1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31
32 struct pagevec;
33
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (WARN_ON(condition)) \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } while (0)
42 #endif
43
44 enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_READ_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_WRITE_IO,
60 FAULT_SLAB_ALLOC,
61 FAULT_DQUOT_INIT,
62 FAULT_LOCK_OP,
63 FAULT_BLKADDR,
64 FAULT_MAX,
65 };
66
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
69
70 struct f2fs_fault_info {
71 atomic_t inject_ops;
72 unsigned int inject_rate;
73 unsigned int inject_type;
74 };
75
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
78 #endif
79
80 /*
81 * For mount options
82 */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
84 #define F2FS_MOUNT_DISCARD 0x00000002
85 #define F2FS_MOUNT_NOHEAP 0x00000004
86 #define F2FS_MOUNT_XATTR_USER 0x00000008
87 #define F2FS_MOUNT_POSIX_ACL 0x00000010
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
89 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
90 #define F2FS_MOUNT_INLINE_DATA 0x00000080
91 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
92 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
93 #define F2FS_MOUNT_NOBARRIER 0x00000400
94 #define F2FS_MOUNT_FASTBOOT 0x00000800
95 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
96 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
97 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
98 #define F2FS_MOUNT_USRQUOTA 0x00008000
99 #define F2FS_MOUNT_GRPQUOTA 0x00010000
100 #define F2FS_MOUNT_PRJQUOTA 0x00020000
101 #define F2FS_MOUNT_QUOTA 0x00040000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
103 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
105 #define F2FS_MOUNT_NORECOVERY 0x00400000
106 #define F2FS_MOUNT_ATGC 0x00800000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
108 #define F2FS_MOUNT_GC_MERGE 0x02000000
109 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
110 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
111
112 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
113 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
114 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
115 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
116
117 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
118 typecheck(unsigned long long, b) && \
119 ((long long)((a) - (b)) > 0))
120
121 typedef u32 block_t; /*
122 * should not change u32, since it is the on-disk block
123 * address format, __le32.
124 */
125 typedef u32 nid_t;
126
127 #define COMPRESS_EXT_NUM 16
128
129 /*
130 * An implementation of an rwsem that is explicitly unfair to readers. This
131 * prevents priority inversion when a low-priority reader acquires the read lock
132 * while sleeping on the write lock but the write lock is needed by
133 * higher-priority clients.
134 */
135
136 struct f2fs_rwsem {
137 struct rw_semaphore internal_rwsem;
138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
139 wait_queue_head_t read_waiters;
140 #endif
141 };
142
143 struct f2fs_mount_info {
144 unsigned int opt;
145 int write_io_size_bits; /* Write IO size bits */
146 block_t root_reserved_blocks; /* root reserved blocks */
147 kuid_t s_resuid; /* reserved blocks for uid */
148 kgid_t s_resgid; /* reserved blocks for gid */
149 int active_logs; /* # of active logs */
150 int inline_xattr_size; /* inline xattr size */
151 #ifdef CONFIG_F2FS_FAULT_INJECTION
152 struct f2fs_fault_info fault_info; /* For fault injection */
153 #endif
154 #ifdef CONFIG_QUOTA
155 /* Names of quota files with journalled quota */
156 char *s_qf_names[MAXQUOTAS];
157 int s_jquota_fmt; /* Format of quota to use */
158 #endif
159 /* For which write hints are passed down to block layer */
160 int alloc_mode; /* segment allocation policy */
161 int fsync_mode; /* fsync policy */
162 int fs_mode; /* fs mode: LFS or ADAPTIVE */
163 int bggc_mode; /* bggc mode: off, on or sync */
164 int memory_mode; /* memory mode */
165 int errors; /* errors parameter */
166 int discard_unit; /*
167 * discard command's offset/size should
168 * be aligned to this unit: block,
169 * segment or section
170 */
171 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
172 block_t unusable_cap_perc; /* percentage for cap */
173 block_t unusable_cap; /* Amount of space allowed to be
174 * unusable when disabling checkpoint
175 */
176
177 /* For compression */
178 unsigned char compress_algorithm; /* algorithm type */
179 unsigned char compress_log_size; /* cluster log size */
180 unsigned char compress_level; /* compress level */
181 bool compress_chksum; /* compressed data chksum */
182 unsigned char compress_ext_cnt; /* extension count */
183 unsigned char nocompress_ext_cnt; /* nocompress extension count */
184 int compress_mode; /* compression mode */
185 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
186 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
187 };
188
189 #define F2FS_FEATURE_ENCRYPT 0x00000001
190 #define F2FS_FEATURE_BLKZONED 0x00000002
191 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
192 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
193 #define F2FS_FEATURE_PRJQUOTA 0x00000010
194 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
195 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
196 #define F2FS_FEATURE_QUOTA_INO 0x00000080
197 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
198 #define F2FS_FEATURE_LOST_FOUND 0x00000200
199 #define F2FS_FEATURE_VERITY 0x00000400
200 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
201 #define F2FS_FEATURE_CASEFOLD 0x00001000
202 #define F2FS_FEATURE_COMPRESSION 0x00002000
203 #define F2FS_FEATURE_RO 0x00004000
204
205 #define __F2FS_HAS_FEATURE(raw_super, mask) \
206 ((raw_super->feature & cpu_to_le32(mask)) != 0)
207 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
208
209 /*
210 * Default values for user and/or group using reserved blocks
211 */
212 #define F2FS_DEF_RESUID 0
213 #define F2FS_DEF_RESGID 0
214
215 /*
216 * For checkpoint manager
217 */
218 enum {
219 NAT_BITMAP,
220 SIT_BITMAP
221 };
222
223 #define CP_UMOUNT 0x00000001
224 #define CP_FASTBOOT 0x00000002
225 #define CP_SYNC 0x00000004
226 #define CP_RECOVERY 0x00000008
227 #define CP_DISCARD 0x00000010
228 #define CP_TRIMMED 0x00000020
229 #define CP_PAUSE 0x00000040
230 #define CP_RESIZE 0x00000080
231
232 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
233 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
234 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
235 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
236 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
237 #define DEF_CP_INTERVAL 60 /* 60 secs */
238 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
239 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
240 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
241 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
242
243 struct cp_control {
244 int reason;
245 __u64 trim_start;
246 __u64 trim_end;
247 __u64 trim_minlen;
248 };
249
250 /*
251 * indicate meta/data type
252 */
253 enum {
254 META_CP,
255 META_NAT,
256 META_SIT,
257 META_SSA,
258 META_MAX,
259 META_POR,
260 DATA_GENERIC, /* check range only */
261 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
262 DATA_GENERIC_ENHANCE_READ, /*
263 * strong check on range and segment
264 * bitmap but no warning due to race
265 * condition of read on truncated area
266 * by extent_cache
267 */
268 DATA_GENERIC_ENHANCE_UPDATE, /*
269 * strong check on range and segment
270 * bitmap for update case
271 */
272 META_GENERIC,
273 };
274
275 /* for the list of ino */
276 enum {
277 ORPHAN_INO, /* for orphan ino list */
278 APPEND_INO, /* for append ino list */
279 UPDATE_INO, /* for update ino list */
280 TRANS_DIR_INO, /* for transactions dir ino list */
281 FLUSH_INO, /* for multiple device flushing */
282 MAX_INO_ENTRY, /* max. list */
283 };
284
285 struct ino_entry {
286 struct list_head list; /* list head */
287 nid_t ino; /* inode number */
288 unsigned int dirty_device; /* dirty device bitmap */
289 };
290
291 /* for the list of inodes to be GCed */
292 struct inode_entry {
293 struct list_head list; /* list head */
294 struct inode *inode; /* vfs inode pointer */
295 };
296
297 struct fsync_node_entry {
298 struct list_head list; /* list head */
299 struct page *page; /* warm node page pointer */
300 unsigned int seq_id; /* sequence id */
301 };
302
303 struct ckpt_req {
304 struct completion wait; /* completion for checkpoint done */
305 struct llist_node llnode; /* llist_node to be linked in wait queue */
306 int ret; /* return code of checkpoint */
307 ktime_t queue_time; /* request queued time */
308 };
309
310 struct ckpt_req_control {
311 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
312 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
313 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
314 atomic_t issued_ckpt; /* # of actually issued ckpts */
315 atomic_t total_ckpt; /* # of total ckpts */
316 atomic_t queued_ckpt; /* # of queued ckpts */
317 struct llist_head issue_list; /* list for command issue */
318 spinlock_t stat_lock; /* lock for below checkpoint time stats */
319 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
320 unsigned int peak_time; /* peak wait time in msec until now */
321 };
322
323 /* for the bitmap indicate blocks to be discarded */
324 struct discard_entry {
325 struct list_head list; /* list head */
326 block_t start_blkaddr; /* start blockaddr of current segment */
327 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
328 };
329
330 /* minimum discard granularity, unit: block count */
331 #define MIN_DISCARD_GRANULARITY 1
332 /* default discard granularity of inner discard thread, unit: block count */
333 #define DEFAULT_DISCARD_GRANULARITY 16
334 /* default maximum discard granularity of ordered discard, unit: block count */
335 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
336
337 /* max discard pend list number */
338 #define MAX_PLIST_NUM 512
339 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
340 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
341
342 enum {
343 D_PREP, /* initial */
344 D_PARTIAL, /* partially submitted */
345 D_SUBMIT, /* all submitted */
346 D_DONE, /* finished */
347 };
348
349 struct discard_info {
350 block_t lstart; /* logical start address */
351 block_t len; /* length */
352 block_t start; /* actual start address in dev */
353 };
354
355 struct discard_cmd {
356 struct rb_node rb_node; /* rb node located in rb-tree */
357 struct discard_info di; /* discard info */
358 struct list_head list; /* command list */
359 struct completion wait; /* compleation */
360 struct block_device *bdev; /* bdev */
361 unsigned short ref; /* reference count */
362 unsigned char state; /* state */
363 unsigned char queued; /* queued discard */
364 int error; /* bio error */
365 spinlock_t lock; /* for state/bio_ref updating */
366 unsigned short bio_ref; /* bio reference count */
367 };
368
369 enum {
370 DPOLICY_BG,
371 DPOLICY_FORCE,
372 DPOLICY_FSTRIM,
373 DPOLICY_UMOUNT,
374 MAX_DPOLICY,
375 };
376
377 enum {
378 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
379 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
380 DPOLICY_IO_AWARE_MAX,
381 };
382
383 struct discard_policy {
384 int type; /* type of discard */
385 unsigned int min_interval; /* used for candidates exist */
386 unsigned int mid_interval; /* used for device busy */
387 unsigned int max_interval; /* used for candidates not exist */
388 unsigned int max_requests; /* # of discards issued per round */
389 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
390 bool io_aware; /* issue discard in idle time */
391 bool sync; /* submit discard with REQ_SYNC flag */
392 bool ordered; /* issue discard by lba order */
393 bool timeout; /* discard timeout for put_super */
394 unsigned int granularity; /* discard granularity */
395 };
396
397 struct discard_cmd_control {
398 struct task_struct *f2fs_issue_discard; /* discard thread */
399 struct list_head entry_list; /* 4KB discard entry list */
400 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
401 struct list_head wait_list; /* store on-flushing entries */
402 struct list_head fstrim_list; /* in-flight discard from fstrim */
403 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
404 struct mutex cmd_lock;
405 unsigned int nr_discards; /* # of discards in the list */
406 unsigned int max_discards; /* max. discards to be issued */
407 unsigned int max_discard_request; /* max. discard request per round */
408 unsigned int min_discard_issue_time; /* min. interval between discard issue */
409 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
410 unsigned int max_discard_issue_time; /* max. interval between discard issue */
411 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
412 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
413 unsigned int discard_granularity; /* discard granularity */
414 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
415 unsigned int discard_io_aware; /* io_aware policy */
416 unsigned int undiscard_blks; /* # of undiscard blocks */
417 unsigned int next_pos; /* next discard position */
418 atomic_t issued_discard; /* # of issued discard */
419 atomic_t queued_discard; /* # of queued discard */
420 atomic_t discard_cmd_cnt; /* # of cached cmd count */
421 struct rb_root_cached root; /* root of discard rb-tree */
422 bool rbtree_check; /* config for consistence check */
423 bool discard_wake; /* to wake up discard thread */
424 };
425
426 /* for the list of fsync inodes, used only during recovery */
427 struct fsync_inode_entry {
428 struct list_head list; /* list head */
429 struct inode *inode; /* vfs inode pointer */
430 block_t blkaddr; /* block address locating the last fsync */
431 block_t last_dentry; /* block address locating the last dentry */
432 };
433
434 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
435 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
436
437 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
438 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
439 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
440 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
441
442 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
443 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
444
update_nats_in_cursum(struct f2fs_journal * journal,int i)445 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
446 {
447 int before = nats_in_cursum(journal);
448
449 journal->n_nats = cpu_to_le16(before + i);
450 return before;
451 }
452
update_sits_in_cursum(struct f2fs_journal * journal,int i)453 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
454 {
455 int before = sits_in_cursum(journal);
456
457 journal->n_sits = cpu_to_le16(before + i);
458 return before;
459 }
460
__has_cursum_space(struct f2fs_journal * journal,int size,int type)461 static inline bool __has_cursum_space(struct f2fs_journal *journal,
462 int size, int type)
463 {
464 if (type == NAT_JOURNAL)
465 return size <= MAX_NAT_JENTRIES(journal);
466 return size <= MAX_SIT_JENTRIES(journal);
467 }
468
469 /* for inline stuff */
470 #define DEF_INLINE_RESERVED_SIZE 1
471 static inline int get_extra_isize(struct inode *inode);
472 static inline int get_inline_xattr_addrs(struct inode *inode);
473 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
474 (CUR_ADDRS_PER_INODE(inode) - \
475 get_inline_xattr_addrs(inode) - \
476 DEF_INLINE_RESERVED_SIZE))
477
478 /* for inline dir */
479 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
480 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
481 BITS_PER_BYTE + 1))
482 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
483 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
484 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
485 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
486 NR_INLINE_DENTRY(inode) + \
487 INLINE_DENTRY_BITMAP_SIZE(inode)))
488
489 /*
490 * For INODE and NODE manager
491 */
492 /* for directory operations */
493
494 struct f2fs_filename {
495 /*
496 * The filename the user specified. This is NULL for some
497 * filesystem-internal operations, e.g. converting an inline directory
498 * to a non-inline one, or roll-forward recovering an encrypted dentry.
499 */
500 const struct qstr *usr_fname;
501
502 /*
503 * The on-disk filename. For encrypted directories, this is encrypted.
504 * This may be NULL for lookups in an encrypted dir without the key.
505 */
506 struct fscrypt_str disk_name;
507
508 /* The dirhash of this filename */
509 f2fs_hash_t hash;
510
511 #ifdef CONFIG_FS_ENCRYPTION
512 /*
513 * For lookups in encrypted directories: either the buffer backing
514 * disk_name, or a buffer that holds the decoded no-key name.
515 */
516 struct fscrypt_str crypto_buf;
517 #endif
518 #if IS_ENABLED(CONFIG_UNICODE)
519 /*
520 * For casefolded directories: the casefolded name, but it's left NULL
521 * if the original name is not valid Unicode, if the original name is
522 * "." or "..", if the directory is both casefolded and encrypted and
523 * its encryption key is unavailable, or if the filesystem is doing an
524 * internal operation where usr_fname is also NULL. In all these cases
525 * we fall back to treating the name as an opaque byte sequence.
526 */
527 struct fscrypt_str cf_name;
528 #endif
529 };
530
531 struct f2fs_dentry_ptr {
532 struct inode *inode;
533 void *bitmap;
534 struct f2fs_dir_entry *dentry;
535 __u8 (*filename)[F2FS_SLOT_LEN];
536 int max;
537 int nr_bitmap;
538 };
539
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)540 static inline void make_dentry_ptr_block(struct inode *inode,
541 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
542 {
543 d->inode = inode;
544 d->max = NR_DENTRY_IN_BLOCK;
545 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
546 d->bitmap = t->dentry_bitmap;
547 d->dentry = t->dentry;
548 d->filename = t->filename;
549 }
550
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)551 static inline void make_dentry_ptr_inline(struct inode *inode,
552 struct f2fs_dentry_ptr *d, void *t)
553 {
554 int entry_cnt = NR_INLINE_DENTRY(inode);
555 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
556 int reserved_size = INLINE_RESERVED_SIZE(inode);
557
558 d->inode = inode;
559 d->max = entry_cnt;
560 d->nr_bitmap = bitmap_size;
561 d->bitmap = t;
562 d->dentry = t + bitmap_size + reserved_size;
563 d->filename = t + bitmap_size + reserved_size +
564 SIZE_OF_DIR_ENTRY * entry_cnt;
565 }
566
567 /*
568 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
569 * as its node offset to distinguish from index node blocks.
570 * But some bits are used to mark the node block.
571 */
572 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
573 >> OFFSET_BIT_SHIFT)
574 enum {
575 ALLOC_NODE, /* allocate a new node page if needed */
576 LOOKUP_NODE, /* look up a node without readahead */
577 LOOKUP_NODE_RA, /*
578 * look up a node with readahead called
579 * by get_data_block.
