xref: /qemu/hw/loongarch/boot.c (revision 8887c7d11476cbee0a9be6f1f5aee0f72d7e280e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * LoongArch boot helper functions.
4  *
5  * Copyright (c) 2023 Loongson Technology Corporation Limited
6  */
7 
8 #include "qemu/osdep.h"
9 #include "qemu/units.h"
10 #include "target/loongarch/cpu.h"
11 #include "hw/loongarch/virt.h"
12 #include "hw/loader.h"
13 #include "elf.h"
14 #include "qemu/error-report.h"
15 #include "system/reset.h"
16 #include "system/qtest.h"
17 
18 /*
19  * Linux Image Format
20  * https://docs.kernel.org/arch/loongarch/booting.html
21  */
22 #define LINUX_PE_MAGIC  0x818223cd
23 #define MZ_MAGIC        0x5a4d /* "MZ" */
24 
25 struct loongarch_linux_hdr {
26     uint32_t mz_magic;
27     uint32_t res0;
28     uint64_t kernel_entry;
29     uint64_t kernel_size;
30     uint64_t load_offset;
31     uint64_t res1;
32     uint64_t res2;
33     uint64_t res3;
34     uint32_t linux_pe_magic;
35     uint32_t pe_header_offset;
36 } QEMU_PACKED;
37 
38 static const unsigned int slave_boot_code[] = {
39                   /* Configure reset ebase.                    */
40     0x0400302c,   /* csrwr      $t0, LOONGARCH_CSR_EENTRY      */
41 
42                   /* Disable interrupt.                        */
43     0x0380100c,   /* ori        $t0, $zero,0x4                 */
44     0x04000180,   /* csrxchg    $zero, $t0, LOONGARCH_CSR_CRMD */
45 
46                   /* Clear mailbox.                            */
47     0x1400002d,   /* lu12i.w    $t1, 1(0x1)                    */
48     0x038081ad,   /* ori        $t1, $t1, CORE_BUF_20  */
49     0x06481da0,   /* iocsrwr.d  $zero, $t1                     */
50 
51                   /* Enable IPI interrupt.                     */
52     0x1400002c,   /* lu12i.w    $t0, 1(0x1)                    */
53     0x0400118c,   /* csrxchg    $t0, $t0, LOONGARCH_CSR_ECFG   */
54     0x02fffc0c,   /* addi.d     $t0, $r0,-1(0xfff)             */
55     0x1400002d,   /* lu12i.w    $t1, 1(0x1)                    */
56     0x038011ad,   /* ori        $t1, $t1, CORE_EN_OFF          */
57     0x064819ac,   /* iocsrwr.w  $t0, $t1                       */
58     0x1400002d,   /* lu12i.w    $t1, 1(0x1)                    */
59     0x038081ad,   /* ori        $t1, $t1, CORE_BUF_20          */
60 
61                   /* Wait for wakeup  <.L11>:                  */
62     0x06488000,   /* idle       0x0                            */
63     0x03400000,   /* andi       $zero, $zero, 0x0              */
64     0x064809ac,   /* iocsrrd.w  $t0, $t1                       */
65     0x43fff59f,   /* beqz       $t0, -12(0x7ffff4) # 48 <.L11> */
66 
67                   /* Read and clear IPI interrupt.             */
68     0x1400002d,   /* lu12i.w    $t1, 1(0x1)                    */
69     0x064809ac,   /* iocsrrd.w  $t0, $t1                       */
70     0x1400002d,   /* lu12i.w    $t1, 1(0x1)                    */
71     0x038031ad,   /* ori        $t1, $t1, CORE_CLEAR_OFF       */
72     0x064819ac,   /* iocsrwr.w  $t0, $t1                       */
73 
74                   /* Disable  IPI interrupt.                   */
75     0x1400002c,   /* lu12i.w    $t0, 1(0x1)                    */
76     0x04001180,   /* csrxchg    $zero, $t0, LOONGARCH_CSR_ECFG */
77 
78                   /* Read mail buf and jump to specified entry */
79     0x1400002d,   /* lu12i.w    $t1, 1(0x1)                    */
80     0x038081ad,   /* ori        $t1, $t1, CORE_BUF_20          */
