xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/debugfs.h>
29 #include <linux/firmware.h>
30 
31 #include <drm/display/drm_dp_helper.h>
32 #include <drm/display/drm_dsc_helper.h>
33 #include <drm/drm_edid.h>
34 #include <drm/drm_fixed.h>
35 
36 #include "soc/intel_rom.h"
37 
38 #include "i915_drv.h"
39 #include "intel_display.h"
40 #include "intel_display_core.h"
41 #include "intel_display_rpm.h"
42 #include "intel_display_types.h"
43 #include "intel_gmbus.h"
44 
45 #define _INTEL_BIOS_PRIVATE
46 #include "intel_vbt_defs.h"
47 
48 /**
49  * DOC: Video BIOS Table (VBT)
50  *
51  * The Video BIOS Table, or VBT, provides platform and board specific
52  * configuration information to the driver that is not discoverable or available
53  * through other means. The configuration is mostly related to display
54  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
55  * the PCI ROM.
56  *
57  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
58  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
59  * contain the actual configuration information. The VBT Header, and thus the
60  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
61  * BDB Header. The data blocks are concatenated after the BDB Header. The data
62  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
63  * data. (Block 53, the MIPI Sequence Block is an exception.)
64  *
65  * The driver parses the VBT during load. The relevant information is stored in
66  * driver private data for ease of use, and the actual VBT is not read after
67  * that.
68  */
69 
70 /* Wrapper for VBT child device config */
71 struct intel_bios_encoder_data {
72 	struct intel_display *display;
73 
74 	struct child_device_config child;
75 	struct dsc_compression_parameters_entry *dsc;
76 	struct list_head node;
77 };
78 
79 #define	TARGET_ADDR1	0x70
80 #define	TARGET_ADDR2	0x72
81 
82 /* Get BDB block size given a pointer to Block ID. */
_get_blocksize(const u8 * block_base)83 static u32 _get_blocksize(const u8 *block_base)
84 {
85 	/* The MIPI Sequence Block v3+ has a separate size field. */
86 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
87 		return *((const u32 *)(block_base + 4));
88 	else
89 		return *((const u16 *)(block_base + 1));
90 }
91 
92 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
get_blocksize(const void * block_data)93 static u32 get_blocksize(const void *block_data)
94 {
95 	return _get_blocksize(block_data - 3);
96 }
97 
98 static const void *
find_raw_section(const void * _bdb,enum bdb_block_id section_id)99 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
100 {
101 	const struct bdb_header *bdb = _bdb;
102 	const u8 *base = _bdb;
103 	int index = 0;
104 	u32 total, current_size;
105 	enum bdb_block_id current_id;
106 
107 	/* skip to first section */
108 	index += bdb->header_size;
109 	total = bdb->bdb_size;
110 
111 	/* walk the sections looking for section_id */
112 	while (index + 3 < total) {
113 		current_id = *(base + index);
114 		current_size = _get_blocksize(base + index);
115 		index += 3;
116 
117 		if (index + current_size > total)
118 			return NULL;
119 
120 		if (current_id == section_id)
121 			return base + index;
122 
123 		index += current_size;
124 	}
125 
126 	return NULL;
127 }
128 
129 /*
130  * Offset from the start of BDB to the start of the
131  * block data (just past the block header).
132  */
raw_block_offset(const void * bdb,enum bdb_block_id section_id)133 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
134 {
135 	const void *block;
136 
137 	block = find_raw_section(bdb, section_id);
138 	if (!block)
139 		return 0;
140 
141 	return block - bdb;
142 }
143 
144 struct bdb_block_entry {
145 	struct list_head node;
146 	enum bdb_block_id section_id;
147 	u8 data[];
148 };
149 
150 static const void *
bdb_find_section(struct intel_display * display,enum bdb_block_id section_id)151 bdb_find_section(struct intel_display *display,
152 		 enum bdb_block_id section_id)
153 {
154 	struct bdb_block_entry *entry;
155 
156 	list_for_each_entry(entry, &display->vbt.bdb_blocks, node) {
157 		if (entry->section_id == section_id)
158 			return entry->data + 3;
159 	}
160 
161 	return NULL;
162 }
163 
164 static const struct {
165 	enum bdb_block_id section_id;
166 	size_t min_size;
167 } bdb_blocks[] = {
168 	{ .section_id = BDB_GENERAL_FEATURES,
169 	  .min_size = sizeof(struct bdb_general_features), },
170 	{ .section_id = BDB_GENERAL_DEFINITIONS,
171 	  .min_size = sizeof(struct bdb_general_definitions), },
172 	{ .section_id = BDB_PSR,
173 	  .min_size = sizeof(struct bdb_psr), },
174 	{ .section_id = BDB_DRIVER_FEATURES,
175 	  .min_size = sizeof(struct bdb_driver_features), },
176 	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
177 	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
178 	{ .section_id = BDB_SDVO_LVDS_DTD,
179 	  .min_size = sizeof(struct bdb_sdvo_lvds_dtd), },
180 	{ .section_id = BDB_EDP,
181 	  .min_size = sizeof(struct bdb_edp), },
182 	{ .section_id = BDB_LFP_OPTIONS,
183 	  .min_size = sizeof(struct bdb_lfp_options), },
184 	/*
185 	 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS,
186 	 * so keep the two ordered.
187 	 */
188 	{ .section_id = BDB_LFP_DATA_PTRS,
189 	  .min_size = sizeof(struct bdb_lfp_data_ptrs), },
190 	{ .section_id = BDB_LFP_DATA,
191 	  .min_size = 0, /* special case */ },
192 	{ .section_id = BDB_LFP_BACKLIGHT,
193 	  .min_size = sizeof(struct bdb_lfp_backlight), },
194 	{ .section_id = BDB_LFP_POWER,
195 	  .min_size = sizeof(struct bdb_lfp_power), },
196 	{ .section_id = BDB_MIPI_CONFIG,
197 	  .min_size = sizeof(struct bdb_mipi_config), },
198 	{ .section_id = BDB_MIPI_SEQUENCE,
199 	  .min_size = sizeof(struct bdb_mipi_sequence) },
200 	{ .section_id = BDB_COMPRESSION_PARAMETERS,
201 	  .min_size = sizeof(struct bdb_compression_parameters), },
202 	{ .section_id = BDB_GENERIC_DTD,
203 	  .min_size = sizeof(struct bdb_generic_dtd), },
204 };
205 
lfp_data_min_size(struct intel_display * display)206 static size_t lfp_data_min_size(struct intel_display *display)
207 {
208 	const struct bdb_lfp_data_ptrs *ptrs;
209 	size_t size;
210 
211 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
212 	if (!ptrs)
213 		return 0;
214 
215 	size = sizeof(struct bdb_lfp_data);
216 	if (ptrs->panel_name.table_size)
217 		size = max(size, ptrs->panel_name.offset +
218 			   sizeof(struct bdb_lfp_data_tail));
219 
220 	return size;
221 }
222 
validate_lfp_data_ptrs(const void * bdb,const struct bdb_lfp_data_ptrs * ptrs)223 static bool validate_lfp_data_ptrs(const void *bdb,
224 				   const struct bdb_lfp_data_ptrs *ptrs)
225 {
226 	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
227 	int data_block_size, lfp_data_size;
228 	const void *data_block;
229 	int i;
230 
231 	data_block = find_raw_section(bdb, BDB_LFP_DATA);
232 	if (!data_block)
233 		return false;
234 
235 	data_block_size = get_blocksize(data_block);
236 	if (data_block_size == 0)
237 		return false;
238 
239 	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
240 	if (ptrs->num_entries != 3)
241 		return false;
242 
243 	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
244 	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
245 	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
246 	panel_name_size = ptrs->panel_name.table_size;
247 
248 	/* fp_timing has variable size */
249 	if (fp_timing_size < 32 ||
250 	    dvo_timing_size != sizeof(struct bdb_edid_dtd) ||
251 	    panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id))
252 		return false;
253 
254 	/* panel_name is not present in old VBTs */
255 	if (panel_name_size != 0 &&
256 	    panel_name_size != sizeof(struct bdb_edid_product_name))
257 		return false;
258 
259 	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
260 	if (16 * lfp_data_size > data_block_size)
261 		return false;
262 
263 	/* make sure the table entries have uniform size */
264 	for (i = 1; i < 16; i++) {
265 		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
266 		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
267 		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
268 			return false;
269 
270 		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
271 		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
272 		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
273 			return false;
274 	}
275 
276 	/*
277 	 * Except for vlv/chv machines all real VBTs seem to have 6
278 	 * unaccounted bytes in the fp_timing table. And it doesn't
279 	 * appear to be a really intentional hole as the fp_timing
280 	 * 0xffff terminator is always within those 6 missing bytes.
281 	 */
282 	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
283 		fp_timing_size += 6;
284 
285 	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
286 		return false;
287 
288 	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
289 	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
290 	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
291 		return false;
292 
293 	/* make sure the tables fit inside the data block */
294 	for (i = 0; i < 16; i++) {
295 		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
296 		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
297 		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
298 			return false;
299 	}
300 
301 	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
302 		return false;
303 
304 	/* make sure fp_timing terminators are present at expected locations */
305 	for (i = 0; i < 16; i++) {
306 		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
307 			fp_timing_size - 2;
308 
309 		if (*t != 0xffff)
310 			return false;
311 	}
312 
313 	return true;
314 }
315 
316 /* make the data table offsets relative to the data block */
fixup_lfp_data_ptrs(const void * bdb,void * ptrs_block)317 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
318 {
319 	struct bdb_lfp_data_ptrs *ptrs = ptrs_block;
320 	u32 offset;
321 	int i;
322 
323 	offset = raw_block_offset(bdb, BDB_LFP_DATA);
324 
325 	for (i = 0; i < 16; i++) {
326 		if (ptrs->ptr[i].fp_timing.offset < offset ||
327 		    ptrs->ptr[i].dvo_timing.offset < offset ||
328 		    ptrs->ptr[i].panel_pnp_id.offset < offset)
329 			return false;
330 
331 		ptrs->ptr[i].fp_timing.offset -= offset;
332 		ptrs->ptr[i].dvo_timing.offset -= offset;
333 		ptrs->ptr[i].panel_pnp_id.offset -= offset;
334 	}
335 
336 	if (ptrs->panel_name.table_size) {
337 		if (ptrs->panel_name.offset < offset)
338 			return false;
339 
340 		ptrs->panel_name.offset -= offset;
341 	}
342 
343 	return validate_lfp_data_ptrs(bdb, ptrs);
344 }
345 
make_lfp_data_ptr(struct lfp_data_ptr_table * table,int table_size,int total_size)346 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table,
347 			     int table_size, int total_size)
348 {
349 	if (total_size < table_size)
350 		return total_size;
351 
352 	table->table_size = table_size;
353 	table->offset = total_size - table_size;
354 
355 	return total_size - table_size;
356 }
357 
next_lfp_data_ptr(struct lfp_data_ptr_table * next,const struct lfp_data_ptr_table * prev,int size)358 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next,
359 			      const struct lfp_data_ptr_table *prev,
360 			      int size)
361 {
362 	next->table_size = prev->table_size;
363 	next->offset = prev->offset + size;
364 }
365 
generate_lfp_data_ptrs(struct intel_display * display,const void * bdb)366 static void *generate_lfp_data_ptrs(struct intel_display *display,
367 				    const void *bdb)
368 {
369 	int i, size, table_size, block_size, offset, fp_timing_size;
370 	struct bdb_lfp_data_ptrs *ptrs;
371 	const void *block;
372 	void *ptrs_block;
373 
374 	/*
375 	 * The hardcoded fp_timing_size is only valid for
376 	 * modernish VBTs. All older VBTs definitely should
377 	 * include block 41 and thus we don't need to
378 	 * generate one.
379 	 */
380 	if (display->vbt.version < 155)
381 		return NULL;
382 
383 	fp_timing_size = 38;
384 
385 	block = find_raw_section(bdb, BDB_LFP_DATA);
386 	if (!block)
387 		return NULL;
388 
389 	drm_dbg_kms(display->drm, "Generating LFP data table pointers\n");
390 
391 	block_size = get_blocksize(block);
392 
393 	size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
394 		sizeof(struct bdb_edid_pnp_id);
395 	if (size * 16 > block_size)
396 		return NULL;
397 
398 	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
399 	if (!ptrs_block)
400 		return NULL;
401 
402 	*(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS;
403 	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
404 	ptrs = ptrs_block + 3;
405 
406 	table_size = sizeof(struct bdb_edid_pnp_id);
407 	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
408 
409 	table_size = sizeof(struct bdb_edid_dtd);
410 	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
411 
412 	table_size = fp_timing_size;
413 	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
414 
415 	if (ptrs->ptr[0].fp_timing.table_size)
416 		ptrs->num_entries++;
417 	if (ptrs->ptr[0].dvo_timing.table_size)
418 		ptrs->num_entries++;
419 	if (ptrs->ptr[0].panel_pnp_id.table_size)
420 		ptrs->num_entries++;
421 
422 	if (size != 0 || ptrs->num_entries != 3) {
423 		kfree(ptrs_block);
424 		return NULL;
425 	}
426 
427 	size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
428 		sizeof(struct bdb_edid_pnp_id);
429 	for (i = 1; i < 16; i++) {
430 		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
431 		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
432 		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
433 	}
434 
435 	table_size = sizeof(struct bdb_edid_product_name);
436 
437 	if (16 * (size + table_size) <= block_size) {
438 		ptrs->panel_name.table_size = table_size;
439 		ptrs->panel_name.offset = size * 16;
440 	}
441 
442 	offset = block - bdb;
443 
444 	for (i = 0; i < 16; i++) {
445 		ptrs->ptr[i].fp_timing.offset += offset;
446 		ptrs->ptr[i].dvo_timing.offset += offset;
447 		ptrs->ptr[i].panel_pnp_id.offset += offset;
448 	}
449 
450 	if (ptrs->panel_name.table_size)
451 		ptrs->panel_name.offset += offset;
452 
453 	return ptrs_block;
454 }
455 
456 static void
init_bdb_block(struct intel_display * display,const void * bdb,enum bdb_block_id section_id,size_t min_size)457 init_bdb_block(struct intel_display *display,
458 	       const void *bdb, enum bdb_block_id section_id,
459 	       size_t min_size)
460 {
461 	struct bdb_block_entry *entry;
462 	void *temp_block = NULL;
463 	const void *block;
464 	size_t block_size;
465 
466 	block = find_raw_section(bdb, section_id);
467 
468 	/* Modern VBTs lack the LFP data table pointers block, make one up */
469 	if (!block && section_id == BDB_LFP_DATA_PTRS) {
470 		temp_block = generate_lfp_data_ptrs(display, bdb);
471 		if (temp_block)
472 			block = temp_block + 3;
473 	}
474 	if (!block)
475 		return;
476 
477 	drm_WARN(display->drm, min_size == 0,
478 		 "Block %d min_size is zero\n", section_id);
479 
480 	block_size = get_blocksize(block);
481 
482 	/*
483 	 * Version number and new block size are considered
484 	 * part of the header for MIPI sequenece block v3+.
