1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38 
39 #include "internal.h"
40 
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)	(0)
43 #endif
44 
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)		(addr)
47 #endif
48 
49 static void unmap_region(struct mm_struct *mm,
50 		struct vm_area_struct *vma, struct vm_area_struct *prev,
51 		unsigned long start, unsigned long end);
52 
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58 
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type	prot
64  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68  *
69  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78 
vm_get_page_prot(unsigned long vm_flags)79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 	return __pgprot(pgprot_val(protection_map[vm_flags &
82 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86 
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95 
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114 	unsigned long free, allowed;
115 
116 	vm_acct_memory(pages);
117 
118 	/*
119 	 * Sometimes we want to use more memory than we have
120 	 */
121 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122 		return 0;
123 
124 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 		free = global_page_state(NR_FREE_PAGES);
126 		free += global_page_state(NR_FILE_PAGES);
127 
128 		/*
129 		 * shmem pages shouldn't be counted as free in this
130 		 * case, they can't be purged, only swapped out, and
131 		 * that won't affect the overall amount of available
132 		 * memory in the system.
133 		 */
134 		free -= global_page_state(NR_SHMEM);
135 
136 		free += nr_swap_pages;
137 
138 		/*
139 		 * Any slabs which are created with the
140 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 		 * which are reclaimable, under pressure.  The dentry
142 		 * cache and most inode caches should fall into this
143 		 */
144 		free += global_page_state(NR_SLAB_RECLAIMABLE);
145 
146 		/*
147 		 * Leave reserved pages. The pages are not for anonymous pages.
148 		 */
149 		if (free <= totalreserve_pages)
150 			goto error;
151 		else
152 			free -= totalreserve_pages;
153 
154 		/*
155 		 * Leave the last 3% for root
156 		 */
157 		if (!cap_sys_admin)
158 			free -= free / 32;
159 
160 		if (free > pages)
161 			return 0;
162 
163 		goto error;
164 	}
165 
166 	allowed = (totalram_pages - hugetlb_total_pages())
167 	       	* sysctl_overcommit_ratio / 100;
168 	/*
169 	 * Leave the last 3% for root
170 	 */
171 	if (!cap_sys_admin)
172 		allowed -= allowed / 32;
173 	allowed += total_swap_pages;
174 
175 	/* Don't let a single process grow too big:
176 	   leave 3% of the size of this process for other processes */
177 	if (mm)
178 		allowed -= mm->total_vm / 32;
179 
180 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181 		return 0;
182 error:
183 	vm_unacct_memory(pages);
184 
185 	return -ENOMEM;
186 }
187 
188 /*
189  * Requires inode->i_mapping->i_mmap_mutex
190  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192 		struct file *file, struct address_space *mapping)
193 {
194 	if (vma->vm_flags & VM_DENYWRITE)
195 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196 	if (vma->vm_flags & VM_SHARED)
197 		mapping->i_mmap_writable--;
198 
199 	flush_dcache_mmap_lock(mapping);
200 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
201 		list_del_init(&vma->shared.vm_set.list);
202 	else
203 		vma_prio_tree_remove(vma, &mapping->i_mmap);
204 	flush_dcache_mmap_unlock(mapping);
205 }
206 
207 /*
208  * Unlink a file-based vm structure from its prio_tree, to hide
209  * vma from rmap and vmtruncate before freeing its page tables.
210  */
unlink_file_vma(struct vm_area_struct * vma)211 void unlink_file_vma(struct vm_area_struct *vma)
212 {
213 	struct file *file = vma->vm_file;
214 
215 	if (file) {
216 		struct address_space *mapping = file->f_mapping;
217 		mutex_lock(&mapping->i_mmap_mutex);
218 		__remove_shared_vm_struct(vma, file, mapping);
219 		mutex_unlock(&mapping->i_mmap_mutex);
220 	}
221 }
222 
223 /*
224  * Close a vm structure and free it, returning the next.
225  */
remove_vma(struct vm_area_struct * vma)226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
227 {
228 	struct vm_area_struct *next = vma->vm_next;
229 
230 	might_sleep();
231 	if (vma->vm_ops && vma->vm_ops->close)
232 		vma->vm_ops->close(vma);
233 	if (vma->vm_file) {
234 		fput(vma->vm_file);
235 		if (vma->vm_flags & VM_EXECUTABLE)
236 			removed_exe_file_vma(vma->vm_mm);
237 	}
238 	mpol_put(vma_policy(vma));
239 	kmem_cache_free(vm_area_cachep, vma);
240 	return next;
241 }
242 
SYSCALL_DEFINE1(brk,unsigned long,brk)243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245 	unsigned long rlim, retval;
246 	unsigned long newbrk, oldbrk;
247 	struct mm_struct *mm = current->mm;
248 	unsigned long min_brk;
249 
250 	down_write(&mm->mmap_sem);
251 
252 #ifdef CONFIG_COMPAT_BRK
253 	/*
254 	 * CONFIG_COMPAT_BRK can still be overridden by setting
255 	 * randomize_va_space to 2, which will still cause mm->start_brk
256 	 * to be arbitrarily shifted
257 	 */
258 	if (current->brk_randomized)
259 		min_brk = mm->start_brk;
260 	else
261 		min_brk = mm->end_data;
262 #else
263 	min_brk = mm->start_brk;
264 #endif
265 	if (brk < min_brk)
266 		goto out;
267 
268 	/*
269 	 * Check against rlimit here. If this check is done later after the test
270 	 * of oldbrk with newbrk then it can escape the test and let the data
271 	 * segment grow beyond its set limit the in case where the limit is
272 	 * not page aligned -Ram Gupta
273 	 */
274 	rlim = rlimit(RLIMIT_DATA);
275 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276 			(mm->end_data - mm->start_data) > rlim)
277 		goto out;
278 
279 	newbrk = PAGE_ALIGN(brk);
280 	oldbrk = PAGE_ALIGN(mm->brk);
281 	if (oldbrk == newbrk)
282 		goto set_brk;
283 
284 	/* Always allow shrinking brk. */
285 	if (brk <= mm->brk) {
286 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287 			goto set_brk;
288 		goto out;
289 	}
290 
291 	/* Check against existing mmap mappings. */
292 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293 		goto out;
294 
295 	/* Ok, looks good - let it rip. */
296 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297 		goto out;
298 set_brk:
299 	mm->brk = brk;
300 out:
301 	retval = mm->brk;
302 	up_write(&mm->mmap_sem);
303 	return retval;
304 }
305 
306 #ifdef DEBUG_MM_RB
browse_rb(struct rb_root * root)307 static int browse_rb(struct rb_root *root)
308 {
309 	int i = 0, j;
310 	struct rb_node *nd, *pn = NULL;
311 	unsigned long prev = 0, pend = 0;
312 
313 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314 		struct vm_area_struct *vma;
315 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316 		if (vma->vm_start < prev)
317 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318 		if (vma->vm_start < pend)
319 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320 		if (vma->vm_start > vma->vm_end)
321 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322 		i++;
323 		pn = nd;
324 		prev = vma->vm_start;
325 		pend = vma->vm_end;
326 	}
327 	j = 0;
328 	for (nd = pn; nd; nd = rb_prev(nd)) {
329 		j++;
330 	}
331 	if (i != j)
332 		printk("backwards %d, forwards %d\n", j, i), i = 0;
333 	return i;
334 }
335 
validate_mm(struct mm_struct * mm)336 void validate_mm(struct mm_struct *mm)
337 {
338 	int bug = 0;
339 	int i = 0;
340 	struct vm_area_struct *tmp = mm->mmap;
341 	while (tmp) {
342 		tmp = tmp->vm_next;
343 		i++;
344 	}
345 	if (i != mm->map_count)
346 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347 	i = browse_rb(&mm->mm_rb);
348 	if (i != mm->map_count)
349 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350 	BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355 
356 static struct vm_area_struct *
find_vma_prepare(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
359 		struct rb_node ** rb_parent)
360 {
361 	struct vm_area_struct * vma;
362 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363 
364 	__rb_link = &mm->mm_rb.rb_node;
365 	rb_prev = __rb_parent = NULL;
366 	vma = NULL;
367 
368 	while (*__rb_link) {
369 		struct vm_area_struct *vma_tmp;
370 
371 		__rb_parent = *__rb_link;
372 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373 
374 		if (vma_tmp->vm_end > addr) {
375 			vma = vma_tmp;
376 			if (vma_tmp->vm_start <= addr)
377 				break;
378 			__rb_link = &__rb_parent->rb_left;
379 		} else {
380 			rb_prev = __rb_parent;
381 			__rb_link = &__rb_parent->rb_right;
382 		}
383 	}
384 
385 	*pprev = NULL;
386 	if (rb_prev)
387 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388 	*rb_link = __rb_link;
389 	*rb_parent = __rb_parent;
390 	return vma;
391 }
392 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394 		struct rb_node **rb_link, struct rb_node *rb_parent)
395 {
396 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
398 }
399 
__vma_link_file(struct vm_area_struct * vma)400 static void __vma_link_file(struct vm_area_struct *vma)
401 {
402 	struct file *file;
403 
404 	file = vma->vm_file;
405 	if (file) {
406 		struct address_space *mapping = file->f_mapping;
407 
408 		if (vma->vm_flags & VM_DENYWRITE)
409 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410 		if (vma->vm_flags & VM_SHARED)
411 			mapping->i_mmap_writable++;
412 
413 		flush_dcache_mmap_lock(mapping);
414 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
415 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416 		else
417 			vma_prio_tree_insert(vma, &mapping->i_mmap);
418 		flush_dcache_mmap_unlock(mapping);
419 	}
420 }
421 
422 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424 	struct vm_area_struct *prev, struct rb_node **rb_link,
425 	struct rb_node *rb_parent)
426 {
427 	__vma_link_list(mm, vma, prev, rb_parent);
428 	__vma_link_rb(mm, vma, rb_link, rb_parent);
429 }
430 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432 			struct vm_area_struct *prev, struct rb_node **rb_link,
433 			struct rb_node *rb_parent)
434 {
435 	struct address_space *mapping = NULL;
436 
437 	if (vma->vm_file)
438 		mapping = vma->vm_file->f_mapping;
439 
440 	if (mapping)
441 		mutex_lock(&mapping->i_mmap_mutex);
442 
443 	__vma_link(mm, vma, prev, rb_link, rb_parent);
444 	__vma_link_file(vma);
445 
446 	if (mapping)
447 		mutex_unlock(&mapping->i_mmap_mutex);
448 
449 	mm->map_count++;
450 	validate_mm(mm);
451 }
452 
453 /*
454  * Helper for vma_adjust in the split_vma insert case:
455  * insert vm structure into list and rbtree and anon_vma,
456  * but it has already been inserted into prio_tree earlier.
