1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
120 /**
121 * inet_sk_get_local_port_range - fetch ephemeral ports range
122 * @sk: socket
123 * @low: pointer to low port
124 * @high: pointer to high port
125 *
126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129 */
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 int lo, hi, sk_lo, sk_hi;
133 bool local_range = false;
134 u32 sk_range;
135
136 inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 if (unlikely(sk_range)) {
140 sk_lo = sk_range & 0xffff;
141 sk_hi = sk_range >> 16;
142
143 if (lo <= sk_lo && sk_lo <= hi)
144 lo = sk_lo;
145 if (lo <= sk_hi && sk_hi <= hi)
146 hi = sk_hi;
147 local_range = true;
148 }
149
150 *low = lo;
151 *high = hi;
152 return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
inet_use_bhash2_on_bind(const struct sock * sk)156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 if (sk->sk_family == AF_INET6) {
160 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
161
162 if (addr_type == IPV6_ADDR_ANY)
163 return false;
164
165 if (addr_type != IPV6_ADDR_MAPPED)
166 return true;
167 }
168 #endif
169 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
170 }
171
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)172 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
173 kuid_t sk_uid, bool relax,
174 bool reuseport_cb_ok, bool reuseport_ok)
175 {
176 int bound_dev_if2;
177
178 if (sk == sk2)
179 return false;
180
181 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
182
183 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
184 sk->sk_bound_dev_if == bound_dev_if2) {
185 if (sk->sk_reuse && sk2->sk_reuse &&
186 sk2->sk_state != TCP_LISTEN) {
187 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
188 sk2->sk_reuseport && reuseport_cb_ok &&
189 (sk2->sk_state == TCP_TIME_WAIT ||
190 uid_eq(sk_uid, sock_i_uid(sk2)))))
191 return true;
192 } else if (!reuseport_ok || !sk->sk_reuseport ||
193 !sk2->sk_reuseport || !reuseport_cb_ok ||
194 (sk2->sk_state != TCP_TIME_WAIT &&
195 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
196 return true;
197 }
198 }
199 return false;
200 }
201
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)202 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
203 kuid_t sk_uid, bool relax,
204 bool reuseport_cb_ok, bool reuseport_ok)
205 {
206 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
207 return false;
208
209 return inet_bind_conflict(sk, sk2, sk_uid, relax,
210 reuseport_cb_ok, reuseport_ok);
211 }
212
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)213 static bool inet_bhash2_conflict(const struct sock *sk,
214 const struct inet_bind2_bucket *tb2,
215 kuid_t sk_uid,
216 bool relax, bool reuseport_cb_ok,
217 bool reuseport_ok)
218 {
219 struct sock *sk2;
220
221 sk_for_each_bound(sk2, &tb2->owners) {
222 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
223 reuseport_cb_ok, reuseport_ok))
224 return true;
225 }
226
227 return false;
228 }
229
230 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
231 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
232 sk_for_each_bound(sk2, &(__tb2)->owners)
233
234 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)235 static int inet_csk_bind_conflict(const struct sock *sk,
236 const struct inet_bind_bucket *tb,
237 const struct inet_bind2_bucket *tb2, /* may be null */
238 bool relax, bool reuseport_ok)
239 {
240 kuid_t uid = sock_i_uid((struct sock *)sk);
241 struct sock_reuseport *reuseport_cb;
242 bool reuseport_cb_ok;
243 struct sock *sk2;
244
245 rcu_read_lock();
246 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
247 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
248 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
249 rcu_read_unlock();
250
251 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
252 * ipv4) should have been checked already. We need to do these two
253 * checks separately because their spinlocks have to be acquired/released
254 * independently of each other, to prevent possible deadlocks
255 */
256 if (inet_use_bhash2_on_bind(sk))
257 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
258 reuseport_cb_ok, reuseport_ok);
259
260 /* Unlike other sk lookup places we do not check
261 * for sk_net here, since _all_ the socks listed
262 * in tb->owners and tb2->owners list belong
263 * to the same net - the one this bucket belongs to.
264 */
265 sk_for_each_bound_bhash(sk2, tb2, tb) {
266 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
267 continue;
268
269 if (inet_rcv_saddr_equal(sk, sk2, true))
270 return true;
271 }
272
273 return false;
274 }
275
276 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
277 * INADDR_ANY (if ipv4) socket.
278 *
279 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
280 * against concurrent binds on the port for addr any
281 */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)282 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
283 bool relax, bool reuseport_ok)
284 {
285 kuid_t uid = sock_i_uid((struct sock *)sk);
286 const struct net *net = sock_net(sk);
287 struct sock_reuseport *reuseport_cb;
288 struct inet_bind_hashbucket *head2;
289 struct inet_bind2_bucket *tb2;
290 bool reuseport_cb_ok;
291
292 rcu_read_lock();
293 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
294 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
295 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
296 rcu_read_unlock();
297
298 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
299
300 spin_lock(&head2->lock);
301
302 inet_bind_bucket_for_each(tb2, &head2->chain)
303 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
304 break;
305
306 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
307 reuseport_ok)) {
308 spin_unlock(&head2->lock);
309 return true;
310 }
311
312 spin_unlock(&head2->lock);
313 return false;
314 }
315
316 /*
317 * Find an open port number for the socket. Returns with the
318 * inet_bind_hashbucket locks held if successful.
