1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The industrial I/O core
4 *
5 * Copyright (c) 2008 Jonathan Cameron
6 *
7 * Based on elements of hwmon and input subsystems.
8 */
9
10 #define pr_fmt(fmt) "iio-core: " fmt
11
12 #include <linux/anon_inodes.h>
13 #include <linux/cdev.h>
14 #include <linux/cleanup.h>
15 #include <linux/debugfs.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/idr.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/poll.h>
25 #include <linux/property.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/wait.h>
29 #include <linux/wordpart.h>
30
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/buffer_impl.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/iio-opaque.h>
35 #include <linux/iio/iio.h>
36 #include <linux/iio/sysfs.h>
37
38 #include "iio_core.h"
39 #include "iio_core_trigger.h"
40
41 /* IDA to assign each registered device a unique id */
42 static DEFINE_IDA(iio_ida);
43
44 static dev_t iio_devt;
45
46 #define IIO_DEV_MAX 256
47 const struct bus_type iio_bus_type = {
48 .name = "iio",
49 };
50 EXPORT_SYMBOL(iio_bus_type);
51
52 static struct dentry *iio_debugfs_dentry;
53
54 static const char * const iio_direction[] = {
55 [0] = "in",
56 [1] = "out",
57 };
58
59 static const char * const iio_chan_type_name_spec[] = {
60 [IIO_VOLTAGE] = "voltage",
61 [IIO_CURRENT] = "current",
62 [IIO_POWER] = "power",
63 [IIO_ACCEL] = "accel",
64 [IIO_ANGL_VEL] = "anglvel",
65 [IIO_MAGN] = "magn",
66 [IIO_LIGHT] = "illuminance",
67 [IIO_INTENSITY] = "intensity",
68 [IIO_PROXIMITY] = "proximity",
69 [IIO_TEMP] = "temp",
70 [IIO_INCLI] = "incli",
71 [IIO_ROT] = "rot",
72 [IIO_ANGL] = "angl",
73 [IIO_TIMESTAMP] = "timestamp",
74 [IIO_CAPACITANCE] = "capacitance",
75 [IIO_ALTVOLTAGE] = "altvoltage",
76 [IIO_CCT] = "cct",
77 [IIO_PRESSURE] = "pressure",
78 [IIO_HUMIDITYRELATIVE] = "humidityrelative",
79 [IIO_ACTIVITY] = "activity",
80 [IIO_STEPS] = "steps",
81 [IIO_ENERGY] = "energy",
82 [IIO_DISTANCE] = "distance",
83 [IIO_VELOCITY] = "velocity",
84 [IIO_CONCENTRATION] = "concentration",
85 [IIO_RESISTANCE] = "resistance",
86 [IIO_PH] = "ph",
87 [IIO_UVINDEX] = "uvindex",
88 [IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
89 [IIO_COUNT] = "count",
90 [IIO_INDEX] = "index",
91 [IIO_GRAVITY] = "gravity",
92 [IIO_POSITIONRELATIVE] = "positionrelative",
93 [IIO_PHASE] = "phase",
94 [IIO_MASSCONCENTRATION] = "massconcentration",
95 [IIO_DELTA_ANGL] = "deltaangl",
96 [IIO_DELTA_VELOCITY] = "deltavelocity",
97 [IIO_COLORTEMP] = "colortemp",
98 [IIO_CHROMATICITY] = "chromaticity",
99 [IIO_ATTENTION] = "attention",
100 [IIO_ALTCURRENT] = "altcurrent",
101 };
102
103 static const char * const iio_modifier_names[] = {
104 [IIO_MOD_X] = "x",
105 [IIO_MOD_Y] = "y",
106 [IIO_MOD_Z] = "z",
107 [IIO_MOD_X_AND_Y] = "x&y",
108 [IIO_MOD_X_AND_Z] = "x&z",
109 [IIO_MOD_Y_AND_Z] = "y&z",
110 [IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
111 [IIO_MOD_X_OR_Y] = "x|y",
112 [IIO_MOD_X_OR_Z] = "x|z",
113 [IIO_MOD_Y_OR_Z] = "y|z",
114 [IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
115 [IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
116 [IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
117 [IIO_MOD_LIGHT_BOTH] = "both",
118 [IIO_MOD_LIGHT_IR] = "ir",
119 [IIO_MOD_LIGHT_CLEAR] = "clear",
120 [IIO_MOD_LIGHT_RED] = "red",
121 [IIO_MOD_LIGHT_GREEN] = "green",
122 [IIO_MOD_LIGHT_BLUE] = "blue",
123 [IIO_MOD_LIGHT_UV] = "uv",
124 [IIO_MOD_LIGHT_UVA] = "uva",
125 [IIO_MOD_LIGHT_UVB] = "uvb",
126 [IIO_MOD_LIGHT_DUV] = "duv",
127 [IIO_MOD_QUATERNION] = "quaternion",
128 [IIO_MOD_TEMP_AMBIENT] = "ambient",
129 [IIO_MOD_TEMP_OBJECT] = "object",
130 [IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
131 [IIO_MOD_NORTH_TRUE] = "from_north_true",
132 [IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
133 [IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
134 [IIO_MOD_RUNNING] = "running",
135 [IIO_MOD_JOGGING] = "jogging",
136 [IIO_MOD_WALKING] = "walking",
137 [IIO_MOD_STILL] = "still",
138 [IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
139 [IIO_MOD_I] = "i",
140 [IIO_MOD_Q] = "q",
141 [IIO_MOD_CO2] = "co2",
142 [IIO_MOD_VOC] = "voc",
143 [IIO_MOD_PM1] = "pm1",
144 [IIO_MOD_PM2P5] = "pm2p5",
145 [IIO_MOD_PM4] = "pm4",
146 [IIO_MOD_PM10] = "pm10",
147 [IIO_MOD_ETHANOL] = "ethanol",
148 [IIO_MOD_H2] = "h2",
149 [IIO_MOD_O2] = "o2",
150 [IIO_MOD_LINEAR_X] = "linear_x",
151 [IIO_MOD_LINEAR_Y] = "linear_y",
152 [IIO_MOD_LINEAR_Z] = "linear_z",
153 [IIO_MOD_PITCH] = "pitch",
154 [IIO_MOD_YAW] = "yaw",
155 [IIO_MOD_ROLL] = "roll",
156 [IIO_MOD_RMS] = "rms",
157 [IIO_MOD_ACTIVE] = "active",
158 [IIO_MOD_REACTIVE] = "reactive",
159 [IIO_MOD_APPARENT] = "apparent",
160 };
161
162 /* relies on pairs of these shared then separate */
163 static const char * const iio_chan_info_postfix[] = {
164 [IIO_CHAN_INFO_RAW] = "raw",
165 [IIO_CHAN_INFO_PROCESSED] = "input",
166 [IIO_CHAN_INFO_SCALE] = "scale",
167 [IIO_CHAN_INFO_OFFSET] = "offset",
168 [IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
169 [IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
170 [IIO_CHAN_INFO_PEAK] = "peak_raw",
171 [IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
172 [IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
173 [IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
174 [IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
175 = "filter_low_pass_3db_frequency",
176 [IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
177 = "filter_high_pass_3db_frequency",
178 [IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
179 [IIO_CHAN_INFO_FREQUENCY] = "frequency",
180 [IIO_CHAN_INFO_PHASE] = "phase",
181 [IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
182 [IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
183 [IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
184 [IIO_CHAN_INFO_INT_TIME] = "integration_time",
185 [IIO_CHAN_INFO_ENABLE] = "en",
186 [IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
187 [IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
188 [IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
189 [IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
190 [IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
191 [IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
192 [IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
193 [IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
194 [IIO_CHAN_INFO_ZEROPOINT] = "zeropoint",
195 [IIO_CHAN_INFO_TROUGH] = "trough_raw",
196 [IIO_CHAN_INFO_CONVDELAY] = "convdelay",
197 [IIO_CHAN_INFO_POWERFACTOR] = "powerfactor",
198 };
199 /**
200 * iio_device_id() - query the unique ID for the device
201 * @indio_dev: Device structure whose ID is being queried
202 *
203 * The IIO device ID is a unique index used for example for the naming
204 * of the character device /dev/iio\:device[ID].
205 *
206 * Returns: Unique ID for the device.
207 */
iio_device_id(struct iio_dev * indio_dev)208 int iio_device_id(struct iio_dev *indio_dev)
209 {
210 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
211
212 return iio_dev_opaque->id;
213 }
214 EXPORT_SYMBOL_GPL(iio_device_id);
215
216 /**
217 * iio_buffer_enabled() - helper function to test if the buffer is enabled
218 * @indio_dev: IIO device structure for device
219 *
220 * Returns: True, if the buffer is enabled.
221 */
iio_buffer_enabled(struct iio_dev * indio_dev)222 bool iio_buffer_enabled(struct iio_dev *indio_dev)
223 {
224 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
225
226 return iio_dev_opaque->currentmode & INDIO_ALL_BUFFER_MODES;
227 }
228 EXPORT_SYMBOL_GPL(iio_buffer_enabled);
229
230 #if defined(CONFIG_DEBUG_FS)
231 /*
232 * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
233 * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
234 */
iio_get_debugfs_dentry(struct iio_dev * indio_dev)235 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
236 {
237 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
238
239 return iio_dev_opaque->debugfs_dentry;
240 }
241 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
242 #endif
243
244 /**
245 * iio_find_channel_from_si() - get channel from its scan index
246 * @indio_dev: device
247 * @si: scan index to match
248 *
249 * Returns:
250 * Constant pointer to iio_chan_spec, if scan index matches, NULL on failure.