457  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)458 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
459 {
460 	struct vm_area_struct *__vma, *prev;
461 	struct rb_node **rb_link, *rb_parent;
462 
463 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
464 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
465 	__vma_link(mm, vma, prev, rb_link, rb_parent);
466 	mm->map_count++;
467 }
468 
469 static inline void
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)470 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
471 		struct vm_area_struct *prev)
472 {
473 	struct vm_area_struct *next = vma->vm_next;
474 
475 	prev->vm_next = next;
476 	if (next)
477 		next->vm_prev = prev;
478 	rb_erase(&vma->vm_rb, &mm->mm_rb);
479 	if (mm->mmap_cache == vma)
480 		mm->mmap_cache = prev;
481 }
482 
483 /*
484  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
485  * is already present in an i_mmap tree without adjusting the tree.
486  * The following helper function should be used when such adjustments
487  * are necessary.  The "insert" vma (if any) is to be inserted
488  * before we drop the necessary locks.
489  */
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)490 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
491 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
492 {
493 	struct mm_struct *mm = vma->vm_mm;
494 	struct vm_area_struct *next = vma->vm_next;
495 	struct vm_area_struct *importer = NULL;
496 	struct address_space *mapping = NULL;
497 	struct prio_tree_root *root = NULL;
498 	struct anon_vma *anon_vma = NULL;
499 	struct file *file = vma->vm_file;
500 	long adjust_next = 0;
501 	int remove_next = 0;
502 
503 	if (next && !insert) {
504 		struct vm_area_struct *exporter = NULL;
505 
506 		if (end >= next->vm_end) {
507 			/*
508 			 * vma expands, overlapping all the next, and
509 			 * perhaps the one after too (mprotect case 6).
510 			 */
511 again:			remove_next = 1 + (end > next->vm_end);
512 			end = next->vm_end;
513 			exporter = next;
514 			importer = vma;
515 		} else if (end > next->vm_start) {
516 			/*
517 			 * vma expands, overlapping part of the next:
518 			 * mprotect case 5 shifting the boundary up.
519 			 */
520 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
521 			exporter = next;
522 			importer = vma;
523 		} else if (end < vma->vm_end) {
524 			/*
525 			 * vma shrinks, and !insert tells it's not
526 			 * split_vma inserting another: so it must be
527 			 * mprotect case 4 shifting the boundary down.
528 			 */
529 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
530 			exporter = vma;
531 			importer = next;
532 		}
533 
534 		/*
535 		 * Easily overlooked: when mprotect shifts the boundary,
536 		 * make sure the expanding vma has anon_vma set if the
537 		 * shrinking vma had, to cover any anon pages imported.
538 		 */
539 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
540 			if (anon_vma_clone(importer, exporter))
541 				return -ENOMEM;
542 			importer->anon_vma = exporter->anon_vma;
543 		}
544 	}
545 
546 	if (file) {
547 		mapping = file->f_mapping;
548 		if (!(vma->vm_flags & VM_NONLINEAR))
549 			root = &mapping->i_mmap;
550 		mutex_lock(&mapping->i_mmap_mutex);
551 		if (insert) {
552 			/*
553 			 * Put into prio_tree now, so instantiated pages
554 			 * are visible to arm/parisc __flush_dcache_page
555 			 * throughout; but we cannot insert into address
556 			 * space until vma start or end is updated.
557 			 */
558 			__vma_link_file(insert);
559 		}
560 	}
561 
562 	vma_adjust_trans_huge(vma, start, end, adjust_next);
563 
564 	/*
565 	 * When changing only vma->vm_end, we don't really need anon_vma
566 	 * lock. This is a fairly rare case by itself, but the anon_vma
567 	 * lock may be shared between many sibling processes.  Skipping
568 	 * the lock for brk adjustments makes a difference sometimes.
569 	 */
570 	if (vma->anon_vma && (importer || start != vma->vm_start)) {
571 		anon_vma = vma->anon_vma;
572 		anon_vma_lock(anon_vma);
573 	}
574 
575 	if (root) {
576 		flush_dcache_mmap_lock(mapping);
577 		vma_prio_tree_remove(vma, root);
578 		if (adjust_next)
579 			vma_prio_tree_remove(next, root);
580 	}
581 
582 	vma->vm_start = start;
583 	vma->vm_end = end;
584 	vma->vm_pgoff = pgoff;
585 	if (adjust_next) {
586 		next->vm_start += adjust_next << PAGE_SHIFT;
587 		next->vm_pgoff += adjust_next;
588 	}
589 
590 	if (root) {
591 		if (adjust_next)
592 			vma_prio_tree_insert(next, root);
593 		vma_prio_tree_insert(vma, root);
594 		flush_dcache_mmap_unlock(mapping);
595 	}
596 
597 	if (remove_next) {
598 		/*
599 		 * vma_merge has merged next into vma, and needs
600 		 * us to remove next before dropping the locks.
601 		 */
602 		__vma_unlink(mm, next, vma);
603 		if (file)
604 			__remove_shared_vm_struct(next, file, mapping);
605 	} else if (insert) {
606 		/*
607 		 * split_vma has split insert from vma, and needs
608 		 * us to insert it before dropping the locks
609 		 * (it may either follow vma or precede it).
610 		 */
611 		__insert_vm_struct(mm, insert);
612 	}
613 
614 	if (anon_vma)
615 		anon_vma_unlock(anon_vma);
616 	if (mapping)
617 		mutex_unlock(&mapping->i_mmap_mutex);
618 
619 	if (remove_next) {
620 		if (file) {
621 			fput(file);
622 			if (next->vm_flags & VM_EXECUTABLE)
623 				removed_exe_file_vma(mm);
624 		}
625 		if (next->anon_vma)
626 			anon_vma_merge(vma, next);
627 		mm->map_count--;
628 		mpol_put(vma_policy(next));
629 		kmem_cache_free(vm_area_cachep, next);
630 		/*
631 		 * In mprotect's case 6 (see comments on vma_merge),
632 		 * we must remove another next too. It would clutter
633 		 * up the code too much to do both in one go.
634 		 */
635 		if (remove_next == 2) {
636 			next = vma->vm_next;
637 			goto again;
638 		}
639 	}
640 
641 	validate_mm(mm);
642 
643 	return 0;
644 }
645 
646 /*
647  * If the vma has a ->close operation then the driver probably needs to release
648  * per-vma resources, so we don't attempt to merge those.
649  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags)650 static inline int is_mergeable_vma(struct vm_area_struct *vma,
651 			struct file *file, unsigned long vm_flags)
652 {
653 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
654 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
655 		return 0;
656 	if (vma->vm_file != file)
657 		return 0;
658 	if (vma->vm_ops && vma->vm_ops->close)
659 		return 0;
660 	return 1;
661 }
662 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)663 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
664 					struct anon_vma *anon_vma2,
665 					struct vm_area_struct *vma)
666 {
667 	/*
668 	 * The list_is_singular() test is to avoid merging VMA cloned from
669 	 * parents. This can improve scalability caused by anon_vma lock.
670 	 */
671 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
672 		list_is_singular(&vma->anon_vma_chain)))
673 		return 1;
674 	return anon_vma1 == anon_vma2;
675 }
676 
677 /*
678  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
679  * in front of (at a lower virtual address and file offset than) the vma.
680  *
681  * We cannot merge two vmas if they have differently assigned (non-NULL)
682  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
683  *
684  * We don't check here for the merged mmap wrapping around the end of pagecache
685  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
686  * wrap, nor mmaps which cover the final page at index -1UL.
687  */
688 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff)689 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
690 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
691 {
692 	if (is_mergeable_vma(vma, file, vm_flags) &&
693 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
694 		if (vma->vm_pgoff == vm_pgoff)
695 			return 1;
696 	}
697 	return 0;
698 }
699 
700 /*
701  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
702  * beyond (at a higher virtual address and file offset than) the vma.
703  *
704  * We cannot merge two vmas if they have differently assigned (non-NULL)
705  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
706  */
707 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff)708 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
709 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711 	if (is_mergeable_vma(vma, file, vm_flags) &&
712 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713 		pgoff_t vm_pglen;
714 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
715 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
716 			return 1;
717 	}
718 	return 0;
719 }
720 
721 /*
722  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
723  * whether that can be merged with its predecessor or its successor.
724  * Or both (it neatly fills a hole).
725  *
726  * In most cases - when called for mmap, brk or mremap - [addr,end) is
727  * certain not to be mapped by the time vma_merge is called; but when
728  * called for mprotect, it is certain to be already mapped (either at
729  * an offset within prev, or at the start of next), and the flags of
730  * this area are about to be changed to vm_flags - and the no-change
731  * case has already been eliminated.
732  *
733  * The following mprotect cases have to be considered, where AAAA is
734  * the area passed down from mprotect_fixup, never extending beyond one
735  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
736  *
737  *     AAAA             AAAA                AAAA          AAAA
738  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
739  *    cannot merge    might become    might become    might become
740  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
741  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
742  *    mremap move:                                    PPPPNNNNNNNN 8
743  *        AAAA
744  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
745  *    might become    case 1 below    case 2 below    case 3 below
746  *
747  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
748  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
749  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy)750 struct vm_area_struct *vma_merge(struct mm_struct *mm,
751 			struct vm_area_struct *prev, unsigned long addr,
752 			unsigned long end, unsigned long vm_flags,
753 		     	struct anon_vma *anon_vma, struct file *file,
754 			pgoff_t pgoff, struct mempolicy *policy)
755 {
756 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
757 	struct vm_area_struct *area, *next;
758 	int err;
759 
760 	/*
761 	 * We later require that vma->vm_flags == vm_flags,
762 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
763 	 */
764 	if (vm_flags & VM_SPECIAL)
765 		return NULL;
766 
767 	if (prev)
768 		next = prev->vm_next;
769 	else
770 		next = mm->mmap;
771 	area = next;
772 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
773 		next = next->vm_next;
774 
775 	/*
776 	 * Can it merge with the predecessor?
