1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2016 Intel Corporation
4 */
5
6 #include <linux/pagevec.h>
7 #include <linux/shmem_fs.h>
8 #include <linux/swap.h>
9 #include <linux/uio.h>
10
11 #include <drm/drm_cache.h>
12
13 #include "gem/i915_gem_region.h"
14 #include "i915_drv.h"
15 #include "i915_gem_object.h"
16 #include "i915_gem_tiling.h"
17 #include "i915_gemfs.h"
18 #include "i915_scatterlist.h"
19 #include "i915_trace.h"
20
21 /*
22 * Move folios to appropriate lru and release the batch, decrementing the
23 * ref count of those folios.
24 */
check_release_folio_batch(struct folio_batch * fbatch)25 static void check_release_folio_batch(struct folio_batch *fbatch)
26 {
27 check_move_unevictable_folios(fbatch);
28 __folio_batch_release(fbatch);
29 cond_resched();
30 }
31
shmem_sg_free_table(struct sg_table * st,struct address_space * mapping,bool dirty,bool backup)32 void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping,
33 bool dirty, bool backup)
34 {
35 struct sgt_iter sgt_iter;
36 struct folio_batch fbatch;
37 struct folio *last = NULL;
38 struct page *page;
39
40 mapping_clear_unevictable(mapping);
41
42 folio_batch_init(&fbatch);
43 for_each_sgt_page(page, sgt_iter, st) {
44 struct folio *folio = page_folio(page);
45
46 if (folio == last)
47 continue;
48 last = folio;
49 if (dirty)
50 folio_mark_dirty(folio);
51 if (backup)
52 folio_mark_accessed(folio);
53
54 if (!folio_batch_add(&fbatch, folio))
55 check_release_folio_batch(&fbatch);
56 }
57 if (fbatch.nr)
58 check_release_folio_batch(&fbatch);
59
60 sg_free_table(st);
61 }
62
shmem_sg_alloc_table(struct drm_i915_private * i915,struct sg_table * st,size_t size,struct intel_memory_region * mr,struct address_space * mapping,unsigned int max_segment)63 int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st,
64 size_t size, struct intel_memory_region *mr,
65 struct address_space *mapping,
66 unsigned int max_segment)
67 {
68 unsigned int page_count; /* restricted by sg_alloc_table */
69 unsigned long i;
70 struct scatterlist *sg;
71 unsigned long next_pfn = 0; /* suppress gcc warning */
72 gfp_t noreclaim;
73 int ret;
74
75 if (overflows_type(size / PAGE_SIZE, page_count))
76 return -E2BIG;
77
78 page_count = size / PAGE_SIZE;
79 /*
80 * If there's no chance of allocating enough pages for the whole
81 * object, bail early.
82 */
83 if (size > resource_size(&mr->region))
84 return -ENOMEM;
85
86 if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN))
87 return -ENOMEM;
88
89 /*
90 * Get the list of pages out of our struct file. They'll be pinned
91 * at this point until we release them.
92 *
93 * Fail silently without starting the shrinker
94 */
95 mapping_set_unevictable(mapping);
96 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
97 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
98
99 sg = st->sgl;
100 st->nents = 0;
101 for (i = 0; i < page_count; i++) {
102 struct folio *folio;
103 unsigned long nr_pages;
104 const unsigned int shrink[] = {
105 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
106 0,
107 }, *s = shrink;
108 gfp_t gfp = noreclaim;
109
110 do {
111 cond_resched();
112 folio = shmem_read_folio_gfp(mapping, i, gfp);
113 if (!IS_ERR(folio))
114 break;
115
116 if (!*s) {
117 ret = PTR_ERR(folio);
118 goto err_sg;
119 }
120
121 i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
122
123 /*
124 * We've tried hard to allocate the memory by reaping
125 * our own buffer, now let the real VM do its job and
126 * go down in flames if truly OOM.
127 *
128 * However, since graphics tend to be disposable,
129 * defer the oom here by reporting the ENOMEM back
130 * to userspace.
131 */
132 if (!*s) {
133 /* reclaim and warn, but no oom */
134 gfp = mapping_gfp_mask(mapping);
135
136 /*
137 * Our bo are always dirty and so we require
138 * kswapd to reclaim our pages (direct reclaim
139 * does not effectively begin pageout of our
140 * buffers on its own). However, direct reclaim
141 * only waits for kswapd when under allocation
142 * congestion. So as a result __GFP_RECLAIM is
143 * unreliable and fails to actually reclaim our
144 * dirty pages -- unless you try over and over
145 * again with !__GFP_NORETRY. However, we still
146 * want to fail this allocation rather than
147 * trigger the out-of-memory killer and for
148 * this we want __GFP_RETRY_MAYFAIL.