580 */
581 };
582
583 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
584
585 /* congestion wait timeout value, default: 20ms */
586 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
587
588 /* maximum retry quota flush count */
589 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
590
591 /* maximum retry of EIO'ed page */
592 #define MAX_RETRY_PAGE_EIO 100
593
594 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
595
596 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
597
598 /* dirty segments threshold for triggering CP */
599 #define DEFAULT_DIRTY_THRESHOLD 4
600
601 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
602 #define RECOVERY_MIN_RA_BLOCKS 1
603
604 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
605
606 /* for in-memory extent cache entry */
607 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
608
609 /* number of extent info in extent cache we try to shrink */
610 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
611
612 /* number of age extent info in extent cache we try to shrink */
613 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
614 #define LAST_AGE_WEIGHT 30
615 #define SAME_AGE_REGION 1024
616
617 /*
618 * Define data block with age less than 1GB as hot data
619 * define data block with age less than 10GB but more than 1GB as warm data
620 */
621 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
622 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
623
624 /* extent cache type */
625 enum extent_type {
626 EX_READ,
627 EX_BLOCK_AGE,
628 NR_EXTENT_CACHES,
629 };
630
631 struct extent_info {
632 unsigned int fofs; /* start offset in a file */
633 unsigned int len; /* length of the extent */
634 union {
635 /* read extent_cache */
636 struct {
637 /* start block address of the extent */
638 block_t blk;
639 #ifdef CONFIG_F2FS_FS_COMPRESSION
640 /* physical extent length of compressed blocks */
641 unsigned int c_len;
642 #endif
643 };
644 /* block age extent_cache */
645 struct {
646 /* block age of the extent */
647 unsigned long long age;
648 /* last total blocks allocated */
649 unsigned long long last_blocks;
650 };
651 };
652 };
653
654 struct extent_node {
655 struct rb_node rb_node; /* rb node located in rb-tree */
656 struct extent_info ei; /* extent info */
657 struct list_head list; /* node in global extent list of sbi */
658 struct extent_tree *et; /* extent tree pointer */
659 };
660
661 struct extent_tree {
662 nid_t ino; /* inode number */
663 enum extent_type type; /* keep the extent tree type */
664 struct rb_root_cached root; /* root of extent info rb-tree */
665 struct extent_node *cached_en; /* recently accessed extent node */
666 struct list_head list; /* to be used by sbi->zombie_list */
667 rwlock_t lock; /* protect extent info rb-tree */
668 atomic_t node_cnt; /* # of extent node in rb-tree*/
669 bool largest_updated; /* largest extent updated */
670 struct extent_info largest; /* largest cached extent for EX_READ */
671 };
672
673 struct extent_tree_info {
674 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
675 struct mutex extent_tree_lock; /* locking extent radix tree */
676 struct list_head extent_list; /* lru list for shrinker */
677 spinlock_t extent_lock; /* locking extent lru list */
678 atomic_t total_ext_tree; /* extent tree count */
679 struct list_head zombie_list; /* extent zombie tree list */
680 atomic_t total_zombie_tree; /* extent zombie tree count */
681 atomic_t total_ext_node; /* extent info count */
682 };
683
684 /*
685 * State of block returned by f2fs_map_blocks.
686 */
687 #define F2FS_MAP_NEW (1U << 0)
688 #define F2FS_MAP_MAPPED (1U << 1)
689 #define F2FS_MAP_DELALLOC (1U << 2)
690 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
691 F2FS_MAP_DELALLOC)
692
693 struct f2fs_map_blocks {
694 struct block_device *m_bdev; /* for multi-device dio */
695 block_t m_pblk;
696 block_t m_lblk;
697 unsigned int m_len;
698 unsigned int m_flags;
699 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
700 pgoff_t *m_next_extent; /* point to next possible extent */
701 int m_seg_type;
702 bool m_may_create; /* indicate it is from write path */
703 bool m_multidev_dio; /* indicate it allows multi-device dio */
704 };
705
706 /* for flag in get_data_block */
707 enum {
708 F2FS_GET_BLOCK_DEFAULT,
709 F2FS_GET_BLOCK_FIEMAP,
710 F2FS_GET_BLOCK_BMAP,
711 F2FS_GET_BLOCK_DIO,
712 F2FS_GET_BLOCK_PRE_DIO,
713 F2FS_GET_BLOCK_PRE_AIO,
714 F2FS_GET_BLOCK_PRECACHE,
715 };
716
717 /*
718 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
719 */
720 #define FADVISE_COLD_BIT 0x01
721 #define FADVISE_LOST_PINO_BIT 0x02
722 #define FADVISE_ENCRYPT_BIT 0x04
723 #define FADVISE_ENC_NAME_BIT 0x08
724 #define FADVISE_KEEP_SIZE_BIT 0x10
725 #define FADVISE_HOT_BIT 0x20
726 #define FADVISE_VERITY_BIT 0x40
727 #define FADVISE_TRUNC_BIT 0x80
728
729 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
730
731 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
732 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
733 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
734
735 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
736 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
737 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
738
739 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
740 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
741
742 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
743 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
744
745 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
746 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
747
748 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
749 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
750 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
751
752 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
753 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
754
755 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
756 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
757 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
758
759 #define DEF_DIR_LEVEL 0
760
761 enum {
762 GC_FAILURE_PIN,
763 MAX_GC_FAILURE
764 };
765
766 /* used for f2fs_inode_info->flags */
767 enum {
768 FI_NEW_INODE, /* indicate newly allocated inode */
769 FI_DIRTY_INODE, /* indicate inode is dirty or not */
770 FI_AUTO_RECOVER, /* indicate inode is recoverable */
771 FI_DIRTY_DIR, /* indicate directory has dirty pages */
772 FI_INC_LINK, /* need to increment i_nlink */
773 FI_ACL_MODE, /* indicate acl mode */
774 FI_NO_ALLOC, /* should not allocate any blocks */
775 FI_FREE_NID, /* free allocated nide */
776 FI_NO_EXTENT, /* not to use the extent cache */
777 FI_INLINE_XATTR, /* used for inline xattr */
778 FI_INLINE_DATA, /* used for inline data*/
779 FI_INLINE_DENTRY, /* used for inline dentry */
780 FI_APPEND_WRITE, /* inode has appended data */
781 FI_UPDATE_WRITE, /* inode has in-place-update data */
782 FI_NEED_IPU, /* used for ipu per file */
783 FI_ATOMIC_FILE, /* indicate atomic file */
784 FI_DATA_EXIST, /* indicate data exists */
785 FI_INLINE_DOTS, /* indicate inline dot dentries */
786 FI_SKIP_WRITES, /* should skip data page writeback */
787 FI_OPU_WRITE, /* used for opu per file */
788 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
789 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
790 FI_HOT_DATA, /* indicate file is hot */
791 FI_EXTRA_ATTR, /* indicate file has extra attribute */
792 FI_PROJ_INHERIT, /* indicate file inherits projectid */
793 FI_PIN_FILE, /* indicate file should not be gced */
794 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
795 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
796 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
797 FI_MMAP_FILE, /* indicate file was mmapped */
798 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
799 FI_COMPRESS_RELEASED, /* compressed blocks were released */
800 FI_ALIGNED_WRITE, /* enable aligned write */
801 FI_COW_FILE, /* indicate COW file */
802 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
803 FI_ATOMIC_REPLACE, /* indicate atomic replace */
804 FI_MAX, /* max flag, never be used */
805 };
806
807 struct f2fs_inode_info {
808 struct inode vfs_inode; /* serve a vfs inode */
809 unsigned long i_flags; /* keep an inode flags for ioctl */
810 unsigned char i_advise; /* use to give file attribute hints */
811 unsigned char i_dir_level; /* use for dentry level for large dir */
812 unsigned int i_current_depth; /* only for directory depth */
813 /* for gc failure statistic */
814 unsigned int i_gc_failures[MAX_GC_FAILURE];
815 unsigned int i_pino; /* parent inode number */
816 umode_t i_acl_mode; /* keep file acl mode temporarily */
817
818 /* Use below internally in f2fs*/
819 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
820 struct f2fs_rwsem i_sem; /* protect fi info */
821 atomic_t dirty_pages; /* # of dirty pages */
822 f2fs_hash_t chash; /* hash value of given file name */
823 unsigned int clevel; /* maximum level of given file name */
824 struct task_struct *task; /* lookup and create consistency */
825 struct task_struct *cp_task; /* separate cp/wb IO stats*/
826 struct task_struct *wb_task; /* indicate inode is in context of writeback */
827 nid_t i_xattr_nid; /* node id that contains xattrs */
828 loff_t last_disk_size; /* lastly written file size */
829 spinlock_t i_size_lock; /* protect last_disk_size */
830
831 #ifdef CONFIG_QUOTA
832 struct dquot *i_dquot[MAXQUOTAS];
833
834 /* quota space reservation, managed internally by quota code */
835 qsize_t i_reserved_quota;
836 #endif
837 struct list_head dirty_list; /* dirty list for dirs and files */
838 struct list_head gdirty_list; /* linked in global dirty list */
839 struct task_struct *atomic_write_task; /* store atomic write task */
840 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
841 /* cached extent_tree entry */
842 struct inode *cow_inode; /* copy-on-write inode for atomic write */
843
844 /* avoid racing between foreground op and gc */
845 struct f2fs_rwsem i_gc_rwsem[2];
846 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
847
848 int i_extra_isize; /* size of extra space located in i_addr */
849 kprojid_t i_projid; /* id for project quota */
850 int i_inline_xattr_size; /* inline xattr size */
851 struct timespec64 i_crtime; /* inode creation time */
852 struct timespec64 i_disk_time[3];/* inode disk times */
853
854 /* for file compress */
855 atomic_t i_compr_blocks; /* # of compressed blocks */
856 unsigned char i_compress_algorithm; /* algorithm type */
857 unsigned char i_log_cluster_size; /* log of cluster size */
858 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
859 unsigned char i_compress_flag; /* compress flag */
860 unsigned int i_cluster_size; /* cluster size */
861
862 unsigned int atomic_write_cnt;
863 loff_t original_i_size; /* original i_size before atomic write */
864 };
865
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)866 static inline void get_read_extent_info(struct extent_info *ext,
867 struct f2fs_extent *i_ext)
868 {
869 ext->fofs = le32_to_cpu(i_ext->fofs);
870 ext->blk = le32_to_cpu(i_ext->blk);
871 ext->len = le32_to_cpu(i_ext->len);
872 }
873
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)874 static inline void set_raw_read_extent(struct extent_info *ext,
875 struct f2fs_extent *i_ext)
876 {
877 i_ext->fofs = cpu_to_le32(ext->fofs);
878 i_ext->blk = cpu_to_le32(ext->blk);
879 i_ext->len = cpu_to_le32(ext->len);
880 }
881
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)882 static inline bool __is_discard_mergeable(struct discard_info *back,
883 struct discard_info *front, unsigned int max_len)
884 {
885 return (back->lstart + back->len == front->lstart) &&
886 (back->len + front->len <= max_len);
887 }
888
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)889 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
890 struct discard_info *back, unsigned int max_len)
891 {
892 return __is_discard_mergeable(back, cur, max_len);
893 }
894
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)895 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
896 struct discard_info *front, unsigned int max_len)
897 {
898 return __is_discard_mergeable(cur, front, max_len);
899 }
900
901 /*
902 * For free nid management
903 */
904 enum nid_state {
905 FREE_NID, /* newly added to free nid list */
906 PREALLOC_NID, /* it is preallocated */
907 MAX_NID_STATE,
908 };
909
910 enum nat_state {
911 TOTAL_NAT,
912 DIRTY_NAT,
913 RECLAIMABLE_NAT,
914 MAX_NAT_STATE,
915 };
916
917 struct f2fs_nm_info {
918 block_t nat_blkaddr; /* base disk address of NAT */
919 nid_t max_nid; /* maximum possible node ids */
920 nid_t available_nids; /* # of available node ids */
921 nid_t next_scan_nid; /* the next nid to be scanned */
922 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
923 unsigned int ram_thresh; /* control the memory footprint */
924 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
925 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
926
927 /* NAT cache management */
928 struct radix_tree_root nat_root;/* root of the nat entry cache */
929 struct radix_tree_root nat_set_root;/* root of the nat set cache */
930 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
931 struct list_head nat_entries; /* cached nat entry list (clean) */
932 spinlock_t nat_list_lock; /* protect clean nat entry list */
933 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
934 unsigned int nat_blocks; /* # of nat blocks */
935
936 /* free node ids management */
937 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
938 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
939 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
940 spinlock_t nid_list_lock; /* protect nid lists ops */
941 struct mutex build_lock; /* lock for build free nids */
942 unsigned char **free_nid_bitmap;
943 unsigned char *nat_block_bitmap;
944 unsigned short *free_nid_count; /* free nid count of NAT block */
945
946 /* for checkpoint */
947 char *nat_bitmap; /* NAT bitmap pointer */
948
949 unsigned int nat_bits_blocks; /* # of nat bits blocks */
950 unsigned char *nat_bits; /* NAT bits blocks */
951 unsigned char *full_nat_bits; /* full NAT pages */
952 unsigned char *empty_nat_bits; /* empty NAT pages */
953 #ifdef CONFIG_F2FS_CHECK_FS
954 char *nat_bitmap_mir; /* NAT bitmap mirror */
955 #endif
956 int bitmap_size; /* bitmap size */
957 };
958
959 /*
960 * this structure is used as one of function parameters.
961 * all the information are dedicated to a given direct node block determined
962 * by the data offset in a file.
963 */
964 struct dnode_of_data {
965 struct inode *inode; /* vfs inode pointer */
966 struct page *inode_page; /* its inode page, NULL is possible */
967 struct page *node_page; /* cached direct node page */
968 nid_t nid; /* node id of the direct node block */
969 unsigned int ofs_in_node; /* data offset in the node page */
970 bool inode_page_locked; /* inode page is locked or not */
971 bool node_changed; /* is node block changed */
972 char cur_level; /* level of hole node page */
973 char max_level; /* level of current page located */
974 block_t data_blkaddr; /* block address of the node block */
975 };
976
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)977 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
978 struct page *ipage, struct page *npage, nid_t nid)
979 {
980 memset(dn, 0, sizeof(*dn));
981 dn->inode = inode;
982 dn->inode_page = ipage;
983 dn->node_page = npage;
984 dn->nid = nid;
985 }
986
987 /*
988 * For SIT manager
989 *
990 * By default, there are 6 active log areas across the whole main area.
991 * When considering hot and cold data separation to reduce cleaning overhead,
992 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
993 * respectively.
994 * In the current design, you should not change the numbers intentionally.
995 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
996 * logs individually according to the underlying devices. (default: 6)
997 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
998 * data and 8 for node logs.
999 */
1000 #define NR_CURSEG_DATA_TYPE (3)
1001 #define NR_CURSEG_NODE_TYPE (3)
1002 #define NR_CURSEG_INMEM_TYPE (2)
1003 #define NR_CURSEG_RO_TYPE (2)
1004 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1005 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1006
1007 enum {
1008 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1009 CURSEG_WARM_DATA, /* data blocks */
1010 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1011 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1012 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1013 CURSEG_COLD_NODE, /* indirect node blocks */
1014 NR_PERSISTENT_LOG, /* number of persistent log */
1015 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1016 /* pinned file that needs consecutive block address */
1017 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1018 NO_CHECK_TYPE, /* number of persistent & inmem log */
1019 };
1020
1021 struct flush_cmd {
1022 struct completion wait;
1023 struct llist_node llnode;
1024 nid_t ino;
1025 int ret;
1026 };
1027
1028 struct flush_cmd_control {
1029 struct task_struct *f2fs_issue_flush; /* flush thread */
1030 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1031 atomic_t issued_flush; /* # of issued flushes */
1032 atomic_t queued_flush; /* # of queued flushes */
1033 struct llist_head issue_list; /* list for command issue */
1034 struct llist_node *dispatch_list; /* list for command dispatch */
1035 };
1036
1037 struct f2fs_sm_info {
1038 struct sit_info *sit_info; /* whole segment information */
1039 struct free_segmap_info *free_info; /* free segment information */
1040 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1041 struct curseg_info *curseg_array; /* active segment information */
1042
1043 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1044
1045 block_t seg0_blkaddr; /* block address of 0'th segment */
1046 block_t main_blkaddr; /* start block address of main area */
1047 block_t ssa_blkaddr; /* start block address of SSA area */
1048
1049 unsigned int segment_count; /* total # of segments */
1050 unsigned int main_segments; /* # of segments in main area */
1051 unsigned int reserved_segments; /* # of reserved segments */
1052 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1053 unsigned int ovp_segments; /* # of overprovision segments */
1054
1055 /* a threshold to reclaim prefree segments */
1056 unsigned int rec_prefree_segments;
1057
1058 struct list_head sit_entry_set; /* sit entry set list */
1059
1060 unsigned int ipu_policy; /* in-place-update policy */
1061 unsigned int min_ipu_util; /* in-place-update threshold */
1062 unsigned int min_fsync_blocks; /* threshold for fsync */
1063 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1064 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1065 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1066
1067 /* for flush command control */
1068 struct flush_cmd_control *fcc_info;
1069
1070 /* for discard command control */
1071 struct discard_cmd_control *dcc_info;
1072 };
1073
1074 /*
1075 * For superblock
1076 */
1077 /*
1078 * COUNT_TYPE for monitoring
1079 *
1080 * f2fs monitors the number of several block types such as on-writeback,
1081 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1082 */
1083 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1084 enum count_type {
1085 F2FS_DIRTY_DENTS,
1086 F2FS_DIRTY_DATA,
1087 F2FS_DIRTY_QDATA,
1088 F2FS_DIRTY_NODES,
1089 F2FS_DIRTY_META,
1090 F2FS_DIRTY_IMETA,
1091 F2FS_WB_CP_DATA,
1092 F2FS_WB_DATA,
1093 F2FS_RD_DATA,
1094 F2FS_RD_NODE,
1095 F2FS_RD_META,
1096 F2FS_DIO_WRITE,
1097 F2FS_DIO_READ,
1098 NR_COUNT_TYPE,
1099 };
1100
1101 /*
1102 * The below are the page types of bios used in submit_bio().