485 	 */
486 	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
487 		block_size += 5;
488 
489 	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
490 			GFP_KERNEL);
491 	if (!entry) {
492 		kfree(temp_block);
493 		return;
494 	}
495 
496 	entry->section_id = section_id;
497 	memcpy(entry->data, block - 3, block_size + 3);
498 
499 	kfree(temp_block);
500 
501 	drm_dbg_kms(display->drm,
502 		    "Found BDB block %d (size %zu, min size %zu)\n",
503 		    section_id, block_size, min_size);
504 
505 	if (section_id == BDB_LFP_DATA_PTRS &&
506 	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
507 		drm_err(display->drm,
508 			"VBT has malformed LFP data table pointers\n");
509 		kfree(entry);
510 		return;
511 	}
512 
513 	list_add_tail(&entry->node, &display->vbt.bdb_blocks);
514 }
515 
init_bdb_blocks(struct intel_display * display,const void * bdb)516 static void init_bdb_blocks(struct intel_display *display,
517 			    const void *bdb)
518 {
519 	int i;
520 
521 	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
522 		enum bdb_block_id section_id = bdb_blocks[i].section_id;
523 		size_t min_size = bdb_blocks[i].min_size;
524 
525 		if (section_id == BDB_LFP_DATA)
526 			min_size = lfp_data_min_size(display);
527 
528 		init_bdb_block(display, bdb, section_id, min_size);
529 	}
530 }
531 
532 static void
fill_detail_timing_data(struct intel_display * display,struct drm_display_mode * panel_fixed_mode,const struct bdb_edid_dtd * dvo_timing)533 fill_detail_timing_data(struct intel_display *display,
534 			struct drm_display_mode *panel_fixed_mode,
535 			const struct bdb_edid_dtd *dvo_timing)
536 {
537 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
538 		dvo_timing->hactive_lo;
539 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
540 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
541 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
542 		((dvo_timing->hsync_pulse_width_hi << 8) |
543 			dvo_timing->hsync_pulse_width_lo);
544 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
545 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
546 
547 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
548 		dvo_timing->vactive_lo;
549 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
550 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
551 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
552 		((dvo_timing->vsync_pulse_width_hi << 4) |
553 			dvo_timing->vsync_pulse_width_lo);
554 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
555 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
556 	panel_fixed_mode->clock = dvo_timing->clock * 10;
557 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
558 
559 	if (dvo_timing->hsync_positive)
560 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
561 	else
562 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
563 
564 	if (dvo_timing->vsync_positive)
565 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
566 	else
567 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
568 
569 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
570 		dvo_timing->himage_lo;
571 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
572 		dvo_timing->vimage_lo;
573 
574 	/* Some VBTs have bogus h/vsync_end values */
575 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
576 		drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n",
577 			    panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
578 		panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
579 	}
580 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
581 		drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n",
582 			    panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
583 		panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
584 	}
585 
586 	drm_mode_set_name(panel_fixed_mode);
587 }
588 
589 static const struct bdb_edid_dtd *
get_lfp_dvo_timing(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)590 get_lfp_dvo_timing(const struct bdb_lfp_data *data,
591 		   const struct bdb_lfp_data_ptrs *ptrs,
592 		   int index)
593 {
594 	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
595 }
596 
597 static const struct fp_timing *
get_lfp_fp_timing(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)598 get_lfp_fp_timing(const struct bdb_lfp_data *data,
599 		  const struct bdb_lfp_data_ptrs *ptrs,
600 		  int index)
601 {
602 	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
603 }
604 
605 static const struct drm_edid_product_id *
get_lfp_pnp_id(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)606 get_lfp_pnp_id(const struct bdb_lfp_data *data,
607 	       const struct bdb_lfp_data_ptrs *ptrs,
608 	       int index)
609 {
610 	/* These two are supposed to have the same layout in memory. */
611 	BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id));
612 
613 	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
614 }
615 
616 static const struct bdb_lfp_data_tail *
get_lfp_data_tail(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs)617 get_lfp_data_tail(const struct bdb_lfp_data *data,
618 		  const struct bdb_lfp_data_ptrs *ptrs)
619 {
620 	if (ptrs->panel_name.table_size)
621 		return (const void *)data + ptrs->panel_name.offset;
622 	else
623 		return NULL;
624 }
625 
opregion_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)626 static int opregion_get_panel_type(struct intel_display *display,
627 				   const struct intel_bios_encoder_data *devdata,
628 				   const struct drm_edid *drm_edid, bool use_fallback)
629 {
630 	return intel_opregion_get_panel_type(display);
631 }
632 
vbt_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)633 static int vbt_get_panel_type(struct intel_display *display,
634 			      const struct intel_bios_encoder_data *devdata,
635 			      const struct drm_edid *drm_edid, bool use_fallback)
636 {
637 	const struct bdb_lfp_options *lfp_options;
638 
639 	lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
640 	if (!lfp_options)
641 		return -1;
642 
643 	if (lfp_options->panel_type > 0xf &&
644 	    lfp_options->panel_type != 0xff) {
645 		drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n",
646 			    lfp_options->panel_type);
647 		return -1;
648 	}
649 
650 	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
651 		return lfp_options->panel_type2;
652 
653 	drm_WARN_ON(display->drm,
654 		    devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
655 
656 	return lfp_options->panel_type;
657 }
658 
pnpid_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)659 static int pnpid_get_panel_type(struct intel_display *display,
660 				const struct intel_bios_encoder_data *devdata,
661 				const struct drm_edid *drm_edid, bool use_fallback)
662 {
663 	const struct bdb_lfp_data *data;
664 	const struct bdb_lfp_data_ptrs *ptrs;
665 	struct drm_edid_product_id product_id, product_id_nodate;
666 	struct drm_printer p;
667 	int i, best = -1;
668 
669 	if (!drm_edid)
670 		return -1;
671 
672 	drm_edid_get_product_id(drm_edid, &product_id);
673 
674 	product_id_nodate = product_id;
675 	product_id_nodate.week_of_manufacture = 0;
676 	product_id_nodate.year_of_manufacture = 0;
677 
678 	p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID");
679 	drm_edid_print_product_id(&p, &product_id, true);
680 
681 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
682 	if (!ptrs)
683 		return -1;
684 
685 	data = bdb_find_section(display, BDB_LFP_DATA);
686 	if (!data)
687 		return -1;
688 
689 	for (i = 0; i < 16; i++) {
690 		const struct drm_edid_product_id *vbt_id =
691 			get_lfp_pnp_id(data, ptrs, i);
692 
693 		/* full match? */
694 		if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id)))
695 			return i;
696 
697 		/*
698 		 * Accept a match w/o date if no full match is found,
699 		 * and the VBT entry does not specify a date.
700 		 */
701 		if (best < 0 &&
702 		    !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id)))
703 			best = i;
704 	}
705 
706 	return best;
707 }
708 
fallback_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)709 static int fallback_get_panel_type(struct intel_display *display,
710 				   const struct intel_bios_encoder_data *devdata,
711 				   const struct drm_edid *drm_edid, bool use_fallback)
712 {
713 	return use_fallback ? 0 : -1;
714 }
715 
716 enum panel_type {
717 	PANEL_TYPE_OPREGION,
718 	PANEL_TYPE_VBT,
719 	PANEL_TYPE_PNPID,
720 	PANEL_TYPE_FALLBACK,
721 };
722 
get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)723 static int get_panel_type(struct intel_display *display,
724 			  const struct intel_bios_encoder_data *devdata,
725 			  const struct drm_edid *drm_edid, bool use_fallback)
726 {
727 	struct {
728 		const char *name;
729 		int (*get_panel_type)(struct intel_display *display,
730 				      const struct intel_bios_encoder_data *devdata,
731 				      const struct drm_edid *drm_edid, bool use_fallback);
732 		int panel_type;
733 	} panel_types[] = {
734 		[PANEL_TYPE_OPREGION] = {
735 			.name = "OpRegion",
736 			.get_panel_type = opregion_get_panel_type,
737 		},
738 		[PANEL_TYPE_VBT] = {
739 			.name = "VBT",
740 			.get_panel_type = vbt_get_panel_type,
741 		},
742 		[PANEL_TYPE_PNPID] = {
743 			.name = "PNPID",
744 			.get_panel_type = pnpid_get_panel_type,
745 		},
746 		[PANEL_TYPE_FALLBACK] = {
747 			.name = "fallback",
748 			.get_panel_type = fallback_get_panel_type,
749 		},
750 	};
751 	int i;
752 
753 	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
754 		panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata,
755 									  drm_edid, use_fallback);
756 
757 		drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf &&
758 			    panel_types[i].panel_type != 0xff);
759 
760 		if (panel_types[i].panel_type >= 0)
761 			drm_dbg_kms(display->drm, "Panel type (%s): %d\n",
762 				    panel_types[i].name, panel_types[i].panel_type);
763 	}
764 
765 	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
766 		i = PANEL_TYPE_OPREGION;
767 	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
768 		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
769 		i = PANEL_TYPE_PNPID;
770 	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
771 		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
772 		i = PANEL_TYPE_VBT;
773 	else
774 		i = PANEL_TYPE_FALLBACK;
775 
776 	drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n",
777 		    panel_types[i].name, panel_types[i].panel_type);
778 
779 	return panel_types[i].panel_type;
780 }
781 
panel_bits(unsigned int value,int panel_type,int num_bits)782 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
783 {
784 	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
785 }
786 
panel_bool(unsigned int value,int panel_type)787 static bool panel_bool(unsigned int value, int panel_type)
788 {
789 	return panel_bits(value, panel_type, 1);
790 }
791 
792 /* Parse general panel options */
793 static void
parse_panel_options(struct intel_display * display,struct intel_panel * panel)794 parse_panel_options(struct intel_display *display,
795 		    struct intel_panel *panel)
796 {
797 	const struct bdb_lfp_options *lfp_options;
798 	int panel_type = panel->vbt.panel_type;
799 	int drrs_mode;
800 
801 	lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
802 	if (!lfp_options)
803 		return;
804 
805 	panel->vbt.lvds_dither = lfp_options->pixel_dither;
806 
807 	/*
808 	 * Empirical evidence indicates the block size can be
809 	 * either 4,14,16,24+ bytes. For older VBTs no clear
810 	 * relationship between the block size vs. BDB version.
811 	 */
812 	if (get_blocksize(lfp_options) < 16)
813 		return;
814 
815 	drrs_mode = panel_bits(lfp_options->dps_panel_type_bits,
816 			       panel_type, 2);
817 	/*
818 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
819 	 * The below piece of code is required to adjust vbt.drrs_type
820 	 * to match the enum drrs_support_type.
821 	 */
822 	switch (drrs_mode) {
823 	case 0:
824 		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
825 		drm_dbg_kms(display->drm, "DRRS supported mode is static\n");
826 		break;
827 	case 2:
828 		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
829 		drm_dbg_kms(display->drm,
830 			    "DRRS supported mode is seamless\n");
831 		break;
832 	default:
833 		panel->vbt.drrs_type = DRRS_TYPE_NONE;
834 		drm_dbg_kms(display->drm,
835 			    "DRRS not supported (VBT input)\n");
836 		break;
837 	}
838 }
839 
840 static void
parse_lfp_panel_dtd(struct intel_display * display,struct intel_panel * panel,const struct bdb_lfp_data * lfp_data,const struct bdb_lfp_data_ptrs * lfp_data_ptrs)841 parse_lfp_panel_dtd(struct intel_display *display,
842 		    struct intel_panel *panel,
843 		    const struct bdb_lfp_data *lfp_data,
844 		    const struct bdb_lfp_data_ptrs *lfp_data_ptrs)
845 {
846 	const struct bdb_edid_dtd *panel_dvo_timing;
847 	const struct fp_timing *fp_timing;
848 	struct drm_display_mode *panel_fixed_mode;
849 	int panel_type = panel->vbt.panel_type;
850 
851 	panel_dvo_timing = get_lfp_dvo_timing(lfp_data,
852 					      lfp_data_ptrs,
853 					      panel_type);
854 
855 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
856 	if (!panel_fixed_mode)
857 		return;
858 
859 	fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing);
860 
861 	panel->vbt.lfp_vbt_mode = panel_fixed_mode;
862 
863 	drm_dbg_kms(display->drm,
864 		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
865 		    DRM_MODE_ARG(panel_fixed_mode));
866 
867 	fp_timing = get_lfp_fp_timing(lfp_data,
868 				      lfp_data_ptrs,
869 				      panel_type);
870 
871 	/* check the resolution, just to be sure */
872 	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
873 	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
874 		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
875 		drm_dbg_kms(display->drm,
876 			    "VBT initial LVDS value %x\n",
877 			    panel->vbt.bios_lvds_val);
878 	}
879 }
880 
881 static void
parse_lfp_data(struct intel_display * display,struct intel_panel * panel)882 parse_lfp_data(struct intel_display *display,
883 	       struct intel_panel *panel)
884 {
885 	const struct bdb_lfp_data *data;
886 	const struct bdb_lfp_data_tail *tail;
887 	const struct bdb_lfp_data_ptrs *ptrs;
888 	const struct drm_edid_product_id *pnp_id;
889 	struct drm_printer p;
890 	int panel_type = panel->vbt.panel_type;
891 
892 	ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
893 	if (!ptrs)
894 		return;
895 
896 	data = bdb_find_section(display, BDB_LFP_DATA);
897 	if (!data)
898 		return;
899 
900 	if (!panel->vbt.lfp_vbt_mode)
901 		parse_lfp_panel_dtd(display, panel, data, ptrs);
902 
903 	pnp_id = get_lfp_pnp_id(data, ptrs, panel_type);
904 
905 	p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel");
906 	drm_edid_print_product_id(&p, pnp_id, false);
907 
908 	tail = get_lfp_data_tail(data, ptrs);
909 	if (!tail)
910 		return;
911 
912 	drm_dbg_kms(display->drm, "Panel name: %.*s\n",
913 		    (int)sizeof(tail->panel_name[0].name),
914 		    tail->panel_name[panel_type].name);
915 
916 	if (display->vbt.version >= 188) {
917 		panel->vbt.seamless_drrs_min_refresh_rate =
918 			tail->seamless_drrs_min_refresh_rate[panel_type];
919 		drm_dbg_kms(display->drm,
920 			    "Seamless DRRS min refresh rate: %d Hz\n",
921 			    panel->vbt.seamless_drrs_min_refresh_rate);
922 	}
923 }
924 
925 static void
parse_generic_dtd(struct intel_display * display,struct intel_panel * panel)926 parse_generic_dtd(struct intel_display *display,
927 		  struct intel_panel *panel)
928 {
929 	const struct bdb_generic_dtd *generic_dtd;
930 	const struct generic_dtd_entry *dtd;
931 	struct drm_display_mode *panel_fixed_mode;
932 	int num_dtd;
933 
934 	/*
935 	 * Older VBTs provided DTD information for internal displays through
936 	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
937 	 * DTD information should be provided via a newer "generic DTD"
938 	 * block (58).  Just to be safe, we'll try the new generic DTD block
939 	 * first on VBT >= 229, but still fall back to trying the old LFP
940 	 * block if that fails.