319 */
320 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)321 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
322 struct inet_bind2_bucket **tb2_ret,
323 struct inet_bind_hashbucket **head2_ret, int *port_ret)
324 {
325 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
326 int i, low, high, attempt_half, port, l3mdev;
327 struct inet_bind_hashbucket *head, *head2;
328 struct net *net = sock_net(sk);
329 struct inet_bind2_bucket *tb2;
330 struct inet_bind_bucket *tb;
331 u32 remaining, offset;
332 bool relax = false;
333
334 l3mdev = inet_sk_bound_l3mdev(sk);
335 ports_exhausted:
336 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
337 other_half_scan:
338 inet_sk_get_local_port_range(sk, &low, &high);
339 high++; /* [32768, 60999] -> [32768, 61000[ */
340 if (high - low < 4)
341 attempt_half = 0;
342 if (attempt_half) {
343 int half = low + (((high - low) >> 2) << 1);
344
345 if (attempt_half == 1)
346 high = half;
347 else
348 low = half;
349 }
350 remaining = high - low;
351 if (likely(remaining > 1))
352 remaining &= ~1U;
353
354 offset = get_random_u32_below(remaining);
355 /* __inet_hash_connect() favors ports having @low parity
356 * We do the opposite to not pollute connect() users.
357 */
358 offset |= 1U;
359
360 other_parity_scan:
361 port = low + offset;
362 for (i = 0; i < remaining; i += 2, port += 2) {
363 if (unlikely(port >= high))
364 port -= remaining;
365 if (inet_is_local_reserved_port(net, port))
366 continue;
367 head = &hinfo->bhash[inet_bhashfn(net, port,
368 hinfo->bhash_size)];
369 spin_lock_bh(&head->lock);
370 if (inet_use_bhash2_on_bind(sk)) {
371 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
372 goto next_port;
373 }
374
375 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
376 spin_lock(&head2->lock);
377 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
378 inet_bind_bucket_for_each(tb, &head->chain)
379 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
380 if (!inet_csk_bind_conflict(sk, tb, tb2,
381 relax, false))
382 goto success;
383 spin_unlock(&head2->lock);
384 goto next_port;
385 }
386 tb = NULL;
387 goto success;
388 next_port:
389 spin_unlock_bh(&head->lock);
390 cond_resched();
391 }
392
393 offset--;
394 if (!(offset & 1))
395 goto other_parity_scan;
396
397 if (attempt_half == 1) {
398 /* OK we now try the upper half of the range */
399 attempt_half = 2;
400 goto other_half_scan;
401 }
402
403 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
404 /* We still have a chance to connect to different destinations */
405 relax = true;
406 goto ports_exhausted;
407 }
408 return NULL;
409 success:
410 *port_ret = port;
411 *tb_ret = tb;
412 *tb2_ret = tb2;
413 *head2_ret = head2;
414 return head;
415 }
416
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)417 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
418 struct sock *sk)
419 {
420 kuid_t uid = sock_i_uid(sk);
421
422 if (tb->fastreuseport <= 0)
423 return 0;
424 if (!sk->sk_reuseport)
425 return 0;
426 if (rcu_access_pointer(sk->sk_reuseport_cb))
427 return 0;
428 if (!uid_eq(tb->fastuid, uid))
429 return 0;
430 /* We only need to check the rcv_saddr if this tb was once marked
431 * without fastreuseport and then was reset, as we can only know that
432 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
433 * owners list.
434 */
435 if (tb->fastreuseport == FASTREUSEPORT_ANY)
436 return 1;
437 #if IS_ENABLED(CONFIG_IPV6)
438 if (tb->fast_sk_family == AF_INET6)
439 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
440 inet6_rcv_saddr(sk),
441 tb->fast_rcv_saddr,
442 sk->sk_rcv_saddr,
443 tb->fast_ipv6_only,
444 ipv6_only_sock(sk), true, false);
445 #endif
446 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
447 ipv6_only_sock(sk), true, false);
448 }
449
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)450 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
451 struct sock *sk)
452 {
453 kuid_t uid = sock_i_uid(sk);
454 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
455
456 if (hlist_empty(&tb->bhash2)) {
457 tb->fastreuse = reuse;
458 if (sk->sk_reuseport) {
459 tb->fastreuseport = FASTREUSEPORT_ANY;
460 tb->fastuid = uid;
461 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
462 tb->fast_ipv6_only = ipv6_only_sock(sk);
463 tb->fast_sk_family = sk->sk_family;
464 #if IS_ENABLED(CONFIG_IPV6)
465 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
466 #endif
467 } else {
468 tb->fastreuseport = 0;
469 }
470 } else {
471 if (!reuse)
472 tb->fastreuse = 0;
473 if (sk->sk_reuseport) {
474 /* We didn't match or we don't have fastreuseport set on
475 * the tb, but we have sk_reuseport set on this socket
476 * and we know that there are no bind conflicts with
477 * this socket in this tb, so reset our tb's reuseport
478 * settings so that any subsequent sockets that match
479 * our current socket will be put on the fast path.
