xref: /linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/intel/i915_drm.h>
13 #include <drm/intel/intel-gtt.h>
14 
15 #include "gem/i915_gem_lmem.h"
16 
17 #include "intel_context.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gpu_commands.h"
20 #include "intel_gt.h"
21 #include "intel_gt_regs.h"
22 #include "intel_pci_config.h"
23 #include "intel_ring.h"
24 #include "i915_drv.h"
25 #include "i915_pci.h"
26 #include "i915_reg.h"
27 #include "i915_request.h"
28 #include "i915_scatterlist.h"
29 #include "i915_utils.h"
30 #include "i915_vgpu.h"
31 
32 #include "intel_gtt.h"
33 #include "gen8_ppgtt.h"
34 #include "intel_engine_pm.h"
35 
i915_ggtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
37 				   unsigned long color,
38 				   u64 *start,
39 				   u64 *end)
40 {
41 	if (i915_node_color_differs(node, color))
42 		*start += I915_GTT_PAGE_SIZE;
43 
44 	/*
45 	 * Also leave a space between the unallocated reserved node after the
46 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
47 	 * to insert a guard page to prevent prefetches crossing over the
48 	 * GTT boundary.
49 	 */
50 	node = list_next_entry(node, node_list);
51 	if (node->color != color)
52 		*end -= I915_GTT_PAGE_SIZE;
53 }
54 
ggtt_init_hw(struct i915_ggtt * ggtt)55 static int ggtt_init_hw(struct i915_ggtt *ggtt)
56 {
57 	struct drm_i915_private *i915 = ggtt->vm.i915;
58 
59 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
60 
61 	ggtt->vm.is_ggtt = true;
62 
63 	/* Only VLV supports read-only GGTT mappings */
64 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
65 
66 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
67 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
68 
69 	if (ggtt->mappable_end) {
70 		if (!io_mapping_init_wc(&ggtt->iomap,
71 					ggtt->gmadr.start,
72 					ggtt->mappable_end)) {
73 			ggtt->vm.cleanup(&ggtt->vm);
74 			return -EIO;
75 		}
76 
77 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
78 					      ggtt->mappable_end);
79 	}
80 
81 	intel_ggtt_init_fences(ggtt);
82 
83 	return 0;
84 }
85 
86 /**
87  * i915_ggtt_init_hw - Initialize GGTT hardware
88  * @i915: i915 device
89  */
i915_ggtt_init_hw(struct drm_i915_private * i915)90 int i915_ggtt_init_hw(struct drm_i915_private *i915)
91 {
92 	int ret;
93 
94 	/*
95 	 * Note that we use page colouring to enforce a guard page at the
96 	 * end of the address space. This is required as the CS may prefetch
97 	 * beyond the end of the batch buffer, across the page boundary,
98 	 * and beyond the end of the GTT if we do not provide a guard.
99 	 */
100 	ret = ggtt_init_hw(to_gt(i915)->ggtt);
101 	if (ret)
102 		return ret;
103 
104 	return 0;
105 }
106 
107 /**
108  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
109  * @vm: The VM to suspend the mappings for
110  * @evict_all: Evict all VMAs
111  *
112  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
113  * DPT page table.
114  */
i915_ggtt_suspend_vm(struct i915_address_space * vm,bool evict_all)115 void i915_ggtt_suspend_vm(struct i915_address_space *vm, bool evict_all)
116 {
117 	struct i915_vma *vma, *vn;
118 	int save_skip_rewrite;
119 
120 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
121 
122 retry:
123 	i915_gem_drain_freed_objects(vm->i915);
124 
125 	mutex_lock(&vm->mutex);
126 
127 	/*
128 	 * Skip rewriting PTE on VMA unbind.
129 	 * FIXME: Use an argument to i915_vma_unbind() instead?
130 	 */
131 	save_skip_rewrite = vm->skip_pte_rewrite;
132 	vm->skip_pte_rewrite = true;
133 
134 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
135 		struct drm_i915_gem_object *obj = vma->obj;
136 
137 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
138 
139 		if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
140 			continue;
141 
142 		/* unlikely to race when GPU is idle, so no worry about slowpath.. */
143 		if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
144 			/*
145 			 * No dead objects should appear here, GPU should be
146 			 * completely idle, and userspace suspended
147 			 */
148 			i915_gem_object_get(obj);
149 
150 			mutex_unlock(&vm->mutex);
151 
152 			i915_gem_object_lock(obj, NULL);
153 			GEM_WARN_ON(i915_vma_unbind(vma));
154 			i915_gem_object_unlock(obj);
155 			i915_gem_object_put(obj);
156 
157 			vm->skip_pte_rewrite = save_skip_rewrite;
158 			goto retry;
159 		}
160 
161 		if (evict_all || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
162 			i915_vma_wait_for_bind(vma);
163 
164 			__i915_vma_evict(vma, false);
165 			drm_mm_remove_node(&vma->node);
166 		}
167 
168 		i915_gem_object_unlock(obj);
169 	}
170 
171 	vm->clear_range(vm, 0, vm->total);
172 
173 	vm->skip_pte_rewrite = save_skip_rewrite;
174 
175 	mutex_unlock(&vm->mutex);
176 
177 	drm_WARN_ON(&vm->i915->drm, evict_all && !list_empty(&vm->bound_list));
178 }
179 
i915_ggtt_suspend(struct i915_ggtt * ggtt)180 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
181 {
182 	struct intel_gt *gt;
183 
184 	i915_ggtt_suspend_vm(&ggtt->vm, false);
185 	ggtt->invalidate(ggtt);
186 
187 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
188 		intel_gt_check_and_clear_faults(gt);
189 }
190 
gen6_ggtt_invalidate(struct i915_ggtt * ggtt)191 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
192 {
193 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
194 
195 	spin_lock_irq(&uncore->lock);
196 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
197 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
198 	spin_unlock_irq(&uncore->lock);
199 }
200 
needs_wc_ggtt_mapping(struct drm_i915_private * i915)201 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
202 {
203 	/*
204 	 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
205 	 * will be dropped. For WC mappings in general we have 64 byte burst
206 	 * writes when the WC buffer is flushed, so we can't use it, but have to
207 	 * resort to an uncached mapping. The WC issue is easily caught by the
208 	 * readback check when writing GTT PTE entries.
209 	 */
210 	if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
211 		return true;
212 
213 	return false;
214 }
215 
gen8_ggtt_invalidate(struct i915_ggtt * ggtt)216 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
217 {
218 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
219 
220 	/*
221 	 * Note that as an uncached mmio write, this will flush the
222 	 * WCB of the writes into the GGTT before it triggers the invalidate.