251 */
252 const struct iio_chan_spec
iio_find_channel_from_si(struct iio_dev * indio_dev,int si)253 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
254 {
255 int i;
256
257 for (i = 0; i < indio_dev->num_channels; i++)
258 if (indio_dev->channels[i].scan_index == si)
259 return &indio_dev->channels[i];
260 return NULL;
261 }
262
263 /* This turns up an awful lot */
iio_read_const_attr(struct device * dev,struct device_attribute * attr,char * buf)264 ssize_t iio_read_const_attr(struct device *dev,
265 struct device_attribute *attr,
266 char *buf)
267 {
268 return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
269 }
270 EXPORT_SYMBOL(iio_read_const_attr);
271
272 /**
273 * iio_device_set_clock() - Set current timestamping clock for the device
274 * @indio_dev: IIO device structure containing the device
275 * @clock_id: timestamping clock POSIX identifier to set.
276 *
277 * Returns: 0 on success, or a negative error code.
278 */
iio_device_set_clock(struct iio_dev * indio_dev,clockid_t clock_id)279 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
280 {
281 int ret;
282 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
283 const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
284
285 ret = mutex_lock_interruptible(&iio_dev_opaque->mlock);
286 if (ret)
287 return ret;
288 if ((ev_int && iio_event_enabled(ev_int)) ||
289 iio_buffer_enabled(indio_dev)) {
290 mutex_unlock(&iio_dev_opaque->mlock);
291 return -EBUSY;
292 }
293 iio_dev_opaque->clock_id = clock_id;
294 mutex_unlock(&iio_dev_opaque->mlock);
295
296 return 0;
297 }
298 EXPORT_SYMBOL(iio_device_set_clock);
299
300 /**
301 * iio_device_get_clock() - Retrieve current timestamping clock for the device
302 * @indio_dev: IIO device structure containing the device
303 *
304 * Returns: Clock ID of the current timestamping clock for the device.
305 */
iio_device_get_clock(const struct iio_dev * indio_dev)306 clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
307 {
308 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
309
310 return iio_dev_opaque->clock_id;
311 }
312 EXPORT_SYMBOL(iio_device_get_clock);
313
314 /**
315 * iio_get_time_ns() - utility function to get a time stamp for events etc
316 * @indio_dev: device
317 *
318 * Returns: Timestamp of the event in nanoseconds.
319 */
iio_get_time_ns(const struct iio_dev * indio_dev)320 s64 iio_get_time_ns(const struct iio_dev *indio_dev)
321 {
322 struct timespec64 tp;
323
324 switch (iio_device_get_clock(indio_dev)) {
325 case CLOCK_REALTIME:
326 return ktime_get_real_ns();
327 case CLOCK_MONOTONIC:
328 return ktime_get_ns();
329 case CLOCK_MONOTONIC_RAW:
330 return ktime_get_raw_ns();
331 case CLOCK_REALTIME_COARSE:
332 return ktime_to_ns(ktime_get_coarse_real());
333 case CLOCK_MONOTONIC_COARSE:
334 ktime_get_coarse_ts64(&tp);
335 return timespec64_to_ns(&tp);
336 case CLOCK_BOOTTIME:
337 return ktime_get_boottime_ns();
338 case CLOCK_TAI:
339 return ktime_get_clocktai_ns();
340 default:
341 BUG();
342 }
343 }
344 EXPORT_SYMBOL(iio_get_time_ns);
345
iio_init(void)346 static int __init iio_init(void)
347 {
348 int ret;
349
350 /* Register sysfs bus */
351 ret = bus_register(&iio_bus_type);
352 if (ret < 0) {
353 pr_err("could not register bus type\n");
354 goto error_nothing;
355 }
356
357 ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
358 if (ret < 0) {
359 pr_err("failed to allocate char dev region\n");
360 goto error_unregister_bus_type;
361 }
362
363 iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
364
365 return 0;
366
367 error_unregister_bus_type:
368 bus_unregister(&iio_bus_type);
369 error_nothing:
370 return ret;
371 }
372
iio_exit(void)373 static void __exit iio_exit(void)
374 {
375 if (iio_devt)
376 unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
377 bus_unregister(&iio_bus_type);
378 debugfs_remove(iio_debugfs_dentry);
379 }
380
381 #if defined(CONFIG_DEBUG_FS)
iio_debugfs_read_reg(struct file * file,char __user * userbuf,size_t count,loff_t * ppos)382 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
383 size_t count, loff_t *ppos)
384 {
385 struct iio_dev *indio_dev = file->private_data;
386 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
387 unsigned int val = 0;
388 int ret;
389
390 if (*ppos > 0)
391 return simple_read_from_buffer(userbuf, count, ppos,
392 iio_dev_opaque->read_buf,
393 iio_dev_opaque->read_buf_len);
394
395 ret = indio_dev->info->debugfs_reg_access(indio_dev,
396 iio_dev_opaque->cached_reg_addr,
397 0, &val);
398 if (ret) {
399 dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
400 return ret;
401 }
402
403 iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
404 sizeof(iio_dev_opaque->read_buf),
405 "0x%X\n", val);
406
407 return simple_read_from_buffer(userbuf, count, ppos,
408 iio_dev_opaque->read_buf,
409 iio_dev_opaque->read_buf_len);
410 }
411
iio_debugfs_write_reg(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)412 static ssize_t iio_debugfs_write_reg(struct file *file,
413 const char __user *userbuf, size_t count, loff_t *ppos)
414 {
415 struct iio_dev *indio_dev = file->private_data;
416 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
417 unsigned int reg, val;
418 char buf[80];
419 int ret;
420
421 if (count >= sizeof(buf))
422 return -EINVAL;
423
424 ret = simple_write_to_buffer(buf, sizeof(buf) - 1, ppos, userbuf,
425 count);
426 if (ret < 0)
427 return ret;
428
429 buf[ret] = '\0';
430
431 ret = sscanf(buf, "%i %i", ®, &val);
432
433 switch (ret) {
434 case 1:
435 iio_dev_opaque->cached_reg_addr = reg;
436 break;
437 case 2:
438 iio_dev_opaque->cached_reg_addr = reg;
439 ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
440 val, NULL);
441 if (ret) {
442 dev_err(indio_dev->dev.parent, "%s: write failed\n",
443 __func__);
444 return ret;
445 }
446 break;
447 default:
448 return -EINVAL;
449 }
450
451 return count;
452 }
453
454 static const struct file_operations iio_debugfs_reg_fops = {
455 .open = simple_open,
456 .read = iio_debugfs_read_reg,
457 .write = iio_debugfs_write_reg,
458 };
459
iio_device_unregister_debugfs(struct iio_dev * indio_dev)460 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
461 {
462 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
463
464 debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
465 }
466
iio_device_register_debugfs(struct iio_dev * indio_dev)467 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
468 {
469 struct iio_dev_opaque *iio_dev_opaque;
470
471 if (indio_dev->info->debugfs_reg_access == NULL)
472 return;
473
474 if (!iio_debugfs_dentry)
475 return;
476
477 iio_dev_opaque = to_iio_dev_opaque(indio_dev);
478
479 iio_dev_opaque->debugfs_dentry =
480 debugfs_create_dir(dev_name(&indio_dev->dev),
481 iio_debugfs_dentry);
482
483 debugfs_create_file("direct_reg_access", 0644,
484 iio_dev_opaque->debugfs_dentry, indio_dev,
485 &iio_debugfs_reg_fops);
486 }
487 #else
iio_device_register_debugfs(struct iio_dev * indio_dev)488 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
489 {
490 }
491
iio_device_unregister_debugfs(struct iio_dev * indio_dev)492 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
493 {
494 }
495 #endif /* CONFIG_DEBUG_FS */
496
iio_read_channel_ext_info(struct device * dev,struct device_attribute * attr,char * buf)497 static ssize_t iio_read_channel_ext_info(struct device *dev,
498 struct device_attribute *attr,
499 char *buf)
500 {
501 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
502 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
503 const struct iio_chan_spec_ext_info *ext_info;
504
505 ext_info = &this_attr->c->ext_info[this_attr->address];
506
507 return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
508 }
509
iio_write_channel_ext_info(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)510 static ssize_t iio_write_channel_ext_info(struct device *dev,
511 struct device_attribute *attr,
512 const char *buf, size_t len)
513 {
514 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
515 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
516 const struct iio_chan_spec_ext_info *ext_info;
517
518 ext_info = &this_attr->c->ext_info[this_attr->address];
519
520 return ext_info->write(indio_dev, ext_info->private,
521 this_attr->c, buf, len);
522 }
523
iio_enum_available_read(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)524 ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
525 uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
526 {
527 const struct iio_enum *e = (const struct iio_enum *)priv;
528 unsigned int i;
529 size_t len = 0;
530
531 if (!e->num_items)
532 return 0;
533
534 for (i = 0; i < e->num_items; ++i) {
535 if (!e->items[i])
536 continue;
537 len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
538 }
539
540 /* replace last space with a newline */
541 buf[len - 1] = '\n';
542
543 return len;
544 }
545 EXPORT_SYMBOL_GPL(iio_enum_available_read);
546
iio_enum_read(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)547 ssize_t iio_enum_read(struct iio_dev *indio_dev,
548 uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
549 {
550 const struct iio_enum *e = (const struct iio_enum *)priv;
551 int i;
552
553 if (!e->get)
554 return -EINVAL;
555
556 i = e->get(indio_dev, chan);
557 if (i < 0)
558 return i;
559 if (i >= e->num_items || !e->items[i])
560 return -EINVAL;
561
562 return sysfs_emit(buf, "%s\n", e->items[i]);
563 }
564 EXPORT_SYMBOL_GPL(iio_enum_read);
565
iio_enum_write(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,const char * buf,size_t len)566 ssize_t iio_enum_write(struct iio_dev *indio_dev,
567 uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
568 size_t len)
569 {
570 const struct iio_enum *e = (const struct iio_enum *)priv;
571 int ret;
572
573 if (!e->set)
574 return -EINVAL;
575
576 ret = __sysfs_match_string(e->items, e->num_items, buf);
577 if (ret < 0)
578 return ret;
579
580 ret = e->set(indio_dev, chan, ret);
581 return ret ? ret : len;
582 }
583 EXPORT_SYMBOL_GPL(iio_enum_write);
584
585 static const struct iio_mount_matrix iio_mount_idmatrix = {
586 .rotation = {
587 "1", "0", "0",
588 "0", "1", "0",
589 "0", "0", "1"
590 }
591 };
592
iio_setup_mount_idmatrix(const struct device * dev,struct iio_mount_matrix * matrix)593 static int iio_setup_mount_idmatrix(const struct device *dev,
594 struct iio_mount_matrix *matrix)
595 {
596 *matrix = iio_mount_idmatrix;
597 dev_info(dev, "mounting matrix not found: using identity...\n");
598 return 0;
599 }
600
iio_show_mount_matrix(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)601 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
602 const struct iio_chan_spec *chan, char *buf)
603 {
604 const struct iio_mount_matrix *mtx;
605
606 mtx = ((iio_get_mount_matrix_t *)priv)(indio_dev, chan);
607 if (IS_ERR(mtx))
608 return PTR_ERR(mtx);
609
610 if (!mtx)
611 mtx = &iio_mount_idmatrix;
612
613 return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
614 mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
615 mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
616 mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
617 }
618 EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
619
620 /**
621 * iio_read_mount_matrix() - retrieve iio device mounting matrix from
622 * device "mount-matrix" property
623 * @dev: device the mounting matrix property is assigned to
624 * @matrix: where to store retrieved matrix
625 *
626 * If device is assigned no mounting matrix property, a default 3x3 identity
627 * matrix will be filled in.
