1 /*
2  * linux/arch/m32r/kernel/ptrace.c
3  *
4  * Copyright (C) 2002  Hirokazu Takata, Takeo Takahashi
5  * Copyright (C) 2004  Hirokazu Takata, Kei Sakamoto
6  *
7  * Original x86 implementation:
8  *	By Ross Biro 1/23/92
9  *	edited by Linus Torvalds
10  *
11  * Some code taken from sh version:
12  *   Copyright (C) 1999, 2000  Kaz Kojima & Niibe Yutaka
13  * Some code taken from arm version:
14  *   Copyright (C) 2000 Russell King
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/user.h>
25 #include <linux/string.h>
26 #include <linux/signal.h>
27 
28 #include <asm/cacheflush.h>
29 #include <asm/io.h>
30 #include <asm/uaccess.h>
31 #include <asm/pgtable.h>
32 #include <asm/system.h>
33 #include <asm/processor.h>
34 #include <asm/mmu_context.h>
35 
36 /*
37  * This routine will get a word off of the process kernel stack.
38  */
39 static inline unsigned long int
get_stack_long(struct task_struct * task,int offset)40 get_stack_long(struct task_struct *task, int offset)
41 {
42 	unsigned long *stack;
43 
44 	stack = (unsigned long *)task_pt_regs(task);
45 
46 	return stack[offset];
47 }
48 
49 /*
50  * This routine will put a word on the process kernel stack.
51  */
52 static inline int
put_stack_long(struct task_struct * task,int offset,unsigned long data)53 put_stack_long(struct task_struct *task, int offset, unsigned long data)
54 {
55 	unsigned long *stack;
56 
57 	stack = (unsigned long *)task_pt_regs(task);
58 	stack[offset] = data;
59 
60 	return 0;
61 }
62 
63 static int reg_offset[] = {
64 	PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
65 	PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_FP, PT_LR, PT_SPU,
66 };
67 
68 /*
69  * Read the word at offset "off" into the "struct user".  We
70  * actually access the pt_regs stored on the kernel stack.
71  */
ptrace_read_user(struct task_struct * tsk,unsigned long off,unsigned long __user * data)72 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
73 			    unsigned long __user *data)
74 {
75 	unsigned long tmp;
76 #ifndef NO_FPU
77 	struct user * dummy = NULL;
78 #endif
79 
80 	if ((off & 3) || off > sizeof(struct user) - 3)
81 		return -EIO;
82 
83 	off >>= 2;
84 	switch (off) {
85 	case PT_EVB:
86 		__asm__ __volatile__ (
87 			"mvfc	%0, cr5 \n\t"
88 	 		: "=r" (tmp)
89 		);
90 		break;
91 	case PT_CBR: {
92 			unsigned long psw;
93 			psw = get_stack_long(tsk, PT_PSW);
94 			tmp = ((psw >> 8) & 1);
95 		}
96 		break;
97 	case PT_PSW: {
98 			unsigned long psw, bbpsw;
99 			psw = get_stack_long(tsk, PT_PSW);
100 			bbpsw = get_stack_long(tsk, PT_BBPSW);
101 			tmp = ((psw >> 8) & 0xff) | ((bbpsw & 0xff) << 8);
102 		}
103 		break;
104 	case PT_PC:
105 		tmp = get_stack_long(tsk, PT_BPC);
106 		break;
107 	case PT_BPC:
108 		off = PT_BBPC;
109 		/* fall through */
110 	default:
111 		if (off < (sizeof(struct pt_regs) >> 2))
112 			tmp = get_stack_long(tsk, off);
113 #ifndef NO_FPU
114 		else if (off >= (long)(&dummy->fpu >> 2) &&
115 			 off < (long)(&dummy->u_fpvalid >> 2)) {
116 			if (!tsk_used_math(tsk)) {
117 				if (off == (long)(&dummy->fpu.fpscr >> 2))
118 					tmp = FPSCR_INIT;
119 				else
120 					tmp = 0;
121 			} else
122 				tmp = ((long *)(&tsk->thread.fpu >> 2))
123 					[off - (long)&dummy->fpu];