223 	 *
224 	 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
225 	 */
226 	if (needs_wc_ggtt_mapping(ggtt->vm.i915))
227 		intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
228 				      GFX_FLSH_CNTL_EN);
229 }
230 
guc_ggtt_ct_invalidate(struct intel_gt * gt)231 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
232 {
233 	struct intel_uncore *uncore = gt->uncore;
234 	intel_wakeref_t wakeref;
235 
236 	with_intel_runtime_pm_if_active(uncore->rpm, wakeref)
237 		intel_guc_invalidate_tlb_guc(gt_to_guc(gt));
238 }
239 
guc_ggtt_invalidate(struct i915_ggtt * ggtt)240 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
241 {
242 	struct drm_i915_private *i915 = ggtt->vm.i915;
243 	struct intel_gt *gt;
244 
245 	gen8_ggtt_invalidate(ggtt);
246 
247 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
248 		if (intel_guc_tlb_invalidation_is_available(gt_to_guc(gt)))
249 			guc_ggtt_ct_invalidate(gt);
250 		else if (GRAPHICS_VER(i915) >= 12)
251 			intel_uncore_write_fw(gt->uncore,
252 					      GEN12_GUC_TLB_INV_CR,
253 					      GEN12_GUC_TLB_INV_CR_INVALIDATE);
254 		else
255 			intel_uncore_write_fw(gt->uncore,
256 					      GEN8_GTCR, GEN8_GTCR_INVALIDATE);
257 	}
258 }
259 
mtl_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)260 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
261 			       unsigned int pat_index,
262 			       u32 flags)
263 {
264 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
265 
266 	WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
267 
268 	if (flags & PTE_LM)
269 		pte |= GEN12_GGTT_PTE_LM;
270 
271 	if (pat_index & BIT(0))
272 		pte |= MTL_GGTT_PTE_PAT0;
273 
274 	if (pat_index & BIT(1))
275 		pte |= MTL_GGTT_PTE_PAT1;
276 
277 	return pte;
278 }
279 
gen8_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)280 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
281 			 unsigned int pat_index,
282 			 u32 flags)
283 {
284 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
285 
286 	if (flags & PTE_LM)
287 		pte |= GEN12_GGTT_PTE_LM;
288 
289 	return pte;
290 }
291 
gen8_ggtt_pte_decode(u64 pte,bool * is_present,bool * is_local)292 static dma_addr_t gen8_ggtt_pte_decode(u64 pte, bool *is_present, bool *is_local)
293 {
294 	*is_present = pte & GEN8_PAGE_PRESENT;
295 	*is_local = pte & GEN12_GGTT_PTE_LM;
296 
297 	return pte & GEN12_GGTT_PTE_ADDR_MASK;
298 }
299 
should_update_ggtt_with_bind(struct i915_ggtt * ggtt)300 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
301 {
302 	struct intel_gt *gt = ggtt->vm.gt;
303 
304 	return intel_gt_is_bind_context_ready(gt);
305 }
306 
gen8_ggtt_bind_get_ce(struct i915_ggtt * ggtt,intel_wakeref_t * wakeref)307 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref)
308 {
309 	struct intel_context *ce;
310 	struct intel_gt *gt = ggtt->vm.gt;
311 
312 	if (intel_gt_is_wedged(gt))
313 		return NULL;
314 
315 	ce = gt->engine[BCS0]->bind_context;
316 	GEM_BUG_ON(!ce);
317 
318 	/*
319 	 * If the GT is not awake already at this stage then fallback
320 	 * to pci based GGTT update otherwise __intel_wakeref_get_first()
321 	 * would conflict with fs_reclaim trying to allocate memory while
322 	 * doing rpm_resume().
323 	 */
324 	*wakeref = intel_gt_pm_get_if_awake(gt);
325 	if (!*wakeref)
326 		return NULL;
327 
328 	intel_engine_pm_get(ce->engine);
329 
330 	return ce;
331 }
332 
gen8_ggtt_bind_put_ce(struct intel_context * ce,intel_wakeref_t wakeref)333 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref)
334 {
335 	intel_engine_pm_put(ce->engine);
336 	intel_gt_pm_put(ce->engine->gt, wakeref);
337 }
338 
gen8_ggtt_bind_ptes(struct i915_ggtt * ggtt,u32 offset,struct sg_table * pages,u32 num_entries,const gen8_pte_t pte)339 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
340 				struct sg_table *pages, u32 num_entries,
341 				const gen8_pte_t pte)
342 {
343 	struct i915_sched_attr attr = {};
344 	struct intel_gt *gt = ggtt->vm.gt;
345 	const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
346 	struct sgt_iter iter;
347 	struct i915_request *rq;
348 	struct intel_context *ce;
349 	intel_wakeref_t wakeref;
350 	u32 *cs;
351 
352 	if (!num_entries)
353 		return true;
354 
355 	ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref);
356 	if (!ce)
357 		return false;
358 
359 	if (pages)
360 		iter = __sgt_iter(pages->sgl, true);
361 
362 	while (num_entries) {
363 		int count = 0;
364 		dma_addr_t addr;
365 		/*
366 		 * MI_UPDATE_GTT can update 512 entries in a single command but
367 		 * that end up with engine reset, 511 works.