81     0x06480dac,   /* iocsrrd.d  $t0, $t1                       */
82     0x00150181,   /* move       $ra, $t0                       */
83     0x4c000020,   /* jirl       $zero, $ra,0                   */
84 };
85 
guidcpy(void * dst,const void * src)86 static inline void *guidcpy(void *dst, const void *src)
87 {
88     return memcpy(dst, src, sizeof(efi_guid_t));
89 }
90 
init_efi_boot_memmap(MachineState * ms,struct efi_system_table * systab,void * p,void * start)91 static void init_efi_boot_memmap(MachineState *ms,
92                                  struct efi_system_table *systab,
93                                  void *p, void *start)
94 {
95     unsigned i;
96     struct efi_boot_memmap *boot_memmap = p;
97     efi_guid_t tbl_guid = LINUX_EFI_BOOT_MEMMAP_GUID;
98     LoongArchVirtMachineState *lvms = LOONGARCH_VIRT_MACHINE(ms);
99     struct memmap_entry *memmap_table;
100     unsigned int memmap_entries;
101 
102     /* efi_configuration_table 1 */
103     guidcpy(&systab->tables[0].guid, &tbl_guid);
104     systab->tables[0].table = (struct efi_configuration_table *)(p - start);
105     systab->nr_tables = 1;
106 
107     boot_memmap->desc_size = sizeof(efi_memory_desc_t);
108     boot_memmap->desc_ver = 1;
109     boot_memmap->map_size = 0;
110 
111     efi_memory_desc_t *map = p + sizeof(struct efi_boot_memmap);
112     memmap_table = lvms->memmap_table;
113     memmap_entries = lvms->memmap_entries;
114     for (i = 0; i < memmap_entries; i++) {
115         map = (void *)boot_memmap + sizeof(*map);
116         map[i].type = memmap_table[i].type;
117         map[i].phys_addr = ROUND_UP(memmap_table[i].address, 64 * KiB);
118         map[i].num_pages = ROUND_DOWN(memmap_table[i].address +
119                         memmap_table[i].length - map[i].phys_addr, 64 * KiB);
120         p += sizeof(efi_memory_desc_t);
121     }
122 }
123 
init_efi_initrd_table(struct loongarch_boot_info * info,struct efi_system_table * systab,void * p,void * start)124 static void init_efi_initrd_table(struct loongarch_boot_info *info,
125                                   struct efi_system_table *systab,
126                                   void *p, void *start)
127 {
128     efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID;
129     struct efi_initrd *initrd_table  = p;
130 
131     /* efi_configuration_table 2 */
132     guidcpy(&systab->tables[1].guid, &tbl_guid);
133     systab->tables[1].table = (struct efi_configuration_table *)(p - start);
134     systab->nr_tables = 2;
135 
136     initrd_table->base = info->initrd_addr;
137     initrd_table->size = info->initrd_size;
138 }
139 
init_efi_fdt_table(struct efi_system_table * systab)140 static void init_efi_fdt_table(struct efi_system_table *systab)
141 {
142     efi_guid_t tbl_guid = DEVICE_TREE_GUID;
143 
144     /* efi_configuration_table 3 */
145     guidcpy(&systab->tables[2].guid, &tbl_guid);
146     systab->tables[2].table = (void *)FDT_BASE;
147     systab->nr_tables = 3;
148 }
149 
init_systab(MachineState * ms,struct loongarch_boot_info * info,void * p,void * start)150 static void init_systab(MachineState *ms,
151                         struct loongarch_boot_info *info, void *p, void *start)
152 {
153     void *bp_tables_start;
154     struct efi_system_table *systab = p;
155     LoongArchVirtMachineState *lvms = LOONGARCH_VIRT_MACHINE(ms);
156 
157     info->a2 = p - start;
158 
159     systab->hdr.signature = EFI_SYSTEM_TABLE_SIGNATURE;
160     systab->hdr.revision = EFI_SPECIFICATION_VERSION;
161     systab->hdr.revision = sizeof(struct efi_system_table),