1103 * The available types are:
1104 * DATA User data pages. It operates as async mode.
1105 * NODE Node pages. It operates as async mode.
1106 * META FS metadata pages such as SIT, NAT, CP.
1107 * NR_PAGE_TYPE The number of page types.
1108 * META_FLUSH Make sure the previous pages are written
1109 * with waiting the bio's completion
1110 * ... Only can be used with META.
1111 */
1112 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1113 enum page_type {
1114 DATA = 0,
1115 NODE = 1, /* should not change this */
1116 META,
1117 NR_PAGE_TYPE,
1118 META_FLUSH,
1119 IPU, /* the below types are used by tracepoints only. */
1120 OPU,
1121 };
1122
1123 enum temp_type {
1124 HOT = 0, /* must be zero for meta bio */
1125 WARM,
1126 COLD,
1127 NR_TEMP_TYPE,
1128 };
1129
1130 enum need_lock_type {
1131 LOCK_REQ = 0,
1132 LOCK_DONE,
1133 LOCK_RETRY,
1134 };
1135
1136 enum cp_reason_type {
1137 CP_NO_NEEDED,
1138 CP_NON_REGULAR,
1139 CP_COMPRESSED,
1140 CP_HARDLINK,
1141 CP_SB_NEED_CP,
1142 CP_WRONG_PINO,
1143 CP_NO_SPC_ROLL,
1144 CP_NODE_NEED_CP,
1145 CP_FASTBOOT_MODE,
1146 CP_SPEC_LOG_NUM,
1147 CP_RECOVER_DIR,
1148 };
1149
1150 enum iostat_type {
1151 /* WRITE IO */
1152 APP_DIRECT_IO, /* app direct write IOs */
1153 APP_BUFFERED_IO, /* app buffered write IOs */
1154 APP_WRITE_IO, /* app write IOs */
1155 APP_MAPPED_IO, /* app mapped IOs */
1156 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1157 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1158 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1159 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1160 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1161 FS_META_IO, /* meta IOs from kworker/reclaimer */
1162 FS_GC_DATA_IO, /* data IOs from forground gc */
1163 FS_GC_NODE_IO, /* node IOs from forground gc */
1164 FS_CP_DATA_IO, /* data IOs from checkpoint */
1165 FS_CP_NODE_IO, /* node IOs from checkpoint */
1166 FS_CP_META_IO, /* meta IOs from checkpoint */
1167
1168 /* READ IO */
1169 APP_DIRECT_READ_IO, /* app direct read IOs */
1170 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1171 APP_READ_IO, /* app read IOs */
1172 APP_MAPPED_READ_IO, /* app mapped read IOs */
1173 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1174 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1175 FS_DATA_READ_IO, /* data read IOs */
1176 FS_GDATA_READ_IO, /* data read IOs from background gc */
1177 FS_CDATA_READ_IO, /* compressed data read IOs */
1178 FS_NODE_READ_IO, /* node read IOs */
1179 FS_META_READ_IO, /* meta read IOs */
1180
1181 /* other */
1182 FS_DISCARD_IO, /* discard */
1183 FS_FLUSH_IO, /* flush */
1184 FS_ZONE_RESET_IO, /* zone reset */
1185 NR_IO_TYPE,
1186 };
1187
1188 struct f2fs_io_info {
1189 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1190 nid_t ino; /* inode number */
1191 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1192 enum temp_type temp; /* contains HOT/WARM/COLD */
1193 enum req_op op; /* contains REQ_OP_ */
1194 blk_opf_t op_flags; /* req_flag_bits */
1195 block_t new_blkaddr; /* new block address to be written */
1196 block_t old_blkaddr; /* old block address before Cow */
1197 struct page *page; /* page to be written */
1198 struct page *encrypted_page; /* encrypted page */
1199 struct page *compressed_page; /* compressed page */
1200 struct list_head list; /* serialize IOs */
1201 unsigned int compr_blocks; /* # of compressed block addresses */
1202 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1203 unsigned int version:8; /* version of the node */
1204 unsigned int submitted:1; /* indicate IO submission */
1205 unsigned int in_list:1; /* indicate fio is in io_list */
1206 unsigned int is_por:1; /* indicate IO is from recovery or not */
1207 unsigned int retry:1; /* need to reallocate block address */
1208 unsigned int encrypted:1; /* indicate file is encrypted */
1209 unsigned int post_read:1; /* require post read */
1210 enum iostat_type io_type; /* io type */
1211 struct writeback_control *io_wbc; /* writeback control */
1212 struct bio **bio; /* bio for ipu */
1213 sector_t *last_block; /* last block number in bio */
1214 };
1215
1216 struct bio_entry {
1217 struct bio *bio;
1218 struct list_head list;
1219 };
1220
1221 #define is_read_io(rw) ((rw) == READ)
1222 struct f2fs_bio_info {
1223 struct f2fs_sb_info *sbi; /* f2fs superblock */
1224 struct bio *bio; /* bios to merge */
1225 sector_t last_block_in_bio; /* last block number */
1226 struct f2fs_io_info fio; /* store buffered io info. */
1227 #ifdef CONFIG_BLK_DEV_ZONED
1228 struct completion zone_wait; /* condition value for the previous open zone to close */
1229 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1230 void *bi_private; /* previous bi_private for pending bio */
1231 #endif
1232 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1233 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1234 struct list_head io_list; /* track fios */
1235 struct list_head bio_list; /* bio entry list head */
1236 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1237 };
1238
1239 #define FDEV(i) (sbi->devs[i])
1240 #define RDEV(i) (raw_super->devs[i])
1241 struct f2fs_dev_info {
1242 struct bdev_handle *bdev_handle;
1243 struct block_device *bdev;
1244 char path[MAX_PATH_LEN];
1245 unsigned int total_segments;
1246 block_t start_blk;
1247 block_t end_blk;
1248 #ifdef CONFIG_BLK_DEV_ZONED
1249 unsigned int nr_blkz; /* Total number of zones */
1250 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1251 #endif
1252 };
1253
1254 enum inode_type {
1255 DIR_INODE, /* for dirty dir inode */
1256 FILE_INODE, /* for dirty regular/symlink inode */
1257 DIRTY_META, /* for all dirtied inode metadata */
1258 NR_INODE_TYPE,
1259 };
1260
1261 /* for inner inode cache management */
1262 struct inode_management {
1263 struct radix_tree_root ino_root; /* ino entry array */
1264 spinlock_t ino_lock; /* for ino entry lock */
1265 struct list_head ino_list; /* inode list head */
1266 unsigned long ino_num; /* number of entries */
1267 };
1268
1269 /* for GC_AT */
1270 struct atgc_management {
1271 bool atgc_enabled; /* ATGC is enabled or not */
1272 struct rb_root_cached root; /* root of victim rb-tree */
1273 struct list_head victim_list; /* linked with all victim entries */
1274 unsigned int victim_count; /* victim count in rb-tree */
1275 unsigned int candidate_ratio; /* candidate ratio */
1276 unsigned int max_candidate_count; /* max candidate count */
1277 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1278 unsigned long long age_threshold; /* age threshold */
1279 };
1280
1281 struct f2fs_gc_control {
1282 unsigned int victim_segno; /* target victim segment number */
1283 int init_gc_type; /* FG_GC or BG_GC */
1284 bool no_bg_gc; /* check the space and stop bg_gc */
1285 bool should_migrate_blocks; /* should migrate blocks */
1286 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1287 unsigned int nr_free_secs; /* # of free sections to do GC */
1288 };
1289
1290 /*
1291 * For s_flag in struct f2fs_sb_info
1292 * Modification on enum should be synchronized with s_flag array
1293 */
1294 enum {
1295 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1296 SBI_IS_CLOSE, /* specify unmounting */
1297 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1298 SBI_POR_DOING, /* recovery is doing or not */
1299 SBI_NEED_SB_WRITE, /* need to recover superblock */
1300 SBI_NEED_CP, /* need to checkpoint */
1301 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1302 SBI_IS_RECOVERED, /* recovered orphan/data */
1303 SBI_CP_DISABLED, /* CP was disabled last mount */
1304 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1305 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1306 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1307 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1308 SBI_IS_RESIZEFS, /* resizefs is in process */
1309 SBI_IS_FREEZING, /* freezefs is in process */
1310 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1311 MAX_SBI_FLAG,
1312 };
1313
1314 enum {
1315 CP_TIME,
1316 REQ_TIME,
1317 DISCARD_TIME,
1318 GC_TIME,
1319 DISABLE_TIME,
1320 UMOUNT_DISCARD_TIMEOUT,
1321 MAX_TIME,
1322 };
1323
1324 /* Note that you need to keep synchronization with this gc_mode_names array */
1325 enum {
1326 GC_NORMAL,
1327 GC_IDLE_CB,
1328 GC_IDLE_GREEDY,
1329 GC_IDLE_AT,
1330 GC_URGENT_HIGH,
1331 GC_URGENT_LOW,
1332 GC_URGENT_MID,
1333 MAX_GC_MODE,
1334 };
1335
1336 enum {
1337 BGGC_MODE_ON, /* background gc is on */
1338 BGGC_MODE_OFF, /* background gc is off */
1339 BGGC_MODE_SYNC, /*
1340 * background gc is on, migrating blocks
1341 * like foreground gc
1342 */
1343 };
1344
1345 enum {
1346 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1347 FS_MODE_LFS, /* use lfs allocation only */
1348 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1349 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1350 };
1351
1352 enum {
1353 ALLOC_MODE_DEFAULT, /* stay default */
1354 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1355 };
1356
1357 enum fsync_mode {
1358 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1359 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1360 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1361 };
1362
1363 enum {
1364 COMPR_MODE_FS, /*
1365 * automatically compress compression
1366 * enabled files
1367 */
1368 COMPR_MODE_USER, /*
1369 * automatical compression is disabled.
1370 * user can control the file compression
1371 * using ioctls
1372 */
1373 };
1374
1375 enum {
1376 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1377 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1378 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1379 };
1380
1381 enum {
1382 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1383 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1384 };
1385
1386 enum errors_option {
1387 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1388 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1389 MOUNT_ERRORS_PANIC, /* panic on errors */
1390 };
1391
1392 enum {
1393 BACKGROUND,
1394 FOREGROUND,
1395 MAX_CALL_TYPE,
1396 TOTAL_CALL = FOREGROUND,
1397 };
1398
1399 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1400 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1401 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1402
1403 /*
1404 * Layout of f2fs page.private:
1405 *
1406 * Layout A: lowest bit should be 1
1407 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1408 * bit 0 PAGE_PRIVATE_NOT_POINTER
1409 * bit 1 PAGE_PRIVATE_DUMMY_WRITE
1410 * bit 2 PAGE_PRIVATE_ONGOING_MIGRATION
1411 * bit 3 PAGE_PRIVATE_INLINE_INODE
1412 * bit 4 PAGE_PRIVATE_REF_RESOURCE
1413 * bit 5- f2fs private data
1414 *
1415 * Layout B: lowest bit should be 0
1416 * page.private is a wrapped pointer.
1417 */
1418 enum {
1419 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1420 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */
1421 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1422 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1423 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1424 PAGE_PRIVATE_MAX
1425 };
1426
1427 /* For compression */
1428 enum compress_algorithm_type {
1429 COMPRESS_LZO,
1430 COMPRESS_LZ4,
1431 COMPRESS_ZSTD,
1432 COMPRESS_LZORLE,
1433 COMPRESS_MAX,
1434 };
1435
1436 enum compress_flag {
1437 COMPRESS_CHKSUM,
1438 COMPRESS_MAX_FLAG,
1439 };
1440
1441 #define COMPRESS_WATERMARK 20
1442 #define COMPRESS_PERCENT 20
1443
1444 #define COMPRESS_DATA_RESERVED_SIZE 4
1445 struct compress_data {
1446 __le32 clen; /* compressed data size */
1447 __le32 chksum; /* compressed data chksum */
1448 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1449 u8 cdata[]; /* compressed data */
1450 };
1451
1452 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1453
1454 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1455
1456 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1457
1458 #define COMPRESS_LEVEL_OFFSET 8
1459
1460 /* compress context */
1461 struct compress_ctx {
1462 struct inode *inode; /* inode the context belong to */
1463 pgoff_t cluster_idx; /* cluster index number */
1464 unsigned int cluster_size; /* page count in cluster */
1465 unsigned int log_cluster_size; /* log of cluster size */
1466 struct page **rpages; /* pages store raw data in cluster */
1467 unsigned int nr_rpages; /* total page number in rpages */
1468 struct page **cpages; /* pages store compressed data in cluster */
1469 unsigned int nr_cpages; /* total page number in cpages */
1470 unsigned int valid_nr_cpages; /* valid page number in cpages */
1471 void *rbuf; /* virtual mapped address on rpages */
1472 struct compress_data *cbuf; /* virtual mapped address on cpages */
1473 size_t rlen; /* valid data length in rbuf */
1474 size_t clen; /* valid data length in cbuf */
1475 void *private; /* payload buffer for specified compression algorithm */
1476 void *private2; /* extra payload buffer */
1477 };
1478
1479 /* compress context for write IO path */
1480 struct compress_io_ctx {
1481 u32 magic; /* magic number to indicate page is compressed */
1482 struct inode *inode; /* inode the context belong to */
1483 struct page **rpages; /* pages store raw data in cluster */
1484 unsigned int nr_rpages; /* total page number in rpages */
1485 atomic_t pending_pages; /* in-flight compressed page count */
1486 };
1487
1488 /* Context for decompressing one cluster on the read IO path */
1489 struct decompress_io_ctx {
1490 u32 magic; /* magic number to indicate page is compressed */
1491 struct inode *inode; /* inode the context belong to */
1492 pgoff_t cluster_idx; /* cluster index number */
1493 unsigned int cluster_size; /* page count in cluster */
1494 unsigned int log_cluster_size; /* log of cluster size */
1495 struct page **rpages; /* pages store raw data in cluster */
1496 unsigned int nr_rpages; /* total page number in rpages */
1497 struct page **cpages; /* pages store compressed data in cluster */
1498 unsigned int nr_cpages; /* total page number in cpages */
1499 struct page **tpages; /* temp pages to pad holes in cluster */
1500 void *rbuf; /* virtual mapped address on rpages */
1501 struct compress_data *cbuf; /* virtual mapped address on cpages */
1502 size_t rlen; /* valid data length in rbuf */
1503 size_t clen; /* valid data length in cbuf */
1504
1505 /*
1506 * The number of compressed pages remaining to be read in this cluster.
1507 * This is initially nr_cpages. It is decremented by 1 each time a page
1508 * has been read (or failed to be read). When it reaches 0, the cluster
1509 * is decompressed (or an error is reported).
1510 *
1511 * If an error occurs before all the pages have been submitted for I/O,
1512 * then this will never reach 0. In this case the I/O submitter is
1513 * responsible for calling f2fs_decompress_end_io() instead.
1514 */
1515 atomic_t remaining_pages;
1516
1517 /*
1518 * Number of references to this decompress_io_ctx.
1519 *
1520 * One reference is held for I/O completion. This reference is dropped
1521 * after the pagecache pages are updated and unlocked -- either after
1522 * decompression (and verity if enabled), or after an error.
1523 *
1524 * In addition, each compressed page holds a reference while it is in a
1525 * bio. These references are necessary prevent compressed pages from
1526 * being freed while they are still in a bio.