368 		 */
369 		u32 n_ptes = min_t(u32, 511, num_entries);
370 
371 		if (mutex_lock_interruptible(&ce->timeline->mutex))
372 			goto put_ce;
373 
374 		intel_context_enter(ce);
375 		rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
376 		intel_context_exit(ce);
377 		if (IS_ERR(rq)) {
378 			GT_TRACE(gt, "Failed to get bind request\n");
379 			mutex_unlock(&ce->timeline->mutex);
380 			goto put_ce;
381 		}
382 
383 		cs = intel_ring_begin(rq, 2 * n_ptes + 2);
384 		if (IS_ERR(cs)) {
385 			GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
386 			i915_request_set_error_once(rq, PTR_ERR(cs));
387 			/* once a request is created, it must be queued */
388 			goto queue_err_rq;
389 		}
390 
391 		*cs++ = MI_UPDATE_GTT | (2 * n_ptes);
392 		*cs++ = offset << 12;
393 
394 		if (pages) {
395 			for_each_sgt_daddr_next(addr, iter) {
396 				if (count == n_ptes)
397 					break;
398 				*cs++ = lower_32_bits(pte | addr);
399 				*cs++ = upper_32_bits(pte | addr);
400 				count++;
401 			}
402 			/* fill remaining with scratch pte, if any */
403 			if (count < n_ptes) {
404 				memset64((u64 *)cs, scratch_pte,
405 					 n_ptes - count);
406 				cs += (n_ptes - count) * 2;
407 			}
408 		} else {
409 			memset64((u64 *)cs, pte, n_ptes);
410 			cs += n_ptes * 2;
411 		}
412 
413 		intel_ring_advance(rq, cs);
414 queue_err_rq:
415 		i915_request_get(rq);
416 		__i915_request_commit(rq);
417 		__i915_request_queue(rq, &attr);
418 
419 		mutex_unlock(&ce->timeline->mutex);
420 		/* This will break if the request is complete or after engine reset */
421 		i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
422 		if (rq->fence.error)
423 			goto err_rq;
424 
425 		i915_request_put(rq);
426 
427 		num_entries -= n_ptes;
428 		offset += n_ptes;
429 	}
430 
431 	gen8_ggtt_bind_put_ce(ce, wakeref);
432 	return true;
433 
434 err_rq:
435 	i915_request_put(rq);
436 put_ce:
437 	gen8_ggtt_bind_put_ce(ce, wakeref);
438 	return false;
439 }
440 
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)441 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
442 {
443 	writeq(pte, addr);
444 }
445 
gen8_get_pte(void __iomem * addr)446 static gen8_pte_t gen8_get_pte(void __iomem *addr)
447 {
448 	return readq(addr);
449 }
450 
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)451 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
452 				  dma_addr_t addr,
453 				  u64 offset,
454 				  unsigned int pat_index,
455 				  u32 flags)
456 {
457 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
458 	gen8_pte_t __iomem *pte =
459 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
460 
461 	gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
462 
463 	ggtt->invalidate(ggtt);
464 }
465 
gen8_ggtt_read_entry(struct i915_address_space * vm,u64 offset,bool * is_present,bool * is_local)466 static dma_addr_t gen8_ggtt_read_entry(struct i915_address_space *vm,
467 				       u64 offset, bool *is_present, bool *is_local)
468 {
469 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
470 	gen8_pte_t __iomem *pte =
471 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
472 
473 	return ggtt->vm.pte_decode(gen8_get_pte(pte), is_present, is_local);
474 }
475 
gen8_ggtt_insert_page_bind(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)476 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
477 				       dma_addr_t addr, u64 offset,
478 				       unsigned int pat_index, u32 flags)
479 {
480 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
481 	gen8_pte_t pte;
482 
483 	pte = ggtt->vm.pte_encode(addr, pat_index, flags);
484 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
485 	    gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
486 		return ggtt->invalidate(ggtt);
487 
488 	gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
489 }
490 
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)491 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
492 				     struct i915_vma_resource *vma_res,
493 				     unsigned int pat_index,
494 				     u32 flags)
495 {
496 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
497 	const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
498 	gen8_pte_t __iomem *gte;
499 	gen8_pte_t __iomem *end;
500 	struct sgt_iter iter;
501 	dma_addr_t addr;
502 
503 	/*
504 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
505 	 * not to allow the user to override access to a read only page.
506 	 */
507 
508 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
509 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
510 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
511 	while (gte < end)
512 		gen8_set_pte(gte++, vm->scratch[0]->encode);
513 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
514 
515 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
516 		gen8_set_pte(gte++, pte_encode | addr);
517 	GEM_BUG_ON(gte > end);
518 
519 	/* Fill the allocated but "unused" space beyond the end of the buffer */
520 	while (gte < end)
521 		gen8_set_pte(gte++, vm->scratch[0]->encode);
522 
523 	/*
524 	 * We want to flush the TLBs only after we're certain all the PTE
525 	 * updates have finished.
526 	 */
527 	ggtt->invalidate(ggtt);
528 }
529 
__gen8_ggtt_insert_entries_bind(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)530 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
531 					    struct i915_vma_resource *vma_res,
532 					    unsigned int pat_index, u32 flags)
533 {
534 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
535 	gen8_pte_t scratch_pte = vm->scratch[0]->encode;
536 	gen8_pte_t pte_encode;
537 	u64 start, end;
538 
539 	pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
540 	start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
541 	end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
542 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
543 		goto err;
544 
545 	start = end;
546 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
547 	if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
548 	      vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
549 		goto err;
550 
551 	start += vma_res->node_size / I915_GTT_PAGE_SIZE;
552 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
553 		goto err;
554 
555 	return true;
556 
557 err:
558 	return false;
559 }
560 
gen8_ggtt_insert_entries_bind(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)561 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
562 					  struct i915_vma_resource *vma_res,
563 					  unsigned int pat_index, u32 flags)
564 {
565 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
566 
567 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
568 	    __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
569 		return ggtt->invalidate(ggtt);
570 
571 	gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
572 }
573 
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)574 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
575 				  u64 start, u64 length)
576 {
577 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
578 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
579 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
580 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
581 	gen8_pte_t __iomem *gtt_base =
582 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
583 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
584 	int i;
585 
586 	if (WARN(num_entries > max_entries,
587 		 "First entry = %d; Num entries = %d (max=%d)\n",
588 		 first_entry, num_entries, max_entries))
589 		num_entries = max_entries;
590 
591 	for (i = 0; i < num_entries; i++)
592 		gen8_set_pte(&gtt_base[i], scratch_pte);
593 }
594 
gen8_ggtt_scratch_range_bind(struct i915_address_space * vm,u64 start,u64 length)595 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
596 					 u64 start, u64 length)
597 {
598 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
599 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
600 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
601 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
602 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
603 
604 	if (WARN(num_entries > max_entries,
605 		 "First entry = %d; Num entries = %d (max=%d)\n",
606 		 first_entry, num_entries, max_entries))
607 		num_entries = max_entries;
608 
609 	if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
610 	     NULL, num_entries, scratch_pte))
611 		return ggtt->invalidate(ggtt);
612 
613 	gen8_ggtt_clear_range(vm, start, length);
614 }
615 
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)616 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
617 				  dma_addr_t addr,
618 				  u64 offset,
619 				  unsigned int pat_index,
620 				  u32 flags)
621 {
622 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
623 	gen6_pte_t __iomem *pte =
624 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
625 
626 	iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
627 
628 	ggtt->invalidate(ggtt);
629 }
630 
gen6_ggtt_read_entry(struct i915_address_space * vm,u64 offset,bool * is_present,bool * is_local)631 static dma_addr_t gen6_ggtt_read_entry(struct i915_address_space *vm,
632 				       u64 offset,
633 				       bool *is_present, bool *is_local)
634 {
635 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
636 	gen6_pte_t __iomem *pte =
637 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
638 
639 	return vm->pte_decode(ioread32(pte), is_present, is_local);
640 }
641 
642 /*
643  * Binds an object into the global gtt with the specified cache level.