480 *
481 * If we reset we need to set FASTREUSEPORT_STRICT so we
482 * do extra checking for all subsequent sk_reuseport
483 * socks.
484 */
485 if (!sk_reuseport_match(tb, sk)) {
486 tb->fastreuseport = FASTREUSEPORT_STRICT;
487 tb->fastuid = uid;
488 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
489 tb->fast_ipv6_only = ipv6_only_sock(sk);
490 tb->fast_sk_family = sk->sk_family;
491 #if IS_ENABLED(CONFIG_IPV6)
492 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
493 #endif
494 }
495 } else {
496 tb->fastreuseport = 0;
497 }
498 }
499 }
500
501 /* Obtain a reference to a local port for the given sock,
502 * if snum is zero it means select any available local port.
503 * We try to allocate an odd port (and leave even ports for connect())
504 */
inet_csk_get_port(struct sock * sk,unsigned short snum)505 int inet_csk_get_port(struct sock *sk, unsigned short snum)
506 {
507 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
508 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
509 bool found_port = false, check_bind_conflict = true;
510 bool bhash_created = false, bhash2_created = false;
511 int ret = -EADDRINUSE, port = snum, l3mdev;
512 struct inet_bind_hashbucket *head, *head2;
513 struct inet_bind2_bucket *tb2 = NULL;
514 struct inet_bind_bucket *tb = NULL;
515 bool head2_lock_acquired = false;
516 struct net *net = sock_net(sk);
517
518 l3mdev = inet_sk_bound_l3mdev(sk);
519
520 if (!port) {
521 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
522 if (!head)
523 return ret;
524
525 head2_lock_acquired = true;
526
527 if (tb && tb2)
528 goto success;
529 found_port = true;
530 } else {
531 head = &hinfo->bhash[inet_bhashfn(net, port,
532 hinfo->bhash_size)];
533 spin_lock_bh(&head->lock);
534 inet_bind_bucket_for_each(tb, &head->chain)
535 if (inet_bind_bucket_match(tb, net, port, l3mdev))
536 break;
537 }
538
539 if (!tb) {
540 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
541 head, port, l3mdev);
542 if (!tb)
543 goto fail_unlock;
544 bhash_created = true;
545 }
546
547 if (!found_port) {
548 if (!hlist_empty(&tb->bhash2)) {
549 if (sk->sk_reuse == SK_FORCE_REUSE ||
550 (tb->fastreuse > 0 && reuse) ||
551 sk_reuseport_match(tb, sk))
552 check_bind_conflict = false;
553 }
554
555 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
556 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
557 goto fail_unlock;
558 }
559
560 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
561 spin_lock(&head2->lock);
562 head2_lock_acquired = true;
563 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
564 }
565
566 if (!tb2) {
567 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
568 net, head2, tb, sk);
569 if (!tb2)
570 goto fail_unlock;
571 bhash2_created = true;
572 }
573
574 if (!found_port && check_bind_conflict) {
575 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
576 goto fail_unlock;
577 }
578
579 success:
580 inet_csk_update_fastreuse(tb, sk);
581
582 if (!inet_csk(sk)->icsk_bind_hash)
583 inet_bind_hash(sk, tb, tb2, port);
584 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
585 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
586 ret = 0;
587
588 fail_unlock:
589 if (ret) {
590 if (bhash2_created)
591 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
592 if (bhash_created)
593 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
594 }
595 if (head2_lock_acquired)
596 spin_unlock(&head2->lock);
597 spin_unlock_bh(&head->lock);
598 return ret;
599 }
600 EXPORT_SYMBOL_GPL(inet_csk_get_port);
601
602 /*
603 * Wait for an incoming connection, avoid race conditions. This must be called
604 * with the socket locked.
605 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)606 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
607 {
608 struct inet_connection_sock *icsk = inet_csk(sk);
609 DEFINE_WAIT(wait);
610 int err;
611
612 /*
613 * True wake-one mechanism for incoming connections: only
614 * one process gets woken up, not the 'whole herd'.
615 * Since we do not 'race & poll' for established sockets
616 * anymore, the common case will execute the loop only once.
617 *
618 * Subtle issue: "add_wait_queue_exclusive()" will be added
619 * after any current non-exclusive waiters, and we know that
620 * it will always _stay_ after any new non-exclusive waiters
621 * because all non-exclusive waiters are added at the
622 * beginning of the wait-queue. As such, it's ok to "drop"
623 * our exclusiveness temporarily when we get woken up without
624 * having to remove and re-insert us on the wait queue.
625 */
626 for (;;) {
627 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
628 TASK_INTERRUPTIBLE);
629 release_sock(sk);
630 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
631 timeo = schedule_timeout(timeo);
632 sched_annotate_sleep();
633 lock_sock(sk);
634 err = 0;
635 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
636 break;
637 err = -EINVAL;
638 if (sk->sk_state != TCP_LISTEN)
639 break;
640 err = sock_intr_errno(timeo);
641 if (signal_pending(current))
642 break;
643 err = -EAGAIN;
644 if (!timeo)
645 break;
646 }
647 finish_wait(sk_sleep(sk), &wait);
648 return err;
649 }
650
651 /*
652 * This will accept the next outstanding connection.