941 	 */
942 	if (display->vbt.version < 229)
943 		return;
944 
945 	generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD);
946 	if (!generic_dtd)
947 		return;
948 
949 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
950 		drm_err(display->drm, "GDTD size %u is too small.\n",
951 			generic_dtd->gdtd_size);
952 		return;
953 	} else if (generic_dtd->gdtd_size !=
954 		   sizeof(struct generic_dtd_entry)) {
955 		drm_err(display->drm, "Unexpected GDTD size %u\n",
956 			generic_dtd->gdtd_size);
957 		/* DTD has unknown fields, but keep going */
958 	}
959 
960 	num_dtd = (get_blocksize(generic_dtd) -
961 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
962 	if (panel->vbt.panel_type >= num_dtd) {
963 		drm_err(display->drm,
964 			"Panel type %d not found in table of %d DTD's\n",
965 			panel->vbt.panel_type, num_dtd);
966 		return;
967 	}
968 
969 	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
970 
971 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
972 	if (!panel_fixed_mode)
973 		return;
974 
975 	panel_fixed_mode->hdisplay = dtd->hactive;
976 	panel_fixed_mode->hsync_start =
977 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
978 	panel_fixed_mode->hsync_end =
979 		panel_fixed_mode->hsync_start + dtd->hsync;
980 	panel_fixed_mode->htotal =
981 		panel_fixed_mode->hdisplay + dtd->hblank;
982 
983 	panel_fixed_mode->vdisplay = dtd->vactive;
984 	panel_fixed_mode->vsync_start =
985 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
986 	panel_fixed_mode->vsync_end =
987 		panel_fixed_mode->vsync_start + dtd->vsync;
988 	panel_fixed_mode->vtotal =
989 		panel_fixed_mode->vdisplay + dtd->vblank;
990 
991 	panel_fixed_mode->clock = dtd->pixel_clock;
992 	panel_fixed_mode->width_mm = dtd->width_mm;
993 	panel_fixed_mode->height_mm = dtd->height_mm;
994 
995 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
996 	drm_mode_set_name(panel_fixed_mode);
997 
998 	if (dtd->hsync_positive_polarity)
999 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
1000 	else
1001 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
1002 
1003 	if (dtd->vsync_positive_polarity)
1004 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1005 	else
1006 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1007 
1008 	drm_dbg_kms(display->drm,
1009 		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1010 		    DRM_MODE_ARG(panel_fixed_mode));
1011 
1012 	panel->vbt.lfp_vbt_mode = panel_fixed_mode;
1013 }
1014 
1015 static void
parse_lfp_backlight(struct intel_display * display,struct intel_panel * panel)1016 parse_lfp_backlight(struct intel_display *display,
1017 		    struct intel_panel *panel)
1018 {
1019 	const struct bdb_lfp_backlight *backlight_data;
1020 	const struct lfp_backlight_data_entry *entry;
1021 	int panel_type = panel->vbt.panel_type;
1022 	u16 level;
1023 
1024 	backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT);
1025 	if (!backlight_data)
1026 		return;
1027 
1028 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1029 		drm_dbg_kms(display->drm,
1030 			    "Unsupported backlight data entry size %u\n",
1031 			    backlight_data->entry_size);
1032 		return;
1033 	}
1034 
1035 	entry = &backlight_data->data[panel_type];
1036 
1037 	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1038 	if (!panel->vbt.backlight.present) {
1039 		drm_dbg_kms(display->drm,
1040 			    "PWM backlight not present in VBT (type %u)\n",
1041 			    entry->type);
1042 		return;
1043 	}
1044 
1045 	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1046 	panel->vbt.backlight.controller = 0;
1047 	if (display->vbt.version >= 191) {
1048 		const struct lfp_backlight_control_method *method;
1049 
1050 		method = &backlight_data->backlight_control[panel_type];
1051 		panel->vbt.backlight.type = method->type;
1052 		panel->vbt.backlight.controller = method->controller;
1053 	}
1054 
1055 	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1056 	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1057 
1058 	if (display->vbt.version >= 234) {
1059 		u16 min_level;
1060 		bool scale;
1061 
1062 		level = backlight_data->brightness_level[panel_type].level;
1063 		min_level = backlight_data->brightness_min_level[panel_type].level;
1064 
1065 		if (display->vbt.version >= 236)
1066 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1067 		else
1068 			scale = level > 255;
1069 
1070 		if (scale)
1071 			min_level = min_level / 255;
1072 
1073 		if (min_level > 255) {
1074 			drm_warn(display->drm, "Brightness min level > 255\n");
1075 			level = 255;
1076 		}
1077 		panel->vbt.backlight.min_brightness = min_level;
1078 
1079 		panel->vbt.backlight.brightness_precision_bits =
1080 			backlight_data->brightness_precision_bits[panel_type];
1081 	} else {
1082 		level = backlight_data->level[panel_type];
1083 		panel->vbt.backlight.min_brightness = entry->min_brightness;
1084 	}
1085 
1086 	if (display->vbt.version >= 239)
1087 		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1088 			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1089 	else
1090 		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1091 
1092 	drm_dbg_kms(display->drm,
1093 		    "VBT backlight PWM modulation frequency %u Hz, "
1094 		    "active %s, min brightness %u, level %u, controller %u\n",
1095 		    panel->vbt.backlight.pwm_freq_hz,
1096 		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1097 		    panel->vbt.backlight.min_brightness,
1098 		    level,
1099 		    panel->vbt.backlight.controller);
1100 }
1101 
1102 static void
parse_sdvo_lvds_data(struct intel_display * display,struct intel_panel * panel)1103 parse_sdvo_lvds_data(struct intel_display *display,
1104 		     struct intel_panel *panel)
1105 {
1106 	const struct bdb_sdvo_lvds_dtd *dtd;
1107 	struct drm_display_mode *panel_fixed_mode;
1108 	int index;
1109 
1110 	index = display->params.vbt_sdvo_panel_type;
1111 	if (index == -2) {
1112 		drm_dbg_kms(display->drm,
1113 			    "Ignore SDVO LVDS mode from BIOS VBT tables.\n");
1114 		return;
1115 	}
1116 
1117 	if (index == -1) {
1118 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1119 
1120 		sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS);
1121 		if (!sdvo_lvds_options)
1122 			return;
1123 
1124 		index = sdvo_lvds_options->panel_type;
1125 	}
1126 
1127 	dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD);
1128 	if (!dtd)
1129 		return;
1130 
1131 	/*
1132 	 * This should not happen, as long as the panel_type
1133 	 * enumeration doesn't grow over 4 items.  But if it does, it
1134 	 * could lead to hard-to-detect bugs, so better double-check
1135 	 * it here to be sure.
1136 	 */
1137 	if (index >= ARRAY_SIZE(dtd->dtd)) {
1138 		drm_err(display->drm,
1139 			"index %d is larger than dtd->dtd[4] array\n",
1140 			index);
1141 		return;
1142 	}
1143 
1144 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1145 	if (!panel_fixed_mode)
1146 		return;
1147 
1148 	fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]);
1149 
1150 	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1151 
1152 	drm_dbg_kms(display->drm,
1153 		    "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1154 		    DRM_MODE_ARG(panel_fixed_mode));
1155 }
1156 
intel_bios_ssc_frequency(struct intel_display * display,bool alternate)1157 static int intel_bios_ssc_frequency(struct intel_display *display,
1158 				    bool alternate)
1159 {
1160 	switch (DISPLAY_VER(display)) {
1161 	case 2:
1162 		return alternate ? 66667 : 48000;
1163 	case 3:
1164 	case 4:
1165 		return alternate ? 100000 : 96000;
1166 	default:
1167 		return alternate ? 100000 : 120000;
1168 	}
1169 }
1170 
1171 static void
parse_general_features(struct intel_display * display)1172 parse_general_features(struct intel_display *display)
1173 {
1174 	const struct bdb_general_features *general;
1175 
1176 	general = bdb_find_section(display, BDB_GENERAL_FEATURES);
1177 	if (!general)
1178 		return;
1179 
1180 	display->vbt.int_tv_support = general->int_tv_support;
1181 	/* int_crt_support can't be trusted on earlier platforms */
1182 	if (display->vbt.version >= 155 &&
1183 	    (HAS_DDI(display) || display->platform.valleyview))
1184 		display->vbt.int_crt_support = general->int_crt_support;
1185 	display->vbt.lvds_use_ssc = general->enable_ssc;
1186 	display->vbt.lvds_ssc_freq =
1187 		intel_bios_ssc_frequency(display, general->ssc_freq);
1188 	display->vbt.display_clock_mode = general->display_clock_mode;
1189 	display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1190 	if (display->vbt.version >= 181) {
1191 		display->vbt.orientation = general->rotate_180 ?
1192 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1193 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1194 	} else {
1195 		display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1196 	}
1197 
1198 	if (display->vbt.version >= 249 && general->afc_startup_config) {
1199 		display->vbt.override_afc_startup = true;
1200 		display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7;
1201 	}
1202 
1203 	drm_dbg_kms(display->drm,
1204 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1205 		    display->vbt.int_tv_support,
1206 		    display->vbt.int_crt_support,
1207 		    display->vbt.lvds_use_ssc,
1208 		    display->vbt.lvds_ssc_freq,
1209 		    display->vbt.display_clock_mode,
1210 		    display->vbt.fdi_rx_polarity_inverted);
1211 }
1212 
1213 static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions * defs,int i)1214 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1215 {
1216 	return (const void *) &defs->devices[i * defs->child_dev_size];
1217 }
1218 
1219 static void
parse_sdvo_device_mapping(struct intel_display * display)1220 parse_sdvo_device_mapping(struct intel_display *display)
1221 {
1222 	const struct intel_bios_encoder_data *devdata;
1223 	int count = 0;
1224 
1225 	/*
1226 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1227 	 * accurate and doesn't have to be, as long as it's not too strict.
1228 	 */
1229 	if (!IS_DISPLAY_VER(display, 3, 7)) {
1230 		drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n");
1231 		return;
1232 	}
1233 
1234 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
1235 		const struct child_device_config *child = &devdata->child;
1236 		struct sdvo_device_mapping *mapping;
1237 
1238 		if (child->target_addr != TARGET_ADDR1 &&
1239 		    child->target_addr != TARGET_ADDR2) {
1240 			/*
1241 			 * If the target address is neither 0x70 nor 0x72,
1242 			 * it is not a SDVO device. Skip it.
1243 			 */
1244 			continue;
1245 		}
1246 		if (child->dvo_port != DEVICE_PORT_DVOB &&
1247 		    child->dvo_port != DEVICE_PORT_DVOC) {
1248 			/* skip the incorrect SDVO port */
1249 			drm_dbg_kms(display->drm,
1250 				    "Incorrect SDVO port. Skip it\n");
1251 			continue;
1252 		}
1253 		drm_dbg_kms(display->drm,
1254 			    "the SDVO device with target addr %2x is found on"
1255 			    " %s port\n",
1256 			    child->target_addr,
1257 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1258 			    "SDVOB" : "SDVOC");
1259 		mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1];
1260 		if (!mapping->initialized) {
1261 			mapping->dvo_port = child->dvo_port;
1262 			mapping->target_addr = child->target_addr;
1263 			mapping->dvo_wiring = child->dvo_wiring;
1264 			mapping->ddc_pin = child->ddc_pin;
1265 			mapping->i2c_pin = child->i2c_pin;
1266 			mapping->initialized = 1;
1267 			drm_dbg_kms(display->drm,
1268 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1269 				    mapping->dvo_port, mapping->target_addr,
1270 				    mapping->dvo_wiring, mapping->ddc_pin,
1271 				    mapping->i2c_pin);
1272 		} else {
1273 			drm_dbg_kms(display->drm,
1274 				    "Maybe one SDVO port is shared by "
1275 				    "two SDVO device.\n");
1276 		}
1277 		if (child->target2_addr) {
1278 			/* Maybe this is a SDVO device with multiple inputs */
1279 			/* And the mapping info is not added */
1280 			drm_dbg_kms(display->drm,
1281 				    "there exists the target2_addr. Maybe this"
1282 				    " is a SDVO device with multiple inputs.\n");
1283 		}
1284 		count++;
1285 	}
1286 
1287 	if (!count) {
1288 		/* No SDVO device info is found */
1289 		drm_dbg_kms(display->drm,
1290 			    "No SDVO device info is found in VBT\n");
1291 	}
1292 }
1293 
1294 static void
parse_driver_features(struct intel_display * display)1295 parse_driver_features(struct intel_display *display)
1296 {
1297 	const struct bdb_driver_features *driver;
1298 
1299 	driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1300 	if (!driver)
1301 		return;
1302 
1303 	if (DISPLAY_VER(display) >= 5) {
1304 		/*
1305 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1306 		 * to mean "eDP". The VBT spec doesn't agree with that
1307 		 * interpretation, but real world VBTs seem to.
1308 		 */
1309 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1310 			display->vbt.int_lvds_support = 0;
1311 	} else {
1312 		/*
1313 		 * FIXME it's not clear which BDB version has the LVDS config
1314 		 * bits defined. Revision history in the VBT spec says:
1315 		 * "0.92 | Add two definitions for VBT value of LVDS Active
1316 		 *  Config (00b and 11b values defined) | 06/13/2005"
1317 		 * but does not the specify the BDB version.
1318 		 *
1319 		 * So far version 134 (on i945gm) is the oldest VBT observed
1320 		 * in the wild with the bits correctly populated. Version
1321 		 * 108 (on i85x) does not have the bits correctly populated.
1322 		 */
1323 		if (display->vbt.version >= 134 &&
1324 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1325 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1326 			display->vbt.int_lvds_support = 0;
1327 	}
1328 }
1329 
1330 static void
parse_panel_driver_features(struct intel_display * display,struct intel_panel * panel)1331 parse_panel_driver_features(struct intel_display *display,
1332 			    struct intel_panel *panel)
1333 {
1334 	const struct bdb_driver_features *driver;
1335 
1336 	driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1337 	if (!driver)
1338 		return;
1339 
1340 	if (display->vbt.version < 228) {
1341 		drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n",
1342 			    driver->drrs_enabled);
1343 		/*
1344 		 * If DRRS is not supported, drrs_type has to be set to 0.
1345 		 * This is because, VBT is configured in such a way that
1346 		 * static DRRS is 0 and DRRS not supported is represented by
1347 		 * driver->drrs_enabled=false
1348 		 */
1349 		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1350 			/*
1351 			 * FIXME Should DMRRS perhaps be treated as seamless
1352 			 * but without the automatic downclocking?
1353 			 */
1354 			if (driver->dmrrs_enabled)
1355 				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1356 			else
1357 				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1358 		}
1359 
1360 		panel->vbt.psr.enable = driver->psr_enabled;
1361 	}
1362 }
1363 
1364 static void
parse_power_conservation_features(struct intel_display * display,struct intel_panel * panel)1365 parse_power_conservation_features(struct intel_display *display,
1366 				  struct intel_panel *panel)
1367 {
1368 	const struct bdb_lfp_power *power;
1369 	u8 panel_type = panel->vbt.panel_type;
1370 
1371 	panel->vbt.vrr = true; /* matches Windows behaviour */
1372 
1373 	if (display->vbt.version < 228)
1374 		return;
1375 
1376 	power = bdb_find_section(display, BDB_LFP_POWER);
1377 	if (!power)
1378 		return;
1379 
1380 	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1381 
1382 	/*
1383 	 * If DRRS is not supported, drrs_type has to be set to 0.