644  * The object will be accessible to the GPU via commands whose operands
645  * reference offsets within the global GTT as well as accessible by the GPU
646  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
647  */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)648 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
649 				     struct i915_vma_resource *vma_res,
650 				     unsigned int pat_index,
651 				     u32 flags)
652 {
653 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
654 	gen6_pte_t __iomem *gte;
655 	gen6_pte_t __iomem *end;
656 	struct sgt_iter iter;
657 	dma_addr_t addr;
658 
659 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
660 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
661 
662 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
663 	while (gte < end)
664 		iowrite32(vm->scratch[0]->encode, gte++);
665 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
666 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
667 		iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
668 	GEM_BUG_ON(gte > end);
669 
670 	/* Fill the allocated but "unused" space beyond the end of the buffer */
671 	while (gte < end)
672 		iowrite32(vm->scratch[0]->encode, gte++);
673 
674 	/*
675 	 * We want to flush the TLBs only after we're certain all the PTE
676 	 * updates have finished.
677 	 */
678 	ggtt->invalidate(ggtt);
679 }
680 
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)681 static void nop_clear_range(struct i915_address_space *vm,
682 			    u64 start, u64 length)
683 {
684 }
685 
bxt_vtd_ggtt_wa(struct i915_address_space * vm)686 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
687 {
688 	/*
689 	 * Make sure the internal GAM fifo has been cleared of all GTT
690 	 * writes before exiting stop_machine(). This guarantees that
691 	 * any aperture accesses waiting to start in another process
692 	 * cannot back up behind the GTT writes causing a hang.
693 	 * The register can be any arbitrary GAM register.
694 	 */
695 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
696 }
697 
698 struct insert_page {
699 	struct i915_address_space *vm;
700 	dma_addr_t addr;
701 	u64 offset;
702 	unsigned int pat_index;
703 };
704 
bxt_vtd_ggtt_insert_page__cb(void * _arg)705 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
706 {
707 	struct insert_page *arg = _arg;
708 
709 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
710 			      arg->pat_index, 0);
711 	bxt_vtd_ggtt_wa(arg->vm);
712 
713 	return 0;
714 }
715 
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 unused)716 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
717 					  dma_addr_t addr,
718 					  u64 offset,
719 					  unsigned int pat_index,
720 					  u32 unused)
721 {
722 	struct insert_page arg = { vm, addr, offset, pat_index };
723 
724 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
725 }
726 
727 struct insert_entries {
728 	struct i915_address_space *vm;
729 	struct i915_vma_resource *vma_res;
730 	unsigned int pat_index;
731 	u32 flags;
732 };
733 
bxt_vtd_ggtt_insert_entries__cb(void * _arg)734 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
735 {
736 	struct insert_entries *arg = _arg;
737 
738 	gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
739 				 arg->pat_index, arg->flags);
740 	bxt_vtd_ggtt_wa(arg->vm);
741 
742 	return 0;
743 }
744 
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)745 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
746 					     struct i915_vma_resource *vma_res,
747 					     unsigned int pat_index,
748 					     u32 flags)
749 {
750 	struct insert_entries arg = { vm, vma_res, pat_index, flags };
751 
752 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
753 }
754 
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)755 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
756 				  u64 start, u64 length)
757 {
758 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
759 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
760 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
761 	gen6_pte_t scratch_pte, __iomem *gtt_base =
762 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
763 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
764 	int i;
765 
766 	if (WARN(num_entries > max_entries,
767 		 "First entry = %d; Num entries = %d (max=%d)\n",
768 		 first_entry, num_entries, max_entries))
769 		num_entries = max_entries;
770 
771 	scratch_pte = vm->scratch[0]->encode;
772 	for (i = 0; i < num_entries; i++)
773 		iowrite32(scratch_pte, &gtt_base[i]);
774 }
775 
intel_ggtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)776 void intel_ggtt_bind_vma(struct i915_address_space *vm,
777 			 struct i915_vm_pt_stash *stash,
778 			 struct i915_vma_resource *vma_res,
779 			 unsigned int pat_index,
780 			 u32 flags)
781 {
782 	u32 pte_flags;
783 
784 	if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
785 		return;
786 
787 	vma_res->bound_flags |= flags;
788 
789 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
790 	pte_flags = 0;
791 	if (vma_res->bi.readonly)
792 		pte_flags |= PTE_READ_ONLY;
793 	if (vma_res->bi.lmem)
794 		pte_flags |= PTE_LM;
795 
796 	vm->insert_entries(vm, vma_res, pat_index, pte_flags);
797 	vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
798 }
799 
intel_ggtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)800 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
801 			   struct i915_vma_resource *vma_res)
802 {
803 	vm->clear_range(vm, vma_res->start, vma_res->vma_size);
804 }
805 
intel_ggtt_read_entry(struct i915_address_space * vm,u64 offset,bool * is_present,bool * is_local)806 dma_addr_t intel_ggtt_read_entry(struct i915_address_space *vm,
807 				 u64 offset, bool *is_present, bool *is_local)
808 {
809 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
810 
811 	return ggtt->vm.read_entry(vm, offset, is_present, is_local);
812 }
813 
814 /*
815  * Reserve the top of the GuC address space for firmware images. Addresses
816  * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
817  * which makes for a suitable range to hold GuC/HuC firmware images if the
818  * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
819  * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
820  * of the same size anyway, which is far more than needed, to keep the logic
821  * in uc_fw_ggtt_offset() simple.
822  */
823 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
824 
ggtt_reserve_guc_top(struct i915_ggtt * ggtt)825 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
826 {
827 	u64 offset;
828 	int ret;
829 
830 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
831 		return 0;
832 
833 	GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
834 	offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
835 
836 	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
837 				   GUC_TOP_RESERVE_SIZE, offset,
838 				   I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
839 	if (ret)
840 		drm_dbg(&ggtt->vm.i915->drm,
841 			"Failed to reserve top of GGTT for GuC\n");
842 
843 	return ret;
844 }
845 
ggtt_release_guc_top(struct i915_ggtt * ggtt)846 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
847 {
848 	if (drm_mm_node_allocated(&ggtt->uc_fw))
849 		drm_mm_remove_node(&ggtt->uc_fw);
850 }
851 
cleanup_init_ggtt(struct i915_ggtt * ggtt)852 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
853 {
854 	ggtt_release_guc_top(ggtt);
855 	if (drm_mm_node_allocated(&ggtt->error_capture))
856 		drm_mm_remove_node(&ggtt->error_capture);
857 	mutex_destroy(&ggtt->error_mutex);
858 }
859 
init_ggtt(struct i915_ggtt * ggtt)860 static int init_ggtt(struct i915_ggtt *ggtt)
861 {
862 	/*
863 	 * Let GEM Manage all of the aperture.