653 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)654 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
655 {
656 struct inet_connection_sock *icsk = inet_csk(sk);
657 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
658 struct request_sock *req;
659 struct sock *newsk;
660 int error;
661
662 lock_sock(sk);
663
664 /* We need to make sure that this socket is listening,
665 * and that it has something pending.
666 */
667 error = -EINVAL;
668 if (sk->sk_state != TCP_LISTEN)
669 goto out_err;
670
671 /* Find already established connection */
672 if (reqsk_queue_empty(queue)) {
673 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
674
675 /* If this is a non blocking socket don't sleep */
676 error = -EAGAIN;
677 if (!timeo)
678 goto out_err;
679
680 error = inet_csk_wait_for_connect(sk, timeo);
681 if (error)
682 goto out_err;
683 }
684 req = reqsk_queue_remove(queue, sk);
685 newsk = req->sk;
686
687 if (sk->sk_protocol == IPPROTO_TCP &&
688 tcp_rsk(req)->tfo_listener) {
689 spin_lock_bh(&queue->fastopenq.lock);
690 if (tcp_rsk(req)->tfo_listener) {
691 /* We are still waiting for the final ACK from 3WHS
692 * so can't free req now. Instead, we set req->sk to
693 * NULL to signify that the child socket is taken
694 * so reqsk_fastopen_remove() will free the req
695 * when 3WHS finishes (or is aborted).
696 */
697 req->sk = NULL;
698 req = NULL;
699 }
700 spin_unlock_bh(&queue->fastopenq.lock);
701 }
702
703 out:
704 release_sock(sk);
705 if (newsk && mem_cgroup_sockets_enabled) {
706 int amt = 0;
707
708 /* atomically get the memory usage, set and charge the
709 * newsk->sk_memcg.
710 */
711 lock_sock(newsk);
712
713 mem_cgroup_sk_alloc(newsk);
714 if (newsk->sk_memcg) {
715 /* The socket has not been accepted yet, no need
716 * to look at newsk->sk_wmem_queued.
717 */
718 amt = sk_mem_pages(newsk->sk_forward_alloc +
719 atomic_read(&newsk->sk_rmem_alloc));
720 }
721
722 if (amt)
723 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
724 GFP_KERNEL | __GFP_NOFAIL);
725
726 release_sock(newsk);
727 }
728 if (req)
729 reqsk_put(req);
730
731 if (newsk)
732 inet_init_csk_locks(newsk);
733
734 return newsk;
735 out_err:
736 newsk = NULL;
737 req = NULL;
738 *err = error;
739 goto out;
740 }
741 EXPORT_SYMBOL(inet_csk_accept);
742
743 /*
744 * Using different timers for retransmit, delayed acks and probes
745 * We may wish use just one timer maintaining a list of expire jiffies
746 * to optimize.
747 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))748 void inet_csk_init_xmit_timers(struct sock *sk,
749 void (*retransmit_handler)(struct timer_list *t),
750 void (*delack_handler)(struct timer_list *t),
751 void (*keepalive_handler)(struct timer_list *t))
752 {
753 struct inet_connection_sock *icsk = inet_csk(sk);
754
755 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
756 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
757 timer_setup(&sk->sk_timer, keepalive_handler, 0);
758 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
759 }
760 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
761
inet_csk_clear_xmit_timers(struct sock * sk)762 void inet_csk_clear_xmit_timers(struct sock *sk)
763 {
764 struct inet_connection_sock *icsk = inet_csk(sk);
765
766 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
767
768 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
769 sk_stop_timer(sk, &icsk->icsk_delack_timer);
770 sk_stop_timer(sk, &sk->sk_timer);
771 }
772 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
773
inet_csk_delete_keepalive_timer(struct sock * sk)774 void inet_csk_delete_keepalive_timer(struct sock *sk)
775 {
776 sk_stop_timer(sk, &sk->sk_timer);
777 }
778 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
779
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)780 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
781 {
782 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
783 }
784 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
785
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)786 struct dst_entry *inet_csk_route_req(const struct sock *sk,
787 struct flowi4 *fl4,
788 const struct request_sock *req)
789 {
790 const struct inet_request_sock *ireq = inet_rsk(req);
791 struct net *net = read_pnet(&ireq->ireq_net);
792 struct ip_options_rcu *opt;
793 struct rtable *rt;
794
795 rcu_read_lock();
796 opt = rcu_dereference(ireq->ireq_opt);
797
798 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
799 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
800 sk->sk_protocol, inet_sk_flowi_flags(sk),
801 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
802 ireq->ir_loc_addr, ireq->ir_rmt_port,
803 htons(ireq->ir_num), sk->sk_uid);
804 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
805 rt = ip_route_output_flow(net, fl4, sk);
806 if (IS_ERR(rt))
807 goto no_route;
808 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
809 goto route_err;
810 rcu_read_unlock();
811 return &rt->dst;
812
813 route_err:
814 ip_rt_put(rt);
815 no_route:
816 rcu_read_unlock();
817 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
818 return NULL;
819 }
820 EXPORT_SYMBOL_GPL(inet_csk_route_req);
821
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)822 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
823 struct sock *newsk,
824 const struct request_sock *req)
825 {
826 const struct inet_request_sock *ireq = inet_rsk(req);
827 struct net *net = read_pnet(&ireq->ireq_net);
828 struct inet_sock *newinet = inet_sk(newsk);
829 struct ip_options_rcu *opt;
830 struct flowi4 *fl4;
831 struct rtable *rt;
832
833 opt = rcu_dereference(ireq->ireq_opt);
834 fl4 = &newinet->cork.fl.u.ip4;
835