777 	 */
778 	if (prev && prev->vm_end == addr &&
779   			mpol_equal(vma_policy(prev), policy) &&
780 			can_vma_merge_after(prev, vm_flags,
781 						anon_vma, file, pgoff)) {
782 		/*
783 		 * OK, it can.  Can we now merge in the successor as well?
784 		 */
785 		if (next && end == next->vm_start &&
786 				mpol_equal(policy, vma_policy(next)) &&
787 				can_vma_merge_before(next, vm_flags,
788 					anon_vma, file, pgoff+pglen) &&
789 				is_mergeable_anon_vma(prev->anon_vma,
790 						      next->anon_vma, NULL)) {
791 							/* cases 1, 6 */
792 			err = vma_adjust(prev, prev->vm_start,
793 				next->vm_end, prev->vm_pgoff, NULL);
794 		} else					/* cases 2, 5, 7 */
795 			err = vma_adjust(prev, prev->vm_start,
796 				end, prev->vm_pgoff, NULL);
797 		if (err)
798 			return NULL;
799 		khugepaged_enter_vma_merge(prev);
800 		return prev;
801 	}
802 
803 	/*
804 	 * Can this new request be merged in front of next?
805 	 */
806 	if (next && end == next->vm_start &&
807  			mpol_equal(policy, vma_policy(next)) &&
808 			can_vma_merge_before(next, vm_flags,
809 					anon_vma, file, pgoff+pglen)) {
810 		if (prev && addr < prev->vm_end)	/* case 4 */
811 			err = vma_adjust(prev, prev->vm_start,
812 				addr, prev->vm_pgoff, NULL);
813 		else					/* cases 3, 8 */
814 			err = vma_adjust(area, addr, next->vm_end,
815 				next->vm_pgoff - pglen, NULL);
816 		if (err)
817 			return NULL;
818 		khugepaged_enter_vma_merge(area);
819 		return area;
820 	}
821 
822 	return NULL;
823 }
824 
825 /*
826  * Rough compatbility check to quickly see if it's even worth looking
827  * at sharing an anon_vma.
828  *
829  * They need to have the same vm_file, and the flags can only differ
830  * in things that mprotect may change.
831  *
832  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
833  * we can merge the two vma's. For example, we refuse to merge a vma if
834  * there is a vm_ops->close() function, because that indicates that the
835  * driver is doing some kind of reference counting. But that doesn't
836  * really matter for the anon_vma sharing case.
837  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)838 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
839 {
840 	return a->vm_end == b->vm_start &&
841 		mpol_equal(vma_policy(a), vma_policy(b)) &&
842 		a->vm_file == b->vm_file &&
843 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
844 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
845 }
846 
847 /*
848  * Do some basic sanity checking to see if we can re-use the anon_vma
849  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
850  * the same as 'old', the other will be the new one that is trying
851  * to share the anon_vma.
852  *
853  * NOTE! This runs with mm_sem held for reading, so it is possible that
854  * the anon_vma of 'old' is concurrently in the process of being set up
855  * by another page fault trying to merge _that_. But that's ok: if it
856  * is being set up, that automatically means that it will be a singleton
857  * acceptable for merging, so we can do all of this optimistically. But
858  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
859  *
860  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
861  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
862  * is to return an anon_vma that is "complex" due to having gone through
863  * a fork).
864  *
865  * We also make sure that the two vma's are compatible (adjacent,
866  * and with the same memory policies). That's all stable, even with just
867  * a read lock on the mm_sem.
868  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)869 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
870 {
871 	if (anon_vma_compatible(a, b)) {
872 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
873 
874 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
875 			return anon_vma;
876 	}
877 	return NULL;
878 }
879 
880 /*
881  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
882  * neighbouring vmas for a suitable anon_vma, before it goes off
883  * to allocate a new anon_vma.  It checks because a repetitive
884  * sequence of mprotects and faults may otherwise lead to distinct
885  * anon_vmas being allocated, preventing vma merge in subsequent
886  * mprotect.
887  */
find_mergeable_anon_vma(struct vm_area_struct * vma)888 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
889 {
890 	struct anon_vma *anon_vma;
891 	struct vm_area_struct *near;
892 
893 	near = vma->vm_next;
894 	if (!near)
895 		goto try_prev;
896 
897 	anon_vma = reusable_anon_vma(near, vma, near);
898 	if (anon_vma)
899 		return anon_vma;
900 try_prev:
901 	near = vma->vm_prev;
902 	if (!near)
903 		goto none;
904 
905 	anon_vma = reusable_anon_vma(near, near, vma);
906 	if (anon_vma)
907 		return anon_vma;
908 none:
909 	/*
910 	 * There's no absolute need to look only at touching neighbours:
911 	 * we could search further afield for "compatible" anon_vmas.
912 	 * But it would probably just be a waste of time searching,
913 	 * or lead to too many vmas hanging off the same anon_vma.
914 	 * We're trying to allow mprotect remerging later on,
915 	 * not trying to minimize memory used for anon_vmas.
916 	 */
917 	return NULL;
918 }
919 
920 #ifdef CONFIG_PROC_FS
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)921 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
922 						struct file *file, long pages)
923 {
924 	const unsigned long stack_flags
925 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
926 
927 	if (file) {
928 		mm->shared_vm += pages;
929 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
930 			mm->exec_vm += pages;
931 	} else if (flags & stack_flags)
932 		mm->stack_vm += pages;
933 	if (flags & (VM_RESERVED|VM_IO))
934 		mm->reserved_vm += pages;
935 }
936 #endif /* CONFIG_PROC_FS */
937 
938 /*
939  * The caller must hold down_write(&current->mm->mmap_sem).
940  */
941 
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff)942 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
943 			unsigned long len, unsigned long prot,
944 			unsigned long flags, unsigned long pgoff)
945 {
946 	struct mm_struct * mm = current->mm;
947 	struct inode *inode;
948 	vm_flags_t vm_flags;
949 	int error;
950 	unsigned long reqprot = prot;
951 
952 	/*
953 	 * Does the application expect PROT_READ to imply PROT_EXEC?
954 	 *
955 	 * (the exception is when the underlying filesystem is noexec
956 	 *  mounted, in which case we dont add PROT_EXEC.)
957 	 */
958 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
959 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
960 			prot |= PROT_EXEC;
961 
962 	if (!len)
963 		return -EINVAL;
964 
965 	if (!(flags & MAP_FIXED))
966 		addr = round_hint_to_min(addr);
967 
968 	/* Careful about overflows.. */
969 	len = PAGE_ALIGN(len);
970 	if (!len)
971 		return -ENOMEM;
972 
973 	/* offset overflow? */
974 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
975                return -EOVERFLOW;
976 
977 	/* Too many mappings? */
978 	if (mm->map_count > sysctl_max_map_count)
979 		return -ENOMEM;
980 
981 	/* Obtain the address to map to. we verify (or select) it and ensure
982 	 * that it represents a valid section of the address space.
983 	 */
984 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
985 	if (addr & ~PAGE_MASK)
986 		return addr;
987 
988 	/* Do simple checking here so the lower-level routines won't have
989 	 * to. we assume access permissions have been handled by the open
990 	 * of the memory object, so we don't do any here.
991 	 */
992 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
993 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
994 
995 	if (flags & MAP_LOCKED)
996 		if (!can_do_mlock())
997 			return -EPERM;
998 
999 	/* mlock MCL_FUTURE? */
1000 	if (vm_flags & VM_LOCKED) {
1001 		unsigned long locked, lock_limit;
1002 		locked = len >> PAGE_SHIFT;
1003 		locked += mm->locked_vm;
1004 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1005 		lock_limit >>= PAGE_SHIFT;
1006 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1007 			return -EAGAIN;
1008 	}
1009 
1010 	inode = file ? file->f_path.dentry->d_inode : NULL;
1011 
1012 	if (file) {
1013 		switch (flags & MAP_TYPE) {
1014 		case MAP_SHARED:
1015 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1016 				return -EACCES;
1017 
1018 			/*
1019 			 * Make sure we don't allow writing to an append-only
1020 			 * file..
1021 			 */
1022 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1023 				return -EACCES;
1024 
1025 			/*
1026 			 * Make sure there are no mandatory locks on the file.
1027 			 */
1028 			if (locks_verify_locked(inode))
1029 				return -EAGAIN;
1030 
1031 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1032 			if (!(file->f_mode & FMODE_WRITE))
1033 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1034 
1035 			/* fall through */
1036 		case MAP_PRIVATE:
1037 			if (!(file->f_mode & FMODE_READ))
1038 				return -EACCES;
1039 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1040 				if (vm_flags & VM_EXEC)
1041 					return -EPERM;
1042 				vm_flags &= ~VM_MAYEXEC;
1043 			}
1044 
1045 			if (!file->f_op || !file->f_op->mmap)
1046 				return -ENODEV;
1047 			break;
1048 
1049 		default:
1050 			return -EINVAL;
1051 		}
1052 	} else {
1053 		switch (flags & MAP_TYPE) {
1054 		case MAP_SHARED:
1055 			/*
1056 			 * Ignore pgoff.
1057 			 */
1058 			pgoff = 0;
1059 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1060 			break;
1061 		case MAP_PRIVATE:
1062 			/*
1063 			 * Set pgoff according to addr for anon_vma.