1384 	 * This is because, VBT is configured in such a way that
1385 	 * static DRRS is 0 and DRRS not supported is represented by
1386 	 * power->drrs & BIT(panel_type)=false
1387 	 */
1388 	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1389 		/*
1390 		 * FIXME Should DMRRS perhaps be treated as seamless
1391 		 * but without the automatic downclocking?
1392 		 */
1393 		if (panel_bool(power->dmrrs, panel_type))
1394 			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1395 		else
1396 			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1397 	}
1398 
1399 	if (display->vbt.version >= 232)
1400 		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1401 
1402 	if (display->vbt.version >= 233)
1403 		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1404 					    panel_type);
1405 }
1406 
vbt_edp_to_pps_delays(struct intel_pps_delays * pps,const struct edp_power_seq * edp_pps)1407 static void vbt_edp_to_pps_delays(struct intel_pps_delays *pps,
1408 				  const struct edp_power_seq *edp_pps)
1409 {
1410 	pps->power_up = edp_pps->t1_t3;
1411 	pps->backlight_on = edp_pps->t8;
1412 	pps->backlight_off = edp_pps->t9;
1413 	pps->power_down = edp_pps->t10;
1414 	pps->power_cycle = edp_pps->t11_t12;
1415 }
1416 
1417 static void
parse_edp(struct intel_display * display,struct intel_panel * panel)1418 parse_edp(struct intel_display *display,
1419 	  struct intel_panel *panel)
1420 {
1421 	const struct bdb_edp *edp;
1422 	const struct edp_fast_link_params *edp_link_params;
1423 	int panel_type = panel->vbt.panel_type;
1424 
1425 	edp = bdb_find_section(display, BDB_EDP);
1426 	if (!edp)
1427 		return;
1428 
1429 	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1430 	case EDP_18BPP:
1431 		panel->vbt.edp.bpp = 18;
1432 		break;
1433 	case EDP_24BPP:
1434 		panel->vbt.edp.bpp = 24;
1435 		break;
1436 	case EDP_30BPP:
1437 		panel->vbt.edp.bpp = 30;
1438 		break;
1439 	}
1440 
1441 	/* Get the eDP sequencing and link info */
1442 	edp_link_params = &edp->fast_link_params[panel_type];
1443 
1444 	vbt_edp_to_pps_delays(&panel->vbt.edp.pps,
1445 			      &edp->power_seqs[panel_type]);
1446 
1447 	if (display->vbt.version >= 224) {
1448 		panel->vbt.edp.rate =
1449 			edp->edp_fast_link_training_rate[panel_type] * 20;
1450 	} else {
1451 		switch (edp_link_params->rate) {
1452 		case EDP_RATE_1_62:
1453 			panel->vbt.edp.rate = 162000;
1454 			break;
1455 		case EDP_RATE_2_7:
1456 			panel->vbt.edp.rate = 270000;
1457 			break;
1458 		case EDP_RATE_5_4:
1459 			panel->vbt.edp.rate = 540000;
1460 			break;
1461 		default:
1462 			drm_dbg_kms(display->drm,
1463 				    "VBT has unknown eDP link rate value %u\n",
1464 				    edp_link_params->rate);
1465 			break;
1466 		}
1467 	}
1468 
1469 	switch (edp_link_params->lanes) {
1470 	case EDP_LANE_1:
1471 		panel->vbt.edp.lanes = 1;
1472 		break;
1473 	case EDP_LANE_2:
1474 		panel->vbt.edp.lanes = 2;
1475 		break;
1476 	case EDP_LANE_4:
1477 		panel->vbt.edp.lanes = 4;
1478 		break;
1479 	default:
1480 		drm_dbg_kms(display->drm,
1481 			    "VBT has unknown eDP lane count value %u\n",
1482 			    edp_link_params->lanes);
1483 		break;
1484 	}
1485 
1486 	switch (edp_link_params->preemphasis) {
1487 	case EDP_PREEMPHASIS_NONE:
1488 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1489 		break;
1490 	case EDP_PREEMPHASIS_3_5dB:
1491 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1492 		break;
1493 	case EDP_PREEMPHASIS_6dB:
1494 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1495 		break;
1496 	case EDP_PREEMPHASIS_9_5dB:
1497 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1498 		break;
1499 	default:
1500 		drm_dbg_kms(display->drm,
1501 			    "VBT has unknown eDP pre-emphasis value %u\n",
1502 			    edp_link_params->preemphasis);
1503 		break;
1504 	}
1505 
1506 	switch (edp_link_params->vswing) {
1507 	case EDP_VSWING_0_4V:
1508 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1509 		break;
1510 	case EDP_VSWING_0_6V:
1511 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1512 		break;
1513 	case EDP_VSWING_0_8V:
1514 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1515 		break;
1516 	case EDP_VSWING_1_2V:
1517 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1518 		break;
1519 	default:
1520 		drm_dbg_kms(display->drm,
1521 			    "VBT has unknown eDP voltage swing value %u\n",
1522 			    edp_link_params->vswing);
1523 		break;
1524 	}
1525 
1526 	if (display->vbt.version >= 173) {
1527 		u8 vswing;
1528 
1529 		/* Don't read from VBT if module parameter has valid value*/
1530 		if (display->params.edp_vswing) {
1531 			panel->vbt.edp.low_vswing =
1532 				display->params.edp_vswing == 1;
1533 		} else {
1534 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1535 			panel->vbt.edp.low_vswing = vswing == 0;
1536 		}
1537 	}
1538 
1539 	panel->vbt.edp.drrs_msa_timing_delay =
1540 		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1541 
1542 	if (display->vbt.version >= 244)
1543 		panel->vbt.edp.max_link_rate =
1544 			edp->edp_max_port_link_rate[panel_type] * 20;
1545 
1546 	if (display->vbt.version >= 251)
1547 		panel->vbt.edp.dsc_disable =
1548 			panel_bool(edp->edp_dsc_disable, panel_type);
1549 }
1550 
1551 static void
parse_psr(struct intel_display * display,struct intel_panel * panel)1552 parse_psr(struct intel_display *display,
1553 	  struct intel_panel *panel)
1554 {
1555 	const struct bdb_psr *psr;
1556 	const struct psr_table *psr_table;
1557 	int panel_type = panel->vbt.panel_type;
1558 
1559 	psr = bdb_find_section(display, BDB_PSR);
1560 	if (!psr) {
1561 		drm_dbg_kms(display->drm, "No PSR BDB found.\n");
1562 		return;
1563 	}
1564 
1565 	psr_table = &psr->psr_table[panel_type];
1566 
1567 	panel->vbt.psr.full_link = psr_table->full_link;
1568 	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1569 
1570 	/* Allowed VBT values goes from 0 to 15 */
1571 	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1572 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1573 
1574 	/*
1575 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1576 	 * Old decimal value is wake up time in multiples of 100 us.
1577 	 */
1578 	if (display->vbt.version >= 205 &&
1579 	    (DISPLAY_VER(display) >= 9 && !display->platform.broxton)) {
1580 		switch (psr_table->tp1_wakeup_time) {
1581 		case 0:
1582 			panel->vbt.psr.tp1_wakeup_time_us = 500;
1583 			break;
1584 		case 1:
1585 			panel->vbt.psr.tp1_wakeup_time_us = 100;
1586 			break;
1587 		case 3:
1588 			panel->vbt.psr.tp1_wakeup_time_us = 0;
1589 			break;
1590 		default:
1591 			drm_dbg_kms(display->drm,
1592 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1593 				    psr_table->tp1_wakeup_time);
1594 			fallthrough;
1595 		case 2:
1596 			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1597 			break;
1598 		}
1599 
1600 		switch (psr_table->tp2_tp3_wakeup_time) {
1601 		case 0:
1602 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1603 			break;
1604 		case 1:
1605 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1606 			break;
1607 		case 3:
1608 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1609 			break;
1610 		default:
1611 			drm_dbg_kms(display->drm,
1612 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1613 				    psr_table->tp2_tp3_wakeup_time);
1614 			fallthrough;
1615 		case 2:
1616 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1617 		break;
1618 		}
1619 	} else {
1620 		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1621 		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1622 	}
1623 
1624 	if (display->vbt.version >= 226) {
1625 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1626 
1627 		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1628 		switch (wakeup_time) {
1629 		case 0:
1630 			wakeup_time = 500;
1631 			break;
1632 		case 1:
1633 			wakeup_time = 100;
1634 			break;
1635 		case 3:
1636 			wakeup_time = 50;
1637 			break;
1638 		default:
1639 		case 2:
1640 			wakeup_time = 2500;
1641 			break;
1642 		}
1643 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1644 	} else {
1645 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1646 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1647 	}
1648 }
1649 
parse_dsi_backlight_ports(struct intel_display * display,struct intel_panel * panel,enum port port)1650 static void parse_dsi_backlight_ports(struct intel_display *display,
1651 				      struct intel_panel *panel,
1652 				      enum port port)
1653 {
1654 	enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C;
1655 
1656 	if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) {
1657 		panel->vbt.dsi.bl_ports = BIT(port);
1658 		if (panel->vbt.dsi.config->cabc_supported)
1659 			panel->vbt.dsi.cabc_ports = BIT(port);
1660 
1661 		return;
1662 	}
1663 
1664 	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1665 	case DL_DCS_PORT_A:
1666 		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1667 		break;
1668 	case DL_DCS_PORT_C:
1669 		panel->vbt.dsi.bl_ports = BIT(port_bc);
1670 		break;
1671 	default:
1672 	case DL_DCS_PORT_A_AND_C:
1673 		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1674 		break;
1675 	}
1676 
1677 	if (!panel->vbt.dsi.config->cabc_supported)
1678 		return;
1679 
1680 	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1681 	case DL_DCS_PORT_A:
1682 		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1683 		break;
1684 	case DL_DCS_PORT_C:
1685 		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1686 		break;
1687 	default:
1688 	case DL_DCS_PORT_A_AND_C:
1689 		panel->vbt.dsi.cabc_ports =
1690 					BIT(PORT_A) | BIT(port_bc);
1691 		break;
1692 	}
1693 }
1694 
1695 static void
parse_mipi_config(struct intel_display * display,struct intel_panel * panel)1696 parse_mipi_config(struct intel_display *display,
1697 		  struct intel_panel *panel)
1698 {
1699 	const struct bdb_mipi_config *start;
1700 	const struct mipi_config *config;
1701 	const struct mipi_pps_data *pps;
1702 	int panel_type = panel->vbt.panel_type;
1703 	enum port port;
1704 
1705 	/* parse MIPI blocks only if LFP type is MIPI */
1706 	if (!intel_bios_is_dsi_present(display, &port))
1707 		return;
1708 
1709 	/* Initialize this to undefined indicating no generic MIPI support */
1710 	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1711 
1712 	start = bdb_find_section(display, BDB_MIPI_CONFIG);
1713 	if (!start) {
1714 		drm_dbg_kms(display->drm, "No MIPI config BDB found");
1715 		return;
1716 	}
1717 
1718 	drm_dbg_kms(display->drm, "Found MIPI Config block, panel index = %d\n",
1719 		    panel_type);
1720 
1721 	/*
1722 	 * get hold of the correct configuration block and pps data as per
1723 	 * the panel_type as index
1724 	 */
1725 	config = &start->config[panel_type];
1726 	pps = &start->pps[panel_type];
1727 
1728 	/* store as of now full data. Trim when we realise all is not needed */
1729 	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1730 	if (!panel->vbt.dsi.config)
1731 		return;
1732 
1733 	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1734 	if (!panel->vbt.dsi.pps) {
1735 		kfree(panel->vbt.dsi.config);
1736 		return;
1737 	}
1738 
1739 	parse_dsi_backlight_ports(display, panel, port);
1740 
1741 	/* FIXME is the 90 vs. 270 correct? */
1742 	switch (config->rotation) {
1743 	case ENABLE_ROTATION_0:
1744 		/*
1745 		 * Most (all?) VBTs claim 0 degrees despite having
1746 		 * an upside down panel, thus we do not trust this.
1747 		 */
1748 		panel->vbt.dsi.orientation =
1749 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1750 		break;
1751 	case ENABLE_ROTATION_90:
1752 		panel->vbt.dsi.orientation =
1753 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1754 		break;
1755 	case ENABLE_ROTATION_180:
1756 		panel->vbt.dsi.orientation =
1757 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1758 		break;
1759 	case ENABLE_ROTATION_270:
1760 		panel->vbt.dsi.orientation =
1761 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1762 		break;
1763 	}
1764 
1765 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1766 	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1767 }
1768 
1769 /* Find the sequence block and size for the given panel. */
1770 static const u8 *
find_panel_sequence_block(struct intel_display * display,const struct bdb_mipi_sequence * sequence,u16 panel_id,u32 * seq_size)1771 find_panel_sequence_block(struct intel_display *display,
1772 			  const struct bdb_mipi_sequence *sequence,
1773 			  u16 panel_id, u32 *seq_size)
1774 {
1775 	u32 total = get_blocksize(sequence);
1776 	const u8 *data = &sequence->data[0];
1777 	u8 current_id;
1778 	u32 current_size;
1779 	int header_size = sequence->version >= 3 ? 5 : 3;
1780 	int index = 0;
1781 	int i;
1782 
1783 	/* skip new block size */
1784 	if (sequence->version >= 3)
1785 		data += 4;
1786 
1787 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1788 		if (index + header_size > total) {
1789 			drm_err(display->drm,
1790 				"Invalid sequence block (header)\n");
1791 			return NULL;
1792 		}
1793 
1794 		current_id = *(data + index);
1795 		if (sequence->version >= 3)
1796 			current_size = *((const u32 *)(data + index + 1));
1797 		else
1798 			current_size = *((const u16 *)(data + index + 1));
1799 
1800 		index += header_size;
1801 
1802 		if (index + current_size > total) {
1803 			drm_err(display->drm, "Invalid sequence block\n");
1804 			return NULL;
1805 		}
1806 
1807 		if (current_id == panel_id) {
1808 			*seq_size = current_size;
1809 			return data + index;
1810 		}
1811 
1812 		index += current_size;
1813 	}
1814 
1815 	drm_err(display->drm,
1816 		"Sequence block detected but no valid configuration\n");
1817 
1818 	return NULL;
1819 }
1820 
goto_next_sequence(struct intel_display * display,const u8 * data,int index,int total)1821 static int goto_next_sequence(struct intel_display *display,
1822 			      const u8 *data, int index, int total)
1823 {
1824 	u16 len;
1825 
1826 	/* Skip Sequence Byte. */
1827 	for (index = index + 1; index < total; index += len) {
1828 		u8 operation_byte = *(data + index);
1829 		index++;
1830 
1831 		switch (operation_byte) {
1832 		case MIPI_SEQ_ELEM_END:
1833 			return index;
1834 		case MIPI_SEQ_ELEM_SEND_PKT:
1835 			if (index + 4 > total)
1836 				return 0;
1837 
1838 			len = *((const u16 *)(data + index + 2)) + 4;
1839 			break;
1840 		case MIPI_SEQ_ELEM_DELAY:
1841 			len = 4;
1842 			break;
1843 		case MIPI_SEQ_ELEM_GPIO:
1844 			len = 2;
1845 			break;
1846 		case MIPI_SEQ_ELEM_I2C:
1847 			if (index + 7 > total)
1848 				return 0;
1849 			len = *(data + index + 6) + 7;
1850 			break;
1851 		default:
1852 			drm_err(display->drm, "Unknown operation byte\n");
1853 			return 0;
1854 		}
1855 	}
1856 
1857 	return 0;
1858 }
1859 
goto_next_sequence_v3(struct intel_display * display,const u8 * data,int index,int total)1860 static int goto_next_sequence_v3(struct intel_display *display,
1861 				 const u8 *data, int index, int total)
1862 {
1863 	int seq_end;
1864 	u16 len;
1865 	u32 size_of_sequence;
1866 
1867 	/*
1868 	 * Could skip sequence based on Size of Sequence alone, but also do some
1869 	 * checking on the structure.