836 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
837 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
838 sk->sk_protocol, inet_sk_flowi_flags(sk),
839 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
840 ireq->ir_loc_addr, ireq->ir_rmt_port,
841 htons(ireq->ir_num), sk->sk_uid);
842 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
843 rt = ip_route_output_flow(net, fl4, sk);
844 if (IS_ERR(rt))
845 goto no_route;
846 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
847 goto route_err;
848 return &rt->dst;
849
850 route_err:
851 ip_rt_put(rt);
852 no_route:
853 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
854 return NULL;
855 }
856 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
857
858 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)859 static void syn_ack_recalc(struct request_sock *req,
860 const int max_syn_ack_retries,
861 const u8 rskq_defer_accept,
862 int *expire, int *resend)
863 {
864 if (!rskq_defer_accept) {
865 *expire = req->num_timeout >= max_syn_ack_retries;
866 *resend = 1;
867 return;
868 }
869 *expire = req->num_timeout >= max_syn_ack_retries &&
870 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
871 /* Do not resend while waiting for data after ACK,
872 * start to resend on end of deferring period to give
873 * last chance for data or ACK to create established socket.
874 */
875 *resend = !inet_rsk(req)->acked ||
876 req->num_timeout >= rskq_defer_accept - 1;
877 }
878
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)879 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
880 {
881 int err = req->rsk_ops->rtx_syn_ack(parent, req);
882
883 if (!err)
884 req->num_retrans++;
885 return err;
886 }
887 EXPORT_SYMBOL(inet_rtx_syn_ack);
888
inet_reqsk_clone(struct request_sock * req,struct sock * sk)889 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
890 struct sock *sk)
891 {
892 struct sock *req_sk, *nreq_sk;
893 struct request_sock *nreq;
894
895 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
896 if (!nreq) {
897 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
898
899 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
900 sock_put(sk);
901 return NULL;
902 }
903
904 req_sk = req_to_sk(req);
905 nreq_sk = req_to_sk(nreq);
906
907 memcpy(nreq_sk, req_sk,
908 offsetof(struct sock, sk_dontcopy_begin));
909 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
910 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
911
912 sk_node_init(&nreq_sk->sk_node);
913 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
914 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
915 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
916 #endif
917 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
918
919 nreq->rsk_listener = sk;
920
921 /* We need not acquire fastopenq->lock
922 * because the child socket is locked in inet_csk_listen_stop().
923 */
924 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
925 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
926
927 return nreq;
928 }
929
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)930 static void reqsk_queue_migrated(struct request_sock_queue *queue,
931 const struct request_sock *req)
932 {
933 if (req->num_timeout == 0)
934 atomic_inc(&queue->young);
935 atomic_inc(&queue->qlen);
936 }
937
reqsk_migrate_reset(struct request_sock * req)938 static void reqsk_migrate_reset(struct request_sock *req)
939 {
940 req->saved_syn = NULL;
941 #if IS_ENABLED(CONFIG_IPV6)
942 inet_rsk(req)->ipv6_opt = NULL;
943 inet_rsk(req)->pktopts = NULL;
944 #else
945 inet_rsk(req)->ireq_opt = NULL;
946 #endif
947 }
948
949 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)950 static bool reqsk_queue_unlink(struct request_sock *req)
951 {
952 struct sock *sk = req_to_sk(req);
953 bool found = false;
954
955 if (sk_hashed(sk)) {
956 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
957 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
958
959 spin_lock(lock);
960 found = __sk_nulls_del_node_init_rcu(sk);
961 spin_unlock(lock);
962 }
963 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
964 reqsk_put(req);
965 return found;
966 }
967
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)968 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
969 {
970 bool unlinked = reqsk_queue_unlink(req);
971
972 if (unlinked) {
973 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
974 reqsk_put(req);
975 }
976 return unlinked;
977 }
978 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
979
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)980 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
981 {
982 inet_csk_reqsk_queue_drop(sk, req);
983 reqsk_put(req);
984 }
985 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
986
reqsk_timer_handler(struct timer_list * t)987 static void reqsk_timer_handler(struct timer_list *t)
988 {
989 struct request_sock *req = from_timer(req, t, rsk_timer);
990 struct request_sock *nreq = NULL, *oreq = req;
991 struct sock *sk_listener = req->rsk_listener;
992 struct inet_connection_sock *icsk;
993 struct request_sock_queue *queue;
994 struct net *net;
995 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
996
997 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
998 struct sock *nsk;
999
1000 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1001 if (!nsk)
1002 goto drop;
1003
1004 nreq = inet_reqsk_clone(req, nsk);
1005 if (!nreq)
1006 goto drop;
1007
1008 /* The new timer for the cloned req can decrease the 2
1009 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1010 * hold another count to prevent use-after-free and
1011 * call reqsk_put() just before return.