162     systab->fw_revision = FW_VERSION << 16 | FW_PATCHLEVEL << 8;
163     systab->runtime = 0;
164     systab->boottime = 0;
165     systab->nr_tables = 0;
166 
167     p += ROUND_UP(sizeof(struct efi_system_table), 64 * KiB);
168 
169     systab->tables = p;
170     bp_tables_start = p;
171 
172     init_efi_boot_memmap(ms, systab, p, start);
173     p += ROUND_UP(sizeof(struct efi_boot_memmap) +
174                   sizeof(efi_memory_desc_t) * lvms->memmap_entries, 64 * KiB);
175     init_efi_initrd_table(info, systab, p, start);
176     p += ROUND_UP(sizeof(struct efi_initrd), 64 * KiB);
177     init_efi_fdt_table(systab);
178 
179     systab->tables = (struct efi_configuration_table *)(bp_tables_start - start);
180 }
181 
init_cmdline(struct loongarch_boot_info * info,void * p,void * start)182 static void init_cmdline(struct loongarch_boot_info *info, void *p, void *start)
183 {
184     hwaddr cmdline_addr = p - start;
185 
186     info->a0 = 1;
187     info->a1 = cmdline_addr;
188 
189     g_strlcpy(p, info->kernel_cmdline, COMMAND_LINE_SIZE);
190 }
191 
cpu_loongarch_virt_to_phys(void * opaque,uint64_t addr)192 static uint64_t cpu_loongarch_virt_to_phys(void *opaque, uint64_t addr)
193 {
194     return addr & MAKE_64BIT_MASK(0, TARGET_PHYS_ADDR_SPACE_BITS);
195 }
196 
load_loongarch_linux_image(const char * filename,uint64_t * kernel_entry,uint64_t * kernel_low,uint64_t * kernel_high)197 static int64_t load_loongarch_linux_image(const char *filename,
198                                           uint64_t *kernel_entry,
199                                           uint64_t *kernel_low,
200                                           uint64_t *kernel_high)
201 {
202     gsize len;
203     ssize_t size;
204     uint8_t *buffer;
205     struct loongarch_linux_hdr *hdr;
206 
207     /* Load as raw file otherwise */
208     if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
209         return -1;
210     }
211     size = len;
212 
213     /* Unpack the image if it is a EFI zboot image */
214     if (unpack_efi_zboot_image(&buffer, &size) < 0) {
215         g_free(buffer);
216         return -1;
217     }
218 
219     hdr = (struct loongarch_linux_hdr *)buffer;
220 
221     if (extract32(le32_to_cpu(hdr->mz_magic), 0, 16) != MZ_MAGIC ||
222         le32_to_cpu(hdr->linux_pe_magic) != LINUX_PE_MAGIC) {
223         g_free(buffer);
224         return -1;
225     }
226 
227     /* Early kernel versions may have those fields in virtual address */
228     *kernel_entry = extract64(le64_to_cpu(hdr->kernel_entry),
229                               0, TARGET_PHYS_ADDR_SPACE_BITS);
230     *kernel_low = extract64(le64_to_cpu(hdr->load_offset),
231                             0, TARGET_PHYS_ADDR_SPACE_BITS);
232     *kernel_high = *kernel_low + size;
233 
234     rom_add_blob_fixed(filename, buffer, size, *kernel_low);
235 
236     g_free(buffer);
237 
238     return size;
239 }
240 
alloc_initrd_memory(struct loongarch_boot_info * info,uint64_t advice_start,ssize_t rd_size)241 static ram_addr_t alloc_initrd_memory(struct loongarch_boot_info *info,
242                 uint64_t advice_start, ssize_t rd_size)
243 {
244     hwaddr base, ram_size, gap, low_end;
245     ram_addr_t initrd_end, initrd_start;
246 
247     base = VIRT_LOWMEM_BASE;
248     gap = VIRT_LOWMEM_SIZE;
249     initrd_start = advice_start;
250     initrd_end = initrd_start + rd_size;
251 
252     ram_size = info->ram_size;
253     low_end = base + MIN(ram_size, gap);
