struct intel_display *display,
710 const struct intel_bios_encoder_data *devdata,
711 const struct drm_edid *drm_edid, bool use_fallback)
712 {
713 return use_fallback ? 0 : -1;
714 }
715
716 enum panel_type {
717 PANEL_TYPE_OPREGION,
718 PANEL_TYPE_VBT,
719 PANEL_TYPE_PNPID,
720 PANEL_TYPE_FALLBACK,
721 };
722
get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)723 static int get_panel_type(struct intel_display *display,
724 const struct intel_bios_encoder_data *devdata,
725 const struct drm_edid *drm_edid, bool use_fallback)
726 {
727 struct {
728 const char *name;
729 int (*get_panel_type)(struct intel_display *display,
730 const struct intel_bios_encoder_data *devdata,
731 const struct drm_edid *drm_edid, bool use_fallback);
732 int panel_type;
733 } panel_types[] = {
734 [PANEL_TYPE_OPREGION] = {
735 .name = "OpRegion",
736 .get_panel_type = opregion_get_panel_type,
737 },
738 [PANEL_TYPE_VBT] = {
739 .name = "VBT",
740 .get_panel_type = vbt_get_panel_type,
741 },
742 [PANEL_TYPE_PNPID] = {
743 .name = "PNPID",
744 .get_panel_type = pnpid_get_panel_type,
745 },
746 [PANEL_TYPE_FALLBACK] = {
747 .name = "fallback",
748 .get_panel_type = fallback_get_panel_type,
749 },
750 };
751 int i;
752
753 for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
754 panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata,
755 drm_edid, use_fallback);
756
757 drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf &&
758 panel_types[i].panel_type != 0xff);
759
760 if (panel_types[i].panel_type >= 0)
761 drm_dbg_kms(display->drm, "Panel type (%s): %d\n",
762 panel_types[i].name, panel_types[i].panel_type);
763 }
764
765 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
766 i = PANEL_TYPE_OPREGION;
767 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
768 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
769 i = PANEL_TYPE_PNPID;
770 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
771 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
772 i = PANEL_TYPE_VBT;
773 else
774 i = PANEL_TYPE_FALLBACK;
775
776 drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n",
777 panel_types[i].name, panel_types[i].panel_type);
778
779 return panel_types[i].panel_type;
780 }
781
panel_bits(unsigned int value,int panel_type,int num_bits)782 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
783 {
784 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
785 }
786
panel_bool(unsigned int value,int panel_type)787 static bool panel_bool(unsigned int value, int panel_type)
788 {
789 return panel_bits(value, panel_type, 1);
790 }
791
792 /* Parse general panel options */
793 static void
parse_panel_options(struct intel_display * display,struct intel_panel * panel)794 parse_panel_options(struct intel_display *display,
795 struct intel_panel *panel)
796 {
797 const struct bdb_lfp_options *lfp_options;
798 int panel_type = panel->vbt.panel_type;
799 int drrs_mode;
800
801 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
802 if (!lfp_options)
803 return;
804
805 panel->vbt.lvds_dither = lfp_options->pixel_dither;
806
807 /*
808 * Empirical evidence indicates the block size can be
809 * either 4,14,16,24+ bytes. For older VBTs no clear
810 * relationship between the block size vs. BDB version.
811 */
812 if (get_blocksize(lfp_options) < 16)
813 return;
814
815 drrs_mode = panel_bits(lfp_options->dps_panel_type_bits,
816 panel_type, 2);
817 /*
818 * VBT has static DRRS = 0 and seamless DRRS = 2.
819 * The below piece of code is required to adjust vbt.drrs_type
820 * to match the enum drrs_support_type.
821 */
822 switch (drrs_mode) {
823 case 0:
824 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
825 drm_dbg_kms(display->drm, "DRRS supported mode is static\n");
826 break;
827 case 2:
828 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
829 drm_dbg_kms(display->drm,
830 "DRRS supported mode is seamless\n");
831 break;
832 default:
833 panel->vbt.drrs_type = DRRS_TYPE_NONE;
834 drm_dbg_kms(display->drm,
835 "DRRS not supported (VBT input)\n");
836 break;
837 }
838 }
839
840 static void
parse_lfp_panel_dtd(struct intel_display * display,struct intel_panel * panel,const struct bdb_lfp_data * lfp_data,const struct bdb_lfp_data_ptrs * lfp_data_ptrs)841 parse_lfp_panel_dtd(struct intel_display *display,
842 struct intel_panel *panel,
843 const struct bdb_lfp_data *lfp_data,
844 const struct bdb_lfp_data_ptrs *lfp_data_ptrs)
845 {
846 const struct bdb_edid_dtd *panel_dvo_timing;
847 const struct fp_timing *fp_timing;
848 struct drm_display_mode *panel_fixed_mode;
849 int panel_type = panel->vbt.panel_type;
850
851 panel_dvo_timing = get_lfp_dvo_timing(lfp_data,
852 lfp_data_ptrs,
853 panel_type);
854
855 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
856 if (!panel_fixed_mode)
857 return;
858
859 fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing);
860
861 panel->vbt.lfp_vbt_mode = panel_fixed_mode;
862
863 drm_dbg_kms(display->drm,
864 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
865 DRM_MODE_ARG(panel_fixed_mode));
866
867 fp_timing = get_lfp_fp_timing(lfp_data,
868 lfp_data_ptrs,
869 panel_type);
870
871 /* check the resolution, just to be sure */
872 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
873 fp_timing->y_res == panel_fixed_mode->vdisplay) {
874 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
875 drm_dbg_kms(display->drm,
876 "VBT initial LVDS value %x\n",
877 panel->vbt.bios_lvds_val);
878 }
879 }
880
881 static void
parse_lfp_data(struct intel_display * display,struct intel_panel * panel)882 parse_lfp_data(struct intel_display *display,
883 struct intel_panel *panel)
884 {
885 const struct bdb_lfp_data *data;
886 const struct bdb_lfp_data_tail *tail;
887 const struct bdb_lfp_data_ptrs *ptrs;
888 const struct drm_edid_product_id *pnp_id;
889 struct drm_printer p;
890 int panel_type = panel->vbt.panel_type;
891
892 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
893 if (!ptrs)
894 return;
895
896 data = bdb_find_section(display, BDB_LFP_DATA);
897 if (!data)
898 return;
899
900 if (!panel->vbt.lfp_vbt_mode)
901 parse_lfp_panel_dtd(display, panel, data, ptrs);
902
903 pnp_id = get_lfp_pnp_id(data, ptrs, panel_type);
904
905 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel");
906 drm_edid_print_product_id(&p, pnp_id, false);
907
908 tail = get_lfp_data_tail(data, ptrs);
909 if (!tail)
910 return;
911
912 drm_dbg_kms(display->drm, "Panel name: %.*s\n",
913 (int)sizeof(tail->panel_name[0].name),
914 tail->panel_name[panel_type].name);
915
916 if (display->vbt.version >= 188) {
917 panel->vbt.seamless_drrs_min_refresh_rate =
918 tail->seamless_drrs_min_refresh_rate[panel_type];
919 drm_dbg_kms(display->drm,
920 "Seamless DRRS min refresh rate: %d Hz\n",
921 panel->vbt.seamless_drrs_min_refresh_rate);
922 }
923 }
924
925 static void
parse_generic_dtd(struct intel_display * display,struct intel_panel * panel)926 parse_generic_dtd(struct intel_display *display,
927 struct intel_panel *panel)
928 {
929 const struct bdb_generic_dtd *generic_dtd;
930 const struct generic_dtd_entry *dtd;
931 struct drm_display_mode *panel_fixed_mode;
932 int num_dtd;
933
934 /*
935 * Older VBTs provided DTD information for internal displays through
936 * the "LFP panel tables" block (42). As of VBT revision 229 the
937 * DTD information should be provided via a newer "generic DTD"
938 * block (58). Just to be safe, we'll try the new generic DTD block
939 * first on VBT >= 229, but still fall back to trying the old LFP
940 * block if that fails.
941 */
942 if (display->vbt.version < 229)
943 return;
944
945 generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD);
946 if (!generic_dtd)
947 return;
948
949 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
950 drm_err(display->drm, "GDTD size %u is too small.\n",
951 generic_dtd->gdtd_size);
952 return;
953 } else if (generic_dtd->gdtd_size !=
954 sizeof(struct generic_dtd_entry)) {
955 drm_err(display->drm, "Unexpected GDTD size %u\n",
956 generic_dtd->gdtd_size);
957 /* DTD has unknown fields, but keep going */
958 }
959
960 num_dtd = (get_blocksize(generic_dtd) -
961 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
962 if (panel->vbt.panel_type >= num_dtd) {
963 drm_err(display->drm,
964 "Panel type %d not found in table of %d DTD's\n",
965 panel->vbt.panel_type, num_dtd);
966 return;
967 }
968
969 dtd = &generic_dtd->dtd[panel->vbt.panel_type];
970
971 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
972 if (!panel_fixed_mode)
973 return;
974
975 panel_fixed_mode->hdisplay = dtd->hactive;
976 panel_fixed_mode->hsync_start =
977 panel_fixed_mode->hdisplay + dtd->hfront_porch;
978 panel_fixed_mode->hsync_end =
979 panel_fixed_mode->hsync_start + dtd->hsync;
980 panel_fixed_mode->htotal =
981 panel_fixed_mode->hdisplay + dtd->hblank;
982
983 panel_fixed_mode->vdisplay = dtd->vactive;
984 panel_fixed_mode->vsync_start =
985 panel_fixed_mode->vdisplay + dtd->vfront_porch;
986 panel_fixed_mode->vsync_end =
987 panel_fixed_mode->vsync_start + dtd->vsync;
988 panel_fixed_mode->vtotal =
989 panel_fixed_mode->vdisplay + dtd->vblank;
990
991 panel_fixed_mode->clock = dtd->pixel_clock;
992 panel_fixed_mode->width_mm = dtd->width_mm;
993 panel_fixed_mode->height_mm = dtd->height_mm;
994
995 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
996 drm_mode_set_name(panel_fixed_mode);
997
998 if (dtd->hsync_positive_polarity)
999 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
1000 else
1001 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
1002
1003 if (dtd->vsync_positive_polarity)
1004 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1005 else
1006 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1007
1008 drm_dbg_kms(display->drm,
1009 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1010 DRM_MODE_ARG(panel_fixed_mode));
1011
1012 panel->vbt.lfp_vbt_mode = panel_fixed_mode;
1013 }
1014
1015 static void
parse_lfp_backlight(struct intel_display * display,struct intel_panel * panel)1016 parse_lfp_backlight(struct intel_display *display,
1017 struct intel_panel *panel)
1018 {
1019 const struct bdb_lfp_backlight *backlight_data;
1020 const struct lfp_backlight_data_entry *entry;
1021 int panel_type = panel->vbt.panel_type;
1022 u16 level;
1023
1024 backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT);
1025 if (!backlight_data)
1026 return;
1027
1028 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1029 drm_dbg_kms(display->drm,
1030 "Unsupported backlight data entry size %u\n",
1031 backlight_data->entry_size);
1032 return;
1033 }
1034
1035 entry = &backlight_data->data[panel_type];
1036
1037 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1038 if (!panel->vbt.backlight.present) {
1039 drm_dbg_kms(display->drm,
1040 "PWM backlight not present in VBT (type %u)\n",
1041 entry->type);
1042 return;
1043 }
1044
1045 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1046 panel->vbt.backlight.controller = 0;
1047 if (display->vbt.version >= 191) {
1048 const struct lfp_backlight_control_method *method;
1049
1050 method = &backlight_data->backlight_control[panel_type];
1051 panel->vbt.backlight.type = method->type;
1052 panel->vbt.backlight.controller = method->controller;
1053 }
1054
1055 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1056 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1057
1058 if (display->vbt.version >= 234) {
1059 u16 min_level;
1060 bool scale;
1061
1062 level = backlight_data->brightness_level[panel_type].level;
1063 min_level = backlight_data->brightness_min_level[panel_type].level;
1064
1065 if (display->vbt.version >= 236)
1066 scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1067 else
1068 scale = level > 255;
1069
1070 if (scale)
1071 min_level = min_level / 255;
1072
1073 if (min_level > 255) {
1074 drm_warn(display->drm, "Brightness min level > 255\n");
1075 level = 255;
1076 }
1077 panel->vbt.backlight.min_brightness = min_level;
1078
1079 panel->vbt.backlight.brightness_precision_bits =
1080 backlight_data->brightness_precision_bits[panel_type];
1081 } else {
1082 level = backlight_data->level[panel_type];
1083 panel->vbt.backlight.min_brightness = entry->min_brightness;
1084 }
1085
1086 if (display->vbt.version >= 239)
1087 panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1088 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1089 else
1090 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1091
1092 drm_dbg_kms(display->drm,
1093 "VBT backlight PWM modulation frequency %u Hz, "
1094 "active %s, min brightness %u, level %u, controller %u\n",
1095 panel->vbt.backlight.pwm_freq_hz,
1096 panel->vbt.backlight.active_low_pwm ? "low" : "high",
1097 panel->vbt.backlight.min_brightness,
1098 level,
1099 panel->vbt.backlight.controller);
1100 }
1101
1102 static void
parse_sdvo_lvds_data(struct intel_display * display,struct intel_panel * panel)1103 parse_sdvo_lvds_data(struct intel_display *display,
1104 struct intel_panel *panel)
1105 {
1106 const struct bdb_sdvo_lvds_dtd *dtd;
1107 struct drm_display_mode *panel_fixed_mode;
1108 int index;
1109
1110 index = display->params.vbt_sdvo_panel_type;
1111 if (index == -2) {
1112 drm_dbg_kms(display->drm,
1113 "Ignore SDVO LVDS mode from BIOS VBT tables.\n");
1114 return;
1115 }
1116
1117 if (index == -1) {
1118 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1119
1120 sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS);
1121 if (!sdvo_lvds_options)
1122 return;
1123
1124 index = sdvo_lvds_options->panel_type;
1125 }
1126
1127 dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD);
1128 if (!dtd)
1129 return;
1130
1131 /*
1132 * This should not happen, as long as the panel_type
1133 * enumeration doesn't grow over 4 items. But if it does, it
1134 * could lead to hard-to-detect bugs, so better double-check
1135 * it here to be sure.