1012 */
1013 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1014 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1015 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1016
1017 req = nreq;
1018 sk_listener = nsk;
1019 }
1020
1021 icsk = inet_csk(sk_listener);
1022 net = sock_net(sk_listener);
1023 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1024 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1025 /* Normally all the openreqs are young and become mature
1026 * (i.e. converted to established socket) for first timeout.
1027 * If synack was not acknowledged for 1 second, it means
1028 * one of the following things: synack was lost, ack was lost,
1029 * rtt is high or nobody planned to ack (i.e. synflood).
1030 * When server is a bit loaded, queue is populated with old
1031 * open requests, reducing effective size of queue.
1032 * When server is well loaded, queue size reduces to zero
1033 * after several minutes of work. It is not synflood,
1034 * it is normal operation. The solution is pruning
1035 * too old entries overriding normal timeout, when
1036 * situation becomes dangerous.
1037 *
1038 * Essentially, we reserve half of room for young
1039 * embrions; and abort old ones without pity, if old
1040 * ones are about to clog our table.
1041 */
1042 queue = &icsk->icsk_accept_queue;
1043 qlen = reqsk_queue_len(queue);
1044 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1045 int young = reqsk_queue_len_young(queue) << 1;
1046
1047 while (max_syn_ack_retries > 2) {
1048 if (qlen < young)
1049 break;
1050 max_syn_ack_retries--;
1051 young <<= 1;
1052 }
1053 }
1054 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1055 &expire, &resend);
1056 req->rsk_ops->syn_ack_timeout(req);
1057 if (!expire &&
1058 (!resend ||
1059 !inet_rtx_syn_ack(sk_listener, req) ||
1060 inet_rsk(req)->acked)) {
1061 if (req->num_timeout++ == 0)
1062 atomic_dec(&queue->young);
1063 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1064
1065 if (!nreq)
1066 return;
1067
1068 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1069 /* delete timer */
1070 inet_csk_reqsk_queue_drop(sk_listener, nreq);
1071 goto no_ownership;
1072 }
1073
1074 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1075 reqsk_migrate_reset(oreq);
1076 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1077 reqsk_put(oreq);
1078
1079 reqsk_put(nreq);
1080 return;
1081 }
1082
1083 /* Even if we can clone the req, we may need not retransmit any more
1084 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1085 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1086 */
1087 if (nreq) {
1088 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1089 no_ownership:
1090 reqsk_migrate_reset(nreq);
1091 reqsk_queue_removed(queue, nreq);
1092 __reqsk_free(nreq);
1093 }
1094
1095 drop:
1096 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1097 }
1098
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1099 static void reqsk_queue_hash_req(struct request_sock *req,
1100 unsigned long timeout)
1101 {
1102 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1103 mod_timer(&req->rsk_timer, jiffies + timeout);
1104
1105 inet_ehash_insert(req_to_sk(req), NULL, NULL);
1106 /* before letting lookups find us, make sure all req fields
1107 * are committed to memory and refcnt initialized.
1108 */
1109 smp_wmb();
1110 refcount_set(&req->rsk_refcnt, 2 + 1);
1111 }
1112
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1113 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1114 unsigned long timeout)
1115 {
1116 reqsk_queue_hash_req(req, timeout);
1117 inet_csk_reqsk_queue_added(sk);
1118 }
1119 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1120
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1121 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1122 const gfp_t priority)
1123 {
1124 struct inet_connection_sock *icsk = inet_csk(newsk);
1125
1126 if (!icsk->icsk_ulp_ops)
1127 return;
1128
1129 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1130 }
1131
1132 /**
1133 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1134 * @sk: the socket to clone
1135 * @req: request_sock
1136 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1137 *
1138 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1139 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1140 struct sock *inet_csk_clone_lock(const struct sock *sk,
1141 const struct request_sock *req,
1142 const gfp_t priority)
1143 {
1144 struct sock *newsk = sk_clone_lock(sk, priority);
1145
1146 if (newsk) {
1147 struct inet_connection_sock *newicsk = inet_csk(newsk);
1148
1149 inet_sk_set_state(newsk, TCP_SYN_RECV);
1150 newicsk->icsk_bind_hash = NULL;
1151 newicsk->icsk_bind2_hash = NULL;
1152
1153 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1154 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1155 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1156
1157 /* listeners have SOCK_RCU_FREE, not the children */
1158 sock_reset_flag(newsk, SOCK_RCU_FREE);
1159
1160 inet_sk(newsk)->mc_list = NULL;
1161
1162 newsk->sk_mark = inet_rsk(req)->ir_mark;
1163 atomic64_set(&newsk->sk_cookie,
1164 atomic64_read(&inet_rsk(req)->ir_cookie));
1165
1166 newicsk->icsk_retransmits = 0;
1167 newicsk->icsk_backoff = 0;
1168 newicsk->icsk_probes_out = 0;
1169 newicsk->icsk_probes_tstamp = 0;
1170
1171 /* Deinitialize accept_queue to trap illegal accesses. */
1172 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1173
1174 inet_clone_ulp(req, newsk, priority);
1175
1176 security_inet_csk_clone(newsk, req);
1177 }
1178 return newsk;
1179 }
1180 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1181
1182 /*
1183 * At this point, there should be no process reference to this
1184 * socket, and thus no user references at all. Therefore we
1185 * can assume the socket waitqueue is inactive and nobody will
1186 * try to jump onto it.