1527 */
1528 refcount_t refcnt;
1529
1530 bool failed; /* IO error occurred before decompression? */
1531 bool need_verity; /* need fs-verity verification after decompression? */
1532 void *private; /* payload buffer for specified decompression algorithm */
1533 void *private2; /* extra payload buffer */
1534 struct work_struct verity_work; /* work to verify the decompressed pages */
1535 struct work_struct free_work; /* work for late free this structure itself */
1536 };
1537
1538 #define NULL_CLUSTER ((unsigned int)(~0))
1539 #define MIN_COMPRESS_LOG_SIZE 2
1540 #define MAX_COMPRESS_LOG_SIZE 8
1541 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1542
1543 struct f2fs_sb_info {
1544 struct super_block *sb; /* pointer to VFS super block */
1545 struct proc_dir_entry *s_proc; /* proc entry */
1546 struct f2fs_super_block *raw_super; /* raw super block pointer */
1547 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1548 int valid_super_block; /* valid super block no */
1549 unsigned long s_flag; /* flags for sbi */
1550 struct mutex writepages; /* mutex for writepages() */
1551
1552 #ifdef CONFIG_BLK_DEV_ZONED
1553 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1554 #endif
1555
1556 /* for node-related operations */
1557 struct f2fs_nm_info *nm_info; /* node manager */
1558 struct inode *node_inode; /* cache node blocks */
1559
1560 /* for segment-related operations */
1561 struct f2fs_sm_info *sm_info; /* segment manager */
1562
1563 /* for bio operations */
1564 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1565 /* keep migration IO order for LFS mode */
1566 struct f2fs_rwsem io_order_lock;
1567 mempool_t *write_io_dummy; /* Dummy pages */
1568 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1569 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1570
1571 /* for checkpoint */
1572 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1573 int cur_cp_pack; /* remain current cp pack */
1574 spinlock_t cp_lock; /* for flag in ckpt */
1575 struct inode *meta_inode; /* cache meta blocks */
1576 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1577 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1578 struct f2fs_rwsem node_write; /* locking node writes */
1579 struct f2fs_rwsem node_change; /* locking node change */
1580 wait_queue_head_t cp_wait;
1581 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1582 long interval_time[MAX_TIME]; /* to store thresholds */
1583 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1584
1585 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1586
1587 spinlock_t fsync_node_lock; /* for node entry lock */
1588 struct list_head fsync_node_list; /* node list head */
1589 unsigned int fsync_seg_id; /* sequence id */
1590 unsigned int fsync_node_num; /* number of node entries */
1591
1592 /* for orphan inode, use 0'th array */
1593 unsigned int max_orphans; /* max orphan inodes */
1594
1595 /* for inode management */
1596 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1597 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1598 struct mutex flush_lock; /* for flush exclusion */
1599
1600 /* for extent tree cache */
1601 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1602 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1603
1604 /* The threshold used for hot and warm data seperation*/
1605 unsigned int hot_data_age_threshold;
1606 unsigned int warm_data_age_threshold;
1607 unsigned int last_age_weight;
1608
1609 /* basic filesystem units */
1610 unsigned int log_sectors_per_block; /* log2 sectors per block */
1611 unsigned int log_blocksize; /* log2 block size */
1612 unsigned int blocksize; /* block size */
1613 unsigned int root_ino_num; /* root inode number*/
1614 unsigned int node_ino_num; /* node inode number*/
1615 unsigned int meta_ino_num; /* meta inode number*/
1616 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1617 unsigned int blocks_per_seg; /* blocks per segment */
1618 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1619 unsigned int segs_per_sec; /* segments per section */
1620 unsigned int secs_per_zone; /* sections per zone */
1621 unsigned int total_sections; /* total section count */
1622 unsigned int total_node_count; /* total node block count */
1623 unsigned int total_valid_node_count; /* valid node block count */
1624 int dir_level; /* directory level */
1625 bool readdir_ra; /* readahead inode in readdir */
1626 u64 max_io_bytes; /* max io bytes to merge IOs */
1627
1628 block_t user_block_count; /* # of user blocks */
1629 block_t total_valid_block_count; /* # of valid blocks */
1630 block_t discard_blks; /* discard command candidats */
1631 block_t last_valid_block_count; /* for recovery */
1632 block_t reserved_blocks; /* configurable reserved blocks */
1633 block_t current_reserved_blocks; /* current reserved blocks */
1634
1635 /* Additional tracking for no checkpoint mode */
1636 block_t unusable_block_count; /* # of blocks saved by last cp */
1637
1638 unsigned int nquota_files; /* # of quota sysfile */
1639 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1640
1641 /* # of pages, see count_type */
1642 atomic_t nr_pages[NR_COUNT_TYPE];
1643 /* # of allocated blocks */
1644 struct percpu_counter alloc_valid_block_count;
1645 /* # of node block writes as roll forward recovery */
1646 struct percpu_counter rf_node_block_count;
1647
1648 /* writeback control */
1649 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1650
1651 /* valid inode count */
1652 struct percpu_counter total_valid_inode_count;
1653
1654 struct f2fs_mount_info mount_opt; /* mount options */
1655
1656 /* for cleaning operations */
1657 struct f2fs_rwsem gc_lock; /*
1658 * semaphore for GC, avoid
1659 * race between GC and GC or CP
1660 */
1661 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1662 struct atgc_management am; /* atgc management */
1663 unsigned int cur_victim_sec; /* current victim section num */
1664 unsigned int gc_mode; /* current GC state */
1665 unsigned int next_victim_seg[2]; /* next segment in victim section */
1666 spinlock_t gc_remaining_trials_lock;
1667 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1668 unsigned int gc_remaining_trials;
1669
1670 /* for skip statistic */
1671 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1672
1673 /* threshold for gc trials on pinned files */
1674 u64 gc_pin_file_threshold;
1675 struct f2fs_rwsem pin_sem;
1676
1677 /* maximum # of trials to find a victim segment for SSR and GC */
1678 unsigned int max_victim_search;
1679 /* migration granularity of garbage collection, unit: segment */
1680 unsigned int migration_granularity;
1681
1682 /*
1683 * for stat information.
1684 * one is for the LFS mode, and the other is for the SSR mode.
1685 */
1686 #ifdef CONFIG_F2FS_STAT_FS
1687 struct f2fs_stat_info *stat_info; /* FS status information */
1688 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1689 unsigned int segment_count[2]; /* # of allocated segments */
1690 unsigned int block_count[2]; /* # of allocated blocks */
1691 atomic_t inplace_count; /* # of inplace update */
1692 /* # of lookup extent cache */
1693 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1694 /* # of hit rbtree extent node */
1695 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1696 /* # of hit cached extent node */
1697 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1698 /* # of hit largest extent node in read extent cache */
1699 atomic64_t read_hit_largest;
1700 atomic_t inline_xattr; /* # of inline_xattr inodes */
1701 atomic_t inline_inode; /* # of inline_data inodes */
1702 atomic_t inline_dir; /* # of inline_dentry inodes */
1703 atomic_t compr_inode; /* # of compressed inodes */
1704 atomic64_t compr_blocks; /* # of compressed blocks */
1705 atomic_t swapfile_inode; /* # of swapfile inodes */
1706 atomic_t atomic_files; /* # of opened atomic file */
1707 atomic_t max_aw_cnt; /* max # of atomic writes */
1708 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1709 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1710 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1711 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1712 #endif
1713 spinlock_t stat_lock; /* lock for stat operations */
1714
1715 /* to attach REQ_META|REQ_FUA flags */
1716 unsigned int data_io_flag;
1717 unsigned int node_io_flag;
1718
1719 /* For sysfs support */
1720 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1721 struct completion s_kobj_unregister;
1722
1723 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1724 struct completion s_stat_kobj_unregister;
1725
1726 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1727 struct completion s_feature_list_kobj_unregister;
1728
1729 /* For shrinker support */
1730 struct list_head s_list;
1731 struct mutex umount_mutex;
1732 unsigned int shrinker_run_no;
1733
1734 /* For multi devices */
1735 int s_ndevs; /* number of devices */
1736 struct f2fs_dev_info *devs; /* for device list */
1737 unsigned int dirty_device; /* for checkpoint data flush */
1738 spinlock_t dev_lock; /* protect dirty_device */
1739 bool aligned_blksize; /* all devices has the same logical blksize */
1740
1741 /* For write statistics */
1742 u64 sectors_written_start;
1743 u64 kbytes_written;
1744
1745 /* Reference to checksum algorithm driver via cryptoapi */
1746 struct crypto_shash *s_chksum_driver;
1747
1748 /* Precomputed FS UUID checksum for seeding other checksums */
1749 __u32 s_chksum_seed;
1750
1751 struct workqueue_struct *post_read_wq; /* post read workqueue */
1752
1753 /*
1754 * If we are in irq context, let's update error information into
1755 * on-disk superblock in the work.
1756 */
1757 struct work_struct s_error_work;
1758 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1759 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1760 spinlock_t error_lock; /* protect errors/stop_reason array */
1761 bool error_dirty; /* errors of sb is dirty */
1762
1763 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1764 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1765
1766 /* For reclaimed segs statistics per each GC mode */
1767 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1768 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1769
1770 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1771
1772 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1773 int max_fragment_hole; /* max hole size for block fragmentation mode */
1774
1775 /* For atomic write statistics */
1776 atomic64_t current_atomic_write;
1777 s64 peak_atomic_write;
1778 u64 committed_atomic_block;
1779 u64 revoked_atomic_block;
1780
1781 #ifdef CONFIG_F2FS_FS_COMPRESSION
1782 struct kmem_cache *page_array_slab; /* page array entry */
1783 unsigned int page_array_slab_size; /* default page array slab size */
1784
1785 /* For runtime compression statistics */
1786 u64 compr_written_block;
1787 u64 compr_saved_block;
1788 u32 compr_new_inode;
1789
1790 /* For compressed block cache */
1791 struct inode *compress_inode; /* cache compressed blocks */
1792 unsigned int compress_percent; /* cache page percentage */
1793 unsigned int compress_watermark; /* cache page watermark */
1794 atomic_t compress_page_hit; /* cache hit count */
1795 #endif
1796
1797 #ifdef CONFIG_F2FS_IOSTAT
1798 /* For app/fs IO statistics */
1799 spinlock_t iostat_lock;
1800 unsigned long long iostat_count[NR_IO_TYPE];
1801 unsigned long long iostat_bytes[NR_IO_TYPE];
1802 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1803 bool iostat_enable;
1804 unsigned long iostat_next_period;
1805 unsigned int iostat_period_ms;
1806
1807 /* For io latency related statistics info in one iostat period */
1808 spinlock_t iostat_lat_lock;
1809 struct iostat_lat_info *iostat_io_lat;
1810 #endif
1811 };
1812
1813 #ifdef CONFIG_F2FS_FAULT_INJECTION
1814 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1815 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1816 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1817 const char *func, const char *parent_func)
1818 {
1819 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1820
1821 if (!ffi->inject_rate)
1822 return false;
1823
1824 if (!IS_FAULT_SET(ffi, type))
1825 return false;
1826
1827 atomic_inc(&ffi->inject_ops);
1828 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1829 atomic_set(&ffi->inject_ops, 0);
1830 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",
1831 KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type],
1832 func, parent_func);
1833 return true;
1834 }
1835 return false;
1836 }
1837 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1838 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1839 {
1840 return false;
1841 }
1842 #endif
1843
1844 /*
1845 * Test if the mounted volume is a multi-device volume.
1846 * - For a single regular disk volume, sbi->s_ndevs is 0.
1847 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1848 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1849 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1850 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1851 {
1852 return sbi->s_ndevs > 1;
1853 }
1854
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1855 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1856 {
1857 unsigned long now = jiffies;
1858
1859 sbi->last_time[type] = now;
1860
1861 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1862 if (type == REQ_TIME) {
1863 sbi->last_time[DISCARD_TIME] = now;
1864 sbi->last_time[GC_TIME] = now;
1865 }
1866 }
1867
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1868 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1869 {
1870 unsigned long interval = sbi->interval_time[type] * HZ;
1871
1872 return time_after(jiffies, sbi->last_time[type] + interval);
1873 }
1874
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1875 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1876 int type)
1877 {
1878 unsigned long interval = sbi->interval_time[type] * HZ;
1879 unsigned int wait_ms = 0;
1880 long delta;
1881
1882 delta = (sbi->last_time[type] + interval) - jiffies;
1883 if (delta > 0)
1884 wait_ms = jiffies_to_msecs(delta);
1885
1886 return wait_ms;
1887 }
1888
1889 /*
1890 * Inline functions
1891 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1892 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1893 const void *address, unsigned int length)
1894 {
1895 struct {
1896 struct shash_desc shash;
1897 char ctx[4];
1898 } desc;
1899 int err;
1900
1901 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1902
1903 desc.shash.tfm = sbi->s_chksum_driver;
1904 *(u32 *)desc.ctx = crc;
1905
1906 err = crypto_shash_update(&desc.shash, address, length);
1907 BUG_ON(err);
1908
1909 return *(u32 *)desc.ctx;
1910 }
1911
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1912 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1913 unsigned int length)
1914 {
1915 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1916 }
1917
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1918 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1919 void *buf, size_t buf_size)
1920 {
1921 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1922 }
1923
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1924 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1925 const void *address, unsigned int length)
1926 {
1927 return __f2fs_crc32(sbi, crc, address, length);
1928 }
1929
F2FS_I(struct inode * inode)1930 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1931 {
1932 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1933 }
1934
F2FS_SB(struct super_block * sb)1935 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1936 {
1937 return sb->s_fs_info;
1938 }
1939
F2FS_I_SB(struct inode * inode)1940 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1941 {
1942 return F2FS_SB(inode->i_sb);
1943 }
1944
F2FS_M_SB(struct address_space * mapping)1945 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1946 {
1947 return F2FS_I_SB(mapping->host);
1948 }
1949
F2FS_P_SB(struct page * page)1950 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1951 {
1952 return F2FS_M_SB(page_file_mapping(page));
1953 }
1954
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1955 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1956 {
1957 return (struct f2fs_super_block *)(sbi->raw_super);
1958 }
1959
F2FS_CKPT(struct f2fs_sb_info * sbi)1960 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1961 {
1962 return (struct f2fs_checkpoint *)(sbi->ckpt);
1963 }
1964
F2FS_NODE(struct page * page)1965 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1966 {
1967 return (struct f2fs_node *)page_address(page);
1968 }
1969
F2FS_INODE(struct page * page)1970 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1971 {
1972 return &((struct f2fs_node *)page_address(page))->i;
1973 }
1974
NM_I(struct f2fs_sb_info * sbi)1975 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1976 {
1977 return (struct f2fs_nm_info *)(sbi->nm_info);
1978 }
1979
SM_I(struct f2fs_sb_info * sbi)1980 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1981 {
1982 return (struct f2fs_sm_info *)(sbi->sm_info);
1983 }
1984
SIT_I(struct f2fs_sb_info * sbi)1985 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1986 {
1987 return (struct sit_info *)(SM_I(sbi)->sit_info);
1988 }
1989
FREE_I(struct f2fs_sb_info * sbi)1990 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1991 {
1992 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1993 }
1994
DIRTY_I(struct f2fs_sb_info * sbi)1995 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1996 {
1997 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1998 }
1999
META_MAPPING(struct f2fs_sb_info * sbi)2000 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2001 {
2002 return sbi->meta_inode->i_mapping;
2003 }
2004
NODE_MAPPING(struct f2fs_sb_info * sbi)2005 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2006 {
2007 return sbi->node_inode->i_mapping;
2008 }
2009
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2010 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2011 {
2012 return test_bit(type, &sbi->s_flag);
2013 }
2014
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2015 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2016 {
2017 set_bit(type, &sbi->s_flag);
2018 }
2019
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2020 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2021 {
2022 clear_bit(type, &sbi->s_flag);
2023 }
2024
cur_cp_version(struct f2fs_checkpoint * cp)2025 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2026 {
2027 return le64_to_cpu(cp->checkpoint_ver);
2028 }
2029
f2fs_qf_ino(struct super_block * sb,int type)2030 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2031 {
2032 if (type < F2FS_MAX_QUOTAS)
2033 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2034 return 0;
2035 }
2036
cur_cp_crc(struct f2fs_checkpoint * cp)2037 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2038 {
2039 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2040 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2041 }
2042
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2043 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2044 {
2045 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2046
2047 return ckpt_flags & f;
2048 }
2049
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2050 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2051 {
2052 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2053 }
2054
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2055 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2056 {
2057 unsigned int ckpt_flags;
2058
2059 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2060 ckpt_flags |= f;
2061 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2062 }
2063
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2064 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2065 {
2066 unsigned long flags;
2067
2068 spin_lock_irqsave(&sbi->cp_lock, flags);
2069 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2070 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2071 }
2072
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2073 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2074 {
2075 unsigned int ckpt_flags;
2076
2077 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2078 ckpt_flags &= (~f);
2079 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2080 }
2081
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2082 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2083 {
2084 unsigned long flags;
2085
2086 spin_lock_irqsave(&sbi->cp_lock, flags);
2087 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2088 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2089 }
2090
2091 #define init_f2fs_rwsem(sem) \
2092 do { \
2093 static struct lock_class_key __key; \
2094 \
2095 __init_f2fs_rwsem((sem), #sem, &__key); \
2096 } while (0)
2097