1136 */
1137 if (index >= ARRAY_SIZE(dtd->dtd)) {
1138 drm_err(display->drm,
1139 "index %d is larger than dtd->dtd[4] array\n",
1140 index);
1141 return;
1142 }
1143
1144 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1145 if (!panel_fixed_mode)
1146 return;
1147
1148 fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]);
1149
1150 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1151
1152 drm_dbg_kms(display->drm,
1153 "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1154 DRM_MODE_ARG(panel_fixed_mode));
1155 }
1156
intel_bios_ssc_frequency(struct intel_display * display,bool alternate)1157 static int intel_bios_ssc_frequency(struct intel_display *display,
1158 bool alternate)
1159 {
1160 switch (DISPLAY_VER(display)) {
1161 case 2:
1162 return alternate ? 66667 : 48000;
1163 case 3:
1164 case 4:
1165 return alternate ? 100000 : 96000;
1166 default:
1167 return alternate ? 100000 : 120000;
1168 }
1169 }
1170
1171 static void
parse_general_features(struct intel_display * display)1172 parse_general_features(struct intel_display *display)
1173 {
1174 const struct bdb_general_features *general;
1175
1176 general = bdb_find_section(display, BDB_GENERAL_FEATURES);
1177 if (!general)
1178 return;
1179
1180 display->vbt.int_tv_support = general->int_tv_support;
1181 /* int_crt_support can't be trusted on earlier platforms */
1182 if (display->vbt.version >= 155 &&
1183 (HAS_DDI(display) || display->platform.valleyview))
1184 display->vbt.int_crt_support = general->int_crt_support;
1185 display->vbt.lvds_use_ssc = general->enable_ssc;
1186 display->vbt.lvds_ssc_freq =
1187 intel_bios_ssc_frequency(display, general->ssc_freq);
1188 display->vbt.display_clock_mode = general->display_clock_mode;
1189 display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1190 if (display->vbt.version >= 181) {
1191 display->vbt.orientation = general->rotate_180 ?
1192 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1193 DRM_MODE_PANEL_ORIENTATION_NORMAL;
1194 } else {
1195 display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1196 }
1197
1198 if (display->vbt.version >= 249 && general->afc_startup_config) {
1199 display->vbt.override_afc_startup = true;
1200 display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7;
1201 }
1202
1203 drm_dbg_kms(display->drm,
1204 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1205 display->vbt.int_tv_support,
1206 display->vbt.int_crt_support,
1207 display->vbt.lvds_use_ssc,
1208 display->vbt.lvds_ssc_freq,
1209 display->vbt.display_clock_mode,
1210 display->vbt.fdi_rx_polarity_inverted);
1211 }
1212
1213 static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions * defs,int i)1214 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1215 {
1216 return (const void *) &defs->devices[i * defs->child_dev_size];
1217 }
1218
1219 static void
parse_sdvo_device_mapping(struct intel_display * display)1220 parse_sdvo_device_mapping(struct intel_display *display)
1221 {
1222 const struct intel_bios_encoder_data *devdata;
1223 int count = 0;
1224
1225 /*
1226 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1227 * accurate and doesn't have to be, as long as it's not too strict.
1228 */
1229 if (!IS_DISPLAY_VER(display, 3, 7)) {
1230 drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n");
1231 return;
1232 }
1233
1234 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
1235 const struct child_device_config *child = &devdata->child;
1236 struct sdvo_device_mapping *mapping;
1237
1238 if (child->target_addr != TARGET_ADDR1 &&
1239 child->target_addr != TARGET_ADDR2) {
1240 /*
1241 * If the target address is neither 0x70 nor 0x72,
1242 * it is not a SDVO device. Skip it.
1243 */
1244 continue;
1245 }
1246 if (child->dvo_port != DEVICE_PORT_DVOB &&
1247 child->dvo_port != DEVICE_PORT_DVOC) {
1248 /* skip the incorrect SDVO port */
1249 drm_dbg_kms(display->drm,
1250 "Incorrect SDVO port. Skip it\n");
1251 continue;
1252 }
1253 drm_dbg_kms(display->drm,
1254 "the SDVO device with target addr %2x is found on"
1255 " %s port\n",
1256 child->target_addr,
1257 (child->dvo_port == DEVICE_PORT_DVOB) ?
1258 "SDVOB" : "SDVOC");
1259 mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1];
1260 if (!mapping->initialized) {
1261 mapping->dvo_port = child->dvo_port;
1262 mapping->target_addr = child->target_addr;
1263 mapping->dvo_wiring = child->dvo_wiring;
1264 mapping->ddc_pin = child->ddc_pin;
1265 mapping->i2c_pin = child->i2c_pin;
1266 mapping->initialized = 1;
1267 drm_dbg_kms(display->drm,
1268 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1269 mapping->dvo_port, mapping->target_addr,
1270 mapping->dvo_wiring, mapping->ddc_pin,
1271 mapping->i2c_pin);
1272 } else {
1273 drm_dbg_kms(display->drm,
1274 "Maybe one SDVO port is shared by "
1275 "two SDVO device.\n");
1276 }
1277 if (child->target2_addr) {
1278 /* Maybe this is a SDVO device with multiple inputs */
1279 /* And the mapping info is not added */
1280 drm_dbg_kms(display->drm,
1281 "there exists the target2_addr. Maybe this"
1282 " is a SDVO device with multiple inputs.\n");
1283 }
1284 count++;
1285 }
1286
1287 if (!count) {
1288 /* No SDVO device info is found */
1289 drm_dbg_kms(display->drm,
1290 "No SDVO device info is found in VBT\n");
1291 }
1292 }
1293
1294 static void
parse_driver_features(struct intel_display * display)1295 parse_driver_features(struct intel_display *display)
1296 {
1297 const struct bdb_driver_features *driver;
1298
1299 driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1300 if (!driver)
1301 return;
1302
1303 if (DISPLAY_VER(display) >= 5) {
1304 /*
1305 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1306 * to mean "eDP". The VBT spec doesn't agree with that
1307 * interpretation, but real world VBTs seem to.
1308 */
1309 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1310 display->vbt.int_lvds_support = 0;
1311 } else {
1312 /*
1313 * FIXME it's not clear which BDB version has the LVDS config
1314 * bits defined. Revision history in the VBT spec says:
1315 * "0.92 | Add two definitions for VBT value of LVDS Active
1316 * Config (00b and 11b values defined) | 06/13/2005"
1317 * but does not the specify the BDB version.
1318 *
1319 * So far version 134 (on i945gm) is the oldest VBT observed
1320 * in the wild with the bits correctly populated. Version
1321 * 108 (on i85x) does not have the bits correctly populated.
1322 */
1323 if (display->vbt.version >= 134 &&
1324 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1325 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1326 display->vbt.int_lvds_support = 0;
1327 }
1328 }
1329
1330 static void
parse_panel_driver_features(struct intel_display * display,struct intel_panel * panel)1331 parse_panel_driver_features(struct intel_display *display,
1332 struct intel_panel *panel)
1333 {
1334 const struct bdb_driver_features *driver;
1335
1336 driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1337 if (!driver)
1338 return;
1339
1340 if (display->vbt.version < 228) {
1341 drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n",
1342 driver->drrs_enabled);
1343 /*
1344 * If DRRS is not supported, drrs_type has to be set to 0.
1345 * This is because, VBT is configured in such a way that
1346 * static DRRS is 0 and DRRS not supported is represented by
1347 * driver->drrs_enabled=false
1348 */
1349 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1350 /*
1351 * FIXME Should DMRRS perhaps be treated as seamless
1352 * but without the automatic downclocking?
1353 */
1354 if (driver->dmrrs_enabled)
1355 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1356 else
1357 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1358 }
1359
1360 panel->vbt.psr.enable = driver->psr_enabled;
1361 }
1362 }
1363
1364 static void
parse_power_conservation_features(struct intel_display * display,struct intel_panel * panel)1365 parse_power_conservation_features(struct intel_display *display,
1366 struct intel_panel *panel)
1367 {
1368 const struct bdb_lfp_power *power;
1369 u8 panel_type = panel->vbt.panel_type;
1370
1371 panel->vbt.vrr = true; /* matches Windows behaviour */
1372
1373 if (display->vbt.version < 228)
1374 return;
1375
1376 power = bdb_find_section(display, BDB_LFP_POWER);
1377 if (!power)
1378 return;
1379
1380 panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1381
1382 /*
1383 * If DRRS is not supported, drrs_type has to be set to 0.
1384 * This is because, VBT is configured in such a way that
1385 * static DRRS is 0 and DRRS not supported is represented by
1386 * power->drrs & BIT(panel_type)=false
1387 */
1388 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1389 /*
1390 * FIXME Should DMRRS perhaps be treated as seamless
1391 * but without the automatic downclocking?