124 		} else if (off == (long)(&dummy->u_fpvalid >> 2))
125 			tmp = !!tsk_used_math(tsk);
126 #endif /* not NO_FPU */
127 		else
128 			tmp = 0;
129 	}
130 
131 	return put_user(tmp, data);
132 }
133 
ptrace_write_user(struct task_struct * tsk,unsigned long off,unsigned long data)134 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
135 			     unsigned long data)
136 {
137 	int ret = -EIO;
138 #ifndef NO_FPU
139 	struct user * dummy = NULL;
140 #endif
141 
142 	if ((off & 3) || off > sizeof(struct user) - 3)
143 		return -EIO;
144 
145 	off >>= 2;
146 	switch (off) {
147 	case PT_EVB:
148 	case PT_BPC:
149 	case PT_SPI:
150 		/* We don't allow to modify evb. */
151 		ret = 0;
152 		break;
153 	case PT_PSW:
154 	case PT_CBR: {
155 			/* We allow to modify only cbr in psw */
156 			unsigned long psw;
157 			psw = get_stack_long(tsk, PT_PSW);
158 			psw = (psw & ~0x100) | ((data & 1) << 8);
159 			ret = put_stack_long(tsk, PT_PSW, psw);
160 		}
161 		break;
162 	case PT_PC:
163 		off = PT_BPC;
164 		data &= ~1;
165 		/* fall through */
166 	default:
167 		if (off < (sizeof(struct pt_regs) >> 2))
168 			ret = put_stack_long(tsk, off, data);
169 #ifndef NO_FPU
170 		else if (off >= (long)(&dummy->fpu >> 2) &&
171 			 off < (long)(&dummy->u_fpvalid >> 2)) {
172 			set_stopped_child_used_math(tsk);
173 			((long *)&tsk->thread.fpu)
174 				[off - (long)&dummy->fpu] = data;
175 			ret = 0;
176 		} else if (off == (long)(&dummy->u_fpvalid >> 2)) {
177 			conditional_stopped_child_used_math(data, tsk);
178 			ret = 0;
179 		}
180 #endif /* not NO_FPU */
181 		break;
182 	}
183 
184 	return ret;
185 }
186 
187 /*
188  * Get all user integer registers.
189  */
ptrace_getregs(struct task_struct * tsk,void __user * uregs)190 static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
191 {
192 	struct pt_regs *regs = task_pt_regs(tsk);
193 
194 	return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
195 }
196 
197 /*
198  * Set all user integer registers.
199  */
ptrace_setregs(struct task_struct * tsk,void __user * uregs)200 static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
201 {
202 	struct pt_regs newregs;
203 	int ret;
204 
205 	ret = -EFAULT;
206 	if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
207 		struct pt_regs *regs = task_pt_regs(tsk);
208 		*regs = newregs;
209 		ret = 0;
210 	}
211 
212 	return ret;
213 }
214 
215 
216 static inline int
check_condition_bit(struct task_struct * child)217 check_condition_bit(struct task_struct *child)
218 {
219 	return (int)((get_stack_long(child, PT_PSW) >> 8) & 1);
220 }
221 
222 static int
check_condition_src(unsigned long op,unsigned long regno1,unsigned long regno2,struct task_struct * child)223 check_condition_src(unsigned long op, unsigned long regno1,
224 		    unsigned long regno2, struct task_struct *child)
225 {
226 	unsigned long reg1, reg2;
227 
228 	reg2 = get_stack_long(child, reg_offset[regno2]);
229 
230 	switch (op) {
231 	case 0x0: /* BEQ */
232 		reg1 = get_stack_long(child, reg_offset[regno1]);
233 		return reg1 == reg2;
234 	case 0x1: /* BNE */
235 		reg1 = get_stack_long(child, reg_offset[regno1]);
236 		return reg1 != reg2;
237 	case 0x8: /* BEQZ */
238 		return reg2 == 0;
239 	case 0x9: /* BNEZ */
240 		return reg2 != 0;
241 	case 0xa: /* BLTZ */