864 	 *
865 	 * However, leave one page at the end still bound to the scratch page.
866 	 * There are a number of places where the hardware apparently prefetches
867 	 * past the end of the object, and we've seen multiple hangs with the
868 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
869 	 * aperture.  One page should be enough to keep any prefetching inside
870 	 * of the aperture.
871 	 */
872 	unsigned long hole_start, hole_end;
873 	struct drm_mm_node *entry;
874 	int ret;
875 
876 	/*
877 	 * GuC requires all resources that we're sharing with it to be placed in
878 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
879 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
880 	 * why.
881 	 */
882 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
883 			       intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
884 
885 	ret = intel_vgt_balloon(ggtt);
886 	if (ret)
887 		return ret;
888 
889 	mutex_init(&ggtt->error_mutex);
890 	if (ggtt->mappable_end) {
891 		/*
892 		 * Reserve a mappable slot for our lockless error capture.
893 		 *
894 		 * We strongly prefer taking address 0x0 in order to protect
895 		 * other critical buffers against accidental overwrites,
896 		 * as writing to address 0 is a very common mistake.
897 		 *
898 		 * Since 0 may already be in use by the system (e.g. the BIOS
899 		 * framebuffer), we let the reservation fail quietly and hope
900 		 * 0 remains reserved always.
901 		 *
902 		 * If we fail to reserve 0, and then fail to find any space
903 		 * for an error-capture, remain silent. We can afford not
904 		 * to reserve an error_capture node as we have fallback
905 		 * paths, and we trust that 0 will remain reserved. However,
906 		 * the only likely reason for failure to insert is a driver
907 		 * bug, which we expect to cause other failures...
908 		 *
909 		 * Since CPU can perform speculative reads on error capture
910 		 * (write-combining allows it) add scratch page after error
911 		 * capture to avoid DMAR errors.
912 		 */
913 		ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
914 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
915 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
916 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
917 						    &ggtt->error_capture,
918 						    ggtt->error_capture.size, 0,
919 						    ggtt->error_capture.color,
920 						    0, ggtt->mappable_end,
921 						    DRM_MM_INSERT_LOW);
922 	}
923 	if (drm_mm_node_allocated(&ggtt->error_capture)) {
924 		u64 start = ggtt->error_capture.start;
925 		u64 size = ggtt->error_capture.size;
926 
927 		ggtt->vm.scratch_range(&ggtt->vm, start, size);
928 		drm_dbg(&ggtt->vm.i915->drm,
929 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
930 			start, start + size);
931 	}
932 
933 	/*
934 	 * The upper portion of the GuC address space has a sizeable hole
935 	 * (several MB) that is inaccessible by GuC. Reserve this range within
936 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
937 	 */
938 	ret = ggtt_reserve_guc_top(ggtt);
939 	if (ret)
940 		goto err;
941 
942 	/* Clear any non-preallocated blocks */
943 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
944 		drm_dbg(&ggtt->vm.i915->drm,
945 			"clearing unused GTT space: [%lx, %lx]\n",
946 			hole_start, hole_end);
947 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
948 				     hole_end - hole_start);
949 	}
950 
951 	/* And finally clear the reserved guard page */
952 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
953 
954 	return 0;
955 
956 err:
957 	cleanup_init_ggtt(ggtt);
958 	return ret;
959 }
960 
aliasing_gtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)961 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
962 				  struct i915_vm_pt_stash *stash,
963 				  struct i915_vma_resource *vma_res,
964 				  unsigned int pat_index,
965 				  u32 flags)
966 {
967 	u32 pte_flags;
968 
969 	/* Currently applicable only to VLV */
970 	pte_flags = 0;
971 	if (vma_res->bi.readonly)
972 		pte_flags |= PTE_READ_ONLY;
973 
974 	if (flags & I915_VMA_LOCAL_BIND)
975 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
976 			       stash, vma_res, pat_index, flags);
977 
978 	if (flags & I915_VMA_GLOBAL_BIND)
979 		vm->insert_entries(vm, vma_res, pat_index, pte_flags);
980 
981 	vma_res->bound_flags |= flags;
982 }
983 
aliasing_gtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)984 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
985 				    struct i915_vma_resource *vma_res)
986 {
987 	if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
988 		vm->clear_range(vm, vma_res->start, vma_res->vma_size);
989 
990 	if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
991 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
992 }
993 
init_aliasing_ppgtt(struct i915_ggtt * ggtt)994 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
995 {
996 	struct i915_vm_pt_stash stash = {};
997 	struct i915_ppgtt *ppgtt;
998 	int err;
999 
1000 	ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
1001 	if (IS_ERR(ppgtt))
1002 		return PTR_ERR(ppgtt);
1003 
1004 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
1005 		err = -ENODEV;
1006 		goto err_ppgtt;
1007 	}
1008 
1009 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
1010 	if (err)
1011 		goto err_ppgtt;
1012 
1013 	i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
1014 	err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
1015 	i915_gem_object_unlock(ppgtt->vm.scratch[0]);
1016 	if (err)
1017 		goto err_stash;
1018 
1019 	/*
1020 	 * Note we only pre-allocate as far as the end of the global
1021 	 * GTT. On 48b / 4-level page-tables, the difference is very,
1022 	 * very significant! We have to preallocate as GVT/vgpu does
1023 	 * not like the page directory disappearing.