254     if (initrd_end <= low_end) {
255         return initrd_start;
256     }
257 
258     if (ram_size <= gap) {
259         error_report("The low memory too small for initial ram disk '%s',"
260              "You need to expand the ram",
261              info->initrd_filename);
262         exit(1);
263     }
264 
265     /*
266      * Try to load initrd in the high memory
267      */
268     ram_size -= gap;
269     initrd_start = VIRT_HIGHMEM_BASE;
270     if (rd_size <= ram_size) {
271         return initrd_start;
272     }
273 
274     error_report("The high memory too small for initial ram disk '%s',"
275          "You need to expand the ram",
276          info->initrd_filename);
277     exit(1);
278 }
279 
load_kernel_info(struct loongarch_boot_info * info)280 static int64_t load_kernel_info(struct loongarch_boot_info *info)
281 {
282     uint64_t kernel_entry, kernel_low, kernel_high, initrd_offset = 0;
283     ssize_t kernel_size, initrd_size;
284 
285     kernel_size = load_elf(info->kernel_filename, NULL,
286                            cpu_loongarch_virt_to_phys, NULL,
287                            &kernel_entry, &kernel_low,
288                            &kernel_high, NULL, ELFDATA2LSB,
289                            EM_LOONGARCH, 1, 0);
290     kernel_entry = cpu_loongarch_virt_to_phys(NULL, kernel_entry);
291     if (kernel_size < 0) {
292         kernel_size = load_loongarch_linux_image(info->kernel_filename,
293                                                  &kernel_entry, &kernel_low,
294                                                  &kernel_high);
295     }
296 
297     if (kernel_size < 0) {
298         error_report("could not load kernel '%s': %s",
299                      info->kernel_filename,
300                      load_elf_strerror(kernel_size));
301         exit(1);
302     }
303 
304     if (info->initrd_filename) {
305         initrd_size = get_image_size(info->initrd_filename);
306         if (initrd_size > 0) {
307             initrd_offset = ROUND_UP(kernel_high + 4 * kernel_size, 64 * KiB);
308             initrd_offset = alloc_initrd_memory(info, initrd_offset,
309                                                 initrd_size);
310             initrd_size = load_image_targphys(info->initrd_filename,
311                                               initrd_offset, initrd_size);
312         }
313 
314         if (initrd_size == (target_ulong)-1) {
315             error_report("could not load initial ram disk '%s'",
316                          info->initrd_filename);
317             exit(1);
318         }
319 
320         info->initrd_addr = initrd_offset;
321         info->initrd_size = initrd_size;
322     }
323 
324     return kernel_entry;
325 }
326 
reset_load_elf(void * opaque)327 static void reset_load_elf(void *opaque)
328 {
329     LoongArchCPU *cpu = opaque;
330     CPULoongArchState *env = &cpu->env;
331 
332     cpu_reset(CPU(cpu));
333     if (env->load_elf) {
334         if (cpu == LOONGARCH_CPU(first_cpu)) {
335             env->gpr[4] = env->boot_info->a0;
336             env->gpr[5] = env->boot_info->a1;
337             env->gpr[6] = env->boot_info->a2;
338         }
339         cpu_set_pc(CPU(cpu), env->elf_address);
340     }
341 }
342 
fw_cfg_add_kernel_info(struct loongarch_boot_info * info,FWCfgState * fw_cfg)343 static void fw_cfg_add_kernel_info(struct loongarch_boot_info *info,
344                                    FWCfgState *fw_cfg)
345 {
346     /*
347      * Expose the kernel, the command line, and the initrd in fw_cfg.