628 *
629 * Returns: 0 if success, or a negative error code on failure.
630 */
iio_read_mount_matrix(struct device * dev,struct iio_mount_matrix * matrix)631 int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
632 {
633 size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
634 int err;
635
636 err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
637 if (err == len)
638 return 0;
639
640 if (err >= 0)
641 /* Invalid number of matrix entries. */
642 return -EINVAL;
643
644 if (err != -EINVAL)
645 /* Invalid matrix declaration format. */
646 return err;
647
648 /* Matrix was not declared at all: fallback to identity. */
649 return iio_setup_mount_idmatrix(dev, matrix);
650 }
651 EXPORT_SYMBOL(iio_read_mount_matrix);
652
__iio_format_value(char * buf,size_t offset,unsigned int type,int size,const int * vals)653 static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
654 int size, const int *vals)
655 {
656 int tmp0, tmp1;
657 s64 tmp2;
658 bool scale_db = false;
659
660 switch (type) {
661 case IIO_VAL_INT:
662 return sysfs_emit_at(buf, offset, "%d", vals[0]);
663 case IIO_VAL_INT_PLUS_MICRO_DB:
664 scale_db = true;
665 fallthrough;
666 case IIO_VAL_INT_PLUS_MICRO:
667 if (vals[1] < 0)
668 return sysfs_emit_at(buf, offset, "-%d.%06u%s",
669 abs(vals[0]), -vals[1],
670 scale_db ? " dB" : "");
671 else
672 return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
673 vals[1], scale_db ? " dB" : "");
674 case IIO_VAL_INT_PLUS_NANO:
675 if (vals[1] < 0)
676 return sysfs_emit_at(buf, offset, "-%d.%09u",
677 abs(vals[0]), -vals[1]);
678 else
679 return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
680 vals[1]);
681 case IIO_VAL_FRACTIONAL:
682 tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
683 tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
684 if ((tmp2 < 0) && (tmp0 == 0))
685 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
686 else
687 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
688 abs(tmp1));
689 case IIO_VAL_FRACTIONAL_LOG2:
690 tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
691 tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
692 if (tmp0 == 0 && tmp2 < 0)
693 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
694 else
695 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
696 abs(tmp1));
697 case IIO_VAL_INT_MULTIPLE:
698 {
699 int i;
700 int l = 0;
701
702 for (i = 0; i < size; ++i)
703 l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
704 return l;
705 }
706 case IIO_VAL_CHAR:
707 return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
708 case IIO_VAL_INT_64:
709 tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
710 return sysfs_emit_at(buf, offset, "%lld", tmp2);
711 default:
712 return 0;
713 }
714 }
715
716 /**
717 * iio_format_value() - Formats a IIO value into its string representation
718 * @buf: The buffer to which the formatted value gets written
719 * which is assumed to be big enough (i.e. PAGE_SIZE).
720 * @type: One of the IIO_VAL_* constants. This decides how the val
721 * and val2 parameters are formatted.
722 * @size: Number of IIO value entries contained in vals
723 * @vals: Pointer to the values, exact meaning depends on the
724 * type parameter.
725 *
726 * Returns:
727 * 0 by default, a negative number on failure or the total number of characters
728 * written for a type that belongs to the IIO_VAL_* constant.
729 */
iio_format_value(char * buf,unsigned int type,int size,int * vals)730 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
731 {
732 ssize_t len;
733
734 len = __iio_format_value(buf, 0, type, size, vals);
735 if (len >= PAGE_SIZE - 1)
736 return -EFBIG;
737
738 return len + sysfs_emit_at(buf, len, "\n");
739 }
740 EXPORT_SYMBOL_GPL(iio_format_value);
741
do_iio_read_channel_label(struct iio_dev * indio_dev,const struct iio_chan_spec * c,char * buf)742 ssize_t do_iio_read_channel_label(struct iio_dev *indio_dev,
743 const struct iio_chan_spec *c,
744 char *buf)
745 {
746 if (indio_dev->info->read_label)
747 return indio_dev->info->read_label(indio_dev, c, buf);
748
749 if (c->extend_name)
750 return sysfs_emit(buf, "%s\n", c->extend_name);
751
752 return -EINVAL;
753 }
754
iio_read_channel_label(struct device * dev,struct device_attribute * attr,char * buf)755 static ssize_t iio_read_channel_label(struct device *dev,
756 struct device_attribute *attr,
757 char *buf)
758 {
759 return do_iio_read_channel_label(dev_to_iio_dev(dev),
760 to_iio_dev_attr(attr)->c, buf);
761 }
762
iio_read_channel_info(struct device * dev,struct device_attribute * attr,char * buf)763 static ssize_t iio_read_channel_info(struct device *dev,
764 struct device_attribute *attr,
765 char *buf)
766 {
767 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
768 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
769 int vals[INDIO_MAX_RAW_ELEMENTS];
770 int ret;
771 int val_len = 2;
772
773 if (indio_dev->info->read_raw_multi)
774 ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
775 INDIO_MAX_RAW_ELEMENTS,
776 vals, &val_len,
777 this_attr->address);
778 else if (indio_dev->info->read_raw)
779 ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
780 &vals[0], &vals[1], this_attr->address);
781 else
782 return -EINVAL;
783
784 if (ret < 0)
785 return ret;
786
787 return iio_format_value(buf, ret, val_len, vals);
788 }
789
iio_format_list(char * buf,const int * vals,int type,int length,const char * prefix,const char * suffix)790 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
791 const char *prefix, const char *suffix)
792 {
793 ssize_t len;
794 int stride;
795 int i;
796
797 switch (type) {
798 case IIO_VAL_INT:
799 case IIO_VAL_CHAR:
800 stride = 1;
801 break;
802 default:
803 stride = 2;
804 break;
805 }
806
807 len = sysfs_emit(buf, prefix);
808
809 for (i = 0; i <= length - stride; i += stride) {
810 if (i != 0) {
811 len += sysfs_emit_at(buf, len, " ");
812 if (len >= PAGE_SIZE)
813 return -EFBIG;
814 }
815
816 len += __iio_format_value(buf, len, type, stride, &vals[i]);
817 if (len >= PAGE_SIZE)
818 return -EFBIG;
819 }
820
821 len += sysfs_emit_at(buf, len, "%s\n", suffix);
822
823 return len;
824 }
825
iio_format_avail_list(char * buf,const int * vals,int type,int length)826 static ssize_t iio_format_avail_list(char *buf, const int *vals,
827 int type, int length)
828 {
829
830 return iio_format_list(buf, vals, type, length, "", "");
831 }
832
iio_format_avail_range(char * buf,const int * vals,int type)833 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
834 {
835 int length;
836
837 /*
838 * length refers to the array size , not the number of elements.
839 * The purpose is to print the range [min , step ,max] so length should
840 * be 3 in case of int, and 6 for other types.