242 		return (int)reg2 < 0;
243 	case 0xb: /* BGEZ */
244 		return (int)reg2 >= 0;
245 	case 0xc: /* BLEZ */
246 		return (int)reg2 <= 0;
247 	case 0xd: /* BGTZ */
248 		return (int)reg2 > 0;
249 	default:
250 		/* never reached */
251 		return 0;
252 	}
253 }
254 
255 static void
compute_next_pc_for_16bit_insn(unsigned long insn,unsigned long pc,unsigned long * next_pc,struct task_struct * child)256 compute_next_pc_for_16bit_insn(unsigned long insn, unsigned long pc,
257 			       unsigned long *next_pc,
258 			       struct task_struct *child)
259 {
260 	unsigned long op, op2, op3;
261 	unsigned long disp;
262 	unsigned long regno;
263 	int parallel = 0;
264 
265 	if (insn & 0x00008000)
266 		parallel = 1;
267 	if (pc & 3)
268 		insn &= 0x7fff;	/* right slot */
269 	else
270 		insn >>= 16;	/* left slot */
271 
272 	op = (insn >> 12) & 0xf;
273 	op2 = (insn >> 8) & 0xf;
274 	op3 = (insn >> 4) & 0xf;
275 
276 	if (op == 0x7) {
277 		switch (op2) {
278 		case 0xd: /* BNC */
279 		case 0x9: /* BNCL */
280 			if (!check_condition_bit(child)) {
281 				disp = (long)(insn << 24) >> 22;
282 				*next_pc = (pc & ~0x3) + disp;
283 				return;
284 			}
285 			break;
286 		case 0x8: /* BCL */
287 		case 0xc: /* BC */
288 			if (check_condition_bit(child)) {
289 				disp = (long)(insn << 24) >> 22;
290 				*next_pc = (pc & ~0x3) + disp;
291 				return;
292 			}
293 			break;
294 		case 0xe: /* BL */
295 		case 0xf: /* BRA */
296 			disp = (long)(insn << 24) >> 22;
297 			*next_pc = (pc & ~0x3) + disp;
298 			return;
299 			break;
300 		}
301 	} else if (op == 0x1) {
302 		switch (op2) {
303 		case 0x0:
304 			if (op3 == 0xf) { /* TRAP */
305 #if 1
306 				/* pass through */
307 #else
308  				/* kernel space is not allowed as next_pc */
309 				unsigned long evb;
310 				unsigned long trapno;
311 				trapno = insn & 0xf;
312 				__asm__ __volatile__ (
313 					"mvfc %0, cr5\n"
314 		 			:"=r"(evb)
315 		 			:
316 				);
317 				*next_pc = evb + (trapno << 2);
318 				return;
319 #endif
320 			} else if (op3 == 0xd) { /* RTE */
321 				*next_pc = get_stack_long(child, PT_BPC);
322 				return;
323 			}
324 			break;
325 		case 0xc: /* JC */
326 			if (op3 == 0xc && check_condition_bit(child)) {
327 				regno = insn & 0xf;
328 				*next_pc = get_stack_long(child,
329 							  reg_offset[regno]);
330 				return;
331 			}
332 			break;
333 		case 0xd: /* JNC */
334 			if (op3 == 0xc && !check_condition_bit(child)) {
335 				regno = insn & 0xf;
336 				*next_pc = get_stack_long(child,
337 							  reg_offset[regno]);
338 				return;
339 			}
340 			break;
341 		case 0xe: /* JL */
342 		case 0xf: /* JMP */
343 			if (op3 == 0xc) { /* JMP */
344 				regno = insn & 0xf;
345 				*next_pc = get_stack_long(child,
346 							  reg_offset[regno]);
347 				return;
348 			}
349 			break;
350 		}
351 	}
352 	if (parallel)
353 		*next_pc = pc + 4;
354 	else
355 		*next_pc = pc + 2;
356 }
357 
358 static void
compute_next_pc_for_32bit_insn(unsigned long insn,unsigned long pc,unsigned long * next_pc,struct task_struct * child)359 compute_next_pc_for_32bit_insn(unsigned long insn, unsigned long pc,
360 			       unsigned long *next_pc,
361 			       struct task_struct *child)
362 {
363 	unsigned long op;
364 	unsigned long op2;
365 	unsigned long disp;