149 */
150 gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
151 }
152 } while (1);
153
154 nr_pages = min_t(unsigned long,
155 folio_nr_pages(folio), page_count - i);
156 if (!i ||
157 sg->length >= max_segment ||
158 folio_pfn(folio) != next_pfn) {
159 if (i)
160 sg = sg_next(sg);
161
162 st->nents++;
163 sg_set_folio(sg, folio, nr_pages * PAGE_SIZE, 0);
164 } else {
165 /* XXX: could overflow? */
166 sg->length += nr_pages * PAGE_SIZE;
167 }
168 next_pfn = folio_pfn(folio) + nr_pages;
169 i += nr_pages - 1;
170
171 /* Check that the i965g/gm workaround works. */
172 GEM_BUG_ON(gfp & __GFP_DMA32 && next_pfn >= 0x00100000UL);
173 }
174 if (sg) /* loop terminated early; short sg table */
175 sg_mark_end(sg);
176
177 /* Trim unused sg entries to avoid wasting memory. */
178 i915_sg_trim(st);
179
180 return 0;
181 err_sg:
182 sg_mark_end(sg);
183 if (sg != st->sgl) {
184 shmem_sg_free_table(st, mapping, false, false);
185 } else {
186 mapping_clear_unevictable(mapping);
187 sg_free_table(st);
188 }
189
190 /*
191 * shmemfs first checks if there is enough memory to allocate the page
192 * and reports ENOSPC should there be insufficient, along with the usual
193 * ENOMEM for a genuine allocation failure.
194 *
195 * We use ENOSPC in our driver to mean that we have run out of aperture
196 * space and so want to translate the error from shmemfs back to our
197 * usual understanding of ENOMEM.
198 */
199 if (ret == -ENOSPC)
200 ret = -ENOMEM;
201
202 return ret;
203 }
204
shmem_get_pages(struct drm_i915_gem_object * obj)205 static int shmem_get_pages(struct drm_i915_gem_object *obj)
206 {
207 struct drm_i915_private *i915 = to_i915(obj->base.dev);
208 struct intel_memory_region *mem = obj->mm.region;
209 struct address_space *mapping = obj->base.filp->f_mapping;
210 unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
211 struct sg_table *st;
212 int ret;
213
214 /*
215 * Assert that the object is not currently in any GPU domain. As it
216 * wasn't in the GTT, there shouldn't be any way it could have been in
217 * a GPU cache
218 */
219 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
220 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
221
222 rebuild_st:
223 st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN);
224 if (!st)
225 return -ENOMEM;
226
227 ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping,
228 max_segment);
229 if (ret)
230 goto err_st;
231
232 ret = i915_gem_gtt_prepare_pages(obj, st);
233 if (ret) {
234 /*
235 * DMA remapping failed? One possible cause is that
236 * it could not reserve enough large entries, asking
237 * for PAGE_SIZE chunks instead may be helpful.
238 */
239 if (max_segment > PAGE_SIZE) {
240 shmem_sg_free_table(st, mapping, false, false);
241 kfree(st);
242
243 max_segment = PAGE_SIZE;
244 goto rebuild_st;
245 } else {
246 dev_warn(i915->drm.dev,
247 "Failed to DMA remap %zu pages\n",
248 obj->base.size >> PAGE_SHIFT);
249 goto err_pages;
250 }
251 }
252
253 if (i915_gem_object_needs_bit17_swizzle(obj))
254 i915_gem_object_do_bit_17_swizzle(obj, st);
255
256 if (i915_gem_object_can_bypass_llc(obj))
257 obj->cache_dirty = true;
258
259 __i915_gem_object_set_pages(obj, st);
260
261 return 0;
262
263 err_pages:
264 shmem_sg_free_table(st, mapping, false, false);
265 /*
266 * shmemfs first checks if there is enough memory to allocate the page
267 * and reports ENOSPC should there be insufficient, along with the usual
268 * ENOMEM for a genuine allocation failure.
269 *
270 * We use ENOSPC in our driver to mean that we have run out of aperture
271 * space and so want to translate the error from shmemfs back to our
272 * usual understanding of ENOMEM.