1392 */
1393 if (panel_bool(power->dmrrs, panel_type))
1394 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1395 else
1396 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1397 }
1398
1399 if (display->vbt.version >= 232)
1400 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1401
1402 if (display->vbt.version >= 233)
1403 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1404 panel_type);
1405 }
1406
vbt_edp_to_pps_delays(struct intel_pps_delays * pps,const struct edp_power_seq * edp_pps)1407 static void vbt_edp_to_pps_delays(struct intel_pps_delays *pps,
1408 const struct edp_power_seq *edp_pps)
1409 {
1410 pps->power_up = edp_pps->t1_t3;
1411 pps->backlight_on = edp_pps->t8;
1412 pps->backlight_off = edp_pps->t9;
1413 pps->power_down = edp_pps->t10;
1414 pps->power_cycle = edp_pps->t11_t12;
1415 }
1416
1417 static void
parse_edp(struct intel_display * display,struct intel_panel * panel)1418 parse_edp(struct intel_display *display,
1419 struct intel_panel *panel)
1420 {
1421 const struct bdb_edp *edp;
1422 const struct edp_fast_link_params *edp_link_params;
1423 int panel_type = panel->vbt.panel_type;
1424
1425 edp = bdb_find_section(display, BDB_EDP);
1426 if (!edp)
1427 return;
1428
1429 switch (panel_bits(edp->color_depth, panel_type, 2)) {
1430 case EDP_18BPP:
1431 panel->vbt.edp.bpp = 18;
1432 break;
1433 case EDP_24BPP:
1434 panel->vbt.edp.bpp = 24;
1435 break;
1436 case EDP_30BPP:
1437 panel->vbt.edp.bpp = 30;
1438 break;
1439 }
1440
1441 /* Get the eDP sequencing and link info */
1442 edp_link_params = &edp->fast_link_params[panel_type];
1443
1444 vbt_edp_to_pps_delays(&panel->vbt.edp.pps,
1445 &edp->power_seqs[panel_type]);
1446
1447 if (display->vbt.version >= 224) {
1448 panel->vbt.edp.rate =
1449 edp->edp_fast_link_training_rate[panel_type] * 20;
1450 } else {
1451 switch (edp_link_params->rate) {
1452 case EDP_RATE_1_62:
1453 panel->vbt.edp.rate = 162000;
1454 break;
1455 case EDP_RATE_2_7:
1456 panel->vbt.edp.rate = 270000;
1457 break;
1458 case EDP_RATE_5_4:
1459 panel->vbt.edp.rate = 540000;
1460 break;
1461 default:
1462 drm_dbg_kms(display->drm,
1463 "VBT has unknown eDP link rate value %u\n",
1464 edp_link_params->rate);
1465 break;
1466 }
1467 }
1468
1469 switch (edp_link_params->lanes) {
1470 case EDP_LANE_1:
1471 panel->vbt.edp.lanes = 1;
1472 break;
1473 case EDP_LANE_2:
1474 panel->vbt.edp.lanes = 2;
1475 break;
1476 case EDP_LANE_4:
1477 panel->vbt.edp.lanes = 4;
1478 break;
1479 default:
1480 drm_dbg_kms(display->drm,
1481 "VBT has unknown eDP lane count value %u\n",
1482 edp_link_params->lanes);
1483 break;
1484 }
1485
1486 switch (edp_link_params->preemphasis) {
1487 case EDP_PREEMPHASIS_NONE:
1488 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1489 break;
1490 case EDP_PREEMPHASIS_3_5dB:
1491 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1492 break;
1493 case EDP_PREEMPHASIS_6dB:
1494 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1495 break;
1496 case EDP_PREEMPHASIS_9_5dB:
1497 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1498 break;
1499 default:
1500 drm_dbg_kms(display->drm,
1501 "VBT has unknown eDP pre-emphasis value %u\n",
1502 edp_link_params->preemphasis);
1503 break;
1504 }
1505
1506 switch (edp_link_params->vswing) {
1507 case EDP_VSWING_0_4V:
1508 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1509 break;
1510 case EDP_VSWING_0_6V:
1511 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1512 break;
1513 case EDP_VSWING_0_8V:
1514 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1515 break;
1516 case EDP_VSWING_1_2V:
1517 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1518 break;
1519 default:
1520 drm_dbg_kms(display->drm,
1521 "VBT has unknown eDP voltage swing value %u\n",
1522 edp_link_params->vswing);
1523 break;
1524 }
1525
1526 if (display->vbt.version >= 173) {
1527 u8 vswing;
1528
1529 /* Don't read from VBT if module parameter has valid value*/
1530 if (display->params.edp_vswing) {
1531 panel->vbt.edp.low_vswing =
1532 display->params.edp_vswing == 1;
1533 } else {
1534 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1535 panel->vbt.edp.low_vswing = vswing == 0;
1536 }
1537 }
1538
1539 panel->vbt.edp.drrs_msa_timing_delay =
1540 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1541
1542 if (display->vbt.version >= 244)
1543 panel->vbt.edp.max_link_rate =
1544 edp->edp_max_port_link_rate[panel_type] * 20;
1545
1546 if (display->vbt.version >= 251)
1547 panel->vbt.edp.dsc_disable =
1548 panel_bool(edp->edp_dsc_disable, panel_type);
1549 }
1550
1551 static void
parse_psr(struct intel_display * display,struct intel_panel * panel)1552 parse_psr(struct intel_display *display,
1553 struct intel_panel *panel)
1554 {
1555 const struct bdb_psr *psr;
1556 const struct psr_table *psr_table;
1557 int panel_type = panel->vbt.panel_type;
1558
1559 psr = bdb_find_section(display, BDB_PSR);
1560 if (!psr) {
1561 drm_dbg_kms(display->drm, "No PSR BDB found.\n");
1562 return;
1563 }
1564
1565 psr_table = &psr->psr_table[panel_type];
1566
1567 panel->vbt.psr.full_link = psr_table->full_link;
1568 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1569
1570 /* Allowed VBT values goes from 0 to 15 */
1571 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1572 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1573
1574 /*
1575 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1576 * Old decimal value is wake up time in multiples of 100 us.
1577 */
1578 if (display->vbt.version >= 205 &&
1579 (DISPLAY_VER(display) >= 9 && !display->platform.broxton)) {
1580 switch (psr_table->tp1_wakeup_time) {
1581 case 0:
1582 panel->vbt.psr.tp1_wakeup_time_us = 500;
1583 break;
1584 case 1:
1585 panel->vbt.psr.tp1_wakeup_time_us = 100;
1586 break;
1587 case 3:
1588 panel->vbt.psr.tp1_wakeup_time_us = 0;
1589 break;
1590 default:
1591 drm_dbg_kms(display->drm,
1592 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1593 psr_table->tp1_wakeup_time);
1594 fallthrough;
1595 case 2:
1596 panel->vbt.psr.tp1_wakeup_time_us = 2500;
1597 break;
1598 }
1599
1600 switch (psr_table->tp2_tp3_wakeup_time) {
1601 case 0:
1602 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1603 break;
1604 case 1:
1605 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1606 break;
1607 case 3:
1608 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1609 break;
1610 default:
1611 drm_dbg_kms(display->drm,
1612 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1613 psr_table->tp2_tp3_wakeup_time);
1614 fallthrough;
1615 case 2:
1616 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1617 break;
1618 }
1619 } else {
1620 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1621 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1622 }
1623
1624 if (display->vbt.version >= 226) {
1625 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1626
1627 wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1628 switch (wakeup_time) {
1629 case 0:
1630 wakeup_time = 500;
1631 break;
1632 case 1:
1633 wakeup_time = 100;
1634 break;
1635 case 3:
1636 wakeup_time = 50;
1637 break;
1638 default:
1639 case 2:
1640 wakeup_time = 2500;
1641 break;
1642 }
1643 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1644 } else {
1645 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1646 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1647 }
1648 }
1649
parse_dsi_backlight_ports(struct intel_display * display,struct intel_panel * panel,enum port port)1650 static void parse_dsi_backlight_ports(struct intel_display *display,
1651 struct intel_panel *panel,
1652 enum port port)
1653 {
1654 enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C;
1655
1656 if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) {
1657 panel->vbt.dsi.bl_ports = BIT(port);
1658 if (panel->vbt.dsi.config->cabc_supported)
1659 panel->vbt.dsi.cabc_ports = BIT(port);
1660
1661 return;
1662 }
1663
1664 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1665 case DL_DCS_PORT_A:
1666 panel->vbt.dsi.bl_ports = BIT(PORT_A);
1667 break;
1668 case DL_DCS_PORT_C:
1669 panel->vbt.dsi.bl_ports = BIT(port_bc);
1670 break;
1671 default:
1672 case DL_DCS_PORT_A_AND_C:
1673 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1674 break;
1675 }
1676
1677 if (!panel->vbt.dsi.config->cabc_supported)
1678 return;
1679
1680 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1681 case DL_DCS_PORT_A:
1682 panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1683 break;
1684 case DL_DCS_PORT_C:
1685 panel->vbt.dsi.cabc_ports = BIT(port_bc);
1686 break;
1687 default:
1688 case DL_DCS_PORT_A_AND_C:
1689 panel->vbt.dsi.cabc_ports =
1690 BIT(PORT_A) | BIT(port_bc);
1691 break;
1692 }
1693 }
1694
1695 static void
parse_mipi_config(struct intel_display * display,struct intel_panel * panel)1696 parse_mipi_config(struct intel_display *display,
1697 struct intel_panel *panel)
1698 {
1699 const struct bdb_mipi_config *start;
1700 const struct mipi_config *config;
1701 const struct mipi_pps_data *pps;
1702 int panel_type = panel->vbt.panel_type;
1703 enum port port;
1704
1705 /* parse MIPI blocks only if LFP type is MIPI */
1706 if (!intel_bios_is_dsi_present(display, &port))
1707 return;
1708
1709 /* Initialize this to undefined indicating no generic MIPI support */
1710 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1711
1712 start = bdb_find_section(display, BDB_MIPI_CONFIG);
1713 if (!start) {
1714 drm_dbg_kms(display->drm, "No MIPI config BDB found");
1715 return;
1716 }
1717
1718 drm_dbg_kms(display->drm, "Found MIPI Config block, panel index = %d\n",
1719 panel_type);
1720
1721 /*
1722 * get hold of the correct configuration block and pps data as per
1723 * the panel_type as index
1724 */
1725 config = &start->config[panel_type];
1726 pps = &start->pps[panel_type];
1727
1728 /* store as of now full data. Trim when we realise all is not needed */
1729 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1730 if (!panel->vbt.dsi.config)
1731 return;
1732
1733 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1734 if (!panel->vbt.dsi.pps) {
1735 kfree(panel->vbt.dsi.config);
1736 return;
1737 }
1738
1739 parse_dsi_backlight_ports(display, panel, port);
1740
1741 /* FIXME is the 90 vs. 270 correct? */
1742 switch (config->rotation) {
1743 case ENABLE_ROTATION_0:
1744 /*
1745 * Most (all?) VBTs claim 0 degrees despite having
1746 * an upside down panel, thus we do not trust this.