1187 */
inet_csk_destroy_sock(struct sock * sk)1188 void inet_csk_destroy_sock(struct sock *sk)
1189 {
1190 WARN_ON(sk->sk_state != TCP_CLOSE);
1191 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1192
1193 /* It cannot be in hash table! */
1194 WARN_ON(!sk_unhashed(sk));
1195
1196 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1197 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1198
1199 sk->sk_prot->destroy(sk);
1200
1201 sk_stream_kill_queues(sk);
1202
1203 xfrm_sk_free_policy(sk);
1204
1205 this_cpu_dec(*sk->sk_prot->orphan_count);
1206
1207 sock_put(sk);
1208 }
1209 EXPORT_SYMBOL(inet_csk_destroy_sock);
1210
1211 /* This function allows to force a closure of a socket after the call to
1212 * tcp/dccp_create_openreq_child().
1213 */
inet_csk_prepare_forced_close(struct sock * sk)1214 void inet_csk_prepare_forced_close(struct sock *sk)
1215 __releases(&sk->sk_lock.slock)
1216 {
1217 /* sk_clone_lock locked the socket and set refcnt to 2 */
1218 bh_unlock_sock(sk);
1219 sock_put(sk);
1220 inet_csk_prepare_for_destroy_sock(sk);
1221 inet_sk(sk)->inet_num = 0;
1222 }
1223 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1224
inet_ulp_can_listen(const struct sock * sk)1225 static int inet_ulp_can_listen(const struct sock *sk)
1226 {
1227 const struct inet_connection_sock *icsk = inet_csk(sk);
1228
1229 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1230 return -EINVAL;
1231
1232 return 0;
1233 }
1234
inet_csk_listen_start(struct sock * sk)1235 int inet_csk_listen_start(struct sock *sk)
1236 {
1237 struct inet_connection_sock *icsk = inet_csk(sk);
1238 struct inet_sock *inet = inet_sk(sk);
1239 int err;
1240
1241 err = inet_ulp_can_listen(sk);
1242 if (unlikely(err))
1243 return err;
1244
1245 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1246
1247 sk->sk_ack_backlog = 0;
1248 inet_csk_delack_init(sk);
1249
1250 /* There is race window here: we announce ourselves listening,
1251 * but this transition is still not validated by get_port().
1252 * It is OK, because this socket enters to hash table only
1253 * after validation is complete.
1254 */
1255 inet_sk_state_store(sk, TCP_LISTEN);
1256 err = sk->sk_prot->get_port(sk, inet->inet_num);
1257 if (!err) {
1258 inet->inet_sport = htons(inet->inet_num);
1259
1260 sk_dst_reset(sk);
1261 err = sk->sk_prot->hash(sk);
1262
1263 if (likely(!err))
1264 return 0;
1265 }
1266
1267 inet_sk_set_state(sk, TCP_CLOSE);
1268 return err;
1269 }
1270 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1271
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1272 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1273 struct sock *child)
1274 {
1275 sk->sk_prot->disconnect(child, O_NONBLOCK);
1276
1277 sock_orphan(child);
1278
1279 this_cpu_inc(*sk->sk_prot->orphan_count);
1280
1281 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1282 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1283 BUG_ON(sk != req->rsk_listener);
1284
1285 /* Paranoid, to prevent race condition if
1286 * an inbound pkt destined for child is
1287 * blocked by sock lock in tcp_v4_rcv().
1288 * Also to satisfy an assertion in
1289 * tcp_v4_destroy_sock().
1290 */
1291 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1292 }
1293 inet_csk_destroy_sock(child);
1294 }
1295
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1296 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1297 struct request_sock *req,
1298 struct sock *child)
1299 {
1300 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1301
1302 spin_lock(&queue->rskq_lock);
1303 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1304 inet_child_forget(sk, req, child);
1305 child = NULL;
1306 } else {
1307 req->sk = child;
1308 req->dl_next = NULL;
1309 if (queue->rskq_accept_head == NULL)
1310 WRITE_ONCE(queue->rskq_accept_head, req);
1311 else
1312 queue->rskq_accept_tail->dl_next = req;
1313 queue->rskq_accept_tail = req;
1314 sk_acceptq_added(sk);
1315 }
1316 spin_unlock(&queue->rskq_lock);
1317 return child;
1318 }
1319 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1320
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1321 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1322 struct request_sock *req, bool own_req)
1323 {
1324 if (own_req) {
1325 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1326 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1327
1328 if (sk != req->rsk_listener) {
1329 /* another listening sk has been selected,
1330 * migrate the req to it.