1870 	 */
1871 	if (total < 5) {
1872 		drm_err(display->drm, "Too small sequence size\n");
1873 		return 0;
1874 	}
1875 
1876 	/* Skip Sequence Byte. */
1877 	index++;
1878 
1879 	/*
1880 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1881 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1882 	 * byte.
1883 	 */
1884 	size_of_sequence = *((const u32 *)(data + index));
1885 	index += 4;
1886 
1887 	seq_end = index + size_of_sequence;
1888 	if (seq_end > total) {
1889 		drm_err(display->drm, "Invalid sequence size\n");
1890 		return 0;
1891 	}
1892 
1893 	for (; index < total; index += len) {
1894 		u8 operation_byte = *(data + index);
1895 		index++;
1896 
1897 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1898 			if (index != seq_end) {
1899 				drm_err(display->drm,
1900 					"Invalid element structure\n");
1901 				return 0;
1902 			}
1903 			return index;
1904 		}
1905 
1906 		len = *(data + index);
1907 		index++;
1908 
1909 		/*
1910 		 * FIXME: Would be nice to check elements like for v1/v2 in
1911 		 * goto_next_sequence() above.
1912 		 */
1913 		switch (operation_byte) {
1914 		case MIPI_SEQ_ELEM_SEND_PKT:
1915 		case MIPI_SEQ_ELEM_DELAY:
1916 		case MIPI_SEQ_ELEM_GPIO:
1917 		case MIPI_SEQ_ELEM_I2C:
1918 		case MIPI_SEQ_ELEM_SPI:
1919 		case MIPI_SEQ_ELEM_PMIC:
1920 			break;
1921 		default:
1922 			drm_err(display->drm, "Unknown operation byte %u\n",
1923 				operation_byte);
1924 			break;
1925 		}
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 /*
1932  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1933  * skip all delay + gpio operands and stop at the first DSI packet op.
1934  */
get_init_otp_deassert_fragment_len(struct intel_display * display,struct intel_panel * panel)1935 static int get_init_otp_deassert_fragment_len(struct intel_display *display,
1936 					      struct intel_panel *panel)
1937 {
1938 	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1939 	int index, len;
1940 
1941 	if (drm_WARN_ON(display->drm,
1942 			!data || panel->vbt.dsi.seq_version >= 3))
1943 		return 0;
1944 
1945 	/* index = 1 to skip sequence byte */
1946 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1947 		switch (data[index]) {
1948 		case MIPI_SEQ_ELEM_SEND_PKT:
1949 			return index == 1 ? 0 : index;
1950 		case MIPI_SEQ_ELEM_DELAY:
1951 			len = 5; /* 1 byte for operand + uint32 */
1952 			break;
1953 		case MIPI_SEQ_ELEM_GPIO:
1954 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1955 			break;
1956 		default:
1957 			return 0;
1958 		}
1959 	}
1960 
1961 	return 0;
1962 }
1963 
1964 /*
1965  * Some v1/v2 VBT MIPI sequences do the deassert in the init OTP sequence.
1966  * The deassert must be done before calling intel_dsi_device_ready, so for
1967  * these devices we split the init OTP sequence into a deassert sequence and
1968  * the actual init OTP part.
1969  */
vlv_fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)1970 static void vlv_fixup_mipi_sequences(struct intel_display *display,
1971 				     struct intel_panel *panel)
1972 {
1973 	u8 *init_otp;
1974 	int len;
1975 
1976 	/* Limit this to v1/v2 vid-mode sequences */
1977 	if (panel->vbt.dsi.config->is_cmd_mode ||
1978 	    panel->vbt.dsi.seq_version >= 3)
1979 		return;
1980 
1981 	/* Only do this if there are otp and assert seqs and no deassert seq */
1982 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1983 	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1984 	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1985 		return;
1986 
1987 	/* The deassert-sequence ends at the first DSI packet */
1988 	len = get_init_otp_deassert_fragment_len(display, panel);
1989 	if (!len)
1990 		return;
1991 
1992 	drm_dbg_kms(display->drm,
1993 		    "Using init OTP fragment to deassert reset\n");
1994 
1995 	/* Copy the fragment, update seq byte and terminate it */
1996 	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1997 	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1998 	if (!panel->vbt.dsi.deassert_seq)
1999 		return;
2000 	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
2001 	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
2002 	/* Use the copy for deassert */
2003 	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
2004 		panel->vbt.dsi.deassert_seq;
2005 	/* Replace the last byte of the fragment with init OTP seq byte */
2006 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
2007 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
2008 	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
2009 }
2010 
2011 /*
2012  * Some machines (eg. Lenovo 82TQ) appear to have broken
2013  * VBT sequences:
2014  * - INIT_OTP is not present at all
2015  * - what should be in INIT_OTP is in DISPLAY_ON
2016  * - what should be in DISPLAY_ON is in BACKLIGHT_ON
2017  *   (along with the actual backlight stuff)
2018  *
2019  * To make those work we simply swap DISPLAY_ON and INIT_OTP.
2020  *
2021  * TODO: Do we need to limit this to specific machines,
2022  *       or examine the contents of the sequences to
2023  *       avoid false positives?
2024  */
icl_fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)2025 static void icl_fixup_mipi_sequences(struct intel_display *display,
2026 				     struct intel_panel *panel)
2027 {
2028 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2029 	    panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2030 		drm_dbg_kms(display->drm,
2031 			    "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2032 
2033 		swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2034 		     panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2035 	}
2036 }
2037 
fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)2038 static void fixup_mipi_sequences(struct intel_display *display,
2039 				 struct intel_panel *panel)
2040 {
2041 	if (DISPLAY_VER(display) >= 11)
2042 		icl_fixup_mipi_sequences(display, panel);
2043 	else if (display->platform.valleyview)
2044 		vlv_fixup_mipi_sequences(display, panel);
2045 }
2046 
2047 static void
parse_mipi_sequence(struct intel_display * display,struct intel_panel * panel)2048 parse_mipi_sequence(struct intel_display *display,
2049 		    struct intel_panel *panel)
2050 {
2051 	int panel_type = panel->vbt.panel_type;
2052 	const struct bdb_mipi_sequence *sequence;
2053 	const u8 *seq_data;
2054 	u32 seq_size;
2055 	u8 *data;
2056 	int index = 0;
2057 
2058 	/* Only our generic panel driver uses the sequence block. */
2059 	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2060 		return;
2061 
2062 	sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE);
2063 	if (!sequence) {
2064 		drm_dbg_kms(display->drm,
2065 			    "No MIPI Sequence found, parsing complete\n");
2066 		return;
2067 	}
2068 
2069 	/* Fail gracefully for forward incompatible sequence block. */
2070 	if (sequence->version >= 4) {
2071 		drm_err(display->drm,
2072 			"Unable to parse MIPI Sequence Block v%u\n",
2073 			sequence->version);
2074 		return;
2075 	}
2076 
2077 	drm_dbg_kms(display->drm, "Found MIPI sequence block v%u\n",
2078 		    sequence->version);
2079 
2080 	seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size);
2081 	if (!seq_data)
2082 		return;
2083 
2084 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2085 	if (!data)
2086 		return;
2087 
2088 	/* Parse the sequences, store pointers to each sequence. */
2089 	for (;;) {
2090 		u8 seq_id = *(data + index);
2091 		if (seq_id == MIPI_SEQ_END)
2092 			break;
2093 
2094 		if (seq_id >= MIPI_SEQ_MAX) {
2095 			drm_err(display->drm, "Unknown sequence %u\n",
2096 				seq_id);
2097 			goto err;
2098 		}
2099 
2100 		/* Log about presence of sequences we won't run. */
2101 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2102 			drm_dbg_kms(display->drm,
2103 				    "Unsupported sequence %u\n", seq_id);
2104 
2105 		panel->vbt.dsi.sequence[seq_id] = data + index;
2106 
2107 		if (sequence->version >= 3)
2108 			index = goto_next_sequence_v3(display, data, index, seq_size);
2109 		else
2110 			index = goto_next_sequence(display, data, index, seq_size);
2111 		if (!index) {
2112 			drm_err(display->drm, "Invalid sequence %u\n",
2113 				seq_id);
2114 			goto err;
2115 		}
2116 	}
2117 
2118 	panel->vbt.dsi.data = data;
2119 	panel->vbt.dsi.size = seq_size;
2120 	panel->vbt.dsi.seq_version = sequence->version;
2121 
2122 	fixup_mipi_sequences(display, panel);
2123 
2124 	drm_dbg_kms(display->drm, "MIPI related VBT parsing complete\n");
2125 	return;
2126 
2127 err:
2128 	kfree(data);
2129 	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2130 }
2131 
2132 static void
parse_compression_parameters(struct intel_display * display)2133 parse_compression_parameters(struct intel_display *display)
2134 {
2135 	const struct bdb_compression_parameters *params;
2136 	struct intel_bios_encoder_data *devdata;
2137 	u16 block_size;
2138 	int index;
2139 
2140 	if (display->vbt.version < 198)
2141 		return;
2142 
2143 	params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS);
2144 	if (params) {
2145 		/* Sanity checks */
2146 		if (params->entry_size != sizeof(params->data[0])) {
2147 			drm_dbg_kms(display->drm,
2148 				    "VBT: unsupported compression param entry size\n");
2149 			return;
2150 		}
2151 
2152 		block_size = get_blocksize(params);
2153 		if (block_size < sizeof(*params)) {
2154 			drm_dbg_kms(display->drm,
2155 				    "VBT: expected 16 compression param entries\n");
2156 			return;
2157 		}
2158 	}
2159 
2160 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
2161 		const struct child_device_config *child = &devdata->child;
2162 
2163 		if (!child->compression_enable)
2164 			continue;
2165 
2166 		if (!params) {
2167 			drm_dbg_kms(display->drm,
2168 				    "VBT: compression params not available\n");
2169 			continue;
2170 		}
2171 
2172 		if (child->compression_method_cps) {
2173 			drm_dbg_kms(display->drm,
2174 				    "VBT: CPS compression not supported\n");
2175 			continue;
2176 		}
2177 
2178 		index = child->compression_structure_index;
2179 
2180 		devdata->dsc = kmemdup(&params->data[index],
2181 				       sizeof(*devdata->dsc), GFP_KERNEL);
2182 	}
2183 }
2184 
translate_iboost(struct intel_display * display,u8 val)2185 static u8 translate_iboost(struct intel_display *display, u8 val)
2186 {
2187 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2188 
2189 	if (val >= ARRAY_SIZE(mapping)) {
2190 		drm_dbg_kms(display->drm,
2191 			    "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2192 		return 0;
2193 	}
2194 	return mapping[val];
2195 }
2196 
2197 static const u8 cnp_ddc_pin_map[] = {
2198 	[0] = 0, /* N/A */
2199 	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2200 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2201 	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2202 	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2203 };
2204 
2205 static const u8 icp_ddc_pin_map[] = {
2206 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2207 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2208 	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2209 	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2210 	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2211 	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2212 	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2213 	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2214 	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2215 };
2216 
2217 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2218 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2219 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2220 	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2221 	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2222 };
2223 
2224 static const u8 adls_ddc_pin_map[] = {
2225 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2226 	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2227 	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2228 	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2229 	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2230 };
2231 
2232 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2233 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2234 	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2235 	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2236 };
2237 
2238 static const u8 adlp_ddc_pin_map[] = {
2239 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2240 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2241 	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2242 	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2243 	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2244 	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2245 };
2246 
map_ddc_pin(struct intel_display * display,u8 vbt_pin)2247 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin)
2248 {
2249 	const u8 *ddc_pin_map;
2250 	int i, n_entries;
2251 
2252 	if (INTEL_PCH_TYPE(display) >= PCH_MTL || display->platform.alderlake_p) {
2253 		ddc_pin_map = adlp_ddc_pin_map;
2254 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2255 	} else if (display->platform.alderlake_s) {
2256 		ddc_pin_map = adls_ddc_pin_map;
2257 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2258 	} else if (INTEL_PCH_TYPE(display) >= PCH_DG1) {
2259 		return vbt_pin;
2260 	} else if (display->platform.rocketlake && INTEL_PCH_TYPE(display) == PCH_TGP) {
2261 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2262 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2263 	} else if (HAS_PCH_TGP(display) && DISPLAY_VER(display) == 9) {
2264 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2265 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2266 	} else if (INTEL_PCH_TYPE(display) >= PCH_ICP) {
2267 		ddc_pin_map = icp_ddc_pin_map;
2268 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2269 	} else if (HAS_PCH_CNP(display)) {
2270 		ddc_pin_map = cnp_ddc_pin_map;
2271 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2272 	} else {
2273 		/* Assuming direct map */
2274 		return vbt_pin;
2275 	}
2276 
2277 	for (i = 0; i < n_entries; i++) {
2278 		if (ddc_pin_map[i] == vbt_pin)
2279 			return i;
2280 	}
2281 
2282 	drm_dbg_kms(display->drm,
2283 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2284 		    vbt_pin);
2285 	return 0;
2286 }
2287 
dvo_port_type(u8 dvo_port)2288 static u8 dvo_port_type(u8 dvo_port)
2289 {
2290 	switch (dvo_port) {
2291 	case DVO_PORT_HDMIA:
2292 	case DVO_PORT_HDMIB:
2293 	case DVO_PORT_HDMIC:
2294 	case DVO_PORT_HDMID:
2295 	case DVO_PORT_HDMIE:
2296 	case DVO_PORT_HDMIF:
2297 	case DVO_PORT_HDMIG:
2298 	case DVO_PORT_HDMIH:
2299 	case DVO_PORT_HDMII:
2300 		return DVO_PORT_HDMIA;
2301 	case DVO_PORT_DPA:
2302 	case DVO_PORT_DPB:
2303 	case DVO_PORT_DPC:
2304 	case DVO_PORT_DPD:
2305 	case DVO_PORT_DPE:
2306 	case DVO_PORT_DPF:
2307 	case DVO_PORT_DPG:
2308 	case DVO_PORT_DPH:
2309 	case DVO_PORT_DPI:
2310 		return DVO_PORT_DPA;
2311 	case DVO_PORT_MIPIA:
2312 	case DVO_PORT_MIPIB:
2313 	case DVO_PORT_MIPIC:
2314 	case DVO_PORT_MIPID:
2315 		return DVO_PORT_MIPIA;
2316 	default:
2317 		return dvo_port;
2318 	}
2319 }
2320 
__dvo_port_to_port(int n_ports,int n_dvo,const int port_mapping[][3],u8 dvo_port)2321 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2322 				    const int port_mapping[][3], u8 dvo_port)
2323 {
2324 	enum port port;
2325 	int i;
2326 
2327 	for (port = PORT_A; port < n_ports; port++) {
2328 		for (i = 0; i < n_dvo; i++) {
2329 			if (port_mapping[port][i] == -1)
2330 				break;
2331 
2332 			if (dvo_port == port_mapping[port][i])
2333 				return port;
2334 		}
2335 	}
2336 
2337 	return PORT_NONE;
2338 }
2339 
dvo_port_to_port(struct intel_display * display,u8 dvo_port)2340 static enum port dvo_port_to_port(struct intel_display *display,
2341 				  u8 dvo_port)
2342 {
2343 	/*
2344 	 * Each DDI port can have more than one value on the "DVO Port" field,
2345 	 * so look for all the possible values for each port.