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2098 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2099 const char *sem_name, struct lock_class_key *key)
2100 {
2101 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2102 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2103 init_waitqueue_head(&sem->read_waiters);
2104 #endif
2105 }
2106
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2107 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2108 {
2109 return rwsem_is_locked(&sem->internal_rwsem);
2110 }
2111
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2112 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2113 {
2114 return rwsem_is_contended(&sem->internal_rwsem);
2115 }
2116
f2fs_down_read(struct f2fs_rwsem * sem)2117 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2118 {
2119 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2120 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2121 #else
2122 down_read(&sem->internal_rwsem);
2123 #endif
2124 }
2125
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2126 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2127 {
2128 return down_read_trylock(&sem->internal_rwsem);
2129 }
2130
f2fs_up_read(struct f2fs_rwsem * sem)2131 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2132 {
2133 up_read(&sem->internal_rwsem);
2134 }
2135
f2fs_down_write(struct f2fs_rwsem * sem)2136 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2137 {
2138 down_write(&sem->internal_rwsem);
2139 }
2140
2141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2142 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2143 {
2144 down_read_nested(&sem->internal_rwsem, subclass);
2145 }
2146
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2147 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2148 {
2149 down_write_nested(&sem->internal_rwsem, subclass);
2150 }
2151 #else
2152 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2153 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2154 #endif
2155
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2156 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2157 {
2158 return down_write_trylock(&sem->internal_rwsem);
2159 }
2160
f2fs_up_write(struct f2fs_rwsem * sem)2161 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2162 {
2163 up_write(&sem->internal_rwsem);
2164 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2165 wake_up_all(&sem->read_waiters);
2166 #endif
2167 }
2168
f2fs_lock_op(struct f2fs_sb_info * sbi)2169 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2170 {
2171 f2fs_down_read(&sbi->cp_rwsem);
2172 }
2173
f2fs_trylock_op(struct f2fs_sb_info * sbi)2174 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2175 {
2176 if (time_to_inject(sbi, FAULT_LOCK_OP))
2177 return 0;
2178 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2179 }
2180
f2fs_unlock_op(struct f2fs_sb_info * sbi)2181 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2182 {
2183 f2fs_up_read(&sbi->cp_rwsem);
2184 }
2185
f2fs_lock_all(struct f2fs_sb_info * sbi)2186 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2187 {
2188 f2fs_down_write(&sbi->cp_rwsem);
2189 }
2190
f2fs_unlock_all(struct f2fs_sb_info * sbi)2191 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2192 {
2193 f2fs_up_write(&sbi->cp_rwsem);
2194 }
2195
__get_cp_reason(struct f2fs_sb_info * sbi)2196 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2197 {
2198 int reason = CP_SYNC;
2199
2200 if (test_opt(sbi, FASTBOOT))
2201 reason = CP_FASTBOOT;
2202 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2203 reason = CP_UMOUNT;
2204 return reason;
2205 }
2206
__remain_node_summaries(int reason)2207 static inline bool __remain_node_summaries(int reason)
2208 {
2209 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2210 }
2211
__exist_node_summaries(struct f2fs_sb_info * sbi)2212 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2213 {
2214 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2215 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2216 }
2217
2218 /*
2219 * Check whether the inode has blocks or not
2220 */
F2FS_HAS_BLOCKS(struct inode * inode)2221 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2222 {
2223 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2224
2225 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2226 }
2227
f2fs_has_xattr_block(unsigned int ofs)2228 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2229 {
2230 return ofs == XATTR_NODE_OFFSET;
2231 }
2232
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2233 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2234 struct inode *inode, bool cap)
2235 {
2236 if (!inode)
2237 return true;
2238 if (!test_opt(sbi, RESERVE_ROOT))
2239 return false;
2240 if (IS_NOQUOTA(inode))
2241 return true;
2242 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2243 return true;
2244 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2245 in_group_p(F2FS_OPTION(sbi).s_resgid))
2246 return true;
2247 if (cap && capable(CAP_SYS_RESOURCE))
2248 return true;
2249 return false;
2250 }
2251
2252 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2253 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2254 struct inode *inode, blkcnt_t *count)
2255 {
2256 blkcnt_t diff = 0, release = 0;
2257 block_t avail_user_block_count;
2258 int ret;
2259
2260 ret = dquot_reserve_block(inode, *count);
2261 if (ret)
2262 return ret;
2263
2264 if (time_to_inject(sbi, FAULT_BLOCK)) {
2265 release = *count;
2266 goto release_quota;
2267 }
2268
2269 /*
2270 * let's increase this in prior to actual block count change in order
2271 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2272 */
2273 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2274
2275 spin_lock(&sbi->stat_lock);
2276 sbi->total_valid_block_count += (block_t)(*count);
2277 avail_user_block_count = sbi->user_block_count -
2278 sbi->current_reserved_blocks;
2279
2280 if (!__allow_reserved_blocks(sbi, inode, true))
2281 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2282
2283 if (F2FS_IO_ALIGNED(sbi))
2284 avail_user_block_count -= sbi->blocks_per_seg *
2285 SM_I(sbi)->additional_reserved_segments;
2286
2287 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2288 if (avail_user_block_count > sbi->unusable_block_count)
2289 avail_user_block_count -= sbi->unusable_block_count;
2290 else
2291 avail_user_block_count = 0;
2292 }
2293 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2294 diff = sbi->total_valid_block_count - avail_user_block_count;
2295 if (diff > *count)
2296 diff = *count;
2297 *count -= diff;
2298 release = diff;
2299 sbi->total_valid_block_count -= diff;
2300 if (!*count) {
2301 spin_unlock(&sbi->stat_lock);
2302 goto enospc;
2303 }
2304 }
2305 spin_unlock(&sbi->stat_lock);
2306
2307 if (unlikely(release)) {
2308 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2309 dquot_release_reservation_block(inode, release);
2310 }
2311 f2fs_i_blocks_write(inode, *count, true, true);
2312 return 0;
2313
2314 enospc:
2315 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2316 release_quota:
2317 dquot_release_reservation_block(inode, release);
2318 return -ENOSPC;
2319 }
2320
2321 __printf(2, 3)
2322 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2323
2324 #define f2fs_err(sbi, fmt, ...) \
2325 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2326 #define f2fs_warn(sbi, fmt, ...) \
2327 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2328 #define f2fs_notice(sbi, fmt, ...) \
2329 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2330 #define f2fs_info(sbi, fmt, ...) \
2331 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2332 #define f2fs_debug(sbi, fmt, ...) \
2333 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2334
2335 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2336 static inline bool page_private_##name(struct page *page) \
2337 { \
2338 return PagePrivate(page) && \
2339 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2340 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2341 }
2342
2343 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2344 static inline void set_page_private_##name(struct page *page) \
2345 { \
2346 if (!PagePrivate(page)) \
2347 attach_page_private(page, (void *)0); \
2348 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2349 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2350 }
2351
2352 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2353 static inline void clear_page_private_##name(struct page *page) \
2354 { \
2355 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2356 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2357 detach_page_private(page); \
2358 }
2359
2360 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2361 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2362 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2363 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
2364
2365 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2366 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2367 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2368 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
2369
2370 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2371 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2372 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2373 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
2374
get_page_private_data(struct page * page)2375 static inline unsigned long get_page_private_data(struct page *page)
2376 {
2377 unsigned long data = page_private(page);
2378
2379 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2380 return 0;
2381 return data >> PAGE_PRIVATE_MAX;
2382 }
2383
set_page_private_data(struct page * page,unsigned long data)2384 static inline void set_page_private_data(struct page *page, unsigned long data)
2385 {
2386 if (!PagePrivate(page))
2387 attach_page_private(page, (void *)0);
2388 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2389 page_private(page) |= data << PAGE_PRIVATE_MAX;
2390 }
2391
clear_page_private_data(struct page * page)2392 static inline void clear_page_private_data(struct page *page)
2393 {
2394 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2395 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2396 detach_page_private(page);
2397 }
2398
clear_page_private_all(struct page * page)2399 static inline void clear_page_private_all(struct page *page)
2400 {
2401 clear_page_private_data(page);
2402 clear_page_private_reference(page);
2403 clear_page_private_gcing(page);
2404 clear_page_private_inline(page);
2405
2406 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2407 }
2408
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2409 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2410 struct inode *inode,
2411 block_t count)
2412 {
2413 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2414
2415 spin_lock(&sbi->stat_lock);
2416 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2417 sbi->total_valid_block_count -= (block_t)count;
2418 if (sbi->reserved_blocks &&
2419 sbi->current_reserved_blocks < sbi->reserved_blocks)
2420 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2421 sbi->current_reserved_blocks + count);
2422 spin_unlock(&sbi->stat_lock);
2423 if (unlikely(inode->i_blocks < sectors)) {
2424 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2425 inode->i_ino,
2426 (unsigned long long)inode->i_blocks,
2427 (unsigned long long)sectors);
2428 set_sbi_flag(sbi, SBI_NEED_FSCK);
2429 return;
2430 }
2431 f2fs_i_blocks_write(inode, count, false, true);
2432 }
2433
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2434 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2435 {
2436 atomic_inc(&sbi->nr_pages[count_type]);
2437
2438 if (count_type == F2FS_DIRTY_DENTS ||
2439 count_type == F2FS_DIRTY_NODES ||
2440 count_type == F2FS_DIRTY_META ||
2441 count_type == F2FS_DIRTY_QDATA ||
2442 count_type == F2FS_DIRTY_IMETA)
2443 set_sbi_flag(sbi, SBI_IS_DIRTY);
2444 }
2445
inode_inc_dirty_pages(struct inode * inode)2446 static inline void inode_inc_dirty_pages(struct inode *inode)
2447 {
2448 atomic_inc(&F2FS_I(inode)->dirty_pages);
2449 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2450 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2451 if (IS_NOQUOTA(inode))
2452 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2453 }
2454
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2455 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2456 {
2457 atomic_dec(&sbi->nr_pages[count_type]);
2458 }
2459
inode_dec_dirty_pages(struct inode * inode)2460 static inline void inode_dec_dirty_pages(struct inode *inode)
2461 {
2462 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2463 !S_ISLNK(inode->i_mode))
2464 return;
2465
2466 atomic_dec(&F2FS_I(inode)->dirty_pages);
2467 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2468 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2469 if (IS_NOQUOTA(inode))
2470 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2471 }
2472
inc_atomic_write_cnt(struct inode * inode)2473 static inline void inc_atomic_write_cnt(struct inode *inode)
2474 {
2475 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2476 struct f2fs_inode_info *fi = F2FS_I(inode);
2477 u64 current_write;
2478
2479 fi->atomic_write_cnt++;
2480 atomic64_inc(&sbi->current_atomic_write);
2481 current_write = atomic64_read(&sbi->current_atomic_write);
2482 if (current_write > sbi->peak_atomic_write)
2483 sbi->peak_atomic_write = current_write;
2484 }
2485
release_atomic_write_cnt(struct inode * inode)2486 static inline void release_atomic_write_cnt(struct inode *inode)
2487 {
2488 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2489 struct f2fs_inode_info *fi = F2FS_I(inode);
2490
2491 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2492 fi->atomic_write_cnt = 0;
2493 }
2494
get_pages(struct f2fs_sb_info * sbi,int count_type)2495 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2496 {
2497 return atomic_read(&sbi->nr_pages[count_type]);
2498 }
2499
get_dirty_pages(struct inode * inode)2500 static inline int get_dirty_pages(struct inode *inode)
2501 {
2502 return atomic_read(&F2FS_I(inode)->dirty_pages);
2503 }
2504
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2505 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2506 {
2507 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2508 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2509 sbi->log_blocks_per_seg;
2510
2511 return segs / sbi->segs_per_sec;
2512 }
2513
valid_user_blocks(struct f2fs_sb_info * sbi)2514 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2515 {
2516 return sbi->total_valid_block_count;
2517 }
2518
discard_blocks(struct f2fs_sb_info * sbi)2519 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2520 {
2521 return sbi->discard_blks;
2522 }
2523
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2524 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2525 {
2526 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2527
2528 /* return NAT or SIT bitmap */
2529 if (flag == NAT_BITMAP)
2530 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2531 else if (flag == SIT_BITMAP)
2532 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2533
2534 return 0;
2535 }
2536
__cp_payload(struct f2fs_sb_info * sbi)2537 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2538 {
2539 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2540 }
2541
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2542 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2543 {
2544 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2545 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2546 int offset;
2547
2548 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2549 offset = (flag == SIT_BITMAP) ?
2550 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2551 /*
2552 * if large_nat_bitmap feature is enabled, leave checksum
2553 * protection for all nat/sit bitmaps.
2554 */
2555 return tmp_ptr + offset + sizeof(__le32);
2556 }
2557
2558 if (__cp_payload(sbi) > 0) {
2559 if (flag == NAT_BITMAP)
2560 return tmp_ptr;
2561 else
2562 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2563 } else {
2564 offset = (flag == NAT_BITMAP) ?
2565 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2566 return tmp_ptr + offset;
2567 }
2568 }
2569
__start_cp_addr(struct f2fs_sb_info * sbi)2570 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2571 {
2572 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2573
2574 if (sbi->cur_cp_pack == 2)
2575 start_addr += sbi->blocks_per_seg;
2576 return start_addr;
2577 }
2578
__start_cp_next_addr(struct f2fs_sb_info * sbi)2579 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2580 {
2581 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2582
2583 if (sbi->cur_cp_pack == 1)
2584 start_addr += sbi->blocks_per_seg;
2585 return start_addr;
2586 }
2587
__set_cp_next_pack(struct f2fs_sb_info * sbi)2588 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2589 {
2590 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2591 }
2592
__start_sum_addr(struct f2fs_sb_info * sbi)2593 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2594 {
2595 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2596 }
2597
2598 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2599 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2600 struct inode *inode, bool is_inode)
2601 {
2602 block_t valid_block_count;
2603 unsigned int valid_node_count, user_block_count;
2604 int err;
2605
2606 if (is_inode) {
2607 if (inode) {
2608 err = dquot_alloc_inode(inode);
2609 if (err)
2610 return err;
2611 }
2612 } else {
2613 err = dquot_reserve_block(inode, 1);
2614 if (err)
2615 return err;
2616 }
2617
2618 if (time_to_inject(sbi, FAULT_BLOCK))
2619 goto enospc;
2620
2621 spin_lock(&sbi->stat_lock);
2622
2623 valid_block_count = sbi->total_valid_block_count +
2624 sbi->current_reserved_blocks + 1;
2625
2626 if (!__allow_reserved_blocks(sbi, inode, false))
2627 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2628
2629 if (F2FS_IO_ALIGNED(sbi))
2630 valid_block_count += sbi->blocks_per_seg *
2631 SM_I(sbi)->additional_reserved_segments;
2632
2633 user_block_count = sbi->user_block_count;
2634 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2635 user_block_count -= sbi->unusable_block_count;
2636
2637 if (unlikely(valid_block_count > user_block_count)) {
2638 spin_unlock(&sbi->stat_lock);
2639 goto enospc;
2640 }
2641
2642 valid_node_count = sbi->total_valid_node_count + 1;
2643 if (unlikely(valid_node_count > sbi->total_node_count)) {
2644 spin_unlock(&sbi->stat_lock);
2645 goto enospc;
2646 }
2647
2648 sbi->total_valid_node_count++;
2649 sbi->total_valid_block_count++;
2650 spin_unlock(&sbi->stat_lock);
2651
2652 if (inode) {
2653 if (is_inode)
2654 f2fs_mark_inode_dirty_sync(inode, true);
2655 else
2656 f2fs_i_blocks_write(inode, 1, true, true);
2657 }
2658
2659 percpu_counter_inc(&sbi->alloc_valid_block_count);
2660 return 0;
2661
2662 enospc:
2663 if (is_inode) {
2664 if (inode)
2665 dquot_free_inode(inode);
2666 } else {
2667 dquot_release_reservation_block(inode, 1);
2668 }
2669 return -ENOSPC;
2670 }
2671
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2672 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2673 struct inode *inode, bool is_inode)
2674 {
2675 spin_lock(&sbi->stat_lock);
2676
2677 if (unlikely(!sbi->total_valid_block_count ||
2678 !sbi->total_valid_node_count)) {
2679 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2680 sbi->total_valid_block_count,
2681 sbi->total_valid_node_count);
2682 set_sbi_flag(sbi, SBI_NEED_FSCK);
2683 } else {
2684 sbi->total_valid_block_count--;
2685 sbi->total_valid_node_count--;
2686 }
2687
2688 if (sbi->reserved_blocks &&
2689 sbi->current_reserved_blocks < sbi->reserved_blocks)
2690 sbi->current_reserved_blocks++;
2691
2692 spin_unlock(&sbi->stat_lock);
2693
2694 if (is_inode) {
2695 dquot_free_inode(inode);
2696 } else {
2697 if (unlikely(inode->i_blocks == 0)) {
2698 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2699 inode->i_ino,
2700 (unsigned long long)inode->i_blocks);
2701 set_sbi_flag(sbi, SBI_NEED_FSCK);
2702 return;
2703 }
2704 f2fs_i_blocks_write(inode, 1, false, true);
2705 }
2706 }
2707
valid_node_count(struct f2fs_sb_info * sbi)2708 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2709 {
2710 return sbi->total_valid_node_count;
2711 }
2712
inc_valid_inode_count(struct f2fs_sb_info * sbi)2713 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2714 {
2715 percpu_counter_inc(&sbi->total_valid_inode_count);
2716 }
2717
dec_valid_inode_count(struct f2fs_sb_info * sbi)2718 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2719 {
2720 percpu_counter_dec(&sbi->total_valid_inode_count);
2721 }
2722
valid_inode_count(struct f2fs_sb_info * sbi)2723 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2724 {