841 */
842 switch (type) {
843 case IIO_VAL_INT:
844 length = 3;
845 break;
846 default:
847 length = 6;
848 break;
849 }
850
851 return iio_format_list(buf, vals, type, length, "[", "]");
852 }
853
iio_read_channel_info_avail(struct device * dev,struct device_attribute * attr,char * buf)854 static ssize_t iio_read_channel_info_avail(struct device *dev,
855 struct device_attribute *attr,
856 char *buf)
857 {
858 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
859 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
860 const int *vals;
861 int ret;
862 int length;
863 int type;
864
865 if (!indio_dev->info->read_avail)
866 return -EINVAL;
867
868 ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
869 &vals, &type, &length,
870 this_attr->address);
871
872 if (ret < 0)
873 return ret;
874 switch (ret) {
875 case IIO_AVAIL_LIST:
876 return iio_format_avail_list(buf, vals, type, length);
877 case IIO_AVAIL_RANGE:
878 return iio_format_avail_range(buf, vals, type);
879 default:
880 return -EINVAL;
881 }
882 }
883
884 /**
885 * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
886 * @str: The string to parse
887 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
888 * @integer: The integer part of the number
889 * @fract: The fractional part of the number
890 * @scale_db: True if this should parse as dB
891 *
892 * Returns:
893 * 0 on success, or a negative error code if the string could not be parsed.
894 */
__iio_str_to_fixpoint(const char * str,int fract_mult,int * integer,int * fract,bool scale_db)895 static int __iio_str_to_fixpoint(const char *str, int fract_mult,
896 int *integer, int *fract, bool scale_db)
897 {
898 int i = 0, f = 0;
899 bool integer_part = true, negative = false;
900
901 if (fract_mult == 0) {
902 *fract = 0;
903
904 return kstrtoint(str, 0, integer);
905 }
906
907 if (str[0] == '-') {
908 negative = true;
909 str++;
910 } else if (str[0] == '+') {
911 str++;
912 }
913
914 while (*str) {
915 if ('0' <= *str && *str <= '9') {
916 if (integer_part) {
917 i = i * 10 + *str - '0';
918 } else {
919 f += fract_mult * (*str - '0');
920 fract_mult /= 10;
921 }
922 } else if (*str == '\n') {
923 if (*(str + 1) == '\0')
924 break;
925 return -EINVAL;
926 } else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
927 /* Ignore the dB suffix */
928 str += sizeof(" dB") - 1;
929 continue;
930 } else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
931 /* Ignore the dB suffix */
932 str += sizeof("dB") - 1;
933 continue;
934 } else if (*str == '.' && integer_part) {
935 integer_part = false;
936 } else {
937 return -EINVAL;
938 }
939 str++;
940 }
941
942 if (negative) {
943 if (i)
944 i = -i;
945 else
946 f = -f;
947 }
948
949 *integer = i;
950 *fract = f;
951
952 return 0;
953 }
954
955 /**
956 * iio_str_to_fixpoint() - Parse a fixed-point number from a string
957 * @str: The string to parse
958 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
959 * @integer: The integer part of the number
960 * @fract: The fractional part of the number
961 *
962 * Returns:
963 * 0 on success, or a negative error code if the string could not be parsed.
964 */
iio_str_to_fixpoint(const char * str,int fract_mult,int * integer,int * fract)965 int iio_str_to_fixpoint(const char *str, int fract_mult,
966 int *integer, int *fract)
967 {
968 return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
969 }
970 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
971
iio_write_channel_info(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)972 static ssize_t iio_write_channel_info(struct device *dev,
973 struct device_attribute *attr,
974 const char *buf,
975 size_t len)
976 {
977 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
978 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
979 int ret, fract_mult = 100000;
980 int integer, fract = 0;
981 long long integer64;
982 bool is_char = false;
983 bool scale_db = false;
984 bool is_64bit = false;
985
986 /* Assumes decimal - precision based on number of digits */
987 if (!indio_dev->info->write_raw)
988 return -EINVAL;
989
990 if (indio_dev->info->write_raw_get_fmt)
991 switch (indio_dev->info->write_raw_get_fmt(indio_dev,
992 this_attr->c, this_attr->address)) {
993 case IIO_VAL_INT:
994 fract_mult = 0;
995 break;
996 case IIO_VAL_INT_PLUS_MICRO_DB:
997 scale_db = true;
998 fallthrough;
999 case IIO_VAL_INT_PLUS_MICRO:
1000 fract_mult = 100000;
1001 break;
1002 case IIO_VAL_INT_PLUS_NANO:
1003 fract_mult = 100000000;
1004 break;
1005 case IIO_VAL_CHAR:
1006 is_char = true;
1007 break;
1008 case IIO_VAL_INT_64:
1009 is_64bit = true;
1010 break;
1011 default:
1012 return -EINVAL;
1013 }
1014
1015 if (is_char) {
1016 char ch;
1017
1018 if (sscanf(buf, "%c", &ch) != 1)
1019 return -EINVAL;
1020 integer = ch;
1021 } else if (is_64bit) {
1022 ret = kstrtoll(buf, 0, &integer64);
1023 if (ret)
1024 return ret;
1025
1026 fract = upper_32_bits(integer64);
1027 integer = lower_32_bits(integer64);
1028 } else {
1029 ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
1030 scale_db);
1031 if (ret)
1032 return ret;
1033 }
1034
1035 ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
1036 integer, fract, this_attr->address);
1037 if (ret)
1038 return ret;
1039
1040 return len;
1041 }
1042
1043 static
__iio_device_attr_init(struct device_attribute * dev_attr,const char * postfix,struct iio_chan_spec const * chan,ssize_t (* readfunc)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* writefunc)(struct device * dev,struct device_attribute * attr,const char * buf,size_t len),enum iio_shared_by shared_by)1044 int __iio_device_attr_init(struct device_attribute *dev_attr,
1045 const char *postfix,
1046 struct iio_chan_spec const *chan,
1047 ssize_t (*readfunc)(struct device *dev,
1048 struct device_attribute *attr,
1049 char *buf),
1050 ssize_t (*writefunc)(struct device *dev,
1051 struct device_attribute *attr,
1052 const char *buf,
1053 size_t len),
1054 enum iio_shared_by shared_by)
1055 {
1056 int ret = 0;
1057 char *name = NULL;
1058 char *full_postfix;
1059
1060 sysfs_attr_init(&dev_attr->attr);
1061
1062 /* Build up postfix of <extend_name>_<modifier>_postfix */
1063 if (chan->modified && (shared_by == IIO_SEPARATE)) {
1064 if (chan->extend_name)
1065 full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1066 iio_modifier_names[chan->channel2],
1067 chan->extend_name,
1068 postfix);
1069 else
1070 full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1071 iio_modifier_names[chan->channel2],
1072 postfix);
1073 } else {
1074 if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1075 full_postfix = kstrdup(postfix, GFP_KERNEL);
1076 else
1077 full_postfix = kasprintf(GFP_KERNEL,
1078 "%s_%s",
1079 chan->extend_name,
1080 postfix);
1081 }
1082 if (full_postfix == NULL)
1083 return -ENOMEM;
1084
1085 if (chan->differential) { /* Differential can not have modifier */
1086 switch (shared_by) {
1087 case IIO_SHARED_BY_ALL:
1088 name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1089 break;
1090 case IIO_SHARED_BY_DIR:
1091 name = kasprintf(GFP_KERNEL, "%s_%s",
1092 iio_direction[chan->output],
1093 full_postfix);
1094 break;
1095 case IIO_SHARED_BY_TYPE:
1096 name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1097 iio_direction[chan->output],
1098 iio_chan_type_name_spec[chan->type],
1099 iio_chan_type_name_spec[chan->type],
1100 full_postfix);
1101 break;
1102 case IIO_SEPARATE:
1103 if (!chan->indexed) {
1104 WARN(1, "Differential channels must be indexed\n");
1105 ret = -EINVAL;
1106 goto error_free_full_postfix;
1107 }
1108 name = kasprintf(GFP_KERNEL,
1109 "%s_%s%d-%s%d_%s",
1110 iio_direction[chan->output],
1111 iio_chan_type_name_spec[chan->type],
1112 chan->channel,
1113 iio_chan_type_name_spec[chan->type],
1114 chan->channel2,
1115 full_postfix);
1116 break;
1117 }
1118 } else { /* Single ended */
1119 switch (shared_by) {
1120 case IIO_SHARED_BY_ALL:
1121 name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1122 break;
1123 case IIO_SHARED_BY_DIR:
1124 name = kasprintf(GFP_KERNEL, "%s_%s",
1125 iio_direction[chan->output],
1126 full_postfix);
1127 break;
1128 case IIO_SHARED_BY_TYPE:
1129 name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1130 iio_direction[chan->output],
1131 iio_chan_type_name_spec[chan->type],
1132 full_postfix);
1133 break;