2346 	 */
2347 	static const int port_mapping[][3] = {
2348 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2349 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2350 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2351 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2352 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2353 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2354 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2355 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2356 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2357 	};
2358 	/*
2359 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2360 	 * map to DDI A,B,TC1,TC2 respectively.
2361 	 */
2362 	static const int rkl_port_mapping[][3] = {
2363 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2364 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2365 		[PORT_C] = { -1 },
2366 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2367 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2368 	};
2369 	/*
2370 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2371 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2372 	 */
2373 	static const int adls_port_mapping[][3] = {
2374 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2375 		[PORT_B] = { -1 },
2376 		[PORT_C] = { -1 },
2377 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2378 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2379 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2380 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2381 	};
2382 	static const int xelpd_port_mapping[][3] = {
2383 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2384 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2385 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2386 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2387 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2388 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2389 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2390 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2391 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2392 	};
2393 
2394 	if (DISPLAY_VER(display) >= 13)
2395 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2396 					  ARRAY_SIZE(xelpd_port_mapping[0]),
2397 					  xelpd_port_mapping,
2398 					  dvo_port);
2399 	else if (display->platform.alderlake_s)
2400 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2401 					  ARRAY_SIZE(adls_port_mapping[0]),
2402 					  adls_port_mapping,
2403 					  dvo_port);
2404 	else if (display->platform.dg1 || display->platform.rocketlake)
2405 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2406 					  ARRAY_SIZE(rkl_port_mapping[0]),
2407 					  rkl_port_mapping,
2408 					  dvo_port);
2409 	else
2410 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2411 					  ARRAY_SIZE(port_mapping[0]),
2412 					  port_mapping,
2413 					  dvo_port);
2414 }
2415 
2416 static enum port
dsi_dvo_port_to_port(struct intel_display * display,u8 dvo_port)2417 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port)
2418 {
2419 	switch (dvo_port) {
2420 	case DVO_PORT_MIPIA:
2421 		return PORT_A;
2422 	case DVO_PORT_MIPIC:
2423 		if (DISPLAY_VER(display) >= 11)
2424 			return PORT_B;
2425 		else
2426 			return PORT_C;
2427 	default:
2428 		return PORT_NONE;
2429 	}
2430 }
2431 
intel_bios_encoder_port(const struct intel_bios_encoder_data * devdata)2432 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2433 {
2434 	struct intel_display *display = devdata->display;
2435 	const struct child_device_config *child = &devdata->child;
2436 	enum port port;
2437 
2438 	port = dvo_port_to_port(display, child->dvo_port);
2439 	if (port == PORT_NONE && DISPLAY_VER(display) >= 11)
2440 		port = dsi_dvo_port_to_port(display, child->dvo_port);
2441 
2442 	return port;
2443 }
2444 
parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)2445 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2446 {
2447 	switch (vbt_max_link_rate) {
2448 	default:
2449 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2450 		return 0;
2451 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2452 		return 2000000;
2453 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2454 		return 1350000;
2455 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2456 		return 1000000;
2457 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2458 		return 810000;
2459 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2460 		return 540000;
2461 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2462 		return 270000;
2463 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2464 		return 162000;
2465 	}
2466 }
2467 
parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)2468 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2469 {
2470 	switch (vbt_max_link_rate) {
2471 	default:
2472 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2473 		return 810000;
2474 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2475 		return 540000;
2476 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2477 		return 270000;
2478 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2479 		return 162000;
2480 	}
2481 }
2482 
intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data * devdata)2483 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2484 {
2485 	if (!devdata || devdata->display->vbt.version < 216)
2486 		return 0;
2487 
2488 	if (devdata->display->vbt.version >= 230)
2489 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2490 	else
2491 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2492 }
2493 
intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data * devdata)2494 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2495 {
2496 	if (!devdata || devdata->display->vbt.version < 244)
2497 		return 0;
2498 
2499 	return devdata->child.dp_max_lane_count + 1;
2500 }
2501 
sanitize_device_type(struct intel_bios_encoder_data * devdata,enum port port)2502 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2503 				 enum port port)
2504 {
2505 	struct intel_display *display = devdata->display;
2506 	bool is_hdmi;
2507 
2508 	if (port != PORT_A || DISPLAY_VER(display) >= 12)
2509 		return;
2510 
2511 	if (!intel_bios_encoder_supports_dvi(devdata))
2512 		return;
2513 
2514 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2515 
2516 	drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n",
2517 		    is_hdmi ? "/HDMI" : "");
2518 
2519 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2520 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2521 }
2522 
sanitize_hdmi_level_shift(struct intel_bios_encoder_data * devdata,enum port port)2523 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2524 				      enum port port)
2525 {
2526 	struct intel_display *display = devdata->display;
2527 
2528 	if (!intel_bios_encoder_supports_dvi(devdata))
2529 		return;
2530 
2531 	/*
2532 	 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2533 	 * with a HSW VBT where the level shifter value goes
2534 	 * up to 11, whereas the BDW max is 9.
2535 	 */
2536 	if (display->platform.broadwell && devdata->child.hdmi_level_shifter_value > 9) {
2537 		drm_dbg_kms(display->drm,
2538 			    "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2539 			    port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2540 
2541 		devdata->child.hdmi_level_shifter_value = 9;
2542 	}
2543 }
2544 
2545 static bool
intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data * devdata)2546 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2547 {
2548 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2549 }
2550 
2551 bool
intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data * devdata)2552 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2553 {
2554 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2555 }
2556 
2557 bool
intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data * devdata)2558 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2559 {
2560 	return intel_bios_encoder_supports_dvi(devdata) &&
2561 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2562 }
2563 
2564 bool
intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data * devdata)2565 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2566 {
2567 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2568 }
2569 
2570 bool
intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data * devdata)2571 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2572 {
2573 	return intel_bios_encoder_supports_dp(devdata) &&
2574 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2575 }
2576 
2577 bool
intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data * devdata)2578 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2579 {
2580 	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2581 }
2582 
2583 bool
intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data * devdata)2584 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2585 {
2586 	return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon;
2587 }
2588 
2589 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data * devdata)2590 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2591 {
2592 	if (!devdata || devdata->display->vbt.version < 158 ||
2593 	    DISPLAY_VER(devdata->display) >= 14)
2594 		return -1;
2595 
2596 	return devdata->child.hdmi_level_shifter_value;
2597 }
2598 
intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data * devdata)2599 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2600 {
2601 	if (!devdata || devdata->display->vbt.version < 204)
2602 		return 0;
2603 
2604 	switch (devdata->child.hdmi_max_data_rate) {
2605 	default:
2606 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2607 		fallthrough;
2608 	case HDMI_MAX_DATA_RATE_PLATFORM:
2609 		return 0;
2610 	case HDMI_MAX_DATA_RATE_594:
2611 		return 594000;
2612 	case HDMI_MAX_DATA_RATE_340:
2613 		return 340000;
2614 	case HDMI_MAX_DATA_RATE_300:
2615 		return 300000;
2616 	case HDMI_MAX_DATA_RATE_297:
2617 		return 297000;
2618 	case HDMI_MAX_DATA_RATE_165:
2619 		return 165000;
2620 	}
2621 }
2622 
is_port_valid(struct intel_display * display,enum port port)2623 static bool is_port_valid(struct intel_display *display, enum port port)
2624 {
2625 	/*
2626 	 * On some ICL SKUs port F is not present, but broken VBTs mark
2627 	 * the port as present. Only try to initialize port F for the
2628 	 * SKUs that may actually have it.
2629 	 */
2630 	if (port == PORT_F && display->platform.icelake)
2631 		return display->platform.icelake_port_f;
2632 
2633 	return true;
2634 }
2635 
print_ddi_port(const struct intel_bios_encoder_data * devdata)2636 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2637 {
2638 	struct intel_display *display = devdata->display;
2639 	const struct child_device_config *child = &devdata->child;
2640 	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2641 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2642 	enum port port;
2643 
2644 	port = intel_bios_encoder_port(devdata);
2645 	if (port == PORT_NONE)
2646 		return;
2647 
2648 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2649 	is_dp = intel_bios_encoder_supports_dp(devdata);
2650 	is_crt = intel_bios_encoder_supports_crt(devdata);
2651 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2652 	is_edp = intel_bios_encoder_supports_edp(devdata);
2653 	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2654 
2655 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2656 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2657 
2658 	drm_dbg_kms(display->drm,
2659 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2660 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2661 		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2662 		    intel_bios_encoder_is_lspcon(devdata),
2663 		    supports_typec_usb, supports_tbt,
2664 		    devdata->dsc != NULL);
2665 
2666 	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2667 	if (hdmi_level_shift >= 0) {
2668 		drm_dbg_kms(display->drm,
2669 			    "Port %c VBT HDMI level shift: %d\n",
2670 			    port_name(port), hdmi_level_shift);
2671 	}
2672 
2673 	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2674 	if (max_tmds_clock)
2675 		drm_dbg_kms(display->drm,
2676 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2677 			    port_name(port), max_tmds_clock);
2678 
2679 	/* I_boost config for SKL and above */
2680 	dp_boost_level = intel_bios_dp_boost_level(devdata);
2681 	if (dp_boost_level)
2682 		drm_dbg_kms(display->drm,
2683 			    "Port %c VBT (e)DP boost level: %d\n",
2684 			    port_name(port), dp_boost_level);
2685 
2686 	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2687 	if (hdmi_boost_level)
2688 		drm_dbg_kms(display->drm,
2689 			    "Port %c VBT HDMI boost level: %d\n",
2690 			    port_name(port), hdmi_boost_level);
2691 
2692 	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2693 	if (dp_max_link_rate)
2694 		drm_dbg_kms(display->drm,
2695 			    "Port %c VBT DP max link rate: %d\n",
2696 			    port_name(port), dp_max_link_rate);
2697 
2698 	/*
2699 	 * FIXME need to implement support for VBT
2700 	 * vswing/preemph tables should this ever trigger.
2701 	 */
2702 	drm_WARN(display->drm, child->use_vbt_vswing,
2703 		 "Port %c asks to use VBT vswing/preemph tables\n",
2704 		 port_name(port));
2705 }
2706 
parse_ddi_port(struct intel_bios_encoder_data * devdata)2707 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2708 {
2709 	struct intel_display *display = devdata->display;
2710 	enum port port;
2711 
2712 	port = intel_bios_encoder_port(devdata);
2713 	if (port == PORT_NONE)
2714 		return;
2715 
2716 	if (!is_port_valid(display, port)) {
2717 		drm_dbg_kms(display->drm,
2718 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2719 			    port_name(port));
2720 		return;
2721 	}
2722 
2723 	sanitize_device_type(devdata, port);
2724 	sanitize_hdmi_level_shift(devdata, port);
2725 }
2726 
has_ddi_port_info(struct intel_display * display)2727 static bool has_ddi_port_info(struct intel_display *display)
2728 {
2729 	return DISPLAY_VER(display) >= 5 || display->platform.g4x;
2730 }
2731 
parse_ddi_ports(struct intel_display * display)2732 static void parse_ddi_ports(struct intel_display *display)
2733 {
2734 	struct intel_bios_encoder_data *devdata;
2735 
2736 	if (!has_ddi_port_info(display))
2737 		return;
2738 
2739 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
2740 		parse_ddi_port(devdata);
2741 
2742 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
2743 		print_ddi_port(devdata);
2744 }
2745 
child_device_expected_size(u16 version)2746 static int child_device_expected_size(u16 version)
2747 {
2748 	BUILD_BUG_ON(sizeof(struct child_device_config) < 40);
2749 
2750 	if (version > 256)
2751 		return -ENOENT;
2752 	else if (version >= 256)
2753 		return 40;
2754 	else if (version >= 216)
2755 		return 39;
2756 	else if (version >= 196)
2757 		return 38;
2758 	else if (version >= 195)
2759 		return 37;
2760 	else if (version >= 111)
2761 		return LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2762 	else if (version >= 106)
2763 		return 27;
2764 	else
2765 		return 22;
2766 }
2767 
child_device_size_valid(struct intel_display * display,int size)2768 static bool child_device_size_valid(struct intel_display *display, int size)
2769 {
2770 	int expected_size;
2771 
2772 	expected_size = child_device_expected_size(display->vbt.version);
2773 	if (expected_size < 0) {
2774 		expected_size = sizeof(struct child_device_config);
2775 		drm_dbg_kms(display->drm,
2776 			    "Expected child device config size for VBT version %u not known; assuming %d\n",
2777 			    display->vbt.version, expected_size);
2778 	}
2779 
2780 	/* Flag an error for unexpected size, but continue anyway. */
2781 	if (size != expected_size)
2782 		drm_err(display->drm,
2783 			"Unexpected child device config size %d (expected %d for VBT version %u)\n",
2784 			size, expected_size, display->vbt.version);
2785 
2786 	/* The legacy sized child device config is the minimum we need. */
2787 	if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2788 		drm_dbg_kms(display->drm,
2789 			    "Child device config size %d is too small.\n",
2790 			    size);
2791 		return false;
2792 	}
2793 
2794 	return true;
2795 }
2796 
2797 static void
parse_general_definitions(struct intel_display * display)2798 parse_general_definitions(struct intel_display *display)
2799 {
2800 	const struct bdb_general_definitions *defs;
2801 	struct intel_bios_encoder_data *devdata;
2802 	const struct child_device_config *child;
2803 	int i, child_device_num;
2804 	u16 block_size;
2805 	int bus_pin;
2806 
2807 	defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS);
2808 	if (!defs) {
2809 		drm_dbg_kms(display->drm,
2810 			    "No general definition block is found, no devices defined.\n");
2811 		return;
2812 	}
2813 
2814 	block_size = get_blocksize(defs);
2815 	if (block_size < sizeof(*defs)) {
2816 		drm_dbg_kms(display->drm,
2817 			    "General definitions block too small (%u)\n",
2818 			    block_size);
2819 		return;
2820 	}
2821 
2822 	bus_pin = defs->crt_ddc_gmbus_pin;
2823 	drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2824 	if (intel_gmbus_is_valid_pin(display, bus_pin))
2825 		display->vbt.crt_ddc_pin = bus_pin;
2826 
2827 	if (!child_device_size_valid(display, defs->child_dev_size))
2828 		return;
2829 
2830 	/* get the number of child device */
2831 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2832 
2833 	for (i = 0; i < child_device_num; i++) {
2834 		child = child_device_ptr(defs, i);
2835 		if (!child->device_type)
2836 			continue;
2837 
2838 		drm_dbg_kms(display->drm,
2839 			    "Found VBT child device with type 0x%x\n",
2840 			    child->device_type);
2841 
2842 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2843 		if (!devdata)
2844 			break;
2845 
2846 		devdata->display = display;
2847 
2848 		/*
2849 		 * Copy as much as we know (sizeof) and is available
2850 		 * (child_dev_size) of the child device config. Accessing the
2851 		 * data must depend on VBT version.