1331 */
1332 struct request_sock *nreq;
1333
1334 /* hold a refcnt for the nreq->rsk_listener
1335 * which is assigned in inet_reqsk_clone()
1336 */
1337 sock_hold(sk);
1338 nreq = inet_reqsk_clone(req, sk);
1339 if (!nreq) {
1340 inet_child_forget(sk, req, child);
1341 goto child_put;
1342 }
1343
1344 refcount_set(&nreq->rsk_refcnt, 1);
1345 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1346 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1347 reqsk_migrate_reset(req);
1348 reqsk_put(req);
1349 return child;
1350 }
1351
1352 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1353 reqsk_migrate_reset(nreq);
1354 __reqsk_free(nreq);
1355 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1356 return child;
1357 }
1358 }
1359 /* Too bad, another child took ownership of the request, undo. */
1360 child_put:
1361 bh_unlock_sock(child);
1362 sock_put(child);
1363 return NULL;
1364 }
1365 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1366
1367 /*
1368 * This routine closes sockets which have been at least partially
1369 * opened, but not yet accepted.
1370 */
inet_csk_listen_stop(struct sock * sk)1371 void inet_csk_listen_stop(struct sock *sk)
1372 {
1373 struct inet_connection_sock *icsk = inet_csk(sk);
1374 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1375 struct request_sock *next, *req;
1376
1377 /* Following specs, it would be better either to send FIN
1378 * (and enter FIN-WAIT-1, it is normal close)
1379 * or to send active reset (abort).
1380 * Certainly, it is pretty dangerous while synflood, but it is
1381 * bad justification for our negligence 8)
1382 * To be honest, we are not able to make either
1383 * of the variants now. --ANK
1384 */
1385 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1386 struct sock *child = req->sk, *nsk;
1387 struct request_sock *nreq;
1388
1389 local_bh_disable();
1390 bh_lock_sock(child);
1391 WARN_ON(sock_owned_by_user(child));
1392 sock_hold(child);
1393
1394 nsk = reuseport_migrate_sock(sk, child, NULL);
1395 if (nsk) {
1396 nreq = inet_reqsk_clone(req, nsk);
1397 if (nreq) {
1398 refcount_set(&nreq->rsk_refcnt, 1);
1399
1400 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1401 __NET_INC_STATS(sock_net(nsk),
1402 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1403 reqsk_migrate_reset(req);
1404 } else {
1405 __NET_INC_STATS(sock_net(nsk),
1406 LINUX_MIB_TCPMIGRATEREQFAILURE);
1407 reqsk_migrate_reset(nreq);
1408 __reqsk_free(nreq);
1409 }
1410
1411 /* inet_csk_reqsk_queue_add() has already
1412 * called inet_child_forget() on failure case.
1413 */
1414 goto skip_child_forget;
1415 }
1416 }
1417
1418 inet_child_forget(sk, req, child);
1419 skip_child_forget:
1420 reqsk_put(req);
1421 bh_unlock_sock(child);
1422 local_bh_enable();
1423 sock_put(child);
1424
1425 cond_resched();
1426 }
1427 if (queue->fastopenq.rskq_rst_head) {
1428 /* Free all the reqs queued in rskq_rst_head. */
1429 spin_lock_bh(&queue->fastopenq.lock);
1430 req = queue->fastopenq.rskq_rst_head;
1431 queue->fastopenq.rskq_rst_head = NULL;
1432 spin_unlock_bh(&queue->fastopenq.lock);
1433 while (req != NULL) {
1434 next = req->dl_next;
1435 reqsk_put(req);
1436 req = next;
1437 }
1438 }
1439 WARN_ON_ONCE(sk->sk_ack_backlog);
1440 }
1441 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1442
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1443 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1444 {
1445 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1446 const struct inet_sock *inet = inet_sk(sk);
1447
1448 sin->sin_family = AF_INET;
1449 sin->sin_addr.s_addr = inet->inet_daddr;
1450 sin->sin_port = inet->inet_dport;
1451 }
1452 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1453
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1454 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1455 {
1456 const struct inet_sock *inet = inet_sk(sk);
1457 const struct ip_options_rcu *inet_opt;
1458 __be32 daddr = inet->inet_daddr;
1459 struct flowi4 *fl4;
1460 struct rtable *rt;
1461
1462 rcu_read_lock();
1463 inet_opt = rcu_dereference(inet->inet_opt);
1464 if (inet_opt && inet_opt->opt.srr)
1465 daddr = inet_opt->opt.faddr;
1466 fl4 = &fl->u.ip4;
1467 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1468 inet->inet_saddr, inet->inet_dport,
1469 inet->inet_sport, sk->sk_protocol,
1470 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1471 if (IS_ERR(rt))
1472 rt = NULL;
1473 if (rt)
1474 sk_setup_caps(sk, &rt->dst);
1475 rcu_read_unlock();
1476
1477 return &rt->dst;
1478 }
1479
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1480 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1481 {
1482 struct dst_entry *dst = __sk_dst_check(sk, 0);
1483 struct inet_sock *inet = inet_sk(sk);
1484
1485 if (!dst) {
1486 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1487 if (!dst)
1488 goto out;
1489 }
1490 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1491
1492 dst = __sk_dst_check(sk, 0);
1493 if (!dst)
1494 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1495 out:
1496 return dst;
1497 }
1498 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1499