2725 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2726 }
2727
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2728 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2729 pgoff_t index, bool for_write)
2730 {
2731 struct page *page;
2732 unsigned int flags;
2733
2734 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2735 if (!for_write)
2736 page = find_get_page_flags(mapping, index,
2737 FGP_LOCK | FGP_ACCESSED);
2738 else
2739 page = find_lock_page(mapping, index);
2740 if (page)
2741 return page;
2742
2743 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2744 return NULL;
2745 }
2746
2747 if (!for_write)
2748 return grab_cache_page(mapping, index);
2749
2750 flags = memalloc_nofs_save();
2751 page = grab_cache_page_write_begin(mapping, index);
2752 memalloc_nofs_restore(flags);
2753
2754 return page;
2755 }
2756
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2757 static inline struct page *f2fs_pagecache_get_page(
2758 struct address_space *mapping, pgoff_t index,
2759 fgf_t fgp_flags, gfp_t gfp_mask)
2760 {
2761 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2762 return NULL;
2763
2764 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2765 }
2766
f2fs_put_page(struct page * page,int unlock)2767 static inline void f2fs_put_page(struct page *page, int unlock)
2768 {
2769 if (!page)
2770 return;
2771
2772 if (unlock) {
2773 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2774 unlock_page(page);
2775 }
2776 put_page(page);
2777 }
2778
f2fs_put_dnode(struct dnode_of_data * dn)2779 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2780 {
2781 if (dn->node_page)
2782 f2fs_put_page(dn->node_page, 1);
2783 if (dn->inode_page && dn->node_page != dn->inode_page)
2784 f2fs_put_page(dn->inode_page, 0);
2785 dn->node_page = NULL;
2786 dn->inode_page = NULL;
2787 }
2788
f2fs_kmem_cache_create(const char * name,size_t size)2789 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2790 size_t size)
2791 {
2792 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2793 }
2794
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2795 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2796 gfp_t flags)
2797 {
2798 void *entry;
2799
2800 entry = kmem_cache_alloc(cachep, flags);
2801 if (!entry)
2802 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2803 return entry;
2804 }
2805
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2806 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2807 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2808 {
2809 if (nofail)
2810 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2811
2812 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2813 return NULL;
2814
2815 return kmem_cache_alloc(cachep, flags);
2816 }
2817
is_inflight_io(struct f2fs_sb_info * sbi,int type)2818 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2819 {
2820 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2821 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2822 get_pages(sbi, F2FS_WB_CP_DATA) ||
2823 get_pages(sbi, F2FS_DIO_READ) ||
2824 get_pages(sbi, F2FS_DIO_WRITE))
2825 return true;
2826
2827 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2828 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2829 return true;
2830
2831 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2832 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2833 return true;
2834 return false;
2835 }
2836
is_idle(struct f2fs_sb_info * sbi,int type)2837 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2838 {
2839 if (sbi->gc_mode == GC_URGENT_HIGH)
2840 return true;
2841
2842 if (is_inflight_io(sbi, type))
2843 return false;
2844
2845 if (sbi->gc_mode == GC_URGENT_MID)
2846 return true;
2847
2848 if (sbi->gc_mode == GC_URGENT_LOW &&
2849 (type == DISCARD_TIME || type == GC_TIME))
2850 return true;
2851
2852 return f2fs_time_over(sbi, type);
2853 }
2854
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2855 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2856 unsigned long index, void *item)
2857 {
2858 while (radix_tree_insert(root, index, item))
2859 cond_resched();
2860 }
2861
2862 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2863
IS_INODE(struct page * page)2864 static inline bool IS_INODE(struct page *page)
2865 {
2866 struct f2fs_node *p = F2FS_NODE(page);
2867
2868 return RAW_IS_INODE(p);
2869 }
2870
offset_in_addr(struct f2fs_inode * i)2871 static inline int offset_in_addr(struct f2fs_inode *i)
2872 {
2873 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2874 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2875 }
2876
blkaddr_in_node(struct f2fs_node * node)2877 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2878 {
2879 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2880 }
2881
2882 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2883 static inline block_t data_blkaddr(struct inode *inode,
2884 struct page *node_page, unsigned int offset)
2885 {
2886 struct f2fs_node *raw_node;
2887 __le32 *addr_array;
2888 int base = 0;
2889 bool is_inode = IS_INODE(node_page);
2890
2891 raw_node = F2FS_NODE(node_page);
2892
2893 if (is_inode) {
2894 if (!inode)
2895 /* from GC path only */
2896 base = offset_in_addr(&raw_node->i);
2897 else if (f2fs_has_extra_attr(inode))
2898 base = get_extra_isize(inode);
2899 }
2900
2901 addr_array = blkaddr_in_node(raw_node);
2902 return le32_to_cpu(addr_array[base + offset]);
2903 }
2904
f2fs_data_blkaddr(struct dnode_of_data * dn)2905 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2906 {
2907 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2908 }
2909
f2fs_test_bit(unsigned int nr,char * addr)2910 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2911 {
2912 int mask;
2913
2914 addr += (nr >> 3);
2915 mask = BIT(7 - (nr & 0x07));
2916 return mask & *addr;
2917 }
2918
f2fs_set_bit(unsigned int nr,char * addr)2919 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2920 {
2921 int mask;
2922
2923 addr += (nr >> 3);
2924 mask = BIT(7 - (nr & 0x07));
2925 *addr |= mask;
2926 }
2927
f2fs_clear_bit(unsigned int nr,char * addr)2928 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2929 {
2930 int mask;
2931
2932 addr += (nr >> 3);
2933 mask = BIT(7 - (nr & 0x07));
2934 *addr &= ~mask;
2935 }
2936
f2fs_test_and_set_bit(unsigned int nr,char * addr)2937 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2938 {
2939 int mask;
2940 int ret;
2941
2942 addr += (nr >> 3);
2943 mask = BIT(7 - (nr & 0x07));
2944 ret = mask & *addr;
2945 *addr |= mask;
2946 return ret;
2947 }
2948
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2949 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2950 {
2951 int mask;
2952 int ret;
2953
2954 addr += (nr >> 3);
2955 mask = BIT(7 - (nr & 0x07));
2956 ret = mask & *addr;
2957 *addr &= ~mask;
2958 return ret;
2959 }
2960
f2fs_change_bit(unsigned int nr,char * addr)2961 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2962 {
2963 int mask;
2964
2965 addr += (nr >> 3);
2966 mask = BIT(7 - (nr & 0x07));
2967 *addr ^= mask;
2968 }
2969
2970 /*
2971 * On-disk inode flags (f2fs_inode::i_flags)
2972 */
2973 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2974 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2975 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2976 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2977 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2978 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2979 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2980 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2981 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2982 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2983 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2984
2985 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
2986
2987 /* Flags that should be inherited by new inodes from their parent. */
2988 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2989 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2990 F2FS_CASEFOLD_FL)
2991
2992 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2993 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2994 F2FS_CASEFOLD_FL))
2995
2996 /* Flags that are appropriate for non-directories/regular files. */
2997 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2998
f2fs_mask_flags(umode_t mode,__u32 flags)2999 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3000 {
3001 if (S_ISDIR(mode))
3002 return flags;
3003 else if (S_ISREG(mode))
3004 return flags & F2FS_REG_FLMASK;
3005 else
3006 return flags & F2FS_OTHER_FLMASK;
3007 }
3008
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3009 static inline void __mark_inode_dirty_flag(struct inode *inode,
3010 int flag, bool set)
3011 {
3012 switch (flag) {
3013 case FI_INLINE_XATTR:
3014 case FI_INLINE_DATA:
3015 case FI_INLINE_DENTRY:
3016 case FI_NEW_INODE:
3017 if (set)
3018 return;
3019 fallthrough;
3020 case FI_DATA_EXIST:
3021 case FI_INLINE_DOTS:
3022 case FI_PIN_FILE:
3023 case FI_COMPRESS_RELEASED:
3024 f2fs_mark_inode_dirty_sync(inode, true);
3025 }
3026 }
3027
set_inode_flag(struct inode * inode,int flag)3028 static inline void set_inode_flag(struct inode *inode, int flag)
3029 {
3030 set_bit(flag, F2FS_I(inode)->flags);
3031 __mark_inode_dirty_flag(inode, flag, true);
3032 }
3033
is_inode_flag_set(struct inode * inode,int flag)3034 static inline int is_inode_flag_set(struct inode *inode, int flag)
3035 {
3036 return test_bit(flag, F2FS_I(inode)->flags);
3037 }
3038
clear_inode_flag(struct inode * inode,int flag)3039 static inline void clear_inode_flag(struct inode *inode, int flag)
3040 {
3041 clear_bit(flag, F2FS_I(inode)->flags);
3042 __mark_inode_dirty_flag(inode, flag, false);
3043 }
3044
f2fs_verity_in_progress(struct inode * inode)3045 static inline bool f2fs_verity_in_progress(struct inode *inode)
3046 {
3047 return IS_ENABLED(CONFIG_FS_VERITY) &&
3048 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3049 }
3050
set_acl_inode(struct inode * inode,umode_t mode)3051 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3052 {
3053 F2FS_I(inode)->i_acl_mode = mode;
3054 set_inode_flag(inode, FI_ACL_MODE);
3055 f2fs_mark_inode_dirty_sync(inode, false);
3056 }
3057
f2fs_i_links_write(struct inode * inode,bool inc)3058 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3059 {
3060 if (inc)
3061 inc_nlink(inode);
3062 else
3063 drop_nlink(inode);
3064 f2fs_mark_inode_dirty_sync(inode, true);
3065 }
3066
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3067 static inline void f2fs_i_blocks_write(struct inode *inode,
3068 block_t diff, bool add, bool claim)
3069 {
3070 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3071 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3072
3073 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3074 if (add) {
3075 if (claim)
3076 dquot_claim_block(inode, diff);
3077 else
3078 dquot_alloc_block_nofail(inode, diff);
3079 } else {
3080 dquot_free_block(inode, diff);
3081 }
3082
3083 f2fs_mark_inode_dirty_sync(inode, true);
3084 if (clean || recover)
3085 set_inode_flag(inode, FI_AUTO_RECOVER);
3086 }
3087
3088 static inline bool f2fs_is_atomic_file(struct inode *inode);
3089
f2fs_i_size_write(struct inode * inode,loff_t i_size)3090 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3091 {
3092 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3093 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3094
3095 if (i_size_read(inode) == i_size)
3096 return;
3097
3098 i_size_write(inode, i_size);
3099
3100 if (f2fs_is_atomic_file(inode))
3101 return;
3102
3103 f2fs_mark_inode_dirty_sync(inode, true);
3104 if (clean || recover)
3105 set_inode_flag(inode, FI_AUTO_RECOVER);
3106 }
3107
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3108 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3109 {
3110 F2FS_I(inode)->i_current_depth = depth;
3111 f2fs_mark_inode_dirty_sync(inode, true);
3112 }
3113
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3114 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3115 unsigned int count)
3116 {
3117 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3118 f2fs_mark_inode_dirty_sync(inode, true);
3119 }
3120
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3121 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3122 {
3123 F2FS_I(inode)->i_xattr_nid = xnid;
3124 f2fs_mark_inode_dirty_sync(inode, true);
3125 }
3126
f2fs_i_pino_write(struct inode * inode,nid_t pino)3127 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3128 {
3129 F2FS_I(inode)->i_pino = pino;
3130 f2fs_mark_inode_dirty_sync(inode, true);
3131 }
3132
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3133 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3134 {
3135 struct f2fs_inode_info *fi = F2FS_I(inode);
3136
3137 if (ri->i_inline & F2FS_INLINE_XATTR)
3138 set_bit(FI_INLINE_XATTR, fi->flags);
3139 if (ri->i_inline & F2FS_INLINE_DATA)
3140 set_bit(FI_INLINE_DATA, fi->flags);
3141 if (ri->i_inline & F2FS_INLINE_DENTRY)
3142 set_bit(FI_INLINE_DENTRY, fi->flags);
3143 if (ri->i_inline & F2FS_DATA_EXIST)
3144 set_bit(FI_DATA_EXIST, fi->flags);
3145 if (ri->i_inline & F2FS_INLINE_DOTS)
3146 set_bit(FI_INLINE_DOTS, fi->flags);
3147 if (ri->i_inline & F2FS_EXTRA_ATTR)
3148 set_bit(FI_EXTRA_ATTR, fi->flags);
3149 if (ri->i_inline & F2FS_PIN_FILE)
3150 set_bit(FI_PIN_FILE, fi->flags);
3151 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3152 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3153 }
3154
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3155 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3156 {
3157 ri->i_inline = 0;
3158
3159 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3160 ri->i_inline |= F2FS_INLINE_XATTR;
3161 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3162 ri->i_inline |= F2FS_INLINE_DATA;
3163 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3164 ri->i_inline |= F2FS_INLINE_DENTRY;
3165 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3166 ri->i_inline |= F2FS_DATA_EXIST;
3167 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3168 ri->i_inline |= F2FS_INLINE_DOTS;
3169 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3170 ri->i_inline |= F2FS_EXTRA_ATTR;
3171 if (is_inode_flag_set(inode, FI_PIN_FILE))
3172 ri->i_inline |= F2FS_PIN_FILE;
3173 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3174 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3175 }
3176
f2fs_has_extra_attr(struct inode * inode)3177 static inline int f2fs_has_extra_attr(struct inode *inode)
3178 {
3179 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3180 }
3181
f2fs_has_inline_xattr(struct inode * inode)3182 static inline int f2fs_has_inline_xattr(struct inode *inode)
3183 {
3184 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3185 }
3186
f2fs_compressed_file(struct inode * inode)3187 static inline int f2fs_compressed_file(struct inode *inode)
3188 {
3189 return S_ISREG(inode->i_mode) &&
3190 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3191 }
3192
f2fs_need_compress_data(struct inode * inode)3193 static inline bool f2fs_need_compress_data(struct inode *inode)
3194 {
3195 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3196
3197 if (!f2fs_compressed_file(inode))
3198 return false;
3199
3200 if (compress_mode == COMPR_MODE_FS)
3201 return true;
3202 else if (compress_mode == COMPR_MODE_USER &&
3203 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3204 return true;
3205
3206 return false;
3207 }
3208
addrs_per_inode(struct inode * inode)3209 static inline unsigned int addrs_per_inode(struct inode *inode)
3210 {
3211 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3212 get_inline_xattr_addrs(inode);
3213
3214 if (!f2fs_compressed_file(inode))
3215 return addrs;
3216 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3217 }
3218
addrs_per_block(struct inode * inode)3219 static inline unsigned int addrs_per_block(struct inode *inode)
3220 {
3221 if (!f2fs_compressed_file(inode))
3222 return DEF_ADDRS_PER_BLOCK;
3223 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3224 }
3225
inline_xattr_addr(struct inode * inode,struct page * page)3226 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3227 {
3228 struct f2fs_inode *ri = F2FS_INODE(page);
3229
3230 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3231 get_inline_xattr_addrs(inode)]);
3232 }
3233
inline_xattr_size(struct inode * inode)3234 static inline int inline_xattr_size(struct inode *inode)
3235 {
3236 if (f2fs_has_inline_xattr(inode))
3237 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3238 return 0;
3239 }
3240
3241 /*
3242 * Notice: check inline_data flag without inode page lock is unsafe.
3243 * It could change at any time by f2fs_convert_inline_page().
3244 */
f2fs_has_inline_data(struct inode * inode)3245 static inline int f2fs_has_inline_data(struct inode *inode)
3246 {
3247 return is_inode_flag_set(inode, FI_INLINE_DATA);
3248 }
3249
f2fs_exist_data(struct inode * inode)3250 static inline int f2fs_exist_data(struct inode *inode)
3251 {
3252 return is_inode_flag_set(inode, FI_DATA_EXIST);
3253 }
3254
f2fs_has_inline_dots(struct inode * inode)3255 static inline int f2fs_has_inline_dots(struct inode *inode)
3256 {
3257 return is_inode_flag_set(inode, FI_INLINE_DOTS);
3258 }
3259
f2fs_is_mmap_file(struct inode * inode)3260 static inline int f2fs_is_mmap_file(struct inode *inode)
3261 {
3262 return is_inode_flag_set(inode, FI_MMAP_FILE);
3263 }
3264
f2fs_is_pinned_file(struct inode * inode)3265 static inline bool f2fs_is_pinned_file(struct inode *inode)
3266 {
3267 return is_inode_flag_set(inode, FI_PIN_FILE);
3268 }
3269
f2fs_is_atomic_file(struct inode * inode)3270 static inline bool f2fs_is_atomic_file(struct inode *inode)
3271 {
3272 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3273 }
3274
f2fs_is_cow_file(struct inode * inode)3275 static inline bool f2fs_is_cow_file(struct inode *inode)
3276 {
3277 return is_inode_flag_set(inode, FI_COW_FILE);
3278 }
3279
3280 static inline __le32 *get_dnode_addr(struct inode *inode,
3281 struct page *node_page);
inline_data_addr(struct inode * inode,struct page * page)3282 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3283 {
3284 __le32 *addr = get_dnode_addr(inode, page);
3285
3286 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3287 }
3288
f2fs_has_inline_dentry(struct inode * inode)3289 static inline int f2fs_has_inline_dentry(struct inode *inode)
3290 {
3291 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3292 }
3293
is_file(struct inode * inode,int type)3294 static inline int is_file(struct inode *inode, int type)
3295 {
3296 return F2FS_I(inode)->i_advise & type;
3297 }
3298
set_file(struct inode * inode,int type)3299 static inline void set_file(struct inode *inode, int type)
3300 {
3301 if (is_file(inode, type))
3302 return;
3303 F2FS_I(inode)->i_advise |= type;
3304 f2fs_mark_inode_dirty_sync(inode, true);
3305 }
3306
clear_file(struct inode * inode,int type)3307 static inline void clear_file(struct inode *inode, int type)
3308 {
3309 if (!is_file(inode, type))
3310 return;
3311 F2FS_I(inode)->i_advise &= ~type;
3312 f2fs_mark_inode_dirty_sync(inode, true);
3313 }
3314
f2fs_is_time_consistent(struct inode * inode)3315 static inline bool f2fs_is_time_consistent(struct inode *inode)
3316 {
3317 struct timespec64 ts = inode_get_atime(inode);
3318
3319 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3320 return false;
3321 ts = inode_get_ctime(inode);
3322 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3323 return false;
3324 ts = inode_get_mtime(inode);
3325 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3326 return false;
3327 return true;
3328 }
3329
f2fs_skip_inode_update(struct inode * inode,int dsync)3330 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3331 {
3332 bool ret;
3333
3334 if (dsync) {
3335 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3336
3337 spin_lock(&sbi->inode_lock[DIRTY_META]);
3338 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3339 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3340 return ret;
3341 }
3342 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3343 file_keep_isize(inode) ||
3344 i_size_read(inode) & ~PAGE_MASK)
3345 return false;
3346
3347 if (!f2fs_is_time_consistent(inode))
3348 return false;
3349
3350 spin_lock(&F2FS_I(inode)->i_size_lock);
3351 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3352 spin_unlock(&F2FS_I(inode)->i_size_lock);
3353
3354 return ret;
3355 }
3356
f2fs_readonly(struct super_block * sb)3357 static inline bool f2fs_readonly(struct super_block *sb)
3358 {
3359 return sb_rdonly(sb);
3360 }
3361
f2fs_cp_error(struct f2fs_sb_info * sbi)3362 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3363 {
3364 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3365 }
3366
is_dot_dotdot(const u8 * name,size_t len)3367 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3368 {
3369 if (len == 1 && name[0] == '.')