1747 */
1748 panel->vbt.dsi.orientation =
1749 DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1750 break;
1751 case ENABLE_ROTATION_90:
1752 panel->vbt.dsi.orientation =
1753 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1754 break;
1755 case ENABLE_ROTATION_180:
1756 panel->vbt.dsi.orientation =
1757 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1758 break;
1759 case ENABLE_ROTATION_270:
1760 panel->vbt.dsi.orientation =
1761 DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1762 break;
1763 }
1764
1765 /* We have mandatory mipi config blocks. Initialize as generic panel */
1766 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1767 }
1768
1769 /* Find the sequence block and size for the given panel. */
1770 static const u8 *
find_panel_sequence_block(struct intel_display * display,const struct bdb_mipi_sequence * sequence,u16 panel_id,u32 * seq_size)1771 find_panel_sequence_block(struct intel_display *display,
1772 const struct bdb_mipi_sequence *sequence,
1773 u16 panel_id, u32 *seq_size)
1774 {
1775 u32 total = get_blocksize(sequence);
1776 const u8 *data = &sequence->data[0];
1777 u8 current_id;
1778 u32 current_size;
1779 int header_size = sequence->version >= 3 ? 5 : 3;
1780 int index = 0;
1781 int i;
1782
1783 /* skip new block size */
1784 if (sequence->version >= 3)
1785 data += 4;
1786
1787 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1788 if (index + header_size > total) {
1789 drm_err(display->drm,
1790 "Invalid sequence block (header)\n");
1791 return NULL;
1792 }
1793
1794 current_id = *(data + index);
1795 if (sequence->version >= 3)
1796 current_size = *((const u32 *)(data + index + 1));
1797 else
1798 current_size = *((const u16 *)(data + index + 1));
1799
1800 index += header_size;
1801
1802 if (index + current_size > total) {
1803 drm_err(display->drm, "Invalid sequence block\n");
1804 return NULL;
1805 }
1806
1807 if (current_id == panel_id) {
1808 *seq_size = current_size;
1809 return data + index;
1810 }
1811
1812 index += current_size;
1813 }
1814
1815 drm_err(display->drm,
1816 "Sequence block detected but no valid configuration\n");
1817
1818 return NULL;
1819 }
1820
goto_next_sequence(struct intel_display * display,const u8 * data,int index,int total)1821 static int goto_next_sequence(struct intel_display *display,
1822 const u8 *data, int index, int total)
1823 {
1824 u16 len;
1825
1826 /* Skip Sequence Byte. */
1827 for (index = index + 1; index < total; index += len) {
1828 u8 operation_byte = *(data + index);
1829 index++;
1830
1831 switch (operation_byte) {
1832 case MIPI_SEQ_ELEM_END:
1833 return index;
1834 case MIPI_SEQ_ELEM_SEND_PKT:
1835 if (index + 4 > total)
1836 return 0;
1837
1838 len = *((const u16 *)(data + index + 2)) + 4;
1839 break;
1840 case MIPI_SEQ_ELEM_DELAY:
1841 len = 4;
1842 break;
1843 case MIPI_SEQ_ELEM_GPIO:
1844 len = 2;
1845 break;
1846 case MIPI_SEQ_ELEM_I2C:
1847 if (index + 7 > total)
1848 return 0;
1849 len = *(data + index + 6) + 7;
1850 break;
1851 default:
1852 drm_err(display->drm, "Unknown operation byte\n");
1853 return 0;
1854 }
1855 }
1856
1857 return 0;
1858 }
1859
goto_next_sequence_v3(struct intel_display * display,const u8 * data,int index,int total)1860 static int goto_next_sequence_v3(struct intel_display *display,
1861 const u8 *data, int index, int total)
1862 {
1863 int seq_end;
1864 u16 len;
1865 u32 size_of_sequence;
1866
1867 /*
1868 * Could skip sequence based on Size of Sequence alone, but also do some
1869 * checking on the structure.
1870 */
1871 if (total < 5) {
1872 drm_err(display->drm, "Too small sequence size\n");
1873 return 0;
1874 }
1875
1876 /* Skip Sequence Byte. */
1877 index++;
1878
1879 /*
1880 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1881 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1882 * byte.
1883 */
1884 size_of_sequence = *((const u32 *)(data + index));
1885 index += 4;
1886
1887 seq_end = index + size_of_sequence;
1888 if (seq_end > total) {
1889 drm_err(display->drm, "Invalid sequence size\n");
1890 return 0;
1891 }
1892
1893 for (; index < total; index += len) {
1894 u8 operation_byte = *(data + index);
1895 index++;
1896
1897 if (operation_byte == MIPI_SEQ_ELEM_END) {
1898 if (index != seq_end) {
1899 drm_err(display->drm,
1900 "Invalid element structure\n");
1901 return 0;
1902 }
1903 return index;
1904 }
1905
1906 len = *(data + index);
1907 index++;
1908
1909 /*
1910 * FIXME: Would be nice to check elements like for v1/v2 in
1911 * goto_next_sequence() above.
1912 */
1913 switch (operation_byte) {
1914 case MIPI_SEQ_ELEM_SEND_PKT:
1915 case MIPI_SEQ_ELEM_DELAY:
1916 case MIPI_SEQ_ELEM_GPIO:
1917 case MIPI_SEQ_ELEM_I2C:
1918 case MIPI_SEQ_ELEM_SPI:
1919 case MIPI_SEQ_ELEM_PMIC:
1920 break;
1921 default:
1922 drm_err(display->drm, "Unknown operation byte %u\n",
1923 operation_byte);
1924 break;
1925 }
1926 }
1927
1928 return 0;
1929 }
1930
1931 /*
1932 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1933 * skip all delay + gpio operands and stop at the first DSI packet op.
1934 */
get_init_otp_deassert_fragment_len(struct intel_display * display,struct intel_panel * panel)1935 static int get_init_otp_deassert_fragment_len(struct intel_display *display,
1936 struct intel_panel *panel)
1937 {
1938 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1939 int index, len;
1940
1941 if (drm_WARN_ON(display->drm,
1942 !data || panel->vbt.dsi.seq_version >= 3))
1943 return 0;
1944
1945 /* index = 1 to skip sequence byte */
1946 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1947 switch (data[index]) {
1948 case MIPI_SEQ_ELEM_SEND_PKT:
1949 return index == 1 ? 0 : index;
1950 case MIPI_SEQ_ELEM_DELAY:
1951 len = 5; /* 1 byte for operand + uint32 */
1952 break;
1953 case MIPI_SEQ_ELEM_GPIO:
1954 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1955 break;
1956 default:
1957 return 0;
1958 }
1959 }
1960
1961 return 0;
1962 }
1963
1964 /*
1965 * Some v1/v2 VBT MIPI sequences do the deassert in the init OTP sequence.
1966 * The deassert must be done before calling intel_dsi_device_ready, so for
1967 * these devices we split the init OTP sequence into a deassert sequence and
1968 * the actual init OTP part.
1969 */
vlv_fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)1970 static void vlv_fixup_mipi_sequences(struct intel_display *display,
1971 struct intel_panel *panel)
1972 {
1973 u8 *init_otp;
1974 int len;
1975
1976 /* Limit this to v1/v2 vid-mode sequences */
1977 if (panel->vbt.dsi.config->is_cmd_mode ||
1978 panel->vbt.dsi.seq_version >= 3)
1979 return;
1980
1981 /* Only do this if there are otp and assert seqs and no deassert seq */
1982 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1983 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1984 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1985 return;
1986
1987 /* The deassert-sequence ends at the first DSI packet */
1988 len = get_init_otp_deassert_fragment_len(display, panel);
1989 if (!len)
1990 return;
1991
1992 drm_dbg_kms(display->drm,
1993 "Using init OTP fragment to deassert reset\n");
1994
1995 /* Copy the fragment, update seq byte and terminate it */
1996 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1997 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1998 if (!panel->vbt.dsi.deassert_seq)
1999 return;
2000 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
2001 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
2002 /* Use the copy for deassert */
2003 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
2004 panel->vbt.dsi.deassert_seq;
2005 /* Replace the last byte of the fragment with init OTP seq byte */
2006 init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
2007 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
2008 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
2009 }
2010
2011 /*
2012 * Some machines (eg. Lenovo 82TQ) appear to have broken
2013 * VBT sequences:
2014 * - INIT_OTP is not present at all
2015 * - what should be in INIT_OTP is in DISPLAY_ON
2016 * - what should be in DISPLAY_ON is in BACKLIGHT_ON
2017 * (along with the actual backlight stuff)
2018 *
2019 * To make those work we simply swap DISPLAY_ON and INIT_OTP.
2020 *
2021 * TODO: Do we need to limit this to specific machines,
2022 * or examine the contents of the sequences to
2023 * avoid false positives?
2024 */
icl_fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)2025 static void icl_fixup_mipi_sequences(struct intel_display *display,
2026 struct intel_panel *panel)
2027 {
2028 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2029 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2030 drm_dbg_kms(display->drm,
2031 "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2032
2033 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2034 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2035 }
2036 }
2037
fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)2038 static void fixup_mipi_sequences(struct intel_display *display,
2039 struct intel_panel *panel)
2040 {
2041 if (DISPLAY_VER(display) >= 11)
2042 icl_fixup_mipi_sequences(display, panel);
2043 else if (display->platform.valleyview)
2044 vlv_fixup_mipi_sequences(display, panel);
2045 }
2046
2047 static void
parse_mipi_sequence(struct intel_display * display,struct intel_panel * panel)2048 parse_mipi_sequence(struct intel_display *display,
2049 struct intel_panel *panel)
2050 {
2051 int panel_type = panel->vbt.panel_type;
2052 const struct bdb_mipi_sequence *sequence;
2053 const u8 *seq_data;
2054 u32 seq_size;
2055 u8 *data;
2056 int index = 0;
2057
2058 /* Only our generic panel driver uses the sequence block. */
2059 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2060 return;
2061
2062 sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE);
2063 if (!sequence) {
2064 drm_dbg_kms(display->drm,
2065 "No MIPI Sequence found, parsing complete\n");
2066 return;
2067 }
2068
2069 /* Fail gracefully for forward incompatible sequence block. */
2070 if (sequence->version >= 4) {
2071 drm_err(display->drm,
2072 "Unable to parse MIPI Sequence Block v%u\n",
2073 sequence->version);
2074 return;
2075 }
2076
2077 drm_dbg_kms(display->drm, "Found MIPI sequence block v%u\n",
2078 sequence->version);
2079
2080 seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size);
2081 if (!seq_data)
2082 return;
2083
2084 data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2085 if (!data)
2086 return;
2087
2088 /* Parse the sequences, store pointers to each sequence. */
2089 for (;;) {
2090 u8 seq_id = *(data + index);
2091 if (seq_id == MIPI_SEQ_END)
2092 break;
2093
2094 if (seq_id >= MIPI_SEQ_MAX) {
2095 drm_err(display->drm, "Unknown sequence %u\n",
2096 seq_id);
2097 goto err;
2098 }
2099
2100 /* Log about presence of sequences we won't run. */
2101 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2102 drm_dbg_kms(display->drm,
2103 "Unsupported sequence %u\n", seq_id);
2104
2105 panel->vbt.dsi.sequence[seq_id] = data + index;
2106
2107 if (sequence->version >= 3)
2108 index = goto_next_sequence_v3(display, data, index, seq_size);
2109 else
2110 index = goto_next_sequence(display, data, index, seq_size);
2111 if (!index) {
2112 drm_err(display->drm, "Invalid sequence %u\n",
2113 seq_id);
2114 goto err;
2115 }
2116 }
2117
2118 panel->vbt.dsi.data = data;
2119 panel->vbt.dsi.size = seq_size;
2120 panel->vbt.dsi.seq_version = sequence->version;
2121
2122 fixup_mipi_sequences(display, panel);
2123
2124 drm_dbg_kms(display->drm, "MIPI related VBT parsing complete\n");
2125 return;
2126
2127 err:
2128 kfree(data);
2129 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2130 }
2131
2132 static void
parse_compression_parameters(struct intel_display * display)2133 parse_compression_parameters(struct intel_display *display)
2134 {
2135 const struct bdb_compression_parameters *params;
2136 struct intel_bios_encoder_data *devdata;
2137 u16 block_size;
2138 int index;
2139
2140 if (display->vbt.version < 198)
2141 return;
2142
2143 params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS);
2144 if (params) {
2145 /* Sanity checks */
2146 if (params->entry_size != sizeof(params->data[0])) {
2147 drm_dbg_kms(display->drm,
2148 "VBT: unsupported compression param entry size\n");
2149 return;
2150 }
2151
2152 block_size = get_blocksize(params);
2153 if (block_size < sizeof(*params)) {
2154 drm_dbg_kms(display->drm,
2155 "VBT: expected 16 compression param entries\n");
2156 return;
2157 }
2158 }
2159
2160 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
2161 const struct child_device_config *child = &devdata->child;
2162
2163 if (!child->compression_enable)
2164 continue;
2165
2166 if (!params) {
2167 drm_dbg_kms(display->drm,
2168 "VBT: compression params not available\n");
2169 continue;
2170 }
2171
2172 if (child->compression_method_cps) {
2173 drm_dbg_kms(display->drm,
2174 "VBT: CPS compression not supported\n");
2175 continue;
2176 }
2177
2178 index = child->compression_structure_index;
2179
2180 devdata->dsc = kmemdup(¶ms->data[index],
2181 sizeof(*devdata->dsc), GFP_KERNEL);
2182 }
2183 }
2184
translate_iboost(struct intel_display * display,u8 val)2185 static u8 translate_iboost(struct intel_display *display, u8 val)
2186 {
2187 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2188
2189 if (val >= ARRAY_SIZE(mapping)) {
2190 drm_dbg_kms(display->drm,
2191 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2192 return 0;
2193 }
2194 return mapping[val];
2195 }
2196
2197 static const u8 cnp_ddc_pin_map[] = {
2198 [0] = 0, /* N/A */
2199 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2200 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2201 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2202 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2203 };
2204
2205 static const u8 icp_ddc_pin_map[] = {
2206 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2207 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2208 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2209 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2210 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2211 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2212 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2213 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2214 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2215 };
2216