1064 			 */
1065 			pgoff = addr >> PAGE_SHIFT;
1066 			break;
1067 		default:
1068 			return -EINVAL;
1069 		}
1070 	}
1071 
1072 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1073 	if (error)
1074 		return error;
1075 
1076 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1077 }
1078 EXPORT_SYMBOL(do_mmap_pgoff);
1079 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1080 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1081 		unsigned long, prot, unsigned long, flags,
1082 		unsigned long, fd, unsigned long, pgoff)
1083 {
1084 	struct file *file = NULL;
1085 	unsigned long retval = -EBADF;
1086 
1087 	if (!(flags & MAP_ANONYMOUS)) {
1088 		audit_mmap_fd(fd, flags);
1089 		if (unlikely(flags & MAP_HUGETLB))
1090 			return -EINVAL;
1091 		file = fget(fd);
1092 		if (!file)
1093 			goto out;
1094 	} else if (flags & MAP_HUGETLB) {
1095 		struct user_struct *user = NULL;
1096 		/*
1097 		 * VM_NORESERVE is used because the reservations will be
1098 		 * taken when vm_ops->mmap() is called
1099 		 * A dummy user value is used because we are not locking
1100 		 * memory so no accounting is necessary
1101 		 */
1102 		len = ALIGN(len, huge_page_size(&default_hstate));
1103 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1104 						&user, HUGETLB_ANONHUGE_INODE);
1105 		if (IS_ERR(file))
1106 			return PTR_ERR(file);
1107 	}
1108 
1109 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1110 
1111 	down_write(&current->mm->mmap_sem);
1112 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1113 	up_write(&current->mm->mmap_sem);
1114 
1115 	if (file)
1116 		fput(file);
1117 out:
1118 	return retval;
1119 }
1120 
1121 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1122 struct mmap_arg_struct {
1123 	unsigned long addr;
1124 	unsigned long len;
1125 	unsigned long prot;
1126 	unsigned long flags;
1127 	unsigned long fd;
1128 	unsigned long offset;
1129 };
1130 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1131 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1132 {
1133 	struct mmap_arg_struct a;
1134 
1135 	if (copy_from_user(&a, arg, sizeof(a)))
1136 		return -EFAULT;
1137 	if (a.offset & ~PAGE_MASK)
1138 		return -EINVAL;
1139 
1140 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1141 			      a.offset >> PAGE_SHIFT);
1142 }
1143 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1144 
1145 /*
1146  * Some shared mappigns will want the pages marked read-only
1147  * to track write events. If so, we'll downgrade vm_page_prot
1148  * to the private version (using protection_map[] without the
1149  * VM_SHARED bit).
1150  */
vma_wants_writenotify(struct vm_area_struct * vma)1151 int vma_wants_writenotify(struct vm_area_struct *vma)
1152 {
1153 	vm_flags_t vm_flags = vma->vm_flags;
1154 
1155 	/* If it was private or non-writable, the write bit is already clear */
1156 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1157 		return 0;
1158 
1159 	/* The backer wishes to know when pages are first written to? */
1160 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1161 		return 1;
1162 
1163 	/* The open routine did something to the protections already? */
1164 	if (pgprot_val(vma->vm_page_prot) !=
1165 	    pgprot_val(vm_get_page_prot(vm_flags)))
1166 		return 0;
1167 
1168 	/* Specialty mapping? */
1169 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1170 		return 0;
1171 
1172 	/* Can the mapping track the dirty pages? */
1173 	return vma->vm_file && vma->vm_file->f_mapping &&
1174 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1175 }
1176 
1177 /*
1178  * We account for memory if it's a private writeable mapping,
1179  * not hugepages and VM_NORESERVE wasn't set.
1180  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1181 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1182 {
1183 	/*
1184 	 * hugetlb has its own accounting separate from the core VM
1185 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1186 	 */
1187 	if (file && is_file_hugepages(file))
1188 		return 0;
1189 
1190 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1191 }
1192 
mmap_region(struct file * file,unsigned long addr,unsigned long len,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff)1193 unsigned long mmap_region(struct file *file, unsigned long addr,
1194 			  unsigned long len, unsigned long flags,
1195 			  vm_flags_t vm_flags, unsigned long pgoff)
1196 {
1197 	struct mm_struct *mm = current->mm;
1198 	struct vm_area_struct *vma, *prev;
1199 	int correct_wcount = 0;
1200 	int error;
1201 	struct rb_node **rb_link, *rb_parent;
1202 	unsigned long charged = 0;
1203 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1204 
1205 	/* Clear old maps */
1206 	error = -ENOMEM;
1207 munmap_back:
1208 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1209 	if (vma && vma->vm_start < addr + len) {
1210 		if (do_munmap(mm, addr, len))
1211 			return -ENOMEM;
1212 		goto munmap_back;
1213 	}
1214 
1215 	/* Check against address space limit. */
1216 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1217 		return -ENOMEM;
1218 
1219 	/*
1220 	 * Set 'VM_NORESERVE' if we should not account for the
1221 	 * memory use of this mapping.
1222 	 */
1223 	if ((flags & MAP_NORESERVE)) {
1224 		/* We honor MAP_NORESERVE if allowed to overcommit */
1225 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1226 			vm_flags |= VM_NORESERVE;
1227 
1228 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1229 		if (file && is_file_hugepages(file))
1230 			vm_flags |= VM_NORESERVE;
1231 	}
1232 
1233 	/*
1234 	 * Private writable mapping: check memory availability
1235 	 */
1236 	if (accountable_mapping(file, vm_flags)) {
1237 		charged = len >> PAGE_SHIFT;
1238 		if (security_vm_enough_memory(charged))
1239 			return -ENOMEM;
1240 		vm_flags |= VM_ACCOUNT;
1241 	}
1242 
1243 	/*
1244 	 * Can we just expand an old mapping?
1245 	 */
1246 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1247 	if (vma)
1248 		goto out;
1249 
1250 	/*
1251 	 * Determine the object being mapped and call the appropriate
1252 	 * specific mapper. the address has already been validated, but
1253 	 * not unmapped, but the maps are removed from the list.
1254 	 */
1255 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1256 	if (!vma) {
1257 		error = -ENOMEM;
1258 		goto unacct_error;
1259 	}
1260 
1261 	vma->vm_mm = mm;
1262 	vma->vm_start = addr;
1263 	vma->vm_end = addr + len;
1264 	vma->vm_flags = vm_flags;
1265 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1266 	vma->vm_pgoff = pgoff;
1267 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1268 
1269 	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1270 
1271 	if (file) {
1272 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1273 			goto free_vma;
1274 		if (vm_flags & VM_DENYWRITE) {
1275 			error = deny_write_access(file);
1276 			if (error)
1277 				goto free_vma;
1278 			correct_wcount = 1;
1279 		}
1280 		vma->vm_file = file;
1281 		get_file(file);
1282 		error = file->f_op->mmap(file, vma);
1283 		if (error)
1284 			goto unmap_and_free_vma;
1285 		if (vm_flags & VM_EXECUTABLE)
1286 			added_exe_file_vma(mm);
1287 
1288 		/* Can addr have changed??
1289 		 *
1290 		 * Answer: Yes, several device drivers can do it in their
1291 		 *         f_op->mmap method. -DaveM
1292 		 */
1293 		addr = vma->vm_start;
1294 		pgoff = vma->vm_pgoff;
1295 		vm_flags = vma->vm_flags;
1296 	} else if (vm_flags & VM_SHARED) {
1297 		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1298 			goto free_vma;
1299 		error = shmem_zero_setup(vma);
1300 		if (error)
1301 			goto free_vma;
1302 	}
1303 
1304 	if (vma_wants_writenotify(vma)) {
1305 		pgprot_t pprot = vma->vm_page_prot;
1306 
1307 		/* Can vma->vm_page_prot have changed??
1308 		 *
1309 		 * Answer: Yes, drivers may have changed it in their
1310 		 *         f_op->mmap method.
1311 		 *
1312 		 * Ensures that vmas marked as uncached stay that way.
1313 		 */
1314 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1315 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1316 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1317 	}
1318 
1319 	vma_link(mm, vma, prev, rb_link, rb_parent);
1320 	file = vma->vm_file;
1321 
1322 	/* Once vma denies write, undo our temporary denial count */
1323 	if (correct_wcount)
1324 		atomic_inc(&inode->i_writecount);
1325 out:
1326 	perf_event_mmap(vma);
1327 
1328 	mm->total_vm += len >> PAGE_SHIFT;
1329 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1330 	if (vm_flags & VM_LOCKED) {
1331 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1332 			mm->locked_vm += (len >> PAGE_SHIFT);
1333 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1334 		make_pages_present(addr, addr + len);
1335 	return addr;
1336 
1337 unmap_and_free_vma:
1338 	if (correct_wcount)
1339 		atomic_inc(&inode->i_writecount);
1340 	vma->vm_file = NULL;
1341 	fput(file);
1342 
1343 	/* Undo any partial mapping done by a device driver. */
1344 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1345 	charged = 0;
1346 free_vma:
1347 	kmem_cache_free(vm_area_cachep, vma);
1348 unacct_error:
1349 	if (charged)
1350 		vm_unacct_memory(charged);
1351 	return error;
1352 }
1353 
1354 /* Get an address range which is currently unmapped.
1355  * For shmat() with addr=0.
1356  *
1357  * Ugly calling convention alert:
1358  * Return value with the low bits set means error value,
1359  * ie
1360  *	if (ret & ~PAGE_MASK)
1361  *		error = ret;
1362  *
1363  * This function "knows" that -ENOMEM has the bits set.
1364  */
1365 #ifndef HAVE_ARCH_UNMAPPED_AREA
1366 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1367 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1368 		unsigned long len, unsigned long pgoff, unsigned long flags)
1369 {
1370 	struct mm_struct *mm = current->mm;
1371 	struct vm_area_struct *vma;
1372 	unsigned long start_addr;
1373 
1374 	if (len > TASK_SIZE)
1375 		return -ENOMEM;
1376 
1377 	if (flags & MAP_FIXED)
1378 		return addr;
1379 
1380 	if (addr) {
1381 		addr = PAGE_ALIGN(addr);
1382 		vma = find_vma(mm, addr);
1383 		if (TASK_SIZE - len >= addr &&
1384 		    (!vma || addr + len <= vma->vm_start))
1385 			return addr;
1386 	}
1387 	if (len > mm->cached_hole_size) {
1388 	        start_addr = addr = mm->free_area_cache;
1389 	} else {
1390 	        start_addr = addr = TASK_UNMAPPED_BASE;
1391 	        mm->cached_hole_size = 0;
1392 	}
1393 
1394 full_search:
1395 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1396 		/* At this point:  (!vma || addr < vma->vm_end). */
1397 		if (TASK_SIZE - len < addr) {
1398 			/*
1399 			 * Start a new search - just in case we missed
1400 			 * some holes.