366 	unsigned long regno1, regno2;
367 
368 	op = (insn >> 28) & 0xf;
369 	if (op == 0xf) { 	/* branch 24-bit relative */
370 		op2 = (insn >> 24) & 0xf;
371 		switch (op2) {
372 		case 0xd:	/* BNC */
373 		case 0x9:	/* BNCL */
374 			if (!check_condition_bit(child)) {
375 				disp = (long)(insn << 8) >> 6;
376 				*next_pc = (pc & ~0x3) + disp;
377 				return;
378 			}
379 			break;
380 		case 0x8:	/* BCL */
381 		case 0xc:	/* BC */
382 			if (check_condition_bit(child)) {
383 				disp = (long)(insn << 8) >> 6;
384 				*next_pc = (pc & ~0x3) + disp;
385 				return;
386 			}
387 			break;
388 		case 0xe:	/* BL */
389 		case 0xf:	/* BRA */
390 			disp = (long)(insn << 8) >> 6;
391 			*next_pc = (pc & ~0x3) + disp;
392 			return;
393 		}
394 	} else if (op == 0xb) { /* branch 16-bit relative */
395 		op2 = (insn >> 20) & 0xf;
396 		switch (op2) {
397 		case 0x0: /* BEQ */
398 		case 0x1: /* BNE */
399 		case 0x8: /* BEQZ */
400 		case 0x9: /* BNEZ */
401 		case 0xa: /* BLTZ */
402 		case 0xb: /* BGEZ */
403 		case 0xc: /* BLEZ */
404 		case 0xd: /* BGTZ */
405 			regno1 = ((insn >> 24) & 0xf);
406 			regno2 = ((insn >> 16) & 0xf);
407 			if (check_condition_src(op2, regno1, regno2, child)) {
408 				disp = (long)(insn << 16) >> 14;
409 				*next_pc = (pc & ~0x3) + disp;
410 				return;
411 			}
412 			break;
413 		}
414 	}
415 	*next_pc = pc + 4;
416 }
417 
418 static inline void
compute_next_pc(unsigned long insn,unsigned long pc,unsigned long * next_pc,struct task_struct * child)419 compute_next_pc(unsigned long insn, unsigned long pc,
420 		unsigned long *next_pc, struct task_struct *child)
421 {
422 	if (insn & 0x80000000)
423 		compute_next_pc_for_32bit_insn(insn, pc, next_pc, child);
424 	else
425 		compute_next_pc_for_16bit_insn(insn, pc, next_pc, child);
426 }
427 
428 static int
register_debug_trap(struct task_struct * child,unsigned long next_pc,unsigned long next_insn,unsigned long * code)429 register_debug_trap(struct task_struct *child, unsigned long next_pc,
430 	unsigned long next_insn, unsigned long *code)
431 {
432 	struct debug_trap *p = &child->thread.debug_trap;
433 	unsigned long addr = next_pc & ~3;
434 
435 	if (p->nr_trap == MAX_TRAPS) {
436 		printk("kernel BUG at %s %d: p->nr_trap = %d\n",
437 					__FILE__, __LINE__, p->nr_trap);
438 		return -1;
439 	}
440 	p->addr[p->nr_trap] = addr;
441 	p->insn[p->nr_trap] = next_insn;
442 	p->nr_trap++;
443 	if (next_pc & 3) {
444 		*code = (next_insn & 0xffff0000) | 0x10f1;
445 		/* xxx --> TRAP1 */
446 	} else {
447 		if ((next_insn & 0x80000000) || (next_insn & 0x8000)) {
448 			*code = 0x10f17000;
449 			/* TRAP1 --> NOP */
450 		} else {
451 			*code = (next_insn & 0xffff) | 0x10f10000;
452 			/* TRAP1 --> xxx */
453 		}
454 	}
455 	return 0;
456 }
457 
458 static int
unregister_debug_trap(struct task_struct * child,unsigned long addr,unsigned long * code)459 unregister_debug_trap(struct task_struct *child, unsigned long addr,
460 		      unsigned long *code)
461 {
462 	struct debug_trap *p = &child->thread.debug_trap;
463         int i;
464 
465 	/* Search debug trap entry. */
466 	for (i = 0; i < p->nr_trap; i++) {
467 		if (p->addr[i] == addr)
468 			break;
469 	}
470 	if (i >= p->nr_trap) {
471 		/* The trap may be requested from debugger.