2217 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2218 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2219 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2220 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2221 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2222 };
2223
2224 static const u8 adls_ddc_pin_map[] = {
2225 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2226 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2227 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2228 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2229 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2230 };
2231
2232 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2233 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2234 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2235 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2236 };
2237
2238 static const u8 adlp_ddc_pin_map[] = {
2239 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2240 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2241 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2242 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2243 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2244 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2245 };
2246
map_ddc_pin(struct intel_display * display,u8 vbt_pin)2247 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin)
2248 {
2249 const u8 *ddc_pin_map;
2250 int i, n_entries;
2251
2252 if (INTEL_PCH_TYPE(display) >= PCH_MTL || display->platform.alderlake_p) {
2253 ddc_pin_map = adlp_ddc_pin_map;
2254 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2255 } else if (display->platform.alderlake_s) {
2256 ddc_pin_map = adls_ddc_pin_map;
2257 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2258 } else if (INTEL_PCH_TYPE(display) >= PCH_DG1) {
2259 return vbt_pin;
2260 } else if (display->platform.rocketlake && INTEL_PCH_TYPE(display) == PCH_TGP) {
2261 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2262 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2263 } else if (HAS_PCH_TGP(display) && DISPLAY_VER(display) == 9) {
2264 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2265 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2266 } else if (INTEL_PCH_TYPE(display) >= PCH_ICP) {
2267 ddc_pin_map = icp_ddc_pin_map;
2268 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2269 } else if (HAS_PCH_CNP(display)) {
2270 ddc_pin_map = cnp_ddc_pin_map;
2271 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2272 } else {
2273 /* Assuming direct map */
2274 return vbt_pin;
2275 }
2276
2277 for (i = 0; i < n_entries; i++) {
2278 if (ddc_pin_map[i] == vbt_pin)
2279 return i;
2280 }
2281
2282 drm_dbg_kms(display->drm,
2283 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2284 vbt_pin);
2285 return 0;
2286 }
2287
dvo_port_type(u8 dvo_port)2288 static u8 dvo_port_type(u8 dvo_port)
2289 {
2290 switch (dvo_port) {
2291 case DVO_PORT_HDMIA:
2292 case DVO_PORT_HDMIB:
2293 case DVO_PORT_HDMIC:
2294 case DVO_PORT_HDMID:
2295 case DVO_PORT_HDMIE:
2296 case DVO_PORT_HDMIF:
2297 case DVO_PORT_HDMIG:
2298 case DVO_PORT_HDMIH:
2299 case DVO_PORT_HDMII:
2300 return DVO_PORT_HDMIA;
2301 case DVO_PORT_DPA:
2302 case DVO_PORT_DPB:
2303 case DVO_PORT_DPC:
2304 case DVO_PORT_DPD:
2305 case DVO_PORT_DPE:
2306 case DVO_PORT_DPF:
2307 case DVO_PORT_DPG:
2308 case DVO_PORT_DPH:
2309 case DVO_PORT_DPI:
2310 return DVO_PORT_DPA;
2311 case DVO_PORT_MIPIA:
2312 case DVO_PORT_MIPIB:
2313 case DVO_PORT_MIPIC:
2314 case DVO_PORT_MIPID:
2315 return DVO_PORT_MIPIA;
2316 default:
2317 return dvo_port;
2318 }
2319 }
2320
__dvo_port_to_port(int n_ports,int n_dvo,const int port_mapping[][3],u8 dvo_port)2321 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2322 const int port_mapping[][3], u8 dvo_port)
2323 {
2324 enum port port;
2325 int i;
2326
2327 for (port = PORT_A; port < n_ports; port++) {
2328 for (i = 0; i < n_dvo; i++) {
2329 if (port_mapping[port][i] == -1)
2330 break;
2331
2332 if (dvo_port == port_mapping[port][i])
2333 return port;
2334 }
2335 }
2336
2337 return PORT_NONE;
2338 }
2339
dvo_port_to_port(struct intel_display * display,u8 dvo_port)2340 static enum port dvo_port_to_port(struct intel_display *display,
2341 u8 dvo_port)
2342 {
2343 /*
2344 * Each DDI port can have more than one value on the "DVO Port" field,
2345 * so look for all the possible values for each port.
2346 */
2347 static const int port_mapping[][3] = {
2348 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2349 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2350 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2351 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2352 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2353 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2354 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2355 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2356 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2357 };
2358 /*
2359 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2360 * map to DDI A,B,TC1,TC2 respectively.
2361 */
2362 static const int rkl_port_mapping[][3] = {
2363 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2364 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2365 [PORT_C] = { -1 },
2366 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2367 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2368 };
2369 /*
2370 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2371 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2372 */
2373 static const int adls_port_mapping[][3] = {
2374 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2375 [PORT_B] = { -1 },
2376 [PORT_C] = { -1 },
2377 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2378 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2379 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2380 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2381 };
2382 static const int xelpd_port_mapping[][3] = {
2383 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2384 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2385 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2386 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2387 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2388 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2389 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2390 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2391 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2392 };
2393
2394 if (DISPLAY_VER(display) >= 13)
2395 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2396 ARRAY_SIZE(xelpd_port_mapping[0]),
2397 xelpd_port_mapping,
2398 dvo_port);
2399 else if (display->platform.alderlake_s)
2400 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2401 ARRAY_SIZE(adls_port_mapping[0]),
2402 adls_port_mapping,
2403 dvo_port);
2404 else if (display->platform.dg1 || display->platform.rocketlake)
2405 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2406 ARRAY_SIZE(rkl_port_mapping[0]),
2407 rkl_port_mapping,
2408 dvo_port);
2409 else
2410 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2411 ARRAY_SIZE(port_mapping[0]),
2412 port_mapping,
2413 dvo_port);
2414 }
2415
2416 static enum port
dsi_dvo_port_to_port(struct intel_display * display,u8 dvo_port)2417 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port)
2418 {
2419 switch (dvo_port) {
2420 case DVO_PORT_MIPIA:
2421 return PORT_A;
2422 case DVO_PORT_MIPIC:
2423 if (DISPLAY_VER(display) >= 11)
2424 return PORT_B;
2425 else
2426 return PORT_C;
2427 default:
2428 return PORT_NONE;
2429 }
2430 }
2431
intel_bios_encoder_port(const struct intel_bios_encoder_data * devdata)2432 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2433 {
2434 struct intel_display *display = devdata->display;
2435 const struct child_device_config *child = &devdata->child;
2436 enum port port;
2437
2438 port = dvo_port_to_port(display, child->dvo_port);
2439 if (port == PORT_NONE && DISPLAY_VER(display) >= 11)
2440 port = dsi_dvo_port_to_port(display, child->dvo_port);
2441
2442 return port;
2443 }
2444
parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)2445 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2446 {
2447 switch (vbt_max_link_rate) {
2448 default:
2449 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2450 return 0;
2451 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2452 return 2000000;
2453 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2454 return 1350000;
2455 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2456 return 1000000;
2457 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2458 return 810000;
2459 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2460 return 540000;
2461 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2462 return 270000;
2463 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2464 return 162000;
2465 }
2466 }
2467
parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)2468 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2469 {
2470 switch (vbt_max_link_rate) {
2471 default:
2472 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2473 return 810000;
2474 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2475 return 540000;
2476 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2477 return 270000;
2478 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2479 return 162000;
2480 }
2481 }
2482
intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data * devdata)2483 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2484 {
2485 if (!devdata || devdata->display->vbt.version < 216)
2486 return 0;
2487
2488 if (devdata->display->vbt.version >= 230)
2489 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2490 else
2491 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2492 }
2493
intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data * devdata)2494 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2495 {
2496 if (!devdata || devdata->display->vbt.version < 244)
2497 return 0;
2498
2499 return devdata->child.dp_max_lane_count + 1;
2500 }
2501
sanitize_device_type(struct intel_bios_encoder_data * devdata,enum port port)2502 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2503 enum port port)
2504 {
2505 struct intel_display *display = devdata->display;
2506 bool is_hdmi;
2507
2508 if (port != PORT_A || DISPLAY_VER(display) >= 12)
2509 return;
2510
2511 if (!intel_bios_encoder_supports_dvi(devdata))
2512 return;
2513
2514 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2515
2516 drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n",
2517 is_hdmi ? "/HDMI" : "");
2518
2519 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2520 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2521 }
2522
sanitize_hdmi_level_shift(struct intel_bios_encoder_data * devdata,enum port port)2523 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2524 enum port port)
2525 {
2526 struct intel_display *display = devdata->display;
2527
2528 if (!intel_bios_encoder_supports_dvi(devdata))
2529 return;
2530
2531 /*
2532 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2533 * with a HSW VBT where the level shifter value goes
2534 * up to 11, whereas the BDW max is 9.
2535 */
2536 if (display->platform.broadwell && devdata->child.hdmi_level_shifter_value > 9) {
2537 drm_dbg_kms(display->drm,
2538 "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2539 port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2540
2541 devdata->child.hdmi_level_shifter_value = 9;
2542 }
2543 }
2544
2545 static bool
intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data * devdata)2546 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2547 {
2548 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2549 }
2550
2551 bool
intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data * devdata)2552 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2553 {
2554 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2555 }
2556
2557 bool
intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data * devdata)2558 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2559 {
2560 return intel_bios_encoder_supports_dvi(devdata) &&
2561 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2562 }
2563
2564 bool
intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data * devdata)2565 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2566 {
2567 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2568 }
2569
2570 bool
intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data * devdata)2571 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2572 {
2573 return intel_bios_encoder_supports_dp(devdata) &&
2574 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2575 }
2576
2577 bool
intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data * devdata)2578 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2579 {
2580 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2581 }
2582
2583 bool
intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data * devdata)2584 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2585 {
2586 return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon;
2587 }
2588
2589 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data * devdata)2590 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2591 {
2592 if (!devdata || devdata->display->vbt.version < 158 ||
2593 DISPLAY_VER(devdata->display) >= 14)
2594 return -1;
2595
2596 return devdata->child.hdmi_level_shifter_value;
2597 }
2598
intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data * devdata)2599 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2600 {
2601 if (!devdata || devdata->display->vbt.version < 204)
2602 return 0;
2603
2604 switch (devdata->child.hdmi_max_data_rate) {
2605 default:
2606 MISSING_CASE(devdata->child.hdmi_max_data_rate);
2607 fallthrough;
2608 case HDMI_MAX_DATA_RATE_PLATFORM:
2609 return 0;
2610 case HDMI_MAX_DATA_RATE_594:
2611 return 594000;
2612 case HDMI_MAX_DATA_RATE_340:
2613 return 340000;
2614 case HDMI_MAX_DATA_RATE_300:
2615 return 300000;
2616 case HDMI_MAX_DATA_RATE_297:
2617 return 297000;
2618 case HDMI_MAX_DATA_RATE_165:
2619 return 165000;
2620 }
2621 }
2622
is_port_valid(struct intel_display * display,enum port port)2623 static bool is_port_valid(struct intel_display *display, enum port port)
2624 {
2625 /*
2626 * On some ICL SKUs port F is not present, but broken VBTs mark
2627 * the port as present. Only try to initialize port F for the
2628 * SKUs that may actually have it.