2852 		 */
2853 		memcpy(&devdata->child, child,
2854 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2855 
2856 		list_add_tail(&devdata->node, &display->vbt.display_devices);
2857 	}
2858 
2859 	if (list_empty(&display->vbt.display_devices))
2860 		drm_dbg_kms(display->drm,
2861 			    "no child dev is parsed from VBT\n");
2862 }
2863 
2864 /* Common defaults which may be overridden by VBT. */
2865 static void
init_vbt_defaults(struct intel_display * display)2866 init_vbt_defaults(struct intel_display *display)
2867 {
2868 	display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2869 
2870 	/* general features */
2871 	display->vbt.int_tv_support = 1;
2872 	display->vbt.int_crt_support = 1;
2873 
2874 	/* driver features */
2875 	display->vbt.int_lvds_support = 1;
2876 
2877 	/* Default to using SSC */
2878 	display->vbt.lvds_use_ssc = 1;
2879 	/*
2880 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2881 	 * clock for LVDS.
2882 	 */
2883 	display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display,
2884 							      !HAS_PCH_SPLIT(display));
2885 	drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n",
2886 		    display->vbt.lvds_ssc_freq);
2887 }
2888 
2889 /* Common defaults which may be overridden by VBT. */
2890 static void
init_vbt_panel_defaults(struct intel_panel * panel)2891 init_vbt_panel_defaults(struct intel_panel *panel)
2892 {
2893 	/* Default to having backlight */
2894 	panel->vbt.backlight.present = true;
2895 
2896 	/* LFP panel data */
2897 	panel->vbt.lvds_dither = true;
2898 }
2899 
2900 /* Defaults to initialize only if there is no VBT. */
2901 static void
init_vbt_missing_defaults(struct intel_display * display)2902 init_vbt_missing_defaults(struct intel_display *display)
2903 {
2904 	unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask;
2905 	enum port port;
2906 
2907 	if (!HAS_DDI(display) && !display->platform.cherryview)
2908 		return;
2909 
2910 	for_each_port_masked(port, ports) {
2911 		struct intel_bios_encoder_data *devdata;
2912 		struct child_device_config *child;
2913 		enum phy phy = intel_port_to_phy(display, port);
2914 
2915 		/*
2916 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2917 		 * to detect it.
2918 		 */
2919 		if (intel_phy_is_tc(display, phy))
2920 			continue;
2921 
2922 		/* Create fake child device config */
2923 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2924 		if (!devdata)
2925 			break;
2926 
2927 		devdata->display = display;
2928 		child = &devdata->child;
2929 
2930 		if (port == PORT_F)
2931 			child->dvo_port = DVO_PORT_HDMIF;
2932 		else if (port == PORT_E)
2933 			child->dvo_port = DVO_PORT_HDMIE;
2934 		else
2935 			child->dvo_port = DVO_PORT_HDMIA + port;
2936 
2937 		if (port != PORT_A && port != PORT_E)
2938 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2939 
2940 		if (port != PORT_E)
2941 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2942 
2943 		if (port == PORT_A)
2944 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2945 
2946 		list_add_tail(&devdata->node, &display->vbt.display_devices);
2947 
2948 		drm_dbg_kms(display->drm,
2949 			    "Generating default VBT child device with type 0x%04x on port %c\n",
2950 			    child->device_type, port_name(port));
2951 	}
2952 
2953 	/* Bypass some minimum baseline VBT version checks */
2954 	display->vbt.version = 155;
2955 }
2956 
get_bdb_header(const struct vbt_header * vbt)2957 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2958 {
2959 	const void *_vbt = vbt;
2960 
2961 	return _vbt + vbt->bdb_offset;
2962 }
2963 
2964 static const char vbt_signature[] = "$VBT";
2965 static const int vbt_signature_len = 4;
2966 
2967 /**
2968  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2969  * @display:	display device
2970  * @buf:	pointer to a buffer to validate
2971  * @size:	size of the buffer
2972  *
2973  * Returns true on valid VBT.
2974  */
intel_bios_is_valid_vbt(struct intel_display * display,const void * buf,size_t size)2975 bool intel_bios_is_valid_vbt(struct intel_display *display,
2976 			     const void *buf, size_t size)
2977 {
2978 	const struct vbt_header *vbt = buf;
2979 	const struct bdb_header *bdb;
2980 
2981 	if (!vbt)
2982 		return false;
2983 
2984 	if (sizeof(struct vbt_header) > size) {
2985 		drm_dbg_kms(display->drm, "VBT header incomplete\n");
2986 		return false;
2987 	}
2988 
2989 	if (memcmp(vbt->signature, vbt_signature, vbt_signature_len)) {
2990 		drm_dbg_kms(display->drm, "VBT invalid signature\n");
2991 		return false;
2992 	}
2993 
2994 	if (vbt->vbt_size > size) {
2995 		drm_dbg_kms(display->drm,
2996 			    "VBT incomplete (vbt_size overflows)\n");
2997 		return false;
2998 	}
2999 
3000 	size = vbt->vbt_size;
3001 
3002 	if (range_overflows_t(size_t,
3003 			      vbt->bdb_offset,
3004 			      sizeof(struct bdb_header),
3005 			      size)) {
3006 		drm_dbg_kms(display->drm, "BDB header incomplete\n");
3007 		return false;
3008 	}
3009 
3010 	bdb = get_bdb_header(vbt);
3011 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
3012 		drm_dbg_kms(display->drm, "BDB incomplete\n");
3013 		return false;
3014 	}
3015 
3016 	return vbt;
3017 }
3018 
firmware_get_vbt(struct intel_display * display,size_t * size)3019 static struct vbt_header *firmware_get_vbt(struct intel_display *display,
3020 					   size_t *size)
3021 {
3022 	struct vbt_header *vbt = NULL;
3023 	const struct firmware *fw = NULL;
3024 	const char *name = display->params.vbt_firmware;
3025 	int ret;
3026 
3027 	if (!name || !*name)
3028 		return NULL;
3029 
3030 	ret = request_firmware(&fw, name, display->drm->dev);
3031 	if (ret) {
3032 		drm_err(display->drm,
3033 			"Requesting VBT firmware \"%s\" failed (%d)\n",
3034 			name, ret);
3035 		return NULL;
3036 	}
3037 
3038 	if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) {
3039 		vbt = kmemdup(fw->data, fw->size, GFP_KERNEL);
3040 		if (vbt) {
3041 			drm_dbg_kms(display->drm,
3042 				    "Found valid VBT firmware \"%s\"\n", name);
3043 			if (size)
3044 				*size = fw->size;
3045 		}
3046 	} else {
3047 		drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n",
3048 			    name);
3049 	}
3050 
3051 	release_firmware(fw);
3052 
3053 	return vbt;
3054 }
3055 
oprom_get_vbt(struct intel_display * display,struct intel_rom * rom,size_t * size,const char * type)3056 static struct vbt_header *oprom_get_vbt(struct intel_display *display,
3057 					struct intel_rom *rom,
3058 					size_t *size, const char *type)
3059 {
3060 	struct vbt_header *vbt;
3061 	size_t vbt_size;
3062 	loff_t offset;
3063 
3064 	if (!rom)
3065 		return NULL;
3066 
3067 	BUILD_BUG_ON(vbt_signature_len != sizeof(vbt_signature) - 1);
3068 	BUILD_BUG_ON(vbt_signature_len != sizeof(u32));
3069 
3070 	offset = intel_rom_find(rom, *(const u32 *)vbt_signature);
3071 	if (offset < 0)
3072 		goto err_free_rom;
3073 
3074 	if (sizeof(struct vbt_header) > intel_rom_size(rom) - offset) {
3075 		drm_dbg_kms(display->drm, "VBT header incomplete\n");
3076 		goto err_free_rom;
3077 	}
3078 
3079 	BUILD_BUG_ON(sizeof(vbt->vbt_size) != sizeof(u16));
3080 
3081 	vbt_size = intel_rom_read16(rom, offset + offsetof(struct vbt_header, vbt_size));
3082 	if (vbt_size > intel_rom_size(rom) - offset) {
3083 		drm_dbg_kms(display->drm, "VBT incomplete (vbt_size overflows)\n");
3084 		goto err_free_rom;
3085 	}
3086 
3087 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3088 	if (!vbt)
3089 		goto err_free_rom;
3090 
3091 	intel_rom_read_block(rom, vbt, offset, vbt_size);
3092 
3093 	if (!intel_bios_is_valid_vbt(display, vbt, vbt_size))
3094 		goto err_free_vbt;
3095 
3096 	drm_dbg_kms(display->drm, "Found valid VBT in %s\n", type);
3097 
3098 	if (size)
3099 		*size = vbt_size;
3100 
3101 	intel_rom_free(rom);
3102 
3103 	return vbt;
3104 
3105 err_free_vbt:
3106 	kfree(vbt);
3107 err_free_rom:
3108 	intel_rom_free(rom);
3109 	return NULL;
3110 }
3111 
intel_bios_get_vbt(struct intel_display * display,size_t * sizep)3112 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display,
3113 						   size_t *sizep)
3114 {
3115 	struct drm_i915_private *i915 = to_i915(display->drm);
3116 	const struct vbt_header *vbt = NULL;
3117 
3118 	vbt = firmware_get_vbt(display, sizep);
3119 
3120 	if (!vbt)
3121 		vbt = intel_opregion_get_vbt(display, sizep);
3122 
3123 	/*
3124 	 * If the OpRegion does not have VBT, look in SPI flash
3125 	 * through MMIO or PCI mapping
3126 	 */
3127 	if (!vbt && display->platform.dgfx)
3128 		with_intel_display_rpm(display)
3129 			vbt = oprom_get_vbt(display, intel_rom_spi(i915), sizep, "SPI flash");
3130 
3131 	if (!vbt)
3132 		with_intel_display_rpm(display)
3133 			vbt = oprom_get_vbt(display, intel_rom_pci(i915), sizep, "PCI ROM");
3134 
3135 	return vbt;
3136 }
3137 
3138 /**
3139  * intel_bios_init - find VBT and initialize settings from the BIOS
3140  * @display: display device instance
3141  *
3142  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3143  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3144  * initialize some defaults if the VBT is not present at all.
3145  */
intel_bios_init(struct intel_display * display)3146 void intel_bios_init(struct intel_display *display)
3147 {
3148 	const struct vbt_header *vbt;
3149 	const struct bdb_header *bdb;
3150 
3151 	INIT_LIST_HEAD(&display->vbt.display_devices);
3152 	INIT_LIST_HEAD(&display->vbt.bdb_blocks);
3153 
3154 	if (!HAS_DISPLAY(display)) {
3155 		drm_dbg_kms(display->drm,
3156 			    "Skipping VBT init due to disabled display.\n");
3157 		return;
3158 	}
3159 
3160 	init_vbt_defaults(display);
3161 
3162 	vbt = intel_bios_get_vbt(display, NULL);
3163 
3164 	if (!vbt)
3165 		goto out;
3166 
3167 	bdb = get_bdb_header(vbt);
3168 	display->vbt.version = bdb->version;
3169 
3170 	drm_dbg_kms(display->drm,
3171 		    "VBT signature \"%.*s\", BDB version %d\n",
3172 		    (int)sizeof(vbt->signature), vbt->signature,
3173 		    display->vbt.version);
3174 
3175 	init_bdb_blocks(display, bdb);
3176 
3177 	/* Grab useful general definitions */
3178 	parse_general_features(display);
3179 	parse_general_definitions(display);
3180 	parse_driver_features(display);
3181 
3182 	/* Depends on child device list */
3183 	parse_compression_parameters(display);
3184 
3185 out:
3186 	if (!vbt) {
3187 		drm_info(display->drm,
3188 			 "Failed to find VBIOS tables (VBT)\n");
3189 		init_vbt_missing_defaults(display);
3190 	}
3191 
3192 	/* Further processing on pre-parsed or generated child device data */
3193 	parse_sdvo_device_mapping(display);
3194 	parse_ddi_ports(display);
3195 
3196 	kfree(vbt);
3197 }
3198 
intel_bios_init_panel(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)3199 static void intel_bios_init_panel(struct intel_display *display,
3200 				  struct intel_panel *panel,
3201 				  const struct intel_bios_encoder_data *devdata,
3202 				  const struct drm_edid *drm_edid,
3203 				  bool use_fallback)
3204 {
3205 	/* already have it? */
3206 	if (panel->vbt.panel_type >= 0) {
3207 		drm_WARN_ON(display->drm, !use_fallback);
3208 		return;
3209 	}
3210 
3211 	panel->vbt.panel_type = get_panel_type(display, devdata,
3212 					       drm_edid, use_fallback);
3213 	if (panel->vbt.panel_type < 0) {
3214 		drm_WARN_ON(display->drm, use_fallback);
3215 		return;
3216 	}
3217 
3218 	init_vbt_panel_defaults(panel);
3219 
3220 	parse_panel_options(display, panel);
3221 	parse_generic_dtd(display, panel);
3222 	parse_lfp_data(display, panel);
3223 	parse_lfp_backlight(display, panel);
3224 	parse_sdvo_lvds_data(display, panel);
3225 	parse_panel_driver_features(display, panel);
3226 	parse_power_conservation_features(display, panel);
3227 	parse_edp(display, panel);
3228 	parse_psr(display, panel);
3229 	parse_mipi_config(display, panel);
3230 	parse_mipi_sequence(display, panel);
3231 }
3232 
intel_bios_init_panel_early(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata)3233 void intel_bios_init_panel_early(struct intel_display *display,
3234 				 struct intel_panel *panel,
3235 				 const struct intel_bios_encoder_data *devdata)
3236 {
3237 	intel_bios_init_panel(display, panel, devdata, NULL, false);
3238 }
3239 
intel_bios_init_panel_late(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid)3240 void intel_bios_init_panel_late(struct intel_display *display,
3241 				struct intel_panel *panel,
3242 				const struct intel_bios_encoder_data *devdata,
3243 				const struct drm_edid *drm_edid)
3244 {
3245 	intel_bios_init_panel(display, panel, devdata, drm_edid, true);
3246 }
3247 
3248 /**
3249  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3250  * @display: display device instance
3251  */
intel_bios_driver_remove(struct intel_display * display)3252 void intel_bios_driver_remove(struct intel_display *display)
3253 {
3254 	struct intel_bios_encoder_data *devdata, *nd;
3255 	struct bdb_block_entry *entry, *ne;
3256 
3257 	list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices,
3258 				 node) {
3259 		list_del(&devdata->node);
3260 		kfree(devdata->dsc);
3261 		kfree(devdata);
3262 	}
3263 
3264 	list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) {
3265 		list_del(&entry->node);
3266 		kfree(entry);
3267 	}
3268 }
3269 
intel_bios_fini_panel(struct intel_panel * panel)3270 void intel_bios_fini_panel(struct intel_panel *panel)
3271 {
3272 	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3273 	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3274 	kfree(panel->vbt.lfp_vbt_mode);
3275 	panel->vbt.lfp_vbt_mode = NULL;
3276 	kfree(panel->vbt.dsi.data);
3277 	panel->vbt.dsi.data = NULL;
3278 	kfree(panel->vbt.dsi.pps);
3279 	panel->vbt.dsi.pps = NULL;
3280 	kfree(panel->vbt.dsi.config);
3281 	panel->vbt.dsi.config = NULL;
3282 	kfree(panel->vbt.dsi.deassert_seq);
3283 	panel->vbt.dsi.deassert_seq = NULL;
3284 }
3285 
3286 /**
3287  * intel_bios_is_tv_present - is integrated TV present in VBT
3288  * @display: display device instance
3289  *
3290  * Return true if TV is present. If no child devices were parsed from VBT,
3291  * assume TV is present.