472 		 * ptrace should do nothing in this case.
473 		 */
474 		return 0;
475 	}
476 
477 	/* Recover original instruction code. */
478 	*code = p->insn[i];
479 
480 	/* Shift debug trap entries. */
481 	while (i < p->nr_trap - 1) {
482 		p->insn[i] = p->insn[i + 1];
483 		p->addr[i] = p->addr[i + 1];
484 		i++;
485 	}
486 	p->nr_trap--;
487 	return 1;
488 }
489 
490 static void
unregister_all_debug_traps(struct task_struct * child)491 unregister_all_debug_traps(struct task_struct *child)
492 {
493 	struct debug_trap *p = &child->thread.debug_trap;
494 	int i;
495 
496 	for (i = 0; i < p->nr_trap; i++)
497 		access_process_vm(child, p->addr[i], &p->insn[i], sizeof(p->insn[i]), 1);
498 	p->nr_trap = 0;
499 }
500 
501 static inline void
invalidate_cache(void)502 invalidate_cache(void)
503 {
504 #if defined(CONFIG_CHIP_M32700) || defined(CONFIG_CHIP_OPSP)
505 
506 	_flush_cache_copyback_all();
507 
508 #else	/* ! CONFIG_CHIP_M32700 */
509 
510 	/* Invalidate cache */
511 	__asm__ __volatile__ (
512                 "ldi    r0, #-1					\n\t"
513                 "ldi    r1, #0					\n\t"
514                 "stb    r1, @r0		; cache off		\n\t"
515                 ";						\n\t"
516                 "ldi    r0, #-2					\n\t"
517                 "ldi    r1, #1					\n\t"
518                 "stb    r1, @r0		; cache invalidate	\n\t"
519                 ".fillinsn					\n"
520                 "0:						\n\t"
521                 "ldb    r1, @r0		; invalidate check	\n\t"
522                 "bnez   r1, 0b					\n\t"
523                 ";						\n\t"
524                 "ldi    r0, #-1					\n\t"
525                 "ldi    r1, #1					\n\t"
526                 "stb    r1, @r0		; cache on		\n\t"
527 		: : : "r0", "r1", "memory"
528 	);
529 	/* FIXME: copying-back d-cache and invalidating i-cache are needed.
530 	 */
531 #endif	/* CONFIG_CHIP_M32700 */
532 }
533 
534 /* Embed a debug trap (TRAP1) code */
535 static int
embed_debug_trap(struct task_struct * child,unsigned long next_pc)536 embed_debug_trap(struct task_struct *child, unsigned long next_pc)
537 {
538 	unsigned long next_insn, code;
539 	unsigned long addr = next_pc & ~3;
540 
541 	if (access_process_vm(child, addr, &next_insn, sizeof(next_insn), 0)
542 	    != sizeof(next_insn)) {
543 		return -1; /* error */
544 	}
545 
546 	/* Set a trap code. */
547 	if (register_debug_trap(child, next_pc, next_insn, &code)) {
548 		return -1; /* error */
549 	}
550 	if (access_process_vm(child, addr, &code, sizeof(code), 1)
551 	    != sizeof(code)) {
552 		return -1; /* error */
553 	}
554 	return 0; /* success */
555 }
556 
557 void
withdraw_debug_trap(struct pt_regs * regs)558 withdraw_debug_trap(struct pt_regs *regs)
559 {
560 	unsigned long addr;
561 	unsigned long code;
562 
563  	addr = (regs->bpc - 2) & ~3;
564 	regs->bpc -= 2;
565 	if (unregister_debug_trap(current, addr, &code)) {
566 	    access_process_vm(current, addr, &code, sizeof(code), 1);
567 	    invalidate_cache();
568 	}
569 }
570 
571 void
init_debug_traps(struct task_struct * child)572 init_debug_traps(struct task_struct *child)
573 {
574 	struct debug_trap *p = &child->thread.debug_trap;
575 	int i;
576 	p->nr_trap = 0;
577 	for (i = 0; i < MAX_TRAPS; i++) {
578 		p->addr[i] = 0;
579 		p->insn[i] = 0;
580 	}
581 }
582 