2629 */
2630 if (port == PORT_F && display->platform.icelake)
2631 return display->platform.icelake_port_f;
2632
2633 return true;
2634 }
2635
print_ddi_port(const struct intel_bios_encoder_data * devdata)2636 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2637 {
2638 struct intel_display *display = devdata->display;
2639 const struct child_device_config *child = &devdata->child;
2640 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2641 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2642 enum port port;
2643
2644 port = intel_bios_encoder_port(devdata);
2645 if (port == PORT_NONE)
2646 return;
2647
2648 is_dvi = intel_bios_encoder_supports_dvi(devdata);
2649 is_dp = intel_bios_encoder_supports_dp(devdata);
2650 is_crt = intel_bios_encoder_supports_crt(devdata);
2651 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2652 is_edp = intel_bios_encoder_supports_edp(devdata);
2653 is_dsi = intel_bios_encoder_supports_dsi(devdata);
2654
2655 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2656 supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2657
2658 drm_dbg_kms(display->drm,
2659 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2660 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2661 intel_bios_encoder_supports_dp_dual_mode(devdata),
2662 intel_bios_encoder_is_lspcon(devdata),
2663 supports_typec_usb, supports_tbt,
2664 devdata->dsc != NULL);
2665
2666 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2667 if (hdmi_level_shift >= 0) {
2668 drm_dbg_kms(display->drm,
2669 "Port %c VBT HDMI level shift: %d\n",
2670 port_name(port), hdmi_level_shift);
2671 }
2672
2673 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2674 if (max_tmds_clock)
2675 drm_dbg_kms(display->drm,
2676 "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2677 port_name(port), max_tmds_clock);
2678
2679 /* I_boost config for SKL and above */
2680 dp_boost_level = intel_bios_dp_boost_level(devdata);
2681 if (dp_boost_level)
2682 drm_dbg_kms(display->drm,
2683 "Port %c VBT (e)DP boost level: %d\n",
2684 port_name(port), dp_boost_level);
2685
2686 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2687 if (hdmi_boost_level)
2688 drm_dbg_kms(display->drm,
2689 "Port %c VBT HDMI boost level: %d\n",
2690 port_name(port), hdmi_boost_level);
2691
2692 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2693 if (dp_max_link_rate)
2694 drm_dbg_kms(display->drm,
2695 "Port %c VBT DP max link rate: %d\n",
2696 port_name(port), dp_max_link_rate);
2697
2698 /*
2699 * FIXME need to implement support for VBT
2700 * vswing/preemph tables should this ever trigger.
2701 */
2702 drm_WARN(display->drm, child->use_vbt_vswing,
2703 "Port %c asks to use VBT vswing/preemph tables\n",
2704 port_name(port));
2705 }
2706
parse_ddi_port(struct intel_bios_encoder_data * devdata)2707 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2708 {
2709 struct intel_display *display = devdata->display;
2710 enum port port;
2711
2712 port = intel_bios_encoder_port(devdata);
2713 if (port == PORT_NONE)
2714 return;
2715
2716 if (!is_port_valid(display, port)) {
2717 drm_dbg_kms(display->drm,
2718 "VBT reports port %c as supported, but that can't be true: skipping\n",
2719 port_name(port));
2720 return;
2721 }
2722
2723 sanitize_device_type(devdata, port);
2724 sanitize_hdmi_level_shift(devdata, port);
2725 }
2726
has_ddi_port_info(struct intel_display * display)2727 static bool has_ddi_port_info(struct intel_display *display)
2728 {
2729 return DISPLAY_VER(display) >= 5 || display->platform.g4x;
2730 }
2731
parse_ddi_ports(struct intel_display * display)2732 static void parse_ddi_ports(struct intel_display *display)
2733 {
2734 struct intel_bios_encoder_data *devdata;
2735
2736 if (!has_ddi_port_info(display))
2737 return;
2738
2739 list_for_each_entry(devdata, &display->vbt.display_devices, node)
2740 parse_ddi_port(devdata);
2741
2742 list_for_each_entry(devdata, &display->vbt.display_devices, node)
2743 print_ddi_port(devdata);
2744 }
2745
child_device_expected_size(u16 version)2746 static int child_device_expected_size(u16 version)
2747 {
2748 BUILD_BUG_ON(sizeof(struct child_device_config) < 40);
2749
2750 if (version > 256)
2751 return -ENOENT;
2752 else if (version >= 256)
2753 return 40;
2754 else if (version >= 216)
2755 return 39;
2756 else if (version >= 196)
2757 return 38;
2758 else if (version >= 195)
2759 return 37;
2760 else if (version >= 111)
2761 return LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2762 else if (version >= 106)
2763 return 27;
2764 else
2765 return 22;
2766 }
2767
child_device_size_valid(struct intel_display * display,int size)2768 static bool child_device_size_valid(struct intel_display *display, int size)
2769 {
2770 int expected_size;
2771
2772 expected_size = child_device_expected_size(display->vbt.version);
2773 if (expected_size < 0) {
2774 expected_size = sizeof(struct child_device_config);
2775 drm_dbg_kms(display->drm,
2776 "Expected child device config size for VBT version %u not known; assuming %d\n",
2777 display->vbt.version, expected_size);
2778 }
2779
2780 /* Flag an error for unexpected size, but continue anyway. */
2781 if (size != expected_size)
2782 drm_err(display->drm,
2783 "Unexpected child device config size %d (expected %d for VBT version %u)\n",
2784 size, expected_size, display->vbt.version);
2785
2786 /* The legacy sized child device config is the minimum we need. */
2787 if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2788 drm_dbg_kms(display->drm,
2789 "Child device config size %d is too small.\n",
2790 size);
2791 return false;
2792 }
2793
2794 return true;
2795 }
2796
2797 static void
parse_general_definitions(struct intel_display * display)2798 parse_general_definitions(struct intel_display *display)
2799 {
2800 const struct bdb_general_definitions *defs;
2801 struct intel_bios_encoder_data *devdata;
2802 const struct child_device_config *child;
2803 int i, child_device_num;
2804 u16 block_size;
2805 int bus_pin;
2806
2807 defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS);
2808 if (!defs) {
2809 drm_dbg_kms(display->drm,
2810 "No general definition block is found, no devices defined.\n");
2811 return;
2812 }
2813
2814 block_size = get_blocksize(defs);
2815 if (block_size < sizeof(*defs)) {
2816 drm_dbg_kms(display->drm,
2817 "General definitions block too small (%u)\n",
2818 block_size);
2819 return;
2820 }
2821
2822 bus_pin = defs->crt_ddc_gmbus_pin;
2823 drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2824 if (intel_gmbus_is_valid_pin(display, bus_pin))
2825 display->vbt.crt_ddc_pin = bus_pin;
2826
2827 if (!child_device_size_valid(display, defs->child_dev_size))
2828 return;
2829
2830 /* get the number of child device */
2831 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2832
2833 for (i = 0; i < child_device_num; i++) {
2834 child = child_device_ptr(defs, i);
2835 if (!child->device_type)
2836 continue;
2837
2838 drm_dbg_kms(display->drm,
2839 "Found VBT child device with type 0x%x\n",
2840 child->device_type);
2841
2842 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2843 if (!devdata)
2844 break;
2845
2846 devdata->display = display;
2847
2848 /*
2849 * Copy as much as we know (sizeof) and is available
2850 * (child_dev_size) of the child device config. Accessing the
2851 * data must depend on VBT version.
2852 */
2853 memcpy(&devdata->child, child,
2854 min_t(size_t, defs->child_dev_size, sizeof(*child)));
2855
2856 list_add_tail(&devdata->node, &display->vbt.display_devices);
2857 }
2858
2859 if (list_empty(&display->vbt.display_devices))
2860 drm_dbg_kms(display->drm,
2861 "no child dev is parsed from VBT\n");
2862 }
2863
2864 /* Common defaults which may be overridden by VBT. */
2865 static void
init_vbt_defaults(struct intel_display * display)2866 init_vbt_defaults(struct intel_display *display)
2867 {
2868 display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2869
2870 /* general features */
2871 display->vbt.int_tv_support = 1;
2872 display->vbt.int_crt_support = 1;
2873
2874 /* driver features */
2875 display->vbt.int_lvds_support = 1;
2876
2877 /* Default to using SSC */
2878 display->vbt.lvds_use_ssc = 1;
2879 /*
2880 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2881 * clock for LVDS.
2882 */
2883 display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display,
2884 !HAS_PCH_SPLIT(display));
2885 drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n",
2886 display->vbt.lvds_ssc_freq);
2887 }
2888
2889 /* Common defaults which may be overridden by VBT. */
2890 static void
init_vbt_panel_defaults(struct intel_panel * panel)2891 init_vbt_panel_defaults(struct intel_panel *panel)
2892 {
2893 /* Default to having backlight */
2894 panel->vbt.backlight.present = true;
2895
2896 /* LFP panel data */
2897 panel->vbt.lvds_dither = true;
2898 }
2899
2900 /* Defaults to initialize only if there is no VBT. */
2901 static void
init_vbt_missing_defaults(struct intel_display * display)2902 init_vbt_missing_defaults(struct intel_display *display)
2903 {
2904 unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask;
2905 enum port port;
2906
2907 if (!HAS_DDI(display) && !display->platform.cherryview)
2908 return;
2909
2910 for_each_port_masked(port, ports) {
2911 struct intel_bios_encoder_data *devdata;
2912 struct child_device_config *child;
2913 enum phy phy = intel_port_to_phy(display, port);
2914
2915 /*
2916 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2917 * to detect it.
2918 */
2919 if (intel_phy_is_tc(display, phy))
2920 continue;
2921
2922 /* Create fake child device config */
2923 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2924 if (!devdata)
2925 break;
2926
2927 devdata->display = display;
2928 child = &devdata->child;
2929
2930 if (port == PORT_F)
2931 child->dvo_port = DVO_PORT_HDMIF;
2932 else if (port == PORT_E)
2933 child->dvo_port = DVO_PORT_HDMIE;
2934 else
2935 child->dvo_port = DVO_PORT_HDMIA + port;
2936
2937 if (port != PORT_A && port != PORT_E)
2938 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2939
2940 if (port != PORT_E)
2941 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2942
2943 if (port == PORT_A)
2944 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2945
2946 list_add_tail(&devdata->node, &display->vbt.display_devices);
2947
2948 drm_dbg_kms(display->drm,
2949 "Generating default VBT child device with type 0x%04x on port %c\n",
2950 child->device_type, port_name(port));
2951 }
2952
2953 /* Bypass some minimum baseline VBT version checks */
2954 display->vbt.version = 155;
2955 }
2956
get_bdb_header(const struct vbt_header * vbt)2957 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2958 {
2959 const void *_vbt = vbt;
2960
2961 return _vbt + vbt->bdb_offset;
2962 }
2963
2964 static const char vbt_signature[] = "$VBT";
2965 static const int vbt_signature_len = 4;
2966
2967 /**
2968 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2969 * @display: display device
2970 * @buf: pointer to a buffer to validate
2971 * @size: size of the buffer
2972 *
2973 * Returns true on valid VBT.