1024 	 */
1025 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
1026 
1027 	ggtt->alias = ppgtt;
1028 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
1029 
1030 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
1031 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
1032 
1033 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
1034 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
1035 
1036 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
1037 	return 0;
1038 
1039 err_stash:
1040 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
1041 err_ppgtt:
1042 	i915_vm_put(&ppgtt->vm);
1043 	return err;
1044 }
1045 
fini_aliasing_ppgtt(struct i915_ggtt * ggtt)1046 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1047 {
1048 	struct i915_ppgtt *ppgtt;
1049 
1050 	ppgtt = fetch_and_zero(&ggtt->alias);
1051 	if (!ppgtt)
1052 		return;
1053 
1054 	i915_vm_put(&ppgtt->vm);
1055 
1056 	ggtt->vm.vma_ops.bind_vma   = intel_ggtt_bind_vma;
1057 	ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1058 }
1059 
i915_init_ggtt(struct drm_i915_private * i915)1060 int i915_init_ggtt(struct drm_i915_private *i915)
1061 {
1062 	int ret;
1063 
1064 	ret = init_ggtt(to_gt(i915)->ggtt);
1065 	if (ret)
1066 		return ret;
1067 
1068 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1069 		ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1070 		if (ret)
1071 			cleanup_init_ggtt(to_gt(i915)->ggtt);
1072 	}
1073 
1074 	return 0;
1075 }
1076 
ggtt_cleanup_hw(struct i915_ggtt * ggtt)1077 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1078 {
1079 	struct i915_vma *vma, *vn;
1080 
1081 	flush_workqueue(ggtt->vm.i915->wq);
1082 	i915_gem_drain_freed_objects(ggtt->vm.i915);
1083 
1084 	mutex_lock(&ggtt->vm.mutex);
1085 
1086 	ggtt->vm.skip_pte_rewrite = true;
1087 
1088 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1089 		struct drm_i915_gem_object *obj = vma->obj;
1090 		bool trylock;
1091 
1092 		trylock = i915_gem_object_trylock(obj, NULL);
1093 		WARN_ON(!trylock);
1094 
1095 		WARN_ON(__i915_vma_unbind(vma));
1096 		if (trylock)
1097 			i915_gem_object_unlock(obj);
1098 	}
1099 
1100 	if (drm_mm_node_allocated(&ggtt->error_capture))
1101 		drm_mm_remove_node(&ggtt->error_capture);
1102 	mutex_destroy(&ggtt->error_mutex);
1103 
1104 	ggtt_release_guc_top(ggtt);
1105 	intel_vgt_deballoon(ggtt);
1106 
1107 	ggtt->vm.cleanup(&ggtt->vm);
1108 
1109 	mutex_unlock(&ggtt->vm.mutex);
1110 	i915_address_space_fini(&ggtt->vm);
1111 
1112 	arch_phys_wc_del(ggtt->mtrr);
1113 
1114 	if (ggtt->iomap.size)
1115 		io_mapping_fini(&ggtt->iomap);
1116 }
1117 
1118 /**
1119  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1120  * @i915: i915 device
1121  */
i915_ggtt_driver_release(struct drm_i915_private * i915)1122 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1123 {
1124 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1125 
1126 	fini_aliasing_ppgtt(ggtt);
1127 
1128 	intel_ggtt_fini_fences(ggtt);
1129 	ggtt_cleanup_hw(ggtt);
1130 }
1131 
1132 /**
1133  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1134  * all free objects have been drained.
1135  * @i915: i915 device
1136  */
i915_ggtt_driver_late_release(struct drm_i915_private * i915)1137 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1138 {
1139 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1140 
1141 	GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1142 	dma_resv_fini(&ggtt->vm._resv);
1143 }
1144 
gen6_get_total_gtt_size(u16 snb_gmch_ctl)1145 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1146 {
1147 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1148 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1149 	return snb_gmch_ctl << 20;
1150 }
1151 
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)1152 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1153 {
1154 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1155 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1156 	if (bdw_gmch_ctl)
1157 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1158 
1159 #ifdef CONFIG_X86_32
1160 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1161 	if (bdw_gmch_ctl > 4)
1162 		bdw_gmch_ctl = 4;
1163 #endif
1164 
1165 	return bdw_gmch_ctl << 20;
1166 }
1167 
chv_get_total_gtt_size(u16 gmch_ctrl)1168 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1169 {
1170 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1171 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1172 
1173 	if (gmch_ctrl)
1174 		return 1 << (20 + gmch_ctrl);
1175 
1176 	return 0;
1177 }
1178 
gen6_gttmmadr_size(struct drm_i915_private * i915)1179 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1180 {
1181 	/*
1182 	 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1183 	 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1184 	 */
1185 	GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1186 	return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1187 }
1188 
gen6_gttadr_offset(struct drm_i915_private * i915)1189 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1190 {
1191 	return gen6_gttmmadr_size(i915) / 2;
1192 }
1193 
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)1194 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1195 {
1196 	struct drm_i915_private *i915 = ggtt->vm.i915;
1197 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1198 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1199 	phys_addr_t phys_addr;
1200 	u32 pte_flags;
1201 	int ret;
1202 
1203 	GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1204 
1205 	if (i915_direct_stolen_access(i915)) {
1206 		drm_dbg(&i915->drm, "Using direct GSM access\n");
1207 		phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1208 	} else {
1209 		phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1210 	}
1211 
1212 	if (needs_wc_ggtt_mapping(i915))
1213 		ggtt->gsm = ioremap_wc(phys_addr, size);
1214 	else
1215 		ggtt->gsm = ioremap(phys_addr, size);
1216 
1217 	if (!ggtt->gsm) {
1218 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1219 		return -ENOMEM;
1220 	}
1221 
1222 	kref_init(&ggtt->vm.resv_ref);
1223 	ret = setup_scratch_page(&ggtt->vm);
1224 	if (ret) {
1225 		drm_err(&i915->drm, "Scratch setup failed\n");
1226 		/* iounmap will also get called at remove, but meh */
1227 		iounmap(ggtt->gsm);
1228 		return ret;
1229 	}
1230 
1231 	pte_flags = 0;
1232 	if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1233 		pte_flags |= PTE_LM;
1234 
1235 	ggtt->vm.scratch[0]->encode =
1236 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1237 				    i915_gem_get_pat_index(i915,
1238 							   I915_CACHE_NONE),
1239 				    pte_flags);
1240 
1241 	return 0;
1242 }
1243 
gen6_gmch_remove(struct i915_address_space * vm)1244 static void gen6_gmch_remove(struct i915_address_space *vm)
1245 {
1246 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1247 
1248 	iounmap(ggtt->gsm);
1249 	free_scratch(vm);
1250 }
1251 
pci_resource(struct pci_dev * pdev,int bar)1252 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1253 {
1254 	return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1255 			      pci_resource_len(pdev, bar));
1256 }
1257 
gen8_gmch_probe(struct i915_ggtt * ggtt)1258 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1259 {
1260 	struct drm_i915_private *i915 = ggtt->vm.i915;
1261 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1262 	unsigned int size;
1263 	u16 snb_gmch_ctl;
1264 
1265 	if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1266 		if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1267 			return -ENXIO;
1268 
1269 		ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1270 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
1271 	}
1272 
1273 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1274 	if (IS_CHERRYVIEW(i915))
1275 		size = chv_get_total_gtt_size(snb_gmch_ctl);
1276 	else
1277 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
1278 
1279 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1280 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1281 	ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1282 
1283 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1284 	ggtt->vm.cleanup = gen6_gmch_remove;
1285 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
1286 	ggtt->vm.clear_range = nop_clear_range;
1287 	ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1288 
1289 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1290 	ggtt->vm.read_entry = gen8_ggtt_read_entry;
1291 
1292 	/*
1293 	 * Serialize GTT updates with aperture access on BXT if VT-d is on,
1294 	 * and always on CHV.