3370 return true;
3371
3372 if (len == 2 && name[0] == '.' && name[1] == '.')
3373 return true;
3374
3375 return false;
3376 }
3377
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3378 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3379 size_t size, gfp_t flags)
3380 {
3381 if (time_to_inject(sbi, FAULT_KMALLOC))
3382 return NULL;
3383
3384 return kmalloc(size, flags);
3385 }
3386
f2fs_getname(struct f2fs_sb_info * sbi)3387 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3388 {
3389 if (time_to_inject(sbi, FAULT_KMALLOC))
3390 return NULL;
3391
3392 return __getname();
3393 }
3394
f2fs_putname(char * buf)3395 static inline void f2fs_putname(char *buf)
3396 {
3397 __putname(buf);
3398 }
3399
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3400 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3401 size_t size, gfp_t flags)
3402 {
3403 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3404 }
3405
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3406 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3407 size_t size, gfp_t flags)
3408 {
3409 if (time_to_inject(sbi, FAULT_KVMALLOC))
3410 return NULL;
3411
3412 return kvmalloc(size, flags);
3413 }
3414
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3415 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3416 size_t size, gfp_t flags)
3417 {
3418 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3419 }
3420
get_extra_isize(struct inode * inode)3421 static inline int get_extra_isize(struct inode *inode)
3422 {
3423 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3424 }
3425
get_inline_xattr_addrs(struct inode * inode)3426 static inline int get_inline_xattr_addrs(struct inode *inode)
3427 {
3428 return F2FS_I(inode)->i_inline_xattr_size;
3429 }
3430
get_dnode_addr(struct inode * inode,struct page * node_page)3431 static inline __le32 *get_dnode_addr(struct inode *inode,
3432 struct page *node_page)
3433 {
3434 int base = 0;
3435
3436 if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3437 base = get_extra_isize(inode);
3438
3439 return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3440 }
3441
3442 #define f2fs_get_inode_mode(i) \
3443 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3444 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3445
3446 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3447
3448 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3449 (offsetof(struct f2fs_inode, i_extra_end) - \
3450 offsetof(struct f2fs_inode, i_extra_isize)) \
3451
3452 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3453 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3454 ((offsetof(typeof(*(f2fs_inode)), field) + \
3455 sizeof((f2fs_inode)->field)) \
3456 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3457
3458 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3459
3460 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3461
3462 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3463 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3464 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3465 block_t blkaddr, int type)
3466 {
3467 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3468 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3469 blkaddr, type);
3470 f2fs_bug_on(sbi, 1);
3471 }
3472 }
3473
__is_valid_data_blkaddr(block_t blkaddr)3474 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3475 {
3476 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3477 blkaddr == COMPRESS_ADDR)
3478 return false;
3479 return true;
3480 }
3481
3482 /*
3483 * file.c
3484 */
3485 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3486 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3487 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3488 int f2fs_truncate(struct inode *inode);
3489 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3490 struct kstat *stat, u32 request_mask, unsigned int flags);
3491 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3492 struct iattr *attr);
3493 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3494 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3495 int f2fs_precache_extents(struct inode *inode);
3496 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3497 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3498 struct dentry *dentry, struct fileattr *fa);
3499 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3500 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3501 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3502 int f2fs_pin_file_control(struct inode *inode, bool inc);
3503
3504 /*
3505 * inode.c
3506 */
3507 void f2fs_set_inode_flags(struct inode *inode);
3508 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3509 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3510 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3511 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3512 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3513 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3514 void f2fs_update_inode_page(struct inode *inode);
3515 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3516 void f2fs_evict_inode(struct inode *inode);
3517 void f2fs_handle_failed_inode(struct inode *inode);
3518
3519 /*
3520 * namei.c
3521 */
3522 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3523 bool hot, bool set);
3524 struct dentry *f2fs_get_parent(struct dentry *child);
3525 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3526 struct inode **new_inode);
3527
3528 /*
3529 * dir.c
3530 */
3531 int f2fs_init_casefolded_name(const struct inode *dir,
3532 struct f2fs_filename *fname);
3533 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3534 int lookup, struct f2fs_filename *fname);
3535 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3536 struct f2fs_filename *fname);
3537 void f2fs_free_filename(struct f2fs_filename *fname);
3538 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3539 const struct f2fs_filename *fname, int *max_slots);
3540 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3541 unsigned int start_pos, struct fscrypt_str *fstr);
3542 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3543 struct f2fs_dentry_ptr *d);
3544 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3545 const struct f2fs_filename *fname, struct page *dpage);
3546 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3547 unsigned int current_depth);
3548 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3549 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3550 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3551 const struct f2fs_filename *fname,
3552 struct page **res_page);
3553 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3554 const struct qstr *child, struct page **res_page);
3555 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3556 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3557 struct page **page);
3558 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3559 struct page *page, struct inode *inode);
3560 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3561 const struct f2fs_filename *fname);
3562 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3563 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3564 unsigned int bit_pos);
3565 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3566 struct inode *inode, nid_t ino, umode_t mode);
3567 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3568 struct inode *inode, nid_t ino, umode_t mode);
3569 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3570 struct inode *inode, nid_t ino, umode_t mode);
3571 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3572 struct inode *dir, struct inode *inode);
3573 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3574 bool f2fs_empty_dir(struct inode *dir);
3575
f2fs_add_link(struct dentry * dentry,struct inode * inode)3576 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3577 {
3578 if (fscrypt_is_nokey_name(dentry))
3579 return -ENOKEY;
3580 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3581 inode, inode->i_ino, inode->i_mode);
3582 }
3583
3584 /*
3585 * super.c
3586 */
3587 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3588 void f2fs_inode_synced(struct inode *inode);
3589 int f2fs_dquot_initialize(struct inode *inode);
3590 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3591 int f2fs_quota_sync(struct super_block *sb, int type);
3592 loff_t max_file_blocks(struct inode *inode);
3593 void f2fs_quota_off_umount(struct super_block *sb);
3594 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3595 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3596 bool irq_context);
3597 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3598 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3599 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3600 int f2fs_sync_fs(struct super_block *sb, int sync);
3601 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3602
3603 /*
3604 * hash.c
3605 */
3606 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3607
3608 /*
3609 * node.c
3610 */
3611 struct node_info;
3612
3613 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3614 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3615 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3616 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3617 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3618 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3619 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3620 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3621 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3622 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3623 struct node_info *ni, bool checkpoint_context);
3624 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3625 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3626 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3627 int f2fs_truncate_xattr_node(struct inode *inode);
3628 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3629 unsigned int seq_id);
3630 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3631 int f2fs_remove_inode_page(struct inode *inode);
3632 struct page *f2fs_new_inode_page(struct inode *inode);
3633 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3634 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3635 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3636 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3637 int f2fs_move_node_page(struct page *node_page, int gc_type);
3638 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3639 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3640 struct writeback_control *wbc, bool atomic,
3641 unsigned int *seq_id);
3642 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3643 struct writeback_control *wbc,
3644 bool do_balance, enum iostat_type io_type);
3645 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3646 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3647 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3648 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3649 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3650 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3651 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3652 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3653 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3654 unsigned int segno, struct f2fs_summary_block *sum);
3655 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3656 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3657 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3658 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3659 int __init f2fs_create_node_manager_caches(void);
3660 void f2fs_destroy_node_manager_caches(void);
3661
3662 /*
3663 * segment.c
3664 */
3665 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3666 int f2fs_commit_atomic_write(struct inode *inode);
3667 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3668 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3669 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3670 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3671 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3672 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3673 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3674 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3675 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3676 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3677 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3678 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3679 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3680 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3681 struct cp_control *cpc);
3682 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3683 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3684 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3685 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3686 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3687 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3688 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3689 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3690 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3691 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3692 unsigned int *newseg, bool new_sec, int dir);
3693 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3694 unsigned int start, unsigned int end);
3695 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3696 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3697 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3698 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3699 struct cp_control *cpc);
3700 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3701 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3702 block_t blk_addr);
3703 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3704 enum iostat_type io_type);
3705 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3706 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3707 struct f2fs_io_info *fio);
3708 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3709 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3710 block_t old_blkaddr, block_t new_blkaddr,
3711 bool recover_curseg, bool recover_newaddr,
3712 bool from_gc);
3713 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3714 block_t old_addr, block_t new_addr,
3715 unsigned char version, bool recover_curseg,
3716 bool recover_newaddr);
3717 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3718 block_t old_blkaddr, block_t *new_blkaddr,
3719 struct f2fs_summary *sum, int type,
3720 struct f2fs_io_info *fio);
3721 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3722 block_t blkaddr, unsigned int blkcnt);
3723 void f2fs_wait_on_page_writeback(struct page *page,
3724 enum page_type type, bool ordered, bool locked);
3725 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3726 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3727 block_t len);
3728 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3729 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3730 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3731 unsigned int val, int alloc);
3732 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3733 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3734 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3735 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3736 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3737 int __init f2fs_create_segment_manager_caches(void);
3738 void f2fs_destroy_segment_manager_caches(void);
3739 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3740 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3741 unsigned int segno);
3742 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3743 unsigned int segno);
3744
3745 #define DEF_FRAGMENT_SIZE 4
3746 #define MIN_FRAGMENT_SIZE 1
3747 #define MAX_FRAGMENT_SIZE 512
3748
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3749 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3750 {
3751 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3752 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3753 }
3754
3755 /*
3756 * checkpoint.c
3757 */
3758 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3759 unsigned char reason);
3760 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3761 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3762 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3763 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3764 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3765 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3766 block_t blkaddr, int type);
3767 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3768 int type, bool sync);
3769 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3770 unsigned int ra_blocks);
3771 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3772 long nr_to_write, enum iostat_type io_type);
3773 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3774 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3775 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3776 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3777 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3778 unsigned int devidx, int type);
3779 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3780 unsigned int devidx, int type);
3781 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3782 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3783 void f2fs_add_orphan_inode(struct inode *inode);
3784 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3785 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3786 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3787 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3788 void f2fs_remove_dirty_inode(struct inode *inode);
3789 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3790 bool from_cp);
3791 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3792 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3793 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3794 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3795 int __init f2fs_create_checkpoint_caches(void);
3796 void f2fs_destroy_checkpoint_caches(void);
3797 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3798 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3799 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3800 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3801
3802 /*
3803 * data.c
3804 */
3805 int __init f2fs_init_bioset(void);
3806 void f2fs_destroy_bioset(void);
3807 int f2fs_init_bio_entry_cache(void);
3808 void f2fs_destroy_bio_entry_cache(void);
3809 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3810 enum page_type type);
3811 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3812 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3813 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3814 struct inode *inode, struct page *page,
3815 nid_t ino, enum page_type type);
3816 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3817 struct bio **bio, struct page *page);
3818 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3819 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3820 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3821 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3822 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3823 block_t blk_addr, sector_t *sector);
3824 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3825 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3826 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3827 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3828 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3829 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3830 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3831 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3832 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3833 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3834 pgoff_t *next_pgofs);
3835 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3836 bool for_write);
3837 struct page *f2fs_get_new_data_page(struct inode *inode,
3838 struct page *ipage, pgoff_t index, bool new_i_size);
3839 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3840 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3841 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3842 u64 start, u64 len);
3843 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3844 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3845 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3846 int f2fs_write_single_data_page(struct page *page, int *submitted,
3847 struct bio **bio, sector_t *last_block,
3848 struct writeback_control *wbc,
3849 enum iostat_type io_type,
3850 int compr_blocks, bool allow_balance);
3851 void f2fs_write_failed(struct inode *inode, loff_t to);
3852 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3853 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3854 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3855 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3856 int f2fs_init_post_read_processing(void);
3857 void f2fs_destroy_post_read_processing(void);
3858 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3859 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3860 extern const struct iomap_ops f2fs_iomap_ops;
3861
3862 /*
3863 * gc.c
3864 */
3865 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3866 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3867 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3868 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3869 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3870 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3871 int __init f2fs_create_garbage_collection_cache(void);
3872 void f2fs_destroy_garbage_collection_cache(void);
3873 /* victim selection function for cleaning and SSR */
3874 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3875 int gc_type, int type, char alloc_mode,
3876 unsigned long long age);
3877
3878 /*
3879 * recovery.c
3880 */
3881 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3882 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3883 int __init f2fs_create_recovery_cache(void);
3884 void f2fs_destroy_recovery_cache(void);
3885
3886 /*
3887 * debug.c
3888 */
3889 #ifdef CONFIG_F2FS_STAT_FS
3890 struct f2fs_stat_info {
3891 struct list_head stat_list;
3892 struct f2fs_sb_info *sbi;
3893 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3894 int main_area_segs, main_area_sections, main_area_zones;
3895 unsigned long long hit_cached[NR_EXTENT_CACHES];
3896 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3897 unsigned long long total_ext[NR_EXTENT_CACHES];
3898 unsigned long long hit_total[NR_EXTENT_CACHES];
3899 int ext_tree[NR_EXTENT_CACHES];
3900 int zombie_tree[NR_EXTENT_CACHES];
3901 int ext_node[NR_EXTENT_CACHES];
3902 /* to count memory footprint */
3903 unsigned long long ext_mem[NR_EXTENT_CACHES];
3904 /* for read extent cache */
3905 unsigned long long hit_largest;
3906 /* for block age extent cache */
3907 unsigned long long allocated_data_blocks;
3908 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3909 int ndirty_data, ndirty_qdata;
3910 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3911 int nats, dirty_nats, sits, dirty_sits;
3912 int free_nids, avail_nids, alloc_nids;
3913 int total_count, utilization;
3914 int nr_wb_cp_data, nr_wb_data;
3915 int nr_rd_data, nr_rd_node, nr_rd_meta;
3916 int nr_dio_read, nr_dio_write;
3917 unsigned int io_skip_bggc, other_skip_bggc;
3918 int nr_flushing, nr_flushed, flush_list_empty;
3919 int nr_discarding, nr_discarded;
3920 int nr_discard_cmd;
3921 unsigned int undiscard_blks;
3922 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3923 unsigned int cur_ckpt_time, peak_ckpt_time;
3924 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3925 int compr_inode, swapfile_inode;
3926 unsigned long long compr_blocks;
3927 int aw_cnt, max_aw_cnt;
3928 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3929 unsigned int bimodal, avg_vblocks;
3930 int util_free, util_valid, util_invalid;
3931 int rsvd_segs, overp_segs;
3932 int dirty_count, node_pages, meta_pages, compress_pages;
3933 int compress_page_hit;
3934 int prefree_count, free_segs, free_secs;
3935 int cp_call_count[MAX_CALL_TYPE], cp_count;
3936 int gc_call_count[MAX_CALL_TYPE];
3937 int gc_segs[2][2];
3938 int gc_secs[2][2];
3939 int tot_blks, data_blks, node_blks;
3940 int bg_data_blks, bg_node_blks;
3941 int curseg[NR_CURSEG_TYPE];
3942 int cursec[NR_CURSEG_TYPE];
3943 int curzone[NR_CURSEG_TYPE];
3944 unsigned int dirty_seg[NR_CURSEG_TYPE];
3945 unsigned int full_seg[NR_CURSEG_TYPE];
3946 unsigned int valid_blks[NR_CURSEG_TYPE];
3947
3948 unsigned int meta_count[META_MAX];
3949 unsigned int segment_count[2];
3950 unsigned int block_count[2];
3951 unsigned int inplace_count;
3952 unsigned long long base_mem, cache_mem, page_mem;
3953 };
3954
F2FS_STAT(struct f2fs_sb_info * sbi)3955 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3956 {
3957 return (struct f2fs_stat_info *)sbi->stat_info;
3958 }
3959
3960 #define stat_inc_cp_call_count(sbi, foreground) \
3961 atomic_inc(&sbi->cp_call_count[(foreground)])
3962 #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++)
3963 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3964 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3965 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3966 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3967 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
3968 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3969 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3970 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
3971 #define stat_inc_inline_xattr(inode) \
3972 do { \
3973 if (f2fs_has_inline_xattr(inode)) \