user_enable_single_step(struct task_struct * child)583 void user_enable_single_step(struct task_struct *child)
584 {
585 	unsigned long next_pc;
586 	unsigned long pc, insn;
587 
588 	clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
589 
590 	/* Compute next pc.  */
591 	pc = get_stack_long(child, PT_BPC);
592 
593 	if (access_process_vm(child, pc&~3, &insn, sizeof(insn), 0)
594 	    != sizeof(insn))
595 		return -EIO;
596 
597 	compute_next_pc(insn, pc, &next_pc, child);
598 	if (next_pc & 0x80000000)
599 		return -EIO;
600 
601 	if (embed_debug_trap(child, next_pc))
602 		return -EIO;
603 
604 	invalidate_cache();
605 	return 0;
606 }
607 
user_disable_single_step(struct task_struct * child)608 void user_disable_single_step(struct task_struct *child)
609 {
610 	unregister_all_debug_traps(child);
611 	invalidate_cache();
612 }
613 
614 /*
615  * Called by kernel/ptrace.c when detaching..
616  *
617  * Make sure single step bits etc are not set.
618  */
ptrace_disable(struct task_struct * child)619 void ptrace_disable(struct task_struct *child)
620 {
621 	/* nothing to do.. */
622 }
623 
624 long
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)625 arch_ptrace(struct task_struct *child, long request,
626 	    unsigned long addr, unsigned long data)
627 {
628 	int ret;
629 	unsigned long __user *datap = (unsigned long __user *) data;
630 
631 	switch (request) {
632 	/*
633 	 * read word at location "addr" in the child process.
634 	 */
635 	case PTRACE_PEEKTEXT:
636 	case PTRACE_PEEKDATA:
637 		ret = generic_ptrace_peekdata(child, addr, data);
638 		break;
639 
640 	/*
641 	 * read the word at location addr in the USER area.
642 	 */
643 	case PTRACE_PEEKUSR:
644 		ret = ptrace_read_user(child, addr, datap);
645 		break;
646 
647 	/*
648 	 * write the word at location addr.
649 	 */
650 	case PTRACE_POKETEXT:
651 	case PTRACE_POKEDATA:
652 		ret = generic_ptrace_pokedata(child, addr, data);
653 		if (ret == 0 && request == PTRACE_POKETEXT)
654 			invalidate_cache();
655 		break;
656 
657 	/*
658 	 * write the word at location addr in the USER area.
659 	 */
660 	case PTRACE_POKEUSR:
661 		ret = ptrace_write_user(child, addr, data);
662 		break;
663 
664 	case PTRACE_GETREGS:
665 		ret = ptrace_getregs(child, datap);
666 		break;
667 
668 	case PTRACE_SETREGS:
669 		ret = ptrace_setregs(child, datap);
670 		break;
671 
672 	default:
673 		ret = ptrace_request(child, request, addr, data);
674 		break;
675 	}
676 
677 	return ret;
678 }
679 
680 /* notification of system call entry/exit
681  * - triggered by current->work.syscall_trace
682  */
do_syscall_trace(void)683 void do_syscall_trace(void)
684 {
685 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
686 		return;
687 	if (!(current->ptrace & PT_PTRACED))
688 		return;
689 	/* the 0x80 provides a way for the tracing parent to distinguish
690 	   between a syscall stop and SIGTRAP delivery */
691 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
692 				 ? 0x80 : 0));
693 
694 	/*
695 	 * this isn't the same as continuing with a signal, but it will do
696 	 * for normal use.  strace only continues with a signal if the
697 	 * stopping signal is not SIGTRAP.  -brl
698 	 */
699 	if (current->exit_code) {
700 		send_sig(current->exit_code, current, 1);
701 		current->exit_code = 0;
702 	}
703 }
704