273 */
274 err_st:
275 if (ret == -ENOSPC)
276 ret = -ENOMEM;
277
278 kfree(st);
279
280 return ret;
281 }
282
283 static int
shmem_truncate(struct drm_i915_gem_object * obj)284 shmem_truncate(struct drm_i915_gem_object *obj)
285 {
286 /*
287 * Our goal here is to return as much of the memory as
288 * is possible back to the system as we are called from OOM.
289 * To do this we must instruct the shmfs to drop all of its
290 * backing pages, *now*.
291 */
292 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
293 obj->mm.madv = __I915_MADV_PURGED;
294 obj->mm.pages = ERR_PTR(-EFAULT);
295
296 return 0;
297 }
298
__shmem_writeback(size_t size,struct address_space * mapping)299 void __shmem_writeback(size_t size, struct address_space *mapping)
300 {
301 struct writeback_control wbc = {
302 .sync_mode = WB_SYNC_NONE,
303 .nr_to_write = SWAP_CLUSTER_MAX,
304 .range_start = 0,
305 .range_end = LLONG_MAX,
306 };
307 struct folio *folio = NULL;
308 int error = 0;
309
310 /*
311 * Leave mmapings intact (GTT will have been revoked on unbinding,
312 * leaving only CPU mmapings around) and add those folios to the LRU
313 * instead of invoking writeback so they are aged and paged out
314 * as normal.
315 */
316 while ((folio = writeback_iter(mapping, &wbc, folio, &error))) {
317 if (folio_mapped(folio))
318 folio_redirty_for_writepage(&wbc, folio);
319 else
320 error = shmem_writeout(folio, NULL, NULL);
321 }
322 }
323
324 static void
shmem_writeback(struct drm_i915_gem_object * obj)325 shmem_writeback(struct drm_i915_gem_object *obj)
326 {
327 __shmem_writeback(obj->base.size, obj->base.filp->f_mapping);
328 }
329
shmem_shrink(struct drm_i915_gem_object * obj,unsigned int flags)330 static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
331 {
332 switch (obj->mm.madv) {
333 case I915_MADV_DONTNEED:
334 return i915_gem_object_truncate(obj);
335 case __I915_MADV_PURGED:
336 return 0;
337 }
338
339 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
340 shmem_writeback(obj);
341
342 return 0;
343 }
344
345 void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)346 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
347 struct sg_table *pages,
348 bool needs_clflush)
349 {
350 struct drm_i915_private *i915 = to_i915(obj->base.dev);
351
352 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
353
354 if (obj->mm.madv == I915_MADV_DONTNEED)
355 obj->mm.dirty = false;
356
357 if (needs_clflush &&
358 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
359 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
360 drm_clflush_sg(pages);
361
362 __start_cpu_write(obj);
363 /*
364 * On non-LLC igfx platforms, force the flush-on-acquire if this is ever
365 * swapped-in. Our async flush path is not trust worthy enough yet(and
366 * happens in the wrong order), and with some tricks it's conceivable
367 * for userspace to change the cache-level to I915_CACHE_NONE after the
368 * pages are swapped-in, and since execbuf binds the object before doing
369 * the async flush, we have a race window.
370 */
371 if (!HAS_LLC(i915) && !IS_DGFX(i915))
372 obj->cache_dirty = true;
373 }
374
i915_gem_object_put_pages_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages)375 void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
376 {
377 __i915_gem_object_release_shmem(obj, pages, true);
378
379 i915_gem_gtt_finish_pages(obj, pages);
380
381 if (i915_gem_object_needs_bit17_swizzle(obj))
382 i915_gem_object_save_bit_17_swizzle(obj, pages);
383
384 shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping,
385 obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED);
386 kfree(pages);
387 obj->mm.dirty = false;
388 }
389
390 static void
shmem_put_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)391 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
392 {
393 if (likely(i915_gem_object_has_struct_page(obj)))
394 i915_gem_object_put_pages_shmem(obj, pages);
395 else
396 i915_gem_object_put_pages_phys(obj, pages);
397 }
398
399 static int
shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)400 shmem_pwrite(struct drm_i915_gem_object *obj,
401 const struct drm_i915_gem_pwrite *arg)
402 {
403 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
404 struct file *file = obj->base.filp;
405 struct kiocb kiocb;
406 struct iov_iter iter;
407 ssize_t written;
408 u64 size = arg->size;
409
410 /* Caller already validated user args */
411 GEM_BUG_ON(!access_ok(user_data, arg->size));
412
413 if (!i915_gem_object_has_struct_page(obj))
414 return i915_gem_object_pwrite_phys(obj, arg);
415
416 /*
417 * Before we instantiate/pin the backing store for our use, we
418 * can prepopulate the shmemfs filp efficiently using a write into
419 * the pagecache. We avoid the penalty of instantiating all the
420 * pages, important if the user is just writing to a few and never
421 * uses the object on the GPU, and using a direct write into shmemfs
422 * allows it to avoid the cost of retrieving a page (either swapin
423 * or clearing-before-use) before it is overwritten.