3974 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3975 } while (0)
3976 #define stat_dec_inline_xattr(inode) \
3977 do { \
3978 if (f2fs_has_inline_xattr(inode)) \
3979 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3980 } while (0)
3981 #define stat_inc_inline_inode(inode) \
3982 do { \
3983 if (f2fs_has_inline_data(inode)) \
3984 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3985 } while (0)
3986 #define stat_dec_inline_inode(inode) \
3987 do { \
3988 if (f2fs_has_inline_data(inode)) \
3989 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3990 } while (0)
3991 #define stat_inc_inline_dir(inode) \
3992 do { \
3993 if (f2fs_has_inline_dentry(inode)) \
3994 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3995 } while (0)
3996 #define stat_dec_inline_dir(inode) \
3997 do { \
3998 if (f2fs_has_inline_dentry(inode)) \
3999 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4000 } while (0)
4001 #define stat_inc_compr_inode(inode) \
4002 do { \
4003 if (f2fs_compressed_file(inode)) \
4004 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4005 } while (0)
4006 #define stat_dec_compr_inode(inode) \
4007 do { \
4008 if (f2fs_compressed_file(inode)) \
4009 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4010 } while (0)
4011 #define stat_add_compr_blocks(inode, blocks) \
4012 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4013 #define stat_sub_compr_blocks(inode, blocks) \
4014 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4015 #define stat_inc_swapfile_inode(inode) \
4016 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4017 #define stat_dec_swapfile_inode(inode) \
4018 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4019 #define stat_inc_atomic_inode(inode) \
4020 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4021 #define stat_dec_atomic_inode(inode) \
4022 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4023 #define stat_inc_meta_count(sbi, blkaddr) \
4024 do { \
4025 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4026 atomic_inc(&(sbi)->meta_count[META_CP]); \
4027 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4028 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4029 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4030 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4031 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4032 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4033 } while (0)
4034 #define stat_inc_seg_type(sbi, curseg) \
4035 ((sbi)->segment_count[(curseg)->alloc_type]++)
4036 #define stat_inc_block_count(sbi, curseg) \
4037 ((sbi)->block_count[(curseg)->alloc_type]++)
4038 #define stat_inc_inplace_blocks(sbi) \
4039 (atomic_inc(&(sbi)->inplace_count))
4040 #define stat_update_max_atomic_write(inode) \
4041 do { \
4042 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4043 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4044 if (cur > max) \
4045 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4046 } while (0)
4047 #define stat_inc_gc_call_count(sbi, foreground) \
4048 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4049 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4050 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4051 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4052 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4053
4054 #define stat_inc_tot_blk_count(si, blks) \
4055 ((si)->tot_blks += (blks))
4056
4057 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4058 do { \
4059 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4060 stat_inc_tot_blk_count(si, blks); \
4061 si->data_blks += (blks); \
4062 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4063 } while (0)
4064
4065 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4066 do { \
4067 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4068 stat_inc_tot_blk_count(si, blks); \
4069 si->node_blks += (blks); \
4070 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4071 } while (0)
4072
4073 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4074 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4075 void __init f2fs_create_root_stats(void);
4076 void f2fs_destroy_root_stats(void);
4077 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4078 #else
4079 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4080 #define stat_inc_cp_count(sbi) do { } while (0)
4081 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4082 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4083 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4084 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4085 #define stat_inc_total_hit(sbi, type) do { } while (0)
4086 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4087 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4088 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4089 #define stat_inc_inline_xattr(inode) do { } while (0)
4090 #define stat_dec_inline_xattr(inode) do { } while (0)
4091 #define stat_inc_inline_inode(inode) do { } while (0)
4092 #define stat_dec_inline_inode(inode) do { } while (0)
4093 #define stat_inc_inline_dir(inode) do { } while (0)
4094 #define stat_dec_inline_dir(inode) do { } while (0)
4095 #define stat_inc_compr_inode(inode) do { } while (0)
4096 #define stat_dec_compr_inode(inode) do { } while (0)
4097 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4098 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4099 #define stat_inc_swapfile_inode(inode) do { } while (0)
4100 #define stat_dec_swapfile_inode(inode) do { } while (0)
4101 #define stat_inc_atomic_inode(inode) do { } while (0)
4102 #define stat_dec_atomic_inode(inode) do { } while (0)
4103 #define stat_update_max_atomic_write(inode) do { } while (0)
4104 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4105 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4106 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4107 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4108 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4109 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4110 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4111 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4112 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4113 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4114
f2fs_build_stats(struct f2fs_sb_info * sbi)4115 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4116 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4117 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4118 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4119 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4120 #endif
4121
4122 extern const struct file_operations f2fs_dir_operations;
4123 extern const struct file_operations f2fs_file_operations;
4124 extern const struct inode_operations f2fs_file_inode_operations;
4125 extern const struct address_space_operations f2fs_dblock_aops;
4126 extern const struct address_space_operations f2fs_node_aops;
4127 extern const struct address_space_operations f2fs_meta_aops;
4128 extern const struct inode_operations f2fs_dir_inode_operations;
4129 extern const struct inode_operations f2fs_symlink_inode_operations;
4130 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4131 extern const struct inode_operations f2fs_special_inode_operations;
4132 extern struct kmem_cache *f2fs_inode_entry_slab;
4133
4134 /*
4135 * inline.c
4136 */
4137 bool f2fs_may_inline_data(struct inode *inode);
4138 bool f2fs_sanity_check_inline_data(struct inode *inode);
4139 bool f2fs_may_inline_dentry(struct inode *inode);
4140 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4141 void f2fs_truncate_inline_inode(struct inode *inode,
4142 struct page *ipage, u64 from);
4143 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4144 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4145 int f2fs_convert_inline_inode(struct inode *inode);
4146 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4147 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4148 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4149 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4150 const struct f2fs_filename *fname,
4151 struct page **res_page);
4152 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4153 struct page *ipage);
4154 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4155 struct inode *inode, nid_t ino, umode_t mode);
4156 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4157 struct page *page, struct inode *dir,
4158 struct inode *inode);
4159 bool f2fs_empty_inline_dir(struct inode *dir);
4160 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4161 struct fscrypt_str *fstr);
4162 int f2fs_inline_data_fiemap(struct inode *inode,
4163 struct fiemap_extent_info *fieinfo,
4164 __u64 start, __u64 len);
4165
4166 /*
4167 * shrinker.c
4168 */
4169 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4170 struct shrink_control *sc);
4171 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4172 struct shrink_control *sc);
4173 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4174 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4175
4176 /*
4177 * extent_cache.c
4178 */
4179 bool sanity_check_extent_cache(struct inode *inode);
4180 void f2fs_init_extent_tree(struct inode *inode);
4181 void f2fs_drop_extent_tree(struct inode *inode);
4182 void f2fs_destroy_extent_node(struct inode *inode);
4183 void f2fs_destroy_extent_tree(struct inode *inode);
4184 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4185 int __init f2fs_create_extent_cache(void);
4186 void f2fs_destroy_extent_cache(void);
4187
4188 /* read extent cache ops */
4189 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4190 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4191 struct extent_info *ei);
4192 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4193 block_t *blkaddr);
4194 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4195 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4196 pgoff_t fofs, block_t blkaddr, unsigned int len);
4197 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4198 int nr_shrink);
4199
4200 /* block age extent cache ops */
4201 void f2fs_init_age_extent_tree(struct inode *inode);
4202 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4203 struct extent_info *ei);
4204 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4205 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4206 pgoff_t fofs, unsigned int len);
4207 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4208 int nr_shrink);
4209
4210 /*
4211 * sysfs.c
4212 */
4213 #define MIN_RA_MUL 2
4214 #define MAX_RA_MUL 256
4215
4216 int __init f2fs_init_sysfs(void);
4217 void f2fs_exit_sysfs(void);
4218 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4219 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4220
4221 /* verity.c */
4222 extern const struct fsverity_operations f2fs_verityops;
4223
4224 /*
4225 * crypto support
4226 */
f2fs_encrypted_file(struct inode * inode)4227 static inline bool f2fs_encrypted_file(struct inode *inode)
4228 {
4229 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4230 }
4231
f2fs_set_encrypted_inode(struct inode * inode)4232 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4233 {
4234 #ifdef CONFIG_FS_ENCRYPTION
4235 file_set_encrypt(inode);
4236 f2fs_set_inode_flags(inode);
4237 #endif
4238 }
4239
4240 /*
4241 * Returns true if the reads of the inode's data need to undergo some
4242 * postprocessing step, like decryption or authenticity verification.
4243 */
f2fs_post_read_required(struct inode * inode)4244 static inline bool f2fs_post_read_required(struct inode *inode)
4245 {
4246 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4247 f2fs_compressed_file(inode);
4248 }
4249
4250 /*
4251 * compress.c
4252 */
4253 #ifdef CONFIG_F2FS_FS_COMPRESSION
4254 bool f2fs_is_compressed_page(struct page *page);
4255 struct page *f2fs_compress_control_page(struct page *page);
4256 int f2fs_prepare_compress_overwrite(struct inode *inode,
4257 struct page **pagep, pgoff_t index, void **fsdata);
4258 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4259 pgoff_t index, unsigned copied);
4260 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4261 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4262 bool f2fs_is_compress_backend_ready(struct inode *inode);
4263 bool f2fs_is_compress_level_valid(int alg, int lvl);
4264 int __init f2fs_init_compress_mempool(void);
4265 void f2fs_destroy_compress_mempool(void);
4266 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4267 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4268 block_t blkaddr, bool in_task);
4269 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4270 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4271 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4272 int index, int nr_pages, bool uptodate);
4273 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4274 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4275 int f2fs_write_multi_pages(struct compress_ctx *cc,
4276 int *submitted,
4277 struct writeback_control *wbc,
4278 enum iostat_type io_type);
4279 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4280 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4281 pgoff_t fofs, block_t blkaddr,
4282 unsigned int llen, unsigned int c_len);
4283 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4284 unsigned nr_pages, sector_t *last_block_in_bio,
4285 bool is_readahead, bool for_write);
4286 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4287 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4288 bool in_task);
4289 void f2fs_put_page_dic(struct page *page, bool in_task);
4290 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4291 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4292 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4293 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4294 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4295 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4296 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4297 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4298 int __init f2fs_init_compress_cache(void);
4299 void f2fs_destroy_compress_cache(void);
4300 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4301 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4302 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4303 nid_t ino, block_t blkaddr);
4304 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4305 block_t blkaddr);
4306 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4307 #define inc_compr_inode_stat(inode) \
4308 do { \
4309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4310 sbi->compr_new_inode++; \
4311 } while (0)
4312 #define add_compr_block_stat(inode, blocks) \
4313 do { \
4314 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4315 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4316 sbi->compr_written_block += blocks; \
4317 sbi->compr_saved_block += diff; \
4318 } while (0)
4319 #else
f2fs_is_compressed_page(struct page * page)4320 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4321 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4322 {
4323 if (!f2fs_compressed_file(inode))
4324 return true;
4325 /* not support compression */
4326 return false;
4327 }
f2fs_is_compress_level_valid(int alg,int lvl)4328 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4329 static inline struct page *f2fs_compress_control_page(struct page *page)
4330 {
4331 WARN_ON_ONCE(1);
4332 return ERR_PTR(-EINVAL);
4333 }
f2fs_init_compress_mempool(void)4334 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4335 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4336 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4337 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4338 static inline void f2fs_end_read_compressed_page(struct page *page,
4339 bool failed, block_t blkaddr, bool in_task)
4340 {
4341 WARN_ON_ONCE(1);
4342 }
f2fs_put_page_dic(struct page * page,bool in_task)4343 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4344 {
4345 WARN_ON_ONCE(1);
4346 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4347 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4348 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4349 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4350 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4351 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4352 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4353 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4354 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4355 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4356 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4357 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4358 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4359 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4360 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4361 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4362 nid_t ino) { }
4363 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4364 static inline void f2fs_update_read_extent_tree_range_compressed(
4365 struct inode *inode,
4366 pgoff_t fofs, block_t blkaddr,
4367 unsigned int llen, unsigned int c_len) { }
4368 #endif
4369
set_compress_context(struct inode * inode)4370 static inline int set_compress_context(struct inode *inode)
4371 {
4372 #ifdef CONFIG_F2FS_FS_COMPRESSION
4373 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4374
4375 F2FS_I(inode)->i_compress_algorithm =
4376 F2FS_OPTION(sbi).compress_algorithm;
4377 F2FS_I(inode)->i_log_cluster_size =
4378 F2FS_OPTION(sbi).compress_log_size;
4379 F2FS_I(inode)->i_compress_flag =
4380 F2FS_OPTION(sbi).compress_chksum ?
4381 BIT(COMPRESS_CHKSUM) : 0;
4382 F2FS_I(inode)->i_cluster_size =
4383 BIT(F2FS_I(inode)->i_log_cluster_size);
4384 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4385 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4386 F2FS_OPTION(sbi).compress_level)
4387 F2FS_I(inode)->i_compress_level =
4388 F2FS_OPTION(sbi).compress_level;
4389 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4390 set_inode_flag(inode, FI_COMPRESSED_FILE);
4391 stat_inc_compr_inode(inode);
4392 inc_compr_inode_stat(inode);
4393 f2fs_mark_inode_dirty_sync(inode, true);
4394 return 0;
4395 #else
4396 return -EOPNOTSUPP;
4397 #endif
4398 }
4399
f2fs_disable_compressed_file(struct inode * inode)4400 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4401 {
4402 struct f2fs_inode_info *fi = F2FS_I(inode);
4403
4404 if (!f2fs_compressed_file(inode))
4405 return true;
4406 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4407 return false;
4408
4409 fi->i_flags &= ~F2FS_COMPR_FL;
4410 stat_dec_compr_inode(inode);
4411 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4412 f2fs_mark_inode_dirty_sync(inode, true);
4413 return true;
4414 }
4415
4416 #define F2FS_FEATURE_FUNCS(name, flagname) \
4417 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4418 { \
4419 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4420 }
4421
4422 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4423 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4424 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4425 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4426 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4427 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4428 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4429 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4430 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4431 F2FS_FEATURE_FUNCS(verity, VERITY);
4432 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4433 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4434 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4435 F2FS_FEATURE_FUNCS(readonly, RO);
4436
4437 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4438 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4439 block_t blkaddr)
4440 {
4441 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4442
4443 return test_bit(zno, FDEV(devi).blkz_seq);
4444 }
4445 #endif
4446
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4447 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4448 struct block_device *bdev)
4449 {
4450 int i;
4451
4452 if (!f2fs_is_multi_device(sbi))
4453 return 0;
4454
4455 for (i = 0; i < sbi->s_ndevs; i++)
4456 if (FDEV(i).bdev == bdev)
4457 return i;
4458
4459 WARN_ON(1);
4460 return -1;
4461 }
4462
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4463 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4464 {
4465 return f2fs_sb_has_blkzoned(sbi);
4466 }
4467
f2fs_bdev_support_discard(struct block_device * bdev)4468 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4469 {
4470 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4471 }
4472
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4473 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4474 {
4475 int i;
4476
4477 if (!f2fs_is_multi_device(sbi))
4478 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4479
4480 for (i = 0; i < sbi->s_ndevs; i++)
4481 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4482 return true;
4483 return false;
4484 }
4485
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4486 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4487 {
4488 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4489 f2fs_hw_should_discard(sbi);
4490 }
4491
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4492 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4493 {
4494 int i;
4495
4496 if (!f2fs_is_multi_device(sbi))
4497 return bdev_read_only(sbi->sb->s_bdev);
4498
4499 for (i = 0; i < sbi->s_ndevs; i++)
4500 if (bdev_read_only(FDEV(i).bdev))
4501 return true;
4502 return false;
4503 }
4504
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4505 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4506 {
4507 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4508 }
4509
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4510 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4511 {
4512 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4513 }
4514
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4515 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4516 {
4517 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4518 }
4519
f2fs_may_compress(struct inode * inode)4520 static inline bool f2fs_may_compress(struct inode *inode)
4521 {
4522 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4523 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4524 f2fs_is_mmap_file(inode))
4525 return false;
4526 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4527 }
4528
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4529 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4530 u64 blocks, bool add)
4531 {
4532 struct f2fs_inode_info *fi = F2FS_I(inode);
4533 int diff = fi->i_cluster_size - blocks;
4534
4535 /* don't update i_compr_blocks if saved blocks were released */
4536 if (!add && !atomic_read(&fi->i_compr_blocks))
4537 return;
4538
4539 if (add) {
4540 atomic_add(diff, &fi->i_compr_blocks);
4541 stat_add_compr_blocks(inode, diff);
4542 } else {
4543 atomic_sub(diff, &fi->i_compr_blocks);
4544 stat_sub_compr_blocks(inode, diff);
4545 }
4546 f2fs_mark_inode_dirty_sync(inode, true);
4547 }
4548
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4549 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4550 int flag)
4551 {
4552 if (!f2fs_is_multi_device(sbi))
4553 return false;
4554 if (flag != F2FS_GET_BLOCK_DIO)
4555 return false;
4556 return sbi->aligned_blksize;
4557 }
4558
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4559 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4560 {
4561 return fsverity_active(inode) &&
4562 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4563 }
4564
4565 #ifdef CONFIG_F2FS_FAULT_INJECTION
4566 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4567 unsigned int type);
4568 #else
4569 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4570 #endif
4571
is_journalled_quota(struct f2fs_sb_info * sbi)4572 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4573 {
4574 #ifdef CONFIG_QUOTA
4575 if (f2fs_sb_has_quota_ino(sbi))
4576 return true;
4577 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4578 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4579 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4580 return true;
4581 #endif
4582 return false;
4583 }
4584
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4585 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4586 {
4587 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4588 }
4589
f2fs_io_schedule_timeout(long timeout)4590 static inline void f2fs_io_schedule_timeout(long timeout)
4591 {
4592 set_current_state(TASK_UNINTERRUPTIBLE);
4593 io_schedule_timeout(timeout);
4594 }
4595
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4596 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4597 enum page_type type)
4598 {
4599 if (unlikely(f2fs_cp_error(sbi)))
4600 return;
4601
4602 if (ofs == sbi->page_eio_ofs[type]) {
4603 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4604 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4605 } else {
4606 sbi->page_eio_ofs[type] = ofs;
4607 sbi->page_eio_cnt[type] = 0;
4608 }
4609 }
4610
f2fs_is_readonly(struct f2fs_sb_info * sbi)4611 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4612 {
4613 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4614 }
4615
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr)4616 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4617 block_t blkaddr)
4618 {
4619 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr);
4620 f2fs_invalidate_compress_page(sbi, blkaddr);
4621 }
4622
4623 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4624 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4625
4626 #endif /* _LINUX_F2FS_H */
4627