2974 */
intel_bios_is_valid_vbt(struct intel_display * display,const void * buf,size_t size)2975 bool intel_bios_is_valid_vbt(struct intel_display *display,
2976 const void *buf, size_t size)
2977 {
2978 const struct vbt_header *vbt = buf;
2979 const struct bdb_header *bdb;
2980
2981 if (!vbt)
2982 return false;
2983
2984 if (sizeof(struct vbt_header) > size) {
2985 drm_dbg_kms(display->drm, "VBT header incomplete\n");
2986 return false;
2987 }
2988
2989 if (memcmp(vbt->signature, vbt_signature, vbt_signature_len)) {
2990 drm_dbg_kms(display->drm, "VBT invalid signature\n");
2991 return false;
2992 }
2993
2994 if (vbt->vbt_size > size) {
2995 drm_dbg_kms(display->drm,
2996 "VBT incomplete (vbt_size overflows)\n");
2997 return false;
2998 }
2999
3000 size = vbt->vbt_size;
3001
3002 if (range_overflows_t(size_t,
3003 vbt->bdb_offset,
3004 sizeof(struct bdb_header),
3005 size)) {
3006 drm_dbg_kms(display->drm, "BDB header incomplete\n");
3007 return false;
3008 }
3009
3010 bdb = get_bdb_header(vbt);
3011 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
3012 drm_dbg_kms(display->drm, "BDB incomplete\n");
3013 return false;
3014 }
3015
3016 return vbt;
3017 }
3018
firmware_get_vbt(struct intel_display * display,size_t * size)3019 static struct vbt_header *firmware_get_vbt(struct intel_display *display,
3020 size_t *size)
3021 {
3022 struct vbt_header *vbt = NULL;
3023 const struct firmware *fw = NULL;
3024 const char *name = display->params.vbt_firmware;
3025 int ret;
3026
3027 if (!name || !*name)
3028 return NULL;
3029
3030 ret = request_firmware(&fw, name, display->drm->dev);
3031 if (ret) {
3032 drm_err(display->drm,
3033 "Requesting VBT firmware \"%s\" failed (%d)\n",
3034 name, ret);
3035 return NULL;
3036 }
3037
3038 if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) {
3039 vbt = kmemdup(fw->data, fw->size, GFP_KERNEL);
3040 if (vbt) {
3041 drm_dbg_kms(display->drm,
3042 "Found valid VBT firmware \"%s\"\n", name);
3043 if (size)
3044 *size = fw->size;
3045 }
3046 } else {
3047 drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n",
3048 name);
3049 }
3050
3051 release_firmware(fw);
3052
3053 return vbt;
3054 }
3055
oprom_get_vbt(struct intel_display * display,struct intel_rom * rom,size_t * size,const char * type)3056 static struct vbt_header *oprom_get_vbt(struct intel_display *display,
3057 struct intel_rom *rom,
3058 size_t *size, const char *type)
3059 {
3060 struct vbt_header *vbt;
3061 size_t vbt_size;
3062 loff_t offset;
3063
3064 if (!rom)
3065 return NULL;
3066
3067 BUILD_BUG_ON(vbt_signature_len != sizeof(vbt_signature) - 1);
3068 BUILD_BUG_ON(vbt_signature_len != sizeof(u32));
3069
3070 offset = intel_rom_find(rom, *(const u32 *)vbt_signature);
3071 if (offset < 0)
3072 goto err_free_rom;
3073
3074 if (sizeof(struct vbt_header) > intel_rom_size(rom) - offset) {
3075 drm_dbg_kms(display->drm, "VBT header incomplete\n");
3076 goto err_free_rom;
3077 }
3078
3079 BUILD_BUG_ON(sizeof(vbt->vbt_size) != sizeof(u16));
3080
3081 vbt_size = intel_rom_read16(rom, offset + offsetof(struct vbt_header, vbt_size));
3082 if (vbt_size > intel_rom_size(rom) - offset) {
3083 drm_dbg_kms(display->drm, "VBT incomplete (vbt_size overflows)\n");
3084 goto err_free_rom;
3085 }
3086
3087 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3088 if (!vbt)
3089 goto err_free_rom;
3090
3091 intel_rom_read_block(rom, vbt, offset, vbt_size);
3092
3093 if (!intel_bios_is_valid_vbt(display, vbt, vbt_size))
3094 goto err_free_vbt;
3095
3096 drm_dbg_kms(display->drm, "Found valid VBT in %s\n", type);
3097
3098 if (size)
3099 *size = vbt_size;
3100
3101 intel_rom_free(rom);
3102
3103 return vbt;
3104
3105 err_free_vbt:
3106 kfree(vbt);
3107 err_free_rom:
3108 intel_rom_free(rom);
3109 return NULL;
3110 }
3111
intel_bios_get_vbt(struct intel_display * display,size_t * sizep)3112 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display,
3113 size_t *sizep)
3114 {
3115 struct drm_i915_private *i915 = to_i915(display->drm);
3116 const struct vbt_header *vbt = NULL;
3117
3118 vbt = firmware_get_vbt(display, sizep);
3119
3120 if (!vbt)
3121 vbt = intel_opregion_get_vbt(display, sizep);
3122
3123 /*
3124 * If the OpRegion does not have VBT, look in SPI flash
3125 * through MMIO or PCI mapping
3126 */
3127 if (!vbt && display->platform.dgfx)
3128 with_intel_display_rpm(display)
3129 vbt = oprom_get_vbt(display, intel_rom_spi(i915), sizep, "SPI flash");
3130
3131 if (!vbt)
3132 with_intel_display_rpm(display)
3133 vbt = oprom_get_vbt(display, intel_rom_pci(i915), sizep, "PCI ROM");
3134
3135 return vbt;
3136 }
3137
3138 /**
3139 * intel_bios_init - find VBT and initialize settings from the BIOS
3140 * @display: display device instance
3141 *
3142 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3143 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3144 * initialize some defaults if the VBT is not present at all.
3145 */
intel_bios_init(struct intel_display * display)3146 void intel_bios_init(struct intel_display *display)
3147 {
3148 const struct vbt_header *vbt;
3149 const struct bdb_header *bdb;
3150
3151 INIT_LIST_HEAD(&display->vbt.display_devices);
3152 INIT_LIST_HEAD(&display->vbt.bdb_blocks);
3153
3154 if (!HAS_DISPLAY(display)) {
3155 drm_dbg_kms(display->drm,
3156 "Skipping VBT init due to disabled display.\n");
3157 return;
3158 }
3159
3160 init_vbt_defaults(display);
3161
3162 vbt = intel_bios_get_vbt(display, NULL);
3163
3164 if (!vbt)
3165 goto out;
3166
3167 bdb = get_bdb_header(vbt);
3168 display->vbt.version = bdb->version;
3169
3170 drm_dbg_kms(display->drm,
3171 "VBT signature \"%.*s\", BDB version %d\n",
3172 (int)sizeof(vbt->signature), vbt->signature,
3173 display->vbt.version);
3174
3175 init_bdb_blocks(display, bdb);
3176
3177 /* Grab useful general definitions */
3178 parse_general_features(display);
3179 parse_general_definitions(display);
3180 parse_driver_features(display);
3181
3182 /* Depends on child device list */
3183 parse_compression_parameters(display);
3184
3185 out:
3186 if (!vbt) {
3187 drm_info(display->drm,
3188 "Failed to find VBIOS tables (VBT)\n");
3189 init_vbt_missing_defaults(display);
3190 }
3191
3192 /* Further processing on pre-parsed or generated child device data */
3193 parse_sdvo_device_mapping(display);
3194 parse_ddi_ports(display);
3195
3196 kfree(vbt);
3197 }
3198
intel_bios_init_panel(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)3199 static void intel_bios_init_panel(struct intel_display *display,
3200 struct intel_panel *panel,
3201 const struct intel_bios_encoder_data *devdata,
3202 const struct drm_edid *drm_edid,
3203 bool use_fallback)
3204 {
3205 /* already have it? */
3206 if (panel->vbt.panel_type >= 0) {
3207 drm_WARN_ON(display->drm, !use_fallback);
3208 return;
3209 }
3210
3211 panel->vbt.panel_type = get_panel_type(display, devdata,
3212 drm_edid, use_fallback);
3213 if (panel->vbt.panel_type < 0) {
3214 drm_WARN_ON(display->drm, use_fallback);
3215 return;
3216 }
3217
3218 init_vbt_panel_defaults(panel);
3219
3220 parse_panel_options(display, panel);
3221 parse_generic_dtd(display, panel);
3222 parse_lfp_data(display, panel);
3223 parse_lfp_backlight(display, panel);
3224 parse_sdvo_lvds_data(display, panel);
3225 parse_panel_driver_features(display, panel);
3226 parse_power_conservation_features(display, panel);
3227 parse_edp(display, panel);
3228 parse_psr(display, panel);
3229 parse_mipi_config(display, panel);
3230 parse_mipi_sequence(display, panel);
3231 }
3232
intel_bios_init_panel_early(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata)3233 void intel_bios_init_panel_early(struct intel_display *display,
3234 struct intel_panel *panel,
3235 const struct intel_bios_encoder_data *devdata)
3236 {
3237 intel_bios_init_panel(display, panel, devdata, NULL, false);
3238 }
3239
intel_bios_init_panel_late(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid)3240 void intel_bios_init_panel_late(struct intel_display *display,
3241 struct intel_panel *panel,
3242 const struct intel_bios_encoder_data *devdata,
3243 const struct drm_edid *drm_edid)
3244 {
3245 intel_bios_init_panel(display, panel, devdata, drm_edid, true);
3246 }
3247
3248 /**
3249 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3250 * @display: display device instance
3251 */
intel_bios_driver_remove(struct intel_display * display)3252 void intel_bios_driver_remove(struct intel_display *display)
3253 {
3254 struct intel_bios_encoder_data *devdata, *nd;
3255 struct bdb_block_entry *entry, *ne;
3256
3257 list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices,
3258 node) {
3259 list_del(&devdata->node);
3260 kfree(devdata->dsc);
3261 kfree(devdata);
3262 }
3263
3264 list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) {
3265 list_del(&entry->node);
3266 kfree(entry);
3267 }
3268 }
3269
intel_bios_fini_panel(struct intel_panel * panel)3270 void intel_bios_fini_panel(struct intel_panel *panel)
3271 {
3272 kfree(panel->vbt.sdvo_lvds_vbt_mode);
3273 panel->vbt.sdvo_lvds_vbt_mode = NULL;
3274 kfree(panel->vbt.lfp_vbt_mode);
3275 panel->vbt.lfp_vbt_mode = NULL;
3276 kfree(panel->vbt.dsi.data);
3277 panel->vbt.dsi.data = NULL;
3278 kfree(panel->vbt.dsi.pps);
3279 panel->vbt.dsi.pps = NULL;
3280 kfree(panel->vbt.dsi.config);
3281 panel->vbt.dsi.config = NULL;
3282 kfree(panel->vbt.dsi.deassert_seq);
3283 panel->vbt.dsi.deassert_seq = NULL;
3284 }
3285
3286 /**
3287 * intel_bios_is_tv_present - is integrated TV present in VBT
3288 * @display: display device instance
3289 *
3290 * Return true if TV is present. If no child devices were parsed from VBT,
3291 * assume TV is present.
3292 */
intel_bios_is_tv_present(struct intel_display * display)3293 bool intel_bios_is_tv_present(struct intel_display *display)
3294 {
3295 const struct intel_bios_encoder_data *devdata;
3296
3297 if (!display->vbt.int_tv_support)
3298 return false;
3299
3300 if (list_empty(&display->vbt.display_devices))
3301 return true;
3302
3303 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3304 const struct child_device_config *child = &devdata->child;
3305
3306 /*
3307 * If the device type is not TV, continue.
3308 */
3309 switch (child->device_type) {
3310 case DEVICE_TYPE_INT_TV:
3311 case DEVICE_TYPE_TV:
3312 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3313 break;
3314 default:
3315 continue;
3316 }
3317 /* Only when the addin_offset is non-zero, it is regarded
3318 * as present.
3319 */
3320 if (child->addin_offset)
3321 return true;
3322 }
3323
3324 return false;
3325 }
3326
3327 /**
3328 * intel_bios_is_lvds_present - is LVDS present in VBT
3329 * @display: display device instance
3330 * @i2c_pin: i2c pin for LVDS if present
3331 *
3332 * Return true if LVDS is present. If no child devices were parsed from VBT,
3333 * assume LVDS is present.
3334 */
intel_bios_is_lvds_present(struct intel_display * display,u8 * i2c_pin)3335 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin)
3336 {
3337 const struct intel_bios_encoder_data *devdata;
3338
3339 if (list_empty(&display->vbt.display_devices))
3340 return true;
3341
3342 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3343 const struct child_device_config *child = &devdata->child;
3344
3345 /* If the device type is not LFP, continue.
3346 * We have to check both the new identifiers as well as the
3347 * old for compatibility with some BIOSes.
3348 */
3349 if (child->device_type != DEVICE_TYPE_INT_LFP &&
3350 child->device_type != DEVICE_TYPE_LFP)
3351 continue;
3352
3353 if (intel_gmbus_is_valid_pin(display, child->i2c_pin))
3354 *i2c_pin = child->i2c_pin;
3355
3356 /* However, we cannot trust the BIOS writers to populate
3357 * the VBT correctly. Since LVDS requires additional
3358 * information from AIM blocks, a non-zero addin offset is
3359 * a good indicator that the LVDS is actually present.