424 */
425 if (i915_gem_object_has_pages(obj))
426 return -ENODEV;
427
428 if (obj->mm.madv != I915_MADV_WILLNEED)
429 return -EFAULT;
430
431 if (size > MAX_RW_COUNT)
432 return -EFBIG;
433
434 if (!file->f_op->write_iter)
435 return -EINVAL;
436
437 init_sync_kiocb(&kiocb, file);
438 kiocb.ki_pos = arg->offset;
439 iov_iter_ubuf(&iter, ITER_SOURCE, (void __user *)user_data, size);
440
441 written = file->f_op->write_iter(&kiocb, &iter);
442 BUG_ON(written == -EIOCBQUEUED);
443
444 if (written != size)
445 return -EIO;
446
447 if (written < 0)
448 return written;
449
450 return 0;
451 }
452
453 static int
shmem_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * arg)454 shmem_pread(struct drm_i915_gem_object *obj,
455 const struct drm_i915_gem_pread *arg)
456 {
457 if (!i915_gem_object_has_struct_page(obj))
458 return i915_gem_object_pread_phys(obj, arg);
459
460 return -ENODEV;
461 }
462
shmem_release(struct drm_i915_gem_object * obj)463 static void shmem_release(struct drm_i915_gem_object *obj)
464 {
465 if (i915_gem_object_has_struct_page(obj))
466 i915_gem_object_release_memory_region(obj);
467
468 fput(obj->base.filp);
469 }
470
471 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
472 .name = "i915_gem_object_shmem",
473 .flags = I915_GEM_OBJECT_IS_SHRINKABLE,
474
475 .get_pages = shmem_get_pages,
476 .put_pages = shmem_put_pages,
477 .truncate = shmem_truncate,
478 .shrink = shmem_shrink,
479
480 .pwrite = shmem_pwrite,
481 .pread = shmem_pread,
482
483 .release = shmem_release,
484 };
485
__create_shmem(struct drm_i915_private * i915,struct drm_gem_object * obj,resource_size_t size)486 static int __create_shmem(struct drm_i915_private *i915,
487 struct drm_gem_object *obj,
488 resource_size_t size)
489 {
490 unsigned long flags = VM_NORESERVE;
491 struct file *filp;
492
493 drm_gem_private_object_init(&i915->drm, obj, size);
494
495 /* XXX: The __shmem_file_setup() function returns -EINVAL if size is
496 * greater than MAX_LFS_FILESIZE.
497 * To handle the same error as other code that returns -E2BIG when
498 * the size is too large, we add a code that returns -E2BIG when the
499 * size is larger than the size that can be handled.
500 * If BITS_PER_LONG is 32, size > MAX_LFS_FILESIZE is always false,
501 * so we only needs to check when BITS_PER_LONG is 64.
502 * If BITS_PER_LONG is 32, E2BIG checks are processed when
503 * i915_gem_object_size_2big() is called before init_object() callback
504 * is called.