1401 			 */
1402 			if (start_addr != TASK_UNMAPPED_BASE) {
1403 				addr = TASK_UNMAPPED_BASE;
1404 			        start_addr = addr;
1405 				mm->cached_hole_size = 0;
1406 				goto full_search;
1407 			}
1408 			return -ENOMEM;
1409 		}
1410 		if (!vma || addr + len <= vma->vm_start) {
1411 			/*
1412 			 * Remember the place where we stopped the search:
1413 			 */
1414 			mm->free_area_cache = addr + len;
1415 			return addr;
1416 		}
1417 		if (addr + mm->cached_hole_size < vma->vm_start)
1418 		        mm->cached_hole_size = vma->vm_start - addr;
1419 		addr = vma->vm_end;
1420 	}
1421 }
1422 #endif
1423 
arch_unmap_area(struct mm_struct * mm,unsigned long addr)1424 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1425 {
1426 	/*
1427 	 * Is this a new hole at the lowest possible address?
1428 	 */
1429 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1430 		mm->free_area_cache = addr;
1431 		mm->cached_hole_size = ~0UL;
1432 	}
1433 }
1434 
1435 /*
1436  * This mmap-allocator allocates new areas top-down from below the
1437  * stack's low limit (the base):
1438  */
1439 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1440 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)1441 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1442 			  const unsigned long len, const unsigned long pgoff,
1443 			  const unsigned long flags)
1444 {
1445 	struct vm_area_struct *vma;
1446 	struct mm_struct *mm = current->mm;
1447 	unsigned long addr = addr0;
1448 
1449 	/* requested length too big for entire address space */
1450 	if (len > TASK_SIZE)
1451 		return -ENOMEM;
1452 
1453 	if (flags & MAP_FIXED)
1454 		return addr;
1455 
1456 	/* requesting a specific address */
1457 	if (addr) {
1458 		addr = PAGE_ALIGN(addr);
1459 		vma = find_vma(mm, addr);
1460 		if (TASK_SIZE - len >= addr &&
1461 				(!vma || addr + len <= vma->vm_start))
1462 			return addr;
1463 	}
1464 
1465 	/* check if free_area_cache is useful for us */
1466 	if (len <= mm->cached_hole_size) {
1467  	        mm->cached_hole_size = 0;
1468  		mm->free_area_cache = mm->mmap_base;
1469  	}
1470 
1471 	/* either no address requested or can't fit in requested address hole */
1472 	addr = mm->free_area_cache;
1473 
1474 	/* make sure it can fit in the remaining address space */
1475 	if (addr > len) {
1476 		vma = find_vma(mm, addr-len);
1477 		if (!vma || addr <= vma->vm_start)
1478 			/* remember the address as a hint for next time */
1479 			return (mm->free_area_cache = addr-len);
1480 	}
1481 
1482 	if (mm->mmap_base < len)
1483 		goto bottomup;
1484 
1485 	addr = mm->mmap_base-len;
1486 
1487 	do {
1488 		/*
1489 		 * Lookup failure means no vma is above this address,
1490 		 * else if new region fits below vma->vm_start,
1491 		 * return with success:
1492 		 */
1493 		vma = find_vma(mm, addr);
1494 		if (!vma || addr+len <= vma->vm_start)
1495 			/* remember the address as a hint for next time */
1496 			return (mm->free_area_cache = addr);
1497 
1498  		/* remember the largest hole we saw so far */
1499  		if (addr + mm->cached_hole_size < vma->vm_start)
1500  		        mm->cached_hole_size = vma->vm_start - addr;
1501 
1502 		/* try just below the current vma->vm_start */
1503 		addr = vma->vm_start-len;
1504 	} while (len < vma->vm_start);
1505 
1506 bottomup:
1507 	/*
1508 	 * A failed mmap() very likely causes application failure,
1509 	 * so fall back to the bottom-up function here. This scenario
1510 	 * can happen with large stack limits and large mmap()
1511 	 * allocations.
1512 	 */
1513 	mm->cached_hole_size = ~0UL;
1514   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1515 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1516 	/*
1517 	 * Restore the topdown base:
1518 	 */
1519 	mm->free_area_cache = mm->mmap_base;
1520 	mm->cached_hole_size = ~0UL;
1521 
1522 	return addr;
1523 }
1524 #endif
1525 
arch_unmap_area_topdown(struct mm_struct * mm,unsigned long addr)1526 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1527 {
1528 	/*
1529 	 * Is this a new hole at the highest possible address?
1530 	 */
1531 	if (addr > mm->free_area_cache)
1532 		mm->free_area_cache = addr;
1533 
1534 	/* dont allow allocations above current base */
1535 	if (mm->free_area_cache > mm->mmap_base)
1536 		mm->free_area_cache = mm->mmap_base;
1537 }
1538 
1539 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1540 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1541 		unsigned long pgoff, unsigned long flags)
1542 {
1543 	unsigned long (*get_area)(struct file *, unsigned long,
1544 				  unsigned long, unsigned long, unsigned long);
1545 
1546 	unsigned long error = arch_mmap_check(addr, len, flags);
1547 	if (error)
1548 		return error;
1549 
1550 	/* Careful about overflows.. */
1551 	if (len > TASK_SIZE)
1552 		return -ENOMEM;
1553 
1554 	get_area = current->mm->get_unmapped_area;
1555 	if (file && file->f_op && file->f_op->get_unmapped_area)
1556 		get_area = file->f_op->get_unmapped_area;
1557 	addr = get_area(file, addr, len, pgoff, flags);
1558 	if (IS_ERR_VALUE(addr))
1559 		return addr;
1560 
1561 	if (addr > TASK_SIZE - len)
1562 		return -ENOMEM;
1563 	if (addr & ~PAGE_MASK)
1564 		return -EINVAL;
1565 
1566 	return arch_rebalance_pgtables(addr, len);
1567 }
1568 
1569 EXPORT_SYMBOL(get_unmapped_area);
1570 
1571 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)1572 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1573 {
1574 	struct vm_area_struct *vma = NULL;
1575 
1576 	if (mm) {
1577 		/* Check the cache first. */
1578 		/* (Cache hit rate is typically around 35%.) */
1579 		vma = mm->mmap_cache;
1580 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1581 			struct rb_node * rb_node;
1582 
1583 			rb_node = mm->mm_rb.rb_node;
1584 			vma = NULL;
1585 
1586 			while (rb_node) {
1587 				struct vm_area_struct * vma_tmp;
1588 
1589 				vma_tmp = rb_entry(rb_node,
1590 						struct vm_area_struct, vm_rb);
1591 
1592 				if (vma_tmp->vm_end > addr) {
1593 					vma = vma_tmp;
1594 					if (vma_tmp->vm_start <= addr)
1595 						break;
1596 					rb_node = rb_node->rb_left;
1597 				} else
1598 					rb_node = rb_node->rb_right;
1599 			}
1600 			if (vma)
1601 				mm->mmap_cache = vma;
1602 		}
1603 	}
1604 	return vma;
1605 }
1606 
1607 EXPORT_SYMBOL(find_vma);
1608 
1609 /*
1610  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1611  */
1612 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)1613 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1614 			struct vm_area_struct **pprev)
1615 {
1616 	struct vm_area_struct *vma;
1617 
1618 	vma = find_vma(mm, addr);
1619 	if (vma) {
1620 		*pprev = vma->vm_prev;
1621 	} else {
1622 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1623 		*pprev = NULL;
1624 		while (rb_node) {
1625 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1626 			rb_node = rb_node->rb_right;
1627 		}
1628 	}
1629 	return vma;
1630 }
1631 
1632 /*
1633  * Verify that the stack growth is acceptable and
1634  * update accounting. This is shared with both the
1635  * grow-up and grow-down cases.
1636  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)1637 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1638 {
1639 	struct mm_struct *mm = vma->vm_mm;
1640 	struct rlimit *rlim = current->signal->rlim;
1641 	unsigned long new_start;
1642 
1643 	/* address space limit tests */
1644 	if (!may_expand_vm(mm, grow))
1645 		return -ENOMEM;
1646 
1647 	/* Stack limit test */
1648 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1649 		return -ENOMEM;
1650 
1651 	/* mlock limit tests */
1652 	if (vma->vm_flags & VM_LOCKED) {
1653 		unsigned long locked;
1654 		unsigned long limit;
1655 		locked = mm->locked_vm + grow;
1656 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1657 		limit >>= PAGE_SHIFT;
1658 		if (locked > limit && !capable(CAP_IPC_LOCK))
1659 			return -ENOMEM;
1660 	}
1661 
1662 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1663 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1664 			vma->vm_end - size;
1665 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1666 		return -EFAULT;
1667 
1668 	/*
1669 	 * Overcommit..  This must be the final test, as it will
1670 	 * update security statistics.
1671 	 */
1672 	if (security_vm_enough_memory_mm(mm, grow))
1673 		return -ENOMEM;
1674 
1675 	/* Ok, everything looks good - let it rip */
1676 	mm->total_vm += grow;
1677 	if (vma->vm_flags & VM_LOCKED)
1678 		mm->locked_vm += grow;
1679 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1680 	return 0;
1681 }
1682 
1683 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1684 /*
1685  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1686  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1687  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)1688 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1689 {
1690 	int error;
1691 
1692 	if (!(vma->vm_flags & VM_GROWSUP))
1693 		return -EFAULT;
1694 
1695 	/*
1696 	 * We must make sure the anon_vma is allocated
1697 	 * so that the anon_vma locking is not a noop.
1698 	 */
1699 	if (unlikely(anon_vma_prepare(vma)))
1700 		return -ENOMEM;
1701 	vma_lock_anon_vma(vma);
1702 
1703 	/*
1704 	 * vma->vm_start/vm_end cannot change under us because the caller
1705 	 * is required to hold the mmap_sem in read mode.  We need the
1706 	 * anon_vma lock to serialize against concurrent expand_stacks.
1707 	 * Also guard against wrapping around to address 0.