1134
1135 case IIO_SEPARATE:
1136 if (chan->indexed)
1137 name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1138 iio_direction[chan->output],
1139 iio_chan_type_name_spec[chan->type],
1140 chan->channel,
1141 full_postfix);
1142 else
1143 name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1144 iio_direction[chan->output],
1145 iio_chan_type_name_spec[chan->type],
1146 full_postfix);
1147 break;
1148 }
1149 }
1150 if (name == NULL) {
1151 ret = -ENOMEM;
1152 goto error_free_full_postfix;
1153 }
1154 dev_attr->attr.name = name;
1155
1156 if (readfunc) {
1157 dev_attr->attr.mode |= 0444;
1158 dev_attr->show = readfunc;
1159 }
1160
1161 if (writefunc) {
1162 dev_attr->attr.mode |= 0200;
1163 dev_attr->store = writefunc;
1164 }
1165
1166 error_free_full_postfix:
1167 kfree(full_postfix);
1168
1169 return ret;
1170 }
1171
__iio_device_attr_deinit(struct device_attribute * dev_attr)1172 static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1173 {
1174 kfree(dev_attr->attr.name);
1175 }
1176
__iio_add_chan_devattr(const char * postfix,struct iio_chan_spec const * chan,ssize_t (* readfunc)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* writefunc)(struct device * dev,struct device_attribute * attr,const char * buf,size_t len),u64 mask,enum iio_shared_by shared_by,struct device * dev,struct iio_buffer * buffer,struct list_head * attr_list)1177 int __iio_add_chan_devattr(const char *postfix,
1178 struct iio_chan_spec const *chan,
1179 ssize_t (*readfunc)(struct device *dev,
1180 struct device_attribute *attr,
1181 char *buf),
1182 ssize_t (*writefunc)(struct device *dev,
1183 struct device_attribute *attr,
1184 const char *buf,
1185 size_t len),
1186 u64 mask,
1187 enum iio_shared_by shared_by,
1188 struct device *dev,
1189 struct iio_buffer *buffer,
1190 struct list_head *attr_list)
1191 {
1192 int ret;
1193 struct iio_dev_attr *iio_attr, *t;
1194
1195 iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1196 if (iio_attr == NULL)
1197 return -ENOMEM;
1198 ret = __iio_device_attr_init(&iio_attr->dev_attr,
1199 postfix, chan,
1200 readfunc, writefunc, shared_by);
1201 if (ret)
1202 goto error_iio_dev_attr_free;
1203 iio_attr->c = chan;
1204 iio_attr->address = mask;
1205 iio_attr->buffer = buffer;
1206 list_for_each_entry(t, attr_list, l)
1207 if (strcmp(t->dev_attr.attr.name,
1208 iio_attr->dev_attr.attr.name) == 0) {
1209 if (shared_by == IIO_SEPARATE)
1210 dev_err(dev, "tried to double register : %s\n",
1211 t->dev_attr.attr.name);
1212 ret = -EBUSY;
1213 goto error_device_attr_deinit;
1214 }
1215 list_add(&iio_attr->l, attr_list);
1216
1217 return 0;
1218
1219 error_device_attr_deinit:
1220 __iio_device_attr_deinit(&iio_attr->dev_attr);
1221 error_iio_dev_attr_free:
1222 kfree(iio_attr);
1223 return ret;
1224 }
1225
iio_device_add_channel_label(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)1226 static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1227 struct iio_chan_spec const *chan)
1228 {
1229 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1230 int ret;
1231
1232 if (!indio_dev->info->read_label && !chan->extend_name)
1233 return 0;
1234
1235 ret = __iio_add_chan_devattr("label",
1236 chan,
1237 &iio_read_channel_label,
1238 NULL,
1239 0,
1240 IIO_SEPARATE,
1241 &indio_dev->dev,
1242 NULL,
1243 &iio_dev_opaque->channel_attr_list);
1244 if (ret < 0)
1245 return ret;
1246
1247 return 1;
1248 }
1249
iio_device_add_info_mask_type(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,enum iio_shared_by shared_by,const unsigned long * infomask)1250 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1251 struct iio_chan_spec const *chan,
1252 enum iio_shared_by shared_by,
1253 const unsigned long *infomask)
1254 {
1255 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1256 int i, ret, attrcount = 0;
1257
1258 for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1259 if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1260 return -EINVAL;
1261 ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1262 chan,
1263 &iio_read_channel_info,
1264 &iio_write_channel_info,
1265 i,
1266 shared_by,
1267 &indio_dev->dev,
1268 NULL,
1269 &iio_dev_opaque->channel_attr_list);
1270 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1271 continue;
1272 if (ret < 0)
1273 return ret;
1274 attrcount++;
1275 }
1276
1277 return attrcount;
1278 }
1279
iio_device_add_info_mask_type_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,enum iio_shared_by shared_by,const unsigned long * infomask)1280 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1281 struct iio_chan_spec const *chan,
1282 enum iio_shared_by shared_by,
1283 const unsigned long *infomask)
1284 {
1285 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1286 int i, ret, attrcount = 0;
1287 char *avail_postfix;
1288
1289 for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1290 if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1291 return -EINVAL;
1292 avail_postfix = kasprintf(GFP_KERNEL,
1293 "%s_available",
1294 iio_chan_info_postfix[i]);
1295 if (!avail_postfix)
1296 return -ENOMEM;
1297
1298 ret = __iio_add_chan_devattr(avail_postfix,
1299 chan,
1300 &iio_read_channel_info_avail,
1301 NULL,
1302 i,
1303 shared_by,
1304 &indio_dev->dev,
1305 NULL,
1306 &iio_dev_opaque->channel_attr_list);
1307 kfree(avail_postfix);
1308 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1309 continue;
1310 if (ret < 0)
1311 return ret;
1312 attrcount++;
1313 }
1314
1315 return attrcount;
1316 }
1317
iio_device_add_channel_sysfs(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)1318 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1319 struct iio_chan_spec const *chan)
1320 {
1321 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1322 int ret, attrcount = 0;
1323 const struct iio_chan_spec_ext_info *ext_info;
1324
1325 if (chan->channel < 0)
1326 return 0;
1327 ret = iio_device_add_info_mask_type(indio_dev, chan,
1328 IIO_SEPARATE,
1329 &chan->info_mask_separate);
1330 if (ret < 0)
1331 return ret;
1332 attrcount += ret;
1333
1334 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1335 IIO_SEPARATE,
1336 &chan->info_mask_separate_available);
1337 if (ret < 0)
1338 return ret;
1339 attrcount += ret;
1340
1341 ret = iio_device_add_info_mask_type(indio_dev, chan,
1342 IIO_SHARED_BY_TYPE,
1343 &chan->info_mask_shared_by_type);
1344 if (ret < 0)
1345 return ret;
1346 attrcount += ret;
1347
1348 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1349 IIO_SHARED_BY_TYPE,
1350 &chan->info_mask_shared_by_type_available);
1351 if (ret < 0)
1352 return ret;
1353 attrcount += ret;
1354
1355 ret = iio_device_add_info_mask_type(indio_dev, chan,
1356 IIO_SHARED_BY_DIR,
1357 &chan->info_mask_shared_by_dir);
1358 if (ret < 0)
1359 return ret;
1360 attrcount += ret;
1361
1362 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1363 IIO_SHARED_BY_DIR,
1364 &chan->info_mask_shared_by_dir_available);
1365 if (ret < 0)
1366 return ret;
1367 attrcount += ret;
1368
1369 ret = iio_device_add_info_mask_type(indio_dev, chan,
1370 IIO_SHARED_BY_ALL,
1371 &chan->info_mask_shared_by_all);
1372 if (ret < 0)
1373 return ret;
1374 attrcount += ret;
1375
1376 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1377 IIO_SHARED_BY_ALL,
1378 &chan->info_mask_shared_by_all_available);
1379 if (ret < 0)
1380 return ret;
1381 attrcount += ret;
1382
1383 ret = iio_device_add_channel_label(indio_dev, chan);
1384 if (ret < 0)
1385 return ret;
1386 attrcount += ret;
1387
1388 if (chan->ext_info) {
1389 unsigned int i = 0;
1390
1391 for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1392 ret = __iio_add_chan_devattr(ext_info->name,
1393 chan,
1394 ext_info->read ?
1395 &iio_read_channel_ext_info : NULL,
1396 ext_info->write ?
1397 &iio_write_channel_ext_info : NULL,
1398 i,
1399 ext_info->shared,
1400 &indio_dev->dev,
1401 NULL,
1402 &iio_dev_opaque->channel_attr_list);
1403 i++;
1404 if (ret == -EBUSY && ext_info->shared)
1405 continue;
1406
1407 if (ret)
1408 return ret;
1409
1410 attrcount++;
1411 }
1412 }
1413
1414 return attrcount;
1415 }
1416
1417 /**
1418 * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1419 * @attr_list: List of IIO device attributes
1420 *
1421 * This function frees the memory allocated for each of the IIO device
1422 * attributes in the list.
1423 */
iio_free_chan_devattr_list(struct list_head * attr_list)1424 void iio_free_chan_devattr_list(struct list_head *attr_list)
1425 {
1426 struct iio_dev_attr *p, *n;
1427
1428 list_for_each_entry_safe(p, n, attr_list, l) {
1429 kfree_const(p->dev_attr.attr.name);
1430 list_del(&p->l);
1431 kfree(p);
1432 }
1433 }
1434
name_show(struct device * dev,struct device_attribute * attr,char * buf)1435 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
1436 char *buf)
1437 {
1438 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1439
1440 return sysfs_emit(buf, "%s\n", indio_dev->name);
1441 }
1442
1443 static DEVICE_ATTR_RO(name);
1444
label_show(struct device * dev,struct device_attribute * attr,char * buf)1445 static ssize_t label_show(struct device *dev, struct device_attribute *attr,
1446 char *buf)
1447 {
1448 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1449
1450 return sysfs_emit(buf, "%s\n", indio_dev->label);
1451 }
1452
1453 static DEVICE_ATTR_RO(label);
1454
1455 static const char * const clock_names[] = {
1456 [CLOCK_REALTIME] = "realtime",
1457 [CLOCK_MONOTONIC] = "monotonic",
1458 [CLOCK_PROCESS_CPUTIME_ID] = "process_cputime_id",
1459 [CLOCK_THREAD_CPUTIME_ID] = "thread_cputime_id",
1460 [CLOCK_MONOTONIC_RAW] = "monotonic_raw",
1461 [CLOCK_REALTIME_COARSE] = "realtime_coarse",
1462 [CLOCK_MONOTONIC_COARSE] = "monotonic_coarse",
1463 [CLOCK_BOOTTIME] = "boottime",
1464 [CLOCK_REALTIME_ALARM] = "realtime_alarm",
1465 [CLOCK_BOOTTIME_ALARM] = "boottime_alarm",
1466 [CLOCK_SGI_CYCLE] = "sgi_cycle",
1467 [CLOCK_TAI] = "tai",
1468 };
1469
current_timestamp_clock_show(struct device * dev,struct device_attribute * attr,char * buf)1470 static ssize_t current_timestamp_clock_show(struct device *dev,
1471 struct device_attribute *attr,
1472 char *buf)
1473 {
1474 const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1475 const clockid_t clk = iio_device_get_clock(indio_dev);
1476
1477 switch (clk) {
1478 case CLOCK_REALTIME:
1479 case CLOCK_MONOTONIC:
1480 case CLOCK_MONOTONIC_RAW:
1481 case CLOCK_REALTIME_COARSE:
1482 case CLOCK_MONOTONIC_COARSE:
1483 case CLOCK_BOOTTIME:
1484 case CLOCK_TAI:
1485 break;
1486 default:
1487 BUG();
1488 }
1489
1490 return sysfs_emit(buf, "%s\n", clock_names[clk]);
1491 }
1492
current_timestamp_clock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1493 static ssize_t current_timestamp_clock_store(struct device *dev,
1494 struct device_attribute *attr,
1495 const char *buf, size_t len)
1496 {
1497 clockid_t clk;
1498 int ret;
1499
1500 ret = sysfs_match_string(clock_names, buf);
1501 if (ret < 0)
1502 return ret;
1503 clk = ret;
1504
1505 switch (clk) {
1506 case CLOCK_REALTIME:
1507 case CLOCK_MONOTONIC:
1508 case CLOCK_MONOTONIC_RAW:
1509 case CLOCK_REALTIME_COARSE:
1510 case CLOCK_MONOTONIC_COARSE:
1511 case CLOCK_BOOTTIME:
1512 case CLOCK_TAI:
1513 break;
1514 default:
1515 return -EINVAL;
1516 }
1517
1518 ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1519 if (ret)
1520 return ret;
1521
1522 return len;
1523 }
1524
iio_device_register_sysfs_group(struct iio_dev * indio_dev,const struct attribute_group * group)1525 int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1526 const struct attribute_group *group)
1527 {
1528 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1529 const struct attribute_group **new, **old = iio_dev_opaque->groups;
1530 unsigned int cnt = iio_dev_opaque->groupcounter;
1531
1532 new = krealloc_array(old, cnt + 2, sizeof(*new), GFP_KERNEL);
1533 if (!new)
1534 return -ENOMEM;
1535
1536 new[iio_dev_opaque->groupcounter++] = group;
1537 new[iio_dev_opaque->groupcounter] = NULL;
1538
1539 iio_dev_opaque->groups = new;
1540
1541 return 0;
1542 }
1543
1544 static DEVICE_ATTR_RW(current_timestamp_clock);
1545
iio_device_register_sysfs(struct iio_dev * indio_dev)1546 static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1547 {
1548 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1549 int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1550 struct iio_dev_attr *p;
1551 struct attribute **attr, *clk = NULL;
1552
1553 /* First count elements in any existing group */
1554 if (indio_dev->info->attrs) {
1555 attr = indio_dev->info->attrs->attrs;
1556 while (*attr++ != NULL)
1557 attrcount_orig++;
1558 }
1559 attrcount = attrcount_orig;
1560 /*
1561 * New channel registration method - relies on the fact a group does
1562 * not need to be initialized if its name is NULL.
1563 */
1564 if (indio_dev->channels)
1565 for (i = 0; i < indio_dev->num_channels; i++) {
1566 const struct iio_chan_spec *chan =
1567 &indio_dev->channels[i];
1568
1569 if (chan->type == IIO_TIMESTAMP)
1570 clk = &dev_attr_current_timestamp_clock.attr;
1571
1572 ret = iio_device_add_channel_sysfs(indio_dev, chan);
1573 if (ret < 0)
1574 goto error_clear_attrs;
1575 attrcount += ret;
1576 }
1577
1578 if (iio_dev_opaque->event_interface)
1579 clk = &dev_attr_current_timestamp_clock.attr;
1580
1581 if (indio_dev->name)
1582 attrcount++;
1583 if (indio_dev->label)
1584 attrcount++;
1585 if (clk)
1586 attrcount++;
1587
1588 iio_dev_opaque->chan_attr_group.attrs =
1589 kcalloc(attrcount + 1,
1590 sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1591 GFP_KERNEL);
1592 if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1593 ret = -ENOMEM;
1594 goto error_clear_attrs;
1595 }
1596 /* Copy across original attributes, and point to original binary attributes */
1597 if (indio_dev->info->attrs) {
1598 memcpy(iio_dev_opaque->chan_attr_group.attrs,
1599 indio_dev->info->attrs->attrs,
1600 sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1601 *attrcount_orig);
1602 iio_dev_opaque->chan_attr_group.is_visible =
1603 indio_dev->info->attrs->is_visible;
1604 iio_dev_opaque->chan_attr_group.bin_attrs =
1605 indio_dev->info->attrs->bin_attrs;
1606 }
1607 attrn = attrcount_orig;
1608 /* Add all elements from the list. */
1609 list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1610 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1611 if (indio_dev->name)
1612 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1613 if (indio_dev->label)
1614 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1615 if (clk)
1616 iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1617
1618 ret = iio_device_register_sysfs_group(indio_dev,
1619 &iio_dev_opaque->chan_attr_group);
1620 if (ret)
1621 goto error_free_chan_attrs;
1622
1623 return 0;
1624
1625 error_free_chan_attrs:
1626 kfree(iio_dev_opaque->chan_attr_group.attrs);
1627 iio_dev_opaque->chan_attr_group.attrs = NULL;
1628 error_clear_attrs:
1629 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1630
1631 return ret;
1632 }
1633
iio_device_unregister_sysfs(struct iio_dev * indio_dev)1634 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1635 {
1636 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1637
1638 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1639 kfree(iio_dev_opaque->chan_attr_group.attrs);
1640 iio_dev_opaque->chan_attr_group.attrs = NULL;
1641 kfree(iio_dev_opaque->groups);
1642 iio_dev_opaque->groups = NULL;
1643 }
1644
iio_dev_release(struct device * device)1645 static void iio_dev_release(struct device *device)
1646 {
1647 struct iio_dev *indio_dev = dev_to_iio_dev(device);
1648 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1649
1650 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1651 iio_device_unregister_trigger_consumer(indio_dev);
1652 iio_device_unregister_eventset(indio_dev);
1653 iio_device_unregister_sysfs(indio_dev);
1654
1655 iio_device_detach_buffers(indio_dev);
1656
1657 lockdep_unregister_key(&iio_dev_opaque->mlock_key);
1658
1659 ida_free(&iio_ida, iio_dev_opaque->id);
1660 kfree(iio_dev_opaque);
1661 }
1662
1663 const struct device_type iio_device_type = {
1664 .name = "iio_device",
1665 .release = iio_dev_release,
1666 };
1667
1668 /**
1669 * iio_device_alloc() - allocate an iio_dev from a driver
1670 * @parent: Parent device.
1671 * @sizeof_priv: Space to allocate for private structure.
1672 *
1673 * Returns:
1674 * Pointer to allocated iio_dev on success, NULL on failure.
1675 */
iio_device_alloc(struct device * parent,int sizeof_priv)1676 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1677 {
1678 struct iio_dev_opaque *iio_dev_opaque;
1679 struct iio_dev *indio_dev;
1680 size_t alloc_size;
1681
1682 if (sizeof_priv)
1683 alloc_size = ALIGN(sizeof(*iio_dev_opaque), IIO_DMA_MINALIGN) + sizeof_priv;
1684 else
1685 alloc_size = sizeof(*iio_dev_opaque);
1686
1687 iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1688 if (!iio_dev_opaque)
1689 return NULL;
1690
1691 indio_dev = &iio_dev_opaque->indio_dev;
1692
1693 if (sizeof_priv)
1694 ACCESS_PRIVATE(indio_dev, priv) = (char *)iio_dev_opaque +
1695 ALIGN(sizeof(*iio_dev_opaque), IIO_DMA_MINALIGN);
1696
1697 indio_dev->dev.parent = parent;
1698 indio_dev->dev.type = &iio_device_type;
1699 indio_dev->dev.bus = &iio_bus_type;
1700 device_initialize(&indio_dev->dev);
1701 mutex_init(&iio_dev_opaque->mlock);
1702 mutex_init(&iio_dev_opaque->info_exist_lock);
1703 INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1704
1705 iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL);
1706 if (iio_dev_opaque->id < 0) {
1707 /* cannot use a dev_err as the name isn't available */
1708 pr_err("failed to get device id\n");
1709 kfree(iio_dev_opaque);
1710 return NULL;
1711 }
1712
1713 if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
1714 ida_free(&iio_ida, iio_dev_opaque->id);
1715 kfree(iio_dev_opaque);
1716 return NULL;
1717 }
1718
1719 INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1720 INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1721
1722 lockdep_register_key(&iio_dev_opaque->mlock_key);
1723 lockdep_set_class(&iio_dev_opaque->mlock, &iio_dev_opaque->mlock_key);
1724
1725 return indio_dev;
1726 }
1727 EXPORT_SYMBOL(iio_device_alloc);
1728
1729 /**
1730 * iio_device_free() - free an iio_dev from a driver
1731 * @dev: the iio_dev associated with the device
1732 */
iio_device_free(struct iio_dev * dev)1733 void iio_device_free(struct iio_dev *dev)
1734 {
1735 if (dev)
1736 put_device(&dev->dev);
1737 }
1738 EXPORT_SYMBOL(iio_device_free);
1739
devm_iio_device_release(void * iio_dev)1740 static void devm_iio_device_release(void *iio_dev)
1741 {
1742 iio_device_free(iio_dev);
1743 }
1744
1745 /**
1746 * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1747 * @parent: Device to allocate iio_dev for, and parent for this IIO device
1748 * @sizeof_priv: Space to allocate for private structure.
1749 *
1750 * Managed iio_device_alloc. iio_dev allocated with this function is
1751 * automatically freed on driver detach.
1752 *
1753 * Returns:
1754 * Pointer to allocated iio_dev on success, NULL on failure.
1755 */
devm_iio_device_alloc(struct device * parent,int sizeof_priv)1756 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1757 {
1758 struct iio_dev *iio_dev;
1759 int ret;
1760
1761 iio_dev = iio_device_alloc(parent, sizeof_priv);
1762 if (!iio_dev)
1763 return NULL;
1764
1765 ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1766 iio_dev);
1767 if (ret)
1768 return NULL;
1769
1770 return iio_dev;
1771 }
1772 EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1773
1774 /**
1775 * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1776 * @inode: Inode structure for identifying the device in the file system
1777 * @filp: File structure for iio device used to keep and later access
1778 * private data
1779 *
1780 * Returns: 0 on success or -EBUSY if the device is already opened
1781 */
iio_chrdev_open(struct inode * inode,struct file * filp)1782 static int iio_chrdev_open(struct inode *inode, struct file *filp)
1783 {
1784 struct iio_dev_opaque *iio_dev_opaque =
1785 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1786 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1787 struct iio_dev_buffer_pair *ib;
1788
1789 if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1790 return -EBUSY;
1791
1792 iio_device_get(indio_dev);
1793
1794 ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1795 if (!ib) {
1796 iio_device_put(indio_dev);
1797 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1798 return -ENOMEM;
1799 }
1800
1801 ib->indio_dev = indio_dev;
1802 ib->buffer = indio_dev->buffer;
1803
1804 filp->private_data = ib;
1805
1806 return 0;
1807 }
1808
1809 /**
1810 * iio_chrdev_release() - chrdev file close buffer access and ioctls
1811 * @inode: Inode structure pointer for the char device
1812 * @filp: File structure pointer for the char device
1813 *
1814 * Returns: 0 for successful release.
1815 */
iio_chrdev_release(struct inode * inode,struct file * filp)1816 static int iio_chrdev_release(struct inode *inode, struct file *filp)
1817 {
1818 struct iio_dev_buffer_pair *ib = filp->private_data;
1819 struct iio_dev_opaque *iio_dev_opaque =
1820 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1821 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1822
1823 kfree(ib);
1824 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1825 iio_device_put(indio_dev);
1826
1827 return 0;
1828 }
1829
iio_device_ioctl_handler_register(struct iio_dev * indio_dev,struct iio_ioctl_handler * h)1830 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1831 struct iio_ioctl_handler *h)
1832 {
1833 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1834
1835 list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1836 }
1837
iio_device_ioctl_handler_unregister(struct iio_ioctl_handler * h)1838 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1839 {
1840 list_del(&h->entry);
1841 }
1842
iio_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1843 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1844 {
1845 struct iio_dev_buffer_pair *ib = filp->private_data;
1846 struct iio_dev *indio_dev = ib->indio_dev;
1847 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1848 struct iio_ioctl_handler *h;
1849 int ret;
1850
1851 guard(mutex)(&iio_dev_opaque->info_exist_lock);
1852 /*
1853 * The NULL check here is required to prevent crashing when a device
1854 * is being removed while userspace would still have open file handles
1855 * to try to access this device.
1856 */
1857 if (!indio_dev->info)
1858 return -ENODEV;
1859
1860 list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1861 ret = h->ioctl(indio_dev, filp, cmd, arg);
1862 if (ret != IIO_IOCTL_UNHANDLED)
1863 return ret;
1864 }
1865
1866 return -ENODEV;
1867 }
1868
1869 static const struct file_operations iio_buffer_fileops = {
1870 .owner = THIS_MODULE,
1871 .llseek = noop_llseek,
1872 .read = iio_buffer_read_outer_addr,
1873 .write = iio_buffer_write_outer_addr,
1874 .poll = iio_buffer_poll_addr,
1875 .unlocked_ioctl = iio_ioctl,
1876 .compat_ioctl = compat_ptr_ioctl,
1877 .open = iio_chrdev_open,
1878 .release = iio_chrdev_release,
1879 };
1880
1881 static const struct file_operations iio_event_fileops = {
1882 .owner = THIS_MODULE,
1883 .llseek = noop_llseek,
1884 .unlocked_ioctl = iio_ioctl,
1885 .compat_ioctl = compat_ptr_ioctl,
1886 .open = iio_chrdev_open,
1887 .release = iio_chrdev_release,
1888 };
1889
iio_check_unique_scan_index(struct iio_dev * indio_dev)1890 static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1891 {
1892 int i, j;
1893 const struct iio_chan_spec *channels = indio_dev->channels;
1894
1895 if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1896 return 0;
1897
1898 for (i = 0; i < indio_dev->num_channels - 1; i++) {
1899 if (channels[i].scan_index < 0)
1900 continue;
1901 for (j = i + 1; j < indio_dev->num_channels; j++)
1902 if (channels[i].scan_index == channels[j].scan_index) {
1903 dev_err(&indio_dev->dev,
1904 "Duplicate scan index %d\n",
1905 channels[i].scan_index);
1906 return -EINVAL;
1907 }
1908 }
1909
1910 return 0;
1911 }
1912
iio_check_extended_name(const struct iio_dev * indio_dev)1913 static int iio_check_extended_name(const struct iio_dev *indio_dev)
1914 {
1915 unsigned int i;
1916
1917 if (!indio_dev->info->read_label)
1918 return 0;
1919
1920 for (i = 0; i < indio_dev->num_channels; i++) {
1921 if (indio_dev->channels[i].extend_name) {
1922 dev_err(&indio_dev->dev,
1923 "Cannot use labels and extend_name at the same time\n");
1924 return -EINVAL;
1925 }
1926 }
1927
1928 return 0;
1929 }
1930
1931 static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1932
iio_sanity_check_avail_scan_masks(struct iio_dev * indio_dev)1933 static void iio_sanity_check_avail_scan_masks(struct iio_dev *indio_dev)
1934 {
1935 unsigned int num_masks, masklength, longs_per_mask;
1936 const unsigned long *av_masks;
1937 int i;
1938
1939 av_masks = indio_dev->available_scan_masks;
1940 masklength = iio_get_masklength(indio_dev);
1941 longs_per_mask = BITS_TO_LONGS(masklength);
1942
1943 /*
1944 * The code determining how many available_scan_masks is in the array
1945 * will be assuming the end of masks when first long with all bits
1946 * zeroed is encountered. This is incorrect for masks where mask
1947 * consists of more than one long, and where some of the available masks
1948 * has long worth of bits zeroed (but has subsequent bit(s) set). This
1949 * is a safety measure against bug where array of masks is terminated by
1950 * a single zero while mask width is greater than width of a long.
1951 */
1952 if (longs_per_mask > 1)
1953 dev_warn(indio_dev->dev.parent,
1954 "multi long available scan masks not fully supported\n");
1955
1956 if (bitmap_empty(av_masks, masklength))
1957 dev_warn(indio_dev->dev.parent, "empty scan mask\n");
1958
1959 for (num_masks = 0; *av_masks; num_masks++)
1960 av_masks += longs_per_mask;
1961
1962 if (num_masks < 2)
1963 return;
1964
1965 av_masks = indio_dev->available_scan_masks;
1966
1967 /*
1968 * Go through all the masks from first to one before the last, and see
1969 * that no mask found later from the available_scan_masks array is a
1970 * subset of mask found earlier. If this happens, then the mask found
1971 * later will never get used because scanning the array is stopped when
1972 * the first suitable mask is found. Drivers should order the array of
1973 * available masks in the order of preference (presumably the least
1974 * costy to access masks first).
1975 */
1976 for (i = 0; i < num_masks - 1; i++) {
1977 const unsigned long *mask1;
1978 int j;
1979
1980 mask1 = av_masks + i * longs_per_mask;
1981 for (j = i + 1; j < num_masks; j++) {
1982 const unsigned long *mask2;
1983
1984 mask2 = av_masks + j * longs_per_mask;
1985 if (bitmap_subset(mask2, mask1, masklength))
1986 dev_warn(indio_dev->dev.parent,
1987 "available_scan_mask %d subset of %d. Never used\n",
1988 j, i);
1989 }
1990 }
1991 }
1992
1993 /**
1994 * iio_active_scan_mask_index - Get index of the active scan mask inside the
1995 * available scan masks array
1996 * @indio_dev: the IIO device containing the active and available scan masks
1997 *
1998 * Returns: the index or -EINVAL if active_scan_mask is not set
1999 */
iio_active_scan_mask_index(struct iio_dev * indio_dev)2000 int iio_active_scan_mask_index(struct iio_dev *indio_dev)
2001
2002 {
2003 const unsigned long *av_masks;
2004 unsigned int masklength = iio_get_masklength(indio_dev);
2005 int i = 0;
2006
2007 if (!indio_dev->active_scan_mask)
2008 return -EINVAL;
2009
2010 /*
2011 * As in iio_scan_mask_match and iio_sanity_check_avail_scan_masks,
2012 * the condition here do not handle multi-long masks correctly.
2013 * It only checks the first long to be zero, and will use such mask
2014 * as a terminator even if there was bits set after the first long.
2015 *
2016 * This should be fine since the available_scan_mask has already been
2017 * sanity tested using iio_sanity_check_avail_scan_masks.
2018 *
2019 * See iio_scan_mask_match and iio_sanity_check_avail_scan_masks for
2020 * more details
2021 */
2022 av_masks = indio_dev->available_scan_masks;
2023 while (*av_masks) {
2024 if (indio_dev->active_scan_mask == av_masks)
2025 return i;
2026 av_masks += BITS_TO_LONGS(masklength);
2027 i++;
2028 }
2029
2030 dev_warn(indio_dev->dev.parent,
2031 "active scan mask is not part of the available scan masks\n");
2032 return -EINVAL;
2033 }
2034 EXPORT_SYMBOL_GPL(iio_active_scan_mask_index);
2035
__iio_device_register(struct iio_dev * indio_dev,struct module * this_mod)2036 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
2037 {
2038 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2039 struct fwnode_handle *fwnode = NULL;
2040 int ret;
2041
2042 if (!indio_dev->info)
2043 return -EINVAL;
2044
2045 iio_dev_opaque->driver_module = this_mod;
2046
2047 /* If the calling driver did not initialize firmware node, do it here */
2048 if (dev_fwnode(&indio_dev->dev))
2049 fwnode = dev_fwnode(&indio_dev->dev);
2050 /* The default dummy IIO device has no parent */
2051 else if (indio_dev->dev.parent)
2052 fwnode = dev_fwnode(indio_dev->dev.parent);
2053 device_set_node(&indio_dev->dev, fwnode);
2054
2055 fwnode_property_read_string(fwnode, "label", &indio_dev->label);
2056
2057 ret = iio_check_unique_scan_index(indio_dev);
2058 if (ret < 0)
2059 return ret;
2060
2061 ret = iio_check_extended_name(indio_dev);
2062 if (ret < 0)
2063 return ret;
2064
2065 iio_device_register_debugfs(indio_dev);
2066
2067 ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
2068 if (ret) {
2069 dev_err(indio_dev->dev.parent,
2070 "Failed to create buffer sysfs interfaces\n");
2071 goto error_unreg_debugfs;
2072 }
2073
2074 if (indio_dev->available_scan_masks)
2075 iio_sanity_check_avail_scan_masks(indio_dev);
2076
2077 ret = iio_device_register_sysfs(indio_dev);
2078 if (ret) {
2079 dev_err(indio_dev->dev.parent,
2080 "Failed to register sysfs interfaces\n");
2081 goto error_buffer_free_sysfs;
2082 }
2083 ret = iio_device_register_eventset(indio_dev);
2084 if (ret) {
2085 dev_err(indio_dev->dev.parent,
2086 "Failed to register event set\n");
2087 goto error_free_sysfs;
2088 }
2089 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
2090 iio_device_register_trigger_consumer(indio_dev);
2091
2092 if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
2093 indio_dev->setup_ops == NULL)
2094 indio_dev->setup_ops = &noop_ring_setup_ops;
2095
2096 if (iio_dev_opaque->attached_buffers_cnt)
2097 cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
2098 else if (iio_dev_opaque->event_interface)
2099 cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
2100
2101 if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
2102 indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
2103 iio_dev_opaque->chrdev.owner = this_mod;
2104 }
2105
2106 /* assign device groups now; they should be all registered now */
2107 indio_dev->dev.groups = iio_dev_opaque->groups;
2108
2109 ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
2110 if (ret < 0)
2111 goto error_unreg_eventset;
2112
2113 return 0;
2114
2115 error_unreg_eventset:
2116 iio_device_unregister_eventset(indio_dev);
2117 error_free_sysfs:
2118 iio_device_unregister_sysfs(indio_dev);
2119 error_buffer_free_sysfs:
2120 iio_buffers_free_sysfs_and_mask(indio_dev);
2121 error_unreg_debugfs:
2122 iio_device_unregister_debugfs(indio_dev);
2123 return ret;
2124 }
2125 EXPORT_SYMBOL(__iio_device_register);
2126
2127 /**
2128 * iio_device_unregister() - unregister a device from the IIO subsystem
2129 * @indio_dev: Device structure representing the device.
2130 */
iio_device_unregister(struct iio_dev * indio_dev)2131 void iio_device_unregister(struct iio_dev *indio_dev)
2132 {
2133 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2134
2135 cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
2136
2137 scoped_guard(mutex, &iio_dev_opaque->info_exist_lock) {
2138 iio_device_unregister_debugfs(indio_dev);
2139
2140 iio_disable_all_buffers(indio_dev);
2141
2142 indio_dev->info = NULL;
2143
2144 iio_device_wakeup_eventset(indio_dev);
2145 iio_buffer_wakeup_poll(indio_dev);
2146 }
2147
2148 iio_buffers_free_sysfs_and_mask(indio_dev);
2149 }
2150 EXPORT_SYMBOL(iio_device_unregister);
2151
devm_iio_device_unreg(void * indio_dev)2152 static void devm_iio_device_unreg(void *indio_dev)
2153 {
2154 iio_device_unregister(indio_dev);
2155 }
2156
__devm_iio_device_register(struct device * dev,struct iio_dev * indio_dev,struct module * this_mod)2157 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
2158 struct module *this_mod)
2159 {
2160 int ret;
2161
2162 ret = __iio_device_register(indio_dev, this_mod);
2163 if (ret)
2164 return ret;
2165
2166 return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
2167 }
2168 EXPORT_SYMBOL_GPL(__devm_iio_device_register);
2169
2170 /**
2171 * __iio_device_claim_direct - Keep device in direct mode
2172 * @indio_dev: the iio_dev associated with the device
2173 *
2174 * If the device is in direct mode it is guaranteed to stay
2175 * that way until __iio_device_release_direct() is called.
2176 *
2177 * Use with __iio_device_release_direct().
2178 *
2179 * Drivers should only call iio_device_claim_direct().
2180 *
2181 * Returns: true on success, false on failure.
2182 */
__iio_device_claim_direct(struct iio_dev * indio_dev)2183 bool __iio_device_claim_direct(struct iio_dev *indio_dev)
2184 {
2185 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2186
2187 mutex_lock(&iio_dev_opaque->mlock);
2188
2189 if (iio_buffer_enabled(indio_dev)) {
2190 mutex_unlock(&iio_dev_opaque->mlock);
2191 return false;
2192 }
2193 return true;
2194 }
2195 EXPORT_SYMBOL_GPL(__iio_device_claim_direct);
2196
2197 /**
2198 * __iio_device_release_direct - releases claim on direct mode
2199 * @indio_dev: the iio_dev associated with the device
2200 *
2201 * Release the claim. Device is no longer guaranteed to stay
2202 * in direct mode.
2203 *
2204 * Drivers should only call iio_device_release_direct().
2205 *
2206 * Use with __iio_device_claim_direct()
2207 */
__iio_device_release_direct(struct iio_dev * indio_dev)2208 void __iio_device_release_direct(struct iio_dev *indio_dev)
2209 {
2210 mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2211 }
2212 EXPORT_SYMBOL_GPL(__iio_device_release_direct);
2213
2214 /**
2215 * iio_device_claim_buffer_mode - Keep device in buffer mode
2216 * @indio_dev: the iio_dev associated with the device
2217 *
2218 * If the device is in buffer mode it is guaranteed to stay
2219 * that way until iio_device_release_buffer_mode() is called.
2220 *
2221 * Use with iio_device_release_buffer_mode().
2222 *
2223 * Returns: 0 on success, -EBUSY on failure.
2224 */
iio_device_claim_buffer_mode(struct iio_dev * indio_dev)2225 int iio_device_claim_buffer_mode(struct iio_dev *indio_dev)
2226 {
2227 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2228
2229 mutex_lock(&iio_dev_opaque->mlock);
2230
2231 if (iio_buffer_enabled(indio_dev))
2232 return 0;
2233
2234 mutex_unlock(&iio_dev_opaque->mlock);
2235 return -EBUSY;
2236 }
2237 EXPORT_SYMBOL_GPL(iio_device_claim_buffer_mode);
2238
2239 /**
2240 * iio_device_release_buffer_mode - releases claim on buffer mode
2241 * @indio_dev: the iio_dev associated with the device
2242 *
2243 * Release the claim. Device is no longer guaranteed to stay
2244 * in buffer mode.
2245 *
2246 * Use with iio_device_claim_buffer_mode().
2247 */
iio_device_release_buffer_mode(struct iio_dev * indio_dev)2248 void iio_device_release_buffer_mode(struct iio_dev *indio_dev)
2249 {
2250 mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2251 }
2252 EXPORT_SYMBOL_GPL(iio_device_release_buffer_mode);
2253
2254 /**
2255 * iio_device_get_current_mode() - helper function providing read-only access to
2256 * the opaque @currentmode variable
2257 * @indio_dev: IIO device structure for device
2258 */
iio_device_get_current_mode(struct iio_dev * indio_dev)2259 int iio_device_get_current_mode(struct iio_dev *indio_dev)
2260 {
2261 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2262
2263 return iio_dev_opaque->currentmode;
2264 }
2265 EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
2266
2267 subsys_initcall(iio_init);
2268 module_exit(iio_exit);
2269
2270 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2271 MODULE_DESCRIPTION("Industrial I/O core");
2272 MODULE_LICENSE("GPL");
2273