505 */
506 if (BITS_PER_LONG == 64 && size > MAX_LFS_FILESIZE)
507 return -E2BIG;
508
509 if (i915->mm.gemfs)
510 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
511 flags);
512 else
513 filp = shmem_file_setup("i915", size, flags);
514 if (IS_ERR(filp))
515 return PTR_ERR(filp);
516
517 obj->filp = filp;
518 return 0;
519 }
520
shmem_object_init(struct intel_memory_region * mem,struct drm_i915_gem_object * obj,resource_size_t offset,resource_size_t size,resource_size_t page_size,unsigned int flags)521 static int shmem_object_init(struct intel_memory_region *mem,
522 struct drm_i915_gem_object *obj,
523 resource_size_t offset,
524 resource_size_t size,
525 resource_size_t page_size,
526 unsigned int flags)
527 {
528 static struct lock_class_key lock_class;
529 struct drm_i915_private *i915 = mem->i915;
530 struct address_space *mapping;
531 unsigned int cache_level;
532 gfp_t mask;
533 int ret;
534
535 ret = __create_shmem(i915, &obj->base, size);
536 if (ret)
537 return ret;
538
539 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
540 if (IS_I965GM(i915) || IS_I965G(i915)) {
541 /* 965gm cannot relocate objects above 4GiB. */
542 mask &= ~__GFP_HIGHMEM;
543 mask |= __GFP_DMA32;
544 }
545
546 mapping = obj->base.filp->f_mapping;
547 mapping_set_gfp_mask(mapping, mask);
548 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
549
550 i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags);
551 obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
552 obj->write_domain = I915_GEM_DOMAIN_CPU;
553 obj->read_domains = I915_GEM_DOMAIN_CPU;
554
555 /*
556 * MTL doesn't snoop CPU cache by default for GPU access (namely
557 * 1-way coherency). However some UMD's are currently depending on
558 * that. Make 1-way coherent the default setting for MTL. A follow
559 * up patch will extend the GEM_CREATE uAPI to allow UMD's specify
560 * caching mode at BO creation time
561 */
562 if (HAS_LLC(i915) || (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)))
563 /* On some devices, we can have the GPU use the LLC (the CPU
564 * cache) for about a 10% performance improvement
565 * compared to uncached. Graphics requests other than
566 * display scanout are coherent with the CPU in
567 * accessing this cache. This means in this mode we
568 * don't need to clflush on the CPU side, and on the
569 * GPU side we only need to flush internal caches to
570 * get data visible to the CPU.
571 *
572 * However, we maintain the display planes as UC, and so
573 * need to rebind when first used as such.
574 */
575 cache_level = I915_CACHE_LLC;
576 else
577 cache_level = I915_CACHE_NONE;
578
579 i915_gem_object_set_cache_coherency(obj, cache_level);
580
581 i915_gem_object_init_memory_region(obj, mem);
582
583 return 0;
584 }
585
586 struct drm_i915_gem_object *
i915_gem_object_create_shmem(struct drm_i915_private * i915,resource_size_t size)587 i915_gem_object_create_shmem(struct drm_i915_private *i915,
588 resource_size_t size)
589 {
590 return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
591 size, 0, 0);
592 }
593
594 /* Allocate a new GEM object and fill it with the supplied data */
595 struct drm_i915_gem_object *
i915_gem_object_create_shmem_from_data(struct drm_i915_private * i915,const void * data,resource_size_t size)596 i915_gem_object_create_shmem_from_data(struct drm_i915_private *i915,
597 const void *data, resource_size_t size)
598 {
599 struct drm_i915_gem_object *obj;
600 struct file *file;
601 loff_t pos = 0;
602 ssize_t err;
603
604 GEM_WARN_ON(IS_DGFX(i915));
605 obj = i915_gem_object_create_shmem(i915, round_up(size, PAGE_SIZE));
606 if (IS_ERR(obj))
607 return obj;
608
609 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
610
611 file = obj->base.filp;
612 err = kernel_write(file, data, size, &pos);
613
614 if (err < 0)
615 goto fail;
616
617 if (err != size) {
618 err = -EIO;
619 goto fail;
620 }
621
622 return obj;
623
624 fail:
625 i915_gem_object_put(obj);
626 return ERR_PTR(err);
627 }
628
init_shmem(struct intel_memory_region * mem)629 static int init_shmem(struct intel_memory_region *mem)
630 {
631 i915_gemfs_init(mem->i915);
632 intel_memory_region_set_name(mem, "system");
633
634 return 0; /* We have fallback to the kernel mnt if gemfs init failed. */
635 }
636
release_shmem(struct intel_memory_region * mem)637 static int release_shmem(struct intel_memory_region *mem)
638 {
639 i915_gemfs_fini(mem->i915);
640 return 0;
641 }
642
643 static const struct intel_memory_region_ops shmem_region_ops = {
644 .init = init_shmem,
645 .release = release_shmem,
646 .init_object = shmem_object_init,
647 };
648
i915_gem_shmem_setup(struct drm_i915_private * i915,u16 type,u16 instance)649 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
650 u16 type, u16 instance)
651 {
652 return intel_memory_region_create(i915, 0,
653 totalram_pages() << PAGE_SHIFT,
654 PAGE_SIZE, 0, 0,
655 type, instance,
656 &shmem_region_ops);
657 }
658
i915_gem_object_is_shmem(const struct drm_i915_gem_object * obj)659 bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
660 {
661 return obj->ops == &i915_gem_shmem_ops;
662 }
663