1708 	 */
1709 	if (address < PAGE_ALIGN(address+4))
1710 		address = PAGE_ALIGN(address+4);
1711 	else {
1712 		vma_unlock_anon_vma(vma);
1713 		return -ENOMEM;
1714 	}
1715 	error = 0;
1716 
1717 	/* Somebody else might have raced and expanded it already */
1718 	if (address > vma->vm_end) {
1719 		unsigned long size, grow;
1720 
1721 		size = address - vma->vm_start;
1722 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1723 
1724 		error = -ENOMEM;
1725 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1726 			error = acct_stack_growth(vma, size, grow);
1727 			if (!error) {
1728 				vma->vm_end = address;
1729 				perf_event_mmap(vma);
1730 			}
1731 		}
1732 	}
1733 	vma_unlock_anon_vma(vma);
1734 	khugepaged_enter_vma_merge(vma);
1735 	return error;
1736 }
1737 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1738 
1739 /*
1740  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1741  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)1742 int expand_downwards(struct vm_area_struct *vma,
1743 				   unsigned long address)
1744 {
1745 	int error;
1746 
1747 	/*
1748 	 * We must make sure the anon_vma is allocated
1749 	 * so that the anon_vma locking is not a noop.
1750 	 */
1751 	if (unlikely(anon_vma_prepare(vma)))
1752 		return -ENOMEM;
1753 
1754 	address &= PAGE_MASK;
1755 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1756 	if (error)
1757 		return error;
1758 
1759 	vma_lock_anon_vma(vma);
1760 
1761 	/*
1762 	 * vma->vm_start/vm_end cannot change under us because the caller
1763 	 * is required to hold the mmap_sem in read mode.  We need the
1764 	 * anon_vma lock to serialize against concurrent expand_stacks.
1765 	 */
1766 
1767 	/* Somebody else might have raced and expanded it already */
1768 	if (address < vma->vm_start) {
1769 		unsigned long size, grow;
1770 
1771 		size = vma->vm_end - address;
1772 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1773 
1774 		error = -ENOMEM;
1775 		if (grow <= vma->vm_pgoff) {
1776 			error = acct_stack_growth(vma, size, grow);
1777 			if (!error) {
1778 				vma->vm_start = address;
1779 				vma->vm_pgoff -= grow;
1780 				perf_event_mmap(vma);
1781 			}
1782 		}
1783 	}
1784 	vma_unlock_anon_vma(vma);
1785 	khugepaged_enter_vma_merge(vma);
1786 	return error;
1787 }
1788 
1789 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)1790 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1791 {
1792 	return expand_upwards(vma, address);
1793 }
1794 
1795 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)1796 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1797 {
1798 	struct vm_area_struct *vma, *prev;
1799 
1800 	addr &= PAGE_MASK;
1801 	vma = find_vma_prev(mm, addr, &prev);
1802 	if (vma && (vma->vm_start <= addr))
1803 		return vma;
1804 	if (!prev || expand_stack(prev, addr))
1805 		return NULL;
1806 	if (prev->vm_flags & VM_LOCKED) {
1807 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1808 	}
1809 	return prev;
1810 }
1811 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)1812 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1813 {
1814 	return expand_downwards(vma, address);
1815 }
1816 
1817 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)1818 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1819 {
1820 	struct vm_area_struct * vma;
1821 	unsigned long start;
1822 
1823 	addr &= PAGE_MASK;
1824 	vma = find_vma(mm,addr);
1825 	if (!vma)
1826 		return NULL;
1827 	if (vma->vm_start <= addr)
1828 		return vma;
1829 	if (!(vma->vm_flags & VM_GROWSDOWN))
1830 		return NULL;
1831 	start = vma->vm_start;
1832 	if (expand_stack(vma, addr))
1833 		return NULL;
1834 	if (vma->vm_flags & VM_LOCKED) {
1835 		mlock_vma_pages_range(vma, addr, start);
1836 	}
1837 	return vma;
1838 }
1839 #endif
1840 
1841 /*
1842  * Ok - we have the memory areas we should free on the vma list,
1843  * so release them, and do the vma updates.
1844  *
1845  * Called with the mm semaphore held.
1846  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)1847 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1848 {
1849 	/* Update high watermark before we lower total_vm */
1850 	update_hiwater_vm(mm);
1851 	do {
1852 		long nrpages = vma_pages(vma);
1853 
1854 		mm->total_vm -= nrpages;
1855 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1856 		vma = remove_vma(vma);
1857 	} while (vma);
1858 	validate_mm(mm);
1859 }
1860 
1861 /*
1862  * Get rid of page table information in the indicated region.
1863  *
1864  * Called with the mm semaphore held.
1865  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)1866 static void unmap_region(struct mm_struct *mm,
1867 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1868 		unsigned long start, unsigned long end)
1869 {
1870 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1871 	struct mmu_gather tlb;
1872 	unsigned long nr_accounted = 0;
1873 
1874 	lru_add_drain();
1875 	tlb_gather_mmu(&tlb, mm, 0);
1876 	update_hiwater_rss(mm);
1877 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1878 	vm_unacct_memory(nr_accounted);
1879 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1880 				 next ? next->vm_start : 0);
1881 	tlb_finish_mmu(&tlb, start, end);
1882 }
1883 
1884 /*
1885  * Create a list of vma's touched by the unmap, removing them from the mm's
1886  * vma list as we go..
1887  */
1888 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)1889 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1890 	struct vm_area_struct *prev, unsigned long end)
1891 {
1892 	struct vm_area_struct **insertion_point;
1893 	struct vm_area_struct *tail_vma = NULL;
1894 	unsigned long addr;
1895 
1896 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1897 	vma->vm_prev = NULL;
1898 	do {
1899 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1900 		mm->map_count--;
1901 		tail_vma = vma;
1902 		vma = vma->vm_next;
1903 	} while (vma && vma->vm_start < end);
1904 	*insertion_point = vma;
1905 	if (vma)
1906 		vma->vm_prev = prev;
1907 	tail_vma->vm_next = NULL;
1908 	if (mm->unmap_area == arch_unmap_area)
1909 		addr = prev ? prev->vm_end : mm->mmap_base;
1910 	else
1911 		addr = vma ?  vma->vm_start : mm->mmap_base;
1912 	mm->unmap_area(mm, addr);
1913 	mm->mmap_cache = NULL;		/* Kill the cache. */
1914 }
1915 
1916 /*
1917  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1918  * munmap path where it doesn't make sense to fail.
1919  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1920 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1921 	      unsigned long addr, int new_below)
1922 {
1923 	struct mempolicy *pol;
1924 	struct vm_area_struct *new;
1925 	int err = -ENOMEM;
1926 
1927 	if (is_vm_hugetlb_page(vma) && (addr &
1928 					~(huge_page_mask(hstate_vma(vma)))))
1929 		return -EINVAL;
1930 
1931 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1932 	if (!new)
1933 		goto out_err;
1934 
1935 	/* most fields are the same, copy all, and then fixup */
1936 	*new = *vma;
1937 
1938 	INIT_LIST_HEAD(&new->anon_vma_chain);
1939 
1940 	if (new_below)
1941 		new->vm_end = addr;
1942 	else {
1943 		new->vm_start = addr;
1944 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1945 	}
1946 
1947 	pol = mpol_dup(vma_policy(vma));
1948 	if (IS_ERR(pol)) {
1949 		err = PTR_ERR(pol);
1950 		goto out_free_vma;
1951 	}
1952 	vma_set_policy(new, pol);
1953 
1954 	if (anon_vma_clone(new, vma))
1955 		goto out_free_mpol;
1956 
1957 	if (new->vm_file) {
1958 		get_file(new->vm_file);
1959 		if (vma->vm_flags & VM_EXECUTABLE)
1960 			added_exe_file_vma(mm);
1961 	}
1962 
1963 	if (new->vm_ops && new->vm_ops->open)
1964 		new->vm_ops->open(new);
1965 
1966 	if (new_below)
1967 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1968 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1969 	else
1970 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1971 
1972 	/* Success. */
1973 	if (!err)
1974 		return 0;
1975 
1976 	/* Clean everything up if vma_adjust failed. */
1977 	if (new->vm_ops && new->vm_ops->close)
1978 		new->vm_ops->close(new);
1979 	if (new->vm_file) {
1980 		if (vma->vm_flags & VM_EXECUTABLE)
1981 			removed_exe_file_vma(mm);
1982 		fput(new->vm_file);
1983 	}
1984 	unlink_anon_vmas(new);
1985  out_free_mpol:
1986 	mpol_put(pol);
1987  out_free_vma:
1988 	kmem_cache_free(vm_area_cachep, new);
1989  out_err:
1990 	return err;
1991 }
1992 
1993 /*
1994  * Split a vma into two pieces at address 'addr', a new vma is allocated
1995  * either for the first part or the tail.
1996  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1997 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1998 	      unsigned long addr, int new_below)
1999 {
2000 	if (mm->map_count >= sysctl_max_map_count)
2001 		return -ENOMEM;
2002 
2003 	return __split_vma(mm, vma, addr, new_below);
2004 }
2005 
2006 /* Munmap is split into 2 main parts -- this part which finds
2007  * what needs doing, and the areas themselves, which do the
2008  * work.  This now handles partial unmappings.
2009  * Jeremy Fitzhardinge <jeremy@goop.org>
2010  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)2011 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2012 {
2013 	unsigned long end;
2014 	struct vm_area_struct *vma, *prev, *last;
2015 
2016 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2017 		return -EINVAL;
2018 
2019 	if ((len = PAGE_ALIGN(len)) == 0)
2020 		return -EINVAL;
2021 
2022 	/* Find the first overlapping VMA */
2023 	vma = find_vma(mm, start);
2024 	if (!vma)
2025 		return 0;
2026 	prev = vma->vm_prev;
2027 	/* we have  start < vma->vm_end  */
2028 
2029 	/* if it doesn't overlap, we have nothing.. */
2030 	end = start + len;
2031 	if (vma->vm_start >= end)
2032 		return 0;
2033 
2034 	/*
2035 	 * If we need to split any vma, do it now to save pain later.
2036 	 *
2037 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2038 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2039 	 * places tmp vma above, and higher split_vma places tmp vma below.