1295 	 */
1296 	if (intel_vm_no_concurrent_access_wa(i915)) {
1297 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1298 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
1299 
1300 		/*
1301 		 * Calling stop_machine() version of GGTT update function
1302 		 * at error capture/reset path will raise lockdep warning.
1303 		 * Allow calling gen8_ggtt_insert_* directly at reset path
1304 		 * which is safe from parallel GGTT updates.
1305 		 */
1306 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1307 		ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1308 
1309 		ggtt->vm.bind_async_flags =
1310 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1311 	}
1312 
1313 	if (i915_ggtt_require_binder(i915)) {
1314 		ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1315 		ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1316 		ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1317 		/*
1318 		 * On GPU is hung, we might bind VMAs for error capture.
1319 		 * Fallback to CPU GGTT updates in that case.
1320 		 */
1321 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1322 	}
1323 
1324 	if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1325 		ggtt->invalidate = guc_ggtt_invalidate;
1326 	else
1327 		ggtt->invalidate = gen8_ggtt_invalidate;
1328 
1329 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1330 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1331 
1332 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1333 		ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1334 	else
1335 		ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1336 
1337 	ggtt->vm.pte_decode = gen8_ggtt_pte_decode;
1338 
1339 	return ggtt_probe_common(ggtt, size);
1340 }
1341 
1342 /*
1343  * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1344  * so the switch-case statements in these PTE encode functions are still valid.
1345  * See translation table LEGACY_CACHELEVEL.
1346  */
snb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1347 static u64 snb_pte_encode(dma_addr_t addr,
1348 			  unsigned int pat_index,
1349 			  u32 flags)
1350 {
1351 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1352 
1353 	switch (pat_index) {
1354 	case I915_CACHE_L3_LLC:
1355 	case I915_CACHE_LLC:
1356 		pte |= GEN6_PTE_CACHE_LLC;
1357 		break;
1358 	case I915_CACHE_NONE:
1359 		pte |= GEN6_PTE_UNCACHED;
1360 		break;
1361 	default:
1362 		MISSING_CASE(pat_index);
1363 	}
1364 
1365 	return pte;
1366 }
1367 
ivb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1368 static u64 ivb_pte_encode(dma_addr_t addr,
1369 			  unsigned int pat_index,
1370 			  u32 flags)
1371 {
1372 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1373 
1374 	switch (pat_index) {
1375 	case I915_CACHE_L3_LLC:
1376 		pte |= GEN7_PTE_CACHE_L3_LLC;
1377 		break;
1378 	case I915_CACHE_LLC:
1379 		pte |= GEN6_PTE_CACHE_LLC;
1380 		break;
1381 	case I915_CACHE_NONE:
1382 		pte |= GEN6_PTE_UNCACHED;
1383 		break;
1384 	default:
1385 		MISSING_CASE(pat_index);
1386 	}
1387 
1388 	return pte;
1389 }
1390 
byt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1391 static u64 byt_pte_encode(dma_addr_t addr,
1392 			  unsigned int pat_index,
1393 			  u32 flags)
1394 {
1395 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1396 
1397 	if (!(flags & PTE_READ_ONLY))
1398 		pte |= BYT_PTE_WRITEABLE;
1399 
1400 	if (pat_index != I915_CACHE_NONE)
1401 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1402 
1403 	return pte;
1404 }
1405 
hsw_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1406 static u64 hsw_pte_encode(dma_addr_t addr,
1407 			  unsigned int pat_index,
1408 			  u32 flags)
1409 {
1410 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1411 
1412 	if (pat_index != I915_CACHE_NONE)
1413 		pte |= HSW_WB_LLC_AGE3;
1414 
1415 	return pte;
1416 }
1417 
iris_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1418 static u64 iris_pte_encode(dma_addr_t addr,
1419 			   unsigned int pat_index,
1420 			   u32 flags)
1421 {
1422 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1423 
1424 	switch (pat_index) {
1425 	case I915_CACHE_NONE:
1426 		break;
1427 	case I915_CACHE_WT:
1428 		pte |= HSW_WT_ELLC_LLC_AGE3;
1429 		break;
1430 	default:
1431 		pte |= HSW_WB_ELLC_LLC_AGE3;
1432 		break;
1433 	}
1434 
1435 	return pte;
1436 }
1437 
gen6_pte_decode(u64 pte,bool * is_present,bool * is_local)1438 static dma_addr_t gen6_pte_decode(u64 pte, bool *is_present, bool *is_local)
1439 {
1440 	*is_present = pte & GEN6_PTE_VALID;
1441 	*is_local = false;
1442 
1443 	return ((pte & 0xff0) << 28) | (pte & ~0xfff);
1444 }
1445 
gen6_gmch_probe(struct i915_ggtt * ggtt)1446 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1447 {
1448 	struct drm_i915_private *i915 = ggtt->vm.i915;
1449 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1450 	unsigned int size;
1451 	u16 snb_gmch_ctl;
1452 
1453 	if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1454 		return -ENXIO;
1455 
1456 	ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1457 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1458 
1459 	/*
1460 	 * 64/512MB is the current min/max we actually know of, but this is
1461 	 * just a coarse sanity check.