348      * We don't process them here at all, it's all left to the
349      * firmware.
350      */
351     load_image_to_fw_cfg(fw_cfg,
352                          FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
353                          info->kernel_filename,
354                          false);
355 
356     if (info->initrd_filename) {
357         load_image_to_fw_cfg(fw_cfg,
358                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
359                              info->initrd_filename, false);
360     }
361 
362     if (info->kernel_cmdline) {
363         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
364                        strlen(info->kernel_cmdline) + 1);
365         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
366                           info->kernel_cmdline);
367     }
368 }
369 
loongarch_firmware_boot(LoongArchVirtMachineState * lvms,struct loongarch_boot_info * info)370 static void loongarch_firmware_boot(LoongArchVirtMachineState *lvms,
371                                     struct loongarch_boot_info *info)
372 {
373     fw_cfg_add_kernel_info(info, lvms->fw_cfg);
374 }
375 
init_boot_rom(MachineState * ms,struct loongarch_boot_info * info,void * p)376 static void init_boot_rom(MachineState *ms,
377                           struct loongarch_boot_info *info, void *p)
378 {
379     void *start = p;
380 
381     init_cmdline(info, p, start);
382     p += COMMAND_LINE_SIZE;
383 
384     init_systab(ms, info, p, start);
385 }
386 
loongarch_direct_kernel_boot(MachineState * ms,struct loongarch_boot_info * info)387 static void loongarch_direct_kernel_boot(MachineState *ms,
388                                          struct loongarch_boot_info *info)
389 {
390     void *p, *bp;
391     int64_t kernel_addr = VIRT_FLASH0_BASE;
392     LoongArchCPU *lacpu;
393     CPUState *cs;
394 
395     if (info->kernel_filename) {
396         kernel_addr = load_kernel_info(info);
397     } else {
398         if (!qtest_enabled()) {
399             warn_report("No kernel provided, booting from flash drive.");
400         }
401     }
402 
403     /* Load cmdline and system tables at [0 - 1 MiB] */
404     p = g_malloc0(1 * MiB);
405     bp = p;
406     init_boot_rom(ms, info, p);
407     rom_add_blob_fixed_as("boot_info", bp, 1 * MiB, 0, &address_space_memory);
408 
409     /* Load slave boot code at pflash0 . */
410     void *boot_code = g_malloc0(VIRT_FLASH0_SIZE);
411     memcpy(boot_code, &slave_boot_code, sizeof(slave_boot_code));
412     rom_add_blob_fixed("boot_code", boot_code, VIRT_FLASH0_SIZE, VIRT_FLASH0_BASE);
413 
414     CPU_FOREACH(cs) {
415         lacpu = LOONGARCH_CPU(cs);
416         lacpu->env.load_elf = true;
417         if (cs == first_cpu) {
418             lacpu->env.elf_address = kernel_addr;
419         } else {
420             lacpu->env.elf_address = VIRT_FLASH0_BASE;
421         }
422         lacpu->env.boot_info = info;
423     }
424 
425     g_free(boot_code);
426     g_free(bp);
427 }
428 
loongarch_load_kernel(MachineState * ms,struct loongarch_boot_info * info)429 void loongarch_load_kernel(MachineState *ms, struct loongarch_boot_info *info)
430 {
431     LoongArchVirtMachineState *lvms = LOONGARCH_VIRT_MACHINE(ms);
432     int i;
433 
434     /* register reset function */
435     for (i = 0; i < ms->smp.cpus; i++) {
436         qemu_register_reset(reset_load_elf, LOONGARCH_CPU(qemu_get_cpu(i)));
437     }
438 
439     info->kernel_filename = ms->kernel_filename;
440     info->kernel_cmdline = ms->kernel_cmdline;
441     info->initrd_filename = ms->initrd_filename;
442 
443     if (lvms->bios_loaded) {
444         loongarch_firmware_boot(lvms, info);
445     } else {
446         loongarch_direct_kernel_boot(ms, info);
447     }
448 }
449