2040 	 */
2041 	if (start > vma->vm_start) {
2042 		int error;
2043 
2044 		/*
2045 		 * Make sure that map_count on return from munmap() will
2046 		 * not exceed its limit; but let map_count go just above
2047 		 * its limit temporarily, to help free resources as expected.
2048 		 */
2049 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2050 			return -ENOMEM;
2051 
2052 		error = __split_vma(mm, vma, start, 0);
2053 		if (error)
2054 			return error;
2055 		prev = vma;
2056 	}
2057 
2058 	/* Does it split the last one? */
2059 	last = find_vma(mm, end);
2060 	if (last && end > last->vm_start) {
2061 		int error = __split_vma(mm, last, end, 1);
2062 		if (error)
2063 			return error;
2064 	}
2065 	vma = prev? prev->vm_next: mm->mmap;
2066 
2067 	/*
2068 	 * unlock any mlock()ed ranges before detaching vmas
2069 	 */
2070 	if (mm->locked_vm) {
2071 		struct vm_area_struct *tmp = vma;
2072 		while (tmp && tmp->vm_start < end) {
2073 			if (tmp->vm_flags & VM_LOCKED) {
2074 				mm->locked_vm -= vma_pages(tmp);
2075 				munlock_vma_pages_all(tmp);
2076 			}
2077 			tmp = tmp->vm_next;
2078 		}
2079 	}
2080 
2081 	/*
2082 	 * Remove the vma's, and unmap the actual pages
2083 	 */
2084 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2085 	unmap_region(mm, vma, prev, start, end);
2086 
2087 	/* Fix up all other VM information */
2088 	remove_vma_list(mm, vma);
2089 
2090 	return 0;
2091 }
2092 
2093 EXPORT_SYMBOL(do_munmap);
2094 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2095 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2096 {
2097 	int ret;
2098 	struct mm_struct *mm = current->mm;
2099 
2100 	profile_munmap(addr);
2101 
2102 	down_write(&mm->mmap_sem);
2103 	ret = do_munmap(mm, addr, len);
2104 	up_write(&mm->mmap_sem);
2105 	return ret;
2106 }
2107 
verify_mm_writelocked(struct mm_struct * mm)2108 static inline void verify_mm_writelocked(struct mm_struct *mm)
2109 {
2110 #ifdef CONFIG_DEBUG_VM
2111 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2112 		WARN_ON(1);
2113 		up_read(&mm->mmap_sem);
2114 	}
2115 #endif
2116 }
2117 
2118 /*
2119  *  this is really a simplified "do_mmap".  it only handles
2120  *  anonymous maps.  eventually we may be able to do some
2121  *  brk-specific accounting here.
2122  */
do_brk(unsigned long addr,unsigned long len)2123 unsigned long do_brk(unsigned long addr, unsigned long len)
2124 {
2125 	struct mm_struct * mm = current->mm;
2126 	struct vm_area_struct * vma, * prev;
2127 	unsigned long flags;
2128 	struct rb_node ** rb_link, * rb_parent;
2129 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2130 	int error;
2131 
2132 	len = PAGE_ALIGN(len);
2133 	if (!len)
2134 		return addr;
2135 
2136 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2137 	if (error)
2138 		return error;
2139 
2140 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2141 
2142 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2143 	if (error & ~PAGE_MASK)
2144 		return error;
2145 
2146 	/*
2147 	 * mlock MCL_FUTURE?
2148 	 */
2149 	if (mm->def_flags & VM_LOCKED) {
2150 		unsigned long locked, lock_limit;
2151 		locked = len >> PAGE_SHIFT;
2152 		locked += mm->locked_vm;
2153 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2154 		lock_limit >>= PAGE_SHIFT;
2155 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2156 			return -EAGAIN;
2157 	}
2158 
2159 	/*
2160 	 * mm->mmap_sem is required to protect against another thread
2161 	 * changing the mappings in case we sleep.
2162 	 */
2163 	verify_mm_writelocked(mm);
2164 
2165 	/*
2166 	 * Clear old maps.  this also does some error checking for us
2167 	 */
2168  munmap_back:
2169 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2170 	if (vma && vma->vm_start < addr + len) {
2171 		if (do_munmap(mm, addr, len))
2172 			return -ENOMEM;
2173 		goto munmap_back;
2174 	}
2175 
2176 	/* Check against address space limits *after* clearing old maps... */
2177 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2178 		return -ENOMEM;
2179 
2180 	if (mm->map_count > sysctl_max_map_count)
2181 		return -ENOMEM;
2182 
2183 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2184 		return -ENOMEM;
2185 
2186 	/* Can we just expand an old private anonymous mapping? */
2187 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2188 					NULL, NULL, pgoff, NULL);
2189 	if (vma)
2190 		goto out;
2191 
2192 	/*
2193 	 * create a vma struct for an anonymous mapping
2194 	 */
2195 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2196 	if (!vma) {
2197 		vm_unacct_memory(len >> PAGE_SHIFT);
2198 		return -ENOMEM;
2199 	}
2200 
2201 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2202 	vma->vm_mm = mm;
2203 	vma->vm_start = addr;
2204 	vma->vm_end = addr + len;
2205 	vma->vm_pgoff = pgoff;
2206 	vma->vm_flags = flags;
2207 	vma->vm_page_prot = vm_get_page_prot(flags);
2208 	vma_link(mm, vma, prev, rb_link, rb_parent);
2209 out:
2210 	perf_event_mmap(vma);
2211 	mm->total_vm += len >> PAGE_SHIFT;
2212 	if (flags & VM_LOCKED) {
2213 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2214 			mm->locked_vm += (len >> PAGE_SHIFT);
2215 	}
2216 	return addr;
2217 }
2218 
2219 EXPORT_SYMBOL(do_brk);
2220 
2221 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)2222 void exit_mmap(struct mm_struct *mm)
2223 {
2224 	struct mmu_gather tlb;
2225 	struct vm_area_struct *vma;
2226 	unsigned long nr_accounted = 0;
2227 	unsigned long end;
2228 
2229 	/* mm's last user has gone, and its about to be pulled down */
2230 	mmu_notifier_release(mm);
2231 
2232 	if (mm->locked_vm) {
2233 		vma = mm->mmap;
2234 		while (vma) {
2235 			if (vma->vm_flags & VM_LOCKED)
2236 				munlock_vma_pages_all(vma);
2237 			vma = vma->vm_next;
2238 		}
2239 	}
2240 
2241 	arch_exit_mmap(mm);
2242 
2243 	vma = mm->mmap;
2244 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2245 		return;
2246 
2247 	lru_add_drain();
2248 	flush_cache_mm(mm);
2249 	tlb_gather_mmu(&tlb, mm, 1);
2250 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2251 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2252 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2253 	vm_unacct_memory(nr_accounted);
2254 
2255 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2256 	tlb_finish_mmu(&tlb, 0, end);
2257 
2258 	/*
2259 	 * Walk the list again, actually closing and freeing it,
2260 	 * with preemption enabled, without holding any MM locks.
2261 	 */
2262 	while (vma)
2263 		vma = remove_vma(vma);
2264 
2265 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2266 }
2267 
2268 /* Insert vm structure into process list sorted by address
2269  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2270  * then i_mmap_mutex is taken here.
2271  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)2272 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2273 {
2274 	struct vm_area_struct * __vma, * prev;
2275 	struct rb_node ** rb_link, * rb_parent;
2276 
2277 	/*
2278 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2279 	 * until its first write fault, when page's anon_vma and index
2280 	 * are set.  But now set the vm_pgoff it will almost certainly
2281 	 * end up with (unless mremap moves it elsewhere before that
2282 	 * first wfault), so /proc/pid/maps tells a consistent story.
2283 	 *
2284 	 * By setting it to reflect the virtual start address of the
2285 	 * vma, merges and splits can happen in a seamless way, just
2286 	 * using the existing file pgoff checks and manipulations.
2287 	 * Similarly in do_mmap_pgoff and in do_brk.
2288 	 */
2289 	if (!vma->vm_file) {
2290 		BUG_ON(vma->anon_vma);
2291 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2292 	}
2293 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2294 	if (__vma && __vma->vm_start < vma->vm_end)
2295 		return -ENOMEM;
2296 	if ((vma->vm_flags & VM_ACCOUNT) &&
2297 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2298 		return -ENOMEM;
2299 	vma_link(mm, vma, prev, rb_link, rb_parent);
2300 	return 0;
2301 }
2302 
2303 /*
2304  * Copy the vma structure to a new location in the same mm,
2305  * prior to moving page table entries, to effect an mremap move.
2306  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff)2307 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2308 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2309 {
2310 	struct vm_area_struct *vma = *vmap;
2311 	unsigned long vma_start = vma->vm_start;
2312 	struct mm_struct *mm = vma->vm_mm;
2313 	struct vm_area_struct *new_vma, *prev;
2314 	struct rb_node **rb_link, *rb_parent;
2315 	struct mempolicy *pol;
2316 	bool faulted_in_anon_vma = true;
2317 
2318 	/*
2319 	 * If anonymous vma has not yet been faulted, update new pgoff
2320 	 * to match new location, to increase its chance of merging.
2321 	 */
2322 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2323 		pgoff = addr >> PAGE_SHIFT;
2324 		faulted_in_anon_vma = false;
2325 	}
2326 
2327 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2328 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2329 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2330 	if (new_vma) {
2331 		/*
2332 		 * Source vma may have been merged into new_vma
2333 		 */
2334 		if (unlikely(vma_start >= new_vma->vm_start &&
2335 			     vma_start < new_vma->vm_end)) {
2336 			/*
2337 			 * The only way we can get a vma_merge with
2338 			 * self during an mremap is if the vma hasn't
2339 			 * been faulted in yet and we were allowed to
2340 			 * reset the dst vma->vm_pgoff to the
2341 			 * destination address of the mremap to allow
2342 			 * the merge to happen. mremap must change the
2343 			 * vm_pgoff linearity between src and dst vmas
2344 			 * (in turn preventing a vma_merge) to be
2345 			 * safe. It is only safe to keep the vm_pgoff
2346 			 * linear if there are no pages mapped yet.