3292  */
intel_bios_is_tv_present(struct intel_display * display)3293 bool intel_bios_is_tv_present(struct intel_display *display)
3294 {
3295 	const struct intel_bios_encoder_data *devdata;
3296 
3297 	if (!display->vbt.int_tv_support)
3298 		return false;
3299 
3300 	if (list_empty(&display->vbt.display_devices))
3301 		return true;
3302 
3303 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3304 		const struct child_device_config *child = &devdata->child;
3305 
3306 		/*
3307 		 * If the device type is not TV, continue.
3308 		 */
3309 		switch (child->device_type) {
3310 		case DEVICE_TYPE_INT_TV:
3311 		case DEVICE_TYPE_TV:
3312 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3313 			break;
3314 		default:
3315 			continue;
3316 		}
3317 		/* Only when the addin_offset is non-zero, it is regarded
3318 		 * as present.
3319 		 */
3320 		if (child->addin_offset)
3321 			return true;
3322 	}
3323 
3324 	return false;
3325 }
3326 
3327 /**
3328  * intel_bios_is_lvds_present - is LVDS present in VBT
3329  * @display: display device instance
3330  * @i2c_pin:	i2c pin for LVDS if present
3331  *
3332  * Return true if LVDS is present. If no child devices were parsed from VBT,
3333  * assume LVDS is present.
3334  */
intel_bios_is_lvds_present(struct intel_display * display,u8 * i2c_pin)3335 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin)
3336 {
3337 	const struct intel_bios_encoder_data *devdata;
3338 
3339 	if (list_empty(&display->vbt.display_devices))
3340 		return true;
3341 
3342 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3343 		const struct child_device_config *child = &devdata->child;
3344 
3345 		/* If the device type is not LFP, continue.
3346 		 * We have to check both the new identifiers as well as the
3347 		 * old for compatibility with some BIOSes.
3348 		 */
3349 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3350 		    child->device_type != DEVICE_TYPE_LFP)
3351 			continue;
3352 
3353 		if (intel_gmbus_is_valid_pin(display, child->i2c_pin))
3354 			*i2c_pin = child->i2c_pin;
3355 
3356 		/* However, we cannot trust the BIOS writers to populate
3357 		 * the VBT correctly.  Since LVDS requires additional
3358 		 * information from AIM blocks, a non-zero addin offset is
3359 		 * a good indicator that the LVDS is actually present.
3360 		 */
3361 		if (child->addin_offset)
3362 			return true;
3363 
3364 		/* But even then some BIOS writers perform some black magic
3365 		 * and instantiate the device without reference to any
3366 		 * additional data.  Trust that if the VBT was written into
3367 		 * the OpRegion then they have validated the LVDS's existence.
3368 		 */
3369 		return intel_opregion_vbt_present(display);
3370 	}
3371 
3372 	return false;
3373 }
3374 
3375 /**
3376  * intel_bios_is_port_present - is the specified digital port present
3377  * @display: display device instance
3378  * @port:	port to check
3379  *
3380  * Return true if the device in %port is present.
3381  */
intel_bios_is_port_present(struct intel_display * display,enum port port)3382 bool intel_bios_is_port_present(struct intel_display *display, enum port port)
3383 {
3384 	const struct intel_bios_encoder_data *devdata;
3385 
3386 	if (WARN_ON(!has_ddi_port_info(display)))
3387 		return true;
3388 
3389 	if (!is_port_valid(display, port))
3390 		return false;
3391 
3392 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3393 		const struct child_device_config *child = &devdata->child;
3394 
3395 		if (dvo_port_to_port(display, child->dvo_port) == port)
3396 			return true;
3397 	}
3398 
3399 	return false;
3400 }
3401 
intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data * devdata)3402 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3403 {
3404 	const struct child_device_config *child = &devdata->child;
3405 
3406 	if (!devdata)
3407 		return false;
3408 
3409 	if (!intel_bios_encoder_supports_dp(devdata) ||
3410 	    !intel_bios_encoder_supports_hdmi(devdata))
3411 		return false;
3412 
3413 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3414 		return true;
3415 
3416 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3417 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3418 	    child->aux_channel != 0)
3419 		return true;
3420 
3421 	return false;
3422 }
3423 
3424 /**
3425  * intel_bios_is_dsi_present - is DSI present in VBT
3426  * @display: display device instance
3427  * @port:	port for DSI if present
3428  *
3429  * Return true if DSI is present, and return the port in %port.
3430  */
intel_bios_is_dsi_present(struct intel_display * display,enum port * port)3431 bool intel_bios_is_dsi_present(struct intel_display *display,
3432 			       enum port *port)
3433 {
3434 	const struct intel_bios_encoder_data *devdata;
3435 
3436 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3437 		const struct child_device_config *child = &devdata->child;
3438 		u8 dvo_port = child->dvo_port;
3439 
3440 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3441 			continue;
3442 
3443 		if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) {
3444 			drm_dbg_kms(display->drm,
3445 				    "VBT has unsupported DSI port %c\n",
3446 				    port_name(dvo_port - DVO_PORT_MIPIA));
3447 			continue;
3448 		}
3449 
3450 		if (port)
3451 			*port = dsi_dvo_port_to_port(display, dvo_port);
3452 		return true;
3453 	}
3454 
3455 	return false;
3456 }
3457 
fill_dsc(struct intel_crtc_state * crtc_state,struct dsc_compression_parameters_entry * dsc,int dsc_max_bpc)3458 static void fill_dsc(struct intel_crtc_state *crtc_state,
3459 		     struct dsc_compression_parameters_entry *dsc,
3460 		     int dsc_max_bpc)
3461 {
3462 	struct intel_display *display = to_intel_display(crtc_state);
3463 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3464 	int bpc = 8;
3465 
3466 	vdsc_cfg->dsc_version_major = dsc->version_major;
3467 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3468 
3469 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3470 		bpc = 12;
3471 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3472 		bpc = 10;
3473 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3474 		bpc = 8;
3475 	else
3476 		drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n",
3477 			    dsc_max_bpc);
3478 
3479 	crtc_state->pipe_bpp = bpc * 3;
3480 
3481 	crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp,
3482 								 VBT_DSC_MAX_BPP(dsc->max_bpp)));
3483 
3484 	/*
3485 	 * FIXME: This is ugly, and slice count should take DSC engine
3486 	 * throughput etc. into account.
3487 	 *
3488 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3489 	 */
3490 	if (dsc->slices_per_line & BIT(2)) {
3491 		crtc_state->dsc.slice_count = 4;
3492 	} else if (dsc->slices_per_line & BIT(1)) {
3493 		crtc_state->dsc.slice_count = 2;
3494 	} else {
3495 		/* FIXME */
3496 		if (!(dsc->slices_per_line & BIT(0)))
3497 			drm_dbg_kms(display->drm,
3498 				    "VBT: Unsupported DSC slice count for DSI\n");
3499 
3500 		crtc_state->dsc.slice_count = 1;
3501 	}
3502 
3503 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3504 	    crtc_state->dsc.slice_count != 0)
3505 		drm_dbg_kms(display->drm,
3506 			    "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3507 			    crtc_state->hw.adjusted_mode.crtc_hdisplay,
3508 			    crtc_state->dsc.slice_count);
3509 
3510 	/*
3511 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3512 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3513 	 */
3514 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3515 							    dsc->rc_buffer_size);
3516 
3517 	/* FIXME: DSI spec says bpc + 1 for this one */
3518 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3519 
3520 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3521 
3522 	vdsc_cfg->slice_height = dsc->slice_height;
3523 }
3524 
3525 /* FIXME: initially DSI specific */
intel_bios_get_dsc_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int dsc_max_bpc)3526 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3527 			       struct intel_crtc_state *crtc_state,
3528 			       int dsc_max_bpc)
3529 {
3530 	struct intel_display *display = to_intel_display(encoder);
3531 	const struct intel_bios_encoder_data *devdata;
3532 
3533 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3534 		const struct child_device_config *child = &devdata->child;
3535 
3536 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3537 			continue;
3538 
3539 		if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) {
3540 			if (!devdata->dsc)
3541 				return false;
3542 
3543 			fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3544 
3545 			return true;
3546 		}
3547 	}
3548 
3549 	return false;
3550 }
3551 
3552 static const u8 adlp_aux_ch_map[] = {
3553 	[AUX_CH_A] = DP_AUX_A,
3554 	[AUX_CH_B] = DP_AUX_B,
3555 	[AUX_CH_C] = DP_AUX_C,
3556 	[AUX_CH_D_XELPD] = DP_AUX_D,
3557 	[AUX_CH_E_XELPD] = DP_AUX_E,
3558 	[AUX_CH_USBC1] = DP_AUX_F,
3559 	[AUX_CH_USBC2] = DP_AUX_G,
3560 	[AUX_CH_USBC3] = DP_AUX_H,
3561 	[AUX_CH_USBC4] = DP_AUX_I,
3562 };
3563 
3564 /*
3565  * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3566  * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3567  */
3568 static const u8 adls_aux_ch_map[] = {
3569 	[AUX_CH_A] = DP_AUX_A,
3570 	[AUX_CH_USBC1] = DP_AUX_B,
3571 	[AUX_CH_USBC2] = DP_AUX_C,
3572 	[AUX_CH_USBC3] = DP_AUX_D,
3573 	[AUX_CH_USBC4] = DP_AUX_E,
3574 };
3575 
3576 /*
3577  * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3578  * map to DDI A,B,TC1,TC2 respectively.
3579  */
3580 static const u8 rkl_aux_ch_map[] = {
3581 	[AUX_CH_A] = DP_AUX_A,
3582 	[AUX_CH_B] = DP_AUX_B,
3583 	[AUX_CH_USBC1] = DP_AUX_C,
3584 	[AUX_CH_USBC2] = DP_AUX_D,
3585 };
3586 
3587 static const u8 direct_aux_ch_map[] = {
3588 	[AUX_CH_A] = DP_AUX_A,
3589 	[AUX_CH_B] = DP_AUX_B,
3590 	[AUX_CH_C] = DP_AUX_C,
3591 	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3592 	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3593 	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3594 	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3595 	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3596 	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3597 };
3598 
map_aux_ch(struct intel_display * display,u8 aux_channel)3599 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel)
3600 {
3601 	const u8 *aux_ch_map;
3602 	int i, n_entries;
3603 
3604 	if (DISPLAY_VER(display) >= 13) {
3605 		aux_ch_map = adlp_aux_ch_map;
3606 		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3607 	} else if (display->platform.alderlake_s) {
3608 		aux_ch_map = adls_aux_ch_map;
3609 		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3610 	} else if (display->platform.dg1 || display->platform.rocketlake) {
3611 		aux_ch_map = rkl_aux_ch_map;
3612 		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3613 	} else {
3614 		aux_ch_map = direct_aux_ch_map;
3615 		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3616 	}
3617 
3618 	for (i = 0; i < n_entries; i++) {
3619 		if (aux_ch_map[i] == aux_channel)
3620 			return i;
3621 	}
3622 
3623 	drm_dbg_kms(display->drm,
3624 		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3625 		    aux_channel);
3626 
3627 	return AUX_CH_NONE;
3628 }
3629 
intel_bios_dp_aux_ch(const struct intel_bios_encoder_data * devdata)3630 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3631 {
3632 	if (!devdata || !devdata->child.aux_channel)
3633 		return AUX_CH_NONE;
3634 
3635 	return map_aux_ch(devdata->display, devdata->child.aux_channel);
3636 }
3637 
intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data * devdata)3638 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3639 {
3640 	struct intel_display *display;
3641 	u8 aux_channel;
3642 	int count = 0;
3643 
3644 	if (!devdata || !devdata->child.aux_channel)
3645 		return false;
3646 
3647 	display = devdata->display;
3648 	aux_channel = devdata->child.aux_channel;
3649 
3650 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3651 		if (intel_bios_encoder_supports_dp(devdata) &&
3652 		    aux_channel == devdata->child.aux_channel)
3653 			count++;
3654 	}
3655 
3656 	return count > 1;
3657 }
3658 
intel_bios_dp_boost_level(const struct intel_bios_encoder_data * devdata)3659 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3660 {
3661 	if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3662 		return 0;
3663 
3664 	return translate_iboost(devdata->display, devdata->child.dp_iboost_level);
3665 }
3666 
intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data * devdata)3667 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3668 {
3669 	if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3670 		return 0;
3671 
3672 	return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level);
3673 }
3674 
intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data * devdata)3675 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3676 {
3677 	if (!devdata || !devdata->child.ddc_pin)
3678 		return 0;
3679 
3680 	return map_ddc_pin(devdata->display, devdata->child.ddc_pin);
3681 }
3682 
intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data * devdata)3683 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3684 {
3685 	return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3686 }
3687 
intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data * devdata)3688 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3689 {
3690 	return devdata->display->vbt.version >= 209 && devdata->child.tbt;
3691 }
3692 
intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data * devdata)3693 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3694 {
3695 	return devdata && devdata->child.lane_reversal;
3696 }
3697 
intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data * devdata)3698 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3699 {
3700 	return devdata && devdata->child.hpd_invert;
3701 }
3702 
3703 const struct intel_bios_encoder_data *
intel_bios_encoder_data_lookup(struct intel_display * display,enum port port)3704 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port)
3705 {
3706 	struct intel_bios_encoder_data *devdata;
3707 
3708 	list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3709 		if (intel_bios_encoder_port(devdata) == port)
3710 			return devdata;
3711 	}
3712 
3713 	return NULL;
3714 }
3715 
intel_bios_for_each_encoder(struct intel_display * display,void (* func)(struct intel_display * display,const struct intel_bios_encoder_data * devdata))3716 void intel_bios_for_each_encoder(struct intel_display *display,
3717 				 void (*func)(struct intel_display *display,
3718 					      const struct intel_bios_encoder_data *devdata))
3719 {
3720 	struct intel_bios_encoder_data *devdata;
3721 
3722 	list_for_each_entry(devdata, &display->vbt.display_devices, node)
3723 		func(display, devdata);
3724 }
3725 
intel_bios_vbt_show(struct seq_file * m,void * unused)3726 static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3727 {
3728 	struct intel_display *display = m->private;
3729 	const void *vbt;
3730 	size_t vbt_size;
3731 
3732 	vbt = intel_bios_get_vbt(display, &vbt_size);
3733 
3734 	if (vbt) {
3735 		seq_write(m, vbt, vbt_size);
3736 		kfree(vbt);
3737 	}
3738 
3739 	return 0;
3740 }
3741 
3742 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3743 
intel_bios_debugfs_register(struct intel_display * display)3744 void intel_bios_debugfs_register(struct intel_display *display)
3745 {
3746 	struct drm_minor *minor = display->drm->primary;
3747 
3748 	debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3749 			    display, &intel_bios_vbt_fops);
3750 }
3751