3360 */
3361 if (child->addin_offset)
3362 return true;
3363
3364 /* But even then some BIOS writers perform some black magic
3365 * and instantiate the device without reference to any
3366 * additional data. Trust that if the VBT was written into
3367 * the OpRegion then they have validated the LVDS's existence.
3368 */
3369 return intel_opregion_vbt_present(display);
3370 }
3371
3372 return false;
3373 }
3374
3375 /**
3376 * intel_bios_is_port_present - is the specified digital port present
3377 * @display: display device instance
3378 * @port: port to check
3379 *
3380 * Return true if the device in %port is present.
3381 */
intel_bios_is_port_present(struct intel_display * display,enum port port)3382 bool intel_bios_is_port_present(struct intel_display *display, enum port port)
3383 {
3384 const struct intel_bios_encoder_data *devdata;
3385
3386 if (WARN_ON(!has_ddi_port_info(display)))
3387 return true;
3388
3389 if (!is_port_valid(display, port))
3390 return false;
3391
3392 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3393 const struct child_device_config *child = &devdata->child;
3394
3395 if (dvo_port_to_port(display, child->dvo_port) == port)
3396 return true;
3397 }
3398
3399 return false;
3400 }
3401
intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data * devdata)3402 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3403 {
3404 const struct child_device_config *child = &devdata->child;
3405
3406 if (!devdata)
3407 return false;
3408
3409 if (!intel_bios_encoder_supports_dp(devdata) ||
3410 !intel_bios_encoder_supports_hdmi(devdata))
3411 return false;
3412
3413 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3414 return true;
3415
3416 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3417 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3418 child->aux_channel != 0)
3419 return true;
3420
3421 return false;
3422 }
3423
3424 /**
3425 * intel_bios_is_dsi_present - is DSI present in VBT
3426 * @display: display device instance
3427 * @port: port for DSI if present
3428 *
3429 * Return true if DSI is present, and return the port in %port.
3430 */
intel_bios_is_dsi_present(struct intel_display * display,enum port * port)3431 bool intel_bios_is_dsi_present(struct intel_display *display,
3432 enum port *port)
3433 {
3434 const struct intel_bios_encoder_data *devdata;
3435
3436 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3437 const struct child_device_config *child = &devdata->child;
3438 u8 dvo_port = child->dvo_port;
3439
3440 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3441 continue;
3442
3443 if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) {
3444 drm_dbg_kms(display->drm,
3445 "VBT has unsupported DSI port %c\n",
3446 port_name(dvo_port - DVO_PORT_MIPIA));
3447 continue;
3448 }
3449
3450 if (port)
3451 *port = dsi_dvo_port_to_port(display, dvo_port);
3452 return true;
3453 }
3454
3455 return false;
3456 }
3457
fill_dsc(struct intel_crtc_state * crtc_state,struct dsc_compression_parameters_entry * dsc,int dsc_max_bpc)3458 static void fill_dsc(struct intel_crtc_state *crtc_state,
3459 struct dsc_compression_parameters_entry *dsc,
3460 int dsc_max_bpc)
3461 {
3462 struct intel_display *display = to_intel_display(crtc_state);
3463 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3464 int bpc = 8;
3465
3466 vdsc_cfg->dsc_version_major = dsc->version_major;
3467 vdsc_cfg->dsc_version_minor = dsc->version_minor;
3468
3469 if (dsc->support_12bpc && dsc_max_bpc >= 12)
3470 bpc = 12;
3471 else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3472 bpc = 10;
3473 else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3474 bpc = 8;
3475 else
3476 drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n",
3477 dsc_max_bpc);
3478
3479 crtc_state->pipe_bpp = bpc * 3;
3480
3481 crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp,
3482 VBT_DSC_MAX_BPP(dsc->max_bpp)));
3483
3484 /*
3485 * FIXME: This is ugly, and slice count should take DSC engine
3486 * throughput etc. into account.
3487 *
3488 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3489 */
3490 if (dsc->slices_per_line & BIT(2)) {
3491 crtc_state->dsc.slice_count = 4;
3492 } else if (dsc->slices_per_line & BIT(1)) {
3493 crtc_state->dsc.slice_count = 2;
3494 } else {
3495 /* FIXME */
3496 if (!(dsc->slices_per_line & BIT(0)))
3497 drm_dbg_kms(display->drm,
3498 "VBT: Unsupported DSC slice count for DSI\n");
3499
3500 crtc_state->dsc.slice_count = 1;
3501 }
3502
3503 if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3504 crtc_state->dsc.slice_count != 0)
3505 drm_dbg_kms(display->drm,
3506 "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3507 crtc_state->hw.adjusted_mode.crtc_hdisplay,
3508 crtc_state->dsc.slice_count);
3509
3510 /*
3511 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3512 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3513 */
3514 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3515 dsc->rc_buffer_size);
3516
3517 /* FIXME: DSI spec says bpc + 1 for this one */
3518 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3519
3520 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3521
3522 vdsc_cfg->slice_height = dsc->slice_height;
3523 }
3524
3525 /* FIXME: initially DSI specific */
intel_bios_get_dsc_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int dsc_max_bpc)3526 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3527 struct intel_crtc_state *crtc_state,
3528 int dsc_max_bpc)
3529 {
3530 struct intel_display *display = to_intel_display(encoder);
3531 const struct intel_bios_encoder_data *devdata;
3532
3533 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3534 const struct child_device_config *child = &devdata->child;
3535
3536 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3537 continue;
3538
3539 if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) {
3540 if (!devdata->dsc)
3541 return false;
3542
3543 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3544
3545 return true;
3546 }
3547 }
3548
3549 return false;
3550 }
3551
3552 static const u8 adlp_aux_ch_map[] = {
3553 [AUX_CH_A] = DP_AUX_A,
3554 [AUX_CH_B] = DP_AUX_B,
3555 [AUX_CH_C] = DP_AUX_C,
3556 [AUX_CH_D_XELPD] = DP_AUX_D,
3557 [AUX_CH_E_XELPD] = DP_AUX_E,
3558 [AUX_CH_USBC1] = DP_AUX_F,
3559 [AUX_CH_USBC2] = DP_AUX_G,
3560 [AUX_CH_USBC3] = DP_AUX_H,
3561 [AUX_CH_USBC4] = DP_AUX_I,
3562 };
3563
3564 /*
3565 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3566 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3567 */
3568 static const u8 adls_aux_ch_map[] = {
3569 [AUX_CH_A] = DP_AUX_A,
3570 [AUX_CH_USBC1] = DP_AUX_B,
3571 [AUX_CH_USBC2] = DP_AUX_C,
3572 [AUX_CH_USBC3] = DP_AUX_D,
3573 [AUX_CH_USBC4] = DP_AUX_E,
3574 };
3575
3576 /*
3577 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3578 * map to DDI A,B,TC1,TC2 respectively.
3579 */
3580 static const u8 rkl_aux_ch_map[] = {
3581 [AUX_CH_A] = DP_AUX_A,
3582 [AUX_CH_B] = DP_AUX_B,
3583 [AUX_CH_USBC1] = DP_AUX_C,
3584 [AUX_CH_USBC2] = DP_AUX_D,
3585 };
3586
3587 static const u8 direct_aux_ch_map[] = {
3588 [AUX_CH_A] = DP_AUX_A,
3589 [AUX_CH_B] = DP_AUX_B,
3590 [AUX_CH_C] = DP_AUX_C,
3591 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3592 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3593 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3594 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3595 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3596 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3597 };
3598
map_aux_ch(struct intel_display * display,u8 aux_channel)3599 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel)
3600 {
3601 const u8 *aux_ch_map;
3602 int i, n_entries;
3603
3604 if (DISPLAY_VER(display) >= 13) {
3605 aux_ch_map = adlp_aux_ch_map;
3606 n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3607 } else if (display->platform.alderlake_s) {
3608 aux_ch_map = adls_aux_ch_map;
3609 n_entries = ARRAY_SIZE(adls_aux_ch_map);
3610 } else if (display->platform.dg1 || display->platform.rocketlake) {
3611 aux_ch_map = rkl_aux_ch_map;
3612 n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3613 } else {
3614 aux_ch_map = direct_aux_ch_map;
3615 n_entries = ARRAY_SIZE(direct_aux_ch_map);
3616 }
3617
3618 for (i = 0; i < n_entries; i++) {
3619 if (aux_ch_map[i] == aux_channel)
3620 return i;
3621 }
3622
3623 drm_dbg_kms(display->drm,
3624 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3625 aux_channel);
3626
3627 return AUX_CH_NONE;
3628 }
3629
intel_bios_dp_aux_ch(const struct intel_bios_encoder_data * devdata)3630 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3631 {
3632 if (!devdata || !devdata->child.aux_channel)
3633 return AUX_CH_NONE;
3634
3635 return map_aux_ch(devdata->display, devdata->child.aux_channel);
3636 }
3637
intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data * devdata)3638 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3639 {
3640 struct intel_display *display;
3641 u8 aux_channel;
3642 int count = 0;
3643
3644 if (!devdata || !devdata->child.aux_channel)
3645 return false;
3646
3647 display = devdata->display;
3648 aux_channel = devdata->child.aux_channel;
3649
3650 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3651 if (intel_bios_encoder_supports_dp(devdata) &&
3652 aux_channel == devdata->child.aux_channel)
3653 count++;
3654 }
3655
3656 return count > 1;
3657 }
3658
intel_bios_dp_boost_level(const struct intel_bios_encoder_data * devdata)3659 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3660 {
3661 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3662 return 0;
3663
3664 return translate_iboost(devdata->display, devdata->child.dp_iboost_level);
3665 }
3666
intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data * devdata)3667 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3668 {
3669 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3670 return 0;
3671
3672 return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level);
3673 }
3674
intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data * devdata)3675 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3676 {
3677 if (!devdata || !devdata->child.ddc_pin)
3678 return 0;
3679
3680 return map_ddc_pin(devdata->display, devdata->child.ddc_pin);
3681 }
3682
intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data * devdata)3683 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3684 {
3685 return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3686 }
3687
intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data * devdata)3688 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3689 {
3690 return devdata->display->vbt.version >= 209 && devdata->child.tbt;
3691 }
3692
intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data * devdata)3693 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3694 {
3695 return devdata && devdata->child.lane_reversal;
3696 }
3697
intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data * devdata)3698 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3699 {
3700 return devdata && devdata->child.hpd_invert;
3701 }
3702
3703 const struct intel_bios_encoder_data *
intel_bios_encoder_data_lookup(struct intel_display * display,enum port port)3704 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port)
3705 {
3706 struct intel_bios_encoder_data *devdata;
3707
3708 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3709 if (intel_bios_encoder_port(devdata) == port)
3710 return devdata;
3711 }
3712
3713 return NULL;
3714 }
3715
intel_bios_for_each_encoder(struct intel_display * display,void (* func)(struct intel_display * display,const struct intel_bios_encoder_data * devdata))3716 void intel_bios_for_each_encoder(struct intel_display *display,
3717 void (*func)(struct intel_display *display,
3718 const struct intel_bios_encoder_data *devdata))
3719 {
3720 struct intel_bios_encoder_data *devdata;
3721
3722 list_for_each_entry(devdata, &display->vbt.display_devices, node)
3723 func(display, devdata);
3724 }
3725
intel_bios_vbt_show(struct seq_file * m,void * unused)3726 static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3727 {
3728 struct intel_display *display = m->private;
3729 const void *vbt;
3730 size_t vbt_size;
3731
3732 vbt = intel_bios_get_vbt(display, &vbt_size);
3733
3734 if (vbt) {
3735 seq_write(m, vbt, vbt_size);
3736 kfree(vbt);
3737 }
3738
3739 return 0;
3740 }
3741
3742 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3743
intel_bios_debugfs_register(struct intel_display * display)3744 void intel_bios_debugfs_register(struct intel_display *display)
3745 {
3746 struct drm_minor *minor = display->drm->primary;
3747
3748 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3749 display, &intel_bios_vbt_fops);
3750 }
3751