1462 	 */
1463 	if (ggtt->mappable_end < (64 << 20) ||
1464 	    ggtt->mappable_end > (512 << 20)) {
1465 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1466 			&ggtt->mappable_end);
1467 		return -ENXIO;
1468 	}
1469 
1470 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1471 
1472 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1473 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1474 
1475 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1476 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1477 
1478 	ggtt->vm.clear_range = nop_clear_range;
1479 	if (!HAS_FULL_PPGTT(i915))
1480 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1481 	ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1482 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1483 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1484 	ggtt->vm.read_entry = gen6_ggtt_read_entry;
1485 	ggtt->vm.cleanup = gen6_gmch_remove;
1486 
1487 	ggtt->invalidate = gen6_ggtt_invalidate;
1488 
1489 	if (HAS_EDRAM(i915))
1490 		ggtt->vm.pte_encode = iris_pte_encode;
1491 	else if (IS_HASWELL(i915))
1492 		ggtt->vm.pte_encode = hsw_pte_encode;
1493 	else if (IS_VALLEYVIEW(i915))
1494 		ggtt->vm.pte_encode = byt_pte_encode;
1495 	else if (GRAPHICS_VER(i915) >= 7)
1496 		ggtt->vm.pte_encode = ivb_pte_encode;
1497 	else
1498 		ggtt->vm.pte_encode = snb_pte_encode;
1499 
1500 	ggtt->vm.pte_decode = gen6_pte_decode;
1501 
1502 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1503 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1504 
1505 	return ggtt_probe_common(ggtt, size);
1506 }
1507 
ggtt_probe_hw(struct i915_ggtt * ggtt,struct intel_gt * gt)1508 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1509 {
1510 	struct drm_i915_private *i915 = gt->i915;
1511 	int ret;
1512 
1513 	ggtt->vm.gt = gt;
1514 	ggtt->vm.i915 = i915;
1515 	ggtt->vm.dma = i915->drm.dev;
1516 	dma_resv_init(&ggtt->vm._resv);
1517 
1518 	if (GRAPHICS_VER(i915) >= 8)
1519 		ret = gen8_gmch_probe(ggtt);
1520 	else if (GRAPHICS_VER(i915) >= 6)
1521 		ret = gen6_gmch_probe(ggtt);
1522 	else
1523 		ret = intel_ggtt_gmch_probe(ggtt);
1524 
1525 	if (ret) {
1526 		dma_resv_fini(&ggtt->vm._resv);
1527 		return ret;
1528 	}
1529 
1530 	if ((ggtt->vm.total - 1) >> 32) {
1531 		drm_err(&i915->drm,
1532 			"We never expected a Global GTT with more than 32bits"
1533 			" of address space! Found %lldM!\n",
1534 			ggtt->vm.total >> 20);
1535 		ggtt->vm.total = 1ULL << 32;
1536 		ggtt->mappable_end =
1537 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1538 	}
1539 
1540 	if (ggtt->mappable_end > ggtt->vm.total) {
1541 		drm_err(&i915->drm,
1542 			"mappable aperture extends past end of GGTT,"
1543 			" aperture=%pa, total=%llx\n",
1544 			&ggtt->mappable_end, ggtt->vm.total);
1545 		ggtt->mappable_end = ggtt->vm.total;
1546 	}
1547 
1548 	/* GMADR is the PCI mmio aperture into the global GTT. */
1549 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1550 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1551 		(u64)ggtt->mappable_end >> 20);
1552 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1553 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1554 
1555 	return 0;
1556 }
1557 
1558 /**
1559  * i915_ggtt_probe_hw - Probe GGTT hardware location
1560  * @i915: i915 device
1561  */
i915_ggtt_probe_hw(struct drm_i915_private * i915)1562 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1563 {
1564 	struct intel_gt *gt;
1565 	int ret, i;
1566 
1567 	for_each_gt(gt, i915, i) {
1568 		ret = intel_gt_assign_ggtt(gt);
1569 		if (ret)
1570 			return ret;
1571 	}
1572 
1573 	ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1574 	if (ret)
1575 		return ret;
1576 
1577 	if (i915_vtd_active(i915))
1578 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1579 
1580 	return 0;
1581 }
1582 
i915_ggtt_create(struct drm_i915_private * i915)1583 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1584 {
1585 	struct i915_ggtt *ggtt;
1586 
1587 	ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1588 	if (!ggtt)
1589 		return ERR_PTR(-ENOMEM);
1590 
1591 	INIT_LIST_HEAD(&ggtt->gt_list);
1592 
1593 	return ggtt;
1594 }
1595 
i915_ggtt_enable_hw(struct drm_i915_private * i915)1596 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1597 {
1598 	if (GRAPHICS_VER(i915) < 6)
1599 		return intel_ggtt_gmch_enable_hw(i915);
1600 
1601 	return 0;
1602 }
1603 
1604 /**
1605  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1606  * @vm: The VM to restore the mappings for
1607  * @all_evicted: Were all VMAs expected to be evicted on suspend?
1608  *
1609  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1610  * DPT page table.
1611  *
1612  * Returns %true if restoring the mapping for any object that was in a write
1613  * domain before suspend.
1614  */
i915_ggtt_resume_vm(struct i915_address_space * vm,bool all_evicted)1615 bool i915_ggtt_resume_vm(struct i915_address_space *vm, bool all_evicted)
1616 {
1617 	struct i915_vma *vma;
1618 	bool write_domain_objs = false;
1619 
1620 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1621 
1622 	if (all_evicted) {
1623 		drm_WARN_ON(&vm->i915->drm, !list_empty(&vm->bound_list));
1624 		return false;
1625 	}
1626 
1627 	/* First fill our portion of the GTT with scratch pages */
1628 	vm->clear_range(vm, 0, vm->total);
1629 
1630 	/* clflush objects bound into the GGTT and rebind them. */
1631 	list_for_each_entry(vma, &vm->bound_list, vm_link) {
1632 		struct drm_i915_gem_object *obj = vma->obj;
1633 		unsigned int was_bound =
1634 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1635 
1636 		GEM_BUG_ON(!was_bound);
1637 
1638 		/*
1639 		 * Clear the bound flags of the vma resource to allow
1640 		 * ptes to be repopulated.
1641 		 */
1642 		vma->resource->bound_flags = 0;
1643 		vma->ops->bind_vma(vm, NULL, vma->resource,
1644 				   obj ? obj->pat_index :
1645 					 i915_gem_get_pat_index(vm->i915,
1646 								I915_CACHE_NONE),
1647 				   was_bound);
1648 
1649 		if (obj) { /* only used during resume => exclusive access */
1650 			write_domain_objs |= fetch_and_zero(&obj->write_domain);
1651 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1652 		}
1653 	}
1654 
1655 	return write_domain_objs;
1656 }
1657 
i915_ggtt_resume(struct i915_ggtt * ggtt)1658 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1659 {
1660 	struct intel_gt *gt;
1661 	bool flush;
1662 
1663 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1664 		intel_gt_check_and_clear_faults(gt);
1665 
1666 	flush = i915_ggtt_resume_vm(&ggtt->vm, false);
1667 
1668 	if (drm_mm_node_allocated(&ggtt->error_capture))
1669 		ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1670 				       ggtt->error_capture.size);
1671 
1672 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1673 		intel_uc_resume_mappings(&gt->uc);
1674 
1675 	ggtt->invalidate(ggtt);
1676 
1677 	if (flush)
1678 		wbinvd_on_all_cpus();
1679 
1680 	intel_ggtt_restore_fences(ggtt);
1681 }
1682