2347 			 */
2348 			VM_BUG_ON(faulted_in_anon_vma);
2349 			*vmap = new_vma;
2350 		} else
2351 			anon_vma_moveto_tail(new_vma);
2352 	} else {
2353 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2354 		if (new_vma) {
2355 			*new_vma = *vma;
2356 			pol = mpol_dup(vma_policy(vma));
2357 			if (IS_ERR(pol))
2358 				goto out_free_vma;
2359 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2360 			if (anon_vma_clone(new_vma, vma))
2361 				goto out_free_mempol;
2362 			vma_set_policy(new_vma, pol);
2363 			new_vma->vm_start = addr;
2364 			new_vma->vm_end = addr + len;
2365 			new_vma->vm_pgoff = pgoff;
2366 			if (new_vma->vm_file) {
2367 				get_file(new_vma->vm_file);
2368 				if (vma->vm_flags & VM_EXECUTABLE)
2369 					added_exe_file_vma(mm);
2370 			}
2371 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2372 				new_vma->vm_ops->open(new_vma);
2373 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2374 		}
2375 	}
2376 	return new_vma;
2377 
2378  out_free_mempol:
2379 	mpol_put(pol);
2380  out_free_vma:
2381 	kmem_cache_free(vm_area_cachep, new_vma);
2382 	return NULL;
2383 }
2384 
2385 /*
2386  * Return true if the calling process may expand its vm space by the passed
2387  * number of pages
2388  */
may_expand_vm(struct mm_struct * mm,unsigned long npages)2389 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2390 {
2391 	unsigned long cur = mm->total_vm;	/* pages */
2392 	unsigned long lim;
2393 
2394 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2395 
2396 	if (cur + npages > lim)
2397 		return 0;
2398 	return 1;
2399 }
2400 
2401 
special_mapping_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2402 static int special_mapping_fault(struct vm_area_struct *vma,
2403 				struct vm_fault *vmf)
2404 {
2405 	pgoff_t pgoff;
2406 	struct page **pages;
2407 
2408 	/*
2409 	 * special mappings have no vm_file, and in that case, the mm
2410 	 * uses vm_pgoff internally. So we have to subtract it from here.
2411 	 * We are allowed to do this because we are the mm; do not copy
2412 	 * this code into drivers!
2413 	 */
2414 	pgoff = vmf->pgoff - vma->vm_pgoff;
2415 
2416 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2417 		pgoff--;
2418 
2419 	if (*pages) {
2420 		struct page *page = *pages;
2421 		get_page(page);
2422 		vmf->page = page;
2423 		return 0;
2424 	}
2425 
2426 	return VM_FAULT_SIGBUS;
2427 }
2428 
2429 /*
2430  * Having a close hook prevents vma merging regardless of flags.
2431  */
special_mapping_close(struct vm_area_struct * vma)2432 static void special_mapping_close(struct vm_area_struct *vma)
2433 {
2434 }
2435 
2436 static const struct vm_operations_struct special_mapping_vmops = {
2437 	.close = special_mapping_close,
2438 	.fault = special_mapping_fault,
2439 };
2440 
2441 /*
2442  * Called with mm->mmap_sem held for writing.
2443  * Insert a new vma covering the given region, with the given flags.
2444  * Its pages are supplied by the given array of struct page *.
2445  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2446  * The region past the last page supplied will always produce SIGBUS.
2447  * The array pointer and the pages it points to are assumed to stay alive
2448  * for as long as this mapping might exist.
2449  */
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)2450 int install_special_mapping(struct mm_struct *mm,
2451 			    unsigned long addr, unsigned long len,
2452 			    unsigned long vm_flags, struct page **pages)
2453 {
2454 	int ret;
2455 	struct vm_area_struct *vma;
2456 
2457 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2458 	if (unlikely(vma == NULL))
2459 		return -ENOMEM;
2460 
2461 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2462 	vma->vm_mm = mm;
2463 	vma->vm_start = addr;
2464 	vma->vm_end = addr + len;
2465 
2466 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2467 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2468 
2469 	vma->vm_ops = &special_mapping_vmops;
2470 	vma->vm_private_data = pages;
2471 
2472 	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2473 	if (ret)
2474 		goto out;
2475 
2476 	ret = insert_vm_struct(mm, vma);
2477 	if (ret)
2478 		goto out;
2479 
2480 	mm->total_vm += len >> PAGE_SHIFT;
2481 
2482 	perf_event_mmap(vma);
2483 
2484 	return 0;
2485 
2486 out:
2487 	kmem_cache_free(vm_area_cachep, vma);
2488 	return ret;
2489 }
2490 
2491 static DEFINE_MUTEX(mm_all_locks_mutex);
2492 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)2493 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2494 {
2495 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2496 		/*
2497 		 * The LSB of head.next can't change from under us
2498 		 * because we hold the mm_all_locks_mutex.
2499 		 */
2500 		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2501 		/*
2502 		 * We can safely modify head.next after taking the
2503 		 * anon_vma->root->mutex. If some other vma in this mm shares
2504 		 * the same anon_vma we won't take it again.
2505 		 *
2506 		 * No need of atomic instructions here, head.next
2507 		 * can't change from under us thanks to the
2508 		 * anon_vma->root->mutex.
2509 		 */
2510 		if (__test_and_set_bit(0, (unsigned long *)
2511 				       &anon_vma->root->head.next))
2512 			BUG();
2513 	}
2514 }
2515 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)2516 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2517 {
2518 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2519 		/*
2520 		 * AS_MM_ALL_LOCKS can't change from under us because
2521 		 * we hold the mm_all_locks_mutex.
2522 		 *
2523 		 * Operations on ->flags have to be atomic because
2524 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2525 		 * mm_all_locks_mutex, there may be other cpus
2526 		 * changing other bitflags in parallel to us.
2527 		 */
2528 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2529 			BUG();
2530 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2531 	}
2532 }
2533 
2534 /*
2535  * This operation locks against the VM for all pte/vma/mm related
2536  * operations that could ever happen on a certain mm. This includes
2537  * vmtruncate, try_to_unmap, and all page faults.
2538  *
2539  * The caller must take the mmap_sem in write mode before calling
2540  * mm_take_all_locks(). The caller isn't allowed to release the
2541  * mmap_sem until mm_drop_all_locks() returns.
2542  *
2543  * mmap_sem in write mode is required in order to block all operations
2544  * that could modify pagetables and free pages without need of
2545  * altering the vma layout (for example populate_range() with
2546  * nonlinear vmas). It's also needed in write mode to avoid new
2547  * anon_vmas to be associated with existing vmas.
2548  *
2549  * A single task can't take more than one mm_take_all_locks() in a row
2550  * or it would deadlock.
2551  *
2552  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2553  * mapping->flags avoid to take the same lock twice, if more than one
2554  * vma in this mm is backed by the same anon_vma or address_space.
2555  *
2556  * We can take all the locks in random order because the VM code
2557  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2558  * takes more than one of them in a row. Secondly we're protected
2559  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2560  *
2561  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2562  * that may have to take thousand of locks.
2563  *
2564  * mm_take_all_locks() can fail if it's interrupted by signals.
2565  */
mm_take_all_locks(struct mm_struct * mm)2566 int mm_take_all_locks(struct mm_struct *mm)
2567 {
2568 	struct vm_area_struct *vma;
2569 	struct anon_vma_chain *avc;
2570 
2571 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2572 
2573 	mutex_lock(&mm_all_locks_mutex);
2574 
2575 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2576 		if (signal_pending(current))
2577 			goto out_unlock;
2578 		if (vma->vm_file && vma->vm_file->f_mapping)
2579 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2580 	}
2581 
2582 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2583 		if (signal_pending(current))
2584 			goto out_unlock;
2585 		if (vma->anon_vma)
2586 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2587 				vm_lock_anon_vma(mm, avc->anon_vma);
2588 	}
2589 
2590 	return 0;
2591 
2592 out_unlock:
2593 	mm_drop_all_locks(mm);
2594 	return -EINTR;
2595 }
2596 
vm_unlock_anon_vma(struct anon_vma * anon_vma)2597 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2598 {
2599 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2600 		/*
2601 		 * The LSB of head.next can't change to 0 from under
2602 		 * us because we hold the mm_all_locks_mutex.
2603 		 *
2604 		 * We must however clear the bitflag before unlocking
2605 		 * the vma so the users using the anon_vma->head will
2606 		 * never see our bitflag.
2607 		 *
2608 		 * No need of atomic instructions here, head.next
2609 		 * can't change from under us until we release the
2610 		 * anon_vma->root->mutex.
2611 		 */
2612 		if (!__test_and_clear_bit(0, (unsigned long *)
2613 					  &anon_vma->root->head.next))
2614 			BUG();
2615 		anon_vma_unlock(anon_vma);
2616 	}
2617 }
2618 
vm_unlock_mapping(struct address_space * mapping)2619 static void vm_unlock_mapping(struct address_space *mapping)
2620 {
2621 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2622 		/*
2623 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2624 		 * because we hold the mm_all_locks_mutex.
2625 		 */
2626 		mutex_unlock(&mapping->i_mmap_mutex);
2627 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2628 					&mapping->flags))
2629 			BUG();
2630 	}
2631 }
2632 
2633 /*
2634  * The mmap_sem cannot be released by the caller until
2635  * mm_drop_all_locks() returns.
2636  */
mm_drop_all_locks(struct mm_struct * mm)2637 void mm_drop_all_locks(struct mm_struct *mm)
2638 {
2639 	struct vm_area_struct *vma;
2640 	struct anon_vma_chain *avc;
2641 
2642 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2643 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2644 
2645 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2646 		if (vma->anon_vma)
2647 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2648 				vm_unlock_anon_vma(avc->anon_vma);
2649 		if (vma->vm_file && vma->vm_file->f_mapping)
2650 			vm_unlock_mapping(vma->vm_file->f_mapping);
2651 	}
2652 
2653 	mutex_unlock(&mm_all_locks_mutex);
2654 }
2655 
2656 /*
2657  * initialise the VMA slab
2658  */
mmap_init(void)2659 void __init mmap_init(void)
2660 {
2661 	int ret;
2662 
2663 	ret = percpu_counter_init(&vm_committed_as, 0);
2664 	VM_BUG_ON(ret);
2665 }
2666