xref: /qemu/util/thread-pool.c (revision 2400fad572906127e9d453b92f90806d66583dc7)
1 /*
2  * QEMU block layer thread pool
3  *
4  * Copyright IBM, Corp. 2008
5  * Copyright Red Hat, Inc. 2012
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Paolo Bonzini     <pbonzini@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2.  See
12  * the COPYING file in the top-level directory.
13  *
14  * Contributions after 2012-01-13 are licensed under the terms of the
15  * GNU GPL, version 2 or (at your option) any later version.
16  */
17 #include "qemu/osdep.h"
18 #include "qemu/defer-call.h"
19 #include "qemu/queue.h"
20 #include "qemu/thread.h"
21 #include "qemu/coroutine.h"
22 #include "trace.h"
23 #include "block/thread-pool.h"
24 #include "qemu/main-loop.h"
25 
26 static void do_spawn_thread(ThreadPoolAio *pool);
27 
28 typedef struct ThreadPoolElementAio ThreadPoolElementAio;
29 
30 enum ThreadState {
31     THREAD_QUEUED,
32     THREAD_ACTIVE,
33     THREAD_DONE,
34 };
35 
36 struct ThreadPoolElementAio {
37     BlockAIOCB common;
38     ThreadPoolAio *pool;
39     ThreadPoolFunc *func;
40     void *arg;
41 
42     /* Moving state out of THREAD_QUEUED is protected by lock.  After
43      * that, only the worker thread can write to it.  Reads and writes
44      * of state and ret are ordered with memory barriers.
45      */
46     enum ThreadState state;
47     int ret;
48 
49     /* Access to this list is protected by lock.  */
50     QTAILQ_ENTRY(ThreadPoolElementAio) reqs;
51 
52     /* This list is only written by the thread pool's mother thread.  */
53     QLIST_ENTRY(ThreadPoolElementAio) all;
54 };
55 
56 struct ThreadPoolAio {
57     AioContext *ctx;
58     QEMUBH *completion_bh;
59     QemuMutex lock;
60     QemuCond worker_stopped;
61     QemuCond request_cond;
62     QEMUBH *new_thread_bh;
63 
64     /* The following variables are only accessed from one AioContext. */
65     QLIST_HEAD(, ThreadPoolElementAio) head;
66 
67     /* The following variables are protected by lock.  */
68     QTAILQ_HEAD(, ThreadPoolElementAio) request_list;
69     int cur_threads;
70     int idle_threads;
71     int new_threads;     /* backlog of threads we need to create */
72     int pending_threads; /* threads created but not running yet */
73     int min_threads;
74     int max_threads;
75 };
76 
worker_thread(void * opaque)77 static void *worker_thread(void *opaque)
78 {
79     ThreadPoolAio *pool = opaque;
80 
81     qemu_mutex_lock(&pool->lock);
82     pool->pending_threads--;
83     do_spawn_thread(pool);
84 
85     while (pool->cur_threads <= pool->max_threads) {
86         ThreadPoolElementAio *req;
87         int ret;
88 
89         if (QTAILQ_EMPTY(&pool->request_list)) {
90             pool->idle_threads++;
91             ret = qemu_cond_timedwait(&pool->request_cond, &pool->lock, 10000);
92             pool->idle_threads--;
93             if (ret == 0 &&
94                 QTAILQ_EMPTY(&pool->request_list) &&
95                 pool->cur_threads > pool->min_threads) {
96                 /* Timed out + no work to do + no need for warm threads = exit.  */
97                 break;
98             }
99             /*
100              * Even if there was some work to do, check if there aren't
101              * too many worker threads before picking it up.
102              */
103             continue;
104         }
105 
106         req = QTAILQ_FIRST(&pool->request_list);
107         QTAILQ_REMOVE(&pool->request_list, req, reqs);
108         req->state = THREAD_ACTIVE;
109         qemu_mutex_unlock(&pool->lock);
110 
111         ret = req->func(req->arg);
112 
113         req->ret = ret;
114         /* Write ret before state.  */
115         smp_wmb();
116         req->state = THREAD_DONE;
117 
118         qemu_bh_schedule(pool->completion_bh);
119         qemu_mutex_lock(&pool->lock);
120     }
121 
122     pool->cur_threads--;
123     qemu_cond_signal(&pool->worker_stopped);
124 
125     /*
126      * Wake up another thread, in case we got a wakeup but decided
127      * to exit due to pool->cur_threads > pool->max_threads.
128      */
129     qemu_cond_signal(&pool->request_cond);
130     qemu_mutex_unlock(&pool->lock);
131     return NULL;
132 }
133 
do_spawn_thread(ThreadPoolAio * pool)134 static void do_spawn_thread(ThreadPoolAio *pool)
135 {
136     QemuThread t;
137 
138     /* Runs with lock taken.  */
139     if (!pool->new_threads) {
140         return;
141     }
142 
143     pool->new_threads--;
144     pool->pending_threads++;
145 
146     qemu_thread_create(&t, "worker", worker_thread, pool, QEMU_THREAD_DETACHED);
147 }
148 
spawn_thread_bh_fn(void * opaque)149 static void spawn_thread_bh_fn(void *opaque)
150 {
151     ThreadPoolAio *pool = opaque;
152 
153     qemu_mutex_lock(&pool->lock);
154     do_spawn_thread(pool);
155     qemu_mutex_unlock(&pool->lock);
156 }
157 
spawn_thread(ThreadPoolAio * pool)158 static void spawn_thread(ThreadPoolAio *pool)
159 {
160     pool->cur_threads++;
161     pool->new_threads++;
162     /* If there are threads being created, they will spawn new workers, so
163      * we don't spend time creating many threads in a loop holding a mutex or
164      * starving the current vcpu.
165      *
166      * If there are no idle threads, ask the main thread to create one, so we
167      * inherit the correct affinity instead of the vcpu affinity.
168      */
169     if (!pool->pending_threads) {
170         qemu_bh_schedule(pool->new_thread_bh);
171     }
172 }
173 
thread_pool_completion_bh(void * opaque)174 static void thread_pool_completion_bh(void *opaque)
175 {
176     ThreadPoolAio *pool = opaque;
177     ThreadPoolElementAio *elem, *next;
178 
179     defer_call_begin(); /* cb() may use defer_call() to coalesce work */
180 
181 restart:
182     QLIST_FOREACH_SAFE(elem, &pool->head, all, next) {
183         if (elem->state != THREAD_DONE) {
184             continue;
185         }
186 
187         trace_thread_pool_complete_aio(pool, elem, elem->common.opaque,
188                                        elem->ret);
189         QLIST_REMOVE(elem, all);
190 
191         if (elem->common.cb) {
192             /* Read state before ret.  */
193             smp_rmb();
194 
195             /* Schedule ourselves in case elem->common.cb() calls aio_poll() to
196              * wait for another request that completed at the same time.
197              */
198             qemu_bh_schedule(pool->completion_bh);
199 
200             elem->common.cb(elem->common.opaque, elem->ret);
201 
202             /* We can safely cancel the completion_bh here regardless of someone
203              * else having scheduled it meanwhile because we reenter the
204              * completion function anyway (goto restart).
205              */
206             qemu_bh_cancel(pool->completion_bh);
207 
208             qemu_aio_unref(elem);
209             goto restart;
210         } else {
211             qemu_aio_unref(elem);
212         }
213     }
214 
215     defer_call_end();
216 }
217 
thread_pool_cancel(BlockAIOCB * acb)218 static void thread_pool_cancel(BlockAIOCB *acb)
219 {
220     ThreadPoolElementAio *elem = (ThreadPoolElementAio *)acb;
221     ThreadPoolAio *pool = elem->pool;
222 
223     trace_thread_pool_cancel_aio(elem, elem->common.opaque);
224 
225     QEMU_LOCK_GUARD(&pool->lock);
226     if (elem->state == THREAD_QUEUED) {
227         QTAILQ_REMOVE(&pool->request_list, elem, reqs);
228         qemu_bh_schedule(pool->completion_bh);
229 
230         elem->state = THREAD_DONE;
231         elem->ret = -ECANCELED;
232     }
233 
234 }
235 
236 static const AIOCBInfo thread_pool_aiocb_info = {
237     .aiocb_size         = sizeof(ThreadPoolElementAio),
238     .cancel_async       = thread_pool_cancel,
239 };
240 
thread_pool_submit_aio(ThreadPoolFunc * func,void * arg,BlockCompletionFunc * cb,void * opaque)241 BlockAIOCB *thread_pool_submit_aio(ThreadPoolFunc *func, void *arg,
242                                    BlockCompletionFunc *cb, void *opaque)
243 {
244     ThreadPoolElementAio *req;
245     AioContext *ctx = qemu_get_current_aio_context();
246     ThreadPoolAio *pool = aio_get_thread_pool(ctx);
247 
248     /* Assert that the thread submitting work is the same running the pool */
249     assert(pool->ctx == qemu_get_current_aio_context());
250 
251     req = qemu_aio_get(&thread_pool_aiocb_info, NULL, cb, opaque);
252     req->func = func;
253     req->arg = arg;
254     req->state = THREAD_QUEUED;
255     req->pool = pool;
256 
257     QLIST_INSERT_HEAD(&pool->head, req, all);
258 
259     trace_thread_pool_submit_aio(pool, req, arg);
260 
261     qemu_mutex_lock(&pool->lock);
262     if (pool->idle_threads == 0 && pool->cur_threads < pool->max_threads) {
263         spawn_thread(pool);
264     }
265     QTAILQ_INSERT_TAIL(&pool->request_list, req, reqs);
266     qemu_mutex_unlock(&pool->lock);
267     qemu_cond_signal(&pool->request_cond);
268     return &req->common;
269 }
270 
271 typedef struct ThreadPoolCo {
272     Coroutine *co;
273     int ret;
274 } ThreadPoolCo;
275 
thread_pool_co_cb(void * opaque,int ret)276 static void thread_pool_co_cb(void *opaque, int ret)
277 {
278     ThreadPoolCo *co = opaque;
279 
280     co->ret = ret;
281     aio_co_wake(co->co);
282 }
283 
thread_pool_submit_co(ThreadPoolFunc * func,void * arg)284 int coroutine_fn thread_pool_submit_co(ThreadPoolFunc *func, void *arg)
285 {
286     ThreadPoolCo tpc = { .co = qemu_coroutine_self(), .ret = -EINPROGRESS };
287     assert(qemu_in_coroutine());
288     thread_pool_submit_aio(func, arg, thread_pool_co_cb, &tpc);
289     qemu_coroutine_yield();
290     return tpc.ret;
291 }
292 
thread_pool_update_params(ThreadPoolAio * pool,AioContext * ctx)293 void thread_pool_update_params(ThreadPoolAio *pool, AioContext *ctx)
294 {
295     qemu_mutex_lock(&pool->lock);
296 
297     pool->min_threads = ctx->thread_pool_min;
298     pool->max_threads = ctx->thread_pool_max;
299 
300     /*
301      * We either have to:
302      *  - Increase the number available of threads until over the min_threads
303      *    threshold.
304      *  - Bump the worker threads so that they exit, until under the max_threads
305      *    threshold.
306      *  - Do nothing. The current number of threads fall in between the min and
307      *    max thresholds. We'll let the pool manage itself.
308      */
309     for (int i = pool->cur_threads; i < pool->min_threads; i++) {
310         spawn_thread(pool);
311     }
312 
313     for (int i = pool->cur_threads; i > pool->max_threads; i--) {
314         qemu_cond_signal(&pool->request_cond);
315     }
316 
317     qemu_mutex_unlock(&pool->lock);
318 }
319 
thread_pool_init_one(ThreadPoolAio * pool,AioContext * ctx)320 static void thread_pool_init_one(ThreadPoolAio *pool, AioContext *ctx)
321 {
322     if (!ctx) {
323         ctx = qemu_get_aio_context();
324     }
325 
326     memset(pool, 0, sizeof(*pool));
327     pool->ctx = ctx;
328     pool->completion_bh = aio_bh_new(ctx, thread_pool_completion_bh, pool);
329     qemu_mutex_init(&pool->lock);
330     qemu_cond_init(&pool->worker_stopped);
331     qemu_cond_init(&pool->request_cond);
332     pool->new_thread_bh = aio_bh_new(ctx, spawn_thread_bh_fn, pool);
333 
334     QLIST_INIT(&pool->head);
335     QTAILQ_INIT(&pool->request_list);
336 
337     thread_pool_update_params(pool, ctx);
338 }
339 
thread_pool_new_aio(AioContext * ctx)340 ThreadPoolAio *thread_pool_new_aio(AioContext *ctx)
341 {
342     ThreadPoolAio *pool = g_new(ThreadPoolAio, 1);
343     thread_pool_init_one(pool, ctx);
344     return pool;
345 }
346 
thread_pool_free_aio(ThreadPoolAio * pool)347 void thread_pool_free_aio(ThreadPoolAio *pool)
348 {
349     if (!pool) {
350         return;
351     }
352 
353     assert(QLIST_EMPTY(&pool->head));
354 
355     qemu_mutex_lock(&pool->lock);
356 
357     /* Stop new threads from spawning */
358     qemu_bh_delete(pool->new_thread_bh);
359     pool->cur_threads -= pool->new_threads;
360     pool->new_threads = 0;
361 
362     /* Wait for worker threads to terminate */
363     pool->max_threads = 0;
364     qemu_cond_broadcast(&pool->request_cond);
365     while (pool->cur_threads > 0) {
366         qemu_cond_wait(&pool->worker_stopped, &pool->lock);
367     }
368 
369     qemu_mutex_unlock(&pool->lock);
370 
371     qemu_bh_delete(pool->completion_bh);
372     qemu_cond_destroy(&pool->request_cond);
373     qemu_cond_destroy(&pool->worker_stopped);
374     qemu_mutex_destroy(&pool->lock);
375     g_free(pool);
376 }
377 
378 struct ThreadPool {
379     GThreadPool *t;
380     size_t cur_work;
381     QemuMutex cur_work_lock;
382     QemuCond all_finished_cond;
383 };
384 
385 typedef struct {
386     ThreadPoolFunc *func;
387     void *opaque;
388     GDestroyNotify opaque_destroy;
389 } ThreadPoolElement;
390 
thread_pool_func(gpointer data,gpointer user_data)391 static void thread_pool_func(gpointer data, gpointer user_data)
392 {
393     ThreadPool *pool = user_data;
394     g_autofree ThreadPoolElement *el = data;
395 
396     el->func(el->opaque);
397 
398     if (el->opaque_destroy) {
399         el->opaque_destroy(el->opaque);
400     }
401 
402     QEMU_LOCK_GUARD(&pool->cur_work_lock);
403 
404     assert(pool->cur_work > 0);
405     pool->cur_work--;
406 
407     if (pool->cur_work == 0) {
408         qemu_cond_signal(&pool->all_finished_cond);
409     }
410 }
411 
thread_pool_new(void)412 ThreadPool *thread_pool_new(void)
413 {
414     ThreadPool *pool = g_new(ThreadPool, 1);
415 
416     pool->cur_work = 0;
417     qemu_mutex_init(&pool->cur_work_lock);
418     qemu_cond_init(&pool->all_finished_cond);
419 
420     pool->t = g_thread_pool_new(thread_pool_func, pool, 0, TRUE, NULL);
421     /*
422      * g_thread_pool_new() can only return errors if initial thread(s)
423      * creation fails but we ask for 0 initial threads above.
424      */
425     assert(pool->t);
426 
427     return pool;
428 }
429 
thread_pool_free(ThreadPool * pool)430 void thread_pool_free(ThreadPool *pool)
431 {
432     /*
433      * With _wait = TRUE this effectively waits for all
434      * previously submitted work to complete first.
435      */
436     g_thread_pool_free(pool->t, FALSE, TRUE);
437 
438     qemu_cond_destroy(&pool->all_finished_cond);
439     qemu_mutex_destroy(&pool->cur_work_lock);
440 
441     g_free(pool);
442 }
443 
thread_pool_submit(ThreadPool * pool,ThreadPoolFunc * func,void * opaque,GDestroyNotify opaque_destroy)444 void thread_pool_submit(ThreadPool *pool, ThreadPoolFunc *func,
445                         void *opaque, GDestroyNotify opaque_destroy)
446 {
447     ThreadPoolElement *el = g_new(ThreadPoolElement, 1);
448 
449     el->func = func;
450     el->opaque = opaque;
451     el->opaque_destroy = opaque_destroy;
452 
453     WITH_QEMU_LOCK_GUARD(&pool->cur_work_lock) {
454         pool->cur_work++;
455     }
456 
457     /*
458      * Ignore the return value since this function can only return errors
459      * if creation of an additional thread fails but even in this case the
460      * provided work is still getting queued (just for the existing threads).
461      */
462     g_thread_pool_push(pool->t, el, NULL);
463 }
464 
thread_pool_submit_immediate(ThreadPool * pool,ThreadPoolFunc * func,void * opaque,GDestroyNotify opaque_destroy)465 void thread_pool_submit_immediate(ThreadPool *pool, ThreadPoolFunc *func,
466                                   void *opaque, GDestroyNotify opaque_destroy)
467 {
468     thread_pool_submit(pool, func, opaque, opaque_destroy);
469     thread_pool_adjust_max_threads_to_work(pool);
470 }
471 
thread_pool_wait(ThreadPool * pool)472 void thread_pool_wait(ThreadPool *pool)
473 {
474     QEMU_LOCK_GUARD(&pool->cur_work_lock);
475 
476     while (pool->cur_work > 0) {
477         qemu_cond_wait(&pool->all_finished_cond,
478                        &pool->cur_work_lock);
479     }
480 }
481 
thread_pool_set_max_threads(ThreadPool * pool,int max_threads)482 bool thread_pool_set_max_threads(ThreadPool *pool,
483                                  int max_threads)
484 {
485     assert(max_threads > 0);
486 
487     return g_thread_pool_set_max_threads(pool->t, max_threads, NULL);
488 }
489 
thread_pool_adjust_max_threads_to_work(ThreadPool * pool)490 bool thread_pool_adjust_max_threads_to_work(ThreadPool *pool)
491 {
492     QEMU_LOCK_GUARD(&pool->cur_work_lock);
493 
494     return thread_pool_set_max_threads(pool, pool->cur